1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc/g1/heapRegion.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/cardTableModRefBS.hpp"
  31 #include "gc/shared/collectedHeap.hpp"
  32 #include "gc/shenandoah/brooksPointer.hpp"
  33 #include "gc/shenandoah/shenandoahConnectionMatrix.hpp"
  34 #include "gc/shenandoah/shenandoahHeap.hpp"
  35 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/intrinsicnode.hpp"
  43 #include "opto/locknode.hpp"
  44 #include "opto/machnode.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/parse.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/shenandoahSupport.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 
  53 //----------------------------GraphKit-----------------------------------------
  54 // Main utility constructor.
  55 GraphKit::GraphKit(JVMState* jvms)
  56   : Phase(Phase::Parser),
  57     _env(C->env()),
  58     _gvn(*C->initial_gvn())
  59 {
  60   _exceptions = jvms->map()->next_exception();
  61   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  62   set_jvms(jvms);
  63 }
  64 
  65 // Private constructor for parser.
  66 GraphKit::GraphKit()
  67   : Phase(Phase::Parser),
  68     _env(C->env()),
  69     _gvn(*C->initial_gvn())
  70 {
  71   _exceptions = NULL;
  72   set_map(NULL);
  73   debug_only(_sp = -99);
  74   debug_only(set_bci(-99));
  75 }
  76 
  77 
  78 
  79 //---------------------------clean_stack---------------------------------------
  80 // Clear away rubbish from the stack area of the JVM state.
  81 // This destroys any arguments that may be waiting on the stack.
  82 void GraphKit::clean_stack(int from_sp) {
  83   SafePointNode* map      = this->map();
  84   JVMState*      jvms     = this->jvms();
  85   int            stk_size = jvms->stk_size();
  86   int            stkoff   = jvms->stkoff();
  87   Node*          top      = this->top();
  88   for (int i = from_sp; i < stk_size; i++) {
  89     if (map->in(stkoff + i) != top) {
  90       map->set_req(stkoff + i, top);
  91     }
  92   }
  93 }
  94 
  95 
  96 //--------------------------------sync_jvms-----------------------------------
  97 // Make sure our current jvms agrees with our parse state.
  98 JVMState* GraphKit::sync_jvms() const {
  99   JVMState* jvms = this->jvms();
 100   jvms->set_bci(bci());       // Record the new bci in the JVMState
 101   jvms->set_sp(sp());         // Record the new sp in the JVMState
 102   assert(jvms_in_sync(), "jvms is now in sync");
 103   return jvms;
 104 }
 105 
 106 //--------------------------------sync_jvms_for_reexecute---------------------
 107 // Make sure our current jvms agrees with our parse state.  This version
 108 // uses the reexecute_sp for reexecuting bytecodes.
 109 JVMState* GraphKit::sync_jvms_for_reexecute() {
 110   JVMState* jvms = this->jvms();
 111   jvms->set_bci(bci());          // Record the new bci in the JVMState
 112   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 113   return jvms;
 114 }
 115 
 116 #ifdef ASSERT
 117 bool GraphKit::jvms_in_sync() const {
 118   Parse* parse = is_Parse();
 119   if (parse == NULL) {
 120     if (bci() !=      jvms()->bci())          return false;
 121     if (sp()  != (int)jvms()->sp())           return false;
 122     return true;
 123   }
 124   if (jvms()->method() != parse->method())    return false;
 125   if (jvms()->bci()    != parse->bci())       return false;
 126   int jvms_sp = jvms()->sp();
 127   if (jvms_sp          != parse->sp())        return false;
 128   int jvms_depth = jvms()->depth();
 129   if (jvms_depth       != parse->depth())     return false;
 130   return true;
 131 }
 132 
 133 // Local helper checks for special internal merge points
 134 // used to accumulate and merge exception states.
 135 // They are marked by the region's in(0) edge being the map itself.
 136 // Such merge points must never "escape" into the parser at large,
 137 // until they have been handed to gvn.transform.
 138 static bool is_hidden_merge(Node* reg) {
 139   if (reg == NULL)  return false;
 140   if (reg->is_Phi()) {
 141     reg = reg->in(0);
 142     if (reg == NULL)  return false;
 143   }
 144   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 145 }
 146 
 147 void GraphKit::verify_map() const {
 148   if (map() == NULL)  return;  // null map is OK
 149   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 150   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 151   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 152 }
 153 
 154 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 155   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 156   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 157 }
 158 #endif
 159 
 160 //---------------------------stop_and_kill_map---------------------------------
 161 // Set _map to NULL, signalling a stop to further bytecode execution.
 162 // First smash the current map's control to a constant, to mark it dead.
 163 void GraphKit::stop_and_kill_map() {
 164   SafePointNode* dead_map = stop();
 165   if (dead_map != NULL) {
 166     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 167     assert(dead_map->is_killed(), "must be so marked");
 168   }
 169 }
 170 
 171 
 172 //--------------------------------stopped--------------------------------------
 173 // Tell if _map is NULL, or control is top.
 174 bool GraphKit::stopped() {
 175   if (map() == NULL)           return true;
 176   else if (control() == top()) return true;
 177   else                         return false;
 178 }
 179 
 180 
 181 //-----------------------------has_ex_handler----------------------------------
 182 // Tell if this method or any caller method has exception handlers.
 183 bool GraphKit::has_ex_handler() {
 184   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 185     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 186       return true;
 187     }
 188   }
 189   return false;
 190 }
 191 
 192 //------------------------------save_ex_oop------------------------------------
 193 // Save an exception without blowing stack contents or other JVM state.
 194 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 195   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 196   ex_map->add_req(ex_oop);
 197   debug_only(verify_exception_state(ex_map));
 198 }
 199 
 200 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 201   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 202   Node* ex_oop = ex_map->in(ex_map->req()-1);
 203   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 204   return ex_oop;
 205 }
 206 
 207 //-----------------------------saved_ex_oop------------------------------------
 208 // Recover a saved exception from its map.
 209 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 210   return common_saved_ex_oop(ex_map, false);
 211 }
 212 
 213 //--------------------------clear_saved_ex_oop---------------------------------
 214 // Erase a previously saved exception from its map.
 215 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 216   return common_saved_ex_oop(ex_map, true);
 217 }
 218 
 219 #ifdef ASSERT
 220 //---------------------------has_saved_ex_oop----------------------------------
 221 // Erase a previously saved exception from its map.
 222 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 223   return ex_map->req() == ex_map->jvms()->endoff()+1;
 224 }
 225 #endif
 226 
 227 //-------------------------make_exception_state--------------------------------
 228 // Turn the current JVM state into an exception state, appending the ex_oop.
 229 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 230   sync_jvms();
 231   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 232   set_saved_ex_oop(ex_map, ex_oop);
 233   return ex_map;
 234 }
 235 
 236 
 237 //--------------------------add_exception_state--------------------------------
 238 // Add an exception to my list of exceptions.
 239 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 240   if (ex_map == NULL || ex_map->control() == top()) {
 241     return;
 242   }
 243 #ifdef ASSERT
 244   verify_exception_state(ex_map);
 245   if (has_exceptions()) {
 246     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 247   }
 248 #endif
 249 
 250   // If there is already an exception of exactly this type, merge with it.
 251   // In particular, null-checks and other low-level exceptions common up here.
 252   Node*       ex_oop  = saved_ex_oop(ex_map);
 253   const Type* ex_type = _gvn.type(ex_oop);
 254   if (ex_oop == top()) {
 255     // No action needed.
 256     return;
 257   }
 258   assert(ex_type->isa_instptr(), "exception must be an instance");
 259   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 260     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 261     // We check sp also because call bytecodes can generate exceptions
 262     // both before and after arguments are popped!
 263     if (ex_type2 == ex_type
 264         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 265       combine_exception_states(ex_map, e2);
 266       return;
 267     }
 268   }
 269 
 270   // No pre-existing exception of the same type.  Chain it on the list.
 271   push_exception_state(ex_map);
 272 }
 273 
 274 //-----------------------add_exception_states_from-----------------------------
 275 void GraphKit::add_exception_states_from(JVMState* jvms) {
 276   SafePointNode* ex_map = jvms->map()->next_exception();
 277   if (ex_map != NULL) {
 278     jvms->map()->set_next_exception(NULL);
 279     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 280       next_map = ex_map->next_exception();
 281       ex_map->set_next_exception(NULL);
 282       add_exception_state(ex_map);
 283     }
 284   }
 285 }
 286 
 287 //-----------------------transfer_exceptions_into_jvms-------------------------
 288 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 289   if (map() == NULL) {
 290     // We need a JVMS to carry the exceptions, but the map has gone away.
 291     // Create a scratch JVMS, cloned from any of the exception states...
 292     if (has_exceptions()) {
 293       _map = _exceptions;
 294       _map = clone_map();
 295       _map->set_next_exception(NULL);
 296       clear_saved_ex_oop(_map);
 297       debug_only(verify_map());
 298     } else {
 299       // ...or created from scratch
 300       JVMState* jvms = new (C) JVMState(_method, NULL);
 301       jvms->set_bci(_bci);
 302       jvms->set_sp(_sp);
 303       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 304       set_jvms(jvms);
 305       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 306       set_all_memory(top());
 307       while (map()->req() < jvms->endoff())  map()->add_req(top());
 308     }
 309     // (This is a kludge, in case you didn't notice.)
 310     set_control(top());
 311   }
 312   JVMState* jvms = sync_jvms();
 313   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 314   jvms->map()->set_next_exception(_exceptions);
 315   _exceptions = NULL;   // done with this set of exceptions
 316   return jvms;
 317 }
 318 
 319 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 320   assert(is_hidden_merge(dstphi), "must be a special merge node");
 321   assert(is_hidden_merge(srcphi), "must be a special merge node");
 322   uint limit = srcphi->req();
 323   for (uint i = PhiNode::Input; i < limit; i++) {
 324     dstphi->add_req(srcphi->in(i));
 325   }
 326 }
 327 static inline void add_one_req(Node* dstphi, Node* src) {
 328   assert(is_hidden_merge(dstphi), "must be a special merge node");
 329   assert(!is_hidden_merge(src), "must not be a special merge node");
 330   dstphi->add_req(src);
 331 }
 332 
 333 //-----------------------combine_exception_states------------------------------
 334 // This helper function combines exception states by building phis on a
 335 // specially marked state-merging region.  These regions and phis are
 336 // untransformed, and can build up gradually.  The region is marked by
 337 // having a control input of its exception map, rather than NULL.  Such
 338 // regions do not appear except in this function, and in use_exception_state.
 339 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 340   if (failing())  return;  // dying anyway...
 341   JVMState* ex_jvms = ex_map->_jvms;
 342   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 343   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 344   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 345   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 346   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 347   assert(ex_map->req() == phi_map->req(), "matching maps");
 348   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 349   Node*         hidden_merge_mark = root();
 350   Node*         region  = phi_map->control();
 351   MergeMemNode* phi_mem = phi_map->merged_memory();
 352   MergeMemNode* ex_mem  = ex_map->merged_memory();
 353   if (region->in(0) != hidden_merge_mark) {
 354     // The control input is not (yet) a specially-marked region in phi_map.
 355     // Make it so, and build some phis.
 356     region = new RegionNode(2);
 357     _gvn.set_type(region, Type::CONTROL);
 358     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 359     region->init_req(1, phi_map->control());
 360     phi_map->set_control(region);
 361     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 362     record_for_igvn(io_phi);
 363     _gvn.set_type(io_phi, Type::ABIO);
 364     phi_map->set_i_o(io_phi);
 365     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 366       Node* m = mms.memory();
 367       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 368       record_for_igvn(m_phi);
 369       _gvn.set_type(m_phi, Type::MEMORY);
 370       mms.set_memory(m_phi);
 371     }
 372   }
 373 
 374   // Either or both of phi_map and ex_map might already be converted into phis.
 375   Node* ex_control = ex_map->control();
 376   // if there is special marking on ex_map also, we add multiple edges from src
 377   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 378   // how wide was the destination phi_map, originally?
 379   uint orig_width = region->req();
 380 
 381   if (add_multiple) {
 382     add_n_reqs(region, ex_control);
 383     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 384   } else {
 385     // ex_map has no merges, so we just add single edges everywhere
 386     add_one_req(region, ex_control);
 387     add_one_req(phi_map->i_o(), ex_map->i_o());
 388   }
 389   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 390     if (mms.is_empty()) {
 391       // get a copy of the base memory, and patch some inputs into it
 392       const TypePtr* adr_type = mms.adr_type(C);
 393       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 394       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 395       mms.set_memory(phi);
 396       // Prepare to append interesting stuff onto the newly sliced phi:
 397       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 398     }
 399     // Append stuff from ex_map:
 400     if (add_multiple) {
 401       add_n_reqs(mms.memory(), mms.memory2());
 402     } else {
 403       add_one_req(mms.memory(), mms.memory2());
 404     }
 405   }
 406   uint limit = ex_map->req();
 407   for (uint i = TypeFunc::Parms; i < limit; i++) {
 408     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 409     if (i == tos)  i = ex_jvms->monoff();
 410     Node* src = ex_map->in(i);
 411     Node* dst = phi_map->in(i);
 412     if (src != dst) {
 413       PhiNode* phi;
 414       if (dst->in(0) != region) {
 415         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 416         record_for_igvn(phi);
 417         _gvn.set_type(phi, phi->type());
 418         phi_map->set_req(i, dst);
 419         // Prepare to append interesting stuff onto the new phi:
 420         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 421       } else {
 422         assert(dst->is_Phi(), "nobody else uses a hidden region");
 423         phi = dst->as_Phi();
 424       }
 425       if (add_multiple && src->in(0) == ex_control) {
 426         // Both are phis.
 427         add_n_reqs(dst, src);
 428       } else {
 429         while (dst->req() < region->req())  add_one_req(dst, src);
 430       }
 431       const Type* srctype = _gvn.type(src);
 432       if (phi->type() != srctype) {
 433         const Type* dsttype = phi->type()->meet_speculative(srctype);
 434         if (phi->type() != dsttype) {
 435           phi->set_type(dsttype);
 436           _gvn.set_type(phi, dsttype);
 437         }
 438       }
 439     }
 440   }
 441   phi_map->merge_replaced_nodes_with(ex_map);
 442 }
 443 
 444 //--------------------------use_exception_state--------------------------------
 445 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 446   if (failing()) { stop(); return top(); }
 447   Node* region = phi_map->control();
 448   Node* hidden_merge_mark = root();
 449   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 450   Node* ex_oop = clear_saved_ex_oop(phi_map);
 451   if (region->in(0) == hidden_merge_mark) {
 452     // Special marking for internal ex-states.  Process the phis now.
 453     region->set_req(0, region);  // now it's an ordinary region
 454     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 455     // Note: Setting the jvms also sets the bci and sp.
 456     set_control(_gvn.transform(region));
 457     uint tos = jvms()->stkoff() + sp();
 458     for (uint i = 1; i < tos; i++) {
 459       Node* x = phi_map->in(i);
 460       if (x->in(0) == region) {
 461         assert(x->is_Phi(), "expected a special phi");
 462         phi_map->set_req(i, _gvn.transform(x));
 463       }
 464     }
 465     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 466       Node* x = mms.memory();
 467       if (x->in(0) == region) {
 468         assert(x->is_Phi(), "nobody else uses a hidden region");
 469         mms.set_memory(_gvn.transform(x));
 470       }
 471     }
 472     if (ex_oop->in(0) == region) {
 473       assert(ex_oop->is_Phi(), "expected a special phi");
 474       ex_oop = _gvn.transform(ex_oop);
 475     }
 476   } else {
 477     set_jvms(phi_map->jvms());
 478   }
 479 
 480   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 481   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 482   return ex_oop;
 483 }
 484 
 485 //---------------------------------java_bc-------------------------------------
 486 Bytecodes::Code GraphKit::java_bc() const {
 487   ciMethod* method = this->method();
 488   int       bci    = this->bci();
 489   if (method != NULL && bci != InvocationEntryBci)
 490     return method->java_code_at_bci(bci);
 491   else
 492     return Bytecodes::_illegal;
 493 }
 494 
 495 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 496                                                           bool must_throw) {
 497     // if the exception capability is set, then we will generate code
 498     // to check the JavaThread.should_post_on_exceptions flag to see
 499     // if we actually need to report exception events (for this
 500     // thread).  If we don't need to report exception events, we will
 501     // take the normal fast path provided by add_exception_events.  If
 502     // exception event reporting is enabled for this thread, we will
 503     // take the uncommon_trap in the BuildCutout below.
 504 
 505     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 506     Node* jthread = _gvn.transform(new ThreadLocalNode());
 507     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 508     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 509 
 510     // Test the should_post_on_exceptions_flag vs. 0
 511     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 512     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 513 
 514     // Branch to slow_path if should_post_on_exceptions_flag was true
 515     { BuildCutout unless(this, tst, PROB_MAX);
 516       // Do not try anything fancy if we're notifying the VM on every throw.
 517       // Cf. case Bytecodes::_athrow in parse2.cpp.
 518       uncommon_trap(reason, Deoptimization::Action_none,
 519                     (ciKlass*)NULL, (char*)NULL, must_throw);
 520     }
 521 
 522 }
 523 
 524 //------------------------------builtin_throw----------------------------------
 525 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 526   bool must_throw = true;
 527 
 528   if (env()->jvmti_can_post_on_exceptions()) {
 529     // check if we must post exception events, take uncommon trap if so
 530     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 531     // here if should_post_on_exceptions is false
 532     // continue on with the normal codegen
 533   }
 534 
 535   // If this particular condition has not yet happened at this
 536   // bytecode, then use the uncommon trap mechanism, and allow for
 537   // a future recompilation if several traps occur here.
 538   // If the throw is hot, try to use a more complicated inline mechanism
 539   // which keeps execution inside the compiled code.
 540   bool treat_throw_as_hot = false;
 541   ciMethodData* md = method()->method_data();
 542 
 543   if (ProfileTraps) {
 544     if (too_many_traps(reason)) {
 545       treat_throw_as_hot = true;
 546     }
 547     // (If there is no MDO at all, assume it is early in
 548     // execution, and that any deopts are part of the
 549     // startup transient, and don't need to be remembered.)
 550 
 551     // Also, if there is a local exception handler, treat all throws
 552     // as hot if there has been at least one in this method.
 553     if (C->trap_count(reason) != 0
 554         && method()->method_data()->trap_count(reason) != 0
 555         && has_ex_handler()) {
 556         treat_throw_as_hot = true;
 557     }
 558   }
 559 
 560   // If this throw happens frequently, an uncommon trap might cause
 561   // a performance pothole.  If there is a local exception handler,
 562   // and if this particular bytecode appears to be deoptimizing often,
 563   // let us handle the throw inline, with a preconstructed instance.
 564   // Note:   If the deopt count has blown up, the uncommon trap
 565   // runtime is going to flush this nmethod, not matter what.
 566   if (treat_throw_as_hot
 567       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 568     // If the throw is local, we use a pre-existing instance and
 569     // punt on the backtrace.  This would lead to a missing backtrace
 570     // (a repeat of 4292742) if the backtrace object is ever asked
 571     // for its backtrace.
 572     // Fixing this remaining case of 4292742 requires some flavor of
 573     // escape analysis.  Leave that for the future.
 574     ciInstance* ex_obj = NULL;
 575     switch (reason) {
 576     case Deoptimization::Reason_null_check:
 577       ex_obj = env()->NullPointerException_instance();
 578       break;
 579     case Deoptimization::Reason_div0_check:
 580       ex_obj = env()->ArithmeticException_instance();
 581       break;
 582     case Deoptimization::Reason_range_check:
 583       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 584       break;
 585     case Deoptimization::Reason_class_check:
 586       if (java_bc() == Bytecodes::_aastore) {
 587         ex_obj = env()->ArrayStoreException_instance();
 588       } else {
 589         ex_obj = env()->ClassCastException_instance();
 590       }
 591       break;
 592     }
 593     if (failing()) { stop(); return; }  // exception allocation might fail
 594     if (ex_obj != NULL) {
 595       // Cheat with a preallocated exception object.
 596       if (C->log() != NULL)
 597         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 598                        Deoptimization::trap_reason_name(reason));
 599       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 600       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 601 
 602       // Clear the detail message of the preallocated exception object.
 603       // Weblogic sometimes mutates the detail message of exceptions
 604       // using reflection.
 605       int offset = java_lang_Throwable::get_detailMessage_offset();
 606       const TypePtr* adr_typ = ex_con->add_offset(offset);
 607 
 608       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 609       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 610       // Conservatively release stores of object references.
 611       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
 612 
 613       add_exception_state(make_exception_state(ex_node));
 614       return;
 615     }
 616   }
 617 
 618   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 619   // It won't be much cheaper than bailing to the interp., since we'll
 620   // have to pass up all the debug-info, and the runtime will have to
 621   // create the stack trace.
 622 
 623   // Usual case:  Bail to interpreter.
 624   // Reserve the right to recompile if we haven't seen anything yet.
 625 
 626   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
 627   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 628   if (treat_throw_as_hot
 629       && (method()->method_data()->trap_recompiled_at(bci(), m)
 630           || C->too_many_traps(reason))) {
 631     // We cannot afford to take more traps here.  Suffer in the interpreter.
 632     if (C->log() != NULL)
 633       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 634                      Deoptimization::trap_reason_name(reason),
 635                      C->trap_count(reason));
 636     action = Deoptimization::Action_none;
 637   }
 638 
 639   // "must_throw" prunes the JVM state to include only the stack, if there
 640   // are no local exception handlers.  This should cut down on register
 641   // allocation time and code size, by drastically reducing the number
 642   // of in-edges on the call to the uncommon trap.
 643 
 644   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 645 }
 646 
 647 
 648 //----------------------------PreserveJVMState---------------------------------
 649 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 650   debug_only(kit->verify_map());
 651   _kit    = kit;
 652   _map    = kit->map();   // preserve the map
 653   _sp     = kit->sp();
 654   kit->set_map(clone_map ? kit->clone_map() : NULL);
 655 #ifdef ASSERT
 656   _bci    = kit->bci();
 657   Parse* parser = kit->is_Parse();
 658   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 659   _block  = block;
 660 #endif
 661 }
 662 PreserveJVMState::~PreserveJVMState() {
 663   GraphKit* kit = _kit;
 664 #ifdef ASSERT
 665   assert(kit->bci() == _bci, "bci must not shift");
 666   Parse* parser = kit->is_Parse();
 667   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 668   assert(block == _block,    "block must not shift");
 669 #endif
 670   kit->set_map(_map);
 671   kit->set_sp(_sp);
 672 }
 673 
 674 
 675 //-----------------------------BuildCutout-------------------------------------
 676 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 677   : PreserveJVMState(kit)
 678 {
 679   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 680   SafePointNode* outer_map = _map;   // preserved map is caller's
 681   SafePointNode* inner_map = kit->map();
 682   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 683   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 684   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 685 }
 686 BuildCutout::~BuildCutout() {
 687   GraphKit* kit = _kit;
 688   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 689 }
 690 
 691 //---------------------------PreserveReexecuteState----------------------------
 692 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 693   assert(!kit->stopped(), "must call stopped() before");
 694   _kit    =    kit;
 695   _sp     =    kit->sp();
 696   _reexecute = kit->jvms()->_reexecute;
 697 }
 698 PreserveReexecuteState::~PreserveReexecuteState() {
 699   if (_kit->stopped()) return;
 700   _kit->jvms()->_reexecute = _reexecute;
 701   _kit->set_sp(_sp);
 702 }
 703 
 704 //------------------------------clone_map--------------------------------------
 705 // Implementation of PreserveJVMState
 706 //
 707 // Only clone_map(...) here. If this function is only used in the
 708 // PreserveJVMState class we may want to get rid of this extra
 709 // function eventually and do it all there.
 710 
 711 SafePointNode* GraphKit::clone_map() {
 712   if (map() == NULL)  return NULL;
 713 
 714   // Clone the memory edge first
 715   Node* mem = MergeMemNode::make(map()->memory());
 716   gvn().set_type_bottom(mem);
 717 
 718   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 719   JVMState* jvms = this->jvms();
 720   JVMState* clonejvms = jvms->clone_shallow(C);
 721   clonemap->set_memory(mem);
 722   clonemap->set_jvms(clonejvms);
 723   clonejvms->set_map(clonemap);
 724   record_for_igvn(clonemap);
 725   gvn().set_type_bottom(clonemap);
 726   return clonemap;
 727 }
 728 
 729 
 730 //-----------------------------set_map_clone-----------------------------------
 731 void GraphKit::set_map_clone(SafePointNode* m) {
 732   _map = m;
 733   _map = clone_map();
 734   _map->set_next_exception(NULL);
 735   debug_only(verify_map());
 736 }
 737 
 738 
 739 //----------------------------kill_dead_locals---------------------------------
 740 // Detect any locals which are known to be dead, and force them to top.
 741 void GraphKit::kill_dead_locals() {
 742   // Consult the liveness information for the locals.  If any
 743   // of them are unused, then they can be replaced by top().  This
 744   // should help register allocation time and cut down on the size
 745   // of the deoptimization information.
 746 
 747   // This call is made from many of the bytecode handling
 748   // subroutines called from the Big Switch in do_one_bytecode.
 749   // Every bytecode which might include a slow path is responsible
 750   // for killing its dead locals.  The more consistent we
 751   // are about killing deads, the fewer useless phis will be
 752   // constructed for them at various merge points.
 753 
 754   // bci can be -1 (InvocationEntryBci).  We return the entry
 755   // liveness for the method.
 756 
 757   if (method() == NULL || method()->code_size() == 0) {
 758     // We are building a graph for a call to a native method.
 759     // All locals are live.
 760     return;
 761   }
 762 
 763   ResourceMark rm;
 764 
 765   // Consult the liveness information for the locals.  If any
 766   // of them are unused, then they can be replaced by top().  This
 767   // should help register allocation time and cut down on the size
 768   // of the deoptimization information.
 769   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 770 
 771   int len = (int)live_locals.size();
 772   assert(len <= jvms()->loc_size(), "too many live locals");
 773   for (int local = 0; local < len; local++) {
 774     if (!live_locals.at(local)) {
 775       set_local(local, top());
 776     }
 777   }
 778 }
 779 
 780 #ifdef ASSERT
 781 //-------------------------dead_locals_are_killed------------------------------
 782 // Return true if all dead locals are set to top in the map.
 783 // Used to assert "clean" debug info at various points.
 784 bool GraphKit::dead_locals_are_killed() {
 785   if (method() == NULL || method()->code_size() == 0) {
 786     // No locals need to be dead, so all is as it should be.
 787     return true;
 788   }
 789 
 790   // Make sure somebody called kill_dead_locals upstream.
 791   ResourceMark rm;
 792   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 793     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 794     SafePointNode* map = jvms->map();
 795     ciMethod* method = jvms->method();
 796     int       bci    = jvms->bci();
 797     if (jvms == this->jvms()) {
 798       bci = this->bci();  // it might not yet be synched
 799     }
 800     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 801     int len = (int)live_locals.size();
 802     if (!live_locals.is_valid() || len == 0)
 803       // This method is trivial, or is poisoned by a breakpoint.
 804       return true;
 805     assert(len == jvms->loc_size(), "live map consistent with locals map");
 806     for (int local = 0; local < len; local++) {
 807       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 808         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 809           tty->print_cr("Zombie local %d: ", local);
 810           jvms->dump();
 811         }
 812         return false;
 813       }
 814     }
 815   }
 816   return true;
 817 }
 818 
 819 #endif //ASSERT
 820 
 821 // Helper function for enforcing certain bytecodes to reexecute if
 822 // deoptimization happens
 823 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 824   ciMethod* cur_method = jvms->method();
 825   int       cur_bci   = jvms->bci();
 826   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 827     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 828     return Interpreter::bytecode_should_reexecute(code) ||
 829            is_anewarray && code == Bytecodes::_multianewarray;
 830     // Reexecute _multianewarray bytecode which was replaced with
 831     // sequence of [a]newarray. See Parse::do_multianewarray().
 832     //
 833     // Note: interpreter should not have it set since this optimization
 834     // is limited by dimensions and guarded by flag so in some cases
 835     // multianewarray() runtime calls will be generated and
 836     // the bytecode should not be reexecutes (stack will not be reset).
 837   } else
 838     return false;
 839 }
 840 
 841 // Helper function for adding JVMState and debug information to node
 842 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 843   // Add the safepoint edges to the call (or other safepoint).
 844 
 845   // Make sure dead locals are set to top.  This
 846   // should help register allocation time and cut down on the size
 847   // of the deoptimization information.
 848   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 849 
 850   // Walk the inline list to fill in the correct set of JVMState's
 851   // Also fill in the associated edges for each JVMState.
 852 
 853   // If the bytecode needs to be reexecuted we need to put
 854   // the arguments back on the stack.
 855   const bool should_reexecute = jvms()->should_reexecute();
 856   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 857 
 858   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 859   // undefined if the bci is different.  This is normal for Parse but it
 860   // should not happen for LibraryCallKit because only one bci is processed.
 861   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 862          "in LibraryCallKit the reexecute bit should not change");
 863 
 864   // If we are guaranteed to throw, we can prune everything but the
 865   // input to the current bytecode.
 866   bool can_prune_locals = false;
 867   uint stack_slots_not_pruned = 0;
 868   int inputs = 0, depth = 0;
 869   if (must_throw) {
 870     assert(method() == youngest_jvms->method(), "sanity");
 871     if (compute_stack_effects(inputs, depth)) {
 872       can_prune_locals = true;
 873       stack_slots_not_pruned = inputs;
 874     }
 875   }
 876 
 877   if (env()->should_retain_local_variables()) {
 878     // At any safepoint, this method can get breakpointed, which would
 879     // then require an immediate deoptimization.
 880     can_prune_locals = false;  // do not prune locals
 881     stack_slots_not_pruned = 0;
 882   }
 883 
 884   // do not scribble on the input jvms
 885   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 886   call->set_jvms(out_jvms); // Start jvms list for call node
 887 
 888   // For a known set of bytecodes, the interpreter should reexecute them if
 889   // deoptimization happens. We set the reexecute state for them here
 890   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 891       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 892     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 893   }
 894 
 895   // Presize the call:
 896   DEBUG_ONLY(uint non_debug_edges = call->req());
 897   call->add_req_batch(top(), youngest_jvms->debug_depth());
 898   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 899 
 900   // Set up edges so that the call looks like this:
 901   //  Call [state:] ctl io mem fptr retadr
 902   //       [parms:] parm0 ... parmN
 903   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 904   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 905   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 906   // Note that caller debug info precedes callee debug info.
 907 
 908   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 909   uint debug_ptr = call->req();
 910 
 911   // Loop over the map input edges associated with jvms, add them
 912   // to the call node, & reset all offsets to match call node array.
 913   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 914     uint debug_end   = debug_ptr;
 915     uint debug_start = debug_ptr - in_jvms->debug_size();
 916     debug_ptr = debug_start;  // back up the ptr
 917 
 918     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 919     uint j, k, l;
 920     SafePointNode* in_map = in_jvms->map();
 921     out_jvms->set_map(call);
 922 
 923     if (can_prune_locals) {
 924       assert(in_jvms->method() == out_jvms->method(), "sanity");
 925       // If the current throw can reach an exception handler in this JVMS,
 926       // then we must keep everything live that can reach that handler.
 927       // As a quick and dirty approximation, we look for any handlers at all.
 928       if (in_jvms->method()->has_exception_handlers()) {
 929         can_prune_locals = false;
 930       }
 931     }
 932 
 933     // Add the Locals
 934     k = in_jvms->locoff();
 935     l = in_jvms->loc_size();
 936     out_jvms->set_locoff(p);
 937     if (!can_prune_locals) {
 938       for (j = 0; j < l; j++)
 939         call->set_req(p++, in_map->in(k+j));
 940     } else {
 941       p += l;  // already set to top above by add_req_batch
 942     }
 943 
 944     // Add the Expression Stack
 945     k = in_jvms->stkoff();
 946     l = in_jvms->sp();
 947     out_jvms->set_stkoff(p);
 948     if (!can_prune_locals) {
 949       for (j = 0; j < l; j++)
 950         call->set_req(p++, in_map->in(k+j));
 951     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 952       // Divide stack into {S0,...,S1}, where S0 is set to top.
 953       uint s1 = stack_slots_not_pruned;
 954       stack_slots_not_pruned = 0;  // for next iteration
 955       if (s1 > l)  s1 = l;
 956       uint s0 = l - s1;
 957       p += s0;  // skip the tops preinstalled by add_req_batch
 958       for (j = s0; j < l; j++)
 959         call->set_req(p++, in_map->in(k+j));
 960     } else {
 961       p += l;  // already set to top above by add_req_batch
 962     }
 963 
 964     // Add the Monitors
 965     k = in_jvms->monoff();
 966     l = in_jvms->mon_size();
 967     out_jvms->set_monoff(p);
 968     for (j = 0; j < l; j++)
 969       call->set_req(p++, in_map->in(k+j));
 970 
 971     // Copy any scalar object fields.
 972     k = in_jvms->scloff();
 973     l = in_jvms->scl_size();
 974     out_jvms->set_scloff(p);
 975     for (j = 0; j < l; j++)
 976       call->set_req(p++, in_map->in(k+j));
 977 
 978     // Finish the new jvms.
 979     out_jvms->set_endoff(p);
 980 
 981     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 982     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 983     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 984     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 985     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 986     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 987 
 988     // Update the two tail pointers in parallel.
 989     out_jvms = out_jvms->caller();
 990     in_jvms  = in_jvms->caller();
 991   }
 992 
 993   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 994 
 995   // Test the correctness of JVMState::debug_xxx accessors:
 996   assert(call->jvms()->debug_start() == non_debug_edges, "");
 997   assert(call->jvms()->debug_end()   == call->req(), "");
 998   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 999 }
1000 
1001 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1002   Bytecodes::Code code = java_bc();
1003   if (code == Bytecodes::_wide) {
1004     code = method()->java_code_at_bci(bci() + 1);
1005   }
1006 
1007   BasicType rtype = T_ILLEGAL;
1008   int       rsize = 0;
1009 
1010   if (code != Bytecodes::_illegal) {
1011     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1012     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1013     if (rtype < T_CONFLICT)
1014       rsize = type2size[rtype];
1015   }
1016 
1017   switch (code) {
1018   case Bytecodes::_illegal:
1019     return false;
1020 
1021   case Bytecodes::_ldc:
1022   case Bytecodes::_ldc_w:
1023   case Bytecodes::_ldc2_w:
1024     inputs = 0;
1025     break;
1026 
1027   case Bytecodes::_dup:         inputs = 1;  break;
1028   case Bytecodes::_dup_x1:      inputs = 2;  break;
1029   case Bytecodes::_dup_x2:      inputs = 3;  break;
1030   case Bytecodes::_dup2:        inputs = 2;  break;
1031   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1032   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1033   case Bytecodes::_swap:        inputs = 2;  break;
1034   case Bytecodes::_arraylength: inputs = 1;  break;
1035 
1036   case Bytecodes::_getstatic:
1037   case Bytecodes::_putstatic:
1038   case Bytecodes::_getfield:
1039   case Bytecodes::_putfield:
1040     {
1041       bool ignored_will_link;
1042       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1043       int      size  = field->type()->size();
1044       bool is_get = (depth >= 0), is_static = (depth & 1);
1045       inputs = (is_static ? 0 : 1);
1046       if (is_get) {
1047         depth = size - inputs;
1048       } else {
1049         inputs += size;        // putxxx pops the value from the stack
1050         depth = - inputs;
1051       }
1052     }
1053     break;
1054 
1055   case Bytecodes::_invokevirtual:
1056   case Bytecodes::_invokespecial:
1057   case Bytecodes::_invokestatic:
1058   case Bytecodes::_invokedynamic:
1059   case Bytecodes::_invokeinterface:
1060     {
1061       bool ignored_will_link;
1062       ciSignature* declared_signature = NULL;
1063       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1064       assert(declared_signature != NULL, "cannot be null");
1065       inputs   = declared_signature->arg_size_for_bc(code);
1066       int size = declared_signature->return_type()->size();
1067       depth = size - inputs;
1068     }
1069     break;
1070 
1071   case Bytecodes::_multianewarray:
1072     {
1073       ciBytecodeStream iter(method());
1074       iter.reset_to_bci(bci());
1075       iter.next();
1076       inputs = iter.get_dimensions();
1077       assert(rsize == 1, "");
1078       depth = rsize - inputs;
1079     }
1080     break;
1081 
1082   case Bytecodes::_ireturn:
1083   case Bytecodes::_lreturn:
1084   case Bytecodes::_freturn:
1085   case Bytecodes::_dreturn:
1086   case Bytecodes::_areturn:
1087     assert(rsize == -depth, "");
1088     inputs = rsize;
1089     break;
1090 
1091   case Bytecodes::_jsr:
1092   case Bytecodes::_jsr_w:
1093     inputs = 0;
1094     depth  = 1;                  // S.B. depth=1, not zero
1095     break;
1096 
1097   default:
1098     // bytecode produces a typed result
1099     inputs = rsize - depth;
1100     assert(inputs >= 0, "");
1101     break;
1102   }
1103 
1104 #ifdef ASSERT
1105   // spot check
1106   int outputs = depth + inputs;
1107   assert(outputs >= 0, "sanity");
1108   switch (code) {
1109   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1110   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1111   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1112   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1113   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1114   }
1115 #endif //ASSERT
1116 
1117   return true;
1118 }
1119 
1120 
1121 
1122 //------------------------------basic_plus_adr---------------------------------
1123 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1124   // short-circuit a common case
1125   if (offset == intcon(0))  return ptr;
1126   return _gvn.transform( new AddPNode(base, ptr, offset) );
1127 }
1128 
1129 Node* GraphKit::ConvI2L(Node* offset) {
1130   // short-circuit a common case
1131   jint offset_con = find_int_con(offset, Type::OffsetBot);
1132   if (offset_con != Type::OffsetBot) {
1133     return longcon((jlong) offset_con);
1134   }
1135   return _gvn.transform( new ConvI2LNode(offset));
1136 }
1137 
1138 Node* GraphKit::ConvI2UL(Node* offset) {
1139   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1140   if (offset_con != (juint) Type::OffsetBot) {
1141     return longcon((julong) offset_con);
1142   }
1143   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1144   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1145   return _gvn.transform( new AndLNode(conv, mask) );
1146 }
1147 
1148 Node* GraphKit::ConvL2I(Node* offset) {
1149   // short-circuit a common case
1150   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1151   if (offset_con != (jlong)Type::OffsetBot) {
1152     return intcon((int) offset_con);
1153   }
1154   return _gvn.transform( new ConvL2INode(offset));
1155 }
1156 
1157 //-------------------------load_object_klass-----------------------------------
1158 Node* GraphKit::load_object_klass(Node* obj) {
1159   // Special-case a fresh allocation to avoid building nodes:
1160   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1161   if (akls != NULL)  return akls;
1162   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1163   return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1164 }
1165 
1166 //-------------------------load_array_length-----------------------------------
1167 Node* GraphKit::load_array_length(Node* array) {
1168   // Special-case a fresh allocation to avoid building nodes:
1169   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1170   Node *alen;
1171   if (alloc == NULL) {
1172     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1173     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1174   } else {
1175     alen = alloc->Ideal_length();
1176     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1177     if (ccast != alen) {
1178       alen = _gvn.transform(ccast);
1179     }
1180   }
1181   return alen;
1182 }
1183 
1184 //------------------------------do_null_check----------------------------------
1185 // Helper function to do a NULL pointer check.  Returned value is
1186 // the incoming address with NULL casted away.  You are allowed to use the
1187 // not-null value only if you are control dependent on the test.
1188 #ifndef PRODUCT
1189 extern int explicit_null_checks_inserted,
1190            explicit_null_checks_elided;
1191 #endif
1192 Node* GraphKit::null_check_common(Node* value, BasicType type,
1193                                   // optional arguments for variations:
1194                                   bool assert_null,
1195                                   Node* *null_control,
1196                                   bool speculative) {
1197   assert(!assert_null || null_control == NULL, "not both at once");
1198   if (stopped())  return top();
1199   NOT_PRODUCT(explicit_null_checks_inserted++);
1200 
1201   // Construct NULL check
1202   Node *chk = NULL;
1203   switch(type) {
1204     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1205     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1206     case T_ARRAY  : // fall through
1207       type = T_OBJECT;  // simplify further tests
1208     case T_OBJECT : {
1209       const Type *t = _gvn.type( value );
1210 
1211       const TypeOopPtr* tp = t->isa_oopptr();
1212       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1213           // Only for do_null_check, not any of its siblings:
1214           && !assert_null && null_control == NULL) {
1215         // Usually, any field access or invocation on an unloaded oop type
1216         // will simply fail to link, since the statically linked class is
1217         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1218         // the static class is loaded but the sharper oop type is not.
1219         // Rather than checking for this obscure case in lots of places,
1220         // we simply observe that a null check on an unloaded class
1221         // will always be followed by a nonsense operation, so we
1222         // can just issue the uncommon trap here.
1223         // Our access to the unloaded class will only be correct
1224         // after it has been loaded and initialized, which requires
1225         // a trip through the interpreter.
1226 #ifndef PRODUCT
1227         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1228 #endif
1229         uncommon_trap(Deoptimization::Reason_unloaded,
1230                       Deoptimization::Action_reinterpret,
1231                       tp->klass(), "!loaded");
1232         return top();
1233       }
1234 
1235       if (assert_null) {
1236         // See if the type is contained in NULL_PTR.
1237         // If so, then the value is already null.
1238         if (t->higher_equal(TypePtr::NULL_PTR)) {
1239           NOT_PRODUCT(explicit_null_checks_elided++);
1240           return value;           // Elided null assert quickly!
1241         }
1242       } else {
1243         // See if mixing in the NULL pointer changes type.
1244         // If so, then the NULL pointer was not allowed in the original
1245         // type.  In other words, "value" was not-null.
1246         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1247           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1248           NOT_PRODUCT(explicit_null_checks_elided++);
1249           return value;           // Elided null check quickly!
1250         }
1251       }
1252       chk = new CmpPNode( value, null() );
1253       break;
1254     }
1255 
1256     default:
1257       fatal("unexpected type: %s", type2name(type));
1258   }
1259   assert(chk != NULL, "sanity check");
1260   chk = _gvn.transform(chk);
1261 
1262   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1263   BoolNode *btst = new BoolNode( chk, btest);
1264   Node   *tst = _gvn.transform( btst );
1265 
1266   //-----------
1267   // if peephole optimizations occurred, a prior test existed.
1268   // If a prior test existed, maybe it dominates as we can avoid this test.
1269   if (tst != btst && type == T_OBJECT) {
1270     // At this point we want to scan up the CFG to see if we can
1271     // find an identical test (and so avoid this test altogether).
1272     Node *cfg = control();
1273     int depth = 0;
1274     while( depth < 16 ) {       // Limit search depth for speed
1275       if( cfg->Opcode() == Op_IfTrue &&
1276           cfg->in(0)->in(1) == tst ) {
1277         // Found prior test.  Use "cast_not_null" to construct an identical
1278         // CastPP (and hence hash to) as already exists for the prior test.
1279         // Return that casted value.
1280         if (assert_null) {
1281           replace_in_map(value, null());
1282           return null();  // do not issue the redundant test
1283         }
1284         Node *oldcontrol = control();
1285         set_control(cfg);
1286         Node *res = cast_not_null(value);
1287         set_control(oldcontrol);
1288         NOT_PRODUCT(explicit_null_checks_elided++);
1289         return res;
1290       }
1291       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1292       if (cfg == NULL)  break;  // Quit at region nodes
1293       depth++;
1294     }
1295   }
1296 
1297   //-----------
1298   // Branch to failure if null
1299   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1300   Deoptimization::DeoptReason reason;
1301   if (assert_null) {
1302     reason = Deoptimization::Reason_null_assert;
1303   } else if (type == T_OBJECT) {
1304     reason = Deoptimization::reason_null_check(speculative);
1305   } else {
1306     reason = Deoptimization::Reason_div0_check;
1307   }
1308   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1309   // ciMethodData::has_trap_at will return a conservative -1 if any
1310   // must-be-null assertion has failed.  This could cause performance
1311   // problems for a method after its first do_null_assert failure.
1312   // Consider using 'Reason_class_check' instead?
1313 
1314   // To cause an implicit null check, we set the not-null probability
1315   // to the maximum (PROB_MAX).  For an explicit check the probability
1316   // is set to a smaller value.
1317   if (null_control != NULL || too_many_traps(reason)) {
1318     // probability is less likely
1319     ok_prob =  PROB_LIKELY_MAG(3);
1320   } else if (!assert_null &&
1321              (ImplicitNullCheckThreshold > 0) &&
1322              method() != NULL &&
1323              (method()->method_data()->trap_count(reason)
1324               >= (uint)ImplicitNullCheckThreshold)) {
1325     ok_prob =  PROB_LIKELY_MAG(3);
1326   }
1327 
1328   if (null_control != NULL) {
1329     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1330     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1331     set_control(      _gvn.transform( new IfTrueNode(iff)));
1332 #ifndef PRODUCT
1333     if (null_true == top()) {
1334       explicit_null_checks_elided++;
1335     }
1336 #endif
1337     (*null_control) = null_true;
1338   } else {
1339     BuildCutout unless(this, tst, ok_prob);
1340     // Check for optimizer eliding test at parse time
1341     if (stopped()) {
1342       // Failure not possible; do not bother making uncommon trap.
1343       NOT_PRODUCT(explicit_null_checks_elided++);
1344     } else if (assert_null) {
1345       uncommon_trap(reason,
1346                     Deoptimization::Action_make_not_entrant,
1347                     NULL, "assert_null");
1348     } else {
1349       replace_in_map(value, zerocon(type));
1350       builtin_throw(reason);
1351     }
1352   }
1353 
1354   // Must throw exception, fall-thru not possible?
1355   if (stopped()) {
1356     return top();               // No result
1357   }
1358 
1359   if (assert_null) {
1360     // Cast obj to null on this path.
1361     replace_in_map(value, zerocon(type));
1362     return zerocon(type);
1363   }
1364 
1365   // Cast obj to not-null on this path, if there is no null_control.
1366   // (If there is a null_control, a non-null value may come back to haunt us.)
1367   if (type == T_OBJECT) {
1368     Node* cast = cast_not_null(value, false);
1369     if (null_control == NULL || (*null_control) == top())
1370       replace_in_map(value, cast);
1371     value = cast;
1372   }
1373 
1374   return value;
1375 }
1376 
1377 
1378 //------------------------------cast_not_null----------------------------------
1379 // Cast obj to not-null on this path
1380 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1381   const Type *t = _gvn.type(obj);
1382   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1383   // Object is already not-null?
1384   if( t == t_not_null ) return obj;
1385 
1386   Node *cast = new CastPPNode(obj,t_not_null);
1387   cast->init_req(0, control());
1388   cast = _gvn.transform( cast );
1389 
1390   // Scan for instances of 'obj' in the current JVM mapping.
1391   // These instances are known to be not-null after the test.
1392   if (do_replace_in_map)
1393     replace_in_map(obj, cast);
1394 
1395   return cast;                  // Return casted value
1396 }
1397 
1398 
1399 //--------------------------replace_in_map-------------------------------------
1400 void GraphKit::replace_in_map(Node* old, Node* neww) {
1401   if (old == neww) {
1402     return;
1403   }
1404 
1405   map()->replace_edge(old, neww);
1406 
1407   // Note: This operation potentially replaces any edge
1408   // on the map.  This includes locals, stack, and monitors
1409   // of the current (innermost) JVM state.
1410 
1411   // don't let inconsistent types from profiling escape this
1412   // method
1413 
1414   const Type* told = _gvn.type(old);
1415   const Type* tnew = _gvn.type(neww);
1416 
1417   if (!tnew->higher_equal(told)) {
1418     return;
1419   }
1420 
1421   map()->record_replaced_node(old, neww);
1422 }
1423 
1424 
1425 //=============================================================================
1426 //--------------------------------memory---------------------------------------
1427 Node* GraphKit::memory(uint alias_idx) {
1428   MergeMemNode* mem = merged_memory();
1429   Node* p = mem->memory_at(alias_idx);
1430   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1431   return p;
1432 }
1433 
1434 //-----------------------------reset_memory------------------------------------
1435 Node* GraphKit::reset_memory() {
1436   Node* mem = map()->memory();
1437   // do not use this node for any more parsing!
1438   debug_only( map()->set_memory((Node*)NULL) );
1439   return _gvn.transform( mem );
1440 }
1441 
1442 //------------------------------set_all_memory---------------------------------
1443 void GraphKit::set_all_memory(Node* newmem) {
1444   Node* mergemem = MergeMemNode::make(newmem);
1445   gvn().set_type_bottom(mergemem);
1446   map()->set_memory(mergemem);
1447 }
1448 
1449 //------------------------------set_all_memory_call----------------------------
1450 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1451   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1452   set_all_memory(newmem);
1453 }
1454 
1455 //=============================================================================
1456 //
1457 // parser factory methods for MemNodes
1458 //
1459 // These are layered on top of the factory methods in LoadNode and StoreNode,
1460 // and integrate with the parser's memory state and _gvn engine.
1461 //
1462 
1463 // factory methods in "int adr_idx"
1464 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1465                           int adr_idx,
1466                           MemNode::MemOrd mo,
1467                           LoadNode::ControlDependency control_dependency,
1468                           bool require_atomic_access,
1469                           bool unaligned,
1470                           bool mismatched) {
1471   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1472   const TypePtr* adr_type = NULL; // debug-mode-only argument
1473   debug_only(adr_type = C->get_adr_type(adr_idx));
1474   Node* mem = memory(adr_idx);
1475   Node* ld;
1476   if (require_atomic_access && bt == T_LONG) {
1477     ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1478   } else if (require_atomic_access && bt == T_DOUBLE) {
1479     ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1480   } else {
1481     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched);
1482   }
1483   ld = _gvn.transform(ld);
1484   if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
1485     // Improve graph before escape analysis and boxing elimination.
1486     record_for_igvn(ld);
1487   }
1488   return ld;
1489 }
1490 
1491 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1492                                 int adr_idx,
1493                                 MemNode::MemOrd mo,
1494                                 bool require_atomic_access,
1495                                 bool unaligned,
1496                                 bool mismatched) {
1497   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1498   const TypePtr* adr_type = NULL;
1499   debug_only(adr_type = C->get_adr_type(adr_idx));
1500   Node *mem = memory(adr_idx);
1501   Node* st;
1502   if (require_atomic_access && bt == T_LONG) {
1503     st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1504   } else if (require_atomic_access && bt == T_DOUBLE) {
1505     st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1506   } else {
1507     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1508   }
1509   if (unaligned) {
1510     st->as_Store()->set_unaligned_access();
1511   }
1512   if (mismatched) {
1513     st->as_Store()->set_mismatched_access();
1514   }
1515   st = _gvn.transform(st);
1516   set_memory(st, adr_idx);
1517   // Back-to-back stores can only remove intermediate store with DU info
1518   // so push on worklist for optimizer.
1519   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1520     record_for_igvn(st);
1521 
1522   return st;
1523 }
1524 
1525 
1526 Node* GraphKit::pre_barrier(bool do_load,
1527                            Node* ctl,
1528                            Node* obj,
1529                            Node* adr,
1530                            uint  adr_idx,
1531                            Node* val,
1532                            const TypeOopPtr* val_type,
1533                            Node* pre_val,
1534                            BasicType bt) {
1535 
1536   BarrierSet* bs = Universe::heap()->barrier_set();
1537   set_control(ctl);
1538   switch (bs->kind()) {
1539     case BarrierSet::G1SATBCTLogging:
1540       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1541       return val;
1542     case BarrierSet::ShenandoahBarrierSet:
1543       return shenandoah_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1544 
1545     case BarrierSet::CardTableForRS:
1546     case BarrierSet::CardTableExtension:
1547     case BarrierSet::ModRef:
1548       break;
1549 
1550     default      :
1551       ShouldNotReachHere();
1552 
1553   }
1554   return val;
1555 }
1556 
1557 bool GraphKit::can_move_pre_barrier() const {
1558   BarrierSet* bs = Universe::heap()->barrier_set();
1559   switch (bs->kind()) {
1560     case BarrierSet::G1SATBCTLogging:
1561     case BarrierSet::ShenandoahBarrierSet:
1562       return true; // Can move it if no safepoint
1563 
1564     case BarrierSet::CardTableForRS:
1565     case BarrierSet::CardTableExtension:
1566     case BarrierSet::ModRef:
1567       return true; // There is no pre-barrier
1568 
1569     default      :
1570       ShouldNotReachHere();
1571   }
1572   return false;
1573 }
1574 
1575 void GraphKit::post_barrier(Node* ctl,
1576                             Node* store,
1577                             Node* obj,
1578                             Node* adr,
1579                             uint  adr_idx,
1580                             Node* val,
1581                             BasicType bt,
1582                             bool use_precise) {
1583   BarrierSet* bs = Universe::heap()->barrier_set();
1584   set_control(ctl);
1585   switch (bs->kind()) {
1586     case BarrierSet::G1SATBCTLogging:
1587       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1588       break;
1589 
1590     case BarrierSet::CardTableForRS:
1591     case BarrierSet::CardTableExtension:
1592       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1593       break;
1594 
1595     case BarrierSet::ModRef:
1596     case BarrierSet::ShenandoahBarrierSet:
1597       break;
1598 
1599     default      :
1600       ShouldNotReachHere();
1601 
1602   }
1603 }
1604 
1605 Node* GraphKit::store_oop(Node* ctl,
1606                           Node* obj,
1607                           Node* adr,
1608                           const TypePtr* adr_type,
1609                           Node* val,
1610                           const TypeOopPtr* val_type,
1611                           BasicType bt,
1612                           bool use_precise,
1613                           MemNode::MemOrd mo,
1614                           bool mismatched) {
1615   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1616   // could be delayed during Parse (for example, in adjust_map_after_if()).
1617   // Execute transformation here to avoid barrier generation in such case.
1618   if (_gvn.type(val) == TypePtr::NULL_PTR)
1619     val = _gvn.makecon(TypePtr::NULL_PTR);
1620 
1621   set_control(ctl);
1622   if (stopped()) return top(); // Dead path ?
1623 
1624   assert(bt == T_OBJECT, "sanity");
1625   assert(val != NULL, "not dead path");
1626   uint adr_idx = C->get_alias_index(adr_type);
1627   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1628 
1629   val = pre_barrier(true /* do_load */,
1630               control(), obj, adr, adr_idx, val, val_type,
1631               NULL /* pre_val */,
1632               bt);
1633 
1634   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo, mismatched);
1635   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1636   return store;
1637 }
1638 
1639 // Could be an array or object we don't know at compile time (unsafe ref.)
1640 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1641                              Node* obj,   // containing obj
1642                              Node* adr,  // actual adress to store val at
1643                              const TypePtr* adr_type,
1644                              Node* val,
1645                              BasicType bt,
1646                              MemNode::MemOrd mo,
1647                              bool mismatched) {
1648   Compile::AliasType* at = C->alias_type(adr_type);
1649   const TypeOopPtr* val_type = NULL;
1650   if (adr_type->isa_instptr()) {
1651     if (at->field() != NULL) {
1652       // known field.  This code is a copy of the do_put_xxx logic.
1653       ciField* field = at->field();
1654       if (!field->type()->is_loaded()) {
1655         val_type = TypeInstPtr::BOTTOM;
1656       } else {
1657         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1658       }
1659     }
1660   } else if (adr_type->isa_aryptr()) {
1661     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1662   }
1663   if (val_type == NULL) {
1664     val_type = TypeInstPtr::BOTTOM;
1665   }
1666   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo, mismatched);
1667 }
1668 
1669 
1670 //-------------------------array_element_address-------------------------
1671 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1672                                       const TypeInt* sizetype, Node* ctrl) {
1673   uint shift  = exact_log2(type2aelembytes(elembt));
1674   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1675 
1676   // short-circuit a common case (saves lots of confusing waste motion)
1677   jint idx_con = find_int_con(idx, -1);
1678   if (idx_con >= 0) {
1679     intptr_t offset = header + ((intptr_t)idx_con << shift);
1680     return basic_plus_adr(ary, offset);
1681   }
1682 
1683   // must be correct type for alignment purposes
1684   Node* base  = basic_plus_adr(ary, header);
1685   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1686   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1687   return basic_plus_adr(ary, base, scale);
1688 }
1689 
1690 //-------------------------load_array_element-------------------------
1691 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1692   const Type* elemtype = arytype->elem();
1693   BasicType elembt = elemtype->array_element_basic_type();
1694   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1695   if (elembt == T_NARROWOOP) {
1696     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1697   }
1698   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1699   return ld;
1700 }
1701 
1702 //-------------------------set_arguments_for_java_call-------------------------
1703 // Arguments (pre-popped from the stack) are taken from the JVMS.
1704 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1705   // Add the call arguments:
1706   uint nargs = call->method()->arg_size();
1707   for (uint i = 0; i < nargs; i++) {
1708     Node* arg = argument(i);
1709     call->init_req(i + TypeFunc::Parms, arg);
1710   }
1711 }
1712 
1713 //---------------------------set_edges_for_java_call---------------------------
1714 // Connect a newly created call into the current JVMS.
1715 // A return value node (if any) is returned from set_edges_for_java_call.
1716 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1717 
1718   // Add the predefined inputs:
1719   call->init_req( TypeFunc::Control, control() );
1720   call->init_req( TypeFunc::I_O    , i_o() );
1721   call->init_req( TypeFunc::Memory , reset_memory() );
1722   call->init_req( TypeFunc::FramePtr, frameptr() );
1723   call->init_req( TypeFunc::ReturnAdr, top() );
1724 
1725   add_safepoint_edges(call, must_throw);
1726 
1727   Node* xcall = _gvn.transform(call);
1728 
1729   if (xcall == top()) {
1730     set_control(top());
1731     return;
1732   }
1733   assert(xcall == call, "call identity is stable");
1734 
1735   // Re-use the current map to produce the result.
1736 
1737   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1738   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1739   set_all_memory_call(xcall, separate_io_proj);
1740 
1741   //return xcall;   // no need, caller already has it
1742 }
1743 
1744 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1745   if (stopped())  return top();  // maybe the call folded up?
1746 
1747   // Capture the return value, if any.
1748   Node* ret;
1749   if (call->method() == NULL ||
1750       call->method()->return_type()->basic_type() == T_VOID)
1751         ret = top();
1752   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1753 
1754   // Note:  Since any out-of-line call can produce an exception,
1755   // we always insert an I_O projection from the call into the result.
1756 
1757   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1758 
1759   if (separate_io_proj) {
1760     // The caller requested separate projections be used by the fall
1761     // through and exceptional paths, so replace the projections for
1762     // the fall through path.
1763     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1764     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1765   }
1766   return ret;
1767 }
1768 
1769 //--------------------set_predefined_input_for_runtime_call--------------------
1770 // Reading and setting the memory state is way conservative here.
1771 // The real problem is that I am not doing real Type analysis on memory,
1772 // so I cannot distinguish card mark stores from other stores.  Across a GC
1773 // point the Store Barrier and the card mark memory has to agree.  I cannot
1774 // have a card mark store and its barrier split across the GC point from
1775 // either above or below.  Here I get that to happen by reading ALL of memory.
1776 // A better answer would be to separate out card marks from other memory.
1777 // For now, return the input memory state, so that it can be reused
1778 // after the call, if this call has restricted memory effects.
1779 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1780   // Set fixed predefined input arguments
1781   Node* memory = reset_memory();
1782   call->init_req( TypeFunc::Control,   control()  );
1783   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1784   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1785   call->init_req( TypeFunc::FramePtr,  frameptr() );
1786   call->init_req( TypeFunc::ReturnAdr, top()      );
1787   return memory;
1788 }
1789 
1790 //-------------------set_predefined_output_for_runtime_call--------------------
1791 // Set control and memory (not i_o) from the call.
1792 // If keep_mem is not NULL, use it for the output state,
1793 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1794 // If hook_mem is NULL, this call produces no memory effects at all.
1795 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1796 // then only that memory slice is taken from the call.
1797 // In the last case, we must put an appropriate memory barrier before
1798 // the call, so as to create the correct anti-dependencies on loads
1799 // preceding the call.
1800 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1801                                                       Node* keep_mem,
1802                                                       const TypePtr* hook_mem) {
1803   // no i/o
1804   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1805   if (keep_mem) {
1806     // First clone the existing memory state
1807     set_all_memory(keep_mem);
1808     if (hook_mem != NULL) {
1809       // Make memory for the call
1810       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1811       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1812       // We also use hook_mem to extract specific effects from arraycopy stubs.
1813       set_memory(mem, hook_mem);
1814     }
1815     // ...else the call has NO memory effects.
1816 
1817     // Make sure the call advertises its memory effects precisely.
1818     // This lets us build accurate anti-dependences in gcm.cpp.
1819     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1820            "call node must be constructed correctly");
1821   } else {
1822     assert(hook_mem == NULL, "");
1823     // This is not a "slow path" call; all memory comes from the call.
1824     set_all_memory_call(call);
1825   }
1826 }
1827 
1828 
1829 // Replace the call with the current state of the kit.
1830 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1831   JVMState* ejvms = NULL;
1832   if (has_exceptions()) {
1833     ejvms = transfer_exceptions_into_jvms();
1834   }
1835 
1836   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1837   ReplacedNodes replaced_nodes_exception;
1838   Node* ex_ctl = top();
1839 
1840   SafePointNode* final_state = stop();
1841 
1842   // Find all the needed outputs of this call
1843   CallProjections callprojs;
1844   call->extract_projections(&callprojs, true);
1845 
1846   Node* init_mem = call->in(TypeFunc::Memory);
1847   Node* final_mem = final_state->in(TypeFunc::Memory);
1848   Node* final_ctl = final_state->in(TypeFunc::Control);
1849   Node* final_io = final_state->in(TypeFunc::I_O);
1850 
1851   // Replace all the old call edges with the edges from the inlining result
1852   if (callprojs.fallthrough_catchproj != NULL) {
1853     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1854   }
1855   if (callprojs.fallthrough_memproj != NULL) {
1856     if (final_mem->is_MergeMem()) {
1857       // Parser's exits MergeMem was not transformed but may be optimized
1858       final_mem = _gvn.transform(final_mem);
1859     }
1860     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1861   }
1862   if (callprojs.fallthrough_ioproj != NULL) {
1863     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1864   }
1865 
1866   // Replace the result with the new result if it exists and is used
1867   if (callprojs.resproj != NULL && result != NULL) {
1868     C->gvn_replace_by(callprojs.resproj, result);
1869   }
1870 
1871   if (ejvms == NULL) {
1872     // No exception edges to simply kill off those paths
1873     if (callprojs.catchall_catchproj != NULL) {
1874       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1875     }
1876     if (callprojs.catchall_memproj != NULL) {
1877       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1878     }
1879     if (callprojs.catchall_ioproj != NULL) {
1880       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1881     }
1882     // Replace the old exception object with top
1883     if (callprojs.exobj != NULL) {
1884       C->gvn_replace_by(callprojs.exobj, C->top());
1885     }
1886   } else {
1887     GraphKit ekit(ejvms);
1888 
1889     // Load my combined exception state into the kit, with all phis transformed:
1890     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1891     replaced_nodes_exception = ex_map->replaced_nodes();
1892 
1893     Node* ex_oop = ekit.use_exception_state(ex_map);
1894 
1895     if (callprojs.catchall_catchproj != NULL) {
1896       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1897       ex_ctl = ekit.control();
1898     }
1899     if (callprojs.catchall_memproj != NULL) {
1900       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1901     }
1902     if (callprojs.catchall_ioproj != NULL) {
1903       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1904     }
1905 
1906     // Replace the old exception object with the newly created one
1907     if (callprojs.exobj != NULL) {
1908       C->gvn_replace_by(callprojs.exobj, ex_oop);
1909     }
1910   }
1911 
1912   // Disconnect the call from the graph
1913   call->disconnect_inputs(NULL, C);
1914   C->gvn_replace_by(call, C->top());
1915 
1916   // Clean up any MergeMems that feed other MergeMems since the
1917   // optimizer doesn't like that.
1918   if (final_mem->is_MergeMem()) {
1919     Node_List wl;
1920     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1921       Node* m = i.get();
1922       if (m->is_MergeMem() && !wl.contains(m)) {
1923         wl.push(m);
1924       }
1925     }
1926     while (wl.size()  > 0) {
1927       _gvn.transform(wl.pop());
1928     }
1929   }
1930 
1931   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1932     replaced_nodes.apply(C, final_ctl);
1933   }
1934   if (!ex_ctl->is_top() && do_replaced_nodes) {
1935     replaced_nodes_exception.apply(C, ex_ctl);
1936   }
1937 }
1938 
1939 
1940 //------------------------------increment_counter------------------------------
1941 // for statistics: increment a VM counter by 1
1942 
1943 void GraphKit::increment_counter(address counter_addr) {
1944   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1945   increment_counter(adr1);
1946 }
1947 
1948 void GraphKit::increment_counter(Node* counter_addr) {
1949   int adr_type = Compile::AliasIdxRaw;
1950   Node* ctrl = control();
1951   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1952   Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
1953   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1954 }
1955 
1956 
1957 //------------------------------uncommon_trap----------------------------------
1958 // Bail out to the interpreter in mid-method.  Implemented by calling the
1959 // uncommon_trap blob.  This helper function inserts a runtime call with the
1960 // right debug info.
1961 void GraphKit::uncommon_trap(int trap_request,
1962                              ciKlass* klass, const char* comment,
1963                              bool must_throw,
1964                              bool keep_exact_action) {
1965   if (failing())  stop();
1966   if (stopped())  return; // trap reachable?
1967 
1968   // Note:  If ProfileTraps is true, and if a deopt. actually
1969   // occurs here, the runtime will make sure an MDO exists.  There is
1970   // no need to call method()->ensure_method_data() at this point.
1971 
1972   // Set the stack pointer to the right value for reexecution:
1973   set_sp(reexecute_sp());
1974 
1975 #ifdef ASSERT
1976   if (!must_throw) {
1977     // Make sure the stack has at least enough depth to execute
1978     // the current bytecode.
1979     int inputs, ignored_depth;
1980     if (compute_stack_effects(inputs, ignored_depth)) {
1981       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1982              Bytecodes::name(java_bc()), sp(), inputs);
1983     }
1984   }
1985 #endif
1986 
1987   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1988   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1989 
1990   switch (action) {
1991   case Deoptimization::Action_maybe_recompile:
1992   case Deoptimization::Action_reinterpret:
1993     // Temporary fix for 6529811 to allow virtual calls to be sure they
1994     // get the chance to go from mono->bi->mega
1995     if (!keep_exact_action &&
1996         Deoptimization::trap_request_index(trap_request) < 0 &&
1997         too_many_recompiles(reason)) {
1998       // This BCI is causing too many recompilations.
1999       if (C->log() != NULL) {
2000         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2001                 Deoptimization::trap_reason_name(reason),
2002                 Deoptimization::trap_action_name(action));
2003       }
2004       action = Deoptimization::Action_none;
2005       trap_request = Deoptimization::make_trap_request(reason, action);
2006     } else {
2007       C->set_trap_can_recompile(true);
2008     }
2009     break;
2010   case Deoptimization::Action_make_not_entrant:
2011     C->set_trap_can_recompile(true);
2012     break;
2013 #ifdef ASSERT
2014   case Deoptimization::Action_none:
2015   case Deoptimization::Action_make_not_compilable:
2016     break;
2017   default:
2018     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2019     break;
2020 #endif
2021   }
2022 
2023   if (TraceOptoParse) {
2024     char buf[100];
2025     tty->print_cr("Uncommon trap %s at bci:%d",
2026                   Deoptimization::format_trap_request(buf, sizeof(buf),
2027                                                       trap_request), bci());
2028   }
2029 
2030   CompileLog* log = C->log();
2031   if (log != NULL) {
2032     int kid = (klass == NULL)? -1: log->identify(klass);
2033     log->begin_elem("uncommon_trap bci='%d'", bci());
2034     char buf[100];
2035     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2036                                                           trap_request));
2037     if (kid >= 0)         log->print(" klass='%d'", kid);
2038     if (comment != NULL)  log->print(" comment='%s'", comment);
2039     log->end_elem();
2040   }
2041 
2042   // Make sure any guarding test views this path as very unlikely
2043   Node *i0 = control()->in(0);
2044   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2045     IfNode *iff = i0->as_If();
2046     float f = iff->_prob;   // Get prob
2047     if (control()->Opcode() == Op_IfTrue) {
2048       if (f > PROB_UNLIKELY_MAG(4))
2049         iff->_prob = PROB_MIN;
2050     } else {
2051       if (f < PROB_LIKELY_MAG(4))
2052         iff->_prob = PROB_MAX;
2053     }
2054   }
2055 
2056   // Clear out dead values from the debug info.
2057   kill_dead_locals();
2058 
2059   // Now insert the uncommon trap subroutine call
2060   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2061   const TypePtr* no_memory_effects = NULL;
2062   // Pass the index of the class to be loaded
2063   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2064                                  (must_throw ? RC_MUST_THROW : 0),
2065                                  OptoRuntime::uncommon_trap_Type(),
2066                                  call_addr, "uncommon_trap", no_memory_effects,
2067                                  intcon(trap_request));
2068   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2069          "must extract request correctly from the graph");
2070   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2071 
2072   call->set_req(TypeFunc::ReturnAdr, returnadr());
2073   // The debug info is the only real input to this call.
2074 
2075   // Halt-and-catch fire here.  The above call should never return!
2076   HaltNode* halt = new HaltNode(control(), frameptr());
2077   _gvn.set_type_bottom(halt);
2078   root()->add_req(halt);
2079 
2080   stop_and_kill_map();
2081 }
2082 
2083 
2084 //--------------------------just_allocated_object------------------------------
2085 // Report the object that was just allocated.
2086 // It must be the case that there are no intervening safepoints.
2087 // We use this to determine if an object is so "fresh" that
2088 // it does not require card marks.
2089 Node* GraphKit::just_allocated_object(Node* current_control) {
2090   if (C->recent_alloc_ctl() == current_control)
2091     return C->recent_alloc_obj();
2092   return NULL;
2093 }
2094 
2095 
2096 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2097   // (Note:  TypeFunc::make has a cache that makes this fast.)
2098   const TypeFunc* tf    = TypeFunc::make(dest_method);
2099   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2100   for (int j = 0; j < nargs; j++) {
2101     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2102     if( targ->basic_type() == T_DOUBLE ) {
2103       // If any parameters are doubles, they must be rounded before
2104       // the call, dstore_rounding does gvn.transform
2105       Node *arg = argument(j);
2106       arg = dstore_rounding(arg);
2107       set_argument(j, arg);
2108     }
2109   }
2110 }
2111 
2112 /**
2113  * Record profiling data exact_kls for Node n with the type system so
2114  * that it can propagate it (speculation)
2115  *
2116  * @param n          node that the type applies to
2117  * @param exact_kls  type from profiling
2118  * @param maybe_null did profiling see null?
2119  *
2120  * @return           node with improved type
2121  */
2122 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, bool maybe_null) {
2123   const Type* current_type = _gvn.type(n);
2124   assert(UseTypeSpeculation, "type speculation must be on");
2125 
2126   const TypePtr* speculative = current_type->speculative();
2127 
2128   // Should the klass from the profile be recorded in the speculative type?
2129   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2130     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2131     const TypeOopPtr* xtype = tklass->as_instance_type();
2132     assert(xtype->klass_is_exact(), "Should be exact");
2133     // Any reason to believe n is not null (from this profiling or a previous one)?
2134     const TypePtr* ptr = (maybe_null && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2135     // record the new speculative type's depth
2136     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2137     speculative = speculative->with_inline_depth(jvms()->depth());
2138   } else if (current_type->would_improve_ptr(maybe_null)) {
2139     // Profiling report that null was never seen so we can change the
2140     // speculative type to non null ptr.
2141     assert(!maybe_null, "nothing to improve");
2142     if (speculative == NULL) {
2143       speculative = TypePtr::NOTNULL;
2144     } else {
2145       const TypePtr* ptr = TypePtr::NOTNULL;
2146       speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2147     }
2148   }
2149 
2150   if (speculative != current_type->speculative()) {
2151     // Build a type with a speculative type (what we think we know
2152     // about the type but will need a guard when we use it)
2153     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2154     // We're changing the type, we need a new CheckCast node to carry
2155     // the new type. The new type depends on the control: what
2156     // profiling tells us is only valid from here as far as we can
2157     // tell.
2158     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2159     cast = _gvn.transform(cast);
2160     replace_in_map(n, cast);
2161     n = cast;
2162   }
2163 
2164   return n;
2165 }
2166 
2167 /**
2168  * Record profiling data from receiver profiling at an invoke with the
2169  * type system so that it can propagate it (speculation)
2170  *
2171  * @param n  receiver node
2172  *
2173  * @return   node with improved type
2174  */
2175 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2176   if (!UseTypeSpeculation) {
2177     return n;
2178   }
2179   ciKlass* exact_kls = profile_has_unique_klass();
2180   bool maybe_null = true;
2181   if (java_bc() == Bytecodes::_checkcast ||
2182       java_bc() == Bytecodes::_instanceof ||
2183       java_bc() == Bytecodes::_aastore) {
2184     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2185     maybe_null = data == NULL ? true : data->as_BitData()->null_seen();
2186   }
2187   return record_profile_for_speculation(n, exact_kls, maybe_null);
2188 }
2189 
2190 /**
2191  * Record profiling data from argument profiling at an invoke with the
2192  * type system so that it can propagate it (speculation)
2193  *
2194  * @param dest_method  target method for the call
2195  * @param bc           what invoke bytecode is this?
2196  */
2197 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2198   if (!UseTypeSpeculation) {
2199     return;
2200   }
2201   const TypeFunc* tf    = TypeFunc::make(dest_method);
2202   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2203   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2204   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2205     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2206     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2207       bool maybe_null = true;
2208       ciKlass* better_type = NULL;
2209       if (method()->argument_profiled_type(bci(), i, better_type, maybe_null)) {
2210         record_profile_for_speculation(argument(j), better_type, maybe_null);
2211       }
2212       i++;
2213     }
2214   }
2215 }
2216 
2217 /**
2218  * Record profiling data from parameter profiling at an invoke with
2219  * the type system so that it can propagate it (speculation)
2220  */
2221 void GraphKit::record_profiled_parameters_for_speculation() {
2222   if (!UseTypeSpeculation) {
2223     return;
2224   }
2225   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2226     if (_gvn.type(local(i))->isa_oopptr()) {
2227       bool maybe_null = true;
2228       ciKlass* better_type = NULL;
2229       if (method()->parameter_profiled_type(j, better_type, maybe_null)) {
2230         record_profile_for_speculation(local(i), better_type, maybe_null);
2231       }
2232       j++;
2233     }
2234   }
2235 }
2236 
2237 /**
2238  * Record profiling data from return value profiling at an invoke with
2239  * the type system so that it can propagate it (speculation)
2240  */
2241 void GraphKit::record_profiled_return_for_speculation() {
2242   if (!UseTypeSpeculation) {
2243     return;
2244   }
2245   bool maybe_null = true;
2246   ciKlass* better_type = NULL;
2247   if (method()->return_profiled_type(bci(), better_type, maybe_null)) {
2248     // If profiling reports a single type for the return value,
2249     // feed it to the type system so it can propagate it as a
2250     // speculative type
2251     record_profile_for_speculation(stack(sp()-1), better_type, maybe_null);
2252   }
2253 }
2254 
2255 void GraphKit::round_double_result(ciMethod* dest_method) {
2256   // A non-strict method may return a double value which has an extended
2257   // exponent, but this must not be visible in a caller which is 'strict'
2258   // If a strict caller invokes a non-strict callee, round a double result
2259 
2260   BasicType result_type = dest_method->return_type()->basic_type();
2261   assert( method() != NULL, "must have caller context");
2262   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2263     // Destination method's return value is on top of stack
2264     // dstore_rounding() does gvn.transform
2265     Node *result = pop_pair();
2266     result = dstore_rounding(result);
2267     push_pair(result);
2268   }
2269 }
2270 
2271 // rounding for strict float precision conformance
2272 Node* GraphKit::precision_rounding(Node* n) {
2273   return UseStrictFP && _method->flags().is_strict()
2274     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2275     ? _gvn.transform( new RoundFloatNode(0, n) )
2276     : n;
2277 }
2278 
2279 // rounding for strict double precision conformance
2280 Node* GraphKit::dprecision_rounding(Node *n) {
2281   return UseStrictFP && _method->flags().is_strict()
2282     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2283     ? _gvn.transform( new RoundDoubleNode(0, n) )
2284     : n;
2285 }
2286 
2287 // rounding for non-strict double stores
2288 Node* GraphKit::dstore_rounding(Node* n) {
2289   return Matcher::strict_fp_requires_explicit_rounding
2290     && UseSSE <= 1
2291     ? _gvn.transform( new RoundDoubleNode(0, n) )
2292     : n;
2293 }
2294 
2295 //=============================================================================
2296 // Generate a fast path/slow path idiom.  Graph looks like:
2297 // [foo] indicates that 'foo' is a parameter
2298 //
2299 //              [in]     NULL
2300 //                 \    /
2301 //                  CmpP
2302 //                  Bool ne
2303 //                   If
2304 //                  /  \
2305 //              True    False-<2>
2306 //              / |
2307 //             /  cast_not_null
2308 //           Load  |    |   ^
2309 //        [fast_test]   |   |
2310 // gvn to   opt_test    |   |
2311 //          /    \      |  <1>
2312 //      True     False  |
2313 //        |         \\  |
2314 //   [slow_call]     \[fast_result]
2315 //    Ctl   Val       \      \
2316 //     |               \      \
2317 //    Catch       <1>   \      \
2318 //   /    \        ^     \      \
2319 //  Ex    No_Ex    |      \      \
2320 //  |       \   \  |       \ <2>  \
2321 //  ...      \  [slow_res] |  |    \   [null_result]
2322 //            \         \--+--+---  |  |
2323 //             \           | /    \ | /
2324 //              --------Region     Phi
2325 //
2326 //=============================================================================
2327 // Code is structured as a series of driver functions all called 'do_XXX' that
2328 // call a set of helper functions.  Helper functions first, then drivers.
2329 
2330 //------------------------------null_check_oop---------------------------------
2331 // Null check oop.  Set null-path control into Region in slot 3.
2332 // Make a cast-not-nullness use the other not-null control.  Return cast.
2333 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2334                                bool never_see_null,
2335                                bool safe_for_replace,
2336                                bool speculative) {
2337   // Initial NULL check taken path
2338   (*null_control) = top();
2339   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2340 
2341   // Generate uncommon_trap:
2342   if (never_see_null && (*null_control) != top()) {
2343     // If we see an unexpected null at a check-cast we record it and force a
2344     // recompile; the offending check-cast will be compiled to handle NULLs.
2345     // If we see more than one offending BCI, then all checkcasts in the
2346     // method will be compiled to handle NULLs.
2347     PreserveJVMState pjvms(this);
2348     set_control(*null_control);
2349     replace_in_map(value, null());
2350     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2351     uncommon_trap(reason,
2352                   Deoptimization::Action_make_not_entrant);
2353     (*null_control) = top();    // NULL path is dead
2354   }
2355   if ((*null_control) == top() && safe_for_replace) {
2356     replace_in_map(value, cast);
2357   }
2358 
2359   // Cast away null-ness on the result
2360   return cast;
2361 }
2362 
2363 //------------------------------opt_iff----------------------------------------
2364 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2365 // Return slow-path control.
2366 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2367   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2368 
2369   // Fast path taken; set region slot 2
2370   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2371   region->init_req(2,fast_taken); // Capture fast-control
2372 
2373   // Fast path not-taken, i.e. slow path
2374   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2375   return slow_taken;
2376 }
2377 
2378 //-----------------------------make_runtime_call-------------------------------
2379 Node* GraphKit::make_runtime_call(int flags,
2380                                   const TypeFunc* call_type, address call_addr,
2381                                   const char* call_name,
2382                                   const TypePtr* adr_type,
2383                                   // The following parms are all optional.
2384                                   // The first NULL ends the list.
2385                                   Node* parm0, Node* parm1,
2386                                   Node* parm2, Node* parm3,
2387                                   Node* parm4, Node* parm5,
2388                                   Node* parm6, Node* parm7) {
2389   // Slow-path call
2390   bool is_leaf = !(flags & RC_NO_LEAF);
2391   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2392   if (call_name == NULL) {
2393     assert(!is_leaf, "must supply name for leaf");
2394     call_name = OptoRuntime::stub_name(call_addr);
2395   }
2396   CallNode* call;
2397   if (!is_leaf) {
2398     call = new CallStaticJavaNode(call_type, call_addr, call_name,
2399                                            bci(), adr_type);
2400   } else if (flags & RC_NO_FP) {
2401     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2402   } else {
2403     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2404   }
2405 
2406   // The following is similar to set_edges_for_java_call,
2407   // except that the memory effects of the call are restricted to AliasIdxRaw.
2408 
2409   // Slow path call has no side-effects, uses few values
2410   bool wide_in  = !(flags & RC_NARROW_MEM);
2411   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2412 
2413   Node* prev_mem = NULL;
2414   if (wide_in) {
2415     prev_mem = set_predefined_input_for_runtime_call(call);
2416   } else {
2417     assert(!wide_out, "narrow in => narrow out");
2418     Node* narrow_mem = memory(adr_type);
2419     prev_mem = reset_memory();
2420     map()->set_memory(narrow_mem);
2421     set_predefined_input_for_runtime_call(call);
2422   }
2423 
2424   // Hook each parm in order.  Stop looking at the first NULL.
2425   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2426   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2427   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2428   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2429   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2430   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2431   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2432   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2433     /* close each nested if ===> */  } } } } } } } }
2434   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2435 
2436   if (!is_leaf) {
2437     // Non-leaves can block and take safepoints:
2438     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2439   }
2440   // Non-leaves can throw exceptions:
2441   if (has_io) {
2442     call->set_req(TypeFunc::I_O, i_o());
2443   }
2444 
2445   if (flags & RC_UNCOMMON) {
2446     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2447     // (An "if" probability corresponds roughly to an unconditional count.
2448     // Sort of.)
2449     call->set_cnt(PROB_UNLIKELY_MAG(4));
2450   }
2451 
2452   Node* c = _gvn.transform(call);
2453   assert(c == call, "cannot disappear");
2454 
2455   if (wide_out) {
2456     // Slow path call has full side-effects.
2457     set_predefined_output_for_runtime_call(call);
2458   } else {
2459     // Slow path call has few side-effects, and/or sets few values.
2460     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2461   }
2462 
2463   if (has_io) {
2464     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2465   }
2466   return call;
2467 
2468 }
2469 
2470 //------------------------------merge_memory-----------------------------------
2471 // Merge memory from one path into the current memory state.
2472 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2473   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2474     Node* old_slice = mms.force_memory();
2475     Node* new_slice = mms.memory2();
2476     if (old_slice != new_slice) {
2477       PhiNode* phi;
2478       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2479         if (mms.is_empty()) {
2480           // clone base memory Phi's inputs for this memory slice
2481           assert(old_slice == mms.base_memory(), "sanity");
2482           phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2483           _gvn.set_type(phi, Type::MEMORY);
2484           for (uint i = 1; i < phi->req(); i++) {
2485             phi->init_req(i, old_slice->in(i));
2486           }
2487         } else {
2488           phi = old_slice->as_Phi(); // Phi was generated already
2489         }
2490       } else {
2491         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2492         _gvn.set_type(phi, Type::MEMORY);
2493       }
2494       phi->set_req(new_path, new_slice);
2495       mms.set_memory(phi);
2496     }
2497   }
2498 }
2499 
2500 //------------------------------make_slow_call_ex------------------------------
2501 // Make the exception handler hookups for the slow call
2502 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2503   if (stopped())  return;
2504 
2505   // Make a catch node with just two handlers:  fall-through and catch-all
2506   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2507   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2508   Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2509   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2510 
2511   { PreserveJVMState pjvms(this);
2512     set_control(excp);
2513     set_i_o(i_o);
2514 
2515     if (excp != top()) {
2516       if (deoptimize) {
2517         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2518         uncommon_trap(Deoptimization::Reason_unhandled,
2519                       Deoptimization::Action_none);
2520       } else {
2521         // Create an exception state also.
2522         // Use an exact type if the caller has specified a specific exception.
2523         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2524         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2525         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2526       }
2527     }
2528   }
2529 
2530   // Get the no-exception control from the CatchNode.
2531   set_control(norm);
2532 }
2533 
2534 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) {
2535   Node* cmp = NULL;
2536   switch(bt) {
2537   case T_INT: cmp = new CmpINode(in1, in2); break;
2538   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2539   default: fatal("unexpected comparison type %s", type2name(bt));
2540   }
2541   gvn->transform(cmp);
2542   Node* bol = gvn->transform(new BoolNode(cmp, test));
2543   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2544   gvn->transform(iff);
2545   if (!bol->is_Con()) gvn->record_for_igvn(iff);
2546   return iff;
2547 }
2548 
2549 
2550 //-------------------------------gen_subtype_check-----------------------------
2551 // Generate a subtyping check.  Takes as input the subtype and supertype.
2552 // Returns 2 values: sets the default control() to the true path and returns
2553 // the false path.  Only reads invariant memory; sets no (visible) memory.
2554 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2555 // but that's not exposed to the optimizer.  This call also doesn't take in an
2556 // Object; if you wish to check an Object you need to load the Object's class
2557 // prior to coming here.
2558 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) {
2559   Compile* C = gvn->C;
2560 
2561   if ((*ctrl)->is_top()) {
2562     return C->top();
2563   }
2564 
2565   // Fast check for identical types, perhaps identical constants.
2566   // The types can even be identical non-constants, in cases
2567   // involving Array.newInstance, Object.clone, etc.
2568   if (subklass == superklass)
2569     return C->top();             // false path is dead; no test needed.
2570 
2571   if (gvn->type(superklass)->singleton()) {
2572     ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass();
2573     ciKlass* subk   = gvn->type(subklass)->is_klassptr()->klass();
2574 
2575     // In the common case of an exact superklass, try to fold up the
2576     // test before generating code.  You may ask, why not just generate
2577     // the code and then let it fold up?  The answer is that the generated
2578     // code will necessarily include null checks, which do not always
2579     // completely fold away.  If they are also needless, then they turn
2580     // into a performance loss.  Example:
2581     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2582     // Here, the type of 'fa' is often exact, so the store check
2583     // of fa[1]=x will fold up, without testing the nullness of x.
2584     switch (C->static_subtype_check(superk, subk)) {
2585     case Compile::SSC_always_false:
2586       {
2587         Node* always_fail = *ctrl;
2588         *ctrl = gvn->C->top();
2589         return always_fail;
2590       }
2591     case Compile::SSC_always_true:
2592       return C->top();
2593     case Compile::SSC_easy_test:
2594       {
2595         // Just do a direct pointer compare and be done.
2596         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2597         *ctrl = gvn->transform(new IfTrueNode(iff));
2598         return gvn->transform(new IfFalseNode(iff));
2599       }
2600     case Compile::SSC_full_test:
2601       break;
2602     default:
2603       ShouldNotReachHere();
2604     }
2605   }
2606 
2607   // %%% Possible further optimization:  Even if the superklass is not exact,
2608   // if the subklass is the unique subtype of the superklass, the check
2609   // will always succeed.  We could leave a dependency behind to ensure this.
2610 
2611   // First load the super-klass's check-offset
2612   Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2613   Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr()));
2614   Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2615   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2616   bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2617 
2618   // Load from the sub-klass's super-class display list, or a 1-word cache of
2619   // the secondary superclass list, or a failing value with a sentinel offset
2620   // if the super-klass is an interface or exceptionally deep in the Java
2621   // hierarchy and we have to scan the secondary superclass list the hard way.
2622   // Worst-case type is a little odd: NULL is allowed as a result (usually
2623   // klass loads can never produce a NULL).
2624   Node *chk_off_X = chk_off;
2625 #ifdef _LP64
2626   chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X));
2627 #endif
2628   Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X));
2629   // For some types like interfaces the following loadKlass is from a 1-word
2630   // cache which is mutable so can't use immutable memory.  Other
2631   // types load from the super-class display table which is immutable.
2632   m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr()));
2633   Node *kmem = might_be_cache ? m : C->immutable_memory();
2634   Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2635 
2636   // Compile speed common case: ARE a subtype and we canNOT fail
2637   if( superklass == nkls )
2638     return C->top();             // false path is dead; no test needed.
2639 
2640   // See if we get an immediate positive hit.  Happens roughly 83% of the
2641   // time.  Test to see if the value loaded just previously from the subklass
2642   // is exactly the superklass.
2643   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2644   Node *iftrue1 = gvn->transform( new IfTrueNode (iff1));
2645   *ctrl = gvn->transform(new IfFalseNode(iff1));
2646 
2647   // Compile speed common case: Check for being deterministic right now.  If
2648   // chk_off is a constant and not equal to cacheoff then we are NOT a
2649   // subklass.  In this case we need exactly the 1 test above and we can
2650   // return those results immediately.
2651   if (!might_be_cache) {
2652     Node* not_subtype_ctrl = *ctrl;
2653     *ctrl = iftrue1; // We need exactly the 1 test above
2654     return not_subtype_ctrl;
2655   }
2656 
2657   // Gather the various success & failures here
2658   RegionNode *r_ok_subtype = new RegionNode(4);
2659   gvn->record_for_igvn(r_ok_subtype);
2660   RegionNode *r_not_subtype = new RegionNode(3);
2661   gvn->record_for_igvn(r_not_subtype);
2662 
2663   r_ok_subtype->init_req(1, iftrue1);
2664 
2665   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2666   // is roughly 63% of the remaining cases).  Test to see if the loaded
2667   // check-offset points into the subklass display list or the 1-element
2668   // cache.  If it points to the display (and NOT the cache) and the display
2669   // missed then it's not a subtype.
2670   Node *cacheoff = gvn->intcon(cacheoff_con);
2671   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2672   r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2)));
2673   *ctrl = gvn->transform(new IfFalseNode(iff2));
2674 
2675   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2676   // No performance impact (too rare) but allows sharing of secondary arrays
2677   // which has some footprint reduction.
2678   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2679   r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3)));
2680   *ctrl = gvn->transform(new IfFalseNode(iff3));
2681 
2682   // -- Roads not taken here: --
2683   // We could also have chosen to perform the self-check at the beginning
2684   // of this code sequence, as the assembler does.  This would not pay off
2685   // the same way, since the optimizer, unlike the assembler, can perform
2686   // static type analysis to fold away many successful self-checks.
2687   // Non-foldable self checks work better here in second position, because
2688   // the initial primary superclass check subsumes a self-check for most
2689   // types.  An exception would be a secondary type like array-of-interface,
2690   // which does not appear in its own primary supertype display.
2691   // Finally, we could have chosen to move the self-check into the
2692   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2693   // dependent manner.  But it is worthwhile to have the check here,
2694   // where it can be perhaps be optimized.  The cost in code space is
2695   // small (register compare, branch).
2696 
2697   // Now do a linear scan of the secondary super-klass array.  Again, no real
2698   // performance impact (too rare) but it's gotta be done.
2699   // Since the code is rarely used, there is no penalty for moving it
2700   // out of line, and it can only improve I-cache density.
2701   // The decision to inline or out-of-line this final check is platform
2702   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2703   Node* psc = gvn->transform(
2704     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2705 
2706   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2707   r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2708   r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2709 
2710   // Return false path; set default control to true path.
2711   *ctrl = gvn->transform(r_ok_subtype);
2712   return gvn->transform(r_not_subtype);
2713 }
2714 
2715 // Profile-driven exact type check:
2716 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2717                                     float prob,
2718                                     Node* *casted_receiver) {
2719   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2720   Node* recv_klass = load_object_klass(receiver);
2721   Node* want_klass = makecon(tklass);
2722   Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) );
2723   Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2724   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2725   set_control( _gvn.transform( new IfTrueNode (iff) ));
2726   Node* fail = _gvn.transform( new IfFalseNode(iff) );
2727 
2728   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2729   assert(recv_xtype->klass_is_exact(), "");
2730 
2731   // Subsume downstream occurrences of receiver with a cast to
2732   // recv_xtype, since now we know what the type will be.
2733   Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2734   (*casted_receiver) = _gvn.transform(cast);
2735   // (User must make the replace_in_map call.)
2736 
2737   return fail;
2738 }
2739 
2740 
2741 //------------------------------seems_never_null-------------------------------
2742 // Use null_seen information if it is available from the profile.
2743 // If we see an unexpected null at a type check we record it and force a
2744 // recompile; the offending check will be recompiled to handle NULLs.
2745 // If we see several offending BCIs, then all checks in the
2746 // method will be recompiled.
2747 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2748   speculating = !_gvn.type(obj)->speculative_maybe_null();
2749   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2750   if (UncommonNullCast               // Cutout for this technique
2751       && obj != null()               // And not the -Xcomp stupid case?
2752       && !too_many_traps(reason)
2753       ) {
2754     if (speculating) {
2755       return true;
2756     }
2757     if (data == NULL)
2758       // Edge case:  no mature data.  Be optimistic here.
2759       return true;
2760     // If the profile has not seen a null, assume it won't happen.
2761     assert(java_bc() == Bytecodes::_checkcast ||
2762            java_bc() == Bytecodes::_instanceof ||
2763            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2764     return !data->as_BitData()->null_seen();
2765   }
2766   speculating = false;
2767   return false;
2768 }
2769 
2770 //------------------------maybe_cast_profiled_receiver-------------------------
2771 // If the profile has seen exactly one type, narrow to exactly that type.
2772 // Subsequent type checks will always fold up.
2773 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2774                                              ciKlass* require_klass,
2775                                              ciKlass* spec_klass,
2776                                              bool safe_for_replace) {
2777   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2778 
2779   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2780 
2781   // Make sure we haven't already deoptimized from this tactic.
2782   if (too_many_traps(reason) || too_many_recompiles(reason))
2783     return NULL;
2784 
2785   // (No, this isn't a call, but it's enough like a virtual call
2786   // to use the same ciMethod accessor to get the profile info...)
2787   // If we have a speculative type use it instead of profiling (which
2788   // may not help us)
2789   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2790   if (exact_kls != NULL) {// no cast failures here
2791     if (require_klass == NULL ||
2792         C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) {
2793       // If we narrow the type to match what the type profile sees or
2794       // the speculative type, we can then remove the rest of the
2795       // cast.
2796       // This is a win, even if the exact_kls is very specific,
2797       // because downstream operations, such as method calls,
2798       // will often benefit from the sharper type.
2799       Node* exact_obj = not_null_obj; // will get updated in place...
2800       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2801                                             &exact_obj);
2802       { PreserveJVMState pjvms(this);
2803         set_control(slow_ctl);
2804         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2805       }
2806       if (safe_for_replace) {
2807         replace_in_map(not_null_obj, exact_obj);
2808       }
2809       return exact_obj;
2810     }
2811     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
2812   }
2813 
2814   return NULL;
2815 }
2816 
2817 /**
2818  * Cast obj to type and emit guard unless we had too many traps here
2819  * already
2820  *
2821  * @param obj       node being casted
2822  * @param type      type to cast the node to
2823  * @param not_null  true if we know node cannot be null
2824  */
2825 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2826                                         ciKlass* type,
2827                                         bool not_null) {
2828   if (stopped()) {
2829     return obj;
2830   }
2831 
2832   // type == NULL if profiling tells us this object is always null
2833   if (type != NULL) {
2834     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2835     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2836 
2837     if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
2838         !too_many_traps(class_reason) &&
2839         !too_many_recompiles(class_reason)) {
2840       Node* not_null_obj = NULL;
2841       // not_null is true if we know the object is not null and
2842       // there's no need for a null check
2843       if (!not_null) {
2844         Node* null_ctl = top();
2845         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
2846         assert(null_ctl->is_top(), "no null control here");
2847       } else {
2848         not_null_obj = obj;
2849       }
2850 
2851       Node* exact_obj = not_null_obj;
2852       ciKlass* exact_kls = type;
2853       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2854                                             &exact_obj);
2855       {
2856         PreserveJVMState pjvms(this);
2857         set_control(slow_ctl);
2858         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2859       }
2860       replace_in_map(not_null_obj, exact_obj);
2861       obj = exact_obj;
2862     }
2863   } else {
2864     if (!too_many_traps(Deoptimization::Reason_null_assert) &&
2865         !too_many_recompiles(Deoptimization::Reason_null_assert)) {
2866       Node* exact_obj = null_assert(obj);
2867       replace_in_map(obj, exact_obj);
2868       obj = exact_obj;
2869     }
2870   }
2871   return obj;
2872 }
2873 
2874 //-------------------------------gen_instanceof--------------------------------
2875 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2876 // and the reflective instance-of call.
2877 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2878   kill_dead_locals();           // Benefit all the uncommon traps
2879   assert( !stopped(), "dead parse path should be checked in callers" );
2880   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2881          "must check for not-null not-dead klass in callers");
2882 
2883   // Make the merge point
2884   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2885   RegionNode* region = new RegionNode(PATH_LIMIT);
2886   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
2887   C->set_has_split_ifs(true); // Has chance for split-if optimization
2888 
2889   ciProfileData* data = NULL;
2890   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2891     data = method()->method_data()->bci_to_data(bci());
2892   }
2893   bool speculative_not_null = false;
2894   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2895                          && seems_never_null(obj, data, speculative_not_null));
2896 
2897   // Null check; get casted pointer; set region slot 3
2898   Node* null_ctl = top();
2899   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
2900 
2901   // If not_null_obj is dead, only null-path is taken
2902   if (stopped()) {              // Doing instance-of on a NULL?
2903     set_control(null_ctl);
2904     return intcon(0);
2905   }
2906   region->init_req(_null_path, null_ctl);
2907   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2908   if (null_ctl == top()) {
2909     // Do this eagerly, so that pattern matches like is_diamond_phi
2910     // will work even during parsing.
2911     assert(_null_path == PATH_LIMIT-1, "delete last");
2912     region->del_req(_null_path);
2913     phi   ->del_req(_null_path);
2914   }
2915 
2916   // Do we know the type check always succeed?
2917   bool known_statically = false;
2918   if (_gvn.type(superklass)->singleton()) {
2919     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2920     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2921     if (subk != NULL && subk->is_loaded()) {
2922       int static_res = C->static_subtype_check(superk, subk);
2923       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
2924     }
2925   }
2926 
2927   if (known_statically && UseTypeSpeculation) {
2928     // If we know the type check always succeeds then we don't use the
2929     // profiling data at this bytecode. Don't lose it, feed it to the
2930     // type system as a speculative type.
2931     not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
2932   } else {
2933     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2934     // We may not have profiling here or it may not help us. If we
2935     // have a speculative type use it to perform an exact cast.
2936     ciKlass* spec_obj_type = obj_type->speculative_type();
2937     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2938       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2939       if (stopped()) {            // Profile disagrees with this path.
2940         set_control(null_ctl);    // Null is the only remaining possibility.
2941         return intcon(0);
2942       }
2943       if (cast_obj != NULL) {
2944         not_null_obj = cast_obj;
2945       }
2946     }
2947   }
2948 
2949   // Load the object's klass
2950   Node* obj_klass = load_object_klass(not_null_obj);
2951 
2952   // Generate the subtype check
2953   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2954 
2955   // Plug in the success path to the general merge in slot 1.
2956   region->init_req(_obj_path, control());
2957   phi   ->init_req(_obj_path, intcon(1));
2958 
2959   // Plug in the failing path to the general merge in slot 2.
2960   region->init_req(_fail_path, not_subtype_ctrl);
2961   phi   ->init_req(_fail_path, intcon(0));
2962 
2963   // Return final merged results
2964   set_control( _gvn.transform(region) );
2965   record_for_igvn(region);
2966   return _gvn.transform(phi);
2967 }
2968 
2969 //-------------------------------gen_checkcast---------------------------------
2970 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2971 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2972 // uncommon-trap paths work.  Adjust stack after this call.
2973 // If failure_control is supplied and not null, it is filled in with
2974 // the control edge for the cast failure.  Otherwise, an appropriate
2975 // uncommon trap or exception is thrown.
2976 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2977                               Node* *failure_control) {
2978   kill_dead_locals();           // Benefit all the uncommon traps
2979   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2980   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2981 
2982   // Fast cutout:  Check the case that the cast is vacuously true.
2983   // This detects the common cases where the test will short-circuit
2984   // away completely.  We do this before we perform the null check,
2985   // because if the test is going to turn into zero code, we don't
2986   // want a residual null check left around.  (Causes a slowdown,
2987   // for example, in some objArray manipulations, such as a[i]=a[j].)
2988   if (tk->singleton()) {
2989     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2990     if (objtp != NULL && objtp->klass() != NULL) {
2991       switch (C->static_subtype_check(tk->klass(), objtp->klass())) {
2992       case Compile::SSC_always_true:
2993         // If we know the type check always succeed then we don't use
2994         // the profiling data at this bytecode. Don't lose it, feed it
2995         // to the type system as a speculative type.
2996         return record_profiled_receiver_for_speculation(obj);
2997       case Compile::SSC_always_false:
2998         // It needs a null check because a null will *pass* the cast check.
2999         // A non-null value will always produce an exception.
3000         return null_assert(obj);
3001       }
3002     }
3003   }
3004 
3005   ciProfileData* data = NULL;
3006   bool safe_for_replace = false;
3007   if (failure_control == NULL) {        // use MDO in regular case only
3008     assert(java_bc() == Bytecodes::_aastore ||
3009            java_bc() == Bytecodes::_checkcast,
3010            "interpreter profiles type checks only for these BCs");
3011     data = method()->method_data()->bci_to_data(bci());
3012     safe_for_replace = true;
3013   }
3014 
3015   // Make the merge point
3016   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3017   RegionNode* region = new RegionNode(PATH_LIMIT);
3018   Node*       phi    = new PhiNode(region, toop);
3019   C->set_has_split_ifs(true); // Has chance for split-if optimization
3020 
3021   // Use null-cast information if it is available
3022   bool speculative_not_null = false;
3023   bool never_see_null = ((failure_control == NULL)  // regular case only
3024                          && seems_never_null(obj, data, speculative_not_null));
3025 
3026   // Null check; get casted pointer; set region slot 3
3027   Node* null_ctl = top();
3028   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3029 
3030   // If not_null_obj is dead, only null-path is taken
3031   if (stopped()) {              // Doing instance-of on a NULL?
3032     set_control(null_ctl);
3033     return null();
3034   }
3035   region->init_req(_null_path, null_ctl);
3036   phi   ->init_req(_null_path, null());  // Set null path value
3037   if (null_ctl == top()) {
3038     // Do this eagerly, so that pattern matches like is_diamond_phi
3039     // will work even during parsing.
3040     assert(_null_path == PATH_LIMIT-1, "delete last");
3041     region->del_req(_null_path);
3042     phi   ->del_req(_null_path);
3043   }
3044 
3045   Node* cast_obj = NULL;
3046   if (tk->klass_is_exact()) {
3047     // The following optimization tries to statically cast the speculative type of the object
3048     // (for example obtained during profiling) to the type of the superklass and then do a
3049     // dynamic check that the type of the object is what we expect. To work correctly
3050     // for checkcast and aastore the type of superklass should be exact.
3051     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3052     // We may not have profiling here or it may not help us. If we have
3053     // a speculative type use it to perform an exact cast.
3054     ciKlass* spec_obj_type = obj_type->speculative_type();
3055     if (spec_obj_type != NULL || data != NULL) {
3056       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3057       if (cast_obj != NULL) {
3058         if (failure_control != NULL) // failure is now impossible
3059           (*failure_control) = top();
3060         // adjust the type of the phi to the exact klass:
3061         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3062       }
3063     }
3064   }
3065 
3066   if (cast_obj == NULL) {
3067     // Load the object's klass
3068     Node* obj_klass = load_object_klass(not_null_obj);
3069 
3070     // Generate the subtype check
3071     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3072 
3073     // Plug in success path into the merge
3074     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3075     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3076     if (failure_control == NULL) {
3077       if (not_subtype_ctrl != top()) { // If failure is possible
3078         PreserveJVMState pjvms(this);
3079         set_control(not_subtype_ctrl);
3080         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3081       }
3082     } else {
3083       (*failure_control) = not_subtype_ctrl;
3084     }
3085   }
3086 
3087   region->init_req(_obj_path, control());
3088   phi   ->init_req(_obj_path, cast_obj);
3089 
3090   // A merge of NULL or Casted-NotNull obj
3091   Node* res = _gvn.transform(phi);
3092 
3093   // Note I do NOT always 'replace_in_map(obj,result)' here.
3094   //  if( tk->klass()->can_be_primary_super()  )
3095     // This means that if I successfully store an Object into an array-of-String
3096     // I 'forget' that the Object is really now known to be a String.  I have to
3097     // do this because we don't have true union types for interfaces - if I store
3098     // a Baz into an array-of-Interface and then tell the optimizer it's an
3099     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3100     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3101   //  replace_in_map( obj, res );
3102 
3103   // Return final merged results
3104   set_control( _gvn.transform(region) );
3105   record_for_igvn(region);
3106   return res;
3107 }
3108 
3109 //------------------------------next_monitor-----------------------------------
3110 // What number should be given to the next monitor?
3111 int GraphKit::next_monitor() {
3112   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3113   int next = current + C->sync_stack_slots();
3114   // Keep the toplevel high water mark current:
3115   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3116   return current;
3117 }
3118 
3119 //------------------------------insert_mem_bar---------------------------------
3120 // Memory barrier to avoid floating things around
3121 // The membar serves as a pinch point between both control and all memory slices.
3122 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3123   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3124   mb->init_req(TypeFunc::Control, control());
3125   mb->init_req(TypeFunc::Memory,  reset_memory());
3126   Node* membar = _gvn.transform(mb);
3127   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3128   set_all_memory_call(membar);
3129   return membar;
3130 }
3131 
3132 //-------------------------insert_mem_bar_volatile----------------------------
3133 // Memory barrier to avoid floating things around
3134 // The membar serves as a pinch point between both control and memory(alias_idx).
3135 // If you want to make a pinch point on all memory slices, do not use this
3136 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3137 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3138   // When Parse::do_put_xxx updates a volatile field, it appends a series
3139   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3140   // The first membar is on the same memory slice as the field store opcode.
3141   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3142   // All the other membars (for other volatile slices, including AliasIdxBot,
3143   // which stands for all unknown volatile slices) are control-dependent
3144   // on the first membar.  This prevents later volatile loads or stores
3145   // from sliding up past the just-emitted store.
3146 
3147   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3148   mb->set_req(TypeFunc::Control,control());
3149   if (alias_idx == Compile::AliasIdxBot) {
3150     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3151   } else {
3152     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3153     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3154   }
3155   Node* membar = _gvn.transform(mb);
3156   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3157   if (alias_idx == Compile::AliasIdxBot) {
3158     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3159   } else {
3160     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3161   }
3162   return membar;
3163 }
3164 
3165 //------------------------------shared_lock------------------------------------
3166 // Emit locking code.
3167 FastLockNode* GraphKit::shared_lock(Node* obj) {
3168   // bci is either a monitorenter bc or InvocationEntryBci
3169   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3170   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3171 
3172   if( !GenerateSynchronizationCode )
3173     return NULL;                // Not locking things?
3174   if (stopped())                // Dead monitor?
3175     return NULL;
3176 
3177   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3178 
3179   obj = shenandoah_write_barrier(obj);
3180 
3181   // Box the stack location
3182   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3183   Node* mem = reset_memory();
3184 
3185   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3186   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3187     // Create the counters for this fast lock.
3188     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3189   }
3190 
3191   // Create the rtm counters for this fast lock if needed.
3192   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3193 
3194   // Add monitor to debug info for the slow path.  If we block inside the
3195   // slow path and de-opt, we need the monitor hanging around
3196   map()->push_monitor( flock );
3197 
3198   const TypeFunc *tf = LockNode::lock_type();
3199   LockNode *lock = new LockNode(C, tf);
3200 
3201   lock->init_req( TypeFunc::Control, control() );
3202   lock->init_req( TypeFunc::Memory , mem );
3203   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3204   lock->init_req( TypeFunc::FramePtr, frameptr() );
3205   lock->init_req( TypeFunc::ReturnAdr, top() );
3206 
3207   lock->init_req(TypeFunc::Parms + 0, obj);
3208   lock->init_req(TypeFunc::Parms + 1, box);
3209   lock->init_req(TypeFunc::Parms + 2, flock);
3210   add_safepoint_edges(lock);
3211 
3212   lock = _gvn.transform( lock )->as_Lock();
3213 
3214   // lock has no side-effects, sets few values
3215   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3216 
3217   insert_mem_bar(Op_MemBarAcquireLock);
3218 
3219   // Add this to the worklist so that the lock can be eliminated
3220   record_for_igvn(lock);
3221 
3222 #ifndef PRODUCT
3223   if (PrintLockStatistics) {
3224     // Update the counter for this lock.  Don't bother using an atomic
3225     // operation since we don't require absolute accuracy.
3226     lock->create_lock_counter(map()->jvms());
3227     increment_counter(lock->counter()->addr());
3228   }
3229 #endif
3230 
3231   return flock;
3232 }
3233 
3234 
3235 //------------------------------shared_unlock----------------------------------
3236 // Emit unlocking code.
3237 void GraphKit::shared_unlock(Node* box, Node* obj) {
3238   // bci is either a monitorenter bc or InvocationEntryBci
3239   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3240   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3241 
3242   if( !GenerateSynchronizationCode )
3243     return;
3244   if (stopped()) {               // Dead monitor?
3245     map()->pop_monitor();        // Kill monitor from debug info
3246     return;
3247   }
3248 
3249   // Memory barrier to avoid floating things down past the locked region
3250   insert_mem_bar(Op_MemBarReleaseLock);
3251 
3252   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3253   UnlockNode *unlock = new UnlockNode(C, tf);
3254 #ifdef ASSERT
3255   unlock->set_dbg_jvms(sync_jvms());
3256 #endif
3257   uint raw_idx = Compile::AliasIdxRaw;
3258   unlock->init_req( TypeFunc::Control, control() );
3259   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3260   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3261   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3262   unlock->init_req( TypeFunc::ReturnAdr, top() );
3263 
3264   unlock->init_req(TypeFunc::Parms + 0, obj);
3265   unlock->init_req(TypeFunc::Parms + 1, box);
3266   unlock = _gvn.transform(unlock)->as_Unlock();
3267 
3268   Node* mem = reset_memory();
3269 
3270   // unlock has no side-effects, sets few values
3271   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3272 
3273   // Kill monitor from debug info
3274   map()->pop_monitor( );
3275 }
3276 
3277 //-------------------------------get_layout_helper-----------------------------
3278 // If the given klass is a constant or known to be an array,
3279 // fetch the constant layout helper value into constant_value
3280 // and return (Node*)NULL.  Otherwise, load the non-constant
3281 // layout helper value, and return the node which represents it.
3282 // This two-faced routine is useful because allocation sites
3283 // almost always feature constant types.
3284 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3285   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3286   if (!StressReflectiveCode && inst_klass != NULL) {
3287     ciKlass* klass = inst_klass->klass();
3288     bool    xklass = inst_klass->klass_is_exact();
3289     if (xklass || klass->is_array_klass()) {
3290       jint lhelper = klass->layout_helper();
3291       if (lhelper != Klass::_lh_neutral_value) {
3292         constant_value = lhelper;
3293         return (Node*) NULL;
3294       }
3295     }
3296   }
3297   constant_value = Klass::_lh_neutral_value;  // put in a known value
3298   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3299   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3300 }
3301 
3302 // We just put in an allocate/initialize with a big raw-memory effect.
3303 // Hook selected additional alias categories on the initialization.
3304 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3305                                 MergeMemNode* init_in_merge,
3306                                 Node* init_out_raw) {
3307   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3308   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3309 
3310   Node* prevmem = kit.memory(alias_idx);
3311   init_in_merge->set_memory_at(alias_idx, prevmem);
3312   kit.set_memory(init_out_raw, alias_idx);
3313 }
3314 
3315 //---------------------------set_output_for_allocation-------------------------
3316 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3317                                           const TypeOopPtr* oop_type,
3318                                           bool deoptimize_on_exception) {
3319   int rawidx = Compile::AliasIdxRaw;
3320   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3321   add_safepoint_edges(alloc);
3322   Node* allocx = _gvn.transform(alloc);
3323   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3324   // create memory projection for i_o
3325   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3326   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3327 
3328   // create a memory projection as for the normal control path
3329   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3330   set_memory(malloc, rawidx);
3331 
3332   // a normal slow-call doesn't change i_o, but an allocation does
3333   // we create a separate i_o projection for the normal control path
3334   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3335   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3336 
3337   // put in an initialization barrier
3338   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3339                                                  rawoop)->as_Initialize();
3340   assert(alloc->initialization() == init,  "2-way macro link must work");
3341   assert(init ->allocation()     == alloc, "2-way macro link must work");
3342   {
3343     // Extract memory strands which may participate in the new object's
3344     // initialization, and source them from the new InitializeNode.
3345     // This will allow us to observe initializations when they occur,
3346     // and link them properly (as a group) to the InitializeNode.
3347     assert(init->in(InitializeNode::Memory) == malloc, "");
3348     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3349     init->set_req(InitializeNode::Memory, minit_in);
3350     record_for_igvn(minit_in); // fold it up later, if possible
3351     Node* minit_out = memory(rawidx);
3352     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3353     if (oop_type->isa_aryptr()) {
3354       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3355       int            elemidx  = C->get_alias_index(telemref);
3356       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3357     } else if (oop_type->isa_instptr()) {
3358       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3359       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3360         ciField* field = ik->nonstatic_field_at(i);
3361         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3362           continue;  // do not bother to track really large numbers of fields
3363         // Find (or create) the alias category for this field:
3364         int fieldidx = C->alias_type(field)->index();
3365         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3366       }
3367     }
3368   }
3369 
3370   // Cast raw oop to the real thing...
3371   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3372   javaoop = _gvn.transform(javaoop);
3373   C->set_recent_alloc(control(), javaoop);
3374   assert(just_allocated_object(control()) == javaoop, "just allocated");
3375 
3376 #ifdef ASSERT
3377   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3378     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3379            "Ideal_allocation works");
3380     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3381            "Ideal_allocation works");
3382     if (alloc->is_AllocateArray()) {
3383       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3384              "Ideal_allocation works");
3385       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3386              "Ideal_allocation works");
3387     } else {
3388       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3389     }
3390   }
3391 #endif //ASSERT
3392 
3393   return javaoop;
3394 }
3395 
3396 //---------------------------new_instance--------------------------------------
3397 // This routine takes a klass_node which may be constant (for a static type)
3398 // or may be non-constant (for reflective code).  It will work equally well
3399 // for either, and the graph will fold nicely if the optimizer later reduces
3400 // the type to a constant.
3401 // The optional arguments are for specialized use by intrinsics:
3402 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3403 //  - If 'return_size_val', report the the total object size to the caller.
3404 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3405 Node* GraphKit::new_instance(Node* klass_node,
3406                              Node* extra_slow_test,
3407                              Node* *return_size_val,
3408                              bool deoptimize_on_exception) {
3409   // Compute size in doublewords
3410   // The size is always an integral number of doublewords, represented
3411   // as a positive bytewise size stored in the klass's layout_helper.
3412   // The layout_helper also encodes (in a low bit) the need for a slow path.
3413   jint  layout_con = Klass::_lh_neutral_value;
3414   Node* layout_val = get_layout_helper(klass_node, layout_con);
3415   int   layout_is_con = (layout_val == NULL);
3416 
3417   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3418   // Generate the initial go-slow test.  It's either ALWAYS (return a
3419   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3420   // case) a computed value derived from the layout_helper.
3421   Node* initial_slow_test = NULL;
3422   if (layout_is_con) {
3423     assert(!StressReflectiveCode, "stress mode does not use these paths");
3424     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3425     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3426   } else {   // reflective case
3427     // This reflective path is used by Unsafe.allocateInstance.
3428     // (It may be stress-tested by specifying StressReflectiveCode.)
3429     // Basically, we want to get into the VM is there's an illegal argument.
3430     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3431     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3432     if (extra_slow_test != intcon(0)) {
3433       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3434     }
3435     // (Macro-expander will further convert this to a Bool, if necessary.)
3436   }
3437 
3438   // Find the size in bytes.  This is easy; it's the layout_helper.
3439   // The size value must be valid even if the slow path is taken.
3440   Node* size = NULL;
3441   if (layout_is_con) {
3442     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3443   } else {   // reflective case
3444     // This reflective path is used by clone and Unsafe.allocateInstance.
3445     size = ConvI2X(layout_val);
3446 
3447     // Clear the low bits to extract layout_helper_size_in_bytes:
3448     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3449     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3450     size = _gvn.transform( new AndXNode(size, mask) );
3451   }
3452   if (return_size_val != NULL) {
3453     (*return_size_val) = size;
3454   }
3455 
3456   // This is a precise notnull oop of the klass.
3457   // (Actually, it need not be precise if this is a reflective allocation.)
3458   // It's what we cast the result to.
3459   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3460   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3461   const TypeOopPtr* oop_type = tklass->as_instance_type();
3462 
3463   // Now generate allocation code
3464 
3465   // The entire memory state is needed for slow path of the allocation
3466   // since GC and deoptimization can happened.
3467   Node *mem = reset_memory();
3468   set_all_memory(mem); // Create new memory state
3469 
3470   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3471                                          control(), mem, i_o(),
3472                                          size, klass_node,
3473                                          initial_slow_test);
3474 
3475   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3476 }
3477 
3478 //-------------------------------new_array-------------------------------------
3479 // helper for both newarray and anewarray
3480 // The 'length' parameter is (obviously) the length of the array.
3481 // See comments on new_instance for the meaning of the other arguments.
3482 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3483                           Node* length,         // number of array elements
3484                           int   nargs,          // number of arguments to push back for uncommon trap
3485                           Node* *return_size_val,
3486                           bool deoptimize_on_exception) {
3487   jint  layout_con = Klass::_lh_neutral_value;
3488   Node* layout_val = get_layout_helper(klass_node, layout_con);
3489   int   layout_is_con = (layout_val == NULL);
3490 
3491   if (!layout_is_con && !StressReflectiveCode &&
3492       !too_many_traps(Deoptimization::Reason_class_check)) {
3493     // This is a reflective array creation site.
3494     // Optimistically assume that it is a subtype of Object[],
3495     // so that we can fold up all the address arithmetic.
3496     layout_con = Klass::array_layout_helper(T_OBJECT);
3497     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3498     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3499     { BuildCutout unless(this, bol_lh, PROB_MAX);
3500       inc_sp(nargs);
3501       uncommon_trap(Deoptimization::Reason_class_check,
3502                     Deoptimization::Action_maybe_recompile);
3503     }
3504     layout_val = NULL;
3505     layout_is_con = true;
3506   }
3507 
3508   // Generate the initial go-slow test.  Make sure we do not overflow
3509   // if length is huge (near 2Gig) or negative!  We do not need
3510   // exact double-words here, just a close approximation of needed
3511   // double-words.  We can't add any offset or rounding bits, lest we
3512   // take a size -1 of bytes and make it positive.  Use an unsigned
3513   // compare, so negative sizes look hugely positive.
3514   int fast_size_limit = FastAllocateSizeLimit;
3515   if (layout_is_con) {
3516     assert(!StressReflectiveCode, "stress mode does not use these paths");
3517     // Increase the size limit if we have exact knowledge of array type.
3518     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3519     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3520   }
3521 
3522   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3523   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3524 
3525   // --- Size Computation ---
3526   // array_size = round_to_heap(array_header + (length << elem_shift));
3527   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3528   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3529   // The rounding mask is strength-reduced, if possible.
3530   int round_mask = MinObjAlignmentInBytes - 1;
3531   Node* header_size = NULL;
3532   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3533   // (T_BYTE has the weakest alignment and size restrictions...)
3534   if (layout_is_con) {
3535     int       hsize  = Klass::layout_helper_header_size(layout_con);
3536     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3537     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3538     if ((round_mask & ~right_n_bits(eshift)) == 0)
3539       round_mask = 0;  // strength-reduce it if it goes away completely
3540     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3541     assert(header_size_min <= hsize, "generic minimum is smallest");
3542     header_size_min = hsize;
3543     header_size = intcon(hsize + round_mask);
3544   } else {
3545     Node* hss   = intcon(Klass::_lh_header_size_shift);
3546     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3547     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3548     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3549     Node* mask  = intcon(round_mask);
3550     header_size = _gvn.transform( new AddINode(hsize, mask) );
3551   }
3552 
3553   Node* elem_shift = NULL;
3554   if (layout_is_con) {
3555     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3556     if (eshift != 0)
3557       elem_shift = intcon(eshift);
3558   } else {
3559     // There is no need to mask or shift this value.
3560     // The semantics of LShiftINode include an implicit mask to 0x1F.
3561     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3562     elem_shift = layout_val;
3563   }
3564 
3565   // Transition to native address size for all offset calculations:
3566   Node* lengthx = ConvI2X(length);
3567   Node* headerx = ConvI2X(header_size);
3568 #ifdef _LP64
3569   { const TypeInt* tilen = _gvn.find_int_type(length);
3570     if (tilen != NULL && tilen->_lo < 0) {
3571       // Add a manual constraint to a positive range.  Cf. array_element_address.
3572       jint size_max = fast_size_limit;
3573       if (size_max > tilen->_hi)  size_max = tilen->_hi;
3574       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
3575 
3576       // Only do a narrow I2L conversion if the range check passed.
3577       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
3578       _gvn.transform(iff);
3579       RegionNode* region = new RegionNode(3);
3580       _gvn.set_type(region, Type::CONTROL);
3581       lengthx = new PhiNode(region, TypeLong::LONG);
3582       _gvn.set_type(lengthx, TypeLong::LONG);
3583 
3584       // Range check passed. Use ConvI2L node with narrow type.
3585       Node* passed = IfFalse(iff);
3586       region->init_req(1, passed);
3587       // Make I2L conversion control dependent to prevent it from
3588       // floating above the range check during loop optimizations.
3589       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
3590 
3591       // Range check failed. Use ConvI2L with wide type because length may be invalid.
3592       region->init_req(2, IfTrue(iff));
3593       lengthx->init_req(2, ConvI2X(length));
3594 
3595       set_control(region);
3596       record_for_igvn(region);
3597       record_for_igvn(lengthx);
3598     }
3599   }
3600 #endif
3601 
3602   // Combine header size (plus rounding) and body size.  Then round down.
3603   // This computation cannot overflow, because it is used only in two
3604   // places, one where the length is sharply limited, and the other
3605   // after a successful allocation.
3606   Node* abody = lengthx;
3607   if (elem_shift != NULL)
3608     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3609   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3610   if (round_mask != 0) {
3611     Node* mask = MakeConX(~round_mask);
3612     size       = _gvn.transform( new AndXNode(size, mask) );
3613   }
3614   // else if round_mask == 0, the size computation is self-rounding
3615 
3616   if (return_size_val != NULL) {
3617     // This is the size
3618     (*return_size_val) = size;
3619   }
3620 
3621   // Now generate allocation code
3622 
3623   // The entire memory state is needed for slow path of the allocation
3624   // since GC and deoptimization can happened.
3625   Node *mem = reset_memory();
3626   set_all_memory(mem); // Create new memory state
3627 
3628   if (initial_slow_test->is_Bool()) {
3629     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3630     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3631   }
3632 
3633   // Create the AllocateArrayNode and its result projections
3634   AllocateArrayNode* alloc
3635     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3636                             control(), mem, i_o(),
3637                             size, klass_node,
3638                             initial_slow_test,
3639                             length);
3640 
3641   // Cast to correct type.  Note that the klass_node may be constant or not,
3642   // and in the latter case the actual array type will be inexact also.
3643   // (This happens via a non-constant argument to inline_native_newArray.)
3644   // In any case, the value of klass_node provides the desired array type.
3645   const TypeInt* length_type = _gvn.find_int_type(length);
3646   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3647   if (ary_type->isa_aryptr() && length_type != NULL) {
3648     // Try to get a better type than POS for the size
3649     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3650   }
3651 
3652   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3653 
3654   // Cast length on remaining path to be as narrow as possible
3655   if (map()->find_edge(length) >= 0) {
3656     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3657     if (ccast != length) {
3658       _gvn.set_type_bottom(ccast);
3659       record_for_igvn(ccast);
3660       replace_in_map(length, ccast);
3661     }
3662   }
3663 
3664   return javaoop;
3665 }
3666 
3667 // The following "Ideal_foo" functions are placed here because they recognize
3668 // the graph shapes created by the functions immediately above.
3669 
3670 //---------------------------Ideal_allocation----------------------------------
3671 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3672 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3673   if (ptr == NULL) {     // reduce dumb test in callers
3674     return NULL;
3675   }
3676 
3677   // Attempt to see through Shenandoah barriers.
3678   ptr = ShenandoahBarrierNode::skip_through_barrier(ptr);
3679 
3680   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3681     ptr = ptr->in(1);
3682     if (ptr == NULL) return NULL;
3683   }
3684   // Return NULL for allocations with several casts:
3685   //   j.l.reflect.Array.newInstance(jobject, jint)
3686   //   Object.clone()
3687   // to keep more precise type from last cast.
3688   if (ptr->is_Proj()) {
3689     Node* allo = ptr->in(0);
3690     if (allo != NULL && allo->is_Allocate()) {
3691       return allo->as_Allocate();
3692     }
3693   }
3694   // Report failure to match.
3695   return NULL;
3696 }
3697 
3698 // Fancy version which also strips off an offset (and reports it to caller).
3699 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3700                                              intptr_t& offset) {
3701   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3702   if (base == NULL)  return NULL;
3703   return Ideal_allocation(base, phase);
3704 }
3705 
3706 // Trace Initialize <- Proj[Parm] <- Allocate
3707 AllocateNode* InitializeNode::allocation() {
3708   Node* rawoop = in(InitializeNode::RawAddress);
3709   if (rawoop->is_Proj()) {
3710     Node* alloc = rawoop->in(0);
3711     if (alloc->is_Allocate()) {
3712       return alloc->as_Allocate();
3713     }
3714   }
3715   return NULL;
3716 }
3717 
3718 // Trace Allocate -> Proj[Parm] -> Initialize
3719 InitializeNode* AllocateNode::initialization() {
3720   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3721   if (rawoop == NULL)  return NULL;
3722   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3723     Node* init = rawoop->fast_out(i);
3724     if (init->is_Initialize()) {
3725       assert(init->as_Initialize()->allocation() == this, "2-way link");
3726       return init->as_Initialize();
3727     }
3728   }
3729   return NULL;
3730 }
3731 
3732 //----------------------------- loop predicates ---------------------------
3733 
3734 //------------------------------add_predicate_impl----------------------------
3735 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3736   // Too many traps seen?
3737   if (too_many_traps(reason)) {
3738 #ifdef ASSERT
3739     if (TraceLoopPredicate) {
3740       int tc = C->trap_count(reason);
3741       tty->print("too many traps=%s tcount=%d in ",
3742                     Deoptimization::trap_reason_name(reason), tc);
3743       method()->print(); // which method has too many predicate traps
3744       tty->cr();
3745     }
3746 #endif
3747     // We cannot afford to take more traps here,
3748     // do not generate predicate.
3749     return;
3750   }
3751 
3752   Node *cont    = _gvn.intcon(1);
3753   Node* opq     = _gvn.transform(new Opaque1Node(C, cont));
3754   Node *bol     = _gvn.transform(new Conv2BNode(opq));
3755   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3756   Node* iffalse = _gvn.transform(new IfFalseNode(iff));
3757   C->add_predicate_opaq(opq);
3758   {
3759     PreserveJVMState pjvms(this);
3760     set_control(iffalse);
3761     inc_sp(nargs);
3762     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3763   }
3764   Node* iftrue = _gvn.transform(new IfTrueNode(iff));
3765   set_control(iftrue);
3766 }
3767 
3768 //------------------------------add_predicate---------------------------------
3769 void GraphKit::add_predicate(int nargs) {
3770   if (UseLoopPredicate) {
3771     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3772   }
3773   // loop's limit check predicate should be near the loop.
3774   add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3775 }
3776 
3777 //----------------------------- store barriers ----------------------------
3778 #define __ ideal.
3779 
3780 void GraphKit::sync_kit(IdealKit& ideal) {
3781   set_all_memory(__ merged_memory());
3782   set_i_o(__ i_o());
3783   set_control(__ ctrl());
3784 }
3785 
3786 void GraphKit::final_sync(IdealKit& ideal) {
3787   // Final sync IdealKit and graphKit.
3788   sync_kit(ideal);
3789 }
3790 
3791 Node* GraphKit::byte_map_base_node() {
3792   // Get base of card map
3793   CardTableModRefBS* ct =
3794     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
3795   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust users of this code");
3796   if (ct->byte_map_base != NULL) {
3797     return makecon(TypeRawPtr::make((address)ct->byte_map_base));
3798   } else {
3799     return null();
3800   }
3801 }
3802 
3803 // vanilla/CMS post barrier
3804 // Insert a write-barrier store.  This is to let generational GC work; we have
3805 // to flag all oop-stores before the next GC point.
3806 void GraphKit::write_barrier_post(Node* oop_store,
3807                                   Node* obj,
3808                                   Node* adr,
3809                                   uint  adr_idx,
3810                                   Node* val,
3811                                   bool use_precise) {
3812   // No store check needed if we're storing a NULL or an old object
3813   // (latter case is probably a string constant). The concurrent
3814   // mark sweep garbage collector, however, needs to have all nonNull
3815   // oop updates flagged via card-marks.
3816   if (val != NULL && val->is_Con()) {
3817     // must be either an oop or NULL
3818     const Type* t = val->bottom_type();
3819     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3820       // stores of null never (?) need barriers
3821       return;
3822   }
3823 
3824   if (use_ReduceInitialCardMarks()
3825       && obj == just_allocated_object(control())) {
3826     // We can skip marks on a freshly-allocated object in Eden.
3827     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3828     // That routine informs GC to take appropriate compensating steps,
3829     // upon a slow-path allocation, so as to make this card-mark
3830     // elision safe.
3831     return;
3832   }
3833 
3834   if (!use_precise) {
3835     // All card marks for a (non-array) instance are in one place:
3836     adr = obj;
3837   }
3838   // (Else it's an array (or unknown), and we want more precise card marks.)
3839   assert(adr != NULL, "");
3840 
3841   IdealKit ideal(this, true);
3842 
3843   // Convert the pointer to an int prior to doing math on it
3844   Node* cast = __ CastPX(__ ctrl(), adr);
3845 
3846   // Divide by card size
3847   assert(Universe::heap()->barrier_set()->is_a(BarrierSet::CardTableModRef),
3848          "Only one we handle so far.");
3849   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3850 
3851   // Combine card table base and card offset
3852   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3853 
3854   // Get the alias_index for raw card-mark memory
3855   int adr_type = Compile::AliasIdxRaw;
3856   Node*   zero = __ ConI(0); // Dirty card value
3857   BasicType bt = T_BYTE;
3858 
3859   if (UseConcMarkSweepGC && UseCondCardMark) {
3860     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
3861     __ sync_kit(this);
3862   }
3863 
3864   if (UseCondCardMark) {
3865     // The classic GC reference write barrier is typically implemented
3866     // as a store into the global card mark table.  Unfortunately
3867     // unconditional stores can result in false sharing and excessive
3868     // coherence traffic as well as false transactional aborts.
3869     // UseCondCardMark enables MP "polite" conditional card mark
3870     // stores.  In theory we could relax the load from ctrl() to
3871     // no_ctrl, but that doesn't buy much latitude.
3872     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3873     __ if_then(card_val, BoolTest::ne, zero);
3874   }
3875 
3876   // Smash zero into card
3877   if( !UseConcMarkSweepGC ) {
3878     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::unordered);
3879   } else {
3880     // Specialized path for CM store barrier
3881     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3882   }
3883 
3884   if (UseCondCardMark) {
3885     __ end_if();
3886   }
3887 
3888   // Final sync IdealKit and GraphKit.
3889   final_sync(ideal);
3890 }
3891 /*
3892  * Determine if the G1 pre-barrier can be removed. The pre-barrier is
3893  * required by SATB to make sure all objects live at the start of the
3894  * marking are kept alive, all reference updates need to any previous
3895  * reference stored before writing.
3896  *
3897  * If the previous value is NULL there is no need to save the old value.
3898  * References that are NULL are filtered during runtime by the barrier
3899  * code to avoid unnecessary queuing.
3900  *
3901  * However in the case of newly allocated objects it might be possible to
3902  * prove that the reference about to be overwritten is NULL during compile
3903  * time and avoid adding the barrier code completely.
3904  *
3905  * The compiler needs to determine that the object in which a field is about
3906  * to be written is newly allocated, and that no prior store to the same field
3907  * has happened since the allocation.
3908  *
3909  * Returns true if the pre-barrier can be removed
3910  */
3911 bool GraphKit::g1_can_remove_pre_barrier(PhaseTransform* phase, Node* adr,
3912                                          BasicType bt, uint adr_idx) {
3913   intptr_t offset = 0;
3914   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
3915   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
3916 
3917   if (offset == Type::OffsetBot) {
3918     return false; // cannot unalias unless there are precise offsets
3919   }
3920 
3921   if (alloc == NULL) {
3922     return false; // No allocation found
3923   }
3924 
3925   intptr_t size_in_bytes = type2aelembytes(bt);
3926 
3927   Node* mem = memory(adr_idx); // start searching here...
3928 
3929   for (int cnt = 0; cnt < 50; cnt++) {
3930 
3931     if (mem->is_Store()) {
3932 
3933       Node* st_adr = mem->in(MemNode::Address);
3934       intptr_t st_offset = 0;
3935       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
3936 
3937       if (st_base == NULL) {
3938         break; // inscrutable pointer
3939       }
3940 
3941       // Break we have found a store with same base and offset as ours so break
3942       if (st_base == base && st_offset == offset) {
3943         break;
3944       }
3945 
3946       if (st_offset != offset && st_offset != Type::OffsetBot) {
3947         const int MAX_STORE = BytesPerLong;
3948         if (st_offset >= offset + size_in_bytes ||
3949             st_offset <= offset - MAX_STORE ||
3950             st_offset <= offset - mem->as_Store()->memory_size()) {
3951           // Success:  The offsets are provably independent.
3952           // (You may ask, why not just test st_offset != offset and be done?
3953           // The answer is that stores of different sizes can co-exist
3954           // in the same sequence of RawMem effects.  We sometimes initialize
3955           // a whole 'tile' of array elements with a single jint or jlong.)
3956           mem = mem->in(MemNode::Memory);
3957           continue; // advance through independent store memory
3958         }
3959       }
3960 
3961       if (st_base != base
3962           && MemNode::detect_ptr_independence(base, alloc, st_base,
3963                                               AllocateNode::Ideal_allocation(st_base, phase),
3964                                               phase)) {
3965         // Success:  The bases are provably independent.
3966         mem = mem->in(MemNode::Memory);
3967         continue; // advance through independent store memory
3968       }
3969     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
3970 
3971       InitializeNode* st_init = mem->in(0)->as_Initialize();
3972       AllocateNode* st_alloc = st_init->allocation();
3973 
3974       // Make sure that we are looking at the same allocation site.
3975       // The alloc variable is guaranteed to not be null here from earlier check.
3976       if (alloc == st_alloc) {
3977         // Check that the initialization is storing NULL so that no previous store
3978         // has been moved up and directly write a reference
3979         Node* captured_store = st_init->find_captured_store(offset,
3980                                                             type2aelembytes(T_OBJECT),
3981                                                             phase);
3982         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
3983           return true;
3984         }
3985       }
3986     }
3987 
3988     // Unless there is an explicit 'continue', we must bail out here,
3989     // because 'mem' is an inscrutable memory state (e.g., a call).
3990     break;
3991   }
3992 
3993   return false;
3994 }
3995 
3996 static void g1_write_barrier_pre_helper(const GraphKit& kit, Node* adr) {
3997   if (UseShenandoahGC && ShenandoahSATBBarrier && adr != NULL) {
3998     Node* c = kit.control();
3999     Node* call = c->in(1)->in(1)->in(1)->in(0);
4000     assert(call->is_g1_wb_pre_call(), "g1_wb_pre call expected");
4001     call->add_req(adr);
4002   }
4003 }
4004 
4005 // G1 pre/post barriers
4006 void GraphKit::g1_write_barrier_pre(bool do_load,
4007                                     Node* obj,
4008                                     Node* adr,
4009                                     uint alias_idx,
4010                                     Node* val,
4011                                     const TypeOopPtr* val_type,
4012                                     Node* pre_val,
4013                                     BasicType bt) {
4014 
4015   // Some sanity checks
4016   // Note: val is unused in this routine.
4017 
4018   if (do_load) {
4019     // We need to generate the load of the previous value
4020     assert(obj != NULL, "must have a base");
4021     assert(adr != NULL, "where are loading from?");
4022     assert(pre_val == NULL, "loaded already?");
4023     assert(val_type != NULL, "need a type");
4024 
4025     if (use_ReduceInitialCardMarks()
4026         && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) {
4027       return;
4028     }
4029 
4030   } else {
4031     // In this case both val_type and alias_idx are unused.
4032     assert(pre_val != NULL, "must be loaded already");
4033     // Nothing to be done if pre_val is null.
4034     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
4035     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
4036   }
4037   assert(bt == T_OBJECT, "or we shouldn't be here");
4038 
4039   IdealKit ideal(this, true);
4040 
4041   Node* tls = __ thread(); // ThreadLocalStorage
4042 
4043   Node* no_ctrl = NULL;
4044   Node* no_base = __ top();
4045   Node* zero  = __ ConI(0);
4046   Node* zeroX = __ ConX(0);
4047 
4048   float likely  = PROB_LIKELY(0.999);
4049   float unlikely  = PROB_UNLIKELY(0.999);
4050 
4051   BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
4052   assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
4053 
4054   // Offsets into the thread
4055   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
4056                                           SATBMarkQueue::byte_offset_of_active());
4057   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
4058                                           SATBMarkQueue::byte_offset_of_index());
4059   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
4060                                           SATBMarkQueue::byte_offset_of_buf());
4061 
4062   // Now the actual pointers into the thread
4063   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
4064   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
4065   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
4066 
4067   // Now some of the values
4068   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
4069 
4070   // if (!marking)
4071   __ if_then(marking, BoolTest::ne, zero, unlikely); {
4072     BasicType index_bt = TypeX_X->basic_type();
4073     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
4074     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
4075 
4076     if (do_load) {
4077       // load original value
4078       // alias_idx correct??
4079       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
4080     }
4081 
4082     // if (pre_val != NULL)
4083     __ if_then(pre_val, BoolTest::ne, null()); {
4084       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4085 
4086       // is the queue for this thread full?
4087       __ if_then(index, BoolTest::ne, zeroX, likely); {
4088 
4089         // decrement the index
4090         Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4091 
4092         // Now get the buffer location we will log the previous value into and store it
4093         Node *log_addr = __ AddP(no_base, buffer, next_index);
4094         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
4095         // update the index
4096         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
4097 
4098       } __ else_(); {
4099 
4100         // logging buffer is full, call the runtime
4101         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
4102         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
4103       } __ end_if();  // (!index)
4104     } __ end_if();  // (pre_val != NULL)
4105   } __ end_if();  // (!marking)
4106 
4107   // Final sync IdealKit and GraphKit.
4108   final_sync(ideal);
4109   g1_write_barrier_pre_helper(*this, adr);
4110 }
4111 
4112 Node* GraphKit::shenandoah_write_barrier_pre(bool do_load,
4113                                     Node* obj,
4114                                     Node* adr,
4115                                     uint alias_idx,
4116                                     Node* val,
4117                                     const TypeOopPtr* val_type,
4118                                     Node* pre_val,
4119                                     BasicType bt) {
4120 
4121   // Some sanity checks
4122   // Note: val is unused in this routine.
4123 
4124   if (!ShenandoahSATBBarrier) {
4125     if (val != NULL) {
4126       shenandoah_update_matrix(adr, val);
4127     }
4128     return val;
4129   }
4130 
4131   if (val == NULL) {
4132     g1_write_barrier_pre(do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
4133     return NULL;
4134   }
4135 
4136   if (! ShenandoahReduceStoreValBarrier) {
4137     val = shenandoah_read_barrier_storeval(val);
4138     shenandoah_update_matrix(adr, val);
4139     g1_write_barrier_pre(do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
4140     return val;
4141   }
4142 
4143   if (do_load) {
4144     // We need to generate the load of the previous value
4145     assert(obj != NULL, "must have a base");
4146     assert(adr != NULL, "where are loading from?");
4147     assert(pre_val == NULL, "loaded already?");
4148     assert(val_type != NULL, "need a type");
4149 
4150     if (use_ReduceInitialCardMarks()
4151         && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) {
4152       return shenandoah_read_barrier_storeval(val);
4153     }
4154 
4155   } else {
4156     // In this case both val_type and alias_idx are unused.
4157     assert(pre_val != NULL, "must be loaded already");
4158     // Nothing to be done if pre_val is null.
4159     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return val;
4160     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
4161   }
4162   assert(bt == T_OBJECT, "or we shouldn't be here");
4163 
4164   IdealKit ideal(this, true, true);
4165   IdealVariable ival(ideal);
4166   __ declarations_done();
4167   __  set(ival, val);
4168   Node* tls = __ thread(); // ThreadLocalStorage
4169 
4170   Node* no_ctrl = NULL;
4171   Node* no_base = __ top();
4172   Node* zero  = __ ConI(0);
4173   Node* zeroX = __ ConX(0);
4174 
4175   float likely  = PROB_LIKELY(0.999);
4176   float unlikely  = PROB_UNLIKELY(0.999);
4177 
4178   BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
4179   assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
4180 
4181   // Offsets into the thread
4182   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
4183                                           SATBMarkQueue::byte_offset_of_active());
4184   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
4185                                           SATBMarkQueue::byte_offset_of_index());
4186   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
4187                                           SATBMarkQueue::byte_offset_of_buf());
4188 
4189   // Now the actual pointers into the thread
4190   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
4191   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
4192   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
4193 
4194   // Now some of the values
4195   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
4196 
4197   // if (!marking)
4198   __ if_then(marking, BoolTest::ne, zero, unlikely); {
4199 
4200     Node* storeval = ideal.value(ival);
4201     sync_kit(ideal);
4202     storeval = shenandoah_read_barrier_storeval(storeval);
4203     __ sync_kit(this);
4204     __ set(ival, storeval);
4205 
4206     BasicType index_bt = TypeX_X->basic_type();
4207     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
4208     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
4209 
4210     if (do_load) {
4211       // load original value
4212       // alias_idx correct??
4213       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
4214     }
4215 
4216     // if (pre_val != NULL)
4217     __ if_then(pre_val, BoolTest::ne, null()); {
4218       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4219 
4220       // is the queue for this thread full?
4221       __ if_then(index, BoolTest::ne, zeroX, likely); {
4222 
4223         // decrement the index
4224         Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4225 
4226         // Now get the buffer location we will log the previous value into and store it
4227         Node *log_addr = __ AddP(no_base, buffer, next_index);
4228         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
4229         // update the index
4230         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
4231 
4232       } __ else_(); {
4233 
4234         // logging buffer is full, call the runtime
4235         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
4236         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
4237       } __ end_if();  // (!index)
4238     } __ end_if();  // (pre_val != NULL)
4239   } __ end_if();  // (!marking)
4240   Node* new_val = __ value(ival);
4241   // IdealKit generates a Phi with very conservative type, and even
4242   // turns array types into TypeInstPtr (see type.cpp, _const_basic_type[T_ARRAY]).
4243   // We're forcing the result to be the original type.
4244   if (new_val != val) {
4245     const Type* t = _gvn.type(val);
4246     if (new_val->isa_Type()) {
4247       new_val->as_Type()->set_type(t);
4248     }
4249     _gvn.set_type(new_val, t);
4250   }
4251   val = new_val;
4252   __ dead(ival);
4253   // Final sync IdealKit and GraphKit.
4254   final_sync(ideal);
4255   g1_write_barrier_pre_helper(*this, adr);
4256   return val;
4257 }
4258 
4259 void GraphKit::shenandoah_update_matrix(Node* adr, Node* val) {
4260   if (!UseShenandoahMatrix) {
4261     return;
4262   }
4263 
4264   assert(val != NULL, "checked before");
4265   if (adr == NULL) {
4266     return; // Nothing to do
4267   }
4268   assert(adr != NULL, "must not happen");
4269   if (val->bottom_type()->higher_equal(TypePtr::NULL_PTR)) {
4270     // Nothing to do.
4271     return;
4272   }
4273 
4274   ShenandoahConnectionMatrix* matrix = ShenandoahHeap::heap()->connection_matrix();
4275 
4276   enum { _set_path = 1, _already_set_path, _val_null_path, PATH_LIMIT };
4277   RegionNode* region = new RegionNode(PATH_LIMIT);
4278   Node* prev_mem = memory(Compile::AliasIdxRaw);
4279   Node* memphi    = PhiNode::make(region, prev_mem, Type::MEMORY, TypeRawPtr::BOTTOM);
4280   Node* null_ctrl = top();
4281   Node* not_null_val = null_check_oop(val, &null_ctrl);
4282 
4283   // Null path: nothing to do.
4284   region->init_req(_val_null_path, null_ctrl);
4285   memphi->init_req(_val_null_path, prev_mem);
4286 
4287   // Not null path. Update the matrix.
4288 
4289   // This uses a fast calculation for the matrix address. For a description,
4290   // see src/share/vm/gc/shenandoah/shenandoahConnectionMatrix.inline.hpp,
4291   // ShenandoahConnectionMatrix::compute_address(const void* from, const void* to).
4292   address heap_base = ShenandoahHeap::heap()->base();
4293   jint stride = matrix->stride_jint();
4294   jint rs = ShenandoahHeapRegion::region_size_shift_jint();
4295 
4296   guarantee(stride < ShenandoahHeapRegion::region_size_bytes_jint(), "sanity");
4297   guarantee(is_ptr_aligned(heap_base, ShenandoahHeapRegion::region_size_bytes()), "sanity");
4298 
4299   Node* magic_con = MakeConX((jlong) matrix->matrix_addr() - ((jlong) heap_base >> rs) * (stride + 1));
4300 
4301   // Compute addr part
4302   Node* adr_idx = _gvn.transform(new CastP2XNode(control(), adr));
4303   adr_idx = _gvn.transform(new URShiftXNode(adr_idx, intcon(rs)));
4304 
4305   // Compute new_val part
4306   Node* val_idx = _gvn.transform(new CastP2XNode(control(), not_null_val));
4307   val_idx = _gvn.transform(new URShiftXNode(val_idx, intcon(rs)));
4308   val_idx = _gvn.transform(new MulXNode(val_idx, MakeConX(stride)));
4309 
4310   // Add everything up
4311   adr_idx = _gvn.transform(new AddXNode(adr_idx, val_idx));
4312   adr_idx = _gvn.transform(new CastX2PNode(adr_idx));
4313   Node* matrix_adr = _gvn.transform(new AddPNode(top(), adr_idx, magic_con));
4314 
4315   // Load current value
4316   const TypePtr* adr_type = TypeRawPtr::BOTTOM;
4317   Node* current = _gvn.transform(LoadNode::make(_gvn, control(), memory(Compile::AliasIdxRaw),
4318                                                 matrix_adr, adr_type, TypeInt::INT, T_BYTE, MemNode::unordered));
4319 
4320   // Check if already set
4321   Node* cmp_set = _gvn.transform(new CmpINode(current, intcon(0)));
4322   Node* cmp_set_bool = _gvn.transform(new BoolNode(cmp_set, BoolTest::eq));
4323   IfNode* cmp_iff = create_and_map_if(control(), cmp_set_bool, PROB_MIN, COUNT_UNKNOWN);
4324 
4325   Node* if_not_set = _gvn.transform(new IfTrueNode(cmp_iff));
4326   Node* if_set = _gvn.transform(new IfFalseNode(cmp_iff));
4327 
4328   // Already set, exit
4329   set_control(if_set);
4330   region->init_req(_already_set_path, control());
4331   memphi->init_req(_already_set_path, prev_mem);
4332 
4333   // Not set: do the store, and finish up
4334   set_control(if_not_set);
4335   Node* store = _gvn.transform(StoreNode::make(_gvn, control(), memory(Compile::AliasIdxRaw),
4336                                                matrix_adr, adr_type, intcon(1), T_BYTE, MemNode::unordered));
4337   region->init_req(_set_path, control());
4338   memphi->init_req(_set_path, store);
4339 
4340   // Merge control flows and memory.
4341   set_control(_gvn.transform(region));
4342   record_for_igvn(region);
4343   set_memory(_gvn.transform(memphi), Compile::AliasIdxRaw);
4344 }
4345 
4346 /*
4347  * G1 similar to any GC with a Young Generation requires a way to keep track of
4348  * references from Old Generation to Young Generation to make sure all live
4349  * objects are found. G1 also requires to keep track of object references
4350  * between different regions to enable evacuation of old regions, which is done
4351  * as part of mixed collections. References are tracked in remembered sets and
4352  * is continuously updated as reference are written to with the help of the
4353  * post-barrier.
4354  *
4355  * To reduce the number of updates to the remembered set the post-barrier
4356  * filters updates to fields in objects located in the Young Generation,
4357  * the same region as the reference, when the NULL is being written or
4358  * if the card is already marked as dirty by an earlier write.
4359  *
4360  * Under certain circumstances it is possible to avoid generating the
4361  * post-barrier completely if it is possible during compile time to prove
4362  * the object is newly allocated and that no safepoint exists between the
4363  * allocation and the store.
4364  *
4365  * In the case of slow allocation the allocation code must handle the barrier
4366  * as part of the allocation in the case the allocated object is not located
4367  * in the nursery, this would happen for humongous objects. This is similar to
4368  * how CMS is required to handle this case, see the comments for the method
4369  * CollectedHeap::new_store_pre_barrier and OptoRuntime::new_store_pre_barrier.
4370  * A deferred card mark is required for these objects and handled in the above
4371  * mentioned methods.
4372  *
4373  * Returns true if the post barrier can be removed
4374  */
4375 bool GraphKit::g1_can_remove_post_barrier(PhaseTransform* phase, Node* store,
4376                                           Node* adr) {
4377   intptr_t      offset = 0;
4378   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
4379   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
4380 
4381   if (offset == Type::OffsetBot) {
4382     return false; // cannot unalias unless there are precise offsets
4383   }
4384 
4385   if (alloc == NULL) {
4386      return false; // No allocation found
4387   }
4388 
4389   // Start search from Store node
4390   Node* mem = store->in(MemNode::Control);
4391   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
4392 
4393     InitializeNode* st_init = mem->in(0)->as_Initialize();
4394     AllocateNode*  st_alloc = st_init->allocation();
4395 
4396     // Make sure we are looking at the same allocation
4397     if (alloc == st_alloc) {
4398       return true;
4399     }
4400   }
4401 
4402   return false;
4403 }
4404 
4405 //
4406 // Update the card table and add card address to the queue
4407 //
4408 void GraphKit::g1_mark_card(IdealKit& ideal,
4409                             Node* card_adr,
4410                             Node* oop_store,
4411                             uint oop_alias_idx,
4412                             Node* index,
4413                             Node* index_adr,
4414                             Node* buffer,
4415                             const TypeFunc* tf) {
4416 
4417   Node* zero  = __ ConI(0);
4418   Node* zeroX = __ ConX(0);
4419   Node* no_base = __ top();
4420   BasicType card_bt = T_BYTE;
4421   // Smash zero into card. MUST BE ORDERED WRT TO STORE
4422   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
4423 
4424   //  Now do the queue work
4425   __ if_then(index, BoolTest::ne, zeroX); {
4426 
4427     Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4428     Node* log_addr = __ AddP(no_base, buffer, next_index);
4429 
4430     // Order, see storeCM.
4431     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
4432     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
4433 
4434   } __ else_(); {
4435     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
4436   } __ end_if();
4437 
4438 }
4439 
4440 void GraphKit::g1_write_barrier_post(Node* oop_store,
4441                                      Node* obj,
4442                                      Node* adr,
4443                                      uint alias_idx,
4444                                      Node* val,
4445                                      BasicType bt,
4446                                      bool use_precise) {
4447   // If we are writing a NULL then we need no post barrier
4448 
4449   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
4450     // Must be NULL
4451     const Type* t = val->bottom_type();
4452     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
4453     // No post barrier if writing NULLx
4454     return;
4455   }
4456 
4457   if (use_ReduceInitialCardMarks() && obj == just_allocated_object(control())) {
4458     // We can skip marks on a freshly-allocated object in Eden.
4459     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
4460     // That routine informs GC to take appropriate compensating steps,
4461     // upon a slow-path allocation, so as to make this card-mark
4462     // elision safe.
4463     return;
4464   }
4465 
4466   if (use_ReduceInitialCardMarks()
4467       && g1_can_remove_post_barrier(&_gvn, oop_store, adr)) {
4468     return;
4469   }
4470 
4471   if (!use_precise) {
4472     // All card marks for a (non-array) instance are in one place:
4473     adr = obj;
4474   }
4475   // (Else it's an array (or unknown), and we want more precise card marks.)
4476   assert(adr != NULL, "");
4477 
4478   IdealKit ideal(this, true);
4479 
4480   Node* tls = __ thread(); // ThreadLocalStorage
4481 
4482   Node* no_base = __ top();
4483   float likely  = PROB_LIKELY(0.999);
4484   float unlikely  = PROB_UNLIKELY(0.999);
4485   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
4486   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
4487   Node* zeroX = __ ConX(0);
4488 
4489   // Get the alias_index for raw card-mark memory
4490   const TypePtr* card_type = TypeRawPtr::BOTTOM;
4491 
4492   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
4493 
4494   // Offsets into the thread
4495   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
4496                                      DirtyCardQueue::byte_offset_of_index());
4497   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
4498                                      DirtyCardQueue::byte_offset_of_buf());
4499 
4500   // Pointers into the thread
4501 
4502   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
4503   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
4504 
4505   // Now some values
4506   // Use ctrl to avoid hoisting these values past a safepoint, which could
4507   // potentially reset these fields in the JavaThread.
4508   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
4509   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4510 
4511   // Convert the store obj pointer to an int prior to doing math on it
4512   // Must use ctrl to prevent "integerized oop" existing across safepoint
4513   Node* cast =  __ CastPX(__ ctrl(), adr);
4514 
4515   // Divide pointer by card size
4516   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
4517 
4518   // Combine card table base and card offset
4519   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
4520 
4521   // If we know the value being stored does it cross regions?
4522 
4523   if (val != NULL) {
4524     // Does the store cause us to cross regions?
4525 
4526     // Should be able to do an unsigned compare of region_size instead of
4527     // and extra shift. Do we have an unsigned compare??
4528     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
4529     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4530 
4531     // if (xor_res == 0) same region so skip
4532     __ if_then(xor_res, BoolTest::ne, zeroX); {
4533 
4534       // No barrier if we are storing a NULL
4535       __ if_then(val, BoolTest::ne, null(), unlikely); {
4536 
4537         // Ok must mark the card if not already dirty
4538 
4539         // load the original value of the card
4540         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4541 
4542         __ if_then(card_val, BoolTest::ne, young_card); {
4543           sync_kit(ideal);
4544           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4545           insert_mem_bar(Op_MemBarVolatile, oop_store);
4546           __ sync_kit(this);
4547 
4548           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4549           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4550             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4551           } __ end_if();
4552         } __ end_if();
4553       } __ end_if();
4554     } __ end_if();
4555   } else {
4556     // The Object.clone() intrinsic uses this path if !ReduceInitialCardMarks.
4557     // We don't need a barrier here if the destination is a newly allocated object
4558     // in Eden. Otherwise, GC verification breaks because we assume that cards in Eden
4559     // are set to 'g1_young_gen' (see G1SATBCardTableModRefBS::verify_g1_young_region()).
4560     assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
4561     Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4562     __ if_then(card_val, BoolTest::ne, young_card); {
4563       g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4564     } __ end_if();
4565   }
4566 
4567   // Final sync IdealKit and GraphKit.
4568   final_sync(ideal);
4569 }
4570 #undef __
4571 
4572 
4573 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4574   Node* len = load_array_length(load_String_value(ctrl, str));
4575   Node* coder = load_String_coder(ctrl, str);
4576   // Divide length by 2 if coder is UTF16
4577   return _gvn.transform(new RShiftINode(len, coder));
4578 }
4579 
4580 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4581   int value_offset = java_lang_String::value_offset_in_bytes();
4582   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4583                                                      false, NULL, 0);
4584   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4585   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4586                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4587                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4588   int value_field_idx = C->get_alias_index(value_field_type);
4589 
4590   if (! ShenandoahOptimizeFinals) {
4591     str = shenandoah_read_barrier(str);
4592   }
4593 
4594   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4595                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
4596   // String.value field is known to be @Stable.
4597   if (UseImplicitStableValues) {
4598     load = cast_array_to_stable(load, value_type);
4599   }
4600   return load;
4601 }
4602 
4603 Node* GraphKit::load_String_coder(Node* ctrl, Node* str) {
4604   if (!CompactStrings) {
4605     return intcon(java_lang_String::CODER_UTF16);
4606   }
4607   int coder_offset = java_lang_String::coder_offset_in_bytes();
4608   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4609                                                      false, NULL, 0);
4610   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4611   int coder_field_idx = C->get_alias_index(coder_field_type);
4612 
4613   if (! ShenandoahOptimizeFinals) {
4614     str = shenandoah_read_barrier(str);
4615   }
4616 
4617   return make_load(ctrl, basic_plus_adr(str, str, coder_offset),
4618                    TypeInt::BYTE, T_BYTE, coder_field_idx, MemNode::unordered);
4619 }
4620 
4621 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4622   int value_offset = java_lang_String::value_offset_in_bytes();
4623   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4624                                                      false, NULL, 0);
4625   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4626 
4627   str = shenandoah_write_barrier(str);
4628 
4629   store_oop_to_object(control(), str,  basic_plus_adr(str, value_offset), value_field_type,
4630       value, TypeAryPtr::BYTES, T_OBJECT, MemNode::unordered);
4631 }
4632 
4633 void GraphKit::store_String_coder(Node* ctrl, Node* str, Node* value) {
4634   int coder_offset = java_lang_String::coder_offset_in_bytes();
4635   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4636                                                      false, NULL, 0);
4637 
4638   str = shenandoah_write_barrier(str);
4639 
4640   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4641   int coder_field_idx = C->get_alias_index(coder_field_type);
4642   store_to_memory(control(), basic_plus_adr(str, coder_offset),
4643                   value, T_BYTE, coder_field_idx, MemNode::unordered);
4644 }
4645 
4646 // Capture src and dst memory state with a MergeMemNode
4647 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4648   if (src_type == dst_type) {
4649     // Types are equal, we don't need a MergeMemNode
4650     return memory(src_type);
4651   }
4652   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4653   record_for_igvn(merge); // fold it up later, if possible
4654   int src_idx = C->get_alias_index(src_type);
4655   int dst_idx = C->get_alias_index(dst_type);
4656   merge->set_memory_at(src_idx, memory(src_idx));
4657   merge->set_memory_at(dst_idx, memory(dst_idx));
4658   return merge;
4659 }
4660 
4661 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4662   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4663   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4664   // If input and output memory types differ, capture both states to preserve
4665   // the dependency between preceding and subsequent loads/stores.
4666   // For example, the following program:
4667   //  StoreB
4668   //  compress_string
4669   //  LoadB
4670   // has this memory graph (use->def):
4671   //  LoadB -> compress_string -> CharMem
4672   //             ... -> StoreB -> ByteMem
4673   // The intrinsic hides the dependency between LoadB and StoreB, causing
4674   // the load to read from memory not containing the result of the StoreB.
4675   // The correct memory graph should look like this:
4676   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4677   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4678   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4679   Node* res_mem = _gvn.transform(new SCMemProjNode(str));
4680   set_memory(res_mem, TypeAryPtr::BYTES);
4681   return str;
4682 }
4683 
4684 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4685   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4686   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4687   // Capture src and dst memory (see comment in 'compress_string').
4688   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4689   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4690   set_memory(_gvn.transform(str), dst_type);
4691 }
4692 
4693 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4694 
4695   src = shenandoah_read_barrier(src);
4696   dst = shenandoah_write_barrier(dst);
4697 
4698   /**
4699    * int i_char = start;
4700    * for (int i_byte = 0; i_byte < count; i_byte++) {
4701    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4702    * }
4703    */
4704   add_predicate();
4705   RegionNode* head = new RegionNode(3);
4706   head->init_req(1, control());
4707   gvn().set_type(head, Type::CONTROL);
4708   record_for_igvn(head);
4709 
4710   Node* i_byte = new PhiNode(head, TypeInt::INT);
4711   i_byte->init_req(1, intcon(0));
4712   gvn().set_type(i_byte, TypeInt::INT);
4713   record_for_igvn(i_byte);
4714 
4715   Node* i_char = new PhiNode(head, TypeInt::INT);
4716   i_char->init_req(1, start);
4717   gvn().set_type(i_char, TypeInt::INT);
4718   record_for_igvn(i_char);
4719 
4720   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4721   gvn().set_type(mem, Type::MEMORY);
4722   record_for_igvn(mem);
4723   set_control(head);
4724   set_memory(mem, TypeAryPtr::BYTES);
4725   Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES);
4726   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4727                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4728                              false, false, true /* mismatched */);
4729 
4730   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4731   head->init_req(2, IfTrue(iff));
4732   mem->init_req(2, st);
4733   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4734   i_char->init_req(2, AddI(i_char, intcon(2)));
4735 
4736   set_control(IfFalse(iff));
4737   set_memory(st, TypeAryPtr::BYTES);
4738 }
4739 
4740 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4741   if (!field->is_constant()) {
4742     return NULL; // Field not marked as constant.
4743   }
4744   ciInstance* holder = NULL;
4745   if (!field->is_static()) {
4746     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4747     if (const_oop != NULL && const_oop->is_instance()) {
4748       holder = const_oop->as_instance();
4749     }
4750   }
4751   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4752                                                         /*is_unsigned_load=*/false);
4753   if (con_type != NULL) {
4754     return makecon(con_type);
4755   }
4756   return NULL;
4757 }
4758 
4759 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4760   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4761   // assumption of CCP analysis.
4762   return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true)));
4763 }
4764 
4765 Node* GraphKit::shenandoah_read_barrier(Node* obj) {
4766   return shenandoah_read_barrier_impl(obj, false, true, true);
4767 }
4768 
4769 Node* GraphKit::shenandoah_read_barrier_storeval(Node* obj) {
4770   return shenandoah_read_barrier_impl(obj, true, false, false);
4771 }
4772 
4773 Node* GraphKit::shenandoah_read_barrier_impl(Node* obj, bool use_ctrl, bool use_mem, bool allow_fromspace) {
4774 
4775   if (UseShenandoahGC && ShenandoahReadBarrier) {
4776     const Type* obj_type = obj->bottom_type();
4777     if (obj_type->higher_equal(TypePtr::NULL_PTR)) {
4778       return obj;
4779     }
4780     const TypePtr* adr_type = ShenandoahBarrierNode::brooks_pointer_type(obj_type);
4781     Node* mem = use_mem ? memory(adr_type) : immutable_memory();
4782 
4783     if (! ShenandoahBarrierNode::needs_barrier(&_gvn, NULL, obj, mem, allow_fromspace)) {
4784       // We know it is null, no barrier needed.
4785       return obj;
4786     }
4787 
4788 
4789     if (obj_type->meet(TypePtr::NULL_PTR) == obj_type->remove_speculative()) {
4790 
4791       // We don't know if it's null or not. Need null-check.
4792       enum { _not_null_path = 1, _null_path, PATH_LIMIT };
4793       RegionNode* region = new RegionNode(PATH_LIMIT);
4794       Node*       phi    = new PhiNode(region, obj_type);
4795       Node* null_ctrl = top();
4796       Node* not_null_obj = null_check_oop(obj, &null_ctrl);
4797 
4798       region->init_req(_null_path, null_ctrl);
4799       phi   ->init_req(_null_path, zerocon(T_OBJECT));
4800 
4801       Node* ctrl = use_ctrl ? control() : NULL;
4802       ShenandoahReadBarrierNode* rb = new ShenandoahReadBarrierNode(ctrl, mem, not_null_obj, allow_fromspace);
4803       Node* n = _gvn.transform(rb);
4804 
4805       region->init_req(_not_null_path, control());
4806       phi   ->init_req(_not_null_path, n);
4807 
4808       set_control(_gvn.transform(region));
4809       record_for_igvn(region);
4810       return _gvn.transform(phi);
4811 
4812     } else {
4813       // We know it is not null. Simple barrier is sufficient.
4814       Node* ctrl = use_ctrl ? control() : NULL;
4815       ShenandoahReadBarrierNode* rb = new ShenandoahReadBarrierNode(ctrl, mem, obj, allow_fromspace);
4816       Node* n = _gvn.transform(rb);
4817       record_for_igvn(n);
4818       return n;
4819     }
4820 
4821   } else {
4822     return obj;
4823   }
4824 }
4825 
4826 static Node* shenandoah_write_barrier_helper(GraphKit& kit, Node* obj, const TypePtr* adr_type) {
4827   ShenandoahWriteBarrierNode* wb = new ShenandoahWriteBarrierNode(kit.C, kit.control(), kit.memory(adr_type), obj);
4828   Node* n = kit.gvn().transform(wb);
4829   if (n == wb) { // New barrier needs memory projection.
4830     Node* proj = kit.gvn().transform(new ShenandoahWBMemProjNode(n));
4831     kit.set_memory(proj, adr_type);
4832   }
4833 
4834   return n;
4835 }
4836 
4837 Node* GraphKit::shenandoah_write_barrier(Node* obj) {
4838 
4839   if (UseShenandoahGC && ShenandoahWriteBarrier) {
4840 
4841     if (! ShenandoahBarrierNode::needs_barrier(&_gvn, NULL, obj, NULL, true)) {
4842       return obj;
4843     }
4844     const Type* obj_type = obj->bottom_type();
4845     const TypePtr* adr_type = ShenandoahBarrierNode::brooks_pointer_type(obj_type);
4846     if (obj_type->meet(TypePtr::NULL_PTR) == obj_type->remove_speculative()) {
4847       // We don't know if it's null or not. Need null-check.
4848       enum { _not_null_path = 1, _null_path, PATH_LIMIT };
4849       RegionNode* region = new RegionNode(PATH_LIMIT);
4850       Node*       phi    = new PhiNode(region, obj_type);
4851       Node*    memphi    = PhiNode::make(region, memory(adr_type), Type::MEMORY, C->alias_type(adr_type)->adr_type());
4852 
4853       Node* prev_mem = memory(adr_type);
4854       Node* null_ctrl = top();
4855       Node* not_null_obj = null_check_oop(obj, &null_ctrl);
4856 
4857       region->init_req(_null_path, null_ctrl);
4858       phi   ->init_req(_null_path, zerocon(T_OBJECT));
4859       memphi->init_req(_null_path, prev_mem);
4860 
4861       Node* n = shenandoah_write_barrier_helper(*this, not_null_obj, adr_type);
4862 
4863       region->init_req(_not_null_path, control());
4864       phi   ->init_req(_not_null_path, n);
4865       memphi->init_req(_not_null_path, memory(adr_type));
4866 
4867       set_control(_gvn.transform(region));
4868       record_for_igvn(region);
4869       set_memory(_gvn.transform(memphi), adr_type);
4870 
4871       Node* res_val = _gvn.transform(phi);
4872       // replace_in_map(obj, res_val);
4873       return res_val;
4874     } else {
4875       // We know it is not null. Simple barrier is sufficient.
4876       Node* n = shenandoah_write_barrier_helper(*this, obj, adr_type);
4877       // replace_in_map(obj, n);
4878       record_for_igvn(n);
4879       return n;
4880     }
4881 
4882   } else {
4883     return obj;
4884   }
4885 }
4886 
4887 /**
4888  * In Shenandoah, we need barriers on acmp (and similar instructions that compare two
4889  * oops) to avoid false negatives. If it compares a from-space and a to-space
4890  * copy of an object, a regular acmp would return false, even though both are
4891  * the same. The acmp barrier compares the two objects, and when they are
4892  * *not equal* it does a read-barrier on both, and compares them again. When it
4893  * failed because of different copies of the object, we know that the object
4894  * must already have been evacuated (and therefore doesn't require a write-barrier).
4895  */
4896 Node* GraphKit::cmp_objects(Node* a, Node* b) {
4897   // TODO: Refactor into proper GC interface.
4898   if (UseShenandoahGC && ShenandoahAcmpBarrier) {
4899     const Type* a_type = a->bottom_type();
4900     const Type* b_type = b->bottom_type();
4901     if (a_type->higher_equal(TypePtr::NULL_PTR) || b_type->higher_equal(TypePtr::NULL_PTR)) {
4902       // We know one arg is gonna be null. No need for barriers.
4903       return _gvn.transform(new CmpPNode(b, a));
4904     }
4905 
4906     const TypePtr* a_adr_type = ShenandoahBarrierNode::brooks_pointer_type(a_type);
4907     const TypePtr* b_adr_type = ShenandoahBarrierNode::brooks_pointer_type(b_type);
4908     if ((! ShenandoahBarrierNode::needs_barrier(&_gvn, NULL, a, memory(a_adr_type), false)) &&
4909         (! ShenandoahBarrierNode::needs_barrier(&_gvn, NULL, b, memory(b_adr_type), false))) {
4910       // We know both args are in to-space already. No acmp barrier needed.
4911       return _gvn.transform(new CmpPNode(b, a));
4912     }
4913 
4914     C->set_has_split_ifs(true);
4915 
4916     if (ShenandoahVerifyOptoBarriers) {
4917       a = shenandoah_write_barrier(a);
4918       b = shenandoah_write_barrier(b);
4919       return _gvn.transform(new CmpPNode(b, a));
4920     }
4921 
4922     enum { _equal = 1, _not_equal, PATH_LIMIT };
4923     RegionNode* region = new RegionNode(PATH_LIMIT);
4924     PhiNode* phiA = PhiNode::make(region, a, _gvn.type(a)->is_oopptr()->cast_to_nonconst());
4925     PhiNode* phiB = PhiNode::make(region, b, _gvn.type(b)->is_oopptr()->cast_to_nonconst());
4926 
4927     Node* cmp = _gvn.transform(new CmpPNode(b, a));
4928     Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
4929 
4930     // TODO: Use profiling data.
4931     IfNode* iff = create_and_map_if(control(), tst, PROB_FAIR, COUNT_UNKNOWN);
4932     Node* iftrue = _gvn.transform(new IfTrueNode(iff));
4933     Node* iffalse = _gvn.transform(new IfFalseNode(iff));
4934 
4935     // Equal path: Use original values.
4936     region->init_req(_equal, iftrue);
4937     phiA->init_req(_equal, a);
4938     phiB->init_req(_equal, b);
4939 
4940     uint alias_a = C->get_alias_index(a_adr_type);
4941     uint alias_b = C->get_alias_index(b_adr_type);
4942     PhiNode* mem_phi = NULL;
4943     if (alias_a == alias_b) {
4944       mem_phi = PhiNode::make(region, memory(alias_a), Type::MEMORY, C->get_adr_type(alias_a));
4945     } else {
4946       mem_phi = PhiNode::make(region, map()->memory(), Type::MEMORY, TypePtr::BOTTOM);
4947     }
4948 
4949     // Unequal path: retry after read barriers.
4950     set_control(iffalse);
4951     if (!iffalse->is_top()) {
4952       Node* mb = NULL;
4953       if (alias_a == alias_b) {
4954         Node* mem = reset_memory();
4955         mb = MemBarNode::make(C, Op_MemBarAcquire, alias_a);
4956         mb->init_req(TypeFunc::Control, control());
4957         mb->init_req(TypeFunc::Memory, mem);
4958         Node* membar = _gvn.transform(mb);
4959         set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
4960         Node* newmem = _gvn.transform(new ProjNode(membar, TypeFunc::Memory));
4961         set_all_memory(mem);
4962         set_memory(newmem, alias_a);
4963       } else {
4964         mb = insert_mem_bar(Op_MemBarAcquire);
4965       }
4966     } else {
4967       a = top();
4968       b = top();
4969     }
4970 
4971     a = shenandoah_read_barrier_impl(a, true, true, false);
4972     b = shenandoah_read_barrier_impl(b, true, true, false);
4973 
4974     region->init_req(_not_equal, control());
4975     phiA->init_req(_not_equal, a);
4976     phiB->init_req(_not_equal, b);
4977     if (alias_a == alias_b) {
4978       mem_phi->init_req(_not_equal, memory(alias_a));
4979       set_memory(mem_phi, alias_a);
4980     } else {
4981       mem_phi->init_req(_not_equal, reset_memory());
4982       set_all_memory(mem_phi);
4983     }
4984     record_for_igvn(mem_phi);
4985     _gvn.set_type(mem_phi, Type::MEMORY);
4986     set_control(_gvn.transform(region));
4987     record_for_igvn(region);
4988 
4989     a = _gvn.transform(phiA);
4990     b = _gvn.transform(phiB);
4991     return _gvn.transform(new CmpPNode(b, a));
4992   } else {
4993     return _gvn.transform(new CmpPNode(b, a));
4994   }
4995 }