1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectorPolicy.hpp"
  38 #include "gc/g1/g1CollectorState.hpp"
  39 #include "gc/g1/g1EvacStats.inline.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1HeapTransition.hpp"
  42 #include "gc/g1/g1HeapVerifier.hpp"
  43 #include "gc/g1/g1MarkSweep.hpp"
  44 #include "gc/g1/g1OopClosures.inline.hpp"
  45 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  46 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  47 #include "gc/g1/g1RemSet.inline.hpp"
  48 #include "gc/g1/g1RootClosures.hpp"
  49 #include "gc/g1/g1RootProcessor.hpp"
  50 #include "gc/g1/g1StringDedup.hpp"
  51 #include "gc/g1/g1YCTypes.hpp"
  52 #include "gc/g1/heapRegion.inline.hpp"
  53 #include "gc/g1/heapRegionRemSet.hpp"
  54 #include "gc/g1/heapRegionSet.inline.hpp"
  55 #include "gc/g1/suspendibleThreadSet.hpp"
  56 #include "gc/g1/vm_operations_g1.hpp"
  57 #include "gc/shared/gcHeapSummary.hpp"
  58 #include "gc/shared/gcId.hpp"
  59 #include "gc/shared/gcLocker.inline.hpp"
  60 #include "gc/shared/gcTimer.hpp"
  61 #include "gc/shared/gcTrace.hpp"
  62 #include "gc/shared/gcTraceTime.inline.hpp"
  63 #include "gc/shared/generationSpec.hpp"
  64 #include "gc/shared/isGCActiveMark.hpp"
  65 #include "gc/shared/referenceProcessor.inline.hpp"
  66 #include "gc/shared/taskqueue.inline.hpp"
  67 #include "logging/log.hpp"
  68 #include "memory/allocation.hpp"
  69 #include "memory/iterator.hpp"
  70 #include "oops/oop.inline.hpp"
  71 #include "runtime/atomic.inline.hpp"
  72 #include "runtime/init.hpp"
  73 #include "runtime/orderAccess.inline.hpp"
  74 #include "runtime/vmThread.hpp"
  75 #include "utilities/globalDefinitions.hpp"
  76 #include "utilities/stack.inline.hpp"
  77 
  78 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  79 
  80 // INVARIANTS/NOTES
  81 //
  82 // All allocation activity covered by the G1CollectedHeap interface is
  83 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  84 // and allocate_new_tlab, which are the "entry" points to the
  85 // allocation code from the rest of the JVM.  (Note that this does not
  86 // apply to TLAB allocation, which is not part of this interface: it
  87 // is done by clients of this interface.)
  88 
  89 // Local to this file.
  90 
  91 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  92   bool _concurrent;
  93 public:
  94   RefineCardTableEntryClosure() : _concurrent(true) { }
  95 
  96   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  97     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  98     // This path is executed by the concurrent refine or mutator threads,
  99     // concurrently, and so we do not care if card_ptr contains references
 100     // that point into the collection set.
 101     assert(!oops_into_cset, "should be");
 102 
 103     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 104       // Caller will actually yield.
 105       return false;
 106     }
 107     // Otherwise, we finished successfully; return true.
 108     return true;
 109   }
 110 
 111   void set_concurrent(bool b) { _concurrent = b; }
 112 };
 113 
 114 
 115 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 116  private:
 117   size_t _num_dirtied;
 118   G1CollectedHeap* _g1h;
 119   G1SATBCardTableLoggingModRefBS* _g1_bs;
 120 
 121   HeapRegion* region_for_card(jbyte* card_ptr) const {
 122     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 123   }
 124 
 125   bool will_become_free(HeapRegion* hr) const {
 126     // A region will be freed by free_collection_set if the region is in the
 127     // collection set and has not had an evacuation failure.
 128     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 129   }
 130 
 131  public:
 132   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 133     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 134 
 135   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 136     HeapRegion* hr = region_for_card(card_ptr);
 137 
 138     // Should only dirty cards in regions that won't be freed.
 139     if (!will_become_free(hr)) {
 140       *card_ptr = CardTableModRefBS::dirty_card_val();
 141       _num_dirtied++;
 142     }
 143 
 144     return true;
 145   }
 146 
 147   size_t num_dirtied()   const { return _num_dirtied; }
 148 };
 149 
 150 
 151 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 152   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 153 }
 154 
 155 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 156   // The from card cache is not the memory that is actually committed. So we cannot
 157   // take advantage of the zero_filled parameter.
 158   reset_from_card_cache(start_idx, num_regions);
 159 }
 160 
 161 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 162 {
 163   // Claim the right to put the region on the dirty cards region list
 164   // by installing a self pointer.
 165   HeapRegion* next = hr->get_next_dirty_cards_region();
 166   if (next == NULL) {
 167     HeapRegion* res = (HeapRegion*)
 168       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 169                           NULL);
 170     if (res == NULL) {
 171       HeapRegion* head;
 172       do {
 173         // Put the region to the dirty cards region list.
 174         head = _dirty_cards_region_list;
 175         next = (HeapRegion*)
 176           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 177         if (next == head) {
 178           assert(hr->get_next_dirty_cards_region() == hr,
 179                  "hr->get_next_dirty_cards_region() != hr");
 180           if (next == NULL) {
 181             // The last region in the list points to itself.
 182             hr->set_next_dirty_cards_region(hr);
 183           } else {
 184             hr->set_next_dirty_cards_region(next);
 185           }
 186         }
 187       } while (next != head);
 188     }
 189   }
 190 }
 191 
 192 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 193 {
 194   HeapRegion* head;
 195   HeapRegion* hr;
 196   do {
 197     head = _dirty_cards_region_list;
 198     if (head == NULL) {
 199       return NULL;
 200     }
 201     HeapRegion* new_head = head->get_next_dirty_cards_region();
 202     if (head == new_head) {
 203       // The last region.
 204       new_head = NULL;
 205     }
 206     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 207                                           head);
 208   } while (hr != head);
 209   assert(hr != NULL, "invariant");
 210   hr->set_next_dirty_cards_region(NULL);
 211   return hr;
 212 }
 213 
 214 // Returns true if the reference points to an object that
 215 // can move in an incremental collection.
 216 bool G1CollectedHeap::is_scavengable(const void* p) {
 217   HeapRegion* hr = heap_region_containing(p);
 218   return !hr->is_pinned();
 219 }
 220 
 221 // Private methods.
 222 
 223 HeapRegion*
 224 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 225   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 226   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 227     if (!_secondary_free_list.is_empty()) {
 228       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 229                                       "secondary_free_list has %u entries",
 230                                       _secondary_free_list.length());
 231       // It looks as if there are free regions available on the
 232       // secondary_free_list. Let's move them to the free_list and try
 233       // again to allocate from it.
 234       append_secondary_free_list();
 235 
 236       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 237              "empty we should have moved at least one entry to the free_list");
 238       HeapRegion* res = _hrm.allocate_free_region(is_old);
 239       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 240                                       "allocated " HR_FORMAT " from secondary_free_list",
 241                                       HR_FORMAT_PARAMS(res));
 242       return res;
 243     }
 244 
 245     // Wait here until we get notified either when (a) there are no
 246     // more free regions coming or (b) some regions have been moved on
 247     // the secondary_free_list.
 248     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 249   }
 250 
 251   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 252                                   "could not allocate from secondary_free_list");
 253   return NULL;
 254 }
 255 
 256 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 257   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 258          "the only time we use this to allocate a humongous region is "
 259          "when we are allocating a single humongous region");
 260 
 261   HeapRegion* res;
 262   if (G1StressConcRegionFreeing) {
 263     if (!_secondary_free_list.is_empty()) {
 264       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 265                                       "forced to look at the secondary_free_list");
 266       res = new_region_try_secondary_free_list(is_old);
 267       if (res != NULL) {
 268         return res;
 269       }
 270     }
 271   }
 272 
 273   res = _hrm.allocate_free_region(is_old);
 274 
 275   if (res == NULL) {
 276     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 277                                     "res == NULL, trying the secondary_free_list");
 278     res = new_region_try_secondary_free_list(is_old);
 279   }
 280   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 281     // Currently, only attempts to allocate GC alloc regions set
 282     // do_expand to true. So, we should only reach here during a
 283     // safepoint. If this assumption changes we might have to
 284     // reconsider the use of _expand_heap_after_alloc_failure.
 285     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 286 
 287     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 288                               word_size * HeapWordSize);
 289 
 290     if (expand(word_size * HeapWordSize)) {
 291       // Given that expand() succeeded in expanding the heap, and we
 292       // always expand the heap by an amount aligned to the heap
 293       // region size, the free list should in theory not be empty.
 294       // In either case allocate_free_region() will check for NULL.
 295       res = _hrm.allocate_free_region(is_old);
 296     } else {
 297       _expand_heap_after_alloc_failure = false;
 298     }
 299   }
 300   return res;
 301 }
 302 
 303 HeapWord*
 304 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 305                                                            uint num_regions,
 306                                                            size_t word_size,
 307                                                            AllocationContext_t context) {
 308   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 309   assert(is_humongous(word_size), "word_size should be humongous");
 310   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 311 
 312   // Index of last region in the series.
 313   uint last = first + num_regions - 1;
 314 
 315   // We need to initialize the region(s) we just discovered. This is
 316   // a bit tricky given that it can happen concurrently with
 317   // refinement threads refining cards on these regions and
 318   // potentially wanting to refine the BOT as they are scanning
 319   // those cards (this can happen shortly after a cleanup; see CR
 320   // 6991377). So we have to set up the region(s) carefully and in
 321   // a specific order.
 322 
 323   // The word size sum of all the regions we will allocate.
 324   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 325   assert(word_size <= word_size_sum, "sanity");
 326 
 327   // This will be the "starts humongous" region.
 328   HeapRegion* first_hr = region_at(first);
 329   // The header of the new object will be placed at the bottom of
 330   // the first region.
 331   HeapWord* new_obj = first_hr->bottom();
 332   // This will be the new top of the new object.
 333   HeapWord* obj_top = new_obj + word_size;
 334 
 335   // First, we need to zero the header of the space that we will be
 336   // allocating. When we update top further down, some refinement
 337   // threads might try to scan the region. By zeroing the header we
 338   // ensure that any thread that will try to scan the region will
 339   // come across the zero klass word and bail out.
 340   //
 341   // NOTE: It would not have been correct to have used
 342   // CollectedHeap::fill_with_object() and make the space look like
 343   // an int array. The thread that is doing the allocation will
 344   // later update the object header to a potentially different array
 345   // type and, for a very short period of time, the klass and length
 346   // fields will be inconsistent. This could cause a refinement
 347   // thread to calculate the object size incorrectly.
 348   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 349 
 350   // How many words we use for filler objects.
 351   size_t word_fill_size = word_size_sum - word_size;
 352 
 353   // How many words memory we "waste" which cannot hold a filler object.
 354   size_t words_not_fillable = 0;
 355 
 356   if (word_fill_size >= min_fill_size()) {
 357     fill_with_objects(obj_top, word_fill_size);
 358   } else if (word_fill_size > 0) {
 359     // We have space to fill, but we cannot fit an object there.
 360     words_not_fillable = word_fill_size;
 361     word_fill_size = 0;
 362   }
 363 
 364   // We will set up the first region as "starts humongous". This
 365   // will also update the BOT covering all the regions to reflect
 366   // that there is a single object that starts at the bottom of the
 367   // first region.
 368   first_hr->set_starts_humongous(obj_top, word_fill_size);
 369   first_hr->set_allocation_context(context);
 370   // Then, if there are any, we will set up the "continues
 371   // humongous" regions.
 372   HeapRegion* hr = NULL;
 373   for (uint i = first + 1; i <= last; ++i) {
 374     hr = region_at(i);
 375     hr->set_continues_humongous(first_hr);
 376     hr->set_allocation_context(context);
 377   }
 378 
 379   // Up to this point no concurrent thread would have been able to
 380   // do any scanning on any region in this series. All the top
 381   // fields still point to bottom, so the intersection between
 382   // [bottom,top] and [card_start,card_end] will be empty. Before we
 383   // update the top fields, we'll do a storestore to make sure that
 384   // no thread sees the update to top before the zeroing of the
 385   // object header and the BOT initialization.
 386   OrderAccess::storestore();
 387 
 388   // Now, we will update the top fields of the "continues humongous"
 389   // regions except the last one.
 390   for (uint i = first; i < last; ++i) {
 391     hr = region_at(i);
 392     hr->set_top(hr->end());
 393   }
 394 
 395   hr = region_at(last);
 396   // If we cannot fit a filler object, we must set top to the end
 397   // of the humongous object, otherwise we cannot iterate the heap
 398   // and the BOT will not be complete.
 399   hr->set_top(hr->end() - words_not_fillable);
 400 
 401   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 402          "obj_top should be in last region");
 403 
 404   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 405 
 406   assert(words_not_fillable == 0 ||
 407          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 408          "Miscalculation in humongous allocation");
 409 
 410   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 411 
 412   for (uint i = first; i <= last; ++i) {
 413     hr = region_at(i);
 414     _humongous_set.add(hr);
 415     _hr_printer.alloc(hr);
 416   }
 417 
 418   return new_obj;
 419 }
 420 
 421 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 422   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 423   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 424 }
 425 
 426 // If could fit into free regions w/o expansion, try.
 427 // Otherwise, if can expand, do so.
 428 // Otherwise, if using ex regions might help, try with ex given back.
 429 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 430   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 431 
 432   _verifier->verify_region_sets_optional();
 433 
 434   uint first = G1_NO_HRM_INDEX;
 435   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 436 
 437   if (obj_regions == 1) {
 438     // Only one region to allocate, try to use a fast path by directly allocating
 439     // from the free lists. Do not try to expand here, we will potentially do that
 440     // later.
 441     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 442     if (hr != NULL) {
 443       first = hr->hrm_index();
 444     }
 445   } else {
 446     // We can't allocate humongous regions spanning more than one region while
 447     // cleanupComplete() is running, since some of the regions we find to be
 448     // empty might not yet be added to the free list. It is not straightforward
 449     // to know in which list they are on so that we can remove them. We only
 450     // need to do this if we need to allocate more than one region to satisfy the
 451     // current humongous allocation request. If we are only allocating one region
 452     // we use the one-region region allocation code (see above), that already
 453     // potentially waits for regions from the secondary free list.
 454     wait_while_free_regions_coming();
 455     append_secondary_free_list_if_not_empty_with_lock();
 456 
 457     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 458     // are lucky enough to find some.
 459     first = _hrm.find_contiguous_only_empty(obj_regions);
 460     if (first != G1_NO_HRM_INDEX) {
 461       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 462     }
 463   }
 464 
 465   if (first == G1_NO_HRM_INDEX) {
 466     // Policy: We could not find enough regions for the humongous object in the
 467     // free list. Look through the heap to find a mix of free and uncommitted regions.
 468     // If so, try expansion.
 469     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 470     if (first != G1_NO_HRM_INDEX) {
 471       // We found something. Make sure these regions are committed, i.e. expand
 472       // the heap. Alternatively we could do a defragmentation GC.
 473       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 474                                     word_size * HeapWordSize);
 475 
 476 
 477       _hrm.expand_at(first, obj_regions);
 478       g1_policy()->record_new_heap_size(num_regions());
 479 
 480 #ifdef ASSERT
 481       for (uint i = first; i < first + obj_regions; ++i) {
 482         HeapRegion* hr = region_at(i);
 483         assert(hr->is_free(), "sanity");
 484         assert(hr->is_empty(), "sanity");
 485         assert(is_on_master_free_list(hr), "sanity");
 486       }
 487 #endif
 488       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 489     } else {
 490       // Policy: Potentially trigger a defragmentation GC.
 491     }
 492   }
 493 
 494   HeapWord* result = NULL;
 495   if (first != G1_NO_HRM_INDEX) {
 496     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 497                                                        word_size, context);
 498     assert(result != NULL, "it should always return a valid result");
 499 
 500     // A successful humongous object allocation changes the used space
 501     // information of the old generation so we need to recalculate the
 502     // sizes and update the jstat counters here.
 503     g1mm()->update_sizes();
 504   }
 505 
 506   _verifier->verify_region_sets_optional();
 507 
 508   return result;
 509 }
 510 
 511 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 512   assert_heap_not_locked_and_not_at_safepoint();
 513   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 514 
 515   uint dummy_gc_count_before;
 516   uint dummy_gclocker_retry_count = 0;
 517   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 518 }
 519 
 520 HeapWord*
 521 G1CollectedHeap::mem_allocate(size_t word_size,
 522                               bool*  gc_overhead_limit_was_exceeded) {
 523   assert_heap_not_locked_and_not_at_safepoint();
 524 
 525   // Loop until the allocation is satisfied, or unsatisfied after GC.
 526   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 527     uint gc_count_before;
 528 
 529     HeapWord* result = NULL;
 530     if (!is_humongous(word_size)) {
 531       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 532     } else {
 533       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 534     }
 535     if (result != NULL) {
 536       return result;
 537     }
 538 
 539     // Create the garbage collection operation...
 540     VM_G1CollectForAllocation op(gc_count_before, word_size);
 541     op.set_allocation_context(AllocationContext::current());
 542 
 543     // ...and get the VM thread to execute it.
 544     VMThread::execute(&op);
 545 
 546     if (op.prologue_succeeded() && op.pause_succeeded()) {
 547       // If the operation was successful we'll return the result even
 548       // if it is NULL. If the allocation attempt failed immediately
 549       // after a Full GC, it's unlikely we'll be able to allocate now.
 550       HeapWord* result = op.result();
 551       if (result != NULL && !is_humongous(word_size)) {
 552         // Allocations that take place on VM operations do not do any
 553         // card dirtying and we have to do it here. We only have to do
 554         // this for non-humongous allocations, though.
 555         dirty_young_block(result, word_size);
 556       }
 557       return result;
 558     } else {
 559       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 560         return NULL;
 561       }
 562       assert(op.result() == NULL,
 563              "the result should be NULL if the VM op did not succeed");
 564     }
 565 
 566     // Give a warning if we seem to be looping forever.
 567     if ((QueuedAllocationWarningCount > 0) &&
 568         (try_count % QueuedAllocationWarningCount == 0)) {
 569       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 570     }
 571   }
 572 
 573   ShouldNotReachHere();
 574   return NULL;
 575 }
 576 
 577 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 578                                                    AllocationContext_t context,
 579                                                    uint* gc_count_before_ret,
 580                                                    uint* gclocker_retry_count_ret) {
 581   // Make sure you read the note in attempt_allocation_humongous().
 582 
 583   assert_heap_not_locked_and_not_at_safepoint();
 584   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 585          "be called for humongous allocation requests");
 586 
 587   // We should only get here after the first-level allocation attempt
 588   // (attempt_allocation()) failed to allocate.
 589 
 590   // We will loop until a) we manage to successfully perform the
 591   // allocation or b) we successfully schedule a collection which
 592   // fails to perform the allocation. b) is the only case when we'll
 593   // return NULL.
 594   HeapWord* result = NULL;
 595   for (int try_count = 1; /* we'll return */; try_count += 1) {
 596     bool should_try_gc;
 597     uint gc_count_before;
 598 
 599     {
 600       MutexLockerEx x(Heap_lock);
 601       result = _allocator->attempt_allocation_locked(word_size, context);
 602       if (result != NULL) {
 603         return result;
 604       }
 605 
 606       if (GCLocker::is_active_and_needs_gc()) {
 607         if (g1_policy()->can_expand_young_list()) {
 608           // No need for an ergo verbose message here,
 609           // can_expand_young_list() does this when it returns true.
 610           result = _allocator->attempt_allocation_force(word_size, context);
 611           if (result != NULL) {
 612             return result;
 613           }
 614         }
 615         should_try_gc = false;
 616       } else {
 617         // The GCLocker may not be active but the GCLocker initiated
 618         // GC may not yet have been performed (GCLocker::needs_gc()
 619         // returns true). In this case we do not try this GC and
 620         // wait until the GCLocker initiated GC is performed, and
 621         // then retry the allocation.
 622         if (GCLocker::needs_gc()) {
 623           should_try_gc = false;
 624         } else {
 625           // Read the GC count while still holding the Heap_lock.
 626           gc_count_before = total_collections();
 627           should_try_gc = true;
 628         }
 629       }
 630     }
 631 
 632     if (should_try_gc) {
 633       bool succeeded;
 634       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 635                                    GCCause::_g1_inc_collection_pause);
 636       if (result != NULL) {
 637         assert(succeeded, "only way to get back a non-NULL result");
 638         return result;
 639       }
 640 
 641       if (succeeded) {
 642         // If we get here we successfully scheduled a collection which
 643         // failed to allocate. No point in trying to allocate
 644         // further. We'll just return NULL.
 645         MutexLockerEx x(Heap_lock);
 646         *gc_count_before_ret = total_collections();
 647         return NULL;
 648       }
 649     } else {
 650       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 651         MutexLockerEx x(Heap_lock);
 652         *gc_count_before_ret = total_collections();
 653         return NULL;
 654       }
 655       // The GCLocker is either active or the GCLocker initiated
 656       // GC has not yet been performed. Stall until it is and
 657       // then retry the allocation.
 658       GCLocker::stall_until_clear();
 659       (*gclocker_retry_count_ret) += 1;
 660     }
 661 
 662     // We can reach here if we were unsuccessful in scheduling a
 663     // collection (because another thread beat us to it) or if we were
 664     // stalled due to the GC locker. In either can we should retry the
 665     // allocation attempt in case another thread successfully
 666     // performed a collection and reclaimed enough space. We do the
 667     // first attempt (without holding the Heap_lock) here and the
 668     // follow-on attempt will be at the start of the next loop
 669     // iteration (after taking the Heap_lock).
 670     result = _allocator->attempt_allocation(word_size, context);
 671     if (result != NULL) {
 672       return result;
 673     }
 674 
 675     // Give a warning if we seem to be looping forever.
 676     if ((QueuedAllocationWarningCount > 0) &&
 677         (try_count % QueuedAllocationWarningCount == 0)) {
 678       warning("G1CollectedHeap::attempt_allocation_slow() "
 679               "retries %d times", try_count);
 680     }
 681   }
 682 
 683   ShouldNotReachHere();
 684   return NULL;
 685 }
 686 
 687 void G1CollectedHeap::begin_archive_alloc_range() {
 688   assert_at_safepoint(true /* should_be_vm_thread */);
 689   if (_archive_allocator == NULL) {
 690     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 691   }
 692 }
 693 
 694 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 695   // Allocations in archive regions cannot be of a size that would be considered
 696   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 697   // may be different at archive-restore time.
 698   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 699 }
 700 
 701 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 702   assert_at_safepoint(true /* should_be_vm_thread */);
 703   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 704   if (is_archive_alloc_too_large(word_size)) {
 705     return NULL;
 706   }
 707   return _archive_allocator->archive_mem_allocate(word_size);
 708 }
 709 
 710 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 711                                               size_t end_alignment_in_bytes) {
 712   assert_at_safepoint(true /* should_be_vm_thread */);
 713   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 714 
 715   // Call complete_archive to do the real work, filling in the MemRegion
 716   // array with the archive regions.
 717   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 718   delete _archive_allocator;
 719   _archive_allocator = NULL;
 720 }
 721 
 722 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 723   assert(ranges != NULL, "MemRegion array NULL");
 724   assert(count != 0, "No MemRegions provided");
 725   MemRegion reserved = _hrm.reserved();
 726   for (size_t i = 0; i < count; i++) {
 727     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 728       return false;
 729     }
 730   }
 731   return true;
 732 }
 733 
 734 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 735   assert(!is_init_completed(), "Expect to be called at JVM init time");
 736   assert(ranges != NULL, "MemRegion array NULL");
 737   assert(count != 0, "No MemRegions provided");
 738   MutexLockerEx x(Heap_lock);
 739 
 740   MemRegion reserved = _hrm.reserved();
 741   HeapWord* prev_last_addr = NULL;
 742   HeapRegion* prev_last_region = NULL;
 743 
 744   // Temporarily disable pretouching of heap pages. This interface is used
 745   // when mmap'ing archived heap data in, so pre-touching is wasted.
 746   FlagSetting fs(AlwaysPreTouch, false);
 747 
 748   // Enable archive object checking in G1MarkSweep. We have to let it know
 749   // about each archive range, so that objects in those ranges aren't marked.
 750   G1MarkSweep::enable_archive_object_check();
 751 
 752   // For each specified MemRegion range, allocate the corresponding G1
 753   // regions and mark them as archive regions. We expect the ranges in
 754   // ascending starting address order, without overlap.
 755   for (size_t i = 0; i < count; i++) {
 756     MemRegion curr_range = ranges[i];
 757     HeapWord* start_address = curr_range.start();
 758     size_t word_size = curr_range.word_size();
 759     HeapWord* last_address = curr_range.last();
 760     size_t commits = 0;
 761 
 762     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 763               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 764               p2i(start_address), p2i(last_address));
 765     guarantee(start_address > prev_last_addr,
 766               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 767               p2i(start_address), p2i(prev_last_addr));
 768     prev_last_addr = last_address;
 769 
 770     // Check for ranges that start in the same G1 region in which the previous
 771     // range ended, and adjust the start address so we don't try to allocate
 772     // the same region again. If the current range is entirely within that
 773     // region, skip it, just adjusting the recorded top.
 774     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 775     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 776       start_address = start_region->end();
 777       if (start_address > last_address) {
 778         increase_used(word_size * HeapWordSize);
 779         start_region->set_top(last_address + 1);
 780         continue;
 781       }
 782       start_region->set_top(start_address);
 783       curr_range = MemRegion(start_address, last_address + 1);
 784       start_region = _hrm.addr_to_region(start_address);
 785     }
 786 
 787     // Perform the actual region allocation, exiting if it fails.
 788     // Then note how much new space we have allocated.
 789     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 790       return false;
 791     }
 792     increase_used(word_size * HeapWordSize);
 793     if (commits != 0) {
 794       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 795                                 HeapRegion::GrainWords * HeapWordSize * commits);
 796 
 797     }
 798 
 799     // Mark each G1 region touched by the range as archive, add it to the old set,
 800     // and set the allocation context and top.
 801     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 802     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 803     prev_last_region = last_region;
 804 
 805     while (curr_region != NULL) {
 806       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 807              "Region already in use (index %u)", curr_region->hrm_index());
 808       curr_region->set_allocation_context(AllocationContext::system());
 809       curr_region->set_archive();
 810       _hr_printer.alloc(curr_region);
 811       _old_set.add(curr_region);
 812       if (curr_region != last_region) {
 813         curr_region->set_top(curr_region->end());
 814         curr_region = _hrm.next_region_in_heap(curr_region);
 815       } else {
 816         curr_region->set_top(last_address + 1);
 817         curr_region = NULL;
 818       }
 819     }
 820 
 821     // Notify mark-sweep of the archive range.
 822     G1MarkSweep::set_range_archive(curr_range, true);
 823   }
 824   return true;
 825 }
 826 
 827 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 828   assert(!is_init_completed(), "Expect to be called at JVM init time");
 829   assert(ranges != NULL, "MemRegion array NULL");
 830   assert(count != 0, "No MemRegions provided");
 831   MemRegion reserved = _hrm.reserved();
 832   HeapWord *prev_last_addr = NULL;
 833   HeapRegion* prev_last_region = NULL;
 834 
 835   // For each MemRegion, create filler objects, if needed, in the G1 regions
 836   // that contain the address range. The address range actually within the
 837   // MemRegion will not be modified. That is assumed to have been initialized
 838   // elsewhere, probably via an mmap of archived heap data.
 839   MutexLockerEx x(Heap_lock);
 840   for (size_t i = 0; i < count; i++) {
 841     HeapWord* start_address = ranges[i].start();
 842     HeapWord* last_address = ranges[i].last();
 843 
 844     assert(reserved.contains(start_address) && reserved.contains(last_address),
 845            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 846            p2i(start_address), p2i(last_address));
 847     assert(start_address > prev_last_addr,
 848            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 849            p2i(start_address), p2i(prev_last_addr));
 850 
 851     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 852     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 853     HeapWord* bottom_address = start_region->bottom();
 854 
 855     // Check for a range beginning in the same region in which the
 856     // previous one ended.
 857     if (start_region == prev_last_region) {
 858       bottom_address = prev_last_addr + 1;
 859     }
 860 
 861     // Verify that the regions were all marked as archive regions by
 862     // alloc_archive_regions.
 863     HeapRegion* curr_region = start_region;
 864     while (curr_region != NULL) {
 865       guarantee(curr_region->is_archive(),
 866                 "Expected archive region at index %u", curr_region->hrm_index());
 867       if (curr_region != last_region) {
 868         curr_region = _hrm.next_region_in_heap(curr_region);
 869       } else {
 870         curr_region = NULL;
 871       }
 872     }
 873 
 874     prev_last_addr = last_address;
 875     prev_last_region = last_region;
 876 
 877     // Fill the memory below the allocated range with dummy object(s),
 878     // if the region bottom does not match the range start, or if the previous
 879     // range ended within the same G1 region, and there is a gap.
 880     if (start_address != bottom_address) {
 881       size_t fill_size = pointer_delta(start_address, bottom_address);
 882       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 883       increase_used(fill_size * HeapWordSize);
 884     }
 885   }
 886 }
 887 
 888 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 889                                                      uint* gc_count_before_ret,
 890                                                      uint* gclocker_retry_count_ret) {
 891   assert_heap_not_locked_and_not_at_safepoint();
 892   assert(!is_humongous(word_size), "attempt_allocation() should not "
 893          "be called for humongous allocation requests");
 894 
 895   AllocationContext_t context = AllocationContext::current();
 896   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 897 
 898   if (result == NULL) {
 899     result = attempt_allocation_slow(word_size,
 900                                      context,
 901                                      gc_count_before_ret,
 902                                      gclocker_retry_count_ret);
 903   }
 904   assert_heap_not_locked();
 905   if (result != NULL) {
 906     dirty_young_block(result, word_size);
 907   }
 908   return result;
 909 }
 910 
 911 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 912   assert(!is_init_completed(), "Expect to be called at JVM init time");
 913   assert(ranges != NULL, "MemRegion array NULL");
 914   assert(count != 0, "No MemRegions provided");
 915   MemRegion reserved = _hrm.reserved();
 916   HeapWord* prev_last_addr = NULL;
 917   HeapRegion* prev_last_region = NULL;
 918   size_t size_used = 0;
 919   size_t uncommitted_regions = 0;
 920 
 921   // For each Memregion, free the G1 regions that constitute it, and
 922   // notify mark-sweep that the range is no longer to be considered 'archive.'
 923   MutexLockerEx x(Heap_lock);
 924   for (size_t i = 0; i < count; i++) {
 925     HeapWord* start_address = ranges[i].start();
 926     HeapWord* last_address = ranges[i].last();
 927 
 928     assert(reserved.contains(start_address) && reserved.contains(last_address),
 929            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 930            p2i(start_address), p2i(last_address));
 931     assert(start_address > prev_last_addr,
 932            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 933            p2i(start_address), p2i(prev_last_addr));
 934     size_used += ranges[i].byte_size();
 935     prev_last_addr = last_address;
 936 
 937     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 938     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 939 
 940     // Check for ranges that start in the same G1 region in which the previous
 941     // range ended, and adjust the start address so we don't try to free
 942     // the same region again. If the current range is entirely within that
 943     // region, skip it.
 944     if (start_region == prev_last_region) {
 945       start_address = start_region->end();
 946       if (start_address > last_address) {
 947         continue;
 948       }
 949       start_region = _hrm.addr_to_region(start_address);
 950     }
 951     prev_last_region = last_region;
 952 
 953     // After verifying that each region was marked as an archive region by
 954     // alloc_archive_regions, set it free and empty and uncommit it.
 955     HeapRegion* curr_region = start_region;
 956     while (curr_region != NULL) {
 957       guarantee(curr_region->is_archive(),
 958                 "Expected archive region at index %u", curr_region->hrm_index());
 959       uint curr_index = curr_region->hrm_index();
 960       _old_set.remove(curr_region);
 961       curr_region->set_free();
 962       curr_region->set_top(curr_region->bottom());
 963       if (curr_region != last_region) {
 964         curr_region = _hrm.next_region_in_heap(curr_region);
 965       } else {
 966         curr_region = NULL;
 967       }
 968       _hrm.shrink_at(curr_index, 1);
 969       uncommitted_regions++;
 970     }
 971 
 972     // Notify mark-sweep that this is no longer an archive range.
 973     G1MarkSweep::set_range_archive(ranges[i], false);
 974   }
 975 
 976   if (uncommitted_regions != 0) {
 977     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 978                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 979   }
 980   decrease_used(size_used);
 981 }
 982 
 983 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 984                                                         uint* gc_count_before_ret,
 985                                                         uint* gclocker_retry_count_ret) {
 986   // The structure of this method has a lot of similarities to
 987   // attempt_allocation_slow(). The reason these two were not merged
 988   // into a single one is that such a method would require several "if
 989   // allocation is not humongous do this, otherwise do that"
 990   // conditional paths which would obscure its flow. In fact, an early
 991   // version of this code did use a unified method which was harder to
 992   // follow and, as a result, it had subtle bugs that were hard to
 993   // track down. So keeping these two methods separate allows each to
 994   // be more readable. It will be good to keep these two in sync as
 995   // much as possible.
 996 
 997   assert_heap_not_locked_and_not_at_safepoint();
 998   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 999          "should only be called for humongous allocations");
1000 
1001   // Humongous objects can exhaust the heap quickly, so we should check if we
1002   // need to start a marking cycle at each humongous object allocation. We do
1003   // the check before we do the actual allocation. The reason for doing it
1004   // before the allocation is that we avoid having to keep track of the newly
1005   // allocated memory while we do a GC.
1006   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1007                                            word_size)) {
1008     collect(GCCause::_g1_humongous_allocation);
1009   }
1010 
1011   // We will loop until a) we manage to successfully perform the
1012   // allocation or b) we successfully schedule a collection which
1013   // fails to perform the allocation. b) is the only case when we'll
1014   // return NULL.
1015   HeapWord* result = NULL;
1016   for (int try_count = 1; /* we'll return */; try_count += 1) {
1017     bool should_try_gc;
1018     uint gc_count_before;
1019 
1020     {
1021       MutexLockerEx x(Heap_lock);
1022 
1023       // Given that humongous objects are not allocated in young
1024       // regions, we'll first try to do the allocation without doing a
1025       // collection hoping that there's enough space in the heap.
1026       result = humongous_obj_allocate(word_size, AllocationContext::current());
1027       if (result != NULL) {
1028         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
1029         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
1030         return result;
1031       }
1032 
1033       if (GCLocker::is_active_and_needs_gc()) {
1034         should_try_gc = false;
1035       } else {
1036          // The GCLocker may not be active but the GCLocker initiated
1037         // GC may not yet have been performed (GCLocker::needs_gc()
1038         // returns true). In this case we do not try this GC and
1039         // wait until the GCLocker initiated GC is performed, and
1040         // then retry the allocation.
1041         if (GCLocker::needs_gc()) {
1042           should_try_gc = false;
1043         } else {
1044           // Read the GC count while still holding the Heap_lock.
1045           gc_count_before = total_collections();
1046           should_try_gc = true;
1047         }
1048       }
1049     }
1050 
1051     if (should_try_gc) {
1052       // If we failed to allocate the humongous object, we should try to
1053       // do a collection pause (if we're allowed) in case it reclaims
1054       // enough space for the allocation to succeed after the pause.
1055 
1056       bool succeeded;
1057       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1058                                    GCCause::_g1_humongous_allocation);
1059       if (result != NULL) {
1060         assert(succeeded, "only way to get back a non-NULL result");
1061         return result;
1062       }
1063 
1064       if (succeeded) {
1065         // If we get here we successfully scheduled a collection which
1066         // failed to allocate. No point in trying to allocate
1067         // further. We'll just return NULL.
1068         MutexLockerEx x(Heap_lock);
1069         *gc_count_before_ret = total_collections();
1070         return NULL;
1071       }
1072     } else {
1073       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1074         MutexLockerEx x(Heap_lock);
1075         *gc_count_before_ret = total_collections();
1076         return NULL;
1077       }
1078       // The GCLocker is either active or the GCLocker initiated
1079       // GC has not yet been performed. Stall until it is and
1080       // then retry the allocation.
1081       GCLocker::stall_until_clear();
1082       (*gclocker_retry_count_ret) += 1;
1083     }
1084 
1085     // We can reach here if we were unsuccessful in scheduling a
1086     // collection (because another thread beat us to it) or if we were
1087     // stalled due to the GC locker. In either can we should retry the
1088     // allocation attempt in case another thread successfully
1089     // performed a collection and reclaimed enough space.  Give a
1090     // warning if we seem to be looping forever.
1091 
1092     if ((QueuedAllocationWarningCount > 0) &&
1093         (try_count % QueuedAllocationWarningCount == 0)) {
1094       warning("G1CollectedHeap::attempt_allocation_humongous() "
1095               "retries %d times", try_count);
1096     }
1097   }
1098 
1099   ShouldNotReachHere();
1100   return NULL;
1101 }
1102 
1103 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1104                                                            AllocationContext_t context,
1105                                                            bool expect_null_mutator_alloc_region) {
1106   assert_at_safepoint(true /* should_be_vm_thread */);
1107   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1108          "the current alloc region was unexpectedly found to be non-NULL");
1109 
1110   if (!is_humongous(word_size)) {
1111     return _allocator->attempt_allocation_locked(word_size, context);
1112   } else {
1113     HeapWord* result = humongous_obj_allocate(word_size, context);
1114     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1115       collector_state()->set_initiate_conc_mark_if_possible(true);
1116     }
1117     return result;
1118   }
1119 
1120   ShouldNotReachHere();
1121 }
1122 
1123 class PostMCRemSetClearClosure: public HeapRegionClosure {
1124   G1CollectedHeap* _g1h;
1125   ModRefBarrierSet* _mr_bs;
1126 public:
1127   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1128     _g1h(g1h), _mr_bs(mr_bs) {}
1129 
1130   bool doHeapRegion(HeapRegion* r) {
1131     HeapRegionRemSet* hrrs = r->rem_set();
1132 
1133     _g1h->reset_gc_time_stamps(r);
1134 
1135     if (r->is_continues_humongous()) {
1136       // We'll assert that the strong code root list and RSet is empty
1137       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1138       assert(hrrs->occupied() == 0, "RSet should be empty");
1139     } else {
1140       hrrs->clear();
1141     }
1142     // You might think here that we could clear just the cards
1143     // corresponding to the used region.  But no: if we leave a dirty card
1144     // in a region we might allocate into, then it would prevent that card
1145     // from being enqueued, and cause it to be missed.
1146     // Re: the performance cost: we shouldn't be doing full GC anyway!
1147     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1148 
1149     return false;
1150   }
1151 };
1152 
1153 void G1CollectedHeap::clear_rsets_post_compaction() {
1154   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1155   heap_region_iterate(&rs_clear);
1156 }
1157 
1158 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1159   G1CollectedHeap*   _g1h;
1160   UpdateRSOopClosure _cl;
1161 public:
1162   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1163     _cl(g1->g1_rem_set(), worker_i),
1164     _g1h(g1)
1165   { }
1166 
1167   bool doHeapRegion(HeapRegion* r) {
1168     if (!r->is_continues_humongous()) {
1169       _cl.set_from(r);
1170       r->oop_iterate(&_cl);
1171     }
1172     return false;
1173   }
1174 };
1175 
1176 class ParRebuildRSTask: public AbstractGangTask {
1177   G1CollectedHeap* _g1;
1178   HeapRegionClaimer _hrclaimer;
1179 
1180 public:
1181   ParRebuildRSTask(G1CollectedHeap* g1) :
1182       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1183 
1184   void work(uint worker_id) {
1185     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1186     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1187   }
1188 };
1189 
1190 class PostCompactionPrinterClosure: public HeapRegionClosure {
1191 private:
1192   G1HRPrinter* _hr_printer;
1193 public:
1194   bool doHeapRegion(HeapRegion* hr) {
1195     assert(!hr->is_young(), "not expecting to find young regions");
1196     _hr_printer->post_compaction(hr);
1197     return false;
1198   }
1199 
1200   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1201     : _hr_printer(hr_printer) { }
1202 };
1203 
1204 void G1CollectedHeap::print_hrm_post_compaction() {
1205   if (_hr_printer.is_active()) {
1206     PostCompactionPrinterClosure cl(hr_printer());
1207     heap_region_iterate(&cl);
1208   }
1209 
1210 }
1211 
1212 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1213                                          bool clear_all_soft_refs) {
1214   assert_at_safepoint(true /* should_be_vm_thread */);
1215 
1216   if (GCLocker::check_active_before_gc()) {
1217     return false;
1218   }
1219 
1220   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1221   gc_timer->register_gc_start();
1222 
1223   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1224   GCIdMark gc_id_mark;
1225   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1226 
1227   SvcGCMarker sgcm(SvcGCMarker::FULL);
1228   ResourceMark rm;
1229 
1230   print_heap_before_gc();
1231   trace_heap_before_gc(gc_tracer);
1232 
1233   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1234 
1235   _verifier->verify_region_sets_optional();
1236 
1237   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1238                            collector_policy()->should_clear_all_soft_refs();
1239 
1240   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1241 
1242   {
1243     IsGCActiveMark x;
1244 
1245     // Timing
1246     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1247     GCTraceCPUTime tcpu;
1248 
1249     {
1250       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1251       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1252       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1253 
1254       G1HeapTransition heap_transition(this);
1255       g1_policy()->record_full_collection_start();
1256 
1257       // Note: When we have a more flexible GC logging framework that
1258       // allows us to add optional attributes to a GC log record we
1259       // could consider timing and reporting how long we wait in the
1260       // following two methods.
1261       wait_while_free_regions_coming();
1262       // If we start the compaction before the CM threads finish
1263       // scanning the root regions we might trip them over as we'll
1264       // be moving objects / updating references. So let's wait until
1265       // they are done. By telling them to abort, they should complete
1266       // early.
1267       _cm->root_regions()->abort();
1268       _cm->root_regions()->wait_until_scan_finished();
1269       append_secondary_free_list_if_not_empty_with_lock();
1270 
1271       gc_prologue(true);
1272       increment_total_collections(true /* full gc */);
1273       increment_old_marking_cycles_started();
1274 
1275       assert(used() == recalculate_used(), "Should be equal");
1276 
1277       _verifier->verify_before_gc();
1278 
1279       _verifier->check_bitmaps("Full GC Start");
1280       pre_full_gc_dump(gc_timer);
1281 
1282 #if defined(COMPILER2) || INCLUDE_JVMCI
1283       DerivedPointerTable::clear();
1284 #endif
1285 
1286       // Disable discovery and empty the discovered lists
1287       // for the CM ref processor.
1288       ref_processor_cm()->disable_discovery();
1289       ref_processor_cm()->abandon_partial_discovery();
1290       ref_processor_cm()->verify_no_references_recorded();
1291 
1292       // Abandon current iterations of concurrent marking and concurrent
1293       // refinement, if any are in progress.
1294       concurrent_mark()->abort();
1295 
1296       // Make sure we'll choose a new allocation region afterwards.
1297       _allocator->release_mutator_alloc_region();
1298       _allocator->abandon_gc_alloc_regions();
1299       g1_rem_set()->cleanupHRRS();
1300 
1301       // We may have added regions to the current incremental collection
1302       // set between the last GC or pause and now. We need to clear the
1303       // incremental collection set and then start rebuilding it afresh
1304       // after this full GC.
1305       abandon_collection_set(g1_policy()->inc_cset_head());
1306       g1_policy()->clear_incremental_cset();
1307       g1_policy()->stop_incremental_cset_building();
1308 
1309       tear_down_region_sets(false /* free_list_only */);
1310       collector_state()->set_gcs_are_young(true);
1311 
1312       // See the comments in g1CollectedHeap.hpp and
1313       // G1CollectedHeap::ref_processing_init() about
1314       // how reference processing currently works in G1.
1315 
1316       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1317       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1318 
1319       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1320       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1321 
1322       ref_processor_stw()->enable_discovery();
1323       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1324 
1325       // Do collection work
1326       {
1327         HandleMark hm;  // Discard invalid handles created during gc
1328         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1329       }
1330 
1331       assert(num_free_regions() == 0, "we should not have added any free regions");
1332       rebuild_region_sets(false /* free_list_only */);
1333 
1334       // Enqueue any discovered reference objects that have
1335       // not been removed from the discovered lists.
1336       ref_processor_stw()->enqueue_discovered_references();
1337 
1338 #if defined(COMPILER2) || INCLUDE_JVMCI
1339       DerivedPointerTable::update_pointers();
1340 #endif
1341 
1342       MemoryService::track_memory_usage();
1343 
1344       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1345       ref_processor_stw()->verify_no_references_recorded();
1346 
1347       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1348       ClassLoaderDataGraph::purge();
1349       MetaspaceAux::verify_metrics();
1350 
1351       // Note: since we've just done a full GC, concurrent
1352       // marking is no longer active. Therefore we need not
1353       // re-enable reference discovery for the CM ref processor.
1354       // That will be done at the start of the next marking cycle.
1355       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1356       ref_processor_cm()->verify_no_references_recorded();
1357 
1358       reset_gc_time_stamp();
1359       // Since everything potentially moved, we will clear all remembered
1360       // sets, and clear all cards.  Later we will rebuild remembered
1361       // sets. We will also reset the GC time stamps of the regions.
1362       clear_rsets_post_compaction();
1363       check_gc_time_stamps();
1364 
1365       resize_if_necessary_after_full_collection();
1366 
1367       // We should do this after we potentially resize the heap so
1368       // that all the COMMIT / UNCOMMIT events are generated before
1369       // the compaction events.
1370       print_hrm_post_compaction();
1371 
1372       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1373       if (hot_card_cache->use_cache()) {
1374         hot_card_cache->reset_card_counts();
1375         hot_card_cache->reset_hot_cache();
1376       }
1377 
1378       // Rebuild remembered sets of all regions.
1379       uint n_workers =
1380         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1381                                                 workers()->active_workers(),
1382                                                 Threads::number_of_non_daemon_threads());
1383       workers()->set_active_workers(n_workers);
1384 
1385       ParRebuildRSTask rebuild_rs_task(this);
1386       workers()->run_task(&rebuild_rs_task);
1387 
1388       // Rebuild the strong code root lists for each region
1389       rebuild_strong_code_roots();
1390 
1391       if (true) { // FIXME
1392         MetaspaceGC::compute_new_size();
1393       }
1394 
1395 #ifdef TRACESPINNING
1396       ParallelTaskTerminator::print_termination_counts();
1397 #endif
1398 
1399       // Discard all rset updates
1400       JavaThread::dirty_card_queue_set().abandon_logs();
1401       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1402 
1403       // At this point there should be no regions in the
1404       // entire heap tagged as young.
1405       assert(check_young_list_empty(true /* check_heap */),
1406              "young list should be empty at this point");
1407 
1408       // Update the number of full collections that have been completed.
1409       increment_old_marking_cycles_completed(false /* concurrent */);
1410 
1411       _hrm.verify_optional();
1412       _verifier->verify_region_sets_optional();
1413 
1414       _verifier->verify_after_gc();
1415 
1416       // Clear the previous marking bitmap, if needed for bitmap verification.
1417       // Note we cannot do this when we clear the next marking bitmap in
1418       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1419       // objects marked during a full GC against the previous bitmap.
1420       // But we need to clear it before calling check_bitmaps below since
1421       // the full GC has compacted objects and updated TAMS but not updated
1422       // the prev bitmap.
1423       if (G1VerifyBitmaps) {
1424         ((G1CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1425       }
1426       _verifier->check_bitmaps("Full GC End");
1427 
1428       // Start a new incremental collection set for the next pause
1429       assert(g1_policy()->collection_set() == NULL, "must be");
1430       g1_policy()->start_incremental_cset_building();
1431 
1432       clear_cset_fast_test();
1433 
1434       _allocator->init_mutator_alloc_region();
1435 
1436       g1_policy()->record_full_collection_end();
1437 
1438       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1439       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1440       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1441       // before any GC notifications are raised.
1442       g1mm()->update_sizes();
1443 
1444       gc_epilogue(true);
1445 
1446       heap_transition.print();
1447 
1448       print_heap_after_gc();
1449       trace_heap_after_gc(gc_tracer);
1450 
1451       post_full_gc_dump(gc_timer);
1452     }
1453 
1454     gc_timer->register_gc_end();
1455     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1456   }
1457 
1458   return true;
1459 }
1460 
1461 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1462   // Currently, there is no facility in the do_full_collection(bool) API to notify
1463   // the caller that the collection did not succeed (e.g., because it was locked
1464   // out by the GC locker). So, right now, we'll ignore the return value.
1465   bool dummy = do_full_collection(true,                /* explicit_gc */
1466                                   clear_all_soft_refs);
1467 }
1468 
1469 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1470   // Include bytes that will be pre-allocated to support collections, as "used".
1471   const size_t used_after_gc = used();
1472   const size_t capacity_after_gc = capacity();
1473   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1474 
1475   // This is enforced in arguments.cpp.
1476   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1477          "otherwise the code below doesn't make sense");
1478 
1479   // We don't have floating point command-line arguments
1480   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1481   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1482   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1483   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1484 
1485   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1486   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1487 
1488   // We have to be careful here as these two calculations can overflow
1489   // 32-bit size_t's.
1490   double used_after_gc_d = (double) used_after_gc;
1491   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1492   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1493 
1494   // Let's make sure that they are both under the max heap size, which
1495   // by default will make them fit into a size_t.
1496   double desired_capacity_upper_bound = (double) max_heap_size;
1497   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1498                                     desired_capacity_upper_bound);
1499   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1500                                     desired_capacity_upper_bound);
1501 
1502   // We can now safely turn them into size_t's.
1503   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1504   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1505 
1506   // This assert only makes sense here, before we adjust them
1507   // with respect to the min and max heap size.
1508   assert(minimum_desired_capacity <= maximum_desired_capacity,
1509          "minimum_desired_capacity = " SIZE_FORMAT ", "
1510          "maximum_desired_capacity = " SIZE_FORMAT,
1511          minimum_desired_capacity, maximum_desired_capacity);
1512 
1513   // Should not be greater than the heap max size. No need to adjust
1514   // it with respect to the heap min size as it's a lower bound (i.e.,
1515   // we'll try to make the capacity larger than it, not smaller).
1516   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1517   // Should not be less than the heap min size. No need to adjust it
1518   // with respect to the heap max size as it's an upper bound (i.e.,
1519   // we'll try to make the capacity smaller than it, not greater).
1520   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1521 
1522   if (capacity_after_gc < minimum_desired_capacity) {
1523     // Don't expand unless it's significant
1524     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1525 
1526     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1527                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1528                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1529 
1530     expand(expand_bytes);
1531 
1532     // No expansion, now see if we want to shrink
1533   } else if (capacity_after_gc > maximum_desired_capacity) {
1534     // Capacity too large, compute shrinking size
1535     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1536 
1537     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1538                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1539                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1540 
1541     shrink(shrink_bytes);
1542   }
1543 }
1544 
1545 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1546                                                             AllocationContext_t context,
1547                                                             bool do_gc,
1548                                                             bool clear_all_soft_refs,
1549                                                             bool expect_null_mutator_alloc_region,
1550                                                             bool* gc_succeeded) {
1551   *gc_succeeded = true;
1552   // Let's attempt the allocation first.
1553   HeapWord* result =
1554     attempt_allocation_at_safepoint(word_size,
1555                                     context,
1556                                     expect_null_mutator_alloc_region);
1557   if (result != NULL) {
1558     assert(*gc_succeeded, "sanity");
1559     return result;
1560   }
1561 
1562   // In a G1 heap, we're supposed to keep allocation from failing by
1563   // incremental pauses.  Therefore, at least for now, we'll favor
1564   // expansion over collection.  (This might change in the future if we can
1565   // do something smarter than full collection to satisfy a failed alloc.)
1566   result = expand_and_allocate(word_size, context);
1567   if (result != NULL) {
1568     assert(*gc_succeeded, "sanity");
1569     return result;
1570   }
1571 
1572   if (do_gc) {
1573     // Expansion didn't work, we'll try to do a Full GC.
1574     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1575                                        clear_all_soft_refs);
1576   }
1577 
1578   return NULL;
1579 }
1580 
1581 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1582                                                      AllocationContext_t context,
1583                                                      bool* succeeded) {
1584   assert_at_safepoint(true /* should_be_vm_thread */);
1585 
1586   // Attempts to allocate followed by Full GC.
1587   HeapWord* result =
1588     satisfy_failed_allocation_helper(word_size,
1589                                      context,
1590                                      true,  /* do_gc */
1591                                      false, /* clear_all_soft_refs */
1592                                      false, /* expect_null_mutator_alloc_region */
1593                                      succeeded);
1594 
1595   if (result != NULL || !*succeeded) {
1596     return result;
1597   }
1598 
1599   // Attempts to allocate followed by Full GC that will collect all soft references.
1600   result = satisfy_failed_allocation_helper(word_size,
1601                                             context,
1602                                             true, /* do_gc */
1603                                             true, /* clear_all_soft_refs */
1604                                             true, /* expect_null_mutator_alloc_region */
1605                                             succeeded);
1606 
1607   if (result != NULL || !*succeeded) {
1608     return result;
1609   }
1610 
1611   // Attempts to allocate, no GC
1612   result = satisfy_failed_allocation_helper(word_size,
1613                                             context,
1614                                             false, /* do_gc */
1615                                             false, /* clear_all_soft_refs */
1616                                             true,  /* expect_null_mutator_alloc_region */
1617                                             succeeded);
1618 
1619   if (result != NULL) {
1620     assert(*succeeded, "sanity");
1621     return result;
1622   }
1623 
1624   assert(!collector_policy()->should_clear_all_soft_refs(),
1625          "Flag should have been handled and cleared prior to this point");
1626 
1627   // What else?  We might try synchronous finalization later.  If the total
1628   // space available is large enough for the allocation, then a more
1629   // complete compaction phase than we've tried so far might be
1630   // appropriate.
1631   assert(*succeeded, "sanity");
1632   return NULL;
1633 }
1634 
1635 // Attempting to expand the heap sufficiently
1636 // to support an allocation of the given "word_size".  If
1637 // successful, perform the allocation and return the address of the
1638 // allocated block, or else "NULL".
1639 
1640 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1641   assert_at_safepoint(true /* should_be_vm_thread */);
1642 
1643   _verifier->verify_region_sets_optional();
1644 
1645   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1646   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1647                             word_size * HeapWordSize);
1648 
1649 
1650   if (expand(expand_bytes)) {
1651     _hrm.verify_optional();
1652     _verifier->verify_region_sets_optional();
1653     return attempt_allocation_at_safepoint(word_size,
1654                                            context,
1655                                            false /* expect_null_mutator_alloc_region */);
1656   }
1657   return NULL;
1658 }
1659 
1660 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1661   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1662   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1663                                        HeapRegion::GrainBytes);
1664 
1665   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",
1666                             expand_bytes, aligned_expand_bytes);
1667 
1668   if (is_maximal_no_gc()) {
1669     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1670     return false;
1671   }
1672 
1673   double expand_heap_start_time_sec = os::elapsedTime();
1674   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1675   assert(regions_to_expand > 0, "Must expand by at least one region");
1676 
1677   uint expanded_by = _hrm.expand_by(regions_to_expand);
1678   if (expand_time_ms != NULL) {
1679     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1680   }
1681 
1682   if (expanded_by > 0) {
1683     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1684     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1685     g1_policy()->record_new_heap_size(num_regions());
1686   } else {
1687     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1688 
1689     // The expansion of the virtual storage space was unsuccessful.
1690     // Let's see if it was because we ran out of swap.
1691     if (G1ExitOnExpansionFailure &&
1692         _hrm.available() >= regions_to_expand) {
1693       // We had head room...
1694       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1695     }
1696   }
1697   return regions_to_expand > 0;
1698 }
1699 
1700 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1701   size_t aligned_shrink_bytes =
1702     ReservedSpace::page_align_size_down(shrink_bytes);
1703   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1704                                          HeapRegion::GrainBytes);
1705   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1706 
1707   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1708   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1709 
1710 
1711   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1712                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1713   if (num_regions_removed > 0) {
1714     g1_policy()->record_new_heap_size(num_regions());
1715   } else {
1716     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1717   }
1718 }
1719 
1720 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1721   _verifier->verify_region_sets_optional();
1722 
1723   // We should only reach here at the end of a Full GC which means we
1724   // should not not be holding to any GC alloc regions. The method
1725   // below will make sure of that and do any remaining clean up.
1726   _allocator->abandon_gc_alloc_regions();
1727 
1728   // Instead of tearing down / rebuilding the free lists here, we
1729   // could instead use the remove_all_pending() method on free_list to
1730   // remove only the ones that we need to remove.
1731   tear_down_region_sets(true /* free_list_only */);
1732   shrink_helper(shrink_bytes);
1733   rebuild_region_sets(true /* free_list_only */);
1734 
1735   _hrm.verify_optional();
1736   _verifier->verify_region_sets_optional();
1737 }
1738 
1739 // Public methods.
1740 
1741 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1742   CollectedHeap(),
1743   _g1_policy(policy_),
1744   _dirty_card_queue_set(false),
1745   _is_alive_closure_cm(this),
1746   _is_alive_closure_stw(this),
1747   _ref_processor_cm(NULL),
1748   _ref_processor_stw(NULL),
1749   _bot(NULL),
1750   _cg1r(NULL),
1751   _g1mm(NULL),
1752   _refine_cte_cl(NULL),
1753   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1754   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1755   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1756   _humongous_reclaim_candidates(),
1757   _has_humongous_reclaim_candidates(false),
1758   _archive_allocator(NULL),
1759   _free_regions_coming(false),
1760   _young_list(new YoungList(this)),
1761   _gc_time_stamp(0),
1762   _summary_bytes_used(0),
1763   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1764   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1765   _expand_heap_after_alloc_failure(true),
1766   _old_marking_cycles_started(0),
1767   _old_marking_cycles_completed(0),
1768   _heap_summary_sent(false),
1769   _in_cset_fast_test(),
1770   _dirty_cards_region_list(NULL),
1771   _worker_cset_start_region(NULL),
1772   _worker_cset_start_region_time_stamp(NULL),
1773   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1774   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1775   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1776   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1777 
1778   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1779                           /* are_GC_task_threads */true,
1780                           /* are_ConcurrentGC_threads */false);
1781   _workers->initialize_workers();
1782   _verifier = new G1HeapVerifier(this);
1783 
1784   _allocator = G1Allocator::create_allocator(this);
1785   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1786 
1787   // Override the default _filler_array_max_size so that no humongous filler
1788   // objects are created.
1789   _filler_array_max_size = _humongous_object_threshold_in_words;
1790 
1791   uint n_queues = ParallelGCThreads;
1792   _task_queues = new RefToScanQueueSet(n_queues);
1793 
1794   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1795   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1796   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1797 
1798   for (uint i = 0; i < n_queues; i++) {
1799     RefToScanQueue* q = new RefToScanQueue();
1800     q->initialize();
1801     _task_queues->register_queue(i, q);
1802     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1803   }
1804   clear_cset_start_regions();
1805 
1806   // Initialize the G1EvacuationFailureALot counters and flags.
1807   NOT_PRODUCT(reset_evacuation_should_fail();)
1808 
1809   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1810 }
1811 
1812 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1813                                                                  size_t size,
1814                                                                  size_t translation_factor) {
1815   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1816   // Allocate a new reserved space, preferring to use large pages.
1817   ReservedSpace rs(size, preferred_page_size);
1818   G1RegionToSpaceMapper* result  =
1819     G1RegionToSpaceMapper::create_mapper(rs,
1820                                          size,
1821                                          rs.alignment(),
1822                                          HeapRegion::GrainBytes,
1823                                          translation_factor,
1824                                          mtGC);
1825   if (TracePageSizes) {
1826     tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1827                   description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1828   }
1829   return result;
1830 }
1831 
1832 jint G1CollectedHeap::initialize() {
1833   CollectedHeap::pre_initialize();
1834   os::enable_vtime();
1835 
1836   // Necessary to satisfy locking discipline assertions.
1837 
1838   MutexLocker x(Heap_lock);
1839 
1840   // While there are no constraints in the GC code that HeapWordSize
1841   // be any particular value, there are multiple other areas in the
1842   // system which believe this to be true (e.g. oop->object_size in some
1843   // cases incorrectly returns the size in wordSize units rather than
1844   // HeapWordSize).
1845   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1846 
1847   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1848   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1849   size_t heap_alignment = collector_policy()->heap_alignment();
1850 
1851   // Ensure that the sizes are properly aligned.
1852   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1853   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1854   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1855 
1856   _refine_cte_cl = new RefineCardTableEntryClosure();
1857 
1858   jint ecode = JNI_OK;
1859   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1860   if (_cg1r == NULL) {
1861     return ecode;
1862   }
1863 
1864   // Reserve the maximum.
1865 
1866   // When compressed oops are enabled, the preferred heap base
1867   // is calculated by subtracting the requested size from the
1868   // 32Gb boundary and using the result as the base address for
1869   // heap reservation. If the requested size is not aligned to
1870   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1871   // into the ReservedHeapSpace constructor) then the actual
1872   // base of the reserved heap may end up differing from the
1873   // address that was requested (i.e. the preferred heap base).
1874   // If this happens then we could end up using a non-optimal
1875   // compressed oops mode.
1876 
1877   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1878                                                  heap_alignment);
1879 
1880   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1881 
1882   // Create the barrier set for the entire reserved region.
1883   G1SATBCardTableLoggingModRefBS* bs
1884     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1885   bs->initialize();
1886   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1887   set_barrier_set(bs);
1888 
1889   // Also create a G1 rem set.
1890   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1891 
1892   // Carve out the G1 part of the heap.
1893   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1894   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1895   G1RegionToSpaceMapper* heap_storage =
1896     G1RegionToSpaceMapper::create_mapper(g1_rs,
1897                                          g1_rs.size(),
1898                                          page_size,
1899                                          HeapRegion::GrainBytes,
1900                                          1,
1901                                          mtJavaHeap);
1902   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1903                        max_byte_size, page_size,
1904                        heap_rs.base(),
1905                        heap_rs.size());
1906   heap_storage->set_mapping_changed_listener(&_listener);
1907 
1908   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1909   G1RegionToSpaceMapper* bot_storage =
1910     create_aux_memory_mapper("Block offset table",
1911                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1912                              G1BlockOffsetTable::heap_map_factor());
1913 
1914   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1915   G1RegionToSpaceMapper* cardtable_storage =
1916     create_aux_memory_mapper("Card table",
1917                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1918                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1919 
1920   G1RegionToSpaceMapper* card_counts_storage =
1921     create_aux_memory_mapper("Card counts table",
1922                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1923                              G1CardCounts::heap_map_factor());
1924 
1925   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1926   G1RegionToSpaceMapper* prev_bitmap_storage =
1927     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1928   G1RegionToSpaceMapper* next_bitmap_storage =
1929     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1930 
1931   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1932   g1_barrier_set()->initialize(cardtable_storage);
1933    // Do later initialization work for concurrent refinement.
1934   _cg1r->init(card_counts_storage);
1935 
1936   // 6843694 - ensure that the maximum region index can fit
1937   // in the remembered set structures.
1938   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1939   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1940 
1941   G1RemSet::initialize(max_regions());
1942 
1943   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1944   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1945   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1946             "too many cards per region");
1947 
1948   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1949 
1950   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1951 
1952   {
1953     HeapWord* start = _hrm.reserved().start();
1954     HeapWord* end = _hrm.reserved().end();
1955     size_t granularity = HeapRegion::GrainBytes;
1956 
1957     _in_cset_fast_test.initialize(start, end, granularity);
1958     _humongous_reclaim_candidates.initialize(start, end, granularity);
1959   }
1960 
1961   // Create the G1ConcurrentMark data structure and thread.
1962   // (Must do this late, so that "max_regions" is defined.)
1963   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1964   if (_cm == NULL || !_cm->completed_initialization()) {
1965     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1966     return JNI_ENOMEM;
1967   }
1968   _cmThread = _cm->cmThread();
1969 
1970   // Now expand into the initial heap size.
1971   if (!expand(init_byte_size)) {
1972     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1973     return JNI_ENOMEM;
1974   }
1975 
1976   // Perform any initialization actions delegated to the policy.
1977   g1_policy()->init();
1978 
1979   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1980                                                SATB_Q_FL_lock,
1981                                                G1SATBProcessCompletedThreshold,
1982                                                Shared_SATB_Q_lock);
1983 
1984   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1985                                                 DirtyCardQ_CBL_mon,
1986                                                 DirtyCardQ_FL_lock,
1987                                                 (int)concurrent_g1_refine()->yellow_zone(),
1988                                                 (int)concurrent_g1_refine()->red_zone(),
1989                                                 Shared_DirtyCardQ_lock,
1990                                                 NULL,  // fl_owner
1991                                                 true); // init_free_ids
1992 
1993   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1994                                     DirtyCardQ_CBL_mon,
1995                                     DirtyCardQ_FL_lock,
1996                                     -1, // never trigger processing
1997                                     -1, // no limit on length
1998                                     Shared_DirtyCardQ_lock,
1999                                     &JavaThread::dirty_card_queue_set());
2000 
2001   // Here we allocate the dummy HeapRegion that is required by the
2002   // G1AllocRegion class.
2003   HeapRegion* dummy_region = _hrm.get_dummy_region();
2004 
2005   // We'll re-use the same region whether the alloc region will
2006   // require BOT updates or not and, if it doesn't, then a non-young
2007   // region will complain that it cannot support allocations without
2008   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2009   dummy_region->set_eden();
2010   // Make sure it's full.
2011   dummy_region->set_top(dummy_region->end());
2012   G1AllocRegion::setup(this, dummy_region);
2013 
2014   _allocator->init_mutator_alloc_region();
2015 
2016   // Do create of the monitoring and management support so that
2017   // values in the heap have been properly initialized.
2018   _g1mm = new G1MonitoringSupport(this);
2019 
2020   G1StringDedup::initialize();
2021 
2022   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2023   for (uint i = 0; i < ParallelGCThreads; i++) {
2024     new (&_preserved_objs[i]) OopAndMarkOopStack();
2025   }
2026 
2027   return JNI_OK;
2028 }
2029 
2030 void G1CollectedHeap::stop() {
2031   // Stop all concurrent threads. We do this to make sure these threads
2032   // do not continue to execute and access resources (e.g. logging)
2033   // that are destroyed during shutdown.
2034   _cg1r->stop();
2035   _cmThread->stop();
2036   if (G1StringDedup::is_enabled()) {
2037     G1StringDedup::stop();
2038   }
2039 }
2040 
2041 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2042   return HeapRegion::max_region_size();
2043 }
2044 
2045 void G1CollectedHeap::post_initialize() {
2046   CollectedHeap::post_initialize();
2047   ref_processing_init();
2048 }
2049 
2050 void G1CollectedHeap::ref_processing_init() {
2051   // Reference processing in G1 currently works as follows:
2052   //
2053   // * There are two reference processor instances. One is
2054   //   used to record and process discovered references
2055   //   during concurrent marking; the other is used to
2056   //   record and process references during STW pauses
2057   //   (both full and incremental).
2058   // * Both ref processors need to 'span' the entire heap as
2059   //   the regions in the collection set may be dotted around.
2060   //
2061   // * For the concurrent marking ref processor:
2062   //   * Reference discovery is enabled at initial marking.
2063   //   * Reference discovery is disabled and the discovered
2064   //     references processed etc during remarking.
2065   //   * Reference discovery is MT (see below).
2066   //   * Reference discovery requires a barrier (see below).
2067   //   * Reference processing may or may not be MT
2068   //     (depending on the value of ParallelRefProcEnabled
2069   //     and ParallelGCThreads).
2070   //   * A full GC disables reference discovery by the CM
2071   //     ref processor and abandons any entries on it's
2072   //     discovered lists.
2073   //
2074   // * For the STW processor:
2075   //   * Non MT discovery is enabled at the start of a full GC.
2076   //   * Processing and enqueueing during a full GC is non-MT.
2077   //   * During a full GC, references are processed after marking.
2078   //
2079   //   * Discovery (may or may not be MT) is enabled at the start
2080   //     of an incremental evacuation pause.
2081   //   * References are processed near the end of a STW evacuation pause.
2082   //   * For both types of GC:
2083   //     * Discovery is atomic - i.e. not concurrent.
2084   //     * Reference discovery will not need a barrier.
2085 
2086   MemRegion mr = reserved_region();
2087 
2088   // Concurrent Mark ref processor
2089   _ref_processor_cm =
2090     new ReferenceProcessor(mr,    // span
2091                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2092                                 // mt processing
2093                            ParallelGCThreads,
2094                                 // degree of mt processing
2095                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2096                                 // mt discovery
2097                            MAX2(ParallelGCThreads, ConcGCThreads),
2098                                 // degree of mt discovery
2099                            false,
2100                                 // Reference discovery is not atomic
2101                            &_is_alive_closure_cm);
2102                                 // is alive closure
2103                                 // (for efficiency/performance)
2104 
2105   // STW ref processor
2106   _ref_processor_stw =
2107     new ReferenceProcessor(mr,    // span
2108                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2109                                 // mt processing
2110                            ParallelGCThreads,
2111                                 // degree of mt processing
2112                            (ParallelGCThreads > 1),
2113                                 // mt discovery
2114                            ParallelGCThreads,
2115                                 // degree of mt discovery
2116                            true,
2117                                 // Reference discovery is atomic
2118                            &_is_alive_closure_stw);
2119                                 // is alive closure
2120                                 // (for efficiency/performance)
2121 }
2122 
2123 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2124   return g1_policy();
2125 }
2126 
2127 size_t G1CollectedHeap::capacity() const {
2128   return _hrm.length() * HeapRegion::GrainBytes;
2129 }
2130 
2131 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2132   hr->reset_gc_time_stamp();
2133 }
2134 
2135 #ifndef PRODUCT
2136 
2137 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2138 private:
2139   unsigned _gc_time_stamp;
2140   bool _failures;
2141 
2142 public:
2143   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2144     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2145 
2146   virtual bool doHeapRegion(HeapRegion* hr) {
2147     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2148     if (_gc_time_stamp != region_gc_time_stamp) {
2149       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2150                             region_gc_time_stamp, _gc_time_stamp);
2151       _failures = true;
2152     }
2153     return false;
2154   }
2155 
2156   bool failures() { return _failures; }
2157 };
2158 
2159 void G1CollectedHeap::check_gc_time_stamps() {
2160   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2161   heap_region_iterate(&cl);
2162   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2163 }
2164 #endif // PRODUCT
2165 
2166 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2167   _cg1r->hot_card_cache()->drain(cl, worker_i);
2168 }
2169 
2170 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2171   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2172   size_t n_completed_buffers = 0;
2173   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2174     n_completed_buffers++;
2175   }
2176   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2177   dcqs.clear_n_completed_buffers();
2178   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2179 }
2180 
2181 // Computes the sum of the storage used by the various regions.
2182 size_t G1CollectedHeap::used() const {
2183   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2184   if (_archive_allocator != NULL) {
2185     result += _archive_allocator->used();
2186   }
2187   return result;
2188 }
2189 
2190 size_t G1CollectedHeap::used_unlocked() const {
2191   return _summary_bytes_used;
2192 }
2193 
2194 class SumUsedClosure: public HeapRegionClosure {
2195   size_t _used;
2196 public:
2197   SumUsedClosure() : _used(0) {}
2198   bool doHeapRegion(HeapRegion* r) {
2199     _used += r->used();
2200     return false;
2201   }
2202   size_t result() { return _used; }
2203 };
2204 
2205 size_t G1CollectedHeap::recalculate_used() const {
2206   double recalculate_used_start = os::elapsedTime();
2207 
2208   SumUsedClosure blk;
2209   heap_region_iterate(&blk);
2210 
2211   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2212   return blk.result();
2213 }
2214 
2215 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2216   switch (cause) {
2217     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2218     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2219     case GCCause::_update_allocation_context_stats_inc: return true;
2220     case GCCause::_wb_conc_mark:                        return true;
2221     default :                                           return false;
2222   }
2223 }
2224 
2225 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2226   switch (cause) {
2227     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2228     case GCCause::_g1_humongous_allocation: return true;
2229     default:                                return is_user_requested_concurrent_full_gc(cause);
2230   }
2231 }
2232 
2233 #ifndef PRODUCT
2234 void G1CollectedHeap::allocate_dummy_regions() {
2235   // Let's fill up most of the region
2236   size_t word_size = HeapRegion::GrainWords - 1024;
2237   // And as a result the region we'll allocate will be humongous.
2238   guarantee(is_humongous(word_size), "sanity");
2239 
2240   // _filler_array_max_size is set to humongous object threshold
2241   // but temporarily change it to use CollectedHeap::fill_with_object().
2242   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2243 
2244   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2245     // Let's use the existing mechanism for the allocation
2246     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2247                                                  AllocationContext::system());
2248     if (dummy_obj != NULL) {
2249       MemRegion mr(dummy_obj, word_size);
2250       CollectedHeap::fill_with_object(mr);
2251     } else {
2252       // If we can't allocate once, we probably cannot allocate
2253       // again. Let's get out of the loop.
2254       break;
2255     }
2256   }
2257 }
2258 #endif // !PRODUCT
2259 
2260 void G1CollectedHeap::increment_old_marking_cycles_started() {
2261   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2262          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2263          "Wrong marking cycle count (started: %d, completed: %d)",
2264          _old_marking_cycles_started, _old_marking_cycles_completed);
2265 
2266   _old_marking_cycles_started++;
2267 }
2268 
2269 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2270   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2271 
2272   // We assume that if concurrent == true, then the caller is a
2273   // concurrent thread that was joined the Suspendible Thread
2274   // Set. If there's ever a cheap way to check this, we should add an
2275   // assert here.
2276 
2277   // Given that this method is called at the end of a Full GC or of a
2278   // concurrent cycle, and those can be nested (i.e., a Full GC can
2279   // interrupt a concurrent cycle), the number of full collections
2280   // completed should be either one (in the case where there was no
2281   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2282   // behind the number of full collections started.
2283 
2284   // This is the case for the inner caller, i.e. a Full GC.
2285   assert(concurrent ||
2286          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2287          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2288          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2289          "is inconsistent with _old_marking_cycles_completed = %u",
2290          _old_marking_cycles_started, _old_marking_cycles_completed);
2291 
2292   // This is the case for the outer caller, i.e. the concurrent cycle.
2293   assert(!concurrent ||
2294          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2295          "for outer caller (concurrent cycle): "
2296          "_old_marking_cycles_started = %u "
2297          "is inconsistent with _old_marking_cycles_completed = %u",
2298          _old_marking_cycles_started, _old_marking_cycles_completed);
2299 
2300   _old_marking_cycles_completed += 1;
2301 
2302   // We need to clear the "in_progress" flag in the CM thread before
2303   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2304   // is set) so that if a waiter requests another System.gc() it doesn't
2305   // incorrectly see that a marking cycle is still in progress.
2306   if (concurrent) {
2307     _cmThread->set_idle();
2308   }
2309 
2310   // This notify_all() will ensure that a thread that called
2311   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2312   // and it's waiting for a full GC to finish will be woken up. It is
2313   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2314   FullGCCount_lock->notify_all();
2315 }
2316 
2317 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2318   GCIdMarkAndRestore conc_gc_id_mark;
2319   collector_state()->set_concurrent_cycle_started(true);
2320   _gc_timer_cm->register_gc_start(start_time);
2321 
2322   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2323   trace_heap_before_gc(_gc_tracer_cm);
2324   _cmThread->set_gc_id(GCId::current());
2325 }
2326 
2327 void G1CollectedHeap::register_concurrent_cycle_end() {
2328   if (collector_state()->concurrent_cycle_started()) {
2329     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2330     if (_cm->has_aborted()) {
2331       _gc_tracer_cm->report_concurrent_mode_failure();
2332 
2333       // ConcurrentGCTimer will be ended as well.
2334       _cm->register_concurrent_gc_end_and_stop_timer();
2335     } else {
2336       _gc_timer_cm->register_gc_end();
2337     }
2338 
2339     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2340 
2341     // Clear state variables to prepare for the next concurrent cycle.
2342     collector_state()->set_concurrent_cycle_started(false);
2343     _heap_summary_sent = false;
2344   }
2345 }
2346 
2347 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2348   if (collector_state()->concurrent_cycle_started()) {
2349     // This function can be called when:
2350     //  the cleanup pause is run
2351     //  the concurrent cycle is aborted before the cleanup pause.
2352     //  the concurrent cycle is aborted after the cleanup pause,
2353     //   but before the concurrent cycle end has been registered.
2354     // Make sure that we only send the heap information once.
2355     if (!_heap_summary_sent) {
2356       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2357       trace_heap_after_gc(_gc_tracer_cm);
2358       _heap_summary_sent = true;
2359     }
2360   }
2361 }
2362 
2363 void G1CollectedHeap::collect(GCCause::Cause cause) {
2364   assert_heap_not_locked();
2365 
2366   uint gc_count_before;
2367   uint old_marking_count_before;
2368   uint full_gc_count_before;
2369   bool retry_gc;
2370 
2371   do {
2372     retry_gc = false;
2373 
2374     {
2375       MutexLocker ml(Heap_lock);
2376 
2377       // Read the GC count while holding the Heap_lock
2378       gc_count_before = total_collections();
2379       full_gc_count_before = total_full_collections();
2380       old_marking_count_before = _old_marking_cycles_started;
2381     }
2382 
2383     if (should_do_concurrent_full_gc(cause)) {
2384       // Schedule an initial-mark evacuation pause that will start a
2385       // concurrent cycle. We're setting word_size to 0 which means that
2386       // we are not requesting a post-GC allocation.
2387       VM_G1IncCollectionPause op(gc_count_before,
2388                                  0,     /* word_size */
2389                                  true,  /* should_initiate_conc_mark */
2390                                  g1_policy()->max_pause_time_ms(),
2391                                  cause);
2392       op.set_allocation_context(AllocationContext::current());
2393 
2394       VMThread::execute(&op);
2395       if (!op.pause_succeeded()) {
2396         if (old_marking_count_before == _old_marking_cycles_started) {
2397           retry_gc = op.should_retry_gc();
2398         } else {
2399           // A Full GC happened while we were trying to schedule the
2400           // initial-mark GC. No point in starting a new cycle given
2401           // that the whole heap was collected anyway.
2402         }
2403 
2404         if (retry_gc) {
2405           if (GCLocker::is_active_and_needs_gc()) {
2406             GCLocker::stall_until_clear();
2407           }
2408         }
2409       }
2410     } else {
2411       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2412           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2413 
2414         // Schedule a standard evacuation pause. We're setting word_size
2415         // to 0 which means that we are not requesting a post-GC allocation.
2416         VM_G1IncCollectionPause op(gc_count_before,
2417                                    0,     /* word_size */
2418                                    false, /* should_initiate_conc_mark */
2419                                    g1_policy()->max_pause_time_ms(),
2420                                    cause);
2421         VMThread::execute(&op);
2422       } else {
2423         // Schedule a Full GC.
2424         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2425         VMThread::execute(&op);
2426       }
2427     }
2428   } while (retry_gc);
2429 }
2430 
2431 bool G1CollectedHeap::is_in(const void* p) const {
2432   if (_hrm.reserved().contains(p)) {
2433     // Given that we know that p is in the reserved space,
2434     // heap_region_containing() should successfully
2435     // return the containing region.
2436     HeapRegion* hr = heap_region_containing(p);
2437     return hr->is_in(p);
2438   } else {
2439     return false;
2440   }
2441 }
2442 
2443 #ifdef ASSERT
2444 bool G1CollectedHeap::is_in_exact(const void* p) const {
2445   bool contains = reserved_region().contains(p);
2446   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2447   if (contains && available) {
2448     return true;
2449   } else {
2450     return false;
2451   }
2452 }
2453 #endif
2454 
2455 bool G1CollectedHeap::obj_in_cs(oop obj) {
2456   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2457   return r != NULL && r->in_collection_set();
2458 }
2459 
2460 // Iteration functions.
2461 
2462 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2463 
2464 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2465   ExtendedOopClosure* _cl;
2466 public:
2467   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2468   bool doHeapRegion(HeapRegion* r) {
2469     if (!r->is_continues_humongous()) {
2470       r->oop_iterate(_cl);
2471     }
2472     return false;
2473   }
2474 };
2475 
2476 // Iterates an ObjectClosure over all objects within a HeapRegion.
2477 
2478 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2479   ObjectClosure* _cl;
2480 public:
2481   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2482   bool doHeapRegion(HeapRegion* r) {
2483     if (!r->is_continues_humongous()) {
2484       r->object_iterate(_cl);
2485     }
2486     return false;
2487   }
2488 };
2489 
2490 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2491   IterateObjectClosureRegionClosure blk(cl);
2492   heap_region_iterate(&blk);
2493 }
2494 
2495 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2496   _hrm.iterate(cl);
2497 }
2498 
2499 void
2500 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2501                                          uint worker_id,
2502                                          HeapRegionClaimer *hrclaimer,
2503                                          bool concurrent) const {
2504   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2505 }
2506 
2507 // Clear the cached CSet starting regions and (more importantly)
2508 // the time stamps. Called when we reset the GC time stamp.
2509 void G1CollectedHeap::clear_cset_start_regions() {
2510   assert(_worker_cset_start_region != NULL, "sanity");
2511   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2512 
2513   for (uint i = 0; i < ParallelGCThreads; i++) {
2514     _worker_cset_start_region[i] = NULL;
2515     _worker_cset_start_region_time_stamp[i] = 0;
2516   }
2517 }
2518 
2519 // Given the id of a worker, obtain or calculate a suitable
2520 // starting region for iterating over the current collection set.
2521 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2522   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2523 
2524   HeapRegion* result = NULL;
2525   unsigned gc_time_stamp = get_gc_time_stamp();
2526 
2527   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2528     // Cached starting region for current worker was set
2529     // during the current pause - so it's valid.
2530     // Note: the cached starting heap region may be NULL
2531     // (when the collection set is empty).
2532     result = _worker_cset_start_region[worker_i];
2533     assert(result == NULL || result->in_collection_set(), "sanity");
2534     return result;
2535   }
2536 
2537   // The cached entry was not valid so let's calculate
2538   // a suitable starting heap region for this worker.
2539 
2540   // We want the parallel threads to start their collection
2541   // set iteration at different collection set regions to
2542   // avoid contention.
2543   // If we have:
2544   //          n collection set regions
2545   //          p threads
2546   // Then thread t will start at region floor ((t * n) / p)
2547 
2548   result = g1_policy()->collection_set();
2549   uint cs_size = g1_policy()->cset_region_length();
2550   uint active_workers = workers()->active_workers();
2551 
2552   uint end_ind   = (cs_size * worker_i) / active_workers;
2553   uint start_ind = 0;
2554 
2555   if (worker_i > 0 &&
2556       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2557     // Previous workers starting region is valid
2558     // so let's iterate from there
2559     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2560     OrderAccess::loadload();
2561     result = _worker_cset_start_region[worker_i - 1];
2562   }
2563 
2564   for (uint i = start_ind; i < end_ind; i++) {
2565     result = result->next_in_collection_set();
2566   }
2567 
2568   // Note: the calculated starting heap region may be NULL
2569   // (when the collection set is empty).
2570   assert(result == NULL || result->in_collection_set(), "sanity");
2571   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2572          "should be updated only once per pause");
2573   _worker_cset_start_region[worker_i] = result;
2574   OrderAccess::storestore();
2575   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2576   return result;
2577 }
2578 
2579 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2580   HeapRegion* r = g1_policy()->collection_set();
2581   while (r != NULL) {
2582     HeapRegion* next = r->next_in_collection_set();
2583     if (cl->doHeapRegion(r)) {
2584       cl->incomplete();
2585       return;
2586     }
2587     r = next;
2588   }
2589 }
2590 
2591 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2592                                                   HeapRegionClosure *cl) {
2593   if (r == NULL) {
2594     // The CSet is empty so there's nothing to do.
2595     return;
2596   }
2597 
2598   assert(r->in_collection_set(),
2599          "Start region must be a member of the collection set.");
2600   HeapRegion* cur = r;
2601   while (cur != NULL) {
2602     HeapRegion* next = cur->next_in_collection_set();
2603     if (cl->doHeapRegion(cur) && false) {
2604       cl->incomplete();
2605       return;
2606     }
2607     cur = next;
2608   }
2609   cur = g1_policy()->collection_set();
2610   while (cur != r) {
2611     HeapRegion* next = cur->next_in_collection_set();
2612     if (cl->doHeapRegion(cur) && false) {
2613       cl->incomplete();
2614       return;
2615     }
2616     cur = next;
2617   }
2618 }
2619 
2620 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2621   HeapRegion* result = _hrm.next_region_in_heap(from);
2622   while (result != NULL && result->is_pinned()) {
2623     result = _hrm.next_region_in_heap(result);
2624   }
2625   return result;
2626 }
2627 
2628 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2629   HeapRegion* hr = heap_region_containing(addr);
2630   return hr->block_start(addr);
2631 }
2632 
2633 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2634   HeapRegion* hr = heap_region_containing(addr);
2635   return hr->block_size(addr);
2636 }
2637 
2638 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2639   HeapRegion* hr = heap_region_containing(addr);
2640   return hr->block_is_obj(addr);
2641 }
2642 
2643 bool G1CollectedHeap::supports_tlab_allocation() const {
2644   return true;
2645 }
2646 
2647 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2648   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2649 }
2650 
2651 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2652   return young_list()->eden_used_bytes();
2653 }
2654 
2655 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2656 // must be equal to the humongous object limit.
2657 size_t G1CollectedHeap::max_tlab_size() const {
2658   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2659 }
2660 
2661 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2662   AllocationContext_t context = AllocationContext::current();
2663   return _allocator->unsafe_max_tlab_alloc(context);
2664 }
2665 
2666 size_t G1CollectedHeap::max_capacity() const {
2667   return _hrm.reserved().byte_size();
2668 }
2669 
2670 jlong G1CollectedHeap::millis_since_last_gc() {
2671   // assert(false, "NYI");
2672   return 0;
2673 }
2674 
2675 void G1CollectedHeap::prepare_for_verify() {
2676   _verifier->prepare_for_verify();
2677 }
2678 
2679 void G1CollectedHeap::verify(VerifyOption vo) {
2680   _verifier->verify(vo);
2681 }
2682 
2683 class PrintRegionClosure: public HeapRegionClosure {
2684   outputStream* _st;
2685 public:
2686   PrintRegionClosure(outputStream* st) : _st(st) {}
2687   bool doHeapRegion(HeapRegion* r) {
2688     r->print_on(_st);
2689     return false;
2690   }
2691 };
2692 
2693 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2694                                        const HeapRegion* hr,
2695                                        const VerifyOption vo) const {
2696   switch (vo) {
2697   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2698   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2699   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2700   default:                            ShouldNotReachHere();
2701   }
2702   return false; // keep some compilers happy
2703 }
2704 
2705 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2706                                        const VerifyOption vo) const {
2707   switch (vo) {
2708   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2709   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2710   case VerifyOption_G1UseMarkWord: {
2711     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2712     return !obj->is_gc_marked() && !hr->is_archive();
2713   }
2714   default:                            ShouldNotReachHere();
2715   }
2716   return false; // keep some compilers happy
2717 }
2718 
2719 void G1CollectedHeap::print_on(outputStream* st) const {
2720   st->print(" %-20s", "garbage-first heap");
2721   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2722             capacity()/K, used_unlocked()/K);
2723   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2724             p2i(_hrm.reserved().start()),
2725             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2726             p2i(_hrm.reserved().end()));
2727   st->cr();
2728   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2729   uint young_regions = _young_list->length();
2730   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2731             (size_t) young_regions * HeapRegion::GrainBytes / K);
2732   uint survivor_regions = g1_policy()->recorded_survivor_regions();
2733   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2734             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2735   st->cr();
2736   MetaspaceAux::print_on(st);
2737 }
2738 
2739 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2740   print_on(st);
2741 
2742   // Print the per-region information.
2743   st->cr();
2744   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2745                "HS=humongous(starts), HC=humongous(continues), "
2746                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2747                "AC=allocation context, "
2748                "TAMS=top-at-mark-start (previous, next)");
2749   PrintRegionClosure blk(st);
2750   heap_region_iterate(&blk);
2751 }
2752 
2753 void G1CollectedHeap::print_on_error(outputStream* st) const {
2754   this->CollectedHeap::print_on_error(st);
2755 
2756   if (_cm != NULL) {
2757     st->cr();
2758     _cm->print_on_error(st);
2759   }
2760 }
2761 
2762 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2763   workers()->print_worker_threads_on(st);
2764   _cmThread->print_on(st);
2765   st->cr();
2766   _cm->print_worker_threads_on(st);
2767   _cg1r->print_worker_threads_on(st);
2768   if (G1StringDedup::is_enabled()) {
2769     G1StringDedup::print_worker_threads_on(st);
2770   }
2771 }
2772 
2773 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2774   workers()->threads_do(tc);
2775   tc->do_thread(_cmThread);
2776   _cg1r->threads_do(tc);
2777   if (G1StringDedup::is_enabled()) {
2778     G1StringDedup::threads_do(tc);
2779   }
2780 }
2781 
2782 void G1CollectedHeap::print_tracing_info() const {
2783   g1_rem_set()->print_summary_info();
2784   concurrent_mark()->print_summary_info();
2785   g1_policy()->print_yg_surv_rate_info();
2786 }
2787 
2788 #ifndef PRODUCT
2789 // Helpful for debugging RSet issues.
2790 
2791 class PrintRSetsClosure : public HeapRegionClosure {
2792 private:
2793   const char* _msg;
2794   size_t _occupied_sum;
2795 
2796 public:
2797   bool doHeapRegion(HeapRegion* r) {
2798     HeapRegionRemSet* hrrs = r->rem_set();
2799     size_t occupied = hrrs->occupied();
2800     _occupied_sum += occupied;
2801 
2802     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2803     if (occupied == 0) {
2804       tty->print_cr("  RSet is empty");
2805     } else {
2806       hrrs->print();
2807     }
2808     tty->print_cr("----------");
2809     return false;
2810   }
2811 
2812   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2813     tty->cr();
2814     tty->print_cr("========================================");
2815     tty->print_cr("%s", msg);
2816     tty->cr();
2817   }
2818 
2819   ~PrintRSetsClosure() {
2820     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2821     tty->print_cr("========================================");
2822     tty->cr();
2823   }
2824 };
2825 
2826 void G1CollectedHeap::print_cset_rsets() {
2827   PrintRSetsClosure cl("Printing CSet RSets");
2828   collection_set_iterate(&cl);
2829 }
2830 
2831 void G1CollectedHeap::print_all_rsets() {
2832   PrintRSetsClosure cl("Printing All RSets");;
2833   heap_region_iterate(&cl);
2834 }
2835 #endif // PRODUCT
2836 
2837 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2838   YoungList* young_list = heap()->young_list();
2839 
2840   size_t eden_used_bytes = young_list->eden_used_bytes();
2841   size_t survivor_used_bytes = young_list->survivor_used_bytes();
2842 
2843   size_t eden_capacity_bytes =
2844     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2845 
2846   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2847   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes, num_regions());
2848 }
2849 
2850 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2851   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2852                        stats->unused(), stats->used(), stats->region_end_waste(),
2853                        stats->regions_filled(), stats->direct_allocated(),
2854                        stats->failure_used(), stats->failure_waste());
2855 }
2856 
2857 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2858   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2859   gc_tracer->report_gc_heap_summary(when, heap_summary);
2860 
2861   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2862   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2863 }
2864 
2865 
2866 G1CollectedHeap* G1CollectedHeap::heap() {
2867   CollectedHeap* heap = Universe::heap();
2868   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2869   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2870   return (G1CollectedHeap*)heap;
2871 }
2872 
2873 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2874   // always_do_update_barrier = false;
2875   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2876   // Fill TLAB's and such
2877   accumulate_statistics_all_tlabs();
2878   ensure_parsability(true);
2879 
2880   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2881 }
2882 
2883 void G1CollectedHeap::gc_epilogue(bool full) {
2884   // we are at the end of the GC. Total collections has already been increased.
2885   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2886 
2887   // FIXME: what is this about?
2888   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2889   // is set.
2890 #if defined(COMPILER2) || INCLUDE_JVMCI
2891   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2892 #endif
2893   // always_do_update_barrier = true;
2894 
2895   resize_all_tlabs();
2896   allocation_context_stats().update(full);
2897 
2898   // We have just completed a GC. Update the soft reference
2899   // policy with the new heap occupancy
2900   Universe::update_heap_info_at_gc();
2901 }
2902 
2903 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2904                                                uint gc_count_before,
2905                                                bool* succeeded,
2906                                                GCCause::Cause gc_cause) {
2907   assert_heap_not_locked_and_not_at_safepoint();
2908   VM_G1IncCollectionPause op(gc_count_before,
2909                              word_size,
2910                              false, /* should_initiate_conc_mark */
2911                              g1_policy()->max_pause_time_ms(),
2912                              gc_cause);
2913 
2914   op.set_allocation_context(AllocationContext::current());
2915   VMThread::execute(&op);
2916 
2917   HeapWord* result = op.result();
2918   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2919   assert(result == NULL || ret_succeeded,
2920          "the result should be NULL if the VM did not succeed");
2921   *succeeded = ret_succeeded;
2922 
2923   assert_heap_not_locked();
2924   return result;
2925 }
2926 
2927 void
2928 G1CollectedHeap::doConcurrentMark() {
2929   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2930   if (!_cmThread->in_progress()) {
2931     _cmThread->set_started();
2932     CGC_lock->notify();
2933   }
2934 }
2935 
2936 size_t G1CollectedHeap::pending_card_num() {
2937   size_t extra_cards = 0;
2938   JavaThread *curr = Threads::first();
2939   while (curr != NULL) {
2940     DirtyCardQueue& dcq = curr->dirty_card_queue();
2941     extra_cards += dcq.size();
2942     curr = curr->next();
2943   }
2944   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2945   size_t buffer_size = dcqs.buffer_size();
2946   size_t buffer_num = dcqs.completed_buffers_num();
2947 
2948   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
2949   // in bytes - not the number of 'entries'. We need to convert
2950   // into a number of cards.
2951   return (buffer_size * buffer_num + extra_cards) / oopSize;
2952 }
2953 
2954 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2955  private:
2956   size_t _total_humongous;
2957   size_t _candidate_humongous;
2958 
2959   DirtyCardQueue _dcq;
2960 
2961   // We don't nominate objects with many remembered set entries, on
2962   // the assumption that such objects are likely still live.
2963   bool is_remset_small(HeapRegion* region) const {
2964     HeapRegionRemSet* const rset = region->rem_set();
2965     return G1EagerReclaimHumongousObjectsWithStaleRefs
2966       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2967       : rset->is_empty();
2968   }
2969 
2970   bool is_typeArray_region(HeapRegion* region) const {
2971     return oop(region->bottom())->is_typeArray();
2972   }
2973 
2974   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2975     assert(region->is_starts_humongous(), "Must start a humongous object");
2976 
2977     // Candidate selection must satisfy the following constraints
2978     // while concurrent marking is in progress:
2979     //
2980     // * In order to maintain SATB invariants, an object must not be
2981     // reclaimed if it was allocated before the start of marking and
2982     // has not had its references scanned.  Such an object must have
2983     // its references (including type metadata) scanned to ensure no
2984     // live objects are missed by the marking process.  Objects
2985     // allocated after the start of concurrent marking don't need to
2986     // be scanned.
2987     //
2988     // * An object must not be reclaimed if it is on the concurrent
2989     // mark stack.  Objects allocated after the start of concurrent
2990     // marking are never pushed on the mark stack.
2991     //
2992     // Nominating only objects allocated after the start of concurrent
2993     // marking is sufficient to meet both constraints.  This may miss
2994     // some objects that satisfy the constraints, but the marking data
2995     // structures don't support efficiently performing the needed
2996     // additional tests or scrubbing of the mark stack.
2997     //
2998     // However, we presently only nominate is_typeArray() objects.
2999     // A humongous object containing references induces remembered
3000     // set entries on other regions.  In order to reclaim such an
3001     // object, those remembered sets would need to be cleaned up.
3002     //
3003     // We also treat is_typeArray() objects specially, allowing them
3004     // to be reclaimed even if allocated before the start of
3005     // concurrent mark.  For this we rely on mark stack insertion to
3006     // exclude is_typeArray() objects, preventing reclaiming an object
3007     // that is in the mark stack.  We also rely on the metadata for
3008     // such objects to be built-in and so ensured to be kept live.
3009     // Frequent allocation and drop of large binary blobs is an
3010     // important use case for eager reclaim, and this special handling
3011     // may reduce needed headroom.
3012 
3013     return is_typeArray_region(region) && is_remset_small(region);
3014   }
3015 
3016  public:
3017   RegisterHumongousWithInCSetFastTestClosure()
3018   : _total_humongous(0),
3019     _candidate_humongous(0),
3020     _dcq(&JavaThread::dirty_card_queue_set()) {
3021   }
3022 
3023   virtual bool doHeapRegion(HeapRegion* r) {
3024     if (!r->is_starts_humongous()) {
3025       return false;
3026     }
3027     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3028 
3029     bool is_candidate = humongous_region_is_candidate(g1h, r);
3030     uint rindex = r->hrm_index();
3031     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3032     if (is_candidate) {
3033       _candidate_humongous++;
3034       g1h->register_humongous_region_with_cset(rindex);
3035       // Is_candidate already filters out humongous object with large remembered sets.
3036       // If we have a humongous object with a few remembered sets, we simply flush these
3037       // remembered set entries into the DCQS. That will result in automatic
3038       // re-evaluation of their remembered set entries during the following evacuation
3039       // phase.
3040       if (!r->rem_set()->is_empty()) {
3041         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3042                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3043         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3044         HeapRegionRemSetIterator hrrs(r->rem_set());
3045         size_t card_index;
3046         while (hrrs.has_next(card_index)) {
3047           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3048           // The remembered set might contain references to already freed
3049           // regions. Filter out such entries to avoid failing card table
3050           // verification.
3051           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3052             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3053               *card_ptr = CardTableModRefBS::dirty_card_val();
3054               _dcq.enqueue(card_ptr);
3055             }
3056           }
3057         }
3058         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3059                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3060                hrrs.n_yielded(), r->rem_set()->occupied());
3061         r->rem_set()->clear_locked();
3062       }
3063       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3064     }
3065     _total_humongous++;
3066 
3067     return false;
3068   }
3069 
3070   size_t total_humongous() const { return _total_humongous; }
3071   size_t candidate_humongous() const { return _candidate_humongous; }
3072 
3073   void flush_rem_set_entries() { _dcq.flush(); }
3074 };
3075 
3076 void G1CollectedHeap::register_humongous_regions_with_cset() {
3077   if (!G1EagerReclaimHumongousObjects) {
3078     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3079     return;
3080   }
3081   double time = os::elapsed_counter();
3082 
3083   // Collect reclaim candidate information and register candidates with cset.
3084   RegisterHumongousWithInCSetFastTestClosure cl;
3085   heap_region_iterate(&cl);
3086 
3087   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3088   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3089                                                                   cl.total_humongous(),
3090                                                                   cl.candidate_humongous());
3091   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3092 
3093   // Finally flush all remembered set entries to re-check into the global DCQS.
3094   cl.flush_rem_set_entries();
3095 }
3096 
3097 class VerifyRegionRemSetClosure : public HeapRegionClosure {
3098   public:
3099     bool doHeapRegion(HeapRegion* hr) {
3100       if (!hr->is_archive() && !hr->is_continues_humongous()) {
3101         hr->verify_rem_set();
3102       }
3103       return false;
3104     }
3105 };
3106 
3107 #ifdef ASSERT
3108 class VerifyCSetClosure: public HeapRegionClosure {
3109 public:
3110   bool doHeapRegion(HeapRegion* hr) {
3111     // Here we check that the CSet region's RSet is ready for parallel
3112     // iteration. The fields that we'll verify are only manipulated
3113     // when the region is part of a CSet and is collected. Afterwards,
3114     // we reset these fields when we clear the region's RSet (when the
3115     // region is freed) so they are ready when the region is
3116     // re-allocated. The only exception to this is if there's an
3117     // evacuation failure and instead of freeing the region we leave
3118     // it in the heap. In that case, we reset these fields during
3119     // evacuation failure handling.
3120     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3121 
3122     // Here's a good place to add any other checks we'd like to
3123     // perform on CSet regions.
3124     return false;
3125   }
3126 };
3127 #endif // ASSERT
3128 
3129 uint G1CollectedHeap::num_task_queues() const {
3130   return _task_queues->size();
3131 }
3132 
3133 #if TASKQUEUE_STATS
3134 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3135   st->print_raw_cr("GC Task Stats");
3136   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3137   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3138 }
3139 
3140 void G1CollectedHeap::print_taskqueue_stats() const {
3141   if (!log_develop_is_enabled(Trace, gc, task, stats)) {
3142     return;
3143   }
3144   LogHandle(gc, task, stats) log;
3145   ResourceMark rm;
3146   outputStream* st = log.trace_stream();
3147 
3148   print_taskqueue_stats_hdr(st);
3149 
3150   TaskQueueStats totals;
3151   const uint n = num_task_queues();
3152   for (uint i = 0; i < n; ++i) {
3153     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3154     totals += task_queue(i)->stats;
3155   }
3156   st->print_raw("tot "); totals.print(st); st->cr();
3157 
3158   DEBUG_ONLY(totals.verify());
3159 }
3160 
3161 void G1CollectedHeap::reset_taskqueue_stats() {
3162   const uint n = num_task_queues();
3163   for (uint i = 0; i < n; ++i) {
3164     task_queue(i)->stats.reset();
3165   }
3166 }
3167 #endif // TASKQUEUE_STATS
3168 
3169 void G1CollectedHeap::wait_for_root_region_scanning() {
3170   double scan_wait_start = os::elapsedTime();
3171   // We have to wait until the CM threads finish scanning the
3172   // root regions as it's the only way to ensure that all the
3173   // objects on them have been correctly scanned before we start
3174   // moving them during the GC.
3175   bool waited = _cm->root_regions()->wait_until_scan_finished();
3176   double wait_time_ms = 0.0;
3177   if (waited) {
3178     double scan_wait_end = os::elapsedTime();
3179     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3180   }
3181   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3182 }
3183 
3184 bool
3185 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3186   assert_at_safepoint(true /* should_be_vm_thread */);
3187   guarantee(!is_gc_active(), "collection is not reentrant");
3188 
3189   if (GCLocker::check_active_before_gc()) {
3190     return false;
3191   }
3192 
3193   _gc_timer_stw->register_gc_start();
3194 
3195   GCIdMark gc_id_mark;
3196   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3197 
3198   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3199   ResourceMark rm;
3200 
3201   wait_for_root_region_scanning();
3202 
3203   print_heap_before_gc();
3204   trace_heap_before_gc(_gc_tracer_stw);
3205 
3206   _verifier->verify_region_sets_optional();
3207   _verifier->verify_dirty_young_regions();
3208 
3209   // This call will decide whether this pause is an initial-mark
3210   // pause. If it is, during_initial_mark_pause() will return true
3211   // for the duration of this pause.
3212   g1_policy()->decide_on_conc_mark_initiation();
3213 
3214   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3215   assert(!collector_state()->during_initial_mark_pause() ||
3216           collector_state()->gcs_are_young(), "sanity");
3217 
3218   // We also do not allow mixed GCs during marking.
3219   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3220 
3221   // Record whether this pause is an initial mark. When the current
3222   // thread has completed its logging output and it's safe to signal
3223   // the CM thread, the flag's value in the policy has been reset.
3224   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3225 
3226   // Inner scope for scope based logging, timers, and stats collection
3227   {
3228     EvacuationInfo evacuation_info;
3229 
3230     if (collector_state()->during_initial_mark_pause()) {
3231       // We are about to start a marking cycle, so we increment the
3232       // full collection counter.
3233       increment_old_marking_cycles_started();
3234       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3235     }
3236 
3237     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3238 
3239     GCTraceCPUTime tcpu;
3240 
3241     FormatBuffer<> gc_string("Pause ");
3242     if (collector_state()->during_initial_mark_pause()) {
3243       gc_string.append("Initial Mark");
3244     } else if (collector_state()->gcs_are_young()) {
3245       gc_string.append("Young");
3246     } else {
3247       gc_string.append("Mixed");
3248     }
3249     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3250 
3251     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3252                                                                   workers()->active_workers(),
3253                                                                   Threads::number_of_non_daemon_threads());
3254     workers()->set_active_workers(active_workers);
3255 
3256     g1_policy()->note_gc_start(active_workers);
3257 
3258     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3259     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3260 
3261     // If the secondary_free_list is not empty, append it to the
3262     // free_list. No need to wait for the cleanup operation to finish;
3263     // the region allocation code will check the secondary_free_list
3264     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3265     // set, skip this step so that the region allocation code has to
3266     // get entries from the secondary_free_list.
3267     if (!G1StressConcRegionFreeing) {
3268       append_secondary_free_list_if_not_empty_with_lock();
3269     }
3270 
3271     G1HeapTransition heap_transition(this);
3272     size_t heap_used_bytes_before_gc = used();
3273 
3274     assert(check_young_list_well_formed(), "young list should be well formed");
3275 
3276     // Don't dynamically change the number of GC threads this early.  A value of
3277     // 0 is used to indicate serial work.  When parallel work is done,
3278     // it will be set.
3279 
3280     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3281       IsGCActiveMark x;
3282 
3283       gc_prologue(false);
3284       increment_total_collections(false /* full gc */);
3285       increment_gc_time_stamp();
3286 
3287       if (VerifyRememberedSets) {
3288         log_info(gc, verify)("[Verifying RemSets before GC]");
3289         VerifyRegionRemSetClosure v_cl;
3290         heap_region_iterate(&v_cl);
3291       }
3292 
3293       _verifier->verify_before_gc();
3294 
3295       _verifier->check_bitmaps("GC Start");
3296 
3297 #if defined(COMPILER2) || INCLUDE_JVMCI
3298       DerivedPointerTable::clear();
3299 #endif
3300 
3301       // Please see comment in g1CollectedHeap.hpp and
3302       // G1CollectedHeap::ref_processing_init() to see how
3303       // reference processing currently works in G1.
3304 
3305       // Enable discovery in the STW reference processor
3306       if (g1_policy()->should_process_references()) {
3307         ref_processor_stw()->enable_discovery();
3308       } else {
3309         ref_processor_stw()->disable_discovery();
3310       }
3311 
3312       {
3313         // We want to temporarily turn off discovery by the
3314         // CM ref processor, if necessary, and turn it back on
3315         // on again later if we do. Using a scoped
3316         // NoRefDiscovery object will do this.
3317         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3318 
3319         // Forget the current alloc region (we might even choose it to be part
3320         // of the collection set!).
3321         _allocator->release_mutator_alloc_region();
3322 
3323         // This timing is only used by the ergonomics to handle our pause target.
3324         // It is unclear why this should not include the full pause. We will
3325         // investigate this in CR 7178365.
3326         //
3327         // Preserving the old comment here if that helps the investigation:
3328         //
3329         // The elapsed time induced by the start time below deliberately elides
3330         // the possible verification above.
3331         double sample_start_time_sec = os::elapsedTime();
3332 
3333         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3334 
3335         if (collector_state()->during_initial_mark_pause()) {
3336           concurrent_mark()->checkpointRootsInitialPre();
3337         }
3338 
3339         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3340         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3341 
3342         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3343 
3344         // Make sure the remembered sets are up to date. This needs to be
3345         // done before register_humongous_regions_with_cset(), because the
3346         // remembered sets are used there to choose eager reclaim candidates.
3347         // If the remembered sets are not up to date we might miss some
3348         // entries that need to be handled.
3349         g1_rem_set()->cleanupHRRS();
3350 
3351         register_humongous_regions_with_cset();
3352 
3353         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3354 
3355         _cm->note_start_of_gc();
3356         // We call this after finalize_cset() to
3357         // ensure that the CSet has been finalized.
3358         _cm->verify_no_cset_oops();
3359 
3360         if (_hr_printer.is_active()) {
3361           HeapRegion* hr = g1_policy()->collection_set();
3362           while (hr != NULL) {
3363             _hr_printer.cset(hr);
3364             hr = hr->next_in_collection_set();
3365           }
3366         }
3367 
3368 #ifdef ASSERT
3369         VerifyCSetClosure cl;
3370         collection_set_iterate(&cl);
3371 #endif // ASSERT
3372 
3373         // Initialize the GC alloc regions.
3374         _allocator->init_gc_alloc_regions(evacuation_info);
3375 
3376         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3377         pre_evacuate_collection_set();
3378 
3379         // Actually do the work...
3380         evacuate_collection_set(evacuation_info, &per_thread_states);
3381 
3382         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3383 
3384         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3385         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3386 
3387         eagerly_reclaim_humongous_regions();
3388 
3389         g1_policy()->clear_collection_set();
3390 
3391         record_obj_copy_mem_stats();
3392         _survivor_evac_stats.adjust_desired_plab_sz();
3393         _old_evac_stats.adjust_desired_plab_sz();
3394 
3395         // Start a new incremental collection set for the next pause.
3396         g1_policy()->start_incremental_cset_building();
3397 
3398         clear_cset_fast_test();
3399 
3400         // Don't check the whole heap at this point as the
3401         // GC alloc regions from this pause have been tagged
3402         // as survivors and moved on to the survivor list.
3403         // Survivor regions will fail the !is_young() check.
3404         assert(check_young_list_empty(false /* check_heap */),
3405           "young list should be empty");
3406 
3407         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3408                                              _young_list->first_survivor_region(),
3409                                              _young_list->last_survivor_region());
3410 
3411         _young_list->reset_auxilary_lists();
3412 
3413         if (evacuation_failed()) {
3414           set_used(recalculate_used());
3415           if (_archive_allocator != NULL) {
3416             _archive_allocator->clear_used();
3417           }
3418           for (uint i = 0; i < ParallelGCThreads; i++) {
3419             if (_evacuation_failed_info_array[i].has_failed()) {
3420               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3421             }
3422           }
3423         } else {
3424           // The "used" of the the collection set have already been subtracted
3425           // when they were freed.  Add in the bytes evacuated.
3426           increase_used(g1_policy()->bytes_copied_during_gc());
3427         }
3428 
3429         if (collector_state()->during_initial_mark_pause()) {
3430           // We have to do this before we notify the CM threads that
3431           // they can start working to make sure that all the
3432           // appropriate initialization is done on the CM object.
3433           concurrent_mark()->checkpointRootsInitialPost();
3434           collector_state()->set_mark_in_progress(true);
3435           // Note that we don't actually trigger the CM thread at
3436           // this point. We do that later when we're sure that
3437           // the current thread has completed its logging output.
3438         }
3439 
3440         allocate_dummy_regions();
3441 
3442         _allocator->init_mutator_alloc_region();
3443 
3444         {
3445           size_t expand_bytes = g1_policy()->expansion_amount();
3446           if (expand_bytes > 0) {
3447             size_t bytes_before = capacity();
3448             // No need for an ergo logging here,
3449             // expansion_amount() does this when it returns a value > 0.
3450             double expand_ms;
3451             if (!expand(expand_bytes, &expand_ms)) {
3452               // We failed to expand the heap. Cannot do anything about it.
3453             }
3454             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3455           }
3456         }
3457 
3458         // We redo the verification but now wrt to the new CSet which
3459         // has just got initialized after the previous CSet was freed.
3460         _cm->verify_no_cset_oops();
3461         _cm->note_end_of_gc();
3462 
3463         // This timing is only used by the ergonomics to handle our pause target.
3464         // It is unclear why this should not include the full pause. We will
3465         // investigate this in CR 7178365.
3466         double sample_end_time_sec = os::elapsedTime();
3467         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3468         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3469         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3470 
3471         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3472         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3473 
3474         MemoryService::track_memory_usage();
3475 
3476         // In prepare_for_verify() below we'll need to scan the deferred
3477         // update buffers to bring the RSets up-to-date if
3478         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3479         // the update buffers we'll probably need to scan cards on the
3480         // regions we just allocated to (i.e., the GC alloc
3481         // regions). However, during the last GC we called
3482         // set_saved_mark() on all the GC alloc regions, so card
3483         // scanning might skip the [saved_mark_word()...top()] area of
3484         // those regions (i.e., the area we allocated objects into
3485         // during the last GC). But it shouldn't. Given that
3486         // saved_mark_word() is conditional on whether the GC time stamp
3487         // on the region is current or not, by incrementing the GC time
3488         // stamp here we invalidate all the GC time stamps on all the
3489         // regions and saved_mark_word() will simply return top() for
3490         // all the regions. This is a nicer way of ensuring this rather
3491         // than iterating over the regions and fixing them. In fact, the
3492         // GC time stamp increment here also ensures that
3493         // saved_mark_word() will return top() between pauses, i.e.,
3494         // during concurrent refinement. So we don't need the
3495         // is_gc_active() check to decided which top to use when
3496         // scanning cards (see CR 7039627).
3497         increment_gc_time_stamp();
3498 
3499         if (VerifyRememberedSets) {
3500           log_info(gc, verify)("[Verifying RemSets after GC]");
3501           VerifyRegionRemSetClosure v_cl;
3502           heap_region_iterate(&v_cl);
3503         }
3504 
3505         _verifier->verify_after_gc();
3506         _verifier->check_bitmaps("GC End");
3507 
3508         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3509         ref_processor_stw()->verify_no_references_recorded();
3510 
3511         // CM reference discovery will be re-enabled if necessary.
3512       }
3513 
3514 #ifdef TRACESPINNING
3515       ParallelTaskTerminator::print_termination_counts();
3516 #endif
3517 
3518       gc_epilogue(false);
3519     }
3520 
3521     // Print the remainder of the GC log output.
3522     if (evacuation_failed()) {
3523       log_info(gc)("To-space exhausted");
3524     }
3525 
3526     g1_policy()->print_phases();
3527     heap_transition.print();
3528 
3529     // It is not yet to safe to tell the concurrent mark to
3530     // start as we have some optional output below. We don't want the
3531     // output from the concurrent mark thread interfering with this
3532     // logging output either.
3533 
3534     _hrm.verify_optional();
3535     _verifier->verify_region_sets_optional();
3536 
3537     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3538     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3539 
3540     print_heap_after_gc();
3541     trace_heap_after_gc(_gc_tracer_stw);
3542 
3543     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3544     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3545     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3546     // before any GC notifications are raised.
3547     g1mm()->update_sizes();
3548 
3549     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3550     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3551     _gc_timer_stw->register_gc_end();
3552     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3553   }
3554   // It should now be safe to tell the concurrent mark thread to start
3555   // without its logging output interfering with the logging output
3556   // that came from the pause.
3557 
3558   if (should_start_conc_mark) {
3559     // CAUTION: after the doConcurrentMark() call below,
3560     // the concurrent marking thread(s) could be running
3561     // concurrently with us. Make sure that anything after
3562     // this point does not assume that we are the only GC thread
3563     // running. Note: of course, the actual marking work will
3564     // not start until the safepoint itself is released in
3565     // SuspendibleThreadSet::desynchronize().
3566     doConcurrentMark();
3567   }
3568 
3569   return true;
3570 }
3571 
3572 void G1CollectedHeap::restore_preserved_marks() {
3573   G1RestorePreservedMarksTask rpm_task(_preserved_objs);
3574   workers()->run_task(&rpm_task);
3575 }
3576 
3577 void G1CollectedHeap::remove_self_forwarding_pointers() {
3578   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3579   workers()->run_task(&rsfp_task);
3580 }
3581 
3582 void G1CollectedHeap::restore_after_evac_failure() {
3583   double remove_self_forwards_start = os::elapsedTime();
3584 
3585   remove_self_forwarding_pointers();
3586   restore_preserved_marks();
3587 
3588   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3589 }
3590 
3591 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3592   if (!_evacuation_failed) {
3593     _evacuation_failed = true;
3594   }
3595 
3596   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3597 
3598   // We want to call the "for_promotion_failure" version only in the
3599   // case of a promotion failure.
3600   if (m->must_be_preserved_for_promotion_failure(obj)) {
3601     OopAndMarkOop elem(obj, m);
3602     _preserved_objs[worker_id].push(elem);
3603   }
3604 }
3605 
3606 bool G1ParEvacuateFollowersClosure::offer_termination() {
3607   G1ParScanThreadState* const pss = par_scan_state();
3608   start_term_time();
3609   const bool res = terminator()->offer_termination();
3610   end_term_time();
3611   return res;
3612 }
3613 
3614 void G1ParEvacuateFollowersClosure::do_void() {
3615   G1ParScanThreadState* const pss = par_scan_state();
3616   pss->trim_queue();
3617   do {
3618     pss->steal_and_trim_queue(queues());
3619   } while (!offer_termination());
3620 }
3621 
3622 class G1ParTask : public AbstractGangTask {
3623 protected:
3624   G1CollectedHeap*         _g1h;
3625   G1ParScanThreadStateSet* _pss;
3626   RefToScanQueueSet*       _queues;
3627   G1RootProcessor*         _root_processor;
3628   ParallelTaskTerminator   _terminator;
3629   uint                     _n_workers;
3630 
3631 public:
3632   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3633     : AbstractGangTask("G1 collection"),
3634       _g1h(g1h),
3635       _pss(per_thread_states),
3636       _queues(task_queues),
3637       _root_processor(root_processor),
3638       _terminator(n_workers, _queues),
3639       _n_workers(n_workers)
3640   {}
3641 
3642   void work(uint worker_id) {
3643     if (worker_id >= _n_workers) return;  // no work needed this round
3644 
3645     double start_sec = os::elapsedTime();
3646     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3647 
3648     {
3649       ResourceMark rm;
3650       HandleMark   hm;
3651 
3652       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3653 
3654       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3655       pss->set_ref_processor(rp);
3656 
3657       double start_strong_roots_sec = os::elapsedTime();
3658 
3659       _root_processor->evacuate_roots(pss->closures(), worker_id);
3660 
3661       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
3662 
3663       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3664       // treating the nmethods visited to act as roots for concurrent marking.
3665       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3666       // objects copied by the current evacuation.
3667       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
3668                                                                              pss->closures()->weak_codeblobs(),
3669                                                                              worker_id);
3670 
3671       _pss->add_cards_scanned(worker_id, cards_scanned);
3672 
3673       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3674 
3675       double term_sec = 0.0;
3676       size_t evac_term_attempts = 0;
3677       {
3678         double start = os::elapsedTime();
3679         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3680         evac.do_void();
3681 
3682         evac_term_attempts = evac.term_attempts();
3683         term_sec = evac.term_time();
3684         double elapsed_sec = os::elapsedTime() - start;
3685         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3686         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3687         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3688       }
3689 
3690       assert(pss->queue_is_empty(), "should be empty");
3691 
3692       if (log_is_enabled(Debug, gc, task, stats)) {
3693         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3694         size_t lab_waste;
3695         size_t lab_undo_waste;
3696         pss->waste(lab_waste, lab_undo_waste);
3697         _g1h->print_termination_stats(worker_id,
3698                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3699                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3700                                       term_sec * 1000.0,                          /* evac term time */
3701                                       evac_term_attempts,                         /* evac term attempts */
3702                                       lab_waste,                                  /* alloc buffer waste */
3703                                       lab_undo_waste                              /* undo waste */
3704                                       );
3705       }
3706 
3707       // Close the inner scope so that the ResourceMark and HandleMark
3708       // destructors are executed here and are included as part of the
3709       // "GC Worker Time".
3710     }
3711     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3712   }
3713 };
3714 
3715 void G1CollectedHeap::print_termination_stats_hdr() {
3716   log_debug(gc, task, stats)("GC Termination Stats");
3717   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3718   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3719   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3720 }
3721 
3722 void G1CollectedHeap::print_termination_stats(uint worker_id,
3723                                               double elapsed_ms,
3724                                               double strong_roots_ms,
3725                                               double term_ms,
3726                                               size_t term_attempts,
3727                                               size_t alloc_buffer_waste,
3728                                               size_t undo_waste) const {
3729   log_debug(gc, task, stats)
3730               ("%3d %9.2f %9.2f %6.2f "
3731                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3732                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3733                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3734                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3735                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3736                alloc_buffer_waste * HeapWordSize / K,
3737                undo_waste * HeapWordSize / K);
3738 }
3739 
3740 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
3741 private:
3742   BoolObjectClosure* _is_alive;
3743   int _initial_string_table_size;
3744   int _initial_symbol_table_size;
3745 
3746   bool  _process_strings;
3747   int _strings_processed;
3748   int _strings_removed;
3749 
3750   bool  _process_symbols;
3751   int _symbols_processed;
3752   int _symbols_removed;
3753 
3754 public:
3755   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
3756     AbstractGangTask("String/Symbol Unlinking"),
3757     _is_alive(is_alive),
3758     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3759     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
3760 
3761     _initial_string_table_size = StringTable::the_table()->table_size();
3762     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3763     if (process_strings) {
3764       StringTable::clear_parallel_claimed_index();
3765     }
3766     if (process_symbols) {
3767       SymbolTable::clear_parallel_claimed_index();
3768     }
3769   }
3770 
3771   ~G1StringSymbolTableUnlinkTask() {
3772     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3773               "claim value %d after unlink less than initial string table size %d",
3774               StringTable::parallel_claimed_index(), _initial_string_table_size);
3775     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3776               "claim value %d after unlink less than initial symbol table size %d",
3777               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3778 
3779     log_debug(gc, stringdedup)("Cleaned string and symbol table, "
3780                                "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3781                                "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3782                                strings_processed(), strings_removed(),
3783                                symbols_processed(), symbols_removed());
3784   }
3785 
3786   void work(uint worker_id) {
3787     int strings_processed = 0;
3788     int strings_removed = 0;
3789     int symbols_processed = 0;
3790     int symbols_removed = 0;
3791     if (_process_strings) {
3792       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3793       Atomic::add(strings_processed, &_strings_processed);
3794       Atomic::add(strings_removed, &_strings_removed);
3795     }
3796     if (_process_symbols) {
3797       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3798       Atomic::add(symbols_processed, &_symbols_processed);
3799       Atomic::add(symbols_removed, &_symbols_removed);
3800     }
3801   }
3802 
3803   size_t strings_processed() const { return (size_t)_strings_processed; }
3804   size_t strings_removed()   const { return (size_t)_strings_removed; }
3805 
3806   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3807   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3808 };
3809 
3810 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3811 private:
3812   static Monitor* _lock;
3813 
3814   BoolObjectClosure* const _is_alive;
3815   const bool               _unloading_occurred;
3816   const uint               _num_workers;
3817 
3818   // Variables used to claim nmethods.
3819   nmethod* _first_nmethod;
3820   volatile nmethod* _claimed_nmethod;
3821 
3822   // The list of nmethods that need to be processed by the second pass.
3823   volatile nmethod* _postponed_list;
3824   volatile uint     _num_entered_barrier;
3825 
3826  public:
3827   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3828       _is_alive(is_alive),
3829       _unloading_occurred(unloading_occurred),
3830       _num_workers(num_workers),
3831       _first_nmethod(NULL),
3832       _claimed_nmethod(NULL),
3833       _postponed_list(NULL),
3834       _num_entered_barrier(0)
3835   {
3836     nmethod::increase_unloading_clock();
3837     // Get first alive nmethod
3838     NMethodIterator iter = NMethodIterator();
3839     if(iter.next_alive()) {
3840       _first_nmethod = iter.method();
3841     }
3842     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
3843   }
3844 
3845   ~G1CodeCacheUnloadingTask() {
3846     CodeCache::verify_clean_inline_caches();
3847 
3848     CodeCache::set_needs_cache_clean(false);
3849     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3850 
3851     CodeCache::verify_icholder_relocations();
3852   }
3853 
3854  private:
3855   void add_to_postponed_list(nmethod* nm) {
3856       nmethod* old;
3857       do {
3858         old = (nmethod*)_postponed_list;
3859         nm->set_unloading_next(old);
3860       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3861   }
3862 
3863   void clean_nmethod(nmethod* nm) {
3864     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3865 
3866     if (postponed) {
3867       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3868       add_to_postponed_list(nm);
3869     }
3870 
3871     // Mark that this thread has been cleaned/unloaded.
3872     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3873     nm->set_unloading_clock(nmethod::global_unloading_clock());
3874   }
3875 
3876   void clean_nmethod_postponed(nmethod* nm) {
3877     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3878   }
3879 
3880   static const int MaxClaimNmethods = 16;
3881 
3882   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
3883     nmethod* first;
3884     NMethodIterator last;
3885 
3886     do {
3887       *num_claimed_nmethods = 0;
3888 
3889       first = (nmethod*)_claimed_nmethod;
3890       last = NMethodIterator(first);
3891 
3892       if (first != NULL) {
3893 
3894         for (int i = 0; i < MaxClaimNmethods; i++) {
3895           if (!last.next_alive()) {
3896             break;
3897           }
3898           claimed_nmethods[i] = last.method();
3899           (*num_claimed_nmethods)++;
3900         }
3901       }
3902 
3903     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3904   }
3905 
3906   nmethod* claim_postponed_nmethod() {
3907     nmethod* claim;
3908     nmethod* next;
3909 
3910     do {
3911       claim = (nmethod*)_postponed_list;
3912       if (claim == NULL) {
3913         return NULL;
3914       }
3915 
3916       next = claim->unloading_next();
3917 
3918     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3919 
3920     return claim;
3921   }
3922 
3923  public:
3924   // Mark that we're done with the first pass of nmethod cleaning.
3925   void barrier_mark(uint worker_id) {
3926     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3927     _num_entered_barrier++;
3928     if (_num_entered_barrier == _num_workers) {
3929       ml.notify_all();
3930     }
3931   }
3932 
3933   // See if we have to wait for the other workers to
3934   // finish their first-pass nmethod cleaning work.
3935   void barrier_wait(uint worker_id) {
3936     if (_num_entered_barrier < _num_workers) {
3937       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3938       while (_num_entered_barrier < _num_workers) {
3939           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3940       }
3941     }
3942   }
3943 
3944   // Cleaning and unloading of nmethods. Some work has to be postponed
3945   // to the second pass, when we know which nmethods survive.
3946   void work_first_pass(uint worker_id) {
3947     // The first nmethods is claimed by the first worker.
3948     if (worker_id == 0 && _first_nmethod != NULL) {
3949       clean_nmethod(_first_nmethod);
3950       _first_nmethod = NULL;
3951     }
3952 
3953     int num_claimed_nmethods;
3954     nmethod* claimed_nmethods[MaxClaimNmethods];
3955 
3956     while (true) {
3957       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3958 
3959       if (num_claimed_nmethods == 0) {
3960         break;
3961       }
3962 
3963       for (int i = 0; i < num_claimed_nmethods; i++) {
3964         clean_nmethod(claimed_nmethods[i]);
3965       }
3966     }
3967   }
3968 
3969   void work_second_pass(uint worker_id) {
3970     nmethod* nm;
3971     // Take care of postponed nmethods.
3972     while ((nm = claim_postponed_nmethod()) != NULL) {
3973       clean_nmethod_postponed(nm);
3974     }
3975   }
3976 };
3977 
3978 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3979 
3980 class G1KlassCleaningTask : public StackObj {
3981   BoolObjectClosure*                      _is_alive;
3982   volatile jint                           _clean_klass_tree_claimed;
3983   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3984 
3985  public:
3986   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3987       _is_alive(is_alive),
3988       _clean_klass_tree_claimed(0),
3989       _klass_iterator() {
3990   }
3991 
3992  private:
3993   bool claim_clean_klass_tree_task() {
3994     if (_clean_klass_tree_claimed) {
3995       return false;
3996     }
3997 
3998     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3999   }
4000 
4001   InstanceKlass* claim_next_klass() {
4002     Klass* klass;
4003     do {
4004       klass =_klass_iterator.next_klass();
4005     } while (klass != NULL && !klass->is_instance_klass());
4006 
4007     // this can be null so don't call InstanceKlass::cast
4008     return static_cast<InstanceKlass*>(klass);
4009   }
4010 
4011 public:
4012 
4013   void clean_klass(InstanceKlass* ik) {
4014     ik->clean_weak_instanceklass_links(_is_alive);
4015   }
4016 
4017   void work() {
4018     ResourceMark rm;
4019 
4020     // One worker will clean the subklass/sibling klass tree.
4021     if (claim_clean_klass_tree_task()) {
4022       Klass::clean_subklass_tree(_is_alive);
4023     }
4024 
4025     // All workers will help cleaning the classes,
4026     InstanceKlass* klass;
4027     while ((klass = claim_next_klass()) != NULL) {
4028       clean_klass(klass);
4029     }
4030   }
4031 };
4032 
4033 // To minimize the remark pause times, the tasks below are done in parallel.
4034 class G1ParallelCleaningTask : public AbstractGangTask {
4035 private:
4036   G1StringSymbolTableUnlinkTask _string_symbol_task;
4037   G1CodeCacheUnloadingTask      _code_cache_task;
4038   G1KlassCleaningTask           _klass_cleaning_task;
4039 
4040 public:
4041   // The constructor is run in the VMThread.
4042   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4043       AbstractGangTask("Parallel Cleaning"),
4044       _string_symbol_task(is_alive, process_strings, process_symbols),
4045       _code_cache_task(num_workers, is_alive, unloading_occurred),
4046       _klass_cleaning_task(is_alive) {
4047   }
4048 
4049   // The parallel work done by all worker threads.
4050   void work(uint worker_id) {
4051     // Do first pass of code cache cleaning.
4052     _code_cache_task.work_first_pass(worker_id);
4053 
4054     // Let the threads mark that the first pass is done.
4055     _code_cache_task.barrier_mark(worker_id);
4056 
4057     // Clean the Strings and Symbols.
4058     _string_symbol_task.work(worker_id);
4059 
4060     // Wait for all workers to finish the first code cache cleaning pass.
4061     _code_cache_task.barrier_wait(worker_id);
4062 
4063     // Do the second code cache cleaning work, which realize on
4064     // the liveness information gathered during the first pass.
4065     _code_cache_task.work_second_pass(worker_id);
4066 
4067     // Clean all klasses that were not unloaded.
4068     _klass_cleaning_task.work();
4069   }
4070 };
4071 
4072 
4073 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4074                                         bool process_strings,
4075                                         bool process_symbols,
4076                                         bool class_unloading_occurred) {
4077   uint n_workers = workers()->active_workers();
4078 
4079   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4080                                         n_workers, class_unloading_occurred);
4081   workers()->run_task(&g1_unlink_task);
4082 }
4083 
4084 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4085                                                      bool process_strings, bool process_symbols) {
4086   {
4087     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4088     workers()->run_task(&g1_unlink_task);
4089   }
4090 
4091   if (G1StringDedup::is_enabled()) {
4092     G1StringDedup::unlink(is_alive);
4093   }
4094 }
4095 
4096 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4097  private:
4098   DirtyCardQueueSet* _queue;
4099   G1CollectedHeap* _g1h;
4100  public:
4101   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
4102     _queue(queue), _g1h(g1h) { }
4103 
4104   virtual void work(uint worker_id) {
4105     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
4106     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4107 
4108     RedirtyLoggedCardTableEntryClosure cl(_g1h);
4109     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4110 
4111     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
4112   }
4113 };
4114 
4115 void G1CollectedHeap::redirty_logged_cards() {
4116   double redirty_logged_cards_start = os::elapsedTime();
4117 
4118   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
4119   dirty_card_queue_set().reset_for_par_iteration();
4120   workers()->run_task(&redirty_task);
4121 
4122   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4123   dcq.merge_bufferlists(&dirty_card_queue_set());
4124   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4125 
4126   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4127 }
4128 
4129 // Weak Reference Processing support
4130 
4131 // An always "is_alive" closure that is used to preserve referents.
4132 // If the object is non-null then it's alive.  Used in the preservation
4133 // of referent objects that are pointed to by reference objects
4134 // discovered by the CM ref processor.
4135 class G1AlwaysAliveClosure: public BoolObjectClosure {
4136   G1CollectedHeap* _g1;
4137 public:
4138   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4139   bool do_object_b(oop p) {
4140     if (p != NULL) {
4141       return true;
4142     }
4143     return false;
4144   }
4145 };
4146 
4147 bool G1STWIsAliveClosure::do_object_b(oop p) {
4148   // An object is reachable if it is outside the collection set,
4149   // or is inside and copied.
4150   return !_g1->is_in_cset(p) || p->is_forwarded();
4151 }
4152 
4153 // Non Copying Keep Alive closure
4154 class G1KeepAliveClosure: public OopClosure {
4155   G1CollectedHeap* _g1;
4156 public:
4157   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4158   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4159   void do_oop(oop* p) {
4160     oop obj = *p;
4161     assert(obj != NULL, "the caller should have filtered out NULL values");
4162 
4163     const InCSetState cset_state = _g1->in_cset_state(obj);
4164     if (!cset_state.is_in_cset_or_humongous()) {
4165       return;
4166     }
4167     if (cset_state.is_in_cset()) {
4168       assert( obj->is_forwarded(), "invariant" );
4169       *p = obj->forwardee();
4170     } else {
4171       assert(!obj->is_forwarded(), "invariant" );
4172       assert(cset_state.is_humongous(),
4173              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4174       _g1->set_humongous_is_live(obj);
4175     }
4176   }
4177 };
4178 
4179 // Copying Keep Alive closure - can be called from both
4180 // serial and parallel code as long as different worker
4181 // threads utilize different G1ParScanThreadState instances
4182 // and different queues.
4183 
4184 class G1CopyingKeepAliveClosure: public OopClosure {
4185   G1CollectedHeap*         _g1h;
4186   OopClosure*              _copy_non_heap_obj_cl;
4187   G1ParScanThreadState*    _par_scan_state;
4188 
4189 public:
4190   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4191                             OopClosure* non_heap_obj_cl,
4192                             G1ParScanThreadState* pss):
4193     _g1h(g1h),
4194     _copy_non_heap_obj_cl(non_heap_obj_cl),
4195     _par_scan_state(pss)
4196   {}
4197 
4198   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4199   virtual void do_oop(      oop* p) { do_oop_work(p); }
4200 
4201   template <class T> void do_oop_work(T* p) {
4202     oop obj = oopDesc::load_decode_heap_oop(p);
4203 
4204     if (_g1h->is_in_cset_or_humongous(obj)) {
4205       // If the referent object has been forwarded (either copied
4206       // to a new location or to itself in the event of an
4207       // evacuation failure) then we need to update the reference
4208       // field and, if both reference and referent are in the G1
4209       // heap, update the RSet for the referent.
4210       //
4211       // If the referent has not been forwarded then we have to keep
4212       // it alive by policy. Therefore we have copy the referent.
4213       //
4214       // If the reference field is in the G1 heap then we can push
4215       // on the PSS queue. When the queue is drained (after each
4216       // phase of reference processing) the object and it's followers
4217       // will be copied, the reference field set to point to the
4218       // new location, and the RSet updated. Otherwise we need to
4219       // use the the non-heap or metadata closures directly to copy
4220       // the referent object and update the pointer, while avoiding
4221       // updating the RSet.
4222 
4223       if (_g1h->is_in_g1_reserved(p)) {
4224         _par_scan_state->push_on_queue(p);
4225       } else {
4226         assert(!Metaspace::contains((const void*)p),
4227                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4228         _copy_non_heap_obj_cl->do_oop(p);
4229       }
4230     }
4231   }
4232 };
4233 
4234 // Serial drain queue closure. Called as the 'complete_gc'
4235 // closure for each discovered list in some of the
4236 // reference processing phases.
4237 
4238 class G1STWDrainQueueClosure: public VoidClosure {
4239 protected:
4240   G1CollectedHeap* _g1h;
4241   G1ParScanThreadState* _par_scan_state;
4242 
4243   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4244 
4245 public:
4246   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4247     _g1h(g1h),
4248     _par_scan_state(pss)
4249   { }
4250 
4251   void do_void() {
4252     G1ParScanThreadState* const pss = par_scan_state();
4253     pss->trim_queue();
4254   }
4255 };
4256 
4257 // Parallel Reference Processing closures
4258 
4259 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4260 // processing during G1 evacuation pauses.
4261 
4262 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4263 private:
4264   G1CollectedHeap*          _g1h;
4265   G1ParScanThreadStateSet*  _pss;
4266   RefToScanQueueSet*        _queues;
4267   WorkGang*                 _workers;
4268   uint                      _active_workers;
4269 
4270 public:
4271   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4272                            G1ParScanThreadStateSet* per_thread_states,
4273                            WorkGang* workers,
4274                            RefToScanQueueSet *task_queues,
4275                            uint n_workers) :
4276     _g1h(g1h),
4277     _pss(per_thread_states),
4278     _queues(task_queues),
4279     _workers(workers),
4280     _active_workers(n_workers)
4281   {
4282     assert(n_workers > 0, "shouldn't call this otherwise");
4283   }
4284 
4285   // Executes the given task using concurrent marking worker threads.
4286   virtual void execute(ProcessTask& task);
4287   virtual void execute(EnqueueTask& task);
4288 };
4289 
4290 // Gang task for possibly parallel reference processing
4291 
4292 class G1STWRefProcTaskProxy: public AbstractGangTask {
4293   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4294   ProcessTask&     _proc_task;
4295   G1CollectedHeap* _g1h;
4296   G1ParScanThreadStateSet* _pss;
4297   RefToScanQueueSet* _task_queues;
4298   ParallelTaskTerminator* _terminator;
4299 
4300 public:
4301   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4302                         G1CollectedHeap* g1h,
4303                         G1ParScanThreadStateSet* per_thread_states,
4304                         RefToScanQueueSet *task_queues,
4305                         ParallelTaskTerminator* terminator) :
4306     AbstractGangTask("Process reference objects in parallel"),
4307     _proc_task(proc_task),
4308     _g1h(g1h),
4309     _pss(per_thread_states),
4310     _task_queues(task_queues),
4311     _terminator(terminator)
4312   {}
4313 
4314   virtual void work(uint worker_id) {
4315     // The reference processing task executed by a single worker.
4316     ResourceMark rm;
4317     HandleMark   hm;
4318 
4319     G1STWIsAliveClosure is_alive(_g1h);
4320 
4321     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4322     pss->set_ref_processor(NULL);
4323 
4324     // Keep alive closure.
4325     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4326 
4327     // Complete GC closure
4328     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4329 
4330     // Call the reference processing task's work routine.
4331     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4332 
4333     // Note we cannot assert that the refs array is empty here as not all
4334     // of the processing tasks (specifically phase2 - pp2_work) execute
4335     // the complete_gc closure (which ordinarily would drain the queue) so
4336     // the queue may not be empty.
4337   }
4338 };
4339 
4340 // Driver routine for parallel reference processing.
4341 // Creates an instance of the ref processing gang
4342 // task and has the worker threads execute it.
4343 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4344   assert(_workers != NULL, "Need parallel worker threads.");
4345 
4346   ParallelTaskTerminator terminator(_active_workers, _queues);
4347   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4348 
4349   _workers->run_task(&proc_task_proxy);
4350 }
4351 
4352 // Gang task for parallel reference enqueueing.
4353 
4354 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4355   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4356   EnqueueTask& _enq_task;
4357 
4358 public:
4359   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4360     AbstractGangTask("Enqueue reference objects in parallel"),
4361     _enq_task(enq_task)
4362   { }
4363 
4364   virtual void work(uint worker_id) {
4365     _enq_task.work(worker_id);
4366   }
4367 };
4368 
4369 // Driver routine for parallel reference enqueueing.
4370 // Creates an instance of the ref enqueueing gang
4371 // task and has the worker threads execute it.
4372 
4373 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4374   assert(_workers != NULL, "Need parallel worker threads.");
4375 
4376   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4377 
4378   _workers->run_task(&enq_task_proxy);
4379 }
4380 
4381 // End of weak reference support closures
4382 
4383 // Abstract task used to preserve (i.e. copy) any referent objects
4384 // that are in the collection set and are pointed to by reference
4385 // objects discovered by the CM ref processor.
4386 
4387 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4388 protected:
4389   G1CollectedHeap*         _g1h;
4390   G1ParScanThreadStateSet* _pss;
4391   RefToScanQueueSet*       _queues;
4392   ParallelTaskTerminator   _terminator;
4393   uint                     _n_workers;
4394 
4395 public:
4396   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4397     AbstractGangTask("ParPreserveCMReferents"),
4398     _g1h(g1h),
4399     _pss(per_thread_states),
4400     _queues(task_queues),
4401     _terminator(workers, _queues),
4402     _n_workers(workers)
4403   { }
4404 
4405   void work(uint worker_id) {
4406     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4407 
4408     ResourceMark rm;
4409     HandleMark   hm;
4410 
4411     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4412     pss->set_ref_processor(NULL);
4413     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4414 
4415     // Is alive closure
4416     G1AlwaysAliveClosure always_alive(_g1h);
4417 
4418     // Copying keep alive closure. Applied to referent objects that need
4419     // to be copied.
4420     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4421 
4422     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4423 
4424     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4425     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4426 
4427     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4428     // So this must be true - but assert just in case someone decides to
4429     // change the worker ids.
4430     assert(worker_id < limit, "sanity");
4431     assert(!rp->discovery_is_atomic(), "check this code");
4432 
4433     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4434     for (uint idx = worker_id; idx < limit; idx += stride) {
4435       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4436 
4437       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4438       while (iter.has_next()) {
4439         // Since discovery is not atomic for the CM ref processor, we
4440         // can see some null referent objects.
4441         iter.load_ptrs(DEBUG_ONLY(true));
4442         oop ref = iter.obj();
4443 
4444         // This will filter nulls.
4445         if (iter.is_referent_alive()) {
4446           iter.make_referent_alive();
4447         }
4448         iter.move_to_next();
4449       }
4450     }
4451 
4452     // Drain the queue - which may cause stealing
4453     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4454     drain_queue.do_void();
4455     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4456     assert(pss->queue_is_empty(), "should be");
4457   }
4458 };
4459 
4460 void G1CollectedHeap::process_weak_jni_handles() {
4461   double ref_proc_start = os::elapsedTime();
4462 
4463   G1STWIsAliveClosure is_alive(this);
4464   G1KeepAliveClosure keep_alive(this);
4465   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4466 
4467   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4468   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4469 }
4470 
4471 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4472   double preserve_cm_referents_start = os::elapsedTime();
4473   // Any reference objects, in the collection set, that were 'discovered'
4474   // by the CM ref processor should have already been copied (either by
4475   // applying the external root copy closure to the discovered lists, or
4476   // by following an RSet entry).
4477   //
4478   // But some of the referents, that are in the collection set, that these
4479   // reference objects point to may not have been copied: the STW ref
4480   // processor would have seen that the reference object had already
4481   // been 'discovered' and would have skipped discovering the reference,
4482   // but would not have treated the reference object as a regular oop.
4483   // As a result the copy closure would not have been applied to the
4484   // referent object.
4485   //
4486   // We need to explicitly copy these referent objects - the references
4487   // will be processed at the end of remarking.
4488   //
4489   // We also need to do this copying before we process the reference
4490   // objects discovered by the STW ref processor in case one of these
4491   // referents points to another object which is also referenced by an
4492   // object discovered by the STW ref processor.
4493 
4494   uint no_of_gc_workers = workers()->active_workers();
4495 
4496   G1ParPreserveCMReferentsTask keep_cm_referents(this,
4497                                                  per_thread_states,
4498                                                  no_of_gc_workers,
4499                                                  _task_queues);
4500   workers()->run_task(&keep_cm_referents);
4501 
4502   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms((os::elapsedTime() - preserve_cm_referents_start) * 1000.0);
4503 }
4504 
4505 // Weak Reference processing during an evacuation pause (part 1).
4506 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4507   double ref_proc_start = os::elapsedTime();
4508 
4509   ReferenceProcessor* rp = _ref_processor_stw;
4510   assert(rp->discovery_enabled(), "should have been enabled");
4511 
4512   // Closure to test whether a referent is alive.
4513   G1STWIsAliveClosure is_alive(this);
4514 
4515   // Even when parallel reference processing is enabled, the processing
4516   // of JNI refs is serial and performed serially by the current thread
4517   // rather than by a worker. The following PSS will be used for processing
4518   // JNI refs.
4519 
4520   // Use only a single queue for this PSS.
4521   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4522   pss->set_ref_processor(NULL);
4523   assert(pss->queue_is_empty(), "pre-condition");
4524 
4525   // Keep alive closure.
4526   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4527 
4528   // Serial Complete GC closure
4529   G1STWDrainQueueClosure drain_queue(this, pss);
4530 
4531   // Setup the soft refs policy...
4532   rp->setup_policy(false);
4533 
4534   ReferenceProcessorStats stats;
4535   if (!rp->processing_is_mt()) {
4536     // Serial reference processing...
4537     stats = rp->process_discovered_references(&is_alive,
4538                                               &keep_alive,
4539                                               &drain_queue,
4540                                               NULL,
4541                                               _gc_timer_stw);
4542   } else {
4543     uint no_of_gc_workers = workers()->active_workers();
4544 
4545     // Parallel reference processing
4546     assert(rp->num_q() == no_of_gc_workers, "sanity");
4547     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
4548 
4549     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4550     stats = rp->process_discovered_references(&is_alive,
4551                                               &keep_alive,
4552                                               &drain_queue,
4553                                               &par_task_executor,
4554                                               _gc_timer_stw);
4555   }
4556 
4557   _gc_tracer_stw->report_gc_reference_stats(stats);
4558 
4559   // We have completed copying any necessary live referent objects.
4560   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4561 
4562   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4563   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4564 }
4565 
4566 // Weak Reference processing during an evacuation pause (part 2).
4567 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4568   double ref_enq_start = os::elapsedTime();
4569 
4570   ReferenceProcessor* rp = _ref_processor_stw;
4571   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4572 
4573   // Now enqueue any remaining on the discovered lists on to
4574   // the pending list.
4575   if (!rp->processing_is_mt()) {
4576     // Serial reference processing...
4577     rp->enqueue_discovered_references();
4578   } else {
4579     // Parallel reference enqueueing
4580 
4581     uint n_workers = workers()->active_workers();
4582 
4583     assert(rp->num_q() == n_workers, "sanity");
4584     assert(n_workers <= rp->max_num_q(), "sanity");
4585 
4586     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4587     rp->enqueue_discovered_references(&par_task_executor);
4588   }
4589 
4590   rp->verify_no_references_recorded();
4591   assert(!rp->discovery_enabled(), "should have been disabled");
4592 
4593   // FIXME
4594   // CM's reference processing also cleans up the string and symbol tables.
4595   // Should we do that here also? We could, but it is a serial operation
4596   // and could significantly increase the pause time.
4597 
4598   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4599   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4600 }
4601 
4602 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4603   double merge_pss_time_start = os::elapsedTime();
4604   per_thread_states->flush();
4605   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4606 }
4607 
4608 void G1CollectedHeap::pre_evacuate_collection_set() {
4609   _expand_heap_after_alloc_failure = true;
4610   _evacuation_failed = false;
4611 
4612   // Disable the hot card cache.
4613   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
4614   hot_card_cache->reset_hot_cache_claimed_index();
4615   hot_card_cache->set_use_cache(false);
4616 
4617   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4618 }
4619 
4620 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4621   // Should G1EvacuationFailureALot be in effect for this GC?
4622   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4623 
4624   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4625   double start_par_time_sec = os::elapsedTime();
4626   double end_par_time_sec;
4627 
4628   {
4629     const uint n_workers = workers()->active_workers();
4630     G1RootProcessor root_processor(this, n_workers);
4631     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4632     // InitialMark needs claim bits to keep track of the marked-through CLDs.
4633     if (collector_state()->during_initial_mark_pause()) {
4634       ClassLoaderDataGraph::clear_claimed_marks();
4635     }
4636 
4637     print_termination_stats_hdr();
4638 
4639     workers()->run_task(&g1_par_task);
4640     end_par_time_sec = os::elapsedTime();
4641 
4642     // Closing the inner scope will execute the destructor
4643     // for the G1RootProcessor object. We record the current
4644     // elapsed time before closing the scope so that time
4645     // taken for the destructor is NOT included in the
4646     // reported parallel time.
4647   }
4648 
4649   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4650 
4651   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4652   phase_times->record_par_time(par_time_ms);
4653 
4654   double code_root_fixup_time_ms =
4655         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4656   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4657 }
4658 
4659 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4660   // Process any discovered reference objects - we have
4661   // to do this _before_ we retire the GC alloc regions
4662   // as we may have to copy some 'reachable' referent
4663   // objects (and their reachable sub-graphs) that were
4664   // not copied during the pause.
4665   if (g1_policy()->should_process_references()) {
4666     preserve_cm_referents(per_thread_states);
4667     process_discovered_references(per_thread_states);
4668   } else {
4669     ref_processor_stw()->verify_no_references_recorded();
4670     process_weak_jni_handles();
4671   }
4672 
4673   if (G1StringDedup::is_enabled()) {
4674     double fixup_start = os::elapsedTime();
4675 
4676     G1STWIsAliveClosure is_alive(this);
4677     G1KeepAliveClosure keep_alive(this);
4678     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4679 
4680     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4681     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4682   }
4683 
4684   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4685 
4686   if (evacuation_failed()) {
4687     restore_after_evac_failure();
4688 
4689     // Reset the G1EvacuationFailureALot counters and flags
4690     // Note: the values are reset only when an actual
4691     // evacuation failure occurs.
4692     NOT_PRODUCT(reset_evacuation_should_fail();)
4693   }
4694 
4695   // Enqueue any remaining references remaining on the STW
4696   // reference processor's discovered lists. We need to do
4697   // this after the card table is cleaned (and verified) as
4698   // the act of enqueueing entries on to the pending list
4699   // will log these updates (and dirty their associated
4700   // cards). We need these updates logged to update any
4701   // RSets.
4702   if (g1_policy()->should_process_references()) {
4703     enqueue_discovered_references(per_thread_states);
4704   } else {
4705     g1_policy()->phase_times()->record_ref_enq_time(0);
4706   }
4707 
4708   _allocator->release_gc_alloc_regions(evacuation_info);
4709 
4710   merge_per_thread_state_info(per_thread_states);
4711 
4712   // Reset and re-enable the hot card cache.
4713   // Note the counts for the cards in the regions in the
4714   // collection set are reset when the collection set is freed.
4715   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
4716   hot_card_cache->reset_hot_cache();
4717   hot_card_cache->set_use_cache(true);
4718 
4719   purge_code_root_memory();
4720 
4721   redirty_logged_cards();
4722 #if defined(COMPILER2) || INCLUDE_JVMCI
4723   DerivedPointerTable::update_pointers();
4724 #endif
4725 }
4726 
4727 void G1CollectedHeap::record_obj_copy_mem_stats() {
4728   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4729 
4730   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4731                                                create_g1_evac_summary(&_old_evac_stats));
4732 }
4733 
4734 void G1CollectedHeap::free_region(HeapRegion* hr,
4735                                   FreeRegionList* free_list,
4736                                   bool par,
4737                                   bool locked) {
4738   assert(!hr->is_free(), "the region should not be free");
4739   assert(!hr->is_empty(), "the region should not be empty");
4740   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4741   assert(free_list != NULL, "pre-condition");
4742 
4743   if (G1VerifyBitmaps) {
4744     MemRegion mr(hr->bottom(), hr->end());
4745     concurrent_mark()->clearRangePrevBitmap(mr);
4746   }
4747 
4748   // Clear the card counts for this region.
4749   // Note: we only need to do this if the region is not young
4750   // (since we don't refine cards in young regions).
4751   if (!hr->is_young()) {
4752     _cg1r->hot_card_cache()->reset_card_counts(hr);
4753   }
4754   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
4755   free_list->add_ordered(hr);
4756 }
4757 
4758 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4759                                             FreeRegionList* free_list,
4760                                             bool par) {
4761   assert(hr->is_humongous(), "this is only for humongous regions");
4762   assert(free_list != NULL, "pre-condition");
4763   hr->clear_humongous();
4764   free_region(hr, free_list, par);
4765 }
4766 
4767 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4768                                            const uint humongous_regions_removed) {
4769   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4770     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4771     _old_set.bulk_remove(old_regions_removed);
4772     _humongous_set.bulk_remove(humongous_regions_removed);
4773   }
4774 
4775 }
4776 
4777 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4778   assert(list != NULL, "list can't be null");
4779   if (!list->is_empty()) {
4780     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4781     _hrm.insert_list_into_free_list(list);
4782   }
4783 }
4784 
4785 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4786   decrease_used(bytes);
4787 }
4788 
4789 class G1ParCleanupCTTask : public AbstractGangTask {
4790   G1SATBCardTableModRefBS* _ct_bs;
4791   G1CollectedHeap* _g1h;
4792   HeapRegion* volatile _su_head;
4793 public:
4794   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
4795                      G1CollectedHeap* g1h) :
4796     AbstractGangTask("G1 Par Cleanup CT Task"),
4797     _ct_bs(ct_bs), _g1h(g1h) { }
4798 
4799   void work(uint worker_id) {
4800     HeapRegion* r;
4801     while (r = _g1h->pop_dirty_cards_region()) {
4802       clear_cards(r);
4803     }
4804   }
4805 
4806   void clear_cards(HeapRegion* r) {
4807     // Cards of the survivors should have already been dirtied.
4808     if (!r->is_survivor()) {
4809       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
4810     }
4811   }
4812 };
4813 
4814 class G1ParScrubRemSetTask: public AbstractGangTask {
4815 protected:
4816   G1RemSet* _g1rs;
4817   BitMap* _region_bm;
4818   BitMap* _card_bm;
4819   HeapRegionClaimer _hrclaimer;
4820 
4821 public:
4822   G1ParScrubRemSetTask(G1RemSet* g1_rs, BitMap* region_bm, BitMap* card_bm, uint num_workers) :
4823     AbstractGangTask("G1 ScrubRS"),
4824     _g1rs(g1_rs),
4825     _region_bm(region_bm),
4826     _card_bm(card_bm),
4827     _hrclaimer(num_workers) {
4828   }
4829 
4830   void work(uint worker_id) {
4831     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
4832   }
4833 };
4834 
4835 void G1CollectedHeap::scrub_rem_set(BitMap* region_bm, BitMap* card_bm) {
4836   uint num_workers = workers()->active_workers();
4837   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), region_bm, card_bm, num_workers);
4838   workers()->run_task(&g1_par_scrub_rs_task);
4839 }
4840 
4841 void G1CollectedHeap::cleanUpCardTable() {
4842   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
4843   double start = os::elapsedTime();
4844 
4845   {
4846     // Iterate over the dirty cards region list.
4847     G1ParCleanupCTTask cleanup_task(ct_bs, this);
4848 
4849     workers()->run_task(&cleanup_task);
4850 #ifndef PRODUCT
4851     _verifier->verify_card_table_cleanup();
4852 #endif
4853   }
4854 
4855   double elapsed = os::elapsedTime() - start;
4856   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
4857 }
4858 
4859 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4860   size_t pre_used = 0;
4861   FreeRegionList local_free_list("Local List for CSet Freeing");
4862 
4863   double young_time_ms     = 0.0;
4864   double non_young_time_ms = 0.0;
4865 
4866   // Since the collection set is a superset of the the young list,
4867   // all we need to do to clear the young list is clear its
4868   // head and length, and unlink any young regions in the code below
4869   _young_list->clear();
4870 
4871   G1CollectorPolicy* policy = g1_policy();
4872 
4873   double start_sec = os::elapsedTime();
4874   bool non_young = true;
4875 
4876   HeapRegion* cur = cs_head;
4877   int age_bound = -1;
4878   size_t rs_lengths = 0;
4879 
4880   while (cur != NULL) {
4881     assert(!is_on_master_free_list(cur), "sanity");
4882     if (non_young) {
4883       if (cur->is_young()) {
4884         double end_sec = os::elapsedTime();
4885         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4886         non_young_time_ms += elapsed_ms;
4887 
4888         start_sec = os::elapsedTime();
4889         non_young = false;
4890       }
4891     } else {
4892       if (!cur->is_young()) {
4893         double end_sec = os::elapsedTime();
4894         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4895         young_time_ms += elapsed_ms;
4896 
4897         start_sec = os::elapsedTime();
4898         non_young = true;
4899       }
4900     }
4901 
4902     rs_lengths += cur->rem_set()->occupied_locked();
4903 
4904     HeapRegion* next = cur->next_in_collection_set();
4905     assert(cur->in_collection_set(), "bad CS");
4906     cur->set_next_in_collection_set(NULL);
4907     clear_in_cset(cur);
4908 
4909     if (cur->is_young()) {
4910       int index = cur->young_index_in_cset();
4911       assert(index != -1, "invariant");
4912       assert((uint) index < policy->young_cset_region_length(), "invariant");
4913       size_t words_survived = surviving_young_words[index];
4914       cur->record_surv_words_in_group(words_survived);
4915 
4916       // At this point the we have 'popped' cur from the collection set
4917       // (linked via next_in_collection_set()) but it is still in the
4918       // young list (linked via next_young_region()). Clear the
4919       // _next_young_region field.
4920       cur->set_next_young_region(NULL);
4921     } else {
4922       int index = cur->young_index_in_cset();
4923       assert(index == -1, "invariant");
4924     }
4925 
4926     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
4927             (!cur->is_young() && cur->young_index_in_cset() == -1),
4928             "invariant" );
4929 
4930     if (!cur->evacuation_failed()) {
4931       MemRegion used_mr = cur->used_region();
4932 
4933       // And the region is empty.
4934       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
4935       pre_used += cur->used();
4936       free_region(cur, &local_free_list, false /* par */, true /* locked */);
4937     } else {
4938       cur->uninstall_surv_rate_group();
4939       if (cur->is_young()) {
4940         cur->set_young_index_in_cset(-1);
4941       }
4942       cur->set_evacuation_failed(false);
4943       // When moving a young gen region to old gen, we "allocate" that whole region
4944       // there. This is in addition to any already evacuated objects. Notify the
4945       // policy about that.
4946       // Old gen regions do not cause an additional allocation: both the objects
4947       // still in the region and the ones already moved are accounted for elsewhere.
4948       if (cur->is_young()) {
4949         policy->add_bytes_allocated_in_old_since_last_gc(HeapRegion::GrainBytes);
4950       }
4951       // The region is now considered to be old.
4952       cur->set_old();
4953       // Do some allocation statistics accounting. Regions that failed evacuation
4954       // are always made old, so there is no need to update anything in the young
4955       // gen statistics, but we need to update old gen statistics.
4956       size_t used_words = cur->marked_bytes() / HeapWordSize;
4957       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
4958       _old_set.add(cur);
4959       evacuation_info.increment_collectionset_used_after(cur->used());
4960     }
4961     cur = next;
4962   }
4963 
4964   evacuation_info.set_regions_freed(local_free_list.length());
4965   policy->record_max_rs_lengths(rs_lengths);
4966   policy->cset_regions_freed();
4967 
4968   double end_sec = os::elapsedTime();
4969   double elapsed_ms = (end_sec - start_sec) * 1000.0;
4970 
4971   if (non_young) {
4972     non_young_time_ms += elapsed_ms;
4973   } else {
4974     young_time_ms += elapsed_ms;
4975   }
4976 
4977   prepend_to_freelist(&local_free_list);
4978   decrement_summary_bytes(pre_used);
4979   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
4980   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
4981 }
4982 
4983 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4984  private:
4985   FreeRegionList* _free_region_list;
4986   HeapRegionSet* _proxy_set;
4987   uint _humongous_regions_removed;
4988   size_t _freed_bytes;
4989  public:
4990 
4991   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4992     _free_region_list(free_region_list), _humongous_regions_removed(0), _freed_bytes(0) {
4993   }
4994 
4995   virtual bool doHeapRegion(HeapRegion* r) {
4996     if (!r->is_starts_humongous()) {
4997       return false;
4998     }
4999 
5000     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5001 
5002     oop obj = (oop)r->bottom();
5003     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5004 
5005     // The following checks whether the humongous object is live are sufficient.
5006     // The main additional check (in addition to having a reference from the roots
5007     // or the young gen) is whether the humongous object has a remembered set entry.
5008     //
5009     // A humongous object cannot be live if there is no remembered set for it
5010     // because:
5011     // - there can be no references from within humongous starts regions referencing
5012     // the object because we never allocate other objects into them.
5013     // (I.e. there are no intra-region references that may be missed by the
5014     // remembered set)
5015     // - as soon there is a remembered set entry to the humongous starts region
5016     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5017     // until the end of a concurrent mark.
5018     //
5019     // It is not required to check whether the object has been found dead by marking
5020     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5021     // all objects allocated during that time are considered live.
5022     // SATB marking is even more conservative than the remembered set.
5023     // So if at this point in the collection there is no remembered set entry,
5024     // nobody has a reference to it.
5025     // At the start of collection we flush all refinement logs, and remembered sets
5026     // are completely up-to-date wrt to references to the humongous object.
5027     //
5028     // Other implementation considerations:
5029     // - never consider object arrays at this time because they would pose
5030     // considerable effort for cleaning up the the remembered sets. This is
5031     // required because stale remembered sets might reference locations that
5032     // are currently allocated into.
5033     uint region_idx = r->hrm_index();
5034     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5035         !r->rem_set()->is_empty()) {
5036       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5037                                region_idx,
5038                                (size_t)obj->size() * HeapWordSize,
5039                                p2i(r->bottom()),
5040                                r->rem_set()->occupied(),
5041                                r->rem_set()->strong_code_roots_list_length(),
5042                                next_bitmap->isMarked(r->bottom()),
5043                                g1h->is_humongous_reclaim_candidate(region_idx),
5044                                obj->is_typeArray()
5045                               );
5046       return false;
5047     }
5048 
5049     guarantee(obj->is_typeArray(),
5050               "Only eagerly reclaiming type arrays is supported, but the object "
5051               PTR_FORMAT " is not.", p2i(r->bottom()));
5052 
5053     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5054                              region_idx,
5055                              (size_t)obj->size() * HeapWordSize,
5056                              p2i(r->bottom()),
5057                              r->rem_set()->occupied(),
5058                              r->rem_set()->strong_code_roots_list_length(),
5059                              next_bitmap->isMarked(r->bottom()),
5060                              g1h->is_humongous_reclaim_candidate(region_idx),
5061                              obj->is_typeArray()
5062                             );
5063 
5064     // Need to clear mark bit of the humongous object if already set.
5065     if (next_bitmap->isMarked(r->bottom())) {
5066       next_bitmap->clear(r->bottom());
5067     }
5068     do {
5069       HeapRegion* next = g1h->next_region_in_humongous(r);
5070       _freed_bytes += r->used();
5071       r->set_containing_set(NULL);
5072       _humongous_regions_removed++;
5073       g1h->free_humongous_region(r, _free_region_list, false);
5074       r = next;
5075     } while (r != NULL);
5076 
5077     return false;
5078   }
5079 
5080   uint humongous_free_count() {
5081     return _humongous_regions_removed;
5082   }
5083 
5084   size_t bytes_freed() const {
5085     return _freed_bytes;
5086   }
5087 };
5088 
5089 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5090   assert_at_safepoint(true);
5091 
5092   if (!G1EagerReclaimHumongousObjects ||
5093       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5094     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5095     return;
5096   }
5097 
5098   double start_time = os::elapsedTime();
5099 
5100   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5101 
5102   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5103   heap_region_iterate(&cl);
5104 
5105   remove_from_old_sets(0, cl.humongous_free_count());
5106 
5107   G1HRPrinter* hrp = hr_printer();
5108   if (hrp->is_active()) {
5109     FreeRegionListIterator iter(&local_cleanup_list);
5110     while (iter.more_available()) {
5111       HeapRegion* hr = iter.get_next();
5112       hrp->cleanup(hr);
5113     }
5114   }
5115 
5116   prepend_to_freelist(&local_cleanup_list);
5117   decrement_summary_bytes(cl.bytes_freed());
5118 
5119   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5120                                                                     cl.humongous_free_count());
5121 }
5122 
5123 // This routine is similar to the above but does not record
5124 // any policy statistics or update free lists; we are abandoning
5125 // the current incremental collection set in preparation of a
5126 // full collection. After the full GC we will start to build up
5127 // the incremental collection set again.
5128 // This is only called when we're doing a full collection
5129 // and is immediately followed by the tearing down of the young list.
5130 
5131 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5132   HeapRegion* cur = cs_head;
5133 
5134   while (cur != NULL) {
5135     HeapRegion* next = cur->next_in_collection_set();
5136     assert(cur->in_collection_set(), "bad CS");
5137     cur->set_next_in_collection_set(NULL);
5138     clear_in_cset(cur);
5139     cur->set_young_index_in_cset(-1);
5140     cur = next;
5141   }
5142 }
5143 
5144 void G1CollectedHeap::set_free_regions_coming() {
5145   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5146 
5147   assert(!free_regions_coming(), "pre-condition");
5148   _free_regions_coming = true;
5149 }
5150 
5151 void G1CollectedHeap::reset_free_regions_coming() {
5152   assert(free_regions_coming(), "pre-condition");
5153 
5154   {
5155     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5156     _free_regions_coming = false;
5157     SecondaryFreeList_lock->notify_all();
5158   }
5159 
5160   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5161 }
5162 
5163 void G1CollectedHeap::wait_while_free_regions_coming() {
5164   // Most of the time we won't have to wait, so let's do a quick test
5165   // first before we take the lock.
5166   if (!free_regions_coming()) {
5167     return;
5168   }
5169 
5170   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5171 
5172   {
5173     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5174     while (free_regions_coming()) {
5175       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5176     }
5177   }
5178 
5179   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5180 }
5181 
5182 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5183   return _allocator->is_retained_old_region(hr);
5184 }
5185 
5186 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5187   _young_list->push_region(hr);
5188 }
5189 
5190 class NoYoungRegionsClosure: public HeapRegionClosure {
5191 private:
5192   bool _success;
5193 public:
5194   NoYoungRegionsClosure() : _success(true) { }
5195   bool doHeapRegion(HeapRegion* r) {
5196     if (r->is_young()) {
5197       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5198                             p2i(r->bottom()), p2i(r->end()));
5199       _success = false;
5200     }
5201     return false;
5202   }
5203   bool success() { return _success; }
5204 };
5205 
5206 bool G1CollectedHeap::check_young_list_empty(bool check_heap) {
5207   bool ret = _young_list->check_list_empty();
5208 
5209   if (check_heap) {
5210     NoYoungRegionsClosure closure;
5211     heap_region_iterate(&closure);
5212     ret = ret && closure.success();
5213   }
5214 
5215   return ret;
5216 }
5217 
5218 class TearDownRegionSetsClosure : public HeapRegionClosure {
5219 private:
5220   HeapRegionSet *_old_set;
5221 
5222 public:
5223   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5224 
5225   bool doHeapRegion(HeapRegion* r) {
5226     if (r->is_old()) {
5227       _old_set->remove(r);
5228     } else {
5229       // We ignore free regions, we'll empty the free list afterwards.
5230       // We ignore young regions, we'll empty the young list afterwards.
5231       // We ignore humongous regions, we're not tearing down the
5232       // humongous regions set.
5233       assert(r->is_free() || r->is_young() || r->is_humongous(),
5234              "it cannot be another type");
5235     }
5236     return false;
5237   }
5238 
5239   ~TearDownRegionSetsClosure() {
5240     assert(_old_set->is_empty(), "post-condition");
5241   }
5242 };
5243 
5244 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5245   assert_at_safepoint(true /* should_be_vm_thread */);
5246 
5247   if (!free_list_only) {
5248     TearDownRegionSetsClosure cl(&_old_set);
5249     heap_region_iterate(&cl);
5250 
5251     // Note that emptying the _young_list is postponed and instead done as
5252     // the first step when rebuilding the regions sets again. The reason for
5253     // this is that during a full GC string deduplication needs to know if
5254     // a collected region was young or old when the full GC was initiated.
5255   }
5256   _hrm.remove_all_free_regions();
5257 }
5258 
5259 void G1CollectedHeap::increase_used(size_t bytes) {
5260   _summary_bytes_used += bytes;
5261 }
5262 
5263 void G1CollectedHeap::decrease_used(size_t bytes) {
5264   assert(_summary_bytes_used >= bytes,
5265          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5266          _summary_bytes_used, bytes);
5267   _summary_bytes_used -= bytes;
5268 }
5269 
5270 void G1CollectedHeap::set_used(size_t bytes) {
5271   _summary_bytes_used = bytes;
5272 }
5273 
5274 class RebuildRegionSetsClosure : public HeapRegionClosure {
5275 private:
5276   bool            _free_list_only;
5277   HeapRegionSet*   _old_set;
5278   HeapRegionManager*   _hrm;
5279   size_t          _total_used;
5280 
5281 public:
5282   RebuildRegionSetsClosure(bool free_list_only,
5283                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5284     _free_list_only(free_list_only),
5285     _old_set(old_set), _hrm(hrm), _total_used(0) {
5286     assert(_hrm->num_free_regions() == 0, "pre-condition");
5287     if (!free_list_only) {
5288       assert(_old_set->is_empty(), "pre-condition");
5289     }
5290   }
5291 
5292   bool doHeapRegion(HeapRegion* r) {
5293     if (r->is_empty()) {
5294       // Add free regions to the free list
5295       r->set_free();
5296       r->set_allocation_context(AllocationContext::system());
5297       _hrm->insert_into_free_list(r);
5298     } else if (!_free_list_only) {
5299       assert(!r->is_young(), "we should not come across young regions");
5300 
5301       if (r->is_humongous()) {
5302         // We ignore humongous regions. We left the humongous set unchanged.
5303       } else {
5304         // Objects that were compacted would have ended up on regions
5305         // that were previously old or free.  Archive regions (which are
5306         // old) will not have been touched.
5307         assert(r->is_free() || r->is_old(), "invariant");
5308         // We now consider them old, so register as such. Leave
5309         // archive regions set that way, however, while still adding
5310         // them to the old set.
5311         if (!r->is_archive()) {
5312           r->set_old();
5313         }
5314         _old_set->add(r);
5315       }
5316       _total_used += r->used();
5317     }
5318 
5319     return false;
5320   }
5321 
5322   size_t total_used() {
5323     return _total_used;
5324   }
5325 };
5326 
5327 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5328   assert_at_safepoint(true /* should_be_vm_thread */);
5329 
5330   if (!free_list_only) {
5331     _young_list->empty_list();
5332   }
5333 
5334   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5335   heap_region_iterate(&cl);
5336 
5337   if (!free_list_only) {
5338     set_used(cl.total_used());
5339     if (_archive_allocator != NULL) {
5340       _archive_allocator->clear_used();
5341     }
5342   }
5343   assert(used_unlocked() == recalculate_used(),
5344          "inconsistent used_unlocked(), "
5345          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5346          used_unlocked(), recalculate_used());
5347 }
5348 
5349 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5350   _refine_cte_cl->set_concurrent(concurrent);
5351 }
5352 
5353 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5354   HeapRegion* hr = heap_region_containing(p);
5355   return hr->is_in(p);
5356 }
5357 
5358 // Methods for the mutator alloc region
5359 
5360 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5361                                                       bool force) {
5362   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5363   assert(!force || g1_policy()->can_expand_young_list(),
5364          "if force is true we should be able to expand the young list");
5365   bool young_list_full = g1_policy()->is_young_list_full();
5366   if (force || !young_list_full) {
5367     HeapRegion* new_alloc_region = new_region(word_size,
5368                                               false /* is_old */,
5369                                               false /* do_expand */);
5370     if (new_alloc_region != NULL) {
5371       set_region_short_lived_locked(new_alloc_region);
5372       _hr_printer.alloc(new_alloc_region, young_list_full);
5373       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5374       return new_alloc_region;
5375     }
5376   }
5377   return NULL;
5378 }
5379 
5380 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5381                                                   size_t allocated_bytes) {
5382   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5383   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5384 
5385   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
5386   increase_used(allocated_bytes);
5387   _hr_printer.retire(alloc_region);
5388   // We update the eden sizes here, when the region is retired,
5389   // instead of when it's allocated, since this is the point that its
5390   // used space has been recored in _summary_bytes_used.
5391   g1mm()->update_eden_size();
5392 }
5393 
5394 // Methods for the GC alloc regions
5395 
5396 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
5397                                                  uint count,
5398                                                  InCSetState dest) {
5399   assert(FreeList_lock->owned_by_self(), "pre-condition");
5400 
5401   if (count < g1_policy()->max_regions(dest)) {
5402     const bool is_survivor = (dest.is_young());
5403     HeapRegion* new_alloc_region = new_region(word_size,
5404                                               !is_survivor,
5405                                               true /* do_expand */);
5406     if (new_alloc_region != NULL) {
5407       // We really only need to do this for old regions given that we
5408       // should never scan survivors. But it doesn't hurt to do it
5409       // for survivors too.
5410       new_alloc_region->record_timestamp();
5411       if (is_survivor) {
5412         new_alloc_region->set_survivor();
5413         _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5414       } else {
5415         new_alloc_region->set_old();
5416         _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5417       }
5418       _hr_printer.alloc(new_alloc_region);
5419       bool during_im = collector_state()->during_initial_mark_pause();
5420       new_alloc_region->note_start_of_copying(during_im);
5421       return new_alloc_region;
5422     }
5423   }
5424   return NULL;
5425 }
5426 
5427 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5428                                              size_t allocated_bytes,
5429                                              InCSetState dest) {
5430   bool during_im = collector_state()->during_initial_mark_pause();
5431   alloc_region->note_end_of_copying(during_im);
5432   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5433   if (dest.is_young()) {
5434     young_list()->add_survivor_region(alloc_region);
5435   } else {
5436     _old_set.add(alloc_region);
5437   }
5438   _hr_printer.retire(alloc_region);
5439 }
5440 
5441 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5442   bool expanded = false;
5443   uint index = _hrm.find_highest_free(&expanded);
5444 
5445   if (index != G1_NO_HRM_INDEX) {
5446     if (expanded) {
5447       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5448                                 HeapRegion::GrainWords * HeapWordSize);
5449     }
5450     _hrm.allocate_free_regions_starting_at(index, 1);
5451     return region_at(index);
5452   }
5453   return NULL;
5454 }
5455 
5456 // Optimized nmethod scanning
5457 
5458 class RegisterNMethodOopClosure: public OopClosure {
5459   G1CollectedHeap* _g1h;
5460   nmethod* _nm;
5461 
5462   template <class T> void do_oop_work(T* p) {
5463     T heap_oop = oopDesc::load_heap_oop(p);
5464     if (!oopDesc::is_null(heap_oop)) {
5465       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5466       HeapRegion* hr = _g1h->heap_region_containing(obj);
5467       assert(!hr->is_continues_humongous(),
5468              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5469              " starting at " HR_FORMAT,
5470              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5471 
5472       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5473       hr->add_strong_code_root_locked(_nm);
5474     }
5475   }
5476 
5477 public:
5478   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5479     _g1h(g1h), _nm(nm) {}
5480 
5481   void do_oop(oop* p)       { do_oop_work(p); }
5482   void do_oop(narrowOop* p) { do_oop_work(p); }
5483 };
5484 
5485 class UnregisterNMethodOopClosure: public OopClosure {
5486   G1CollectedHeap* _g1h;
5487   nmethod* _nm;
5488 
5489   template <class T> void do_oop_work(T* p) {
5490     T heap_oop = oopDesc::load_heap_oop(p);
5491     if (!oopDesc::is_null(heap_oop)) {
5492       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5493       HeapRegion* hr = _g1h->heap_region_containing(obj);
5494       assert(!hr->is_continues_humongous(),
5495              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5496              " starting at " HR_FORMAT,
5497              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5498 
5499       hr->remove_strong_code_root(_nm);
5500     }
5501   }
5502 
5503 public:
5504   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5505     _g1h(g1h), _nm(nm) {}
5506 
5507   void do_oop(oop* p)       { do_oop_work(p); }
5508   void do_oop(narrowOop* p) { do_oop_work(p); }
5509 };
5510 
5511 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5512   CollectedHeap::register_nmethod(nm);
5513 
5514   guarantee(nm != NULL, "sanity");
5515   RegisterNMethodOopClosure reg_cl(this, nm);
5516   nm->oops_do(&reg_cl);
5517 }
5518 
5519 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5520   CollectedHeap::unregister_nmethod(nm);
5521 
5522   guarantee(nm != NULL, "sanity");
5523   UnregisterNMethodOopClosure reg_cl(this, nm);
5524   nm->oops_do(&reg_cl, true);
5525 }
5526 
5527 void G1CollectedHeap::purge_code_root_memory() {
5528   double purge_start = os::elapsedTime();
5529   G1CodeRootSet::purge();
5530   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5531   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5532 }
5533 
5534 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5535   G1CollectedHeap* _g1h;
5536 
5537 public:
5538   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5539     _g1h(g1h) {}
5540 
5541   void do_code_blob(CodeBlob* cb) {
5542     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5543     if (nm == NULL) {
5544       return;
5545     }
5546 
5547     if (ScavengeRootsInCode) {
5548       _g1h->register_nmethod(nm);
5549     }
5550   }
5551 };
5552 
5553 void G1CollectedHeap::rebuild_strong_code_roots() {
5554   RebuildStrongCodeRootClosure blob_cl(this);
5555   CodeCache::blobs_do(&blob_cl);
5556 }