1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_x86.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "logging/log.hpp"
  30 #include "oops/arrayOop.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/method.hpp"
  34 #include "prims/jvmtiExport.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/safepointMechanism.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/thread.inline.hpp"
  42 
  43 // Implementation of InterpreterMacroAssembler
  44 
  45 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  46   assert(entry, "Entry must have been generated by now");
  47   jump(RuntimeAddress(entry));
  48 }
  49 
  50 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
  51   Label update, next, none;
  52 
  53   verify_oop(obj);
  54 
  55   testptr(obj, obj);
  56   jccb(Assembler::notZero, update);
  57   orptr(mdo_addr, TypeEntries::null_seen);
  58   jmpb(next);
  59 
  60   bind(update);
  61   load_klass(obj, obj);
  62 
  63   xorptr(obj, mdo_addr);
  64   testptr(obj, TypeEntries::type_klass_mask);
  65   jccb(Assembler::zero, next); // klass seen before, nothing to
  66                                // do. The unknown bit may have been
  67                                // set already but no need to check.
  68 
  69   testptr(obj, TypeEntries::type_unknown);
  70   jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  71 
  72   cmpptr(mdo_addr, 0);
  73   jccb(Assembler::equal, none);
  74   cmpptr(mdo_addr, TypeEntries::null_seen);
  75   jccb(Assembler::equal, none);
  76   // There is a chance that the checks above (re-reading profiling
  77   // data from memory) fail if another thread has just set the
  78   // profiling to this obj's klass
  79   xorptr(obj, mdo_addr);
  80   testptr(obj, TypeEntries::type_klass_mask);
  81   jccb(Assembler::zero, next);
  82 
  83   // different than before. Cannot keep accurate profile.
  84   orptr(mdo_addr, TypeEntries::type_unknown);
  85   jmpb(next);
  86 
  87   bind(none);
  88   // first time here. Set profile type.
  89   movptr(mdo_addr, obj);
  90 
  91   bind(next);
  92 }
  93 
  94 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
  95   if (!ProfileInterpreter) {
  96     return;
  97   }
  98 
  99   if (MethodData::profile_arguments() || MethodData::profile_return()) {
 100     Label profile_continue;
 101 
 102     test_method_data_pointer(mdp, profile_continue);
 103 
 104     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
 105 
 106     cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
 107     jcc(Assembler::notEqual, profile_continue);
 108 
 109     if (MethodData::profile_arguments()) {
 110       Label done;
 111       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
 112       addptr(mdp, off_to_args);
 113 
 114       for (int i = 0; i < TypeProfileArgsLimit; i++) {
 115         if (i > 0 || MethodData::profile_return()) {
 116           // If return value type is profiled we may have no argument to profile
 117           movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 118           subl(tmp, i*TypeStackSlotEntries::per_arg_count());
 119           cmpl(tmp, TypeStackSlotEntries::per_arg_count());
 120           jcc(Assembler::less, done);
 121         }
 122         movptr(tmp, Address(callee, Method::const_offset()));
 123         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
 124         // stack offset o (zero based) from the start of the argument
 125         // list, for n arguments translates into offset n - o - 1 from
 126         // the end of the argument list
 127         subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
 128         subl(tmp, 1);
 129         Address arg_addr = argument_address(tmp);
 130         movptr(tmp, arg_addr);
 131 
 132         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
 133         profile_obj_type(tmp, mdo_arg_addr);
 134 
 135         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
 136         addptr(mdp, to_add);
 137         off_to_args += to_add;
 138       }
 139 
 140       if (MethodData::profile_return()) {
 141         movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 142         subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
 143       }
 144 
 145       bind(done);
 146 
 147       if (MethodData::profile_return()) {
 148         // We're right after the type profile for the last
 149         // argument. tmp is the number of cells left in the
 150         // CallTypeData/VirtualCallTypeData to reach its end. Non null
 151         // if there's a return to profile.
 152         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
 153         shll(tmp, exact_log2(DataLayout::cell_size));
 154         addptr(mdp, tmp);
 155       }
 156       movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
 157     } else {
 158       assert(MethodData::profile_return(), "either profile call args or call ret");
 159       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
 160     }
 161 
 162     // mdp points right after the end of the
 163     // CallTypeData/VirtualCallTypeData, right after the cells for the
 164     // return value type if there's one
 165 
 166     bind(profile_continue);
 167   }
 168 }
 169 
 170 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
 171   assert_different_registers(mdp, ret, tmp, _bcp_register);
 172   if (ProfileInterpreter && MethodData::profile_return()) {
 173     Label profile_continue, done;
 174 
 175     test_method_data_pointer(mdp, profile_continue);
 176 
 177     if (MethodData::profile_return_jsr292_only()) {
 178       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
 179 
 180       // If we don't profile all invoke bytecodes we must make sure
 181       // it's a bytecode we indeed profile. We can't go back to the
 182       // begining of the ProfileData we intend to update to check its
 183       // type because we're right after it and we don't known its
 184       // length
 185       Label do_profile;
 186       cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
 187       jcc(Assembler::equal, do_profile);
 188       cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
 189       jcc(Assembler::equal, do_profile);
 190       get_method(tmp);
 191       cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), vmIntrinsics::_compiledLambdaForm);
 192       jcc(Assembler::notEqual, profile_continue);
 193 
 194       bind(do_profile);
 195     }
 196 
 197     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
 198     mov(tmp, ret);
 199     profile_obj_type(tmp, mdo_ret_addr);
 200 
 201     bind(profile_continue);
 202   }
 203 }
 204 
 205 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
 206   if (ProfileInterpreter && MethodData::profile_parameters()) {
 207     Label profile_continue, done;
 208 
 209     test_method_data_pointer(mdp, profile_continue);
 210 
 211     // Load the offset of the area within the MDO used for
 212     // parameters. If it's negative we're not profiling any parameters
 213     movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
 214     testl(tmp1, tmp1);
 215     jcc(Assembler::negative, profile_continue);
 216 
 217     // Compute a pointer to the area for parameters from the offset
 218     // and move the pointer to the slot for the last
 219     // parameters. Collect profiling from last parameter down.
 220     // mdo start + parameters offset + array length - 1
 221     addptr(mdp, tmp1);
 222     movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
 223     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 224 
 225     Label loop;
 226     bind(loop);
 227 
 228     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
 229     int type_base = in_bytes(ParametersTypeData::type_offset(0));
 230     Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
 231     Address arg_off(mdp, tmp1, per_arg_scale, off_base);
 232     Address arg_type(mdp, tmp1, per_arg_scale, type_base);
 233 
 234     // load offset on the stack from the slot for this parameter
 235     movptr(tmp2, arg_off);
 236     negptr(tmp2);
 237     // read the parameter from the local area
 238     movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
 239 
 240     // profile the parameter
 241     profile_obj_type(tmp2, arg_type);
 242 
 243     // go to next parameter
 244     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 245     jcc(Assembler::positive, loop);
 246 
 247     bind(profile_continue);
 248   }
 249 }
 250 
 251 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
 252                                                   int number_of_arguments) {
 253   // interpreter specific
 254   //
 255   // Note: No need to save/restore bcp & locals registers
 256   //       since these are callee saved registers and no blocking/
 257   //       GC can happen in leaf calls.
 258   // Further Note: DO NOT save/restore bcp/locals. If a caller has
 259   // already saved them so that it can use rsi/rdi as temporaries
 260   // then a save/restore here will DESTROY the copy the caller
 261   // saved! There used to be a save_bcp() that only happened in
 262   // the ASSERT path (no restore_bcp). Which caused bizarre failures
 263   // when jvm built with ASSERTs.
 264 #ifdef ASSERT
 265   {
 266     Label L;
 267     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 268     jcc(Assembler::equal, L);
 269     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 270          " last_sp != NULL");
 271     bind(L);
 272   }
 273 #endif
 274   // super call
 275   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 276   // interpreter specific
 277   // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
 278   // but since they may not have been saved (and we don't want to
 279   // save them here (see note above) the assert is invalid.
 280 }
 281 
 282 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
 283                                              Register java_thread,
 284                                              Register last_java_sp,
 285                                              address  entry_point,
 286                                              int      number_of_arguments,
 287                                              bool     check_exceptions) {
 288   // interpreter specific
 289   //
 290   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 291   //       really make a difference for these runtime calls, since they are
 292   //       slow anyway. Btw., bcp must be saved/restored since it may change
 293   //       due to GC.
 294   NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
 295   save_bcp();
 296 #ifdef ASSERT
 297   {
 298     Label L;
 299     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 300     jcc(Assembler::equal, L);
 301     stop("InterpreterMacroAssembler::call_VM_base:"
 302          " last_sp != NULL");
 303     bind(L);
 304   }
 305 #endif /* ASSERT */
 306   // super call
 307   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
 308                                entry_point, number_of_arguments,
 309                                check_exceptions);
 310   // interpreter specific
 311   restore_bcp();
 312   restore_locals();
 313 }
 314 
 315 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 316   if (JvmtiExport::can_pop_frame()) {
 317     Label L;
 318     // Initiate popframe handling only if it is not already being
 319     // processed.  If the flag has the popframe_processing bit set, it
 320     // means that this code is called *during* popframe handling - we
 321     // don't want to reenter.
 322     // This method is only called just after the call into the vm in
 323     // call_VM_base, so the arg registers are available.
 324     Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
 325                         LP64_ONLY(c_rarg0);
 326     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
 327     testl(pop_cond, JavaThread::popframe_pending_bit);
 328     jcc(Assembler::zero, L);
 329     testl(pop_cond, JavaThread::popframe_processing_bit);
 330     jcc(Assembler::notZero, L);
 331     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 332     // address of the same-named entrypoint in the generated interpreter code.
 333     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 334     jmp(rax);
 335     bind(L);
 336     NOT_LP64(get_thread(java_thread);)
 337   }
 338 }
 339 
 340 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 341   Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 342   NOT_LP64(get_thread(thread);)
 343   movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
 344   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 345   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 346   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 347 #ifdef _LP64
 348   switch (state) {
 349     case atos: movptr(rax, oop_addr);
 350                movptr(oop_addr, (int32_t)NULL_WORD);
 351                verify_oop(rax, state);              break;
 352     case ltos: movptr(rax, val_addr);                 break;
 353     case btos:                                   // fall through
 354     case ztos:                                   // fall through
 355     case ctos:                                   // fall through
 356     case stos:                                   // fall through
 357     case itos: movl(rax, val_addr);                 break;
 358     case ftos: load_float(val_addr);                break;
 359     case dtos: load_double(val_addr);               break;
 360     case vtos: /* nothing to do */                  break;
 361     default  : ShouldNotReachHere();
 362   }
 363   // Clean up tos value in the thread object
 364   movl(tos_addr,  (int) ilgl);
 365   movl(val_addr,  (int32_t) NULL_WORD);
 366 #else
 367   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
 368                              + in_ByteSize(wordSize));
 369   switch (state) {
 370     case atos: movptr(rax, oop_addr);
 371                movptr(oop_addr, NULL_WORD);
 372                verify_oop(rax, state);                break;
 373     case ltos:
 374                movl(rdx, val_addr1);               // fall through
 375     case btos:                                     // fall through
 376     case ztos:                                     // fall through
 377     case ctos:                                     // fall through
 378     case stos:                                     // fall through
 379     case itos: movl(rax, val_addr);                   break;
 380     case ftos: load_float(val_addr);                  break;
 381     case dtos: load_double(val_addr);                 break;
 382     case vtos: /* nothing to do */                    break;
 383     default  : ShouldNotReachHere();
 384   }
 385 #endif // _LP64
 386   // Clean up tos value in the thread object
 387   movl(tos_addr,  (int32_t) ilgl);
 388   movptr(val_addr,  NULL_WORD);
 389   NOT_LP64(movptr(val_addr1, NULL_WORD);)
 390 }
 391 
 392 
 393 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 394   if (JvmtiExport::can_force_early_return()) {
 395     Label L;
 396     Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
 397     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
 398 
 399     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 400     testptr(tmp, tmp);
 401     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 402 
 403     // Initiate earlyret handling only if it is not already being processed.
 404     // If the flag has the earlyret_processing bit set, it means that this code
 405     // is called *during* earlyret handling - we don't want to reenter.
 406     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 407     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 408     jcc(Assembler::notEqual, L);
 409 
 410     // Call Interpreter::remove_activation_early_entry() to get the address of the
 411     // same-named entrypoint in the generated interpreter code.
 412     NOT_LP64(get_thread(java_thread);)
 413     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 414 #ifdef _LP64
 415     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 416     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
 417 #else
 418     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 419     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
 420 #endif // _LP64
 421     jmp(rax);
 422     bind(L);
 423     NOT_LP64(get_thread(java_thread);)
 424   }
 425 }
 426 
 427 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 428   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 429   load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
 430   bswapl(reg);
 431   shrl(reg, 16);
 432 }
 433 
 434 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 435                                                        int bcp_offset,
 436                                                        size_t index_size) {
 437   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 438   if (index_size == sizeof(u2)) {
 439     load_unsigned_short(index, Address(_bcp_register, bcp_offset));
 440   } else if (index_size == sizeof(u4)) {
 441     movl(index, Address(_bcp_register, bcp_offset));
 442     // Check if the secondary index definition is still ~x, otherwise
 443     // we have to change the following assembler code to calculate the
 444     // plain index.
 445     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 446     notl(index);  // convert to plain index
 447   } else if (index_size == sizeof(u1)) {
 448     load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
 449   } else {
 450     ShouldNotReachHere();
 451   }
 452 }
 453 
 454 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 455                                                            Register index,
 456                                                            int bcp_offset,
 457                                                            size_t index_size) {
 458   assert_different_registers(cache, index);
 459   get_cache_index_at_bcp(index, bcp_offset, index_size);
 460   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 461   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 462   // convert from field index to ConstantPoolCacheEntry index
 463   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
 464   shll(index, 2);
 465 }
 466 
 467 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 468                                                                         Register index,
 469                                                                         Register bytecode,
 470                                                                         int byte_no,
 471                                                                         int bcp_offset,
 472                                                                         size_t index_size) {
 473   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 474   // We use a 32-bit load here since the layout of 64-bit words on
 475   // little-endian machines allow us that.
 476   movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 477   const int shift_count = (1 + byte_no) * BitsPerByte;
 478   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 479          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 480          "correct shift count");
 481   shrl(bytecode, shift_count);
 482   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 483   andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
 484 }
 485 
 486 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 487                                                                Register tmp,
 488                                                                int bcp_offset,
 489                                                                size_t index_size) {
 490   assert(cache != tmp, "must use different register");
 491   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 492   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 493   // convert from field index to ConstantPoolCacheEntry index
 494   // and from word offset to byte offset
 495   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 496   shll(tmp, 2 + LogBytesPerWord);
 497   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 498   // skip past the header
 499   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
 500   addptr(cache, tmp);  // construct pointer to cache entry
 501 }
 502 
 503 // Load object from cpool->resolved_references(index)
 504 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 505                                            Register result, Register index) {
 506   assert_different_registers(result, index);
 507   // convert from field index to resolved_references() index and from
 508   // word index to byte offset. Since this is a java object, it can be compressed
 509   Register tmp = index;  // reuse
 510   shll(tmp, LogBytesPerHeapOop);
 511 
 512   get_constant_pool(result);
 513   // load pointer for resolved_references[] objArray
 514   movptr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
 515   movptr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
 516   resolve_oop_handle(result);
 517   // Add in the index
 518   addptr(result, tmp);
 519   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 520   // The resulting oop is null if the reference is not yet resolved.
 521   // It is Universe::the_null_sentinel() if the reference resolved to NULL via condy.
 522 }
 523 
 524 // load cpool->resolved_klass_at(index)
 525 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register cpool,
 526                                            Register index, Register klass) {
 527   movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
 528   Register resolved_klasses = cpool;
 529   movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes()));
 530   movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
 531 }
 532 
 533 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 534 // subtype of super_klass.
 535 //
 536 // Args:
 537 //      rax: superklass
 538 //      Rsub_klass: subklass
 539 //
 540 // Kills:
 541 //      rcx, rdi
 542 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 543                                                   Label& ok_is_subtype) {
 544   assert(Rsub_klass != rax, "rax holds superklass");
 545   LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
 546   LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
 547   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 548   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 549 
 550   // Profile the not-null value's klass.
 551   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 552 
 553   // Do the check.
 554   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 555 
 556   // Profile the failure of the check.
 557   profile_typecheck_failed(rcx); // blows rcx
 558 }
 559 
 560 
 561 #ifndef _LP64
 562 void InterpreterMacroAssembler::f2ieee() {
 563   if (IEEEPrecision) {
 564     fstp_s(Address(rsp, 0));
 565     fld_s(Address(rsp, 0));
 566   }
 567 }
 568 
 569 
 570 void InterpreterMacroAssembler::d2ieee() {
 571   if (IEEEPrecision) {
 572     fstp_d(Address(rsp, 0));
 573     fld_d(Address(rsp, 0));
 574   }
 575 }
 576 #endif // _LP64
 577 
 578 // Java Expression Stack
 579 
 580 void InterpreterMacroAssembler::pop_ptr(Register r) {
 581   pop(r);
 582 }
 583 
 584 void InterpreterMacroAssembler::push_ptr(Register r) {
 585   push(r);
 586 }
 587 
 588 void InterpreterMacroAssembler::push_i(Register r) {
 589   push(r);
 590 }
 591 
 592 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 593   subptr(rsp, wordSize);
 594   movflt(Address(rsp, 0), r);
 595 }
 596 
 597 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 598   movflt(r, Address(rsp, 0));
 599   addptr(rsp, wordSize);
 600 }
 601 
 602 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 603   subptr(rsp, 2 * wordSize);
 604   movdbl(Address(rsp, 0), r);
 605 }
 606 
 607 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 608   movdbl(r, Address(rsp, 0));
 609   addptr(rsp, 2 * Interpreter::stackElementSize);
 610 }
 611 
 612 #ifdef _LP64
 613 void InterpreterMacroAssembler::pop_i(Register r) {
 614   // XXX can't use pop currently, upper half non clean
 615   movl(r, Address(rsp, 0));
 616   addptr(rsp, wordSize);
 617 }
 618 
 619 void InterpreterMacroAssembler::pop_l(Register r) {
 620   movq(r, Address(rsp, 0));
 621   addptr(rsp, 2 * Interpreter::stackElementSize);
 622 }
 623 
 624 void InterpreterMacroAssembler::push_l(Register r) {
 625   subptr(rsp, 2 * wordSize);
 626   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r         );
 627   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
 628 }
 629 
 630 void InterpreterMacroAssembler::pop(TosState state) {
 631   switch (state) {
 632   case atos: pop_ptr();                 break;
 633   case btos:
 634   case ztos:
 635   case ctos:
 636   case stos:
 637   case itos: pop_i();                   break;
 638   case ltos: pop_l();                   break;
 639   case ftos: pop_f(xmm0);               break;
 640   case dtos: pop_d(xmm0);               break;
 641   case vtos: /* nothing to do */        break;
 642   default:   ShouldNotReachHere();
 643   }
 644   verify_oop(rax, state);
 645 }
 646 
 647 void InterpreterMacroAssembler::push(TosState state) {
 648   verify_oop(rax, state);
 649   switch (state) {
 650   case atos: push_ptr();                break;
 651   case btos:
 652   case ztos:
 653   case ctos:
 654   case stos:
 655   case itos: push_i();                  break;
 656   case ltos: push_l();                  break;
 657   case ftos: push_f(xmm0);              break;
 658   case dtos: push_d(xmm0);              break;
 659   case vtos: /* nothing to do */        break;
 660   default  : ShouldNotReachHere();
 661   }
 662 }
 663 #else
 664 void InterpreterMacroAssembler::pop_i(Register r) {
 665   pop(r);
 666 }
 667 
 668 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
 669   pop(lo);
 670   pop(hi);
 671 }
 672 
 673 void InterpreterMacroAssembler::pop_f() {
 674   fld_s(Address(rsp, 0));
 675   addptr(rsp, 1 * wordSize);
 676 }
 677 
 678 void InterpreterMacroAssembler::pop_d() {
 679   fld_d(Address(rsp, 0));
 680   addptr(rsp, 2 * wordSize);
 681 }
 682 
 683 
 684 void InterpreterMacroAssembler::pop(TosState state) {
 685   switch (state) {
 686     case atos: pop_ptr(rax);                                 break;
 687     case btos:                                               // fall through
 688     case ztos:                                               // fall through
 689     case ctos:                                               // fall through
 690     case stos:                                               // fall through
 691     case itos: pop_i(rax);                                   break;
 692     case ltos: pop_l(rax, rdx);                              break;
 693     case ftos:
 694       if (UseSSE >= 1) {
 695         pop_f(xmm0);
 696       } else {
 697         pop_f();
 698       }
 699       break;
 700     case dtos:
 701       if (UseSSE >= 2) {
 702         pop_d(xmm0);
 703       } else {
 704         pop_d();
 705       }
 706       break;
 707     case vtos: /* nothing to do */                           break;
 708     default  : ShouldNotReachHere();
 709   }
 710   verify_oop(rax, state);
 711 }
 712 
 713 
 714 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
 715   push(hi);
 716   push(lo);
 717 }
 718 
 719 void InterpreterMacroAssembler::push_f() {
 720   // Do not schedule for no AGI! Never write beyond rsp!
 721   subptr(rsp, 1 * wordSize);
 722   fstp_s(Address(rsp, 0));
 723 }
 724 
 725 void InterpreterMacroAssembler::push_d() {
 726   // Do not schedule for no AGI! Never write beyond rsp!
 727   subptr(rsp, 2 * wordSize);
 728   fstp_d(Address(rsp, 0));
 729 }
 730 
 731 
 732 void InterpreterMacroAssembler::push(TosState state) {
 733   verify_oop(rax, state);
 734   switch (state) {
 735     case atos: push_ptr(rax); break;
 736     case btos:                                               // fall through
 737     case ztos:                                               // fall through
 738     case ctos:                                               // fall through
 739     case stos:                                               // fall through
 740     case itos: push_i(rax);                                    break;
 741     case ltos: push_l(rax, rdx);                               break;
 742     case ftos:
 743       if (UseSSE >= 1) {
 744         push_f(xmm0);
 745       } else {
 746         push_f();
 747       }
 748       break;
 749     case dtos:
 750       if (UseSSE >= 2) {
 751         push_d(xmm0);
 752       } else {
 753         push_d();
 754       }
 755       break;
 756     case vtos: /* nothing to do */                             break;
 757     default  : ShouldNotReachHere();
 758   }
 759 }
 760 #endif // _LP64
 761 
 762 
 763 // Helpers for swap and dup
 764 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 765   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 766 }
 767 
 768 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 769   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 770 }
 771 
 772 
 773 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 774   // set sender sp
 775   lea(_bcp_register, Address(rsp, wordSize));
 776   // record last_sp
 777   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register);
 778 }
 779 
 780 
 781 // Jump to from_interpreted entry of a call unless single stepping is possible
 782 // in this thread in which case we must call the i2i entry
 783 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 784   prepare_to_jump_from_interpreted();
 785 
 786   if (JvmtiExport::can_post_interpreter_events()) {
 787     Label run_compiled_code;
 788     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 789     // compiled code in threads for which the event is enabled.  Check here for
 790     // interp_only_mode if these events CAN be enabled.
 791     // interp_only is an int, on little endian it is sufficient to test the byte only
 792     // Is a cmpl faster?
 793     LP64_ONLY(temp = r15_thread;)
 794     NOT_LP64(get_thread(temp);)
 795     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
 796     jccb(Assembler::zero, run_compiled_code);
 797     jmp(Address(method, Method::interpreter_entry_offset()));
 798     bind(run_compiled_code);
 799   }
 800 
 801   jmp(Address(method, Method::from_interpreted_offset()));
 802 }
 803 
 804 // The following two routines provide a hook so that an implementation
 805 // can schedule the dispatch in two parts.  x86 does not do this.
 806 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 807   // Nothing x86 specific to be done here
 808 }
 809 
 810 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 811   dispatch_next(state, step);
 812 }
 813 
 814 void InterpreterMacroAssembler::dispatch_base(TosState state,
 815                                               address* table,
 816                                               bool verifyoop,
 817                                               bool generate_poll) {
 818   verify_FPU(1, state);
 819   if (VerifyActivationFrameSize) {
 820     Label L;
 821     mov(rcx, rbp);
 822     subptr(rcx, rsp);
 823     int32_t min_frame_size =
 824       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 825       wordSize;
 826     cmpptr(rcx, (int32_t)min_frame_size);
 827     jcc(Assembler::greaterEqual, L);
 828     stop("broken stack frame");
 829     bind(L);
 830   }
 831   if (verifyoop) {
 832     verify_oop(rax, state);
 833   }
 834 
 835   address* const safepoint_table = Interpreter::safept_table(state);
 836 #ifdef _LP64
 837   Label no_safepoint, dispatch;
 838   if (SafepointMechanism::uses_thread_local_poll() && table != safepoint_table && generate_poll) {
 839     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 840     testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
 841 
 842     jccb(Assembler::zero, no_safepoint);
 843     lea(rscratch1, ExternalAddress((address)safepoint_table));
 844     jmpb(dispatch);
 845   }
 846 
 847   bind(no_safepoint);
 848   lea(rscratch1, ExternalAddress((address)table));
 849   bind(dispatch);
 850   jmp(Address(rscratch1, rbx, Address::times_8));
 851 
 852 #else
 853   Address index(noreg, rbx, Address::times_ptr);
 854   if (SafepointMechanism::uses_thread_local_poll() && table != safepoint_table && generate_poll) {
 855     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 856     Label no_safepoint;
 857     const Register thread = rcx;
 858     get_thread(thread);
 859     testb(Address(thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
 860 
 861     jccb(Assembler::zero, no_safepoint);
 862     ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index);
 863     jump(dispatch_addr);
 864     bind(no_safepoint);
 865   }
 866 
 867   {
 868     ArrayAddress dispatch_addr(ExternalAddress((address)table), index);
 869     jump(dispatch_addr);
 870   }
 871 #endif // _LP64
 872 }
 873 
 874 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 875   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 876 }
 877 
 878 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 879   dispatch_base(state, Interpreter::normal_table(state));
 880 }
 881 
 882 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 883   dispatch_base(state, Interpreter::normal_table(state), false);
 884 }
 885 
 886 
 887 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 888   // load next bytecode (load before advancing _bcp_register to prevent AGI)
 889   load_unsigned_byte(rbx, Address(_bcp_register, step));
 890   // advance _bcp_register
 891   increment(_bcp_register, step);
 892   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 893 }
 894 
 895 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 896   // load current bytecode
 897   load_unsigned_byte(rbx, Address(_bcp_register, 0));
 898   dispatch_base(state, table);
 899 }
 900 
 901 void InterpreterMacroAssembler::narrow(Register result) {
 902 
 903   // Get method->_constMethod->_result_type
 904   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 905   movptr(rcx, Address(rcx, Method::const_offset()));
 906   load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
 907 
 908   Label done, notBool, notByte, notChar;
 909 
 910   // common case first
 911   cmpl(rcx, T_INT);
 912   jcc(Assembler::equal, done);
 913 
 914   // mask integer result to narrower return type.
 915   cmpl(rcx, T_BOOLEAN);
 916   jcc(Assembler::notEqual, notBool);
 917   andl(result, 0x1);
 918   jmp(done);
 919 
 920   bind(notBool);
 921   cmpl(rcx, T_BYTE);
 922   jcc(Assembler::notEqual, notByte);
 923   LP64_ONLY(movsbl(result, result);)
 924   NOT_LP64(shll(result, 24);)      // truncate upper 24 bits
 925   NOT_LP64(sarl(result, 24);)      // and sign-extend byte
 926   jmp(done);
 927 
 928   bind(notByte);
 929   cmpl(rcx, T_CHAR);
 930   jcc(Assembler::notEqual, notChar);
 931   LP64_ONLY(movzwl(result, result);)
 932   NOT_LP64(andl(result, 0xFFFF);)  // truncate upper 16 bits
 933   jmp(done);
 934 
 935   bind(notChar);
 936   // cmpl(rcx, T_SHORT);  // all that's left
 937   // jcc(Assembler::notEqual, done);
 938   LP64_ONLY(movswl(result, result);)
 939   NOT_LP64(shll(result, 16);)      // truncate upper 16 bits
 940   NOT_LP64(sarl(result, 16);)      // and sign-extend short
 941 
 942   // Nothing to do for T_INT
 943   bind(done);
 944 }
 945 
 946 // remove activation
 947 //
 948 // Unlock the receiver if this is a synchronized method.
 949 // Unlock any Java monitors from syncronized blocks.
 950 // Remove the activation from the stack.
 951 //
 952 // If there are locked Java monitors
 953 //    If throw_monitor_exception
 954 //       throws IllegalMonitorStateException
 955 //    Else if install_monitor_exception
 956 //       installs IllegalMonitorStateException
 957 //    Else
 958 //       no error processing
 959 void InterpreterMacroAssembler::remove_activation(
 960         TosState state,
 961         Register ret_addr,
 962         bool throw_monitor_exception,
 963         bool install_monitor_exception,
 964         bool notify_jvmdi) {
 965   // Note: Registers rdx xmm0 may be in use for the
 966   // result check if synchronized method
 967   Label unlocked, unlock, no_unlock;
 968 
 969   const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 970   const Register robj    = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
 971   const Register rmon    = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
 972                               // monitor pointers need different register
 973                               // because rdx may have the result in it
 974   NOT_LP64(get_thread(rcx);)
 975 
 976   // get the value of _do_not_unlock_if_synchronized into rdx
 977   const Address do_not_unlock_if_synchronized(rthread,
 978     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 979   movbool(rbx, do_not_unlock_if_synchronized);
 980   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 981 
 982  // get method access flags
 983   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 984   movl(rcx, Address(rcx, Method::access_flags_offset()));
 985   testl(rcx, JVM_ACC_SYNCHRONIZED);
 986   jcc(Assembler::zero, unlocked);
 987 
 988   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 989   // is set.
 990   testbool(rbx);
 991   jcc(Assembler::notZero, no_unlock);
 992 
 993   // unlock monitor
 994   push(state); // save result
 995 
 996   // BasicObjectLock will be first in list, since this is a
 997   // synchronized method. However, need to check that the object has
 998   // not been unlocked by an explicit monitorexit bytecode.
 999   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
1000                         wordSize - (int) sizeof(BasicObjectLock));
1001   // We use c_rarg1/rdx so that if we go slow path it will be the correct
1002   // register for unlock_object to pass to VM directly
1003   lea(robj, monitor); // address of first monitor
1004 
1005   movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes()));
1006   testptr(rax, rax);
1007   jcc(Assembler::notZero, unlock);
1008 
1009   pop(state);
1010   if (throw_monitor_exception) {
1011     // Entry already unlocked, need to throw exception
1012     NOT_LP64(empty_FPU_stack();)  // remove possible return value from FPU-stack, otherwise stack could overflow
1013     call_VM(noreg, CAST_FROM_FN_PTR(address,
1014                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1015     should_not_reach_here();
1016   } else {
1017     // Monitor already unlocked during a stack unroll. If requested,
1018     // install an illegal_monitor_state_exception.  Continue with
1019     // stack unrolling.
1020     if (install_monitor_exception) {
1021       NOT_LP64(empty_FPU_stack();)
1022       call_VM(noreg, CAST_FROM_FN_PTR(address,
1023                      InterpreterRuntime::new_illegal_monitor_state_exception));
1024     }
1025     jmp(unlocked);
1026   }
1027 
1028   bind(unlock);
1029   unlock_object(robj);
1030   pop(state);
1031 
1032   // Check that for block-structured locking (i.e., that all locked
1033   // objects has been unlocked)
1034   bind(unlocked);
1035 
1036   // rax, rdx: Might contain return value
1037 
1038   // Check that all monitors are unlocked
1039   {
1040     Label loop, exception, entry, restart;
1041     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1042     const Address monitor_block_top(
1043         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1044     const Address monitor_block_bot(
1045         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1046 
1047     bind(restart);
1048     // We use c_rarg1 so that if we go slow path it will be the correct
1049     // register for unlock_object to pass to VM directly
1050     movptr(rmon, monitor_block_top); // points to current entry, starting
1051                                   // with top-most entry
1052     lea(rbx, monitor_block_bot);  // points to word before bottom of
1053                                   // monitor block
1054     jmp(entry);
1055 
1056     // Entry already locked, need to throw exception
1057     bind(exception);
1058 
1059     if (throw_monitor_exception) {
1060       // Throw exception
1061       NOT_LP64(empty_FPU_stack();)
1062       MacroAssembler::call_VM(noreg,
1063                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
1064                                    throw_illegal_monitor_state_exception));
1065       should_not_reach_here();
1066     } else {
1067       // Stack unrolling. Unlock object and install illegal_monitor_exception.
1068       // Unlock does not block, so don't have to worry about the frame.
1069       // We don't have to preserve c_rarg1 since we are going to throw an exception.
1070 
1071       push(state);
1072       mov(robj, rmon);   // nop if robj and rmon are the same
1073       unlock_object(robj);
1074       pop(state);
1075 
1076       if (install_monitor_exception) {
1077         NOT_LP64(empty_FPU_stack();)
1078         call_VM(noreg, CAST_FROM_FN_PTR(address,
1079                                         InterpreterRuntime::
1080                                         new_illegal_monitor_state_exception));
1081       }
1082 
1083       jmp(restart);
1084     }
1085 
1086     bind(loop);
1087     // check if current entry is used
1088     cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
1089     jcc(Assembler::notEqual, exception);
1090 
1091     addptr(rmon, entry_size); // otherwise advance to next entry
1092     bind(entry);
1093     cmpptr(rmon, rbx); // check if bottom reached
1094     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1095   }
1096 
1097   bind(no_unlock);
1098 
1099   // jvmti support
1100   if (notify_jvmdi) {
1101     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
1102   } else {
1103     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1104   }
1105 
1106   // remove activation
1107   // get sender sp
1108   movptr(rbx,
1109          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1110   if (StackReservedPages > 0) {
1111     // testing if reserved zone needs to be re-enabled
1112     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1113     Label no_reserved_zone_enabling;
1114 
1115     NOT_LP64(get_thread(rthread);)
1116 
1117     cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_enabled);
1118     jcc(Assembler::equal, no_reserved_zone_enabling);
1119 
1120     cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1121     jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1122 
1123     call_VM_leaf(
1124       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1125     call_VM(noreg, CAST_FROM_FN_PTR(address,
1126                    InterpreterRuntime::throw_delayed_StackOverflowError));
1127     should_not_reach_here();
1128 
1129     bind(no_reserved_zone_enabling);
1130   }
1131   leave();                           // remove frame anchor
1132   pop(ret_addr);                     // get return address
1133   mov(rsp, rbx);                     // set sp to sender sp
1134 }
1135 
1136 void InterpreterMacroAssembler::get_method_counters(Register method,
1137                                                     Register mcs, Label& skip) {
1138   Label has_counters;
1139   movptr(mcs, Address(method, Method::method_counters_offset()));
1140   testptr(mcs, mcs);
1141   jcc(Assembler::notZero, has_counters);
1142   call_VM(noreg, CAST_FROM_FN_PTR(address,
1143           InterpreterRuntime::build_method_counters), method);
1144   movptr(mcs, Address(method,Method::method_counters_offset()));
1145   testptr(mcs, mcs);
1146   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1147   bind(has_counters);
1148 }
1149 
1150 
1151 // Lock object
1152 //
1153 // Args:
1154 //      rdx, c_rarg1: BasicObjectLock to be used for locking
1155 //
1156 // Kills:
1157 //      rax, rbx
1158 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1159   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1160          "The argument is only for looks. It must be c_rarg1");
1161 
1162   if (UseHeavyMonitors) {
1163     call_VM(noreg,
1164             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1165             lock_reg);
1166   } else {
1167     Label done;
1168 
1169     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1170     const Register tmp_reg = rbx; // Will be passed to biased_locking_enter to avoid a
1171                                   // problematic case where tmp_reg = no_reg.
1172     const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1173 
1174     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1175     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1176     const int mark_offset = lock_offset +
1177                             BasicLock::displaced_header_offset_in_bytes();
1178 
1179     Label slow_case;
1180 
1181     // Load object pointer into obj_reg
1182     movptr(obj_reg, Address(lock_reg, obj_offset));
1183 
1184     if (UseBiasedLocking) {
1185       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp_reg, false, done, &slow_case);
1186     }
1187 
1188     // Load immediate 1 into swap_reg %rax
1189     movl(swap_reg, (int32_t)1);
1190 
1191     // Load (object->mark() | 1) into swap_reg %rax
1192     orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1193 
1194     // Save (object->mark() | 1) into BasicLock's displaced header
1195     movptr(Address(lock_reg, mark_offset), swap_reg);
1196 
1197     assert(lock_offset == 0,
1198            "displaced header must be first word in BasicObjectLock");
1199 
1200     // obj_reg has been checked a few lines up.
1201     if (os::is_MP()) lock();
1202     cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1203     if (PrintBiasedLockingStatistics) {
1204       cond_inc32(Assembler::zero,
1205                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1206     }
1207     jcc(Assembler::zero, done);
1208 
1209     const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1210 
1211     // Test if the oopMark is an obvious stack pointer, i.e.,
1212     //  1) (mark & zero_bits) == 0, and
1213     //  2) rsp <= mark < mark + os::pagesize()
1214     //
1215     // These 3 tests can be done by evaluating the following
1216     // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1217     // assuming both stack pointer and pagesize have their
1218     // least significant bits clear.
1219     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1220     subptr(swap_reg, rsp);
1221     andptr(swap_reg, zero_bits - os::vm_page_size());
1222 
1223     // Save the test result, for recursive case, the result is zero
1224     movptr(Address(lock_reg, mark_offset), swap_reg);
1225 
1226     if (PrintBiasedLockingStatistics) {
1227       cond_inc32(Assembler::zero,
1228                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1229     }
1230     jcc(Assembler::zero, done);
1231 
1232     bind(slow_case);
1233 
1234     // Call the runtime routine for slow case
1235     call_VM(noreg,
1236             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1237             lock_reg);
1238 
1239     bind(done);
1240   }
1241 }
1242 
1243 
1244 // Unlocks an object. Used in monitorexit bytecode and
1245 // remove_activation.  Throws an IllegalMonitorException if object is
1246 // not locked by current thread.
1247 //
1248 // Args:
1249 //      rdx, c_rarg1: BasicObjectLock for lock
1250 //
1251 // Kills:
1252 //      rax
1253 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1254 //      rscratch1 (scratch reg)
1255 // rax, rbx, rcx, rdx
1256 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1257   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1258          "The argument is only for looks. It must be c_rarg1");
1259 
1260   if (UseHeavyMonitors) {
1261     call_VM(noreg,
1262             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1263             lock_reg);
1264   } else {
1265     Label done;
1266 
1267     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
1268     const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx);  // Will contain the old oopMark
1269     const Register obj_reg    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);  // Will contain the oop
1270 
1271     save_bcp(); // Save in case of exception
1272 
1273     // Convert from BasicObjectLock structure to object and BasicLock
1274     // structure Store the BasicLock address into %rax
1275     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
1276 
1277     // Load oop into obj_reg(%c_rarg3)
1278     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
1279 
1280     // Free entry
1281     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
1282 
1283     if (UseBiasedLocking) {
1284       biased_locking_exit(obj_reg, header_reg, done);
1285     }
1286 
1287     // Load the old header from BasicLock structure
1288     movptr(header_reg, Address(swap_reg,
1289                                BasicLock::displaced_header_offset_in_bytes()));
1290 
1291     // Test for recursion
1292     testptr(header_reg, header_reg);
1293 
1294     // zero for recursive case
1295     jcc(Assembler::zero, done);
1296 
1297     // Atomic swap back the old header
1298     if (os::is_MP()) lock();
1299     cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1300 
1301     // zero for simple unlock of a stack-lock case
1302     jcc(Assembler::zero, done);
1303 
1304     // Call the runtime routine for slow case.
1305     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
1306          obj_reg); // restore obj
1307     call_VM(noreg,
1308             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1309             lock_reg);
1310 
1311     bind(done);
1312 
1313     restore_bcp();
1314   }
1315 }
1316 
1317 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1318                                                          Label& zero_continue) {
1319   assert(ProfileInterpreter, "must be profiling interpreter");
1320   movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1321   testptr(mdp, mdp);
1322   jcc(Assembler::zero, zero_continue);
1323 }
1324 
1325 
1326 // Set the method data pointer for the current bcp.
1327 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1328   assert(ProfileInterpreter, "must be profiling interpreter");
1329   Label set_mdp;
1330   push(rax);
1331   push(rbx);
1332 
1333   get_method(rbx);
1334   // Test MDO to avoid the call if it is NULL.
1335   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1336   testptr(rax, rax);
1337   jcc(Assembler::zero, set_mdp);
1338   // rbx: method
1339   // _bcp_register: bcp
1340   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1341   // rax: mdi
1342   // mdo is guaranteed to be non-zero here, we checked for it before the call.
1343   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1344   addptr(rbx, in_bytes(MethodData::data_offset()));
1345   addptr(rax, rbx);
1346   bind(set_mdp);
1347   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1348   pop(rbx);
1349   pop(rax);
1350 }
1351 
1352 void InterpreterMacroAssembler::verify_method_data_pointer() {
1353   assert(ProfileInterpreter, "must be profiling interpreter");
1354 #ifdef ASSERT
1355   Label verify_continue;
1356   push(rax);
1357   push(rbx);
1358   Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1359   Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1360   push(arg3_reg);
1361   push(arg2_reg);
1362   test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1363   get_method(rbx);
1364 
1365   // If the mdp is valid, it will point to a DataLayout header which is
1366   // consistent with the bcp.  The converse is highly probable also.
1367   load_unsigned_short(arg2_reg,
1368                       Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1369   addptr(arg2_reg, Address(rbx, Method::const_offset()));
1370   lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1371   cmpptr(arg2_reg, _bcp_register);
1372   jcc(Assembler::equal, verify_continue);
1373   // rbx: method
1374   // _bcp_register: bcp
1375   // c_rarg3: mdp
1376   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1377                rbx, _bcp_register, arg3_reg);
1378   bind(verify_continue);
1379   pop(arg2_reg);
1380   pop(arg3_reg);
1381   pop(rbx);
1382   pop(rax);
1383 #endif // ASSERT
1384 }
1385 
1386 
1387 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1388                                                 int constant,
1389                                                 Register value) {
1390   assert(ProfileInterpreter, "must be profiling interpreter");
1391   Address data(mdp_in, constant);
1392   movptr(data, value);
1393 }
1394 
1395 
1396 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1397                                                       int constant,
1398                                                       bool decrement) {
1399   // Counter address
1400   Address data(mdp_in, constant);
1401 
1402   increment_mdp_data_at(data, decrement);
1403 }
1404 
1405 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1406                                                       bool decrement) {
1407   assert(ProfileInterpreter, "must be profiling interpreter");
1408   // %%% this does 64bit counters at best it is wasting space
1409   // at worst it is a rare bug when counters overflow
1410 
1411   if (decrement) {
1412     // Decrement the register.  Set condition codes.
1413     addptr(data, (int32_t) -DataLayout::counter_increment);
1414     // If the decrement causes the counter to overflow, stay negative
1415     Label L;
1416     jcc(Assembler::negative, L);
1417     addptr(data, (int32_t) DataLayout::counter_increment);
1418     bind(L);
1419   } else {
1420     assert(DataLayout::counter_increment == 1,
1421            "flow-free idiom only works with 1");
1422     // Increment the register.  Set carry flag.
1423     addptr(data, DataLayout::counter_increment);
1424     // If the increment causes the counter to overflow, pull back by 1.
1425     sbbptr(data, (int32_t)0);
1426   }
1427 }
1428 
1429 
1430 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1431                                                       Register reg,
1432                                                       int constant,
1433                                                       bool decrement) {
1434   Address data(mdp_in, reg, Address::times_1, constant);
1435 
1436   increment_mdp_data_at(data, decrement);
1437 }
1438 
1439 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1440                                                 int flag_byte_constant) {
1441   assert(ProfileInterpreter, "must be profiling interpreter");
1442   int header_offset = in_bytes(DataLayout::flags_offset());
1443   int header_bits = flag_byte_constant;
1444   // Set the flag
1445   orb(Address(mdp_in, header_offset), header_bits);
1446 }
1447 
1448 
1449 
1450 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1451                                                  int offset,
1452                                                  Register value,
1453                                                  Register test_value_out,
1454                                                  Label& not_equal_continue) {
1455   assert(ProfileInterpreter, "must be profiling interpreter");
1456   if (test_value_out == noreg) {
1457     cmpptr(value, Address(mdp_in, offset));
1458   } else {
1459     // Put the test value into a register, so caller can use it:
1460     movptr(test_value_out, Address(mdp_in, offset));
1461     cmpptr(test_value_out, value);
1462   }
1463   jcc(Assembler::notEqual, not_equal_continue);
1464 }
1465 
1466 
1467 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1468                                                      int offset_of_disp) {
1469   assert(ProfileInterpreter, "must be profiling interpreter");
1470   Address disp_address(mdp_in, offset_of_disp);
1471   addptr(mdp_in, disp_address);
1472   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1473 }
1474 
1475 
1476 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1477                                                      Register reg,
1478                                                      int offset_of_disp) {
1479   assert(ProfileInterpreter, "must be profiling interpreter");
1480   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1481   addptr(mdp_in, disp_address);
1482   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1483 }
1484 
1485 
1486 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1487                                                        int constant) {
1488   assert(ProfileInterpreter, "must be profiling interpreter");
1489   addptr(mdp_in, constant);
1490   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1491 }
1492 
1493 
1494 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1495   assert(ProfileInterpreter, "must be profiling interpreter");
1496   push(return_bci); // save/restore across call_VM
1497   call_VM(noreg,
1498           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1499           return_bci);
1500   pop(return_bci);
1501 }
1502 
1503 
1504 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1505                                                      Register bumped_count) {
1506   if (ProfileInterpreter) {
1507     Label profile_continue;
1508 
1509     // If no method data exists, go to profile_continue.
1510     // Otherwise, assign to mdp
1511     test_method_data_pointer(mdp, profile_continue);
1512 
1513     // We are taking a branch.  Increment the taken count.
1514     // We inline increment_mdp_data_at to return bumped_count in a register
1515     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1516     Address data(mdp, in_bytes(JumpData::taken_offset()));
1517     movptr(bumped_count, data);
1518     assert(DataLayout::counter_increment == 1,
1519             "flow-free idiom only works with 1");
1520     addptr(bumped_count, DataLayout::counter_increment);
1521     sbbptr(bumped_count, 0);
1522     movptr(data, bumped_count); // Store back out
1523 
1524     // The method data pointer needs to be updated to reflect the new target.
1525     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1526     bind(profile_continue);
1527   }
1528 }
1529 
1530 
1531 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1532   if (ProfileInterpreter) {
1533     Label profile_continue;
1534 
1535     // If no method data exists, go to profile_continue.
1536     test_method_data_pointer(mdp, profile_continue);
1537 
1538     // We are taking a branch.  Increment the not taken count.
1539     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1540 
1541     // The method data pointer needs to be updated to correspond to
1542     // the next bytecode
1543     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1544     bind(profile_continue);
1545   }
1546 }
1547 
1548 void InterpreterMacroAssembler::profile_call(Register mdp) {
1549   if (ProfileInterpreter) {
1550     Label profile_continue;
1551 
1552     // If no method data exists, go to profile_continue.
1553     test_method_data_pointer(mdp, profile_continue);
1554 
1555     // We are making a call.  Increment the count.
1556     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1557 
1558     // The method data pointer needs to be updated to reflect the new target.
1559     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1560     bind(profile_continue);
1561   }
1562 }
1563 
1564 
1565 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1566   if (ProfileInterpreter) {
1567     Label profile_continue;
1568 
1569     // If no method data exists, go to profile_continue.
1570     test_method_data_pointer(mdp, profile_continue);
1571 
1572     // We are making a call.  Increment the count.
1573     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1574 
1575     // The method data pointer needs to be updated to reflect the new target.
1576     update_mdp_by_constant(mdp,
1577                            in_bytes(VirtualCallData::
1578                                     virtual_call_data_size()));
1579     bind(profile_continue);
1580   }
1581 }
1582 
1583 
1584 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1585                                                      Register mdp,
1586                                                      Register reg2,
1587                                                      bool receiver_can_be_null) {
1588   if (ProfileInterpreter) {
1589     Label profile_continue;
1590 
1591     // If no method data exists, go to profile_continue.
1592     test_method_data_pointer(mdp, profile_continue);
1593 
1594     Label skip_receiver_profile;
1595     if (receiver_can_be_null) {
1596       Label not_null;
1597       testptr(receiver, receiver);
1598       jccb(Assembler::notZero, not_null);
1599       // We are making a call.  Increment the count for null receiver.
1600       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1601       jmp(skip_receiver_profile);
1602       bind(not_null);
1603     }
1604 
1605     // Record the receiver type.
1606     record_klass_in_profile(receiver, mdp, reg2, true);
1607     bind(skip_receiver_profile);
1608 
1609     // The method data pointer needs to be updated to reflect the new target.
1610 #if INCLUDE_JVMCI
1611     if (MethodProfileWidth == 0) {
1612       update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1613     }
1614 #else // INCLUDE_JVMCI
1615     update_mdp_by_constant(mdp,
1616                            in_bytes(VirtualCallData::
1617                                     virtual_call_data_size()));
1618 #endif // INCLUDE_JVMCI
1619     bind(profile_continue);
1620   }
1621 }
1622 
1623 #if INCLUDE_JVMCI
1624 void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1625   assert_different_registers(method, mdp, reg2);
1626   if (ProfileInterpreter && MethodProfileWidth > 0) {
1627     Label profile_continue;
1628 
1629     // If no method data exists, go to profile_continue.
1630     test_method_data_pointer(mdp, profile_continue);
1631 
1632     Label done;
1633     record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1634       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1635     bind(done);
1636 
1637     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1638     bind(profile_continue);
1639   }
1640 }
1641 #endif // INCLUDE_JVMCI
1642 
1643 // This routine creates a state machine for updating the multi-row
1644 // type profile at a virtual call site (or other type-sensitive bytecode).
1645 // The machine visits each row (of receiver/count) until the receiver type
1646 // is found, or until it runs out of rows.  At the same time, it remembers
1647 // the location of the first empty row.  (An empty row records null for its
1648 // receiver, and can be allocated for a newly-observed receiver type.)
1649 // Because there are two degrees of freedom in the state, a simple linear
1650 // search will not work; it must be a decision tree.  Hence this helper
1651 // function is recursive, to generate the required tree structured code.
1652 // It's the interpreter, so we are trading off code space for speed.
1653 // See below for example code.
1654 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1655                                         Register receiver, Register mdp,
1656                                         Register reg2, int start_row,
1657                                         Label& done, bool is_virtual_call) {
1658   if (TypeProfileWidth == 0) {
1659     if (is_virtual_call) {
1660       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1661     }
1662 #if INCLUDE_JVMCI
1663     else if (EnableJVMCI) {
1664       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1665     }
1666 #endif // INCLUDE_JVMCI
1667   } else {
1668     int non_profiled_offset = -1;
1669     if (is_virtual_call) {
1670       non_profiled_offset = in_bytes(CounterData::count_offset());
1671     }
1672 #if INCLUDE_JVMCI
1673     else if (EnableJVMCI) {
1674       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1675     }
1676 #endif // INCLUDE_JVMCI
1677 
1678     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1679         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1680   }
1681 }
1682 
1683 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1684                                         Register reg2, int start_row, Label& done, int total_rows,
1685                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1686                                         int non_profiled_offset) {
1687   int last_row = total_rows - 1;
1688   assert(start_row <= last_row, "must be work left to do");
1689   // Test this row for both the item and for null.
1690   // Take any of three different outcomes:
1691   //   1. found item => increment count and goto done
1692   //   2. found null => keep looking for case 1, maybe allocate this cell
1693   //   3. found something else => keep looking for cases 1 and 2
1694   // Case 3 is handled by a recursive call.
1695   for (int row = start_row; row <= last_row; row++) {
1696     Label next_test;
1697     bool test_for_null_also = (row == start_row);
1698 
1699     // See if the item is item[n].
1700     int item_offset = in_bytes(item_offset_fn(row));
1701     test_mdp_data_at(mdp, item_offset, item,
1702                      (test_for_null_also ? reg2 : noreg),
1703                      next_test);
1704     // (Reg2 now contains the item from the CallData.)
1705 
1706     // The item is item[n].  Increment count[n].
1707     int count_offset = in_bytes(item_count_offset_fn(row));
1708     increment_mdp_data_at(mdp, count_offset);
1709     jmp(done);
1710     bind(next_test);
1711 
1712     if (test_for_null_also) {
1713       Label found_null;
1714       // Failed the equality check on item[n]...  Test for null.
1715       testptr(reg2, reg2);
1716       if (start_row == last_row) {
1717         // The only thing left to do is handle the null case.
1718         if (non_profiled_offset >= 0) {
1719           jccb(Assembler::zero, found_null);
1720           // Item did not match any saved item and there is no empty row for it.
1721           // Increment total counter to indicate polymorphic case.
1722           increment_mdp_data_at(mdp, non_profiled_offset);
1723           jmp(done);
1724           bind(found_null);
1725         } else {
1726           jcc(Assembler::notZero, done);
1727         }
1728         break;
1729       }
1730       // Since null is rare, make it be the branch-taken case.
1731       jcc(Assembler::zero, found_null);
1732 
1733       // Put all the "Case 3" tests here.
1734       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1735         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1736 
1737       // Found a null.  Keep searching for a matching item,
1738       // but remember that this is an empty (unused) slot.
1739       bind(found_null);
1740     }
1741   }
1742 
1743   // In the fall-through case, we found no matching item, but we
1744   // observed the item[start_row] is NULL.
1745 
1746   // Fill in the item field and increment the count.
1747   int item_offset = in_bytes(item_offset_fn(start_row));
1748   set_mdp_data_at(mdp, item_offset, item);
1749   int count_offset = in_bytes(item_count_offset_fn(start_row));
1750   movl(reg2, DataLayout::counter_increment);
1751   set_mdp_data_at(mdp, count_offset, reg2);
1752   if (start_row > 0) {
1753     jmp(done);
1754   }
1755 }
1756 
1757 // Example state machine code for three profile rows:
1758 //   // main copy of decision tree, rooted at row[1]
1759 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1760 //   if (row[0].rec != NULL) {
1761 //     // inner copy of decision tree, rooted at row[1]
1762 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1763 //     if (row[1].rec != NULL) {
1764 //       // degenerate decision tree, rooted at row[2]
1765 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1766 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1767 //       row[2].init(rec); goto done;
1768 //     } else {
1769 //       // remember row[1] is empty
1770 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1771 //       row[1].init(rec); goto done;
1772 //     }
1773 //   } else {
1774 //     // remember row[0] is empty
1775 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1776 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1777 //     row[0].init(rec); goto done;
1778 //   }
1779 //   done:
1780 
1781 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1782                                                         Register mdp, Register reg2,
1783                                                         bool is_virtual_call) {
1784   assert(ProfileInterpreter, "must be profiling");
1785   Label done;
1786 
1787   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1788 
1789   bind (done);
1790 }
1791 
1792 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1793                                             Register mdp) {
1794   if (ProfileInterpreter) {
1795     Label profile_continue;
1796     uint row;
1797 
1798     // If no method data exists, go to profile_continue.
1799     test_method_data_pointer(mdp, profile_continue);
1800 
1801     // Update the total ret count.
1802     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1803 
1804     for (row = 0; row < RetData::row_limit(); row++) {
1805       Label next_test;
1806 
1807       // See if return_bci is equal to bci[n]:
1808       test_mdp_data_at(mdp,
1809                        in_bytes(RetData::bci_offset(row)),
1810                        return_bci, noreg,
1811                        next_test);
1812 
1813       // return_bci is equal to bci[n].  Increment the count.
1814       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1815 
1816       // The method data pointer needs to be updated to reflect the new target.
1817       update_mdp_by_offset(mdp,
1818                            in_bytes(RetData::bci_displacement_offset(row)));
1819       jmp(profile_continue);
1820       bind(next_test);
1821     }
1822 
1823     update_mdp_for_ret(return_bci);
1824 
1825     bind(profile_continue);
1826   }
1827 }
1828 
1829 
1830 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1831   if (ProfileInterpreter) {
1832     Label profile_continue;
1833 
1834     // If no method data exists, go to profile_continue.
1835     test_method_data_pointer(mdp, profile_continue);
1836 
1837     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1838 
1839     // The method data pointer needs to be updated.
1840     int mdp_delta = in_bytes(BitData::bit_data_size());
1841     if (TypeProfileCasts) {
1842       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1843     }
1844     update_mdp_by_constant(mdp, mdp_delta);
1845 
1846     bind(profile_continue);
1847   }
1848 }
1849 
1850 
1851 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1852   if (ProfileInterpreter && TypeProfileCasts) {
1853     Label profile_continue;
1854 
1855     // If no method data exists, go to profile_continue.
1856     test_method_data_pointer(mdp, profile_continue);
1857 
1858     int count_offset = in_bytes(CounterData::count_offset());
1859     // Back up the address, since we have already bumped the mdp.
1860     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1861 
1862     // *Decrement* the counter.  We expect to see zero or small negatives.
1863     increment_mdp_data_at(mdp, count_offset, true);
1864 
1865     bind (profile_continue);
1866   }
1867 }
1868 
1869 
1870 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1871   if (ProfileInterpreter) {
1872     Label profile_continue;
1873 
1874     // If no method data exists, go to profile_continue.
1875     test_method_data_pointer(mdp, profile_continue);
1876 
1877     // The method data pointer needs to be updated.
1878     int mdp_delta = in_bytes(BitData::bit_data_size());
1879     if (TypeProfileCasts) {
1880       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1881 
1882       // Record the object type.
1883       record_klass_in_profile(klass, mdp, reg2, false);
1884       NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1885       NOT_LP64(restore_locals();)         // Restore EDI
1886     }
1887     update_mdp_by_constant(mdp, mdp_delta);
1888 
1889     bind(profile_continue);
1890   }
1891 }
1892 
1893 
1894 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1895   if (ProfileInterpreter) {
1896     Label profile_continue;
1897 
1898     // If no method data exists, go to profile_continue.
1899     test_method_data_pointer(mdp, profile_continue);
1900 
1901     // Update the default case count
1902     increment_mdp_data_at(mdp,
1903                           in_bytes(MultiBranchData::default_count_offset()));
1904 
1905     // The method data pointer needs to be updated.
1906     update_mdp_by_offset(mdp,
1907                          in_bytes(MultiBranchData::
1908                                   default_displacement_offset()));
1909 
1910     bind(profile_continue);
1911   }
1912 }
1913 
1914 
1915 void InterpreterMacroAssembler::profile_switch_case(Register index,
1916                                                     Register mdp,
1917                                                     Register reg2) {
1918   if (ProfileInterpreter) {
1919     Label profile_continue;
1920 
1921     // If no method data exists, go to profile_continue.
1922     test_method_data_pointer(mdp, profile_continue);
1923 
1924     // Build the base (index * per_case_size_in_bytes()) +
1925     // case_array_offset_in_bytes()
1926     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1927     imulptr(index, reg2); // XXX l ?
1928     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1929 
1930     // Update the case count
1931     increment_mdp_data_at(mdp,
1932                           index,
1933                           in_bytes(MultiBranchData::relative_count_offset()));
1934 
1935     // The method data pointer needs to be updated.
1936     update_mdp_by_offset(mdp,
1937                          index,
1938                          in_bytes(MultiBranchData::
1939                                   relative_displacement_offset()));
1940 
1941     bind(profile_continue);
1942   }
1943 }
1944 
1945 
1946 
1947 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1948   if (state == atos) {
1949     MacroAssembler::verify_oop(reg);
1950   }
1951 }
1952 
1953 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1954 #ifndef _LP64
1955   if ((state == ftos && UseSSE < 1) ||
1956       (state == dtos && UseSSE < 2)) {
1957     MacroAssembler::verify_FPU(stack_depth);
1958   }
1959 #endif
1960 }
1961 
1962 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1963 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1964                                                         int increment, Address mask,
1965                                                         Register scratch, bool preloaded,
1966                                                         Condition cond, Label* where) {
1967   if (!preloaded) {
1968     movl(scratch, counter_addr);
1969   }
1970   incrementl(scratch, increment);
1971   movl(counter_addr, scratch);
1972   andl(scratch, mask);
1973   jcc(cond, *where);
1974 }
1975 
1976 void InterpreterMacroAssembler::notify_method_entry() {
1977   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1978   // track stack depth.  If it is possible to enter interp_only_mode we add
1979   // the code to check if the event should be sent.
1980   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1981   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
1982   if (JvmtiExport::can_post_interpreter_events()) {
1983     Label L;
1984     NOT_LP64(get_thread(rthread);)
1985     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1986     testl(rdx, rdx);
1987     jcc(Assembler::zero, L);
1988     call_VM(noreg, CAST_FROM_FN_PTR(address,
1989                                     InterpreterRuntime::post_method_entry));
1990     bind(L);
1991   }
1992 
1993   {
1994     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1995     NOT_LP64(get_thread(rthread);)
1996     get_method(rarg);
1997     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1998                  rthread, rarg);
1999   }
2000 
2001   // RedefineClasses() tracing support for obsolete method entry
2002   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2003     NOT_LP64(get_thread(rthread);)
2004     get_method(rarg);
2005     call_VM_leaf(
2006       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2007       rthread, rarg);
2008   }
2009 }
2010 
2011 
2012 void InterpreterMacroAssembler::notify_method_exit(
2013     TosState state, NotifyMethodExitMode mode) {
2014   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2015   // track stack depth.  If it is possible to enter interp_only_mode we add
2016   // the code to check if the event should be sent.
2017   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2018   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2019   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2020     Label L;
2021     // Note: frame::interpreter_frame_result has a dependency on how the
2022     // method result is saved across the call to post_method_exit. If this
2023     // is changed then the interpreter_frame_result implementation will
2024     // need to be updated too.
2025 
2026     // template interpreter will leave the result on the top of the stack.
2027     push(state);
2028     NOT_LP64(get_thread(rthread);)
2029     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2030     testl(rdx, rdx);
2031     jcc(Assembler::zero, L);
2032     call_VM(noreg,
2033             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2034     bind(L);
2035     pop(state);
2036   }
2037 
2038   {
2039     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2040     push(state);
2041     NOT_LP64(get_thread(rthread);)
2042     get_method(rarg);
2043     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2044                  rthread, rarg);
2045     pop(state);
2046   }
2047 }