1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "interpreter/interp_masm.hpp"
  30 #include "interpreter/templateTable.hpp"
  31 #include "memory/universe.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/frame.inline.hpp"
  37 #include "runtime/safepointMechanism.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/synchronizer.hpp"
  41 #include "utilities/macros.hpp"
  42 
  43 #define __ _masm->
  44 
  45 // Global Register Names
  46 static const Register rbcp     = LP64_ONLY(r13) NOT_LP64(rsi);
  47 static const Register rlocals  = LP64_ONLY(r14) NOT_LP64(rdi);
  48 
  49 // Platform-dependent initialization
  50 void TemplateTable::pd_initialize() {
  51   // No x86 specific initialization
  52 }
  53 
  54 // Address Computation: local variables
  55 static inline Address iaddress(int n) {
  56   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
  57 }
  58 
  59 static inline Address laddress(int n) {
  60   return iaddress(n + 1);
  61 }
  62 
  63 #ifndef _LP64
  64 static inline Address haddress(int n) {
  65   return iaddress(n + 0);
  66 }
  67 #endif
  68 
  69 static inline Address faddress(int n) {
  70   return iaddress(n);
  71 }
  72 
  73 static inline Address daddress(int n) {
  74   return laddress(n);
  75 }
  76 
  77 static inline Address aaddress(int n) {
  78   return iaddress(n);
  79 }
  80 
  81 static inline Address iaddress(Register r) {
  82   return Address(rlocals, r, Address::times_ptr);
  83 }
  84 
  85 static inline Address laddress(Register r) {
  86   return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1));
  87 }
  88 
  89 #ifndef _LP64
  90 static inline Address haddress(Register r)       {
  91   return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
  92 }
  93 #endif
  94 
  95 static inline Address faddress(Register r) {
  96   return iaddress(r);
  97 }
  98 
  99 static inline Address daddress(Register r) {
 100   return laddress(r);
 101 }
 102 
 103 static inline Address aaddress(Register r) {
 104   return iaddress(r);
 105 }
 106 
 107 
 108 // expression stack
 109 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
 110 // data beyond the rsp which is potentially unsafe in an MT environment;
 111 // an interrupt may overwrite that data.)
 112 static inline Address at_rsp   () {
 113   return Address(rsp, 0);
 114 }
 115 
 116 // At top of Java expression stack which may be different than esp().  It
 117 // isn't for category 1 objects.
 118 static inline Address at_tos   () {
 119   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
 120 }
 121 
 122 static inline Address at_tos_p1() {
 123   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
 124 }
 125 
 126 static inline Address at_tos_p2() {
 127   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 128 }
 129 
 130 // Condition conversion
 131 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 132   switch (cc) {
 133   case TemplateTable::equal        : return Assembler::notEqual;
 134   case TemplateTable::not_equal    : return Assembler::equal;
 135   case TemplateTable::less         : return Assembler::greaterEqual;
 136   case TemplateTable::less_equal   : return Assembler::greater;
 137   case TemplateTable::greater      : return Assembler::lessEqual;
 138   case TemplateTable::greater_equal: return Assembler::less;
 139   }
 140   ShouldNotReachHere();
 141   return Assembler::zero;
 142 }
 143 
 144 
 145 
 146 // Miscelaneous helper routines
 147 // Store an oop (or NULL) at the address described by obj.
 148 // If val == noreg this means store a NULL
 149 
 150 
 151 static void do_oop_store(InterpreterMacroAssembler* _masm,
 152                          Address dst,
 153                          Register val,
 154                          DecoratorSet decorators = 0) {
 155   assert(val == noreg || val == rax, "parameter is just for looks");
 156   __ store_heap_oop(dst, val, rdx, rbx, decorators);
 157 }
 158 
 159 static void do_oop_load(InterpreterMacroAssembler* _masm,
 160                         Address src,
 161                         Register dst,
 162                         DecoratorSet decorators = 0) {
 163   __ load_heap_oop(dst, src, rdx, rbx, decorators);
 164 }
 165 
 166 Address TemplateTable::at_bcp(int offset) {
 167   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 168   return Address(rbcp, offset);
 169 }
 170 
 171 
 172 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 173                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 174                                    int byte_no) {
 175   if (!RewriteBytecodes)  return;
 176   Label L_patch_done;
 177 
 178   switch (bc) {
 179   case Bytecodes::_fast_aputfield:
 180   case Bytecodes::_fast_bputfield:
 181   case Bytecodes::_fast_zputfield:
 182   case Bytecodes::_fast_cputfield:
 183   case Bytecodes::_fast_dputfield:
 184   case Bytecodes::_fast_fputfield:
 185   case Bytecodes::_fast_iputfield:
 186   case Bytecodes::_fast_lputfield:
 187   case Bytecodes::_fast_sputfield:
 188     {
 189       // We skip bytecode quickening for putfield instructions when
 190       // the put_code written to the constant pool cache is zero.
 191       // This is required so that every execution of this instruction
 192       // calls out to InterpreterRuntime::resolve_get_put to do
 193       // additional, required work.
 194       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 195       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 196       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
 197       __ movl(bc_reg, bc);
 198       __ cmpl(temp_reg, (int) 0);
 199       __ jcc(Assembler::zero, L_patch_done);  // don't patch
 200     }
 201     break;
 202   default:
 203     assert(byte_no == -1, "sanity");
 204     // the pair bytecodes have already done the load.
 205     if (load_bc_into_bc_reg) {
 206       __ movl(bc_reg, bc);
 207     }
 208   }
 209 
 210   if (JvmtiExport::can_post_breakpoint()) {
 211     Label L_fast_patch;
 212     // if a breakpoint is present we can't rewrite the stream directly
 213     __ movzbl(temp_reg, at_bcp(0));
 214     __ cmpl(temp_reg, Bytecodes::_breakpoint);
 215     __ jcc(Assembler::notEqual, L_fast_patch);
 216     __ get_method(temp_reg);
 217     // Let breakpoint table handling rewrite to quicker bytecode
 218     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg);
 219 #ifndef ASSERT
 220     __ jmpb(L_patch_done);
 221 #else
 222     __ jmp(L_patch_done);
 223 #endif
 224     __ bind(L_fast_patch);
 225   }
 226 
 227 #ifdef ASSERT
 228   Label L_okay;
 229   __ load_unsigned_byte(temp_reg, at_bcp(0));
 230   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
 231   __ jcc(Assembler::equal, L_okay);
 232   __ cmpl(temp_reg, bc_reg);
 233   __ jcc(Assembler::equal, L_okay);
 234   __ stop("patching the wrong bytecode");
 235   __ bind(L_okay);
 236 #endif
 237 
 238   // patch bytecode
 239   __ movb(at_bcp(0), bc_reg);
 240   __ bind(L_patch_done);
 241 }
 242 // Individual instructions
 243 
 244 
 245 void TemplateTable::nop() {
 246   transition(vtos, vtos);
 247   // nothing to do
 248 }
 249 
 250 void TemplateTable::shouldnotreachhere() {
 251   transition(vtos, vtos);
 252   __ stop("shouldnotreachhere bytecode");
 253 }
 254 
 255 void TemplateTable::aconst_null() {
 256   transition(vtos, atos);
 257   __ xorl(rax, rax);
 258 }
 259 
 260 void TemplateTable::iconst(int value) {
 261   transition(vtos, itos);
 262   if (value == 0) {
 263     __ xorl(rax, rax);
 264   } else {
 265     __ movl(rax, value);
 266   }
 267 }
 268 
 269 void TemplateTable::lconst(int value) {
 270   transition(vtos, ltos);
 271   if (value == 0) {
 272     __ xorl(rax, rax);
 273   } else {
 274     __ movl(rax, value);
 275   }
 276 #ifndef _LP64
 277   assert(value >= 0, "check this code");
 278   __ xorptr(rdx, rdx);
 279 #endif
 280 }
 281 
 282 
 283 
 284 void TemplateTable::fconst(int value) {
 285   transition(vtos, ftos);
 286   if (UseSSE >= 1) {
 287     static float one = 1.0f, two = 2.0f;
 288     switch (value) {
 289     case 0:
 290       __ xorps(xmm0, xmm0);
 291       break;
 292     case 1:
 293       __ movflt(xmm0, ExternalAddress((address) &one));
 294       break;
 295     case 2:
 296       __ movflt(xmm0, ExternalAddress((address) &two));
 297       break;
 298     default:
 299       ShouldNotReachHere();
 300       break;
 301     }
 302   } else {
 303 #ifdef _LP64
 304     ShouldNotReachHere();
 305 #else
 306            if (value == 0) { __ fldz();
 307     } else if (value == 1) { __ fld1();
 308     } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
 309     } else                 { ShouldNotReachHere();
 310     }
 311 #endif // _LP64
 312   }
 313 }
 314 
 315 void TemplateTable::dconst(int value) {
 316   transition(vtos, dtos);
 317   if (UseSSE >= 2) {
 318     static double one = 1.0;
 319     switch (value) {
 320     case 0:
 321       __ xorpd(xmm0, xmm0);
 322       break;
 323     case 1:
 324       __ movdbl(xmm0, ExternalAddress((address) &one));
 325       break;
 326     default:
 327       ShouldNotReachHere();
 328       break;
 329     }
 330   } else {
 331 #ifdef _LP64
 332     ShouldNotReachHere();
 333 #else
 334            if (value == 0) { __ fldz();
 335     } else if (value == 1) { __ fld1();
 336     } else                 { ShouldNotReachHere();
 337     }
 338 #endif
 339   }
 340 }
 341 
 342 void TemplateTable::bipush() {
 343   transition(vtos, itos);
 344   __ load_signed_byte(rax, at_bcp(1));
 345 }
 346 
 347 void TemplateTable::sipush() {
 348   transition(vtos, itos);
 349   __ load_unsigned_short(rax, at_bcp(1));
 350   __ bswapl(rax);
 351   __ sarl(rax, 16);
 352 }
 353 
 354 void TemplateTable::ldc(bool wide) {
 355   transition(vtos, vtos);
 356   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
 357   Label call_ldc, notFloat, notClass, notInt, Done;
 358 
 359   if (wide) {
 360     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 361   } else {
 362     __ load_unsigned_byte(rbx, at_bcp(1));
 363   }
 364 
 365   __ get_cpool_and_tags(rcx, rax);
 366   const int base_offset = ConstantPool::header_size() * wordSize;
 367   const int tags_offset = Array<u1>::base_offset_in_bytes();
 368 
 369   // get type
 370   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 371 
 372   // unresolved class - get the resolved class
 373   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 374   __ jccb(Assembler::equal, call_ldc);
 375 
 376   // unresolved class in error state - call into runtime to throw the error
 377   // from the first resolution attempt
 378   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 379   __ jccb(Assembler::equal, call_ldc);
 380 
 381   // resolved class - need to call vm to get java mirror of the class
 382   __ cmpl(rdx, JVM_CONSTANT_Class);
 383   __ jcc(Assembler::notEqual, notClass);
 384 
 385   __ bind(call_ldc);
 386 
 387   __ movl(rarg, wide);
 388   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg);
 389 
 390   __ push(atos);
 391   __ jmp(Done);
 392 
 393   __ bind(notClass);
 394   __ cmpl(rdx, JVM_CONSTANT_Float);
 395   __ jccb(Assembler::notEqual, notFloat);
 396 
 397   // ftos
 398   __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset));
 399   __ push(ftos);
 400   __ jmp(Done);
 401 
 402   __ bind(notFloat);
 403   __ cmpl(rdx, JVM_CONSTANT_Integer);
 404   __ jccb(Assembler::notEqual, notInt);
 405 
 406   // itos
 407   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
 408   __ push(itos);
 409   __ jmp(Done);
 410 
 411   // assume the tag is for condy; if not, the VM runtime will tell us
 412   __ bind(notInt);
 413   condy_helper(Done);
 414 
 415   __ bind(Done);
 416 }
 417 
 418 // Fast path for caching oop constants.
 419 void TemplateTable::fast_aldc(bool wide) {
 420   transition(vtos, atos);
 421 
 422   Register result = rax;
 423   Register tmp = rdx;
 424   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
 425   int index_size = wide ? sizeof(u2) : sizeof(u1);
 426 
 427   Label resolved;
 428 
 429   // We are resolved if the resolved reference cache entry contains a
 430   // non-null object (String, MethodType, etc.)
 431   assert_different_registers(result, tmp);
 432   __ get_cache_index_at_bcp(tmp, 1, index_size);
 433   __ load_resolved_reference_at_index(result, tmp);
 434   __ testptr(result, result);
 435   __ jcc(Assembler::notZero, resolved);
 436 
 437   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 438 
 439   // first time invocation - must resolve first
 440   __ movl(rarg, (int)bytecode());
 441   __ call_VM(result, entry, rarg);
 442   __ bind(resolved);
 443 
 444   { // Check for the null sentinel.
 445     // If we just called the VM, that already did the mapping for us,
 446     // but it's harmless to retry.
 447     Label notNull;
 448     ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr());
 449     __ movptr(tmp, null_sentinel);
 450     __ cmpoop(tmp, result);
 451     __ jccb(Assembler::notEqual, notNull);
 452     __ xorptr(result, result);  // NULL object reference
 453     __ bind(notNull);
 454   }
 455 
 456   if (VerifyOops) {
 457     __ verify_oop(result);
 458   }
 459 }
 460 
 461 void TemplateTable::ldc2_w() {
 462   transition(vtos, vtos);
 463   Label notDouble, notLong, Done;
 464   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 465 
 466   __ get_cpool_and_tags(rcx, rax);
 467   const int base_offset = ConstantPool::header_size() * wordSize;
 468   const int tags_offset = Array<u1>::base_offset_in_bytes();
 469 
 470   // get type
 471   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 472   __ cmpl(rdx, JVM_CONSTANT_Double);
 473   __ jccb(Assembler::notEqual, notDouble);
 474 
 475   // dtos
 476   __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset));
 477   __ push(dtos);
 478 
 479   __ jmp(Done);
 480   __ bind(notDouble);
 481   __ cmpl(rdx, JVM_CONSTANT_Long);
 482   __ jccb(Assembler::notEqual, notLong);
 483 
 484   // ltos
 485   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
 486   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
 487   __ push(ltos);
 488   __ jmp(Done);
 489 
 490   __ bind(notLong);
 491   condy_helper(Done);
 492 
 493   __ bind(Done);
 494 }
 495 
 496 void TemplateTable::condy_helper(Label& Done) {
 497   const Register obj = rax;
 498   const Register off = rbx;
 499   const Register flags = rcx;
 500   const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
 501   __ movl(rarg, (int)bytecode());
 502   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg);
 503 #ifndef _LP64
 504   // borrow rdi from locals
 505   __ get_thread(rdi);
 506   __ get_vm_result_2(flags, rdi);
 507   __ restore_locals();
 508 #else
 509   __ get_vm_result_2(flags, r15_thread);
 510 #endif
 511   // VMr = obj = base address to find primitive value to push
 512   // VMr2 = flags = (tos, off) using format of CPCE::_flags
 513   __ movl(off, flags);
 514   __ andl(off, ConstantPoolCacheEntry::field_index_mask);
 515   const Address field(obj, off, Address::times_1, 0*wordSize);
 516 
 517   // What sort of thing are we loading?
 518   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
 519   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
 520 
 521   switch (bytecode()) {
 522   case Bytecodes::_ldc:
 523   case Bytecodes::_ldc_w:
 524     {
 525       // tos in (itos, ftos, stos, btos, ctos, ztos)
 526       Label notInt, notFloat, notShort, notByte, notChar, notBool;
 527       __ cmpl(flags, itos);
 528       __ jcc(Assembler::notEqual, notInt);
 529       // itos
 530       __ movl(rax, field);
 531       __ push(itos);
 532       __ jmp(Done);
 533 
 534       __ bind(notInt);
 535       __ cmpl(flags, ftos);
 536       __ jcc(Assembler::notEqual, notFloat);
 537       // ftos
 538       __ load_float(field);
 539       __ push(ftos);
 540       __ jmp(Done);
 541 
 542       __ bind(notFloat);
 543       __ cmpl(flags, stos);
 544       __ jcc(Assembler::notEqual, notShort);
 545       // stos
 546       __ load_signed_short(rax, field);
 547       __ push(stos);
 548       __ jmp(Done);
 549 
 550       __ bind(notShort);
 551       __ cmpl(flags, btos);
 552       __ jcc(Assembler::notEqual, notByte);
 553       // btos
 554       __ load_signed_byte(rax, field);
 555       __ push(btos);
 556       __ jmp(Done);
 557 
 558       __ bind(notByte);
 559       __ cmpl(flags, ctos);
 560       __ jcc(Assembler::notEqual, notChar);
 561       // ctos
 562       __ load_unsigned_short(rax, field);
 563       __ push(ctos);
 564       __ jmp(Done);
 565 
 566       __ bind(notChar);
 567       __ cmpl(flags, ztos);
 568       __ jcc(Assembler::notEqual, notBool);
 569       // ztos
 570       __ load_signed_byte(rax, field);
 571       __ push(ztos);
 572       __ jmp(Done);
 573 
 574       __ bind(notBool);
 575       break;
 576     }
 577 
 578   case Bytecodes::_ldc2_w:
 579     {
 580       Label notLong, notDouble;
 581       __ cmpl(flags, ltos);
 582       __ jcc(Assembler::notEqual, notLong);
 583       // ltos
 584       __ movptr(rax, field);
 585       NOT_LP64(__ movptr(rdx, field.plus_disp(4)));
 586       __ push(ltos);
 587       __ jmp(Done);
 588 
 589       __ bind(notLong);
 590       __ cmpl(flags, dtos);
 591       __ jcc(Assembler::notEqual, notDouble);
 592       // dtos
 593       __ load_double(field);
 594       __ push(dtos);
 595       __ jmp(Done);
 596 
 597       __ bind(notDouble);
 598       break;
 599     }
 600 
 601   default:
 602     ShouldNotReachHere();
 603   }
 604 
 605   __ stop("bad ldc/condy");
 606 }
 607 
 608 void TemplateTable::locals_index(Register reg, int offset) {
 609   __ load_unsigned_byte(reg, at_bcp(offset));
 610   __ negptr(reg);
 611 }
 612 
 613 void TemplateTable::iload() {
 614   iload_internal();
 615 }
 616 
 617 void TemplateTable::nofast_iload() {
 618   iload_internal(may_not_rewrite);
 619 }
 620 
 621 void TemplateTable::iload_internal(RewriteControl rc) {
 622   transition(vtos, itos);
 623   if (RewriteFrequentPairs && rc == may_rewrite) {
 624     Label rewrite, done;
 625     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
 626     LP64_ONLY(assert(rbx != bc, "register damaged"));
 627 
 628     // get next byte
 629     __ load_unsigned_byte(rbx,
 630                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 631     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 632     // last two iloads in a pair.  Comparing against fast_iload means that
 633     // the next bytecode is neither an iload or a caload, and therefore
 634     // an iload pair.
 635     __ cmpl(rbx, Bytecodes::_iload);
 636     __ jcc(Assembler::equal, done);
 637 
 638     __ cmpl(rbx, Bytecodes::_fast_iload);
 639     __ movl(bc, Bytecodes::_fast_iload2);
 640 
 641     __ jccb(Assembler::equal, rewrite);
 642 
 643     // if _caload, rewrite to fast_icaload
 644     __ cmpl(rbx, Bytecodes::_caload);
 645     __ movl(bc, Bytecodes::_fast_icaload);
 646     __ jccb(Assembler::equal, rewrite);
 647 
 648     // rewrite so iload doesn't check again.
 649     __ movl(bc, Bytecodes::_fast_iload);
 650 
 651     // rewrite
 652     // bc: fast bytecode
 653     __ bind(rewrite);
 654     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 655     __ bind(done);
 656   }
 657 
 658   // Get the local value into tos
 659   locals_index(rbx);
 660   __ movl(rax, iaddress(rbx));
 661 }
 662 
 663 void TemplateTable::fast_iload2() {
 664   transition(vtos, itos);
 665   locals_index(rbx);
 666   __ movl(rax, iaddress(rbx));
 667   __ push(itos);
 668   locals_index(rbx, 3);
 669   __ movl(rax, iaddress(rbx));
 670 }
 671 
 672 void TemplateTable::fast_iload() {
 673   transition(vtos, itos);
 674   locals_index(rbx);
 675   __ movl(rax, iaddress(rbx));
 676 }
 677 
 678 void TemplateTable::lload() {
 679   transition(vtos, ltos);
 680   locals_index(rbx);
 681   __ movptr(rax, laddress(rbx));
 682   NOT_LP64(__ movl(rdx, haddress(rbx)));
 683 }
 684 
 685 void TemplateTable::fload() {
 686   transition(vtos, ftos);
 687   locals_index(rbx);
 688   __ load_float(faddress(rbx));
 689 }
 690 
 691 void TemplateTable::dload() {
 692   transition(vtos, dtos);
 693   locals_index(rbx);
 694   __ load_double(daddress(rbx));
 695 }
 696 
 697 void TemplateTable::aload() {
 698   transition(vtos, atos);
 699   locals_index(rbx);
 700   __ movptr(rax, aaddress(rbx));
 701 }
 702 
 703 void TemplateTable::locals_index_wide(Register reg) {
 704   __ load_unsigned_short(reg, at_bcp(2));
 705   __ bswapl(reg);
 706   __ shrl(reg, 16);
 707   __ negptr(reg);
 708 }
 709 
 710 void TemplateTable::wide_iload() {
 711   transition(vtos, itos);
 712   locals_index_wide(rbx);
 713   __ movl(rax, iaddress(rbx));
 714 }
 715 
 716 void TemplateTable::wide_lload() {
 717   transition(vtos, ltos);
 718   locals_index_wide(rbx);
 719   __ movptr(rax, laddress(rbx));
 720   NOT_LP64(__ movl(rdx, haddress(rbx)));
 721 }
 722 
 723 void TemplateTable::wide_fload() {
 724   transition(vtos, ftos);
 725   locals_index_wide(rbx);
 726   __ load_float(faddress(rbx));
 727 }
 728 
 729 void TemplateTable::wide_dload() {
 730   transition(vtos, dtos);
 731   locals_index_wide(rbx);
 732   __ load_double(daddress(rbx));
 733 }
 734 
 735 void TemplateTable::wide_aload() {
 736   transition(vtos, atos);
 737   locals_index_wide(rbx);
 738   __ movptr(rax, aaddress(rbx));
 739 }
 740 
 741 void TemplateTable::index_check(Register array, Register index) {
 742   // Pop ptr into array
 743   __ pop_ptr(array);
 744   index_check_without_pop(array, index);
 745 }
 746 
 747 void TemplateTable::index_check_without_pop(Register array, Register index) {
 748   // destroys rbx
 749   // check array
 750   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 751   // sign extend index for use by indexed load
 752   __ movl2ptr(index, index);
 753   // check index
 754   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 755   if (index != rbx) {
 756     // ??? convention: move aberrant index into rbx for exception message
 757     assert(rbx != array, "different registers");
 758     __ movl(rbx, index);
 759   }
 760   __ jump_cc(Assembler::aboveEqual,
 761              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 762 }
 763 
 764 
 765 void TemplateTable::iaload() {
 766   transition(itos, itos);
 767   // rax: index
 768   // rdx: array
 769   index_check(rdx, rax); // kills rbx
 770   __ resolve_for_read(OOP_NOT_NULL, rdx);
 771   __ movl(rax, Address(rdx, rax,
 772                        Address::times_4,
 773                        arrayOopDesc::base_offset_in_bytes(T_INT)));
 774 }
 775 
 776 void TemplateTable::laload() {
 777   transition(itos, ltos);
 778   // rax: index
 779   // rdx: array
 780   index_check(rdx, rax); // kills rbx
 781   NOT_LP64(__ mov(rbx, rax));
 782   // rbx,: index
 783   __ resolve_for_read(OOP_NOT_NULL, rdx);
 784   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
 785   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
 786 }
 787 
 788 
 789 
 790 void TemplateTable::faload() {
 791   transition(itos, ftos);
 792   // rax: index
 793   // rdx: array
 794   index_check(rdx, rax); // kills rbx
 795   __ resolve_for_read(OOP_NOT_NULL, rdx);
 796   __ load_float(Address(rdx, rax,
 797                         Address::times_4,
 798                         arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 799 }
 800 
 801 void TemplateTable::daload() {
 802   transition(itos, dtos);
 803   // rax: index
 804   // rdx: array
 805   index_check(rdx, rax); // kills rbx
 806   __ resolve_for_read(OOP_NOT_NULL, rdx);
 807   __ load_double(Address(rdx, rax,
 808                          Address::times_8,
 809                          arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 810 }
 811 
 812 void TemplateTable::aaload() {
 813   transition(itos, atos);
 814   // rax: index
 815   // rdx: array
 816   index_check(rdx, rax); // kills rbx
 817   __ resolve_for_read(OOP_NOT_NULL, rdx);
 818   do_oop_load(_masm,
 819               Address(rdx, rax,
 820                       UseCompressedOops ? Address::times_4 : Address::times_ptr,
 821                       arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
 822               rax,
 823               IN_HEAP_ARRAY);
 824 }
 825 
 826 void TemplateTable::baload() {
 827   transition(itos, itos);
 828   // rax: index
 829   // rdx: array
 830   index_check(rdx, rax); // kills rbx
 831   __ resolve_for_read(OOP_NOT_NULL, rdx);
 832   __ load_signed_byte(rax, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 833 }
 834 
 835 void TemplateTable::caload() {
 836   transition(itos, itos);
 837   // rax: index
 838   // rdx: array
 839   index_check(rdx, rax); // kills rbx
 840   __ resolve_for_read(OOP_NOT_NULL, rdx);
 841   __ load_unsigned_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 842 }
 843 
 844 // iload followed by caload frequent pair
 845 void TemplateTable::fast_icaload() {
 846   transition(vtos, itos);
 847   // load index out of locals
 848   locals_index(rbx);
 849   __ movl(rax, iaddress(rbx));
 850 
 851   // rax: index
 852   // rdx: array
 853   index_check(rdx, rax); // kills rbx
 854   __ resolve_for_read(OOP_NOT_NULL, rdx);
 855   __ load_unsigned_short(rax,
 856                          Address(rdx, rax,
 857                                  Address::times_2,
 858                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 859 }
 860 
 861 
 862 void TemplateTable::saload() {
 863   transition(itos, itos);
 864   // rax: index
 865   // rdx: array
 866   index_check(rdx, rax); // kills rbx
 867   __ resolve_for_read(OOP_NOT_NULL, rdx);
 868   __ load_signed_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 869 }
 870 
 871 void TemplateTable::iload(int n) {
 872   transition(vtos, itos);
 873   __ movl(rax, iaddress(n));
 874 }
 875 
 876 void TemplateTable::lload(int n) {
 877   transition(vtos, ltos);
 878   __ movptr(rax, laddress(n));
 879   NOT_LP64(__ movptr(rdx, haddress(n)));
 880 }
 881 
 882 void TemplateTable::fload(int n) {
 883   transition(vtos, ftos);
 884   __ load_float(faddress(n));
 885 }
 886 
 887 void TemplateTable::dload(int n) {
 888   transition(vtos, dtos);
 889   __ load_double(daddress(n));
 890 }
 891 
 892 void TemplateTable::aload(int n) {
 893   transition(vtos, atos);
 894   __ movptr(rax, aaddress(n));
 895 }
 896 
 897 void TemplateTable::aload_0() {
 898   aload_0_internal();
 899 }
 900 
 901 void TemplateTable::nofast_aload_0() {
 902   aload_0_internal(may_not_rewrite);
 903 }
 904 
 905 void TemplateTable::aload_0_internal(RewriteControl rc) {
 906   transition(vtos, atos);
 907   // According to bytecode histograms, the pairs:
 908   //
 909   // _aload_0, _fast_igetfield
 910   // _aload_0, _fast_agetfield
 911   // _aload_0, _fast_fgetfield
 912   //
 913   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 914   // _aload_0 bytecode checks if the next bytecode is either
 915   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 916   // rewrites the current bytecode into a pair bytecode; otherwise it
 917   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 918   // the pair check anymore.
 919   //
 920   // Note: If the next bytecode is _getfield, the rewrite must be
 921   //       delayed, otherwise we may miss an opportunity for a pair.
 922   //
 923   // Also rewrite frequent pairs
 924   //   aload_0, aload_1
 925   //   aload_0, iload_1
 926   // These bytecodes with a small amount of code are most profitable
 927   // to rewrite
 928   if (RewriteFrequentPairs && rc == may_rewrite) {
 929     Label rewrite, done;
 930 
 931     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
 932     LP64_ONLY(assert(rbx != bc, "register damaged"));
 933 
 934     // get next byte
 935     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 936 
 937     // if _getfield then wait with rewrite
 938     __ cmpl(rbx, Bytecodes::_getfield);
 939     __ jcc(Assembler::equal, done);
 940 
 941     // if _igetfield then rewrite to _fast_iaccess_0
 942     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 943     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 944     __ movl(bc, Bytecodes::_fast_iaccess_0);
 945     __ jccb(Assembler::equal, rewrite);
 946 
 947     // if _agetfield then rewrite to _fast_aaccess_0
 948     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 949     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 950     __ movl(bc, Bytecodes::_fast_aaccess_0);
 951     __ jccb(Assembler::equal, rewrite);
 952 
 953     // if _fgetfield then rewrite to _fast_faccess_0
 954     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 955     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 956     __ movl(bc, Bytecodes::_fast_faccess_0);
 957     __ jccb(Assembler::equal, rewrite);
 958 
 959     // else rewrite to _fast_aload0
 960     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
 961     __ movl(bc, Bytecodes::_fast_aload_0);
 962 
 963     // rewrite
 964     // bc: fast bytecode
 965     __ bind(rewrite);
 966     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
 967 
 968     __ bind(done);
 969   }
 970 
 971   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
 972   aload(0);
 973 }
 974 
 975 void TemplateTable::istore() {
 976   transition(itos, vtos);
 977   locals_index(rbx);
 978   __ movl(iaddress(rbx), rax);
 979 }
 980 
 981 
 982 void TemplateTable::lstore() {
 983   transition(ltos, vtos);
 984   locals_index(rbx);
 985   __ movptr(laddress(rbx), rax);
 986   NOT_LP64(__ movptr(haddress(rbx), rdx));
 987 }
 988 
 989 void TemplateTable::fstore() {
 990   transition(ftos, vtos);
 991   locals_index(rbx);
 992   __ store_float(faddress(rbx));
 993 }
 994 
 995 void TemplateTable::dstore() {
 996   transition(dtos, vtos);
 997   locals_index(rbx);
 998   __ store_double(daddress(rbx));
 999 }
1000 
1001 void TemplateTable::astore() {
1002   transition(vtos, vtos);
1003   __ pop_ptr(rax);
1004   locals_index(rbx);
1005   __ movptr(aaddress(rbx), rax);
1006 }
1007 
1008 void TemplateTable::wide_istore() {
1009   transition(vtos, vtos);
1010   __ pop_i();
1011   locals_index_wide(rbx);
1012   __ movl(iaddress(rbx), rax);
1013 }
1014 
1015 void TemplateTable::wide_lstore() {
1016   transition(vtos, vtos);
1017   NOT_LP64(__ pop_l(rax, rdx));
1018   LP64_ONLY(__ pop_l());
1019   locals_index_wide(rbx);
1020   __ movptr(laddress(rbx), rax);
1021   NOT_LP64(__ movl(haddress(rbx), rdx));
1022 }
1023 
1024 void TemplateTable::wide_fstore() {
1025 #ifdef _LP64
1026   transition(vtos, vtos);
1027   __ pop_f(xmm0);
1028   locals_index_wide(rbx);
1029   __ movflt(faddress(rbx), xmm0);
1030 #else
1031   wide_istore();
1032 #endif
1033 }
1034 
1035 void TemplateTable::wide_dstore() {
1036 #ifdef _LP64
1037   transition(vtos, vtos);
1038   __ pop_d(xmm0);
1039   locals_index_wide(rbx);
1040   __ movdbl(daddress(rbx), xmm0);
1041 #else
1042   wide_lstore();
1043 #endif
1044 }
1045 
1046 void TemplateTable::wide_astore() {
1047   transition(vtos, vtos);
1048   __ pop_ptr(rax);
1049   locals_index_wide(rbx);
1050   __ movptr(aaddress(rbx), rax);
1051 }
1052 
1053 void TemplateTable::iastore() {
1054   transition(itos, vtos);
1055   __ pop_i(rbx);
1056   // rax: value
1057   // rbx: index
1058   // rdx: array
1059   index_check(rdx, rbx); // prefer index in rbx
1060   __ resolve_for_write(OOP_NOT_NULL, rdx);
1061   __ movl(Address(rdx, rbx,
1062                   Address::times_4,
1063                   arrayOopDesc::base_offset_in_bytes(T_INT)),
1064           rax);
1065 }
1066 
1067 void TemplateTable::lastore() {
1068   transition(ltos, vtos);
1069   __ pop_i(rbx);
1070   // rax,: low(value)
1071   // rcx: array
1072   // rdx: high(value)
1073   index_check(rcx, rbx);  // prefer index in rbx,
1074   // rbx,: index
1075   __ resolve_for_write(OOP_NOT_NULL, rcx);
1076   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
1077   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
1078 }
1079 
1080 
1081 void TemplateTable::fastore() {
1082   transition(ftos, vtos);
1083   __ pop_i(rbx);
1084   // value is in UseSSE >= 1 ? xmm0 : ST(0)
1085   // rbx:  index
1086   // rdx:  array
1087   index_check(rdx, rbx); // prefer index in rbx
1088   __ resolve_for_write(OOP_NOT_NULL, rdx);
1089   __ store_float(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
1090 }
1091 
1092 void TemplateTable::dastore() {
1093   transition(dtos, vtos);
1094   __ pop_i(rbx);
1095   // value is in UseSSE >= 2 ? xmm0 : ST(0)
1096   // rbx:  index
1097   // rdx:  array
1098   index_check(rdx, rbx); // prefer index in rbx
1099   __ resolve_for_write(OOP_NOT_NULL, rdx);
1100   __ store_double(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
1101 }
1102 
1103 void TemplateTable::aastore() {
1104   Label is_null, ok_is_subtype, done;
1105   transition(vtos, vtos);
1106   // stack: ..., array, index, value
1107   __ movptr(rax, at_tos());    // value
1108   __ movl(rcx, at_tos_p1()); // index
1109   __ movptr(rdx, at_tos_p2()); // array
1110 
1111   Address element_address(rdx, rcx,
1112                           UseCompressedOops? Address::times_4 : Address::times_ptr,
1113                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1114 
1115   index_check_without_pop(rdx, rcx);     // kills rbx
1116   __ resolve_for_write(OOP_NOT_NULL, rdx);
1117   __ testptr(rax, rax);
1118   __ jcc(Assembler::zero, is_null);
1119 
1120   // Move subklass into rbx
1121   __ load_klass(rbx, rax);
1122   // Move superklass into rax
1123   __ load_klass(rax, rdx);
1124   __ movptr(rax, Address(rax,
1125                          ObjArrayKlass::element_klass_offset()));
1126   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
1127   __ lea(rdx, element_address);
1128 
1129   // Generate subtype check.  Blows rcx, rdi
1130   // Superklass in rax.  Subklass in rbx.
1131   __ gen_subtype_check(rbx, ok_is_subtype);
1132 
1133   // Come here on failure
1134   // object is at TOS
1135   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
1136 
1137   // Come here on success
1138   __ bind(ok_is_subtype);
1139 
1140   // Get the value we will store
1141   __ movptr(rax, at_tos());
1142   // Now store using the appropriate barrier
1143   do_oop_store(_masm, Address(rdx, 0), rax, IN_HEAP_ARRAY);
1144   __ jmp(done);
1145 
1146   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
1147   __ bind(is_null);
1148   __ profile_null_seen(rbx);
1149 
1150   // Store a NULL
1151   do_oop_store(_masm, element_address, noreg, IN_HEAP_ARRAY);
1152 
1153   // Pop stack arguments
1154   __ bind(done);
1155   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1156 }
1157 
1158 void TemplateTable::bastore() {
1159   transition(itos, vtos);
1160   __ pop_i(rbx);
1161   // rax: value
1162   // rbx: index
1163   // rdx: array
1164   index_check(rdx, rbx); // prefer index in rbx
1165   __ resolve_for_write(OOP_NOT_NULL, rdx);
1166   // Need to check whether array is boolean or byte
1167   // since both types share the bastore bytecode.
1168   __ load_klass(rcx, rdx);
1169   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1170   int diffbit = Klass::layout_helper_boolean_diffbit();
1171   __ testl(rcx, diffbit);
1172   Label L_skip;
1173   __ jccb(Assembler::zero, L_skip);
1174   __ andl(rax, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1175   __ bind(L_skip);
1176   __ movb(Address(rdx, rbx,
1177                   Address::times_1,
1178                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1179           rax);
1180 }
1181 
1182 void TemplateTable::castore() {
1183   transition(itos, vtos);
1184   __ pop_i(rbx);
1185   // rax: value
1186   // rbx: index
1187   // rdx: array
1188   index_check(rdx, rbx);  // prefer index in rbx
1189   __ resolve_for_write(OOP_NOT_NULL, rdx);
1190   __ movw(Address(rdx, rbx,
1191                   Address::times_2,
1192                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1193           rax);
1194 }
1195 
1196 
1197 void TemplateTable::sastore() {
1198   castore();
1199 }
1200 
1201 void TemplateTable::istore(int n) {
1202   transition(itos, vtos);
1203   __ movl(iaddress(n), rax);
1204 }
1205 
1206 void TemplateTable::lstore(int n) {
1207   transition(ltos, vtos);
1208   __ movptr(laddress(n), rax);
1209   NOT_LP64(__ movptr(haddress(n), rdx));
1210 }
1211 
1212 void TemplateTable::fstore(int n) {
1213   transition(ftos, vtos);
1214   __ store_float(faddress(n));
1215 }
1216 
1217 void TemplateTable::dstore(int n) {
1218   transition(dtos, vtos);
1219   __ store_double(daddress(n));
1220 }
1221 
1222 
1223 void TemplateTable::astore(int n) {
1224   transition(vtos, vtos);
1225   __ pop_ptr(rax);
1226   __ movptr(aaddress(n), rax);
1227 }
1228 
1229 void TemplateTable::pop() {
1230   transition(vtos, vtos);
1231   __ addptr(rsp, Interpreter::stackElementSize);
1232 }
1233 
1234 void TemplateTable::pop2() {
1235   transition(vtos, vtos);
1236   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1237 }
1238 
1239 
1240 void TemplateTable::dup() {
1241   transition(vtos, vtos);
1242   __ load_ptr(0, rax);
1243   __ push_ptr(rax);
1244   // stack: ..., a, a
1245 }
1246 
1247 void TemplateTable::dup_x1() {
1248   transition(vtos, vtos);
1249   // stack: ..., a, b
1250   __ load_ptr( 0, rax);  // load b
1251   __ load_ptr( 1, rcx);  // load a
1252   __ store_ptr(1, rax);  // store b
1253   __ store_ptr(0, rcx);  // store a
1254   __ push_ptr(rax);      // push b
1255   // stack: ..., b, a, b
1256 }
1257 
1258 void TemplateTable::dup_x2() {
1259   transition(vtos, vtos);
1260   // stack: ..., a, b, c
1261   __ load_ptr( 0, rax);  // load c
1262   __ load_ptr( 2, rcx);  // load a
1263   __ store_ptr(2, rax);  // store c in a
1264   __ push_ptr(rax);      // push c
1265   // stack: ..., c, b, c, c
1266   __ load_ptr( 2, rax);  // load b
1267   __ store_ptr(2, rcx);  // store a in b
1268   // stack: ..., c, a, c, c
1269   __ store_ptr(1, rax);  // store b in c
1270   // stack: ..., c, a, b, c
1271 }
1272 
1273 void TemplateTable::dup2() {
1274   transition(vtos, vtos);
1275   // stack: ..., a, b
1276   __ load_ptr(1, rax);  // load a
1277   __ push_ptr(rax);     // push a
1278   __ load_ptr(1, rax);  // load b
1279   __ push_ptr(rax);     // push b
1280   // stack: ..., a, b, a, b
1281 }
1282 
1283 
1284 void TemplateTable::dup2_x1() {
1285   transition(vtos, vtos);
1286   // stack: ..., a, b, c
1287   __ load_ptr( 0, rcx);  // load c
1288   __ load_ptr( 1, rax);  // load b
1289   __ push_ptr(rax);      // push b
1290   __ push_ptr(rcx);      // push c
1291   // stack: ..., a, b, c, b, c
1292   __ store_ptr(3, rcx);  // store c in b
1293   // stack: ..., a, c, c, b, c
1294   __ load_ptr( 4, rcx);  // load a
1295   __ store_ptr(2, rcx);  // store a in 2nd c
1296   // stack: ..., a, c, a, b, c
1297   __ store_ptr(4, rax);  // store b in a
1298   // stack: ..., b, c, a, b, c
1299 }
1300 
1301 void TemplateTable::dup2_x2() {
1302   transition(vtos, vtos);
1303   // stack: ..., a, b, c, d
1304   __ load_ptr( 0, rcx);  // load d
1305   __ load_ptr( 1, rax);  // load c
1306   __ push_ptr(rax);      // push c
1307   __ push_ptr(rcx);      // push d
1308   // stack: ..., a, b, c, d, c, d
1309   __ load_ptr( 4, rax);  // load b
1310   __ store_ptr(2, rax);  // store b in d
1311   __ store_ptr(4, rcx);  // store d in b
1312   // stack: ..., a, d, c, b, c, d
1313   __ load_ptr( 5, rcx);  // load a
1314   __ load_ptr( 3, rax);  // load c
1315   __ store_ptr(3, rcx);  // store a in c
1316   __ store_ptr(5, rax);  // store c in a
1317   // stack: ..., c, d, a, b, c, d
1318 }
1319 
1320 void TemplateTable::swap() {
1321   transition(vtos, vtos);
1322   // stack: ..., a, b
1323   __ load_ptr( 1, rcx);  // load a
1324   __ load_ptr( 0, rax);  // load b
1325   __ store_ptr(0, rcx);  // store a in b
1326   __ store_ptr(1, rax);  // store b in a
1327   // stack: ..., b, a
1328 }
1329 
1330 void TemplateTable::iop2(Operation op) {
1331   transition(itos, itos);
1332   switch (op) {
1333   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1334   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1335   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1336   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1337   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1338   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1339   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1340   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1341   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1342   default   : ShouldNotReachHere();
1343   }
1344 }
1345 
1346 void TemplateTable::lop2(Operation op) {
1347   transition(ltos, ltos);
1348 #ifdef _LP64
1349   switch (op) {
1350   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1351   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1352   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1353   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1354   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1355   default   : ShouldNotReachHere();
1356   }
1357 #else
1358   __ pop_l(rbx, rcx);
1359   switch (op) {
1360     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1361     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1362                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
1363     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
1364     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1365     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1366     default   : ShouldNotReachHere();
1367   }
1368 #endif
1369 }
1370 
1371 void TemplateTable::idiv() {
1372   transition(itos, itos);
1373   __ movl(rcx, rax);
1374   __ pop_i(rax);
1375   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1376   //       they are not equal, one could do a normal division (no correction
1377   //       needed), which may speed up this implementation for the common case.
1378   //       (see also JVM spec., p.243 & p.271)
1379   __ corrected_idivl(rcx);
1380 }
1381 
1382 void TemplateTable::irem() {
1383   transition(itos, itos);
1384   __ movl(rcx, rax);
1385   __ pop_i(rax);
1386   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1387   //       they are not equal, one could do a normal division (no correction
1388   //       needed), which may speed up this implementation for the common case.
1389   //       (see also JVM spec., p.243 & p.271)
1390   __ corrected_idivl(rcx);
1391   __ movl(rax, rdx);
1392 }
1393 
1394 void TemplateTable::lmul() {
1395   transition(ltos, ltos);
1396 #ifdef _LP64
1397   __ pop_l(rdx);
1398   __ imulq(rax, rdx);
1399 #else
1400   __ pop_l(rbx, rcx);
1401   __ push(rcx); __ push(rbx);
1402   __ push(rdx); __ push(rax);
1403   __ lmul(2 * wordSize, 0);
1404   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1405 #endif
1406 }
1407 
1408 void TemplateTable::ldiv() {
1409   transition(ltos, ltos);
1410 #ifdef _LP64
1411   __ mov(rcx, rax);
1412   __ pop_l(rax);
1413   // generate explicit div0 check
1414   __ testq(rcx, rcx);
1415   __ jump_cc(Assembler::zero,
1416              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1417   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1418   //       they are not equal, one could do a normal division (no correction
1419   //       needed), which may speed up this implementation for the common case.
1420   //       (see also JVM spec., p.243 & p.271)
1421   __ corrected_idivq(rcx); // kills rbx
1422 #else
1423   __ pop_l(rbx, rcx);
1424   __ push(rcx); __ push(rbx);
1425   __ push(rdx); __ push(rax);
1426   // check if y = 0
1427   __ orl(rax, rdx);
1428   __ jump_cc(Assembler::zero,
1429              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1430   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1431   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1432 #endif
1433 }
1434 
1435 void TemplateTable::lrem() {
1436   transition(ltos, ltos);
1437 #ifdef _LP64
1438   __ mov(rcx, rax);
1439   __ pop_l(rax);
1440   __ testq(rcx, rcx);
1441   __ jump_cc(Assembler::zero,
1442              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1443   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1444   //       they are not equal, one could do a normal division (no correction
1445   //       needed), which may speed up this implementation for the common case.
1446   //       (see also JVM spec., p.243 & p.271)
1447   __ corrected_idivq(rcx); // kills rbx
1448   __ mov(rax, rdx);
1449 #else
1450   __ pop_l(rbx, rcx);
1451   __ push(rcx); __ push(rbx);
1452   __ push(rdx); __ push(rax);
1453   // check if y = 0
1454   __ orl(rax, rdx);
1455   __ jump_cc(Assembler::zero,
1456              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1457   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1458   __ addptr(rsp, 4 * wordSize);
1459 #endif
1460 }
1461 
1462 void TemplateTable::lshl() {
1463   transition(itos, ltos);
1464   __ movl(rcx, rax);                             // get shift count
1465   #ifdef _LP64
1466   __ pop_l(rax);                                 // get shift value
1467   __ shlq(rax);
1468 #else
1469   __ pop_l(rax, rdx);                            // get shift value
1470   __ lshl(rdx, rax);
1471 #endif
1472 }
1473 
1474 void TemplateTable::lshr() {
1475 #ifdef _LP64
1476   transition(itos, ltos);
1477   __ movl(rcx, rax);                             // get shift count
1478   __ pop_l(rax);                                 // get shift value
1479   __ sarq(rax);
1480 #else
1481   transition(itos, ltos);
1482   __ mov(rcx, rax);                              // get shift count
1483   __ pop_l(rax, rdx);                            // get shift value
1484   __ lshr(rdx, rax, true);
1485 #endif
1486 }
1487 
1488 void TemplateTable::lushr() {
1489   transition(itos, ltos);
1490 #ifdef _LP64
1491   __ movl(rcx, rax);                             // get shift count
1492   __ pop_l(rax);                                 // get shift value
1493   __ shrq(rax);
1494 #else
1495   __ mov(rcx, rax);                              // get shift count
1496   __ pop_l(rax, rdx);                            // get shift value
1497   __ lshr(rdx, rax);
1498 #endif
1499 }
1500 
1501 void TemplateTable::fop2(Operation op) {
1502   transition(ftos, ftos);
1503 
1504   if (UseSSE >= 1) {
1505     switch (op) {
1506     case add:
1507       __ addss(xmm0, at_rsp());
1508       __ addptr(rsp, Interpreter::stackElementSize);
1509       break;
1510     case sub:
1511       __ movflt(xmm1, xmm0);
1512       __ pop_f(xmm0);
1513       __ subss(xmm0, xmm1);
1514       break;
1515     case mul:
1516       __ mulss(xmm0, at_rsp());
1517       __ addptr(rsp, Interpreter::stackElementSize);
1518       break;
1519     case div:
1520       __ movflt(xmm1, xmm0);
1521       __ pop_f(xmm0);
1522       __ divss(xmm0, xmm1);
1523       break;
1524     case rem:
1525       // On x86_64 platforms the SharedRuntime::frem method is called to perform the
1526       // modulo operation. The frem method calls the function
1527       // double fmod(double x, double y) in math.h. The documentation of fmod states:
1528       // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN
1529       // (signalling or quiet) is returned.
1530       //
1531       // On x86_32 platforms the FPU is used to perform the modulo operation. The
1532       // reason is that on 32-bit Windows the sign of modulo operations diverges from
1533       // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f).
1534       // The fprem instruction used on x86_32 is functionally equivalent to
1535       // SharedRuntime::frem in that it returns a NaN.
1536 #ifdef _LP64
1537       __ movflt(xmm1, xmm0);
1538       __ pop_f(xmm0);
1539       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1540 #else
1541       __ push_f(xmm0);
1542       __ pop_f();
1543       __ fld_s(at_rsp());
1544       __ fremr(rax);
1545       __ f2ieee();
1546       __ pop(rax);  // pop second operand off the stack
1547       __ push_f();
1548       __ pop_f(xmm0);
1549 #endif
1550       break;
1551     default:
1552       ShouldNotReachHere();
1553       break;
1554     }
1555   } else {
1556 #ifdef _LP64
1557     ShouldNotReachHere();
1558 #else
1559     switch (op) {
1560     case add: __ fadd_s (at_rsp());                break;
1561     case sub: __ fsubr_s(at_rsp());                break;
1562     case mul: __ fmul_s (at_rsp());                break;
1563     case div: __ fdivr_s(at_rsp());                break;
1564     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
1565     default : ShouldNotReachHere();
1566     }
1567     __ f2ieee();
1568     __ pop(rax);  // pop second operand off the stack
1569 #endif // _LP64
1570   }
1571 }
1572 
1573 void TemplateTable::dop2(Operation op) {
1574   transition(dtos, dtos);
1575   if (UseSSE >= 2) {
1576     switch (op) {
1577     case add:
1578       __ addsd(xmm0, at_rsp());
1579       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1580       break;
1581     case sub:
1582       __ movdbl(xmm1, xmm0);
1583       __ pop_d(xmm0);
1584       __ subsd(xmm0, xmm1);
1585       break;
1586     case mul:
1587       __ mulsd(xmm0, at_rsp());
1588       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1589       break;
1590     case div:
1591       __ movdbl(xmm1, xmm0);
1592       __ pop_d(xmm0);
1593       __ divsd(xmm0, xmm1);
1594       break;
1595     case rem:
1596       // Similar to fop2(), the modulo operation is performed using the
1597       // SharedRuntime::drem method (on x86_64 platforms) or using the
1598       // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2().
1599 #ifdef _LP64
1600       __ movdbl(xmm1, xmm0);
1601       __ pop_d(xmm0);
1602       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1603 #else
1604       __ push_d(xmm0);
1605       __ pop_d();
1606       __ fld_d(at_rsp());
1607       __ fremr(rax);
1608       __ d2ieee();
1609       __ pop(rax);
1610       __ pop(rdx);
1611       __ push_d();
1612       __ pop_d(xmm0);
1613 #endif
1614       break;
1615     default:
1616       ShouldNotReachHere();
1617       break;
1618     }
1619   } else {
1620 #ifdef _LP64
1621     ShouldNotReachHere();
1622 #else
1623     switch (op) {
1624     case add: __ fadd_d (at_rsp());                break;
1625     case sub: __ fsubr_d(at_rsp());                break;
1626     case mul: {
1627       Label L_strict;
1628       Label L_join;
1629       const Address access_flags      (rcx, Method::access_flags_offset());
1630       __ get_method(rcx);
1631       __ movl(rcx, access_flags);
1632       __ testl(rcx, JVM_ACC_STRICT);
1633       __ jccb(Assembler::notZero, L_strict);
1634       __ fmul_d (at_rsp());
1635       __ jmpb(L_join);
1636       __ bind(L_strict);
1637       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1638       __ fmulp();
1639       __ fmul_d (at_rsp());
1640       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1641       __ fmulp();
1642       __ bind(L_join);
1643       break;
1644     }
1645     case div: {
1646       Label L_strict;
1647       Label L_join;
1648       const Address access_flags      (rcx, Method::access_flags_offset());
1649       __ get_method(rcx);
1650       __ movl(rcx, access_flags);
1651       __ testl(rcx, JVM_ACC_STRICT);
1652       __ jccb(Assembler::notZero, L_strict);
1653       __ fdivr_d(at_rsp());
1654       __ jmp(L_join);
1655       __ bind(L_strict);
1656       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1657       __ fmul_d (at_rsp());
1658       __ fdivrp();
1659       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1660       __ fmulp();
1661       __ bind(L_join);
1662       break;
1663     }
1664     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
1665     default : ShouldNotReachHere();
1666     }
1667     __ d2ieee();
1668     // Pop double precision number from rsp.
1669     __ pop(rax);
1670     __ pop(rdx);
1671 #endif
1672   }
1673 }
1674 
1675 void TemplateTable::ineg() {
1676   transition(itos, itos);
1677   __ negl(rax);
1678 }
1679 
1680 void TemplateTable::lneg() {
1681   transition(ltos, ltos);
1682   LP64_ONLY(__ negq(rax));
1683   NOT_LP64(__ lneg(rdx, rax));
1684 }
1685 
1686 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1687 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1688   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1689   // of 128-bits operands for SSE instructions.
1690   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1691   // Store the value to a 128-bits operand.
1692   operand[0] = lo;
1693   operand[1] = hi;
1694   return operand;
1695 }
1696 
1697 // Buffer for 128-bits masks used by SSE instructions.
1698 static jlong float_signflip_pool[2*2];
1699 static jlong double_signflip_pool[2*2];
1700 
1701 void TemplateTable::fneg() {
1702   transition(ftos, ftos);
1703   if (UseSSE >= 1) {
1704     static jlong *float_signflip  = double_quadword(&float_signflip_pool[1],  CONST64(0x8000000080000000),  CONST64(0x8000000080000000));
1705     __ xorps(xmm0, ExternalAddress((address) float_signflip));
1706   } else {
1707     LP64_ONLY(ShouldNotReachHere());
1708     NOT_LP64(__ fchs());
1709   }
1710 }
1711 
1712 void TemplateTable::dneg() {
1713   transition(dtos, dtos);
1714   if (UseSSE >= 2) {
1715     static jlong *double_signflip =
1716       double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
1717     __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1718   } else {
1719 #ifdef _LP64
1720     ShouldNotReachHere();
1721 #else
1722     __ fchs();
1723 #endif
1724   }
1725 }
1726 
1727 void TemplateTable::iinc() {
1728   transition(vtos, vtos);
1729   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1730   locals_index(rbx);
1731   __ addl(iaddress(rbx), rdx);
1732 }
1733 
1734 void TemplateTable::wide_iinc() {
1735   transition(vtos, vtos);
1736   __ movl(rdx, at_bcp(4)); // get constant
1737   locals_index_wide(rbx);
1738   __ bswapl(rdx); // swap bytes & sign-extend constant
1739   __ sarl(rdx, 16);
1740   __ addl(iaddress(rbx), rdx);
1741   // Note: should probably use only one movl to get both
1742   //       the index and the constant -> fix this
1743 }
1744 
1745 void TemplateTable::convert() {
1746 #ifdef _LP64
1747   // Checking
1748 #ifdef ASSERT
1749   {
1750     TosState tos_in  = ilgl;
1751     TosState tos_out = ilgl;
1752     switch (bytecode()) {
1753     case Bytecodes::_i2l: // fall through
1754     case Bytecodes::_i2f: // fall through
1755     case Bytecodes::_i2d: // fall through
1756     case Bytecodes::_i2b: // fall through
1757     case Bytecodes::_i2c: // fall through
1758     case Bytecodes::_i2s: tos_in = itos; break;
1759     case Bytecodes::_l2i: // fall through
1760     case Bytecodes::_l2f: // fall through
1761     case Bytecodes::_l2d: tos_in = ltos; break;
1762     case Bytecodes::_f2i: // fall through
1763     case Bytecodes::_f2l: // fall through
1764     case Bytecodes::_f2d: tos_in = ftos; break;
1765     case Bytecodes::_d2i: // fall through
1766     case Bytecodes::_d2l: // fall through
1767     case Bytecodes::_d2f: tos_in = dtos; break;
1768     default             : ShouldNotReachHere();
1769     }
1770     switch (bytecode()) {
1771     case Bytecodes::_l2i: // fall through
1772     case Bytecodes::_f2i: // fall through
1773     case Bytecodes::_d2i: // fall through
1774     case Bytecodes::_i2b: // fall through
1775     case Bytecodes::_i2c: // fall through
1776     case Bytecodes::_i2s: tos_out = itos; break;
1777     case Bytecodes::_i2l: // fall through
1778     case Bytecodes::_f2l: // fall through
1779     case Bytecodes::_d2l: tos_out = ltos; break;
1780     case Bytecodes::_i2f: // fall through
1781     case Bytecodes::_l2f: // fall through
1782     case Bytecodes::_d2f: tos_out = ftos; break;
1783     case Bytecodes::_i2d: // fall through
1784     case Bytecodes::_l2d: // fall through
1785     case Bytecodes::_f2d: tos_out = dtos; break;
1786     default             : ShouldNotReachHere();
1787     }
1788     transition(tos_in, tos_out);
1789   }
1790 #endif // ASSERT
1791 
1792   static const int64_t is_nan = 0x8000000000000000L;
1793 
1794   // Conversion
1795   switch (bytecode()) {
1796   case Bytecodes::_i2l:
1797     __ movslq(rax, rax);
1798     break;
1799   case Bytecodes::_i2f:
1800     __ cvtsi2ssl(xmm0, rax);
1801     break;
1802   case Bytecodes::_i2d:
1803     __ cvtsi2sdl(xmm0, rax);
1804     break;
1805   case Bytecodes::_i2b:
1806     __ movsbl(rax, rax);
1807     break;
1808   case Bytecodes::_i2c:
1809     __ movzwl(rax, rax);
1810     break;
1811   case Bytecodes::_i2s:
1812     __ movswl(rax, rax);
1813     break;
1814   case Bytecodes::_l2i:
1815     __ movl(rax, rax);
1816     break;
1817   case Bytecodes::_l2f:
1818     __ cvtsi2ssq(xmm0, rax);
1819     break;
1820   case Bytecodes::_l2d:
1821     __ cvtsi2sdq(xmm0, rax);
1822     break;
1823   case Bytecodes::_f2i:
1824   {
1825     Label L;
1826     __ cvttss2sil(rax, xmm0);
1827     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1828     __ jcc(Assembler::notEqual, L);
1829     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1830     __ bind(L);
1831   }
1832     break;
1833   case Bytecodes::_f2l:
1834   {
1835     Label L;
1836     __ cvttss2siq(rax, xmm0);
1837     // NaN or overflow/underflow?
1838     __ cmp64(rax, ExternalAddress((address) &is_nan));
1839     __ jcc(Assembler::notEqual, L);
1840     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1841     __ bind(L);
1842   }
1843     break;
1844   case Bytecodes::_f2d:
1845     __ cvtss2sd(xmm0, xmm0);
1846     break;
1847   case Bytecodes::_d2i:
1848   {
1849     Label L;
1850     __ cvttsd2sil(rax, xmm0);
1851     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1852     __ jcc(Assembler::notEqual, L);
1853     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1854     __ bind(L);
1855   }
1856     break;
1857   case Bytecodes::_d2l:
1858   {
1859     Label L;
1860     __ cvttsd2siq(rax, xmm0);
1861     // NaN or overflow/underflow?
1862     __ cmp64(rax, ExternalAddress((address) &is_nan));
1863     __ jcc(Assembler::notEqual, L);
1864     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1865     __ bind(L);
1866   }
1867     break;
1868   case Bytecodes::_d2f:
1869     __ cvtsd2ss(xmm0, xmm0);
1870     break;
1871   default:
1872     ShouldNotReachHere();
1873   }
1874 #else
1875   // Checking
1876 #ifdef ASSERT
1877   { TosState tos_in  = ilgl;
1878     TosState tos_out = ilgl;
1879     switch (bytecode()) {
1880       case Bytecodes::_i2l: // fall through
1881       case Bytecodes::_i2f: // fall through
1882       case Bytecodes::_i2d: // fall through
1883       case Bytecodes::_i2b: // fall through
1884       case Bytecodes::_i2c: // fall through
1885       case Bytecodes::_i2s: tos_in = itos; break;
1886       case Bytecodes::_l2i: // fall through
1887       case Bytecodes::_l2f: // fall through
1888       case Bytecodes::_l2d: tos_in = ltos; break;
1889       case Bytecodes::_f2i: // fall through
1890       case Bytecodes::_f2l: // fall through
1891       case Bytecodes::_f2d: tos_in = ftos; break;
1892       case Bytecodes::_d2i: // fall through
1893       case Bytecodes::_d2l: // fall through
1894       case Bytecodes::_d2f: tos_in = dtos; break;
1895       default             : ShouldNotReachHere();
1896     }
1897     switch (bytecode()) {
1898       case Bytecodes::_l2i: // fall through
1899       case Bytecodes::_f2i: // fall through
1900       case Bytecodes::_d2i: // fall through
1901       case Bytecodes::_i2b: // fall through
1902       case Bytecodes::_i2c: // fall through
1903       case Bytecodes::_i2s: tos_out = itos; break;
1904       case Bytecodes::_i2l: // fall through
1905       case Bytecodes::_f2l: // fall through
1906       case Bytecodes::_d2l: tos_out = ltos; break;
1907       case Bytecodes::_i2f: // fall through
1908       case Bytecodes::_l2f: // fall through
1909       case Bytecodes::_d2f: tos_out = ftos; break;
1910       case Bytecodes::_i2d: // fall through
1911       case Bytecodes::_l2d: // fall through
1912       case Bytecodes::_f2d: tos_out = dtos; break;
1913       default             : ShouldNotReachHere();
1914     }
1915     transition(tos_in, tos_out);
1916   }
1917 #endif // ASSERT
1918 
1919   // Conversion
1920   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
1921   switch (bytecode()) {
1922     case Bytecodes::_i2l:
1923       __ extend_sign(rdx, rax);
1924       break;
1925     case Bytecodes::_i2f:
1926       if (UseSSE >= 1) {
1927         __ cvtsi2ssl(xmm0, rax);
1928       } else {
1929         __ push(rax);          // store int on tos
1930         __ fild_s(at_rsp());   // load int to ST0
1931         __ f2ieee();           // truncate to float size
1932         __ pop(rcx);           // adjust rsp
1933       }
1934       break;
1935     case Bytecodes::_i2d:
1936       if (UseSSE >= 2) {
1937         __ cvtsi2sdl(xmm0, rax);
1938       } else {
1939       __ push(rax);          // add one slot for d2ieee()
1940       __ push(rax);          // store int on tos
1941       __ fild_s(at_rsp());   // load int to ST0
1942       __ d2ieee();           // truncate to double size
1943       __ pop(rcx);           // adjust rsp
1944       __ pop(rcx);
1945       }
1946       break;
1947     case Bytecodes::_i2b:
1948       __ shll(rax, 24);      // truncate upper 24 bits
1949       __ sarl(rax, 24);      // and sign-extend byte
1950       LP64_ONLY(__ movsbl(rax, rax));
1951       break;
1952     case Bytecodes::_i2c:
1953       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
1954       LP64_ONLY(__ movzwl(rax, rax));
1955       break;
1956     case Bytecodes::_i2s:
1957       __ shll(rax, 16);      // truncate upper 16 bits
1958       __ sarl(rax, 16);      // and sign-extend short
1959       LP64_ONLY(__ movswl(rax, rax));
1960       break;
1961     case Bytecodes::_l2i:
1962       /* nothing to do */
1963       break;
1964     case Bytecodes::_l2f:
1965       // On 64-bit platforms, the cvtsi2ssq instruction is used to convert
1966       // 64-bit long values to floats. On 32-bit platforms it is not possible
1967       // to use that instruction with 64-bit operands, therefore the FPU is
1968       // used to perform the conversion.
1969       __ push(rdx);          // store long on tos
1970       __ push(rax);
1971       __ fild_d(at_rsp());   // load long to ST0
1972       __ f2ieee();           // truncate to float size
1973       __ pop(rcx);           // adjust rsp
1974       __ pop(rcx);
1975       if (UseSSE >= 1) {
1976         __ push_f();
1977         __ pop_f(xmm0);
1978       }
1979       break;
1980     case Bytecodes::_l2d:
1981       // On 32-bit platforms the FPU is used for conversion because on
1982       // 32-bit platforms it is not not possible to use the cvtsi2sdq
1983       // instruction with 64-bit operands.
1984       __ push(rdx);          // store long on tos
1985       __ push(rax);
1986       __ fild_d(at_rsp());   // load long to ST0
1987       __ d2ieee();           // truncate to double size
1988       __ pop(rcx);           // adjust rsp
1989       __ pop(rcx);
1990       if (UseSSE >= 2) {
1991         __ push_d();
1992         __ pop_d(xmm0);
1993       }
1994       break;
1995     case Bytecodes::_f2i:
1996       // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs
1997       // as it returns 0 for any NaN.
1998       if (UseSSE >= 1) {
1999         __ push_f(xmm0);
2000       } else {
2001         __ push(rcx);          // reserve space for argument
2002         __ fstp_s(at_rsp());   // pass float argument on stack
2003       }
2004       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
2005       break;
2006     case Bytecodes::_f2l:
2007       // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs
2008       // as it returns 0 for any NaN.
2009       if (UseSSE >= 1) {
2010        __ push_f(xmm0);
2011       } else {
2012         __ push(rcx);          // reserve space for argument
2013         __ fstp_s(at_rsp());   // pass float argument on stack
2014       }
2015       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
2016       break;
2017     case Bytecodes::_f2d:
2018       if (UseSSE < 1) {
2019         /* nothing to do */
2020       } else if (UseSSE == 1) {
2021         __ push_f(xmm0);
2022         __ pop_f();
2023       } else { // UseSSE >= 2
2024         __ cvtss2sd(xmm0, xmm0);
2025       }
2026       break;
2027     case Bytecodes::_d2i:
2028       if (UseSSE >= 2) {
2029         __ push_d(xmm0);
2030       } else {
2031         __ push(rcx);          // reserve space for argument
2032         __ push(rcx);
2033         __ fstp_d(at_rsp());   // pass double argument on stack
2034       }
2035       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
2036       break;
2037     case Bytecodes::_d2l:
2038       if (UseSSE >= 2) {
2039         __ push_d(xmm0);
2040       } else {
2041         __ push(rcx);          // reserve space for argument
2042         __ push(rcx);
2043         __ fstp_d(at_rsp());   // pass double argument on stack
2044       }
2045       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
2046       break;
2047     case Bytecodes::_d2f:
2048       if (UseSSE <= 1) {
2049         __ push(rcx);          // reserve space for f2ieee()
2050         __ f2ieee();           // truncate to float size
2051         __ pop(rcx);           // adjust rsp
2052         if (UseSSE == 1) {
2053           // The cvtsd2ss instruction is not available if UseSSE==1, therefore
2054           // the conversion is performed using the FPU in this case.
2055           __ push_f();
2056           __ pop_f(xmm0);
2057         }
2058       } else { // UseSSE >= 2
2059         __ cvtsd2ss(xmm0, xmm0);
2060       }
2061       break;
2062     default             :
2063       ShouldNotReachHere();
2064   }
2065 #endif
2066 }
2067 
2068 void TemplateTable::lcmp() {
2069   transition(ltos, itos);
2070 #ifdef _LP64
2071   Label done;
2072   __ pop_l(rdx);
2073   __ cmpq(rdx, rax);
2074   __ movl(rax, -1);
2075   __ jccb(Assembler::less, done);
2076   __ setb(Assembler::notEqual, rax);
2077   __ movzbl(rax, rax);
2078   __ bind(done);
2079 #else
2080 
2081   // y = rdx:rax
2082   __ pop_l(rbx, rcx);             // get x = rcx:rbx
2083   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
2084   __ mov(rax, rcx);
2085 #endif
2086 }
2087 
2088 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
2089   if ((is_float && UseSSE >= 1) ||
2090       (!is_float && UseSSE >= 2)) {
2091     Label done;
2092     if (is_float) {
2093       // XXX get rid of pop here, use ... reg, mem32
2094       __ pop_f(xmm1);
2095       __ ucomiss(xmm1, xmm0);
2096     } else {
2097       // XXX get rid of pop here, use ... reg, mem64
2098       __ pop_d(xmm1);
2099       __ ucomisd(xmm1, xmm0);
2100     }
2101     if (unordered_result < 0) {
2102       __ movl(rax, -1);
2103       __ jccb(Assembler::parity, done);
2104       __ jccb(Assembler::below, done);
2105       __ setb(Assembler::notEqual, rdx);
2106       __ movzbl(rax, rdx);
2107     } else {
2108       __ movl(rax, 1);
2109       __ jccb(Assembler::parity, done);
2110       __ jccb(Assembler::above, done);
2111       __ movl(rax, 0);
2112       __ jccb(Assembler::equal, done);
2113       __ decrementl(rax);
2114     }
2115     __ bind(done);
2116   } else {
2117 #ifdef _LP64
2118     ShouldNotReachHere();
2119 #else
2120     if (is_float) {
2121       __ fld_s(at_rsp());
2122     } else {
2123       __ fld_d(at_rsp());
2124       __ pop(rdx);
2125     }
2126     __ pop(rcx);
2127     __ fcmp2int(rax, unordered_result < 0);
2128 #endif // _LP64
2129   }
2130 }
2131 
2132 void TemplateTable::branch(bool is_jsr, bool is_wide) {
2133   __ get_method(rcx); // rcx holds method
2134   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
2135                                      // holds bumped taken count
2136 
2137   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
2138                              InvocationCounter::counter_offset();
2139   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
2140                               InvocationCounter::counter_offset();
2141 
2142   // Load up edx with the branch displacement
2143   if (is_wide) {
2144     __ movl(rdx, at_bcp(1));
2145   } else {
2146     __ load_signed_short(rdx, at_bcp(1));
2147   }
2148   __ bswapl(rdx);
2149 
2150   if (!is_wide) {
2151     __ sarl(rdx, 16);
2152   }
2153   LP64_ONLY(__ movl2ptr(rdx, rdx));
2154 
2155   // Handle all the JSR stuff here, then exit.
2156   // It's much shorter and cleaner than intermingling with the non-JSR
2157   // normal-branch stuff occurring below.
2158   if (is_jsr) {
2159     // Pre-load the next target bytecode into rbx
2160     __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0));
2161 
2162     // compute return address as bci in rax
2163     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
2164                         in_bytes(ConstMethod::codes_offset())));
2165     __ subptr(rax, Address(rcx, Method::const_offset()));
2166     // Adjust the bcp in r13 by the displacement in rdx
2167     __ addptr(rbcp, rdx);
2168     // jsr returns atos that is not an oop
2169     __ push_i(rax);
2170     __ dispatch_only(vtos, true);
2171     return;
2172   }
2173 
2174   // Normal (non-jsr) branch handling
2175 
2176   // Adjust the bcp in r13 by the displacement in rdx
2177   __ addptr(rbcp, rdx);
2178 
2179   assert(UseLoopCounter || !UseOnStackReplacement,
2180          "on-stack-replacement requires loop counters");
2181   Label backedge_counter_overflow;
2182   Label profile_method;
2183   Label dispatch;
2184   if (UseLoopCounter) {
2185     // increment backedge counter for backward branches
2186     // rax: MDO
2187     // rbx: MDO bumped taken-count
2188     // rcx: method
2189     // rdx: target offset
2190     // r13: target bcp
2191     // r14: locals pointer
2192     __ testl(rdx, rdx);             // check if forward or backward branch
2193     __ jcc(Assembler::positive, dispatch); // count only if backward branch
2194 
2195     // check if MethodCounters exists
2196     Label has_counters;
2197     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2198     __ testptr(rax, rax);
2199     __ jcc(Assembler::notZero, has_counters);
2200     __ push(rdx);
2201     __ push(rcx);
2202     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
2203                rcx);
2204     __ pop(rcx);
2205     __ pop(rdx);
2206     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2207     __ testptr(rax, rax);
2208     __ jcc(Assembler::zero, dispatch);
2209     __ bind(has_counters);
2210 
2211     if (TieredCompilation) {
2212       Label no_mdo;
2213       int increment = InvocationCounter::count_increment;
2214       if (ProfileInterpreter) {
2215         // Are we profiling?
2216         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
2217         __ testptr(rbx, rbx);
2218         __ jccb(Assembler::zero, no_mdo);
2219         // Increment the MDO backedge counter
2220         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
2221                                            in_bytes(InvocationCounter::counter_offset()));
2222         const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
2223         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
2224                                    rax, false, Assembler::zero, &backedge_counter_overflow);
2225         __ jmp(dispatch);
2226       }
2227       __ bind(no_mdo);
2228       // Increment backedge counter in MethodCounters*
2229       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2230       const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
2231       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
2232                                  rax, false, Assembler::zero, &backedge_counter_overflow);
2233     } else { // not TieredCompilation
2234       // increment counter
2235       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2236       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
2237       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
2238       __ movl(Address(rcx, be_offset), rax);        // store counter
2239 
2240       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
2241 
2242       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
2243       __ addl(rax, Address(rcx, be_offset));        // add both counters
2244 
2245       if (ProfileInterpreter) {
2246         // Test to see if we should create a method data oop
2247         __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
2248         __ jcc(Assembler::less, dispatch);
2249 
2250         // if no method data exists, go to profile method
2251         __ test_method_data_pointer(rax, profile_method);
2252 
2253         if (UseOnStackReplacement) {
2254           // check for overflow against rbx which is the MDO taken count
2255           __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
2256           __ jcc(Assembler::below, dispatch);
2257 
2258           // When ProfileInterpreter is on, the backedge_count comes
2259           // from the MethodData*, which value does not get reset on
2260           // the call to frequency_counter_overflow().  To avoid
2261           // excessive calls to the overflow routine while the method is
2262           // being compiled, add a second test to make sure the overflow
2263           // function is called only once every overflow_frequency.
2264           const int overflow_frequency = 1024;
2265           __ andl(rbx, overflow_frequency - 1);
2266           __ jcc(Assembler::zero, backedge_counter_overflow);
2267 
2268         }
2269       } else {
2270         if (UseOnStackReplacement) {
2271           // check for overflow against rax, which is the sum of the
2272           // counters
2273           __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
2274           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
2275 
2276         }
2277       }
2278     }
2279     __ bind(dispatch);
2280   }
2281 
2282   // Pre-load the next target bytecode into rbx
2283   __ load_unsigned_byte(rbx, Address(rbcp, 0));
2284 
2285   // continue with the bytecode @ target
2286   // rax: return bci for jsr's, unused otherwise
2287   // rbx: target bytecode
2288   // r13: target bcp
2289   __ dispatch_only(vtos, true);
2290 
2291   if (UseLoopCounter) {
2292     if (ProfileInterpreter) {
2293       // Out-of-line code to allocate method data oop.
2294       __ bind(profile_method);
2295       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
2296       __ set_method_data_pointer_for_bcp();
2297       __ jmp(dispatch);
2298     }
2299 
2300     if (UseOnStackReplacement) {
2301       // invocation counter overflow
2302       __ bind(backedge_counter_overflow);
2303       __ negptr(rdx);
2304       __ addptr(rdx, rbcp); // branch bcp
2305       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
2306       __ call_VM(noreg,
2307                  CAST_FROM_FN_PTR(address,
2308                                   InterpreterRuntime::frequency_counter_overflow),
2309                  rdx);
2310 
2311       // rax: osr nmethod (osr ok) or NULL (osr not possible)
2312       // rdx: scratch
2313       // r14: locals pointer
2314       // r13: bcp
2315       __ testptr(rax, rax);                        // test result
2316       __ jcc(Assembler::zero, dispatch);         // no osr if null
2317       // nmethod may have been invalidated (VM may block upon call_VM return)
2318       __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
2319       __ jcc(Assembler::notEqual, dispatch);
2320 
2321       // We have the address of an on stack replacement routine in rax.
2322       // In preparation of invoking it, first we must migrate the locals
2323       // and monitors from off the interpreter frame on the stack.
2324       // Ensure to save the osr nmethod over the migration call,
2325       // it will be preserved in rbx.
2326       __ mov(rbx, rax);
2327 
2328       NOT_LP64(__ get_thread(rcx));
2329 
2330       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
2331 
2332       // rax is OSR buffer, move it to expected parameter location
2333       LP64_ONLY(__ mov(j_rarg0, rax));
2334       NOT_LP64(__ mov(rcx, rax));
2335       // We use j_rarg definitions here so that registers don't conflict as parameter
2336       // registers change across platforms as we are in the midst of a calling
2337       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
2338 
2339       const Register retaddr   = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
2340       const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
2341 
2342       // pop the interpreter frame
2343       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
2344       __ leave();                                // remove frame anchor
2345       __ pop(retaddr);                           // get return address
2346       __ mov(rsp, sender_sp);                   // set sp to sender sp
2347       // Ensure compiled code always sees stack at proper alignment
2348       __ andptr(rsp, -(StackAlignmentInBytes));
2349 
2350       // unlike x86 we need no specialized return from compiled code
2351       // to the interpreter or the call stub.
2352 
2353       // push the return address
2354       __ push(retaddr);
2355 
2356       // and begin the OSR nmethod
2357       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
2358     }
2359   }
2360 }
2361 
2362 void TemplateTable::if_0cmp(Condition cc) {
2363   transition(itos, vtos);
2364   // assume branch is more often taken than not (loops use backward branches)
2365   Label not_taken;
2366   __ testl(rax, rax);
2367   __ jcc(j_not(cc), not_taken);
2368   branch(false, false);
2369   __ bind(not_taken);
2370   __ profile_not_taken_branch(rax);
2371 }
2372 
2373 void TemplateTable::if_icmp(Condition cc) {
2374   transition(itos, vtos);
2375   // assume branch is more often taken than not (loops use backward branches)
2376   Label not_taken;
2377   __ pop_i(rdx);
2378   __ cmpl(rdx, rax);
2379   __ jcc(j_not(cc), not_taken);
2380   branch(false, false);
2381   __ bind(not_taken);
2382   __ profile_not_taken_branch(rax);
2383 }
2384 
2385 void TemplateTable::if_nullcmp(Condition cc) {
2386   transition(atos, vtos);
2387   // assume branch is more often taken than not (loops use backward branches)
2388   Label not_taken;
2389   __ testptr(rax, rax);
2390   __ jcc(j_not(cc), not_taken);
2391   branch(false, false);
2392   __ bind(not_taken);
2393   __ profile_not_taken_branch(rax);
2394 }
2395 
2396 void TemplateTable::if_acmp(Condition cc) {
2397   transition(atos, vtos);
2398   // assume branch is more often taken than not (loops use backward branches)
2399   Label not_taken;
2400   __ pop_ptr(rdx);
2401   __ cmpoop(rdx, rax);
2402   __ jcc(j_not(cc), not_taken);
2403   branch(false, false);
2404   __ bind(not_taken);
2405   __ profile_not_taken_branch(rax);
2406 }
2407 
2408 void TemplateTable::ret() {
2409   transition(vtos, vtos);
2410   locals_index(rbx);
2411   LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp
2412   NOT_LP64(__ movptr(rbx, iaddress(rbx)));
2413   __ profile_ret(rbx, rcx);
2414   __ get_method(rax);
2415   __ movptr(rbcp, Address(rax, Method::const_offset()));
2416   __ lea(rbcp, Address(rbcp, rbx, Address::times_1,
2417                       ConstMethod::codes_offset()));
2418   __ dispatch_next(vtos, 0, true);
2419 }
2420 
2421 void TemplateTable::wide_ret() {
2422   transition(vtos, vtos);
2423   locals_index_wide(rbx);
2424   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
2425   __ profile_ret(rbx, rcx);
2426   __ get_method(rax);
2427   __ movptr(rbcp, Address(rax, Method::const_offset()));
2428   __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset()));
2429   __ dispatch_next(vtos, 0, true);
2430 }
2431 
2432 void TemplateTable::tableswitch() {
2433   Label default_case, continue_execution;
2434   transition(itos, vtos);
2435 
2436   // align r13/rsi
2437   __ lea(rbx, at_bcp(BytesPerInt));
2438   __ andptr(rbx, -BytesPerInt);
2439   // load lo & hi
2440   __ movl(rcx, Address(rbx, BytesPerInt));
2441   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
2442   __ bswapl(rcx);
2443   __ bswapl(rdx);
2444   // check against lo & hi
2445   __ cmpl(rax, rcx);
2446   __ jcc(Assembler::less, default_case);
2447   __ cmpl(rax, rdx);
2448   __ jcc(Assembler::greater, default_case);
2449   // lookup dispatch offset
2450   __ subl(rax, rcx);
2451   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
2452   __ profile_switch_case(rax, rbx, rcx);
2453   // continue execution
2454   __ bind(continue_execution);
2455   __ bswapl(rdx);
2456   LP64_ONLY(__ movl2ptr(rdx, rdx));
2457   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2458   __ addptr(rbcp, rdx);
2459   __ dispatch_only(vtos, true);
2460   // handle default
2461   __ bind(default_case);
2462   __ profile_switch_default(rax);
2463   __ movl(rdx, Address(rbx, 0));
2464   __ jmp(continue_execution);
2465 }
2466 
2467 void TemplateTable::lookupswitch() {
2468   transition(itos, itos);
2469   __ stop("lookupswitch bytecode should have been rewritten");
2470 }
2471 
2472 void TemplateTable::fast_linearswitch() {
2473   transition(itos, vtos);
2474   Label loop_entry, loop, found, continue_execution;
2475   // bswap rax so we can avoid bswapping the table entries
2476   __ bswapl(rax);
2477   // align r13
2478   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2479                                     // this instruction (change offsets
2480                                     // below)
2481   __ andptr(rbx, -BytesPerInt);
2482   // set counter
2483   __ movl(rcx, Address(rbx, BytesPerInt));
2484   __ bswapl(rcx);
2485   __ jmpb(loop_entry);
2486   // table search
2487   __ bind(loop);
2488   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
2489   __ jcc(Assembler::equal, found);
2490   __ bind(loop_entry);
2491   __ decrementl(rcx);
2492   __ jcc(Assembler::greaterEqual, loop);
2493   // default case
2494   __ profile_switch_default(rax);
2495   __ movl(rdx, Address(rbx, 0));
2496   __ jmp(continue_execution);
2497   // entry found -> get offset
2498   __ bind(found);
2499   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
2500   __ profile_switch_case(rcx, rax, rbx);
2501   // continue execution
2502   __ bind(continue_execution);
2503   __ bswapl(rdx);
2504   __ movl2ptr(rdx, rdx);
2505   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2506   __ addptr(rbcp, rdx);
2507   __ dispatch_only(vtos, true);
2508 }
2509 
2510 void TemplateTable::fast_binaryswitch() {
2511   transition(itos, vtos);
2512   // Implementation using the following core algorithm:
2513   //
2514   // int binary_search(int key, LookupswitchPair* array, int n) {
2515   //   // Binary search according to "Methodik des Programmierens" by
2516   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2517   //   int i = 0;
2518   //   int j = n;
2519   //   while (i+1 < j) {
2520   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2521   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2522   //     // where a stands for the array and assuming that the (inexisting)
2523   //     // element a[n] is infinitely big.
2524   //     int h = (i + j) >> 1;
2525   //     // i < h < j
2526   //     if (key < array[h].fast_match()) {
2527   //       j = h;
2528   //     } else {
2529   //       i = h;
2530   //     }
2531   //   }
2532   //   // R: a[i] <= key < a[i+1] or Q
2533   //   // (i.e., if key is within array, i is the correct index)
2534   //   return i;
2535   // }
2536 
2537   // Register allocation
2538   const Register key   = rax; // already set (tosca)
2539   const Register array = rbx;
2540   const Register i     = rcx;
2541   const Register j     = rdx;
2542   const Register h     = rdi;
2543   const Register temp  = rsi;
2544 
2545   // Find array start
2546   NOT_LP64(__ save_bcp());
2547 
2548   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2549                                           // get rid of this
2550                                           // instruction (change
2551                                           // offsets below)
2552   __ andptr(array, -BytesPerInt);
2553 
2554   // Initialize i & j
2555   __ xorl(i, i);                            // i = 0;
2556   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
2557 
2558   // Convert j into native byteordering
2559   __ bswapl(j);
2560 
2561   // And start
2562   Label entry;
2563   __ jmp(entry);
2564 
2565   // binary search loop
2566   {
2567     Label loop;
2568     __ bind(loop);
2569     // int h = (i + j) >> 1;
2570     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2571     __ sarl(h, 1);                               // h = (i + j) >> 1;
2572     // if (key < array[h].fast_match()) {
2573     //   j = h;
2574     // } else {
2575     //   i = h;
2576     // }
2577     // Convert array[h].match to native byte-ordering before compare
2578     __ movl(temp, Address(array, h, Address::times_8));
2579     __ bswapl(temp);
2580     __ cmpl(key, temp);
2581     // j = h if (key <  array[h].fast_match())
2582     __ cmov32(Assembler::less, j, h);
2583     // i = h if (key >= array[h].fast_match())
2584     __ cmov32(Assembler::greaterEqual, i, h);
2585     // while (i+1 < j)
2586     __ bind(entry);
2587     __ leal(h, Address(i, 1)); // i+1
2588     __ cmpl(h, j);             // i+1 < j
2589     __ jcc(Assembler::less, loop);
2590   }
2591 
2592   // end of binary search, result index is i (must check again!)
2593   Label default_case;
2594   // Convert array[i].match to native byte-ordering before compare
2595   __ movl(temp, Address(array, i, Address::times_8));
2596   __ bswapl(temp);
2597   __ cmpl(key, temp);
2598   __ jcc(Assembler::notEqual, default_case);
2599 
2600   // entry found -> j = offset
2601   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2602   __ profile_switch_case(i, key, array);
2603   __ bswapl(j);
2604   LP64_ONLY(__ movslq(j, j));
2605 
2606   NOT_LP64(__ restore_bcp());
2607   NOT_LP64(__ restore_locals());                           // restore rdi
2608 
2609   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2610   __ addptr(rbcp, j);
2611   __ dispatch_only(vtos, true);
2612 
2613   // default case -> j = default offset
2614   __ bind(default_case);
2615   __ profile_switch_default(i);
2616   __ movl(j, Address(array, -2 * BytesPerInt));
2617   __ bswapl(j);
2618   LP64_ONLY(__ movslq(j, j));
2619 
2620   NOT_LP64(__ restore_bcp());
2621   NOT_LP64(__ restore_locals());
2622 
2623   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2624   __ addptr(rbcp, j);
2625   __ dispatch_only(vtos, true);
2626 }
2627 
2628 void TemplateTable::_return(TosState state) {
2629   transition(state, state);
2630 
2631   assert(_desc->calls_vm(),
2632          "inconsistent calls_vm information"); // call in remove_activation
2633 
2634   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2635     assert(state == vtos, "only valid state");
2636     Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax);
2637     __ movptr(robj, aaddress(0));
2638     __ load_klass(rdi, robj);
2639     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2640     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2641     Label skip_register_finalizer;
2642     __ jcc(Assembler::zero, skip_register_finalizer);
2643 
2644     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj);
2645 
2646     __ bind(skip_register_finalizer);
2647   }
2648 
2649   if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) {
2650     Label no_safepoint;
2651     NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll"));
2652 #ifdef _LP64
2653     __ testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
2654 #else
2655     const Register thread = rdi;
2656     __ get_thread(thread);
2657     __ testb(Address(thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
2658 #endif
2659     __ jcc(Assembler::zero, no_safepoint);
2660     __ push(state);
2661     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2662                                     InterpreterRuntime::at_safepoint));
2663     __ pop(state);
2664     __ bind(no_safepoint);
2665   }
2666 
2667   // Narrow result if state is itos but result type is smaller.
2668   // Need to narrow in the return bytecode rather than in generate_return_entry
2669   // since compiled code callers expect the result to already be narrowed.
2670   if (state == itos) {
2671     __ narrow(rax);
2672   }
2673   __ remove_activation(state, rbcp);
2674 
2675   __ jmp(rbcp);
2676 }
2677 
2678 // ----------------------------------------------------------------------------
2679 // Volatile variables demand their effects be made known to all CPU's
2680 // in order.  Store buffers on most chips allow reads & writes to
2681 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2682 // without some kind of memory barrier (i.e., it's not sufficient that
2683 // the interpreter does not reorder volatile references, the hardware
2684 // also must not reorder them).
2685 //
2686 // According to the new Java Memory Model (JMM):
2687 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2688 //     writes act as aquire & release, so:
2689 // (2) A read cannot let unrelated NON-volatile memory refs that
2690 //     happen after the read float up to before the read.  It's OK for
2691 //     non-volatile memory refs that happen before the volatile read to
2692 //     float down below it.
2693 // (3) Similar a volatile write cannot let unrelated NON-volatile
2694 //     memory refs that happen BEFORE the write float down to after the
2695 //     write.  It's OK for non-volatile memory refs that happen after the
2696 //     volatile write to float up before it.
2697 //
2698 // We only put in barriers around volatile refs (they are expensive),
2699 // not _between_ memory refs (that would require us to track the
2700 // flavor of the previous memory refs).  Requirements (2) and (3)
2701 // require some barriers before volatile stores and after volatile
2702 // loads.  These nearly cover requirement (1) but miss the
2703 // volatile-store-volatile-load case.  This final case is placed after
2704 // volatile-stores although it could just as well go before
2705 // volatile-loads.
2706 
2707 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2708   // Helper function to insert a is-volatile test and memory barrier
2709   if(!os::is_MP()) return;    // Not needed on single CPU
2710   __ membar(order_constraint);
2711 }
2712 
2713 void TemplateTable::resolve_cache_and_index(int byte_no,
2714                                             Register Rcache,
2715                                             Register index,
2716                                             size_t index_size) {
2717   const Register temp = rbx;
2718   assert_different_registers(Rcache, index, temp);
2719 
2720   Label resolved;
2721 
2722   Bytecodes::Code code = bytecode();
2723   switch (code) {
2724   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2725   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2726   default: break;
2727   }
2728 
2729   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2730   __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2731   __ cmpl(temp, code);  // have we resolved this bytecode?
2732   __ jcc(Assembler::equal, resolved);
2733 
2734   // resolve first time through
2735   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2736   __ movl(temp, code);
2737   __ call_VM(noreg, entry, temp);
2738   // Update registers with resolved info
2739   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2740   __ bind(resolved);
2741 }
2742 
2743 // The cache and index registers must be set before call
2744 void TemplateTable::load_field_cp_cache_entry(Register obj,
2745                                               Register cache,
2746                                               Register index,
2747                                               Register off,
2748                                               Register flags,
2749                                               bool is_static = false) {
2750   assert_different_registers(cache, index, flags, off);
2751 
2752   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2753   // Field offset
2754   __ movptr(off, Address(cache, index, Address::times_ptr,
2755                          in_bytes(cp_base_offset +
2756                                   ConstantPoolCacheEntry::f2_offset())));
2757   // Flags
2758   __ movl(flags, Address(cache, index, Address::times_ptr,
2759                          in_bytes(cp_base_offset +
2760                                   ConstantPoolCacheEntry::flags_offset())));
2761 
2762   // klass overwrite register
2763   if (is_static) {
2764     __ movptr(obj, Address(cache, index, Address::times_ptr,
2765                            in_bytes(cp_base_offset +
2766                                     ConstantPoolCacheEntry::f1_offset())));
2767     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2768     __ movptr(obj, Address(obj, mirror_offset));
2769     __ resolve_oop_handle(obj);
2770   }
2771 }
2772 
2773 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2774                                                Register method,
2775                                                Register itable_index,
2776                                                Register flags,
2777                                                bool is_invokevirtual,
2778                                                bool is_invokevfinal, /*unused*/
2779                                                bool is_invokedynamic) {
2780   // setup registers
2781   const Register cache = rcx;
2782   const Register index = rdx;
2783   assert_different_registers(method, flags);
2784   assert_different_registers(method, cache, index);
2785   assert_different_registers(itable_index, flags);
2786   assert_different_registers(itable_index, cache, index);
2787   // determine constant pool cache field offsets
2788   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2789   const int method_offset = in_bytes(
2790     ConstantPoolCache::base_offset() +
2791       ((byte_no == f2_byte)
2792        ? ConstantPoolCacheEntry::f2_offset()
2793        : ConstantPoolCacheEntry::f1_offset()));
2794   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2795                                     ConstantPoolCacheEntry::flags_offset());
2796   // access constant pool cache fields
2797   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2798                                     ConstantPoolCacheEntry::f2_offset());
2799 
2800   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2801   resolve_cache_and_index(byte_no, cache, index, index_size);
2802     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2803 
2804   if (itable_index != noreg) {
2805     // pick up itable or appendix index from f2 also:
2806     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2807   }
2808   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2809 }
2810 
2811 // The registers cache and index expected to be set before call.
2812 // Correct values of the cache and index registers are preserved.
2813 void TemplateTable::jvmti_post_field_access(Register cache,
2814                                             Register index,
2815                                             bool is_static,
2816                                             bool has_tos) {
2817   if (JvmtiExport::can_post_field_access()) {
2818     // Check to see if a field access watch has been set before we take
2819     // the time to call into the VM.
2820     Label L1;
2821     assert_different_registers(cache, index, rax);
2822     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2823     __ testl(rax,rax);
2824     __ jcc(Assembler::zero, L1);
2825 
2826     // cache entry pointer
2827     __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
2828     __ shll(index, LogBytesPerWord);
2829     __ addptr(cache, index);
2830     if (is_static) {
2831       __ xorptr(rax, rax);      // NULL object reference
2832     } else {
2833       __ pop(atos);         // Get the object
2834       __ verify_oop(rax);
2835       __ push(atos);        // Restore stack state
2836     }
2837     // rax,:   object pointer or NULL
2838     // cache: cache entry pointer
2839     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2840                rax, cache);
2841     __ get_cache_and_index_at_bcp(cache, index, 1);
2842     __ bind(L1);
2843   }
2844 }
2845 
2846 void TemplateTable::pop_and_check_object(Register r) {
2847   __ pop_ptr(r);
2848   __ null_check(r);  // for field access must check obj.
2849   __ verify_oop(r);
2850 }
2851 
2852 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2853   transition(vtos, vtos);
2854 
2855   const Register cache = rcx;
2856   const Register index = rdx;
2857   const Register obj   = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
2858   const Register off   = rbx;
2859   const Register flags = rax;
2860   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them
2861 
2862   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2863   jvmti_post_field_access(cache, index, is_static, false);
2864   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2865 
2866   if (!is_static) pop_and_check_object(obj);
2867   __ resolve_for_read(OOP_NOT_NULL, obj);
2868 
2869   const Address field(obj, off, Address::times_1, 0*wordSize);
2870   NOT_LP64(const Address hi(obj, off, Address::times_1, 1*wordSize));
2871 
2872   Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2873 
2874   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2875   // Make sure we don't need to mask edx after the above shift
2876   assert(btos == 0, "change code, btos != 0");
2877 
2878   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2879 
2880   __ jcc(Assembler::notZero, notByte);
2881   // btos
2882   __ load_signed_byte(rax, field);
2883   __ push(btos);
2884   // Rewrite bytecode to be faster
2885   if (!is_static && rc == may_rewrite) {
2886     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2887   }
2888   __ jmp(Done);
2889 
2890   __ bind(notByte);
2891   __ cmpl(flags, ztos);
2892   __ jcc(Assembler::notEqual, notBool);
2893 
2894   // ztos (same code as btos)
2895   __ load_signed_byte(rax, field);
2896   __ push(ztos);
2897   // Rewrite bytecode to be faster
2898   if (!is_static && rc == may_rewrite) {
2899     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2900     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2901   }
2902   __ jmp(Done);
2903 
2904   __ bind(notBool);
2905   __ cmpl(flags, atos);
2906   __ jcc(Assembler::notEqual, notObj);
2907   // atos
2908   do_oop_load(_masm, field, rax);
2909   __ push(atos);
2910   if (!is_static && rc == may_rewrite) {
2911     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2912   }
2913   __ jmp(Done);
2914 
2915   __ bind(notObj);
2916   __ cmpl(flags, itos);
2917   __ jcc(Assembler::notEqual, notInt);
2918   // itos
2919   __ movl(rax, field);
2920   __ push(itos);
2921   // Rewrite bytecode to be faster
2922   if (!is_static && rc == may_rewrite) {
2923     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2924   }
2925   __ jmp(Done);
2926 
2927   __ bind(notInt);
2928   __ cmpl(flags, ctos);
2929   __ jcc(Assembler::notEqual, notChar);
2930   // ctos
2931   __ load_unsigned_short(rax, field);
2932   __ push(ctos);
2933   // Rewrite bytecode to be faster
2934   if (!is_static && rc == may_rewrite) {
2935     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2936   }
2937   __ jmp(Done);
2938 
2939   __ bind(notChar);
2940   __ cmpl(flags, stos);
2941   __ jcc(Assembler::notEqual, notShort);
2942   // stos
2943   __ load_signed_short(rax, field);
2944   __ push(stos);
2945   // Rewrite bytecode to be faster
2946   if (!is_static && rc == may_rewrite) {
2947     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2948   }
2949   __ jmp(Done);
2950 
2951   __ bind(notShort);
2952   __ cmpl(flags, ltos);
2953   __ jcc(Assembler::notEqual, notLong);
2954   // ltos
2955 
2956 #ifndef _LP64
2957   // Generate code as if volatile.  There just aren't enough registers to
2958   // save that information and this code is faster than the test.
2959   __ fild_d(field);                // Must load atomically
2960   __ subptr(rsp,2*wordSize);    // Make space for store
2961   __ fistp_d(Address(rsp,0));
2962   __ pop(rax);
2963   __ pop(rdx);
2964 #else
2965   __ movq(rax, field);
2966 #endif
2967 
2968   __ push(ltos);
2969   // Rewrite bytecode to be faster
2970   LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx));
2971   __ jmp(Done);
2972 
2973   __ bind(notLong);
2974   __ cmpl(flags, ftos);
2975   __ jcc(Assembler::notEqual, notFloat);
2976   // ftos
2977 
2978   __ load_float(field);
2979   __ push(ftos);
2980   // Rewrite bytecode to be faster
2981   if (!is_static && rc == may_rewrite) {
2982     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2983   }
2984   __ jmp(Done);
2985 
2986   __ bind(notFloat);
2987 #ifdef ASSERT
2988   __ cmpl(flags, dtos);
2989   __ jcc(Assembler::notEqual, notDouble);
2990 #endif
2991   // dtos
2992   __ load_double(field);
2993   __ push(dtos);
2994   // Rewrite bytecode to be faster
2995   if (!is_static && rc == may_rewrite) {
2996     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2997   }
2998 #ifdef ASSERT
2999   __ jmp(Done);
3000 
3001 
3002   __ bind(notDouble);
3003   __ stop("Bad state");
3004 #endif
3005 
3006   __ bind(Done);
3007   // [jk] not needed currently
3008   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
3009   //                                              Assembler::LoadStore));
3010 }
3011 
3012 void TemplateTable::getfield(int byte_no) {
3013   getfield_or_static(byte_no, false);
3014 }
3015 
3016 void TemplateTable::nofast_getfield(int byte_no) {
3017   getfield_or_static(byte_no, false, may_not_rewrite);
3018 }
3019 
3020 void TemplateTable::getstatic(int byte_no) {
3021   getfield_or_static(byte_no, true);
3022 }
3023 
3024 
3025 // The registers cache and index expected to be set before call.
3026 // The function may destroy various registers, just not the cache and index registers.
3027 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
3028 
3029   const Register robj = LP64_ONLY(c_rarg2)   NOT_LP64(rax);
3030   const Register RBX  = LP64_ONLY(c_rarg1)   NOT_LP64(rbx);
3031   const Register RCX  = LP64_ONLY(c_rarg3)   NOT_LP64(rcx);
3032   const Register RDX  = LP64_ONLY(rscratch1) NOT_LP64(rdx);
3033 
3034   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3035 
3036   if (JvmtiExport::can_post_field_modification()) {
3037     // Check to see if a field modification watch has been set before
3038     // we take the time to call into the VM.
3039     Label L1;
3040     assert_different_registers(cache, index, rax);
3041     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3042     __ testl(rax, rax);
3043     __ jcc(Assembler::zero, L1);
3044 
3045     __ get_cache_and_index_at_bcp(robj, RDX, 1);
3046 
3047 
3048     if (is_static) {
3049       // Life is simple.  Null out the object pointer.
3050       __ xorl(RBX, RBX);
3051 
3052     } else {
3053       // Life is harder. The stack holds the value on top, followed by
3054       // the object.  We don't know the size of the value, though; it
3055       // could be one or two words depending on its type. As a result,
3056       // we must find the type to determine where the object is.
3057 #ifndef _LP64
3058       Label two_word, valsize_known;
3059 #endif
3060       __ movl(RCX, Address(robj, RDX,
3061                            Address::times_ptr,
3062                            in_bytes(cp_base_offset +
3063                                      ConstantPoolCacheEntry::flags_offset())));
3064       NOT_LP64(__ mov(rbx, rsp));
3065       __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift);
3066 
3067       // Make sure we don't need to mask rcx after the above shift
3068       ConstantPoolCacheEntry::verify_tos_state_shift();
3069 #ifdef _LP64
3070       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
3071       __ cmpl(c_rarg3, ltos);
3072       __ cmovptr(Assembler::equal,
3073                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
3074       __ cmpl(c_rarg3, dtos);
3075       __ cmovptr(Assembler::equal,
3076                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
3077 #else
3078       __ cmpl(rcx, ltos);
3079       __ jccb(Assembler::equal, two_word);
3080       __ cmpl(rcx, dtos);
3081       __ jccb(Assembler::equal, two_word);
3082       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
3083       __ jmpb(valsize_known);
3084 
3085       __ bind(two_word);
3086       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
3087 
3088       __ bind(valsize_known);
3089       // setup object pointer
3090       __ movptr(rbx, Address(rbx, 0));
3091 #endif
3092     }
3093     // cache entry pointer
3094     __ addptr(robj, in_bytes(cp_base_offset));
3095     __ shll(RDX, LogBytesPerWord);
3096     __ addptr(robj, RDX);
3097     // object (tos)
3098     __ mov(RCX, rsp);
3099     // c_rarg1: object pointer set up above (NULL if static)
3100     // c_rarg2: cache entry pointer
3101     // c_rarg3: jvalue object on the stack
3102     __ call_VM(noreg,
3103                CAST_FROM_FN_PTR(address,
3104                                 InterpreterRuntime::post_field_modification),
3105                RBX, robj, RCX);
3106     __ get_cache_and_index_at_bcp(cache, index, 1);
3107     __ bind(L1);
3108   }
3109 }
3110 
3111 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3112   transition(vtos, vtos);
3113 
3114   const Register cache = rcx;
3115   const Register index = rdx;
3116   const Register obj   = rcx;
3117   const Register off   = rbx;
3118   const Register flags = rax;
3119   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3120 
3121   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
3122   jvmti_post_field_mod(cache, index, is_static);
3123   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
3124 
3125   // [jk] not needed currently
3126   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3127   //                                              Assembler::StoreStore));
3128 
3129   Label notVolatile, Done;
3130   __ movl(rdx, flags);
3131   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3132   __ andl(rdx, 0x1);
3133 
3134   // field addresses
3135   const Address field(obj, off, Address::times_1, 0*wordSize);
3136   NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);)
3137 
3138   Label notByte, notBool, notInt, notShort, notChar,
3139         notLong, notFloat, notObj, notDouble;
3140 
3141   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3142 
3143   assert(btos == 0, "change code, btos != 0");
3144   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
3145   __ jcc(Assembler::notZero, notByte);
3146 
3147   // btos
3148   {
3149     __ pop(btos);
3150     if (!is_static) pop_and_check_object(obj);
3151     __ resolve_for_write(OOP_NOT_NULL, obj);
3152     __ movb(field, rax);
3153     if (!is_static && rc == may_rewrite) {
3154       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
3155     }
3156     __ jmp(Done);
3157   }
3158 
3159   __ bind(notByte);
3160   __ cmpl(flags, ztos);
3161   __ jcc(Assembler::notEqual, notBool);
3162 
3163   // ztos
3164   {
3165     __ pop(ztos);
3166     if (!is_static) pop_and_check_object(obj);
3167     __ resolve_for_write(OOP_NOT_NULL, obj);
3168     __ andl(rax, 0x1);
3169     __ movb(field, rax);
3170     if (!is_static && rc == may_rewrite) {
3171       patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
3172     }
3173     __ jmp(Done);
3174   }
3175 
3176   __ bind(notBool);
3177   __ cmpl(flags, atos);
3178   __ jcc(Assembler::notEqual, notObj);
3179 
3180   // atos
3181   {
3182     __ pop(atos);
3183     if (!is_static) pop_and_check_object(obj);
3184     __ resolve_for_write(OOP_NOT_NULL, obj);
3185     // Store into the field
3186     do_oop_store(_masm, field, rax);
3187     if (!is_static && rc == may_rewrite) {
3188       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
3189     }
3190     __ jmp(Done);
3191   }
3192 
3193   __ bind(notObj);
3194   __ cmpl(flags, itos);
3195   __ jcc(Assembler::notEqual, notInt);
3196 
3197   // itos
3198   {
3199     __ pop(itos);
3200     if (!is_static) pop_and_check_object(obj);
3201     __ resolve_for_write(OOP_NOT_NULL, obj);
3202     __ movl(field, rax);
3203     if (!is_static && rc == may_rewrite) {
3204       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
3205     }
3206     __ jmp(Done);
3207   }
3208 
3209   __ bind(notInt);
3210   __ cmpl(flags, ctos);
3211   __ jcc(Assembler::notEqual, notChar);
3212 
3213   // ctos
3214   {
3215     __ pop(ctos);
3216     if (!is_static) pop_and_check_object(obj);
3217     __ resolve_for_write(OOP_NOT_NULL, obj);
3218     __ movw(field, rax);
3219     if (!is_static && rc == may_rewrite) {
3220       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
3221     }
3222     __ jmp(Done);
3223   }
3224 
3225   __ bind(notChar);
3226   __ cmpl(flags, stos);
3227   __ jcc(Assembler::notEqual, notShort);
3228 
3229   // stos
3230   {
3231     __ pop(stos);
3232     if (!is_static) pop_and_check_object(obj);
3233     __ resolve_for_write(OOP_NOT_NULL, obj);
3234     __ movw(field, rax);
3235     if (!is_static && rc == may_rewrite) {
3236       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
3237     }
3238     __ jmp(Done);
3239   }
3240 
3241   __ bind(notShort);
3242   __ cmpl(flags, ltos);
3243   __ jcc(Assembler::notEqual, notLong);
3244 
3245   // ltos
3246 #ifdef _LP64
3247   {
3248     __ pop(ltos);
3249     if (!is_static) pop_and_check_object(obj);
3250     __ resolve_for_write(OOP_NOT_NULL, obj);
3251     __ movq(field, rax);
3252     if (!is_static && rc == may_rewrite) {
3253       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
3254     }
3255     __ jmp(Done);
3256   }
3257 #else
3258   {
3259     Label notVolatileLong;
3260     __ testl(rdx, rdx);
3261     __ jcc(Assembler::zero, notVolatileLong);
3262 
3263     __ pop(ltos);  // overwrites rdx, do this after testing volatile.
3264     if (!is_static) pop_and_check_object(obj);
3265 
3266     // Replace with real volatile test
3267     __ push(rdx);
3268     __ push(rax);                 // Must update atomically with FIST
3269     __ fild_d(Address(rsp,0));    // So load into FPU register
3270     __ fistp_d(field);            // and put into memory atomically
3271     __ addptr(rsp, 2*wordSize);
3272     // volatile_barrier();
3273     volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3274                                                  Assembler::StoreStore));
3275     // Don't rewrite volatile version
3276     __ jmp(notVolatile);
3277 
3278     __ bind(notVolatileLong);
3279 
3280     __ pop(ltos);  // overwrites rdx
3281     if (!is_static) pop_and_check_object(obj);
3282     __ movptr(hi, rdx);
3283     __ movptr(field, rax);
3284     // Don't rewrite to _fast_lputfield for potential volatile case.
3285     __ jmp(notVolatile);
3286   }
3287 #endif // _LP64
3288 
3289   __ bind(notLong);
3290   __ cmpl(flags, ftos);
3291   __ jcc(Assembler::notEqual, notFloat);
3292 
3293   // ftos
3294   {
3295     __ pop(ftos);
3296     if (!is_static) pop_and_check_object(obj);
3297     __ resolve_for_write(OOP_NOT_NULL, obj);
3298     __ store_float(field);
3299     if (!is_static && rc == may_rewrite) {
3300       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
3301     }
3302     __ jmp(Done);
3303   }
3304 
3305   __ bind(notFloat);
3306 #ifdef ASSERT
3307   __ cmpl(flags, dtos);
3308   __ jcc(Assembler::notEqual, notDouble);
3309 #endif
3310 
3311   // dtos
3312   {
3313     __ pop(dtos);
3314     if (!is_static) pop_and_check_object(obj);
3315     __ resolve_for_write(OOP_NOT_NULL, obj);
3316     __ store_double(field);
3317     if (!is_static && rc == may_rewrite) {
3318       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
3319     }
3320   }
3321 
3322 #ifdef ASSERT
3323   __ jmp(Done);
3324 
3325   __ bind(notDouble);
3326   __ stop("Bad state");
3327 #endif
3328 
3329   __ bind(Done);
3330 
3331   // Check for volatile store
3332   __ testl(rdx, rdx);
3333   __ jcc(Assembler::zero, notVolatile);
3334   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3335                                                Assembler::StoreStore));
3336   __ bind(notVolatile);
3337 }
3338 
3339 void TemplateTable::putfield(int byte_no) {
3340   putfield_or_static(byte_no, false);
3341 }
3342 
3343 void TemplateTable::nofast_putfield(int byte_no) {
3344   putfield_or_static(byte_no, false, may_not_rewrite);
3345 }
3346 
3347 void TemplateTable::putstatic(int byte_no) {
3348   putfield_or_static(byte_no, true);
3349 }
3350 
3351 void TemplateTable::jvmti_post_fast_field_mod() {
3352 
3353   const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3354 
3355   if (JvmtiExport::can_post_field_modification()) {
3356     // Check to see if a field modification watch has been set before
3357     // we take the time to call into the VM.
3358     Label L2;
3359     __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3360     __ testl(scratch, scratch);
3361     __ jcc(Assembler::zero, L2);
3362     __ pop_ptr(rbx);                  // copy the object pointer from tos
3363     __ verify_oop(rbx);
3364     __ push_ptr(rbx);                 // put the object pointer back on tos
3365     // Save tos values before call_VM() clobbers them. Since we have
3366     // to do it for every data type, we use the saved values as the
3367     // jvalue object.
3368     switch (bytecode()) {          // load values into the jvalue object
3369     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
3370     case Bytecodes::_fast_bputfield: // fall through
3371     case Bytecodes::_fast_zputfield: // fall through
3372     case Bytecodes::_fast_sputfield: // fall through
3373     case Bytecodes::_fast_cputfield: // fall through
3374     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
3375     case Bytecodes::_fast_dputfield: __ push(dtos); break;
3376     case Bytecodes::_fast_fputfield: __ push(ftos); break;
3377     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
3378 
3379     default:
3380       ShouldNotReachHere();
3381     }
3382     __ mov(scratch, rsp);             // points to jvalue on the stack
3383     // access constant pool cache entry
3384     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1));
3385     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1));
3386     __ verify_oop(rbx);
3387     // rbx: object pointer copied above
3388     // c_rarg2: cache entry pointer
3389     // c_rarg3: jvalue object on the stack
3390     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3));
3391     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx));
3392 
3393     switch (bytecode()) {             // restore tos values
3394     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
3395     case Bytecodes::_fast_bputfield: // fall through
3396     case Bytecodes::_fast_zputfield: // fall through
3397     case Bytecodes::_fast_sputfield: // fall through
3398     case Bytecodes::_fast_cputfield: // fall through
3399     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
3400     case Bytecodes::_fast_dputfield: __ pop(dtos); break;
3401     case Bytecodes::_fast_fputfield: __ pop(ftos); break;
3402     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
3403     default: break;
3404     }
3405     __ bind(L2);
3406   }
3407 }
3408 
3409 void TemplateTable::fast_storefield(TosState state) {
3410   transition(state, vtos);
3411 
3412   ByteSize base = ConstantPoolCache::base_offset();
3413 
3414   jvmti_post_fast_field_mod();
3415 
3416   // access constant pool cache
3417   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3418 
3419   // test for volatile with rdx but rdx is tos register for lputfield.
3420   __ movl(rdx, Address(rcx, rbx, Address::times_ptr,
3421                        in_bytes(base +
3422                                 ConstantPoolCacheEntry::flags_offset())));
3423 
3424   // replace index with field offset from cache entry
3425   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3426                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
3427 
3428   // [jk] not needed currently
3429   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3430   //                                              Assembler::StoreStore));
3431 
3432   Label notVolatile;
3433   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3434   __ andl(rdx, 0x1);
3435 
3436   // Get object from stack
3437   pop_and_check_object(rcx);
3438   __ resolve_for_write(OOP_NOT_NULL, rcx);
3439 
3440   // field address
3441   const Address field(rcx, rbx, Address::times_1);
3442 
3443   // access field
3444   switch (bytecode()) {
3445   case Bytecodes::_fast_aputfield:
3446     do_oop_store(_masm, field, rax);
3447     break;
3448   case Bytecodes::_fast_lputfield:
3449 #ifdef _LP64
3450   __ movq(field, rax);
3451 #else
3452   __ stop("should not be rewritten");
3453 #endif
3454     break;
3455   case Bytecodes::_fast_iputfield:
3456     __ movl(field, rax);
3457     break;
3458   case Bytecodes::_fast_zputfield:
3459     __ andl(rax, 0x1);  // boolean is true if LSB is 1
3460     // fall through to bputfield
3461   case Bytecodes::_fast_bputfield:
3462     __ movb(field, rax);
3463     break;
3464   case Bytecodes::_fast_sputfield:
3465     // fall through
3466   case Bytecodes::_fast_cputfield:
3467     __ movw(field, rax);
3468     break;
3469   case Bytecodes::_fast_fputfield:
3470     __ store_float(field);
3471     break;
3472   case Bytecodes::_fast_dputfield:
3473     __ store_double(field);
3474     break;
3475   default:
3476     ShouldNotReachHere();
3477   }
3478 
3479   // Check for volatile store
3480   __ testl(rdx, rdx);
3481   __ jcc(Assembler::zero, notVolatile);
3482   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3483                                                Assembler::StoreStore));
3484   __ bind(notVolatile);
3485 }
3486 
3487 void TemplateTable::fast_accessfield(TosState state) {
3488   transition(atos, state);
3489 
3490   // Do the JVMTI work here to avoid disturbing the register state below
3491   if (JvmtiExport::can_post_field_access()) {
3492     // Check to see if a field access watch has been set before we
3493     // take the time to call into the VM.
3494     Label L1;
3495     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3496     __ testl(rcx, rcx);
3497     __ jcc(Assembler::zero, L1);
3498     // access constant pool cache entry
3499     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1));
3500     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1));
3501     __ verify_oop(rax);
3502     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
3503     LP64_ONLY(__ mov(c_rarg1, rax));
3504     // c_rarg1: object pointer copied above
3505     // c_rarg2: cache entry pointer
3506     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2));
3507     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx));
3508     __ pop_ptr(rax); // restore object pointer
3509     __ bind(L1);
3510   }
3511 
3512   // access constant pool cache
3513   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3514   // replace index with field offset from cache entry
3515   // [jk] not needed currently
3516   // if (os::is_MP()) {
3517   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
3518   //                        in_bytes(ConstantPoolCache::base_offset() +
3519   //                                 ConstantPoolCacheEntry::flags_offset())));
3520   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3521   //   __ andl(rdx, 0x1);
3522   // }
3523   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3524                          in_bytes(ConstantPoolCache::base_offset() +
3525                                   ConstantPoolCacheEntry::f2_offset())));
3526 
3527   // rax: object
3528   __ verify_oop(rax);
3529   __ null_check(rax);
3530   __ resolve_for_read(OOP_NOT_NULL, rax);
3531   Address field(rax, rbx, Address::times_1);
3532 
3533   // access field
3534   switch (bytecode()) {
3535   case Bytecodes::_fast_agetfield:
3536     do_oop_load(_masm, field, rax);
3537     __ verify_oop(rax);
3538     break;
3539   case Bytecodes::_fast_lgetfield:
3540 #ifdef _LP64
3541   __ movq(rax, field);
3542 #else
3543   __ stop("should not be rewritten");
3544 #endif
3545     break;
3546   case Bytecodes::_fast_igetfield:
3547     __ movl(rax, field);
3548     break;
3549   case Bytecodes::_fast_bgetfield:
3550     __ movsbl(rax, field);
3551     break;
3552   case Bytecodes::_fast_sgetfield:
3553     __ load_signed_short(rax, field);
3554     break;
3555   case Bytecodes::_fast_cgetfield:
3556     __ load_unsigned_short(rax, field);
3557     break;
3558   case Bytecodes::_fast_fgetfield:
3559     __ load_float(field);
3560     break;
3561   case Bytecodes::_fast_dgetfield:
3562     __ load_double(field);
3563     break;
3564   default:
3565     ShouldNotReachHere();
3566   }
3567   // [jk] not needed currently
3568   // if (os::is_MP()) {
3569   //   Label notVolatile;
3570   //   __ testl(rdx, rdx);
3571   //   __ jcc(Assembler::zero, notVolatile);
3572   //   __ membar(Assembler::LoadLoad);
3573   //   __ bind(notVolatile);
3574   //};
3575 }
3576 
3577 void TemplateTable::fast_xaccess(TosState state) {
3578   transition(vtos, state);
3579 
3580   // get receiver
3581   __ movptr(rax, aaddress(0));
3582   // access constant pool cache
3583   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
3584   __ movptr(rbx,
3585             Address(rcx, rdx, Address::times_ptr,
3586                     in_bytes(ConstantPoolCache::base_offset() +
3587                              ConstantPoolCacheEntry::f2_offset())));
3588   // make sure exception is reported in correct bcp range (getfield is
3589   // next instruction)
3590   __ increment(rbcp);
3591   __ null_check(rax);
3592   __ resolve_for_read(OOP_NOT_NULL, rax);
3593   const Address field = Address(rax, rbx, Address::times_1, 0*wordSize);
3594   switch (state) {
3595   case itos:
3596     __ movl(rax, field);
3597     break;
3598   case atos:
3599     do_oop_load(_masm, field, rax);
3600     __ verify_oop(rax);
3601     break;
3602   case ftos:
3603     __ load_float(field);
3604     break;
3605   default:
3606     ShouldNotReachHere();
3607   }
3608 
3609   // [jk] not needed currently
3610   // if (os::is_MP()) {
3611   //   Label notVolatile;
3612   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
3613   //                        in_bytes(ConstantPoolCache::base_offset() +
3614   //                                 ConstantPoolCacheEntry::flags_offset())));
3615   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3616   //   __ testl(rdx, 0x1);
3617   //   __ jcc(Assembler::zero, notVolatile);
3618   //   __ membar(Assembler::LoadLoad);
3619   //   __ bind(notVolatile);
3620   // }
3621 
3622   __ decrement(rbcp);
3623 }
3624 
3625 //-----------------------------------------------------------------------------
3626 // Calls
3627 
3628 void TemplateTable::count_calls(Register method, Register temp) {
3629   // implemented elsewhere
3630   ShouldNotReachHere();
3631 }
3632 
3633 void TemplateTable::prepare_invoke(int byte_no,
3634                                    Register method,  // linked method (or i-klass)
3635                                    Register index,   // itable index, MethodType, etc.
3636                                    Register recv,    // if caller wants to see it
3637                                    Register flags    // if caller wants to test it
3638                                    ) {
3639   // determine flags
3640   const Bytecodes::Code code = bytecode();
3641   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3642   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3643   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3644   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3645   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3646   const bool load_receiver       = (recv  != noreg);
3647   const bool save_flags          = (flags != noreg);
3648   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3649   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
3650   assert(flags == noreg || flags == rdx, "");
3651   assert(recv  == noreg || recv  == rcx, "");
3652 
3653   // setup registers & access constant pool cache
3654   if (recv  == noreg)  recv  = rcx;
3655   if (flags == noreg)  flags = rdx;
3656   assert_different_registers(method, index, recv, flags);
3657 
3658   // save 'interpreter return address'
3659   __ save_bcp();
3660 
3661   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
3662 
3663   // maybe push appendix to arguments (just before return address)
3664   if (is_invokedynamic || is_invokehandle) {
3665     Label L_no_push;
3666     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
3667     __ jcc(Assembler::zero, L_no_push);
3668     // Push the appendix as a trailing parameter.
3669     // This must be done before we get the receiver,
3670     // since the parameter_size includes it.
3671     __ push(rbx);
3672     __ mov(rbx, index);
3673     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
3674     __ load_resolved_reference_at_index(index, rbx);
3675     __ pop(rbx);
3676     __ push(index);  // push appendix (MethodType, CallSite, etc.)
3677     __ bind(L_no_push);
3678   }
3679 
3680   // load receiver if needed (after appendix is pushed so parameter size is correct)
3681   // Note: no return address pushed yet
3682   if (load_receiver) {
3683     __ movl(recv, flags);
3684     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
3685     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
3686     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
3687     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
3688     __ movptr(recv, recv_addr);
3689     __ verify_oop(recv);
3690   }
3691 
3692   if (save_flags) {
3693     __ movl(rbcp, flags);
3694   }
3695 
3696   // compute return type
3697   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3698   // Make sure we don't need to mask flags after the above shift
3699   ConstantPoolCacheEntry::verify_tos_state_shift();
3700   // load return address
3701   {
3702     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3703     ExternalAddress table(table_addr);
3704     LP64_ONLY(__ lea(rscratch1, table));
3705     LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr)));
3706     NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))));
3707   }
3708 
3709   // push return address
3710   __ push(flags);
3711 
3712   // Restore flags value from the constant pool cache, and restore rsi
3713   // for later null checks.  r13 is the bytecode pointer
3714   if (save_flags) {
3715     __ movl(flags, rbcp);
3716     __ restore_bcp();
3717   }
3718 }
3719 
3720 void TemplateTable::invokevirtual_helper(Register index,
3721                                          Register recv,
3722                                          Register flags) {
3723   // Uses temporary registers rax, rdx
3724   assert_different_registers(index, recv, rax, rdx);
3725   assert(index == rbx, "");
3726   assert(recv  == rcx, "");
3727 
3728   // Test for an invoke of a final method
3729   Label notFinal;
3730   __ movl(rax, flags);
3731   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3732   __ jcc(Assembler::zero, notFinal);
3733 
3734   const Register method = index;  // method must be rbx
3735   assert(method == rbx,
3736          "Method* must be rbx for interpreter calling convention");
3737 
3738   // do the call - the index is actually the method to call
3739   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3740 
3741   // It's final, need a null check here!
3742   __ null_check(recv);
3743 
3744   // profile this call
3745   __ profile_final_call(rax);
3746   __ profile_arguments_type(rax, method, rbcp, true);
3747 
3748   __ jump_from_interpreted(method, rax);
3749 
3750   __ bind(notFinal);
3751 
3752   // get receiver klass
3753   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3754   __ load_klass(rax, recv);
3755 
3756   // profile this call
3757   __ profile_virtual_call(rax, rlocals, rdx);
3758   // get target Method* & entry point
3759   __ lookup_virtual_method(rax, index, method);
3760   __ profile_called_method(method, rdx, rbcp);
3761 
3762   __ profile_arguments_type(rdx, method, rbcp, true);
3763   __ jump_from_interpreted(method, rdx);
3764 }
3765 
3766 void TemplateTable::invokevirtual(int byte_no) {
3767   transition(vtos, vtos);
3768   assert(byte_no == f2_byte, "use this argument");
3769   prepare_invoke(byte_no,
3770                  rbx,    // method or vtable index
3771                  noreg,  // unused itable index
3772                  rcx, rdx); // recv, flags
3773 
3774   // rbx: index
3775   // rcx: receiver
3776   // rdx: flags
3777 
3778   invokevirtual_helper(rbx, rcx, rdx);
3779 }
3780 
3781 void TemplateTable::invokespecial(int byte_no) {
3782   transition(vtos, vtos);
3783   assert(byte_no == f1_byte, "use this argument");
3784   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
3785                  rcx);  // get receiver also for null check
3786   __ verify_oop(rcx);
3787   __ null_check(rcx);
3788   // do the call
3789   __ profile_call(rax);
3790   __ profile_arguments_type(rax, rbx, rbcp, false);
3791   __ jump_from_interpreted(rbx, rax);
3792 }
3793 
3794 void TemplateTable::invokestatic(int byte_no) {
3795   transition(vtos, vtos);
3796   assert(byte_no == f1_byte, "use this argument");
3797   prepare_invoke(byte_no, rbx);  // get f1 Method*
3798   // do the call
3799   __ profile_call(rax);
3800   __ profile_arguments_type(rax, rbx, rbcp, false);
3801   __ jump_from_interpreted(rbx, rax);
3802 }
3803 
3804 
3805 void TemplateTable::fast_invokevfinal(int byte_no) {
3806   transition(vtos, vtos);
3807   assert(byte_no == f2_byte, "use this argument");
3808   __ stop("fast_invokevfinal not used on x86");
3809 }
3810 
3811 
3812 void TemplateTable::invokeinterface(int byte_no) {
3813   transition(vtos, vtos);
3814   assert(byte_no == f1_byte, "use this argument");
3815   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 Method*
3816                  rcx, rdx); // recv, flags
3817 
3818   // rax: reference klass (from f1)
3819   // rbx: method (from f2)
3820   // rcx: receiver
3821   // rdx: flags
3822 
3823   // Special case of invokeinterface called for virtual method of
3824   // java.lang.Object.  See cpCacheOop.cpp for details.
3825   // This code isn't produced by javac, but could be produced by
3826   // another compliant java compiler.
3827   Label notMethod;
3828   __ movl(rlocals, rdx);
3829   __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3830 
3831   __ jcc(Assembler::zero, notMethod);
3832 
3833   invokevirtual_helper(rbx, rcx, rdx);
3834   __ bind(notMethod);
3835 
3836   // Get receiver klass into rdx - also a null check
3837   __ restore_locals();  // restore r14
3838   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3839   __ load_klass(rdx, rcx);
3840 
3841   Label no_such_interface, no_such_method;
3842 
3843   // Preserve method for throw_AbstractMethodErrorVerbose.
3844   __ mov(rcx, rbx);
3845   // Receiver subtype check against REFC.
3846   // Superklass in rax. Subklass in rdx. Blows rcx, rdi.
3847   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3848                              rdx, rax, noreg,
3849                              // outputs: scan temp. reg, scan temp. reg
3850                              rbcp, rlocals,
3851                              no_such_interface,
3852                              /*return_method=*/false);
3853 
3854   // profile this call
3855   __ restore_bcp(); // rbcp was destroyed by receiver type check
3856   __ profile_virtual_call(rdx, rbcp, rlocals);
3857 
3858   // Get declaring interface class from method, and itable index
3859   __ movptr(rax, Address(rbx, Method::const_offset()));
3860   __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
3861   __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
3862   __ movl(rbx, Address(rbx, Method::itable_index_offset()));
3863   __ subl(rbx, Method::itable_index_max);
3864   __ negl(rbx);
3865 
3866   // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3867   __ mov(rlocals, rdx);
3868   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3869                              rlocals, rax, rbx,
3870                              // outputs: method, scan temp. reg
3871                              rbx, rbcp,
3872                              no_such_interface);
3873 
3874   // rbx: Method* to call
3875   // rcx: receiver
3876   // Check for abstract method error
3877   // Note: This should be done more efficiently via a throw_abstract_method_error
3878   //       interpreter entry point and a conditional jump to it in case of a null
3879   //       method.
3880   __ testptr(rbx, rbx);
3881   __ jcc(Assembler::zero, no_such_method);
3882 
3883   __ profile_called_method(rbx, rbcp, rdx);
3884   __ profile_arguments_type(rdx, rbx, rbcp, true);
3885 
3886   // do the call
3887   // rcx: receiver
3888   // rbx,: Method*
3889   __ jump_from_interpreted(rbx, rdx);
3890   __ should_not_reach_here();
3891 
3892   // exception handling code follows...
3893   // note: must restore interpreter registers to canonical
3894   //       state for exception handling to work correctly!
3895 
3896   __ bind(no_such_method);
3897   // throw exception
3898   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3899   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
3900   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3901   // Pass arguments for generating a verbose error message.
3902 #ifdef _LP64
3903   Register recvKlass = c_rarg1;
3904   Register method    = c_rarg2;
3905   if (recvKlass != rdx) { __ movq(recvKlass, rdx); }
3906   if (method != rcx)    { __ movq(method, rcx);    }
3907 #else
3908   Register recvKlass = rdx;
3909   Register method    = rcx;
3910 #endif
3911   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose),
3912              recvKlass, method);
3913   // The call_VM checks for exception, so we should never return here.
3914   __ should_not_reach_here();
3915 
3916   __ bind(no_such_interface);
3917   // throw exception
3918   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3919   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
3920   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3921   // Pass arguments for generating a verbose error message.
3922   LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } )
3923   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
3924              recvKlass, rax);
3925   // the call_VM checks for exception, so we should never return here.
3926   __ should_not_reach_here();
3927 }
3928 
3929 void TemplateTable::invokehandle(int byte_no) {
3930   transition(vtos, vtos);
3931   assert(byte_no == f1_byte, "use this argument");
3932   const Register rbx_method = rbx;
3933   const Register rax_mtype  = rax;
3934   const Register rcx_recv   = rcx;
3935   const Register rdx_flags  = rdx;
3936 
3937   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
3938   __ verify_method_ptr(rbx_method);
3939   __ verify_oop(rcx_recv);
3940   __ null_check(rcx_recv);
3941 
3942   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3943   // rbx: MH.invokeExact_MT method (from f2)
3944 
3945   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
3946 
3947   // FIXME: profile the LambdaForm also
3948   __ profile_final_call(rax);
3949   __ profile_arguments_type(rdx, rbx_method, rbcp, true);
3950 
3951   __ jump_from_interpreted(rbx_method, rdx);
3952 }
3953 
3954 void TemplateTable::invokedynamic(int byte_no) {
3955   transition(vtos, vtos);
3956   assert(byte_no == f1_byte, "use this argument");
3957 
3958   const Register rbx_method   = rbx;
3959   const Register rax_callsite = rax;
3960 
3961   prepare_invoke(byte_no, rbx_method, rax_callsite);
3962 
3963   // rax: CallSite object (from cpool->resolved_references[f1])
3964   // rbx: MH.linkToCallSite method (from f2)
3965 
3966   // Note:  rax_callsite is already pushed by prepare_invoke
3967 
3968   // %%% should make a type profile for any invokedynamic that takes a ref argument
3969   // profile this call
3970   __ profile_call(rbcp);
3971   __ profile_arguments_type(rdx, rbx_method, rbcp, false);
3972 
3973   __ verify_oop(rax_callsite);
3974 
3975   __ jump_from_interpreted(rbx_method, rdx);
3976 }
3977 
3978 //-----------------------------------------------------------------------------
3979 // Allocation
3980 
3981 void TemplateTable::_new() {
3982   transition(vtos, atos);
3983   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3984   Label slow_case;
3985   Label slow_case_no_pop;
3986   Label done;
3987   Label initialize_header;
3988   Label initialize_object;  // including clearing the fields
3989 
3990   __ get_cpool_and_tags(rcx, rax);
3991 
3992   // Make sure the class we're about to instantiate has been resolved.
3993   // This is done before loading InstanceKlass to be consistent with the order
3994   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3995   const int tags_offset = Array<u1>::base_offset_in_bytes();
3996   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3997   __ jcc(Assembler::notEqual, slow_case_no_pop);
3998 
3999   // get InstanceKlass
4000   __ load_resolved_klass_at_index(rcx, rdx, rcx);
4001   __ push(rcx);  // save the contexts of klass for initializing the header
4002 
4003   // make sure klass is initialized & doesn't have finalizer
4004   // make sure klass is fully initialized
4005   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4006   __ jcc(Assembler::notEqual, slow_case);
4007 
4008   // get instance_size in InstanceKlass (scaled to a count of bytes)
4009   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
4010   // test to see if it has a finalizer or is malformed in some way
4011   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
4012   __ jcc(Assembler::notZero, slow_case);
4013 
4014   // Allocate the instance:
4015   //  If TLAB is enabled:
4016   //    Try to allocate in the TLAB.
4017   //    If fails, go to the slow path.
4018   //  Else If inline contiguous allocations are enabled:
4019   //    Try to allocate in eden.
4020   //    If fails due to heap end, go to slow path.
4021   //
4022   //  If TLAB is enabled OR inline contiguous is enabled:
4023   //    Initialize the allocation.
4024   //    Exit.
4025   //
4026   //  Go to slow path.
4027 
4028   const bool allow_shared_alloc =
4029     Universe::heap()->supports_inline_contig_alloc();
4030 
4031   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
4032 #ifndef _LP64
4033   if (UseTLAB || allow_shared_alloc) {
4034     __ get_thread(thread);
4035   }
4036 #endif // _LP64
4037 
4038   if (UseTLAB) {
4039     uint oop_extra_words = Universe::heap()->oop_extra_words();
4040     if (oop_extra_words > 0) {
4041       __ addptr(rdx, oop_extra_words * HeapWordSize);
4042     }
4043 
4044     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
4045     __ lea(rbx, Address(rax, rdx, Address::times_1));
4046     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
4047     __ jcc(Assembler::above, slow_case);
4048     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
4049     Universe::heap()->compile_prepare_oop(_masm, rax);
4050     if (ZeroTLAB) {
4051       // the fields have been already cleared
4052       __ jmp(initialize_header);
4053     } else {
4054       // initialize both the header and fields
4055       __ jmp(initialize_object);
4056     }
4057   } else {
4058     // Allocation in the shared Eden, if allowed.
4059     //
4060     // rdx: instance size in bytes
4061     if (allow_shared_alloc) {
4062       ExternalAddress heap_top((address)Universe::heap()->top_addr());
4063       ExternalAddress heap_end((address)Universe::heap()->end_addr());
4064 
4065       Label retry;
4066       __ bind(retry);
4067       __ movptr(rax, heap_top);
4068       __ lea(rbx, Address(rax, rdx, Address::times_1));
4069       __ cmpptr(rbx, heap_end);
4070       __ jcc(Assembler::above, slow_case);
4071 
4072       // Compare rax, with the top addr, and if still equal, store the new
4073       // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
4074       // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
4075       //
4076       // rax,: object begin
4077       // rbx,: object end
4078       // rdx: instance size in bytes
4079       __ locked_cmpxchgptr(rbx, heap_top);
4080 
4081       // if someone beat us on the allocation, try again, otherwise continue
4082       __ jcc(Assembler::notEqual, retry);
4083 
4084       __ incr_allocated_bytes(thread, rdx, 0);
4085     }
4086   }
4087 
4088   // If UseTLAB or allow_shared_alloc are true, the object is created above and
4089   // there is an initialize need. Otherwise, skip and go to the slow path.
4090   if (UseTLAB || allow_shared_alloc) {
4091     // The object is initialized before the header.  If the object size is
4092     // zero, go directly to the header initialization.
4093     __ bind(initialize_object);
4094     __ decrement(rdx, sizeof(oopDesc));
4095     __ jcc(Assembler::zero, initialize_header);
4096 
4097     // Initialize topmost object field, divide rdx by 8, check if odd and
4098     // test if zero.
4099     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
4100     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
4101 
4102     // rdx must have been multiple of 8
4103 #ifdef ASSERT
4104     // make sure rdx was multiple of 8
4105     Label L;
4106     // Ignore partial flag stall after shrl() since it is debug VM
4107     __ jccb(Assembler::carryClear, L);
4108     __ stop("object size is not multiple of 2 - adjust this code");
4109     __ bind(L);
4110     // rdx must be > 0, no extra check needed here
4111 #endif
4112 
4113     // initialize remaining object fields: rdx was a multiple of 8
4114     { Label loop;
4115     __ bind(loop);
4116     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
4117     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
4118     __ decrement(rdx);
4119     __ jcc(Assembler::notZero, loop);
4120     }
4121 
4122     // initialize object header only.
4123     __ bind(initialize_header);
4124     if (UseBiasedLocking) {
4125       __ pop(rcx);   // get saved klass back in the register.
4126       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
4127       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
4128     } else {
4129       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
4130                 (intptr_t)markOopDesc::prototype()); // header
4131       __ pop(rcx);   // get saved klass back in the register.
4132     }
4133 #ifdef _LP64
4134     __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code)
4135     __ store_klass_gap(rax, rsi);  // zero klass gap for compressed oops
4136 #endif
4137     __ store_klass(rax, rcx);  // klass
4138 
4139     {
4140       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
4141       // Trigger dtrace event for fastpath
4142       __ push(atos);
4143       __ call_VM_leaf(
4144            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
4145       __ pop(atos);
4146     }
4147 
4148     __ jmp(done);
4149   }
4150 
4151   // slow case
4152   __ bind(slow_case);
4153   __ pop(rcx);   // restore stack pointer to what it was when we came in.
4154   __ bind(slow_case_no_pop);
4155 
4156   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4157   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4158 
4159   __ get_constant_pool(rarg1);
4160   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4161   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2);
4162    __ verify_oop(rax);
4163 
4164   // continue
4165   __ bind(done);
4166 }
4167 
4168 void TemplateTable::newarray() {
4169   transition(itos, atos);
4170   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4171   __ load_unsigned_byte(rarg1, at_bcp(1));
4172   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
4173           rarg1, rax);
4174 }
4175 
4176 void TemplateTable::anewarray() {
4177   transition(itos, atos);
4178 
4179   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4180   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4181 
4182   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4183   __ get_constant_pool(rarg1);
4184   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
4185           rarg1, rarg2, rax);
4186 }
4187 
4188 void TemplateTable::arraylength() {
4189   transition(atos, itos);
4190   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
4191   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
4192 }
4193 
4194 void TemplateTable::checkcast() {
4195   transition(atos, atos);
4196   Label done, is_null, ok_is_subtype, quicked, resolved;
4197   __ testptr(rax, rax); // object is in rax
4198   __ jcc(Assembler::zero, is_null);
4199 
4200   // Get cpool & tags index
4201   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4202   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4203   // See if bytecode has already been quicked
4204   __ cmpb(Address(rdx, rbx,
4205                   Address::times_1,
4206                   Array<u1>::base_offset_in_bytes()),
4207           JVM_CONSTANT_Class);
4208   __ jcc(Assembler::equal, quicked);
4209   __ push(atos); // save receiver for result, and for GC
4210   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4211 
4212   // vm_result_2 has metadata result
4213 #ifndef _LP64
4214   // borrow rdi from locals
4215   __ get_thread(rdi);
4216   __ get_vm_result_2(rax, rdi);
4217   __ restore_locals();
4218 #else
4219   __ get_vm_result_2(rax, r15_thread);
4220 #endif
4221 
4222   __ pop_ptr(rdx); // restore receiver
4223   __ jmpb(resolved);
4224 
4225   // Get superklass in rax and subklass in rbx
4226   __ bind(quicked);
4227   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
4228   __ load_resolved_klass_at_index(rcx, rbx, rax);
4229 
4230   __ bind(resolved);
4231   __ load_klass(rbx, rdx);
4232 
4233   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
4234   // Superklass in rax.  Subklass in rbx.
4235   __ gen_subtype_check(rbx, ok_is_subtype);
4236 
4237   // Come here on failure
4238   __ push_ptr(rdx);
4239   // object is at TOS
4240   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
4241 
4242   // Come here on success
4243   __ bind(ok_is_subtype);
4244   __ mov(rax, rdx); // Restore object in rdx
4245 
4246   // Collect counts on whether this check-cast sees NULLs a lot or not.
4247   if (ProfileInterpreter) {
4248     __ jmp(done);
4249     __ bind(is_null);
4250     __ profile_null_seen(rcx);
4251   } else {
4252     __ bind(is_null);   // same as 'done'
4253   }
4254   __ bind(done);
4255 }
4256 
4257 void TemplateTable::instanceof() {
4258   transition(atos, itos);
4259   Label done, is_null, ok_is_subtype, quicked, resolved;
4260   __ testptr(rax, rax);
4261   __ jcc(Assembler::zero, is_null);
4262 
4263   // Get cpool & tags index
4264   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4265   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4266   // See if bytecode has already been quicked
4267   __ cmpb(Address(rdx, rbx,
4268                   Address::times_1,
4269                   Array<u1>::base_offset_in_bytes()),
4270           JVM_CONSTANT_Class);
4271   __ jcc(Assembler::equal, quicked);
4272 
4273   __ push(atos); // save receiver for result, and for GC
4274   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4275   // vm_result_2 has metadata result
4276 
4277 #ifndef _LP64
4278   // borrow rdi from locals
4279   __ get_thread(rdi);
4280   __ get_vm_result_2(rax, rdi);
4281   __ restore_locals();
4282 #else
4283   __ get_vm_result_2(rax, r15_thread);
4284 #endif
4285 
4286   __ pop_ptr(rdx); // restore receiver
4287   __ verify_oop(rdx);
4288   __ load_klass(rdx, rdx);
4289   __ jmpb(resolved);
4290 
4291   // Get superklass in rax and subklass in rdx
4292   __ bind(quicked);
4293   __ load_klass(rdx, rax);
4294   __ load_resolved_klass_at_index(rcx, rbx, rax);
4295 
4296   __ bind(resolved);
4297 
4298   // Generate subtype check.  Blows rcx, rdi
4299   // Superklass in rax.  Subklass in rdx.
4300   __ gen_subtype_check(rdx, ok_is_subtype);
4301 
4302   // Come here on failure
4303   __ xorl(rax, rax);
4304   __ jmpb(done);
4305   // Come here on success
4306   __ bind(ok_is_subtype);
4307   __ movl(rax, 1);
4308 
4309   // Collect counts on whether this test sees NULLs a lot or not.
4310   if (ProfileInterpreter) {
4311     __ jmp(done);
4312     __ bind(is_null);
4313     __ profile_null_seen(rcx);
4314   } else {
4315     __ bind(is_null);   // same as 'done'
4316   }
4317   __ bind(done);
4318   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
4319   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
4320 }
4321 
4322 
4323 //----------------------------------------------------------------------------------------------------
4324 // Breakpoints
4325 void TemplateTable::_breakpoint() {
4326   // Note: We get here even if we are single stepping..
4327   // jbug insists on setting breakpoints at every bytecode
4328   // even if we are in single step mode.
4329 
4330   transition(vtos, vtos);
4331 
4332   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4333 
4334   // get the unpatched byte code
4335   __ get_method(rarg);
4336   __ call_VM(noreg,
4337              CAST_FROM_FN_PTR(address,
4338                               InterpreterRuntime::get_original_bytecode_at),
4339              rarg, rbcp);
4340   __ mov(rbx, rax);  // why?
4341 
4342   // post the breakpoint event
4343   __ get_method(rarg);
4344   __ call_VM(noreg,
4345              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4346              rarg, rbcp);
4347 
4348   // complete the execution of original bytecode
4349   __ dispatch_only_normal(vtos);
4350 }
4351 
4352 //-----------------------------------------------------------------------------
4353 // Exceptions
4354 
4355 void TemplateTable::athrow() {
4356   transition(atos, vtos);
4357   __ null_check(rax);
4358   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
4359 }
4360 
4361 //-----------------------------------------------------------------------------
4362 // Synchronization
4363 //
4364 // Note: monitorenter & exit are symmetric routines; which is reflected
4365 //       in the assembly code structure as well
4366 //
4367 // Stack layout:
4368 //
4369 // [expressions  ] <--- rsp               = expression stack top
4370 // ..
4371 // [expressions  ]
4372 // [monitor entry] <--- monitor block top = expression stack bot
4373 // ..
4374 // [monitor entry]
4375 // [frame data   ] <--- monitor block bot
4376 // ...
4377 // [saved rbp    ] <--- rbp
4378 void TemplateTable::monitorenter() {
4379   transition(atos, vtos);
4380 
4381   // check for NULL object
4382   __ null_check(rax);
4383 
4384   __ resolve_for_write(OOP_NOT_NULL, rax);
4385 
4386   const Address monitor_block_top(
4387         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4388   const Address monitor_block_bot(
4389         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4390   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4391 
4392   Label allocated;
4393 
4394   Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
4395   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4396   Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4397 
4398   // initialize entry pointer
4399   __ xorl(rmon, rmon); // points to free slot or NULL
4400 
4401   // find a free slot in the monitor block (result in rmon)
4402   {
4403     Label entry, loop, exit;
4404     __ movptr(rtop, monitor_block_top); // points to current entry,
4405                                         // starting with top-most entry
4406     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4407                                         // of monitor block
4408     __ jmpb_if_possible(entry);
4409 
4410     __ bind(loop);
4411     // check if current entry is used
4412     __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
4413     // if not used then remember entry in rmon
4414     __ cmovptr(Assembler::equal, rmon, rtop);   // cmov => cmovptr
4415     // check if current entry is for same object
4416     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
4417     // if same object then stop searching
4418     __ jccb(Assembler::equal, exit);
4419     // otherwise advance to next entry
4420     __ addptr(rtop, entry_size);
4421     __ bind(entry);
4422     // check if bottom reached
4423     __ cmpptr(rtop, rbot);
4424     // if not at bottom then check this entry
4425     __ jcc(Assembler::notEqual, loop);
4426     __ bind(exit);
4427   }
4428 
4429   __ testptr(rmon, rmon); // check if a slot has been found
4430   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
4431 
4432   // allocate one if there's no free slot
4433   {
4434     Label entry, loop;
4435     // 1. compute new pointers          // rsp: old expression stack top
4436     __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom
4437     __ subptr(rsp, entry_size);         // move expression stack top
4438     __ subptr(rmon, entry_size);        // move expression stack bottom
4439     __ mov(rtop, rsp);                  // set start value for copy loop
4440     __ movptr(monitor_block_bot, rmon); // set new monitor block bottom
4441     __ jmp(entry);
4442     // 2. move expression stack contents
4443     __ bind(loop);
4444     __ movptr(rbot, Address(rtop, entry_size)); // load expression stack
4445                                                 // word from old location
4446     __ movptr(Address(rtop, 0), rbot);          // and store it at new location
4447     __ addptr(rtop, wordSize);                  // advance to next word
4448     __ bind(entry);
4449     __ cmpptr(rtop, rmon);                      // check if bottom reached
4450     __ jcc(Assembler::notEqual, loop);          // if not at bottom then
4451                                                 // copy next word
4452   }
4453 
4454   // call run-time routine
4455   // rmon: points to monitor entry
4456   __ bind(allocated);
4457 
4458   // Increment bcp to point to the next bytecode, so exception
4459   // handling for async. exceptions work correctly.
4460   // The object has already been poped from the stack, so the
4461   // expression stack looks correct.
4462   __ increment(rbcp);
4463 
4464   // store object
4465   __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax);
4466   __ lock_object(rmon);
4467 
4468   // check to make sure this monitor doesn't cause stack overflow after locking
4469   __ save_bcp();  // in case of exception
4470   __ generate_stack_overflow_check(0);
4471 
4472   // The bcp has already been incremented. Just need to dispatch to
4473   // next instruction.
4474   __ dispatch_next(vtos);
4475 }
4476 
4477 void TemplateTable::monitorexit() {
4478   transition(atos, vtos);
4479 
4480   // check for NULL object
4481   __ null_check(rax);
4482 
4483   __ resolve_for_write(OOP_NOT_NULL, rax);
4484 
4485   const Address monitor_block_top(
4486         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4487   const Address monitor_block_bot(
4488         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4489   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4490 
4491   Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4492   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4493 
4494   Label found;
4495 
4496   // find matching slot
4497   {
4498     Label entry, loop;
4499     __ movptr(rtop, monitor_block_top); // points to current entry,
4500                                         // starting with top-most entry
4501     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4502                                         // of monitor block
4503     __ jmpb_if_possible(entry);
4504 
4505     __ bind(loop);
4506     // check if current entry is for same object
4507     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
4508     // if same object then stop searching
4509     __ jcc(Assembler::equal, found);
4510     // otherwise advance to next entry
4511     __ addptr(rtop, entry_size);
4512     __ bind(entry);
4513     // check if bottom reached
4514     __ cmpptr(rtop, rbot);
4515     // if not at bottom then check this entry
4516     __ jcc(Assembler::notEqual, loop);
4517   }
4518 
4519   // error handling. Unlocking was not block-structured
4520   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4521                    InterpreterRuntime::throw_illegal_monitor_state_exception));
4522   __ should_not_reach_here();
4523 
4524   // call run-time routine
4525   __ bind(found);
4526   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
4527   __ unlock_object(rtop);
4528   __ pop_ptr(rax); // discard object
4529 }
4530 
4531 // Wide instructions
4532 void TemplateTable::wide() {
4533   transition(vtos, vtos);
4534   __ load_unsigned_byte(rbx, at_bcp(1));
4535   ExternalAddress wtable((address)Interpreter::_wentry_point);
4536   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
4537   // Note: the rbcp increment step is part of the individual wide bytecode implementations
4538 }
4539 
4540 // Multi arrays
4541 void TemplateTable::multianewarray() {
4542   transition(vtos, atos);
4543 
4544   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4545   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
4546   // last dim is on top of stack; we want address of first one:
4547   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
4548   // the latter wordSize to point to the beginning of the array.
4549   __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
4550   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg);
4551   __ load_unsigned_byte(rbx, at_bcp(3));
4552   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
4553 }