1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/c2compiler.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/escape.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/movenode.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_G1GC
  43 #include "gc/g1/g1ThreadLocalData.hpp"
  44 #endif // INCLUDE_G1GC
  45 #if INCLUDE_ZGC
  46 #include "gc/z/c2/zBarrierSetC2.hpp"
  47 #endif
  48 #if INCLUDE_SHENANDOAHGC
  49 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  50 #endif
  51 
  52 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  53   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  54   _in_worklist(C->comp_arena()),
  55   _next_pidx(0),
  56   _collecting(true),
  57   _verify(false),
  58   _compile(C),
  59   _igvn(igvn),
  60   _node_map(C->comp_arena()) {
  61   // Add unknown java object.
  62   add_java_object(C->top(), PointsToNode::GlobalEscape);
  63   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  64   // Add ConP(#NULL) and ConN(#NULL) nodes.
  65   Node* oop_null = igvn->zerocon(T_OBJECT);
  66   assert(oop_null->_idx < nodes_size(), "should be created already");
  67   add_java_object(oop_null, PointsToNode::NoEscape);
  68   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  69   if (UseCompressedOops) {
  70     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  71     assert(noop_null->_idx < nodes_size(), "should be created already");
  72     map_ideal_node(noop_null, null_obj);
  73   }
  74   _pcmp_neq = NULL; // Should be initialized
  75   _pcmp_eq  = NULL;
  76 }
  77 
  78 bool ConnectionGraph::has_candidates(Compile *C) {
  79   // EA brings benefits only when the code has allocations and/or locks which
  80   // are represented by ideal Macro nodes.
  81   int cnt = C->macro_count();
  82   for (int i = 0; i < cnt; i++) {
  83     Node *n = C->macro_node(i);
  84     if (n->is_Allocate())
  85       return true;
  86     if (n->is_Lock()) {
  87       Node* obj = n->as_Lock()->obj_node()->uncast();
  88       if (!(obj->is_Parm() || obj->is_Con()))
  89         return true;
  90     }
  91     if (n->is_CallStaticJava() &&
  92         n->as_CallStaticJava()->is_boxing_method()) {
  93       return true;
  94     }
  95   }
  96   return false;
  97 }
  98 
  99 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
 100   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
 101   ResourceMark rm;
 102 
 103   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
 104   // to create space for them in ConnectionGraph::_nodes[].
 105   Node* oop_null = igvn->zerocon(T_OBJECT);
 106   Node* noop_null = igvn->zerocon(T_NARROWOOP);
 107   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
 108   // Perform escape analysis
 109   if (congraph->compute_escape()) {
 110     // There are non escaping objects.
 111     C->set_congraph(congraph);
 112   }
 113   // Cleanup.
 114   if (oop_null->outcnt() == 0)
 115     igvn->hash_delete(oop_null);
 116   if (noop_null->outcnt() == 0)
 117     igvn->hash_delete(noop_null);
 118 }
 119 
 120 bool ConnectionGraph::compute_escape() {
 121   Compile* C = _compile;
 122   PhaseGVN* igvn = _igvn;
 123 
 124   // Worklists used by EA.
 125   Unique_Node_List delayed_worklist;
 126   GrowableArray<Node*> alloc_worklist;
 127   GrowableArray<Node*> ptr_cmp_worklist;
 128   GrowableArray<Node*> storestore_worklist;
 129   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 130   GrowableArray<PointsToNode*>   ptnodes_worklist;
 131   GrowableArray<JavaObjectNode*> java_objects_worklist;
 132   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 133   GrowableArray<FieldNode*>      oop_fields_worklist;
 134   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 135 
 136   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 137 
 138   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 139   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 140   // Initialize worklist
 141   if (C->root() != NULL) {
 142     ideal_nodes.push(C->root());
 143   }
 144   // Processed ideal nodes are unique on ideal_nodes list
 145   // but several ideal nodes are mapped to the phantom_obj.
 146   // To avoid duplicated entries on the following worklists
 147   // add the phantom_obj only once to them.
 148   ptnodes_worklist.append(phantom_obj);
 149   java_objects_worklist.append(phantom_obj);
 150   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 151     Node* n = ideal_nodes.at(next);
 152     // Create PointsTo nodes and add them to Connection Graph. Called
 153     // only once per ideal node since ideal_nodes is Unique_Node list.
 154     add_node_to_connection_graph(n, &delayed_worklist);
 155     PointsToNode* ptn = ptnode_adr(n->_idx);
 156     if (ptn != NULL && ptn != phantom_obj) {
 157       ptnodes_worklist.append(ptn);
 158       if (ptn->is_JavaObject()) {
 159         java_objects_worklist.append(ptn->as_JavaObject());
 160         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 161             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 162           // Only allocations and java static calls results are interesting.
 163           non_escaped_worklist.append(ptn->as_JavaObject());
 164         }
 165       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 166         oop_fields_worklist.append(ptn->as_Field());
 167       }
 168     }
 169     if (n->is_MergeMem()) {
 170       // Collect all MergeMem nodes to add memory slices for
 171       // scalar replaceable objects in split_unique_types().
 172       _mergemem_worklist.append(n->as_MergeMem());
 173     } else if (OptimizePtrCompare && n->is_Cmp() &&
 174                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 175       // Collect compare pointers nodes.
 176       ptr_cmp_worklist.append(n);
 177     } else if (n->is_MemBarStoreStore()) {
 178       // Collect all MemBarStoreStore nodes so that depending on the
 179       // escape status of the associated Allocate node some of them
 180       // may be eliminated.
 181       storestore_worklist.append(n);
 182     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 183                (n->req() > MemBarNode::Precedent)) {
 184       record_for_optimizer(n);
 185 #ifdef ASSERT
 186     } else if (n->is_AddP()) {
 187       // Collect address nodes for graph verification.
 188       addp_worklist.append(n);
 189 #endif
 190     } else if (n->is_ArrayCopy()) {
 191       // Keep a list of ArrayCopy nodes so if one of its input is non
 192       // escaping, we can record a unique type
 193       arraycopy_worklist.append(n->as_ArrayCopy());
 194     }
 195     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 196       Node* m = n->fast_out(i);   // Get user
 197       ideal_nodes.push(m);
 198     }
 199   }
 200   if (non_escaped_worklist.length() == 0) {
 201     _collecting = false;
 202     return false; // Nothing to do.
 203   }
 204   // Add final simple edges to graph.
 205   while(delayed_worklist.size() > 0) {
 206     Node* n = delayed_worklist.pop();
 207     add_final_edges(n);
 208   }
 209   int ptnodes_length = ptnodes_worklist.length();
 210 
 211 #ifdef ASSERT
 212   if (VerifyConnectionGraph) {
 213     // Verify that no new simple edges could be created and all
 214     // local vars has edges.
 215     _verify = true;
 216     for (int next = 0; next < ptnodes_length; ++next) {
 217       PointsToNode* ptn = ptnodes_worklist.at(next);
 218       add_final_edges(ptn->ideal_node());
 219       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 220         ptn->dump();
 221         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 222       }
 223     }
 224     _verify = false;
 225   }
 226 #endif
 227   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 228   // processing, calls to CI to resolve symbols (types, fields, methods)
 229   // referenced in bytecode. During symbol resolution VM may throw
 230   // an exception which CI cleans and converts to compilation failure.
 231   if (C->failing())  return false;
 232 
 233   // 2. Finish Graph construction by propagating references to all
 234   //    java objects through graph.
 235   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 236                                  java_objects_worklist, oop_fields_worklist)) {
 237     // All objects escaped or hit time or iterations limits.
 238     _collecting = false;
 239     return false;
 240   }
 241 
 242   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 243   //    scalar replaceable allocations on alloc_worklist for processing
 244   //    in split_unique_types().
 245   int non_escaped_length = non_escaped_worklist.length();
 246   for (int next = 0; next < non_escaped_length; next++) {
 247     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 248     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 249     Node* n = ptn->ideal_node();
 250     if (n->is_Allocate()) {
 251       n->as_Allocate()->_is_non_escaping = noescape;
 252     }
 253     if (n->is_CallStaticJava()) {
 254       n->as_CallStaticJava()->_is_non_escaping = noescape;
 255     }
 256     if (noescape && ptn->scalar_replaceable()) {
 257       adjust_scalar_replaceable_state(ptn);
 258       if (ptn->scalar_replaceable()) {
 259         alloc_worklist.append(ptn->ideal_node());
 260       }
 261     }
 262   }
 263 
 264 #ifdef ASSERT
 265   if (VerifyConnectionGraph) {
 266     // Verify that graph is complete - no new edges could be added or needed.
 267     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 268                             java_objects_worklist, addp_worklist);
 269   }
 270   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 271   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 272          null_obj->edge_count() == 0 &&
 273          !null_obj->arraycopy_src() &&
 274          !null_obj->arraycopy_dst(), "sanity");
 275 #endif
 276 
 277   _collecting = false;
 278 
 279   } // TracePhase t3("connectionGraph")
 280 
 281   // 4. Optimize ideal graph based on EA information.
 282   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 283   if (has_non_escaping_obj) {
 284     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 285   }
 286 
 287 #ifndef PRODUCT
 288   if (PrintEscapeAnalysis) {
 289     dump(ptnodes_worklist); // Dump ConnectionGraph
 290   }
 291 #endif
 292 
 293   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 294 #ifdef ASSERT
 295   if (VerifyConnectionGraph) {
 296     int alloc_length = alloc_worklist.length();
 297     for (int next = 0; next < alloc_length; ++next) {
 298       Node* n = alloc_worklist.at(next);
 299       PointsToNode* ptn = ptnode_adr(n->_idx);
 300       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 301     }
 302   }
 303 #endif
 304 
 305   // 5. Separate memory graph for scalar replaceable allcations.
 306   if (has_scalar_replaceable_candidates &&
 307       C->AliasLevel() >= 3 && EliminateAllocations) {
 308     // Now use the escape information to create unique types for
 309     // scalar replaceable objects.
 310     split_unique_types(alloc_worklist, arraycopy_worklist);
 311     if (C->failing())  return false;
 312     C->print_method(PHASE_AFTER_EA, 2);
 313 
 314 #ifdef ASSERT
 315   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 316     tty->print("=== No allocations eliminated for ");
 317     C->method()->print_short_name();
 318     if(!EliminateAllocations) {
 319       tty->print(" since EliminateAllocations is off ===");
 320     } else if(!has_scalar_replaceable_candidates) {
 321       tty->print(" since there are no scalar replaceable candidates ===");
 322     } else if(C->AliasLevel() < 3) {
 323       tty->print(" since AliasLevel < 3 ===");
 324     }
 325     tty->cr();
 326 #endif
 327   }
 328   return has_non_escaping_obj;
 329 }
 330 
 331 // Utility function for nodes that load an object
 332 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 333   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 334   // ThreadLocal has RawPtr type.
 335   const Type* t = _igvn->type(n);
 336   if (t->make_ptr() != NULL) {
 337     Node* adr = n->in(MemNode::Address);
 338 #ifdef ASSERT
 339     if (!adr->is_AddP()) {
 340       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 341     } else {
 342       assert((ptnode_adr(adr->_idx) == NULL ||
 343               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 344     }
 345 #endif
 346     add_local_var_and_edge(n, PointsToNode::NoEscape,
 347                            adr, delayed_worklist);
 348   }
 349 }
 350 
 351 // Populate Connection Graph with PointsTo nodes and create simple
 352 // connection graph edges.
 353 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 354   assert(!_verify, "this method should not be called for verification");
 355   PhaseGVN* igvn = _igvn;
 356   uint n_idx = n->_idx;
 357   PointsToNode* n_ptn = ptnode_adr(n_idx);
 358   if (n_ptn != NULL)
 359     return; // No need to redefine PointsTo node during first iteration.
 360 
 361   if (n->is_Call()) {
 362     // Arguments to allocation and locking don't escape.
 363     if (n->is_AbstractLock()) {
 364       // Put Lock and Unlock nodes on IGVN worklist to process them during
 365       // first IGVN optimization when escape information is still available.
 366       record_for_optimizer(n);
 367     } else if (n->is_Allocate()) {
 368       add_call_node(n->as_Call());
 369       record_for_optimizer(n);
 370     } else {
 371       if (n->is_CallStaticJava()) {
 372         const char* name = n->as_CallStaticJava()->_name;
 373         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 374           return; // Skip uncommon traps
 375       }
 376       // Don't mark as processed since call's arguments have to be processed.
 377       delayed_worklist->push(n);
 378       // Check if a call returns an object.
 379       if ((n->as_Call()->returns_pointer() &&
 380            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != NULL) ||
 381           (n->is_CallStaticJava() &&
 382            n->as_CallStaticJava()->is_boxing_method())) {
 383         add_call_node(n->as_Call());
 384       }
 385     }
 386     return;
 387   }
 388   // Put this check here to process call arguments since some call nodes
 389   // point to phantom_obj.
 390   if (n_ptn == phantom_obj || n_ptn == null_obj)
 391     return; // Skip predefined nodes.
 392 
 393   int opcode = n->Opcode();
 394   switch (opcode) {
 395     case Op_AddP: {
 396       Node* base = get_addp_base(n);
 397       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 398       // Field nodes are created for all field types. They are used in
 399       // adjust_scalar_replaceable_state() and split_unique_types().
 400       // Note, non-oop fields will have only base edges in Connection
 401       // Graph because such fields are not used for oop loads and stores.
 402       int offset = address_offset(n, igvn);
 403       add_field(n, PointsToNode::NoEscape, offset);
 404       if (ptn_base == NULL) {
 405         delayed_worklist->push(n); // Process it later.
 406       } else {
 407         n_ptn = ptnode_adr(n_idx);
 408         add_base(n_ptn->as_Field(), ptn_base);
 409       }
 410       break;
 411     }
 412     case Op_CastX2P: {
 413       map_ideal_node(n, phantom_obj);
 414       break;
 415     }
 416     case Op_CastPP:
 417     case Op_CheckCastPP:
 418     case Op_EncodeP:
 419     case Op_DecodeN:
 420     case Op_EncodePKlass:
 421     case Op_DecodeNKlass: {
 422       add_local_var_and_edge(n, PointsToNode::NoEscape,
 423                              n->in(1), delayed_worklist);
 424       break;
 425     }
 426     case Op_CMoveP: {
 427       add_local_var(n, PointsToNode::NoEscape);
 428       // Do not add edges during first iteration because some could be
 429       // not defined yet.
 430       delayed_worklist->push(n);
 431       break;
 432     }
 433     case Op_ConP:
 434     case Op_ConN:
 435     case Op_ConNKlass: {
 436       // assume all oop constants globally escape except for null
 437       PointsToNode::EscapeState es;
 438       const Type* t = igvn->type(n);
 439       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 440         es = PointsToNode::NoEscape;
 441       } else {
 442         es = PointsToNode::GlobalEscape;
 443       }
 444       add_java_object(n, es);
 445       break;
 446     }
 447     case Op_CreateEx: {
 448       // assume that all exception objects globally escape
 449       map_ideal_node(n, phantom_obj);
 450       break;
 451     }
 452     case Op_LoadKlass:
 453     case Op_LoadNKlass: {
 454       // Unknown class is loaded
 455       map_ideal_node(n, phantom_obj);
 456       break;
 457     }
 458     case Op_LoadP:
 459 #if INCLUDE_ZGC
 460     case Op_LoadBarrierSlowReg:
 461     case Op_LoadBarrierWeakSlowReg:
 462 #endif
 463     case Op_LoadN:
 464     case Op_LoadPLocked: {
 465       add_objload_to_connection_graph(n, delayed_worklist);
 466       break;
 467     }
 468     case Op_Parm: {
 469       map_ideal_node(n, phantom_obj);
 470       break;
 471     }
 472     case Op_PartialSubtypeCheck: {
 473       // Produces Null or notNull and is used in only in CmpP so
 474       // phantom_obj could be used.
 475       map_ideal_node(n, phantom_obj); // Result is unknown
 476       break;
 477     }
 478     case Op_Phi: {
 479       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 480       // ThreadLocal has RawPtr type.
 481       const Type* t = n->as_Phi()->type();
 482       if (t->make_ptr() != NULL) {
 483         add_local_var(n, PointsToNode::NoEscape);
 484         // Do not add edges during first iteration because some could be
 485         // not defined yet.
 486         delayed_worklist->push(n);
 487       }
 488       break;
 489     }
 490     case Op_Proj: {
 491       // we are only interested in the oop result projection from a call
 492       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 493           n->in(0)->as_Call()->returns_pointer()) {
 494         add_local_var_and_edge(n, PointsToNode::NoEscape,
 495                                n->in(0), delayed_worklist);
 496       }
 497 #if INCLUDE_ZGC
 498       else if (UseZGC) {
 499         if (n->as_Proj()->_con == LoadBarrierNode::Oop && n->in(0)->is_LoadBarrier()) {
 500           add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0)->in(LoadBarrierNode::Oop), delayed_worklist);
 501         }
 502       }
 503 #endif
 504       break;
 505     }
 506     case Op_Rethrow: // Exception object escapes
 507     case Op_Return: {
 508       if (n->req() > TypeFunc::Parms &&
 509           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 510         // Treat Return value as LocalVar with GlobalEscape escape state.
 511         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 512                                n->in(TypeFunc::Parms), delayed_worklist);
 513       }
 514       break;
 515     }
 516     case Op_CompareAndExchangeP:
 517     case Op_CompareAndExchangeN:
 518 #if INCLUDE_SHENANDOAHGC
 519     case Op_ShenandoahCompareAndExchangeP:
 520     case Op_ShenandoahCompareAndExchangeN:
 521 #endif
 522     case Op_GetAndSetP:
 523     case Op_GetAndSetN: {
 524       add_objload_to_connection_graph(n, delayed_worklist);
 525       // fallthrough
 526     }
 527     case Op_StoreP:
 528     case Op_StoreN:
 529     case Op_StoreNKlass:
 530     case Op_StorePConditional:
 531 #if INCLUDE_SHENANDOAHGC
 532     case Op_ShenandoahWeakCompareAndSwapP:
 533     case Op_ShenandoahWeakCompareAndSwapN:
 534     case Op_ShenandoahCompareAndSwapP:
 535     case Op_ShenandoahCompareAndSwapN:
 536 #endif
 537     case Op_WeakCompareAndSwapP:
 538     case Op_WeakCompareAndSwapN:
 539     case Op_CompareAndSwapP:
 540     case Op_CompareAndSwapN: {
 541       Node* adr = n->in(MemNode::Address);
 542       const Type *adr_type = igvn->type(adr);
 543       adr_type = adr_type->make_ptr();
 544       if (adr_type == NULL) {
 545         break; // skip dead nodes
 546       }
 547       if (   adr_type->isa_oopptr()
 548           || (   (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 549               && adr_type == TypeRawPtr::NOTNULL
 550               && adr->in(AddPNode::Address)->is_Proj()
 551               && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 552         delayed_worklist->push(n); // Process it later.
 553 #ifdef ASSERT
 554         assert(adr->is_AddP(), "expecting an AddP");
 555         if (adr_type == TypeRawPtr::NOTNULL) {
 556           // Verify a raw address for a store captured by Initialize node.
 557           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 558           assert(offs != Type::OffsetBot, "offset must be a constant");
 559         }
 560 #endif
 561       } else {
 562         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 563         if (adr->is_BoxLock())
 564           break;
 565         // Stored value escapes in unsafe access.
 566         if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 567           // Pointer stores in G1 barriers looks like unsafe access.
 568           // Ignore such stores to be able scalar replace non-escaping
 569           // allocations.
 570 #if INCLUDE_G1GC || INCLUDE_SHENANDOAHGC
 571           if ((UseG1GC || UseShenandoahGC) && adr->is_AddP()) {
 572             Node* base = get_addp_base(adr);
 573             if (base->Opcode() == Op_LoadP &&
 574                 base->in(MemNode::Address)->is_AddP()) {
 575               adr = base->in(MemNode::Address);
 576               Node* tls = get_addp_base(adr);
 577               if (tls->Opcode() == Op_ThreadLocal) {
 578                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 579 #if INCLUDE_G1GC && INCLUDE_SHENANDOAHGC
 580                 const int buf_offset = in_bytes(UseG1GC ? G1ThreadLocalData::satb_mark_queue_buffer_offset()
 581                                                         : ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
 582 #elif INCLUDE_G1GC
 583                 const int buf_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
 584 #else
 585                 const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
 586 #endif
 587                 if (offs == buf_offset) {
 588                   break; // G1 pre barrier previous oop value store.
 589                 }
 590                 if (offs == in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset())) {
 591                   break; // G1 post barrier card address store.
 592                 }
 593               }
 594             }
 595           }
 596 #endif
 597           delayed_worklist->push(n); // Process unsafe access later.
 598           break;
 599         }
 600 #ifdef ASSERT
 601         n->dump(1);
 602         assert(false, "not unsafe or G1 barrier raw StoreP");
 603 #endif
 604       }
 605       break;
 606     }
 607     case Op_AryEq:
 608     case Op_HasNegatives:
 609     case Op_StrComp:
 610     case Op_StrEquals:
 611     case Op_StrIndexOf:
 612     case Op_StrIndexOfChar:
 613     case Op_StrInflatedCopy:
 614     case Op_StrCompressedCopy:
 615     case Op_EncodeISOArray: {
 616       add_local_var(n, PointsToNode::ArgEscape);
 617       delayed_worklist->push(n); // Process it later.
 618       break;
 619     }
 620     case Op_ThreadLocal: {
 621       add_java_object(n, PointsToNode::ArgEscape);
 622       break;
 623     }
 624 #if INCLUDE_SHENANDOAHGC
 625     case Op_ShenandoahReadBarrier:
 626     case Op_ShenandoahWriteBarrier:
 627       // Barriers 'pass through' its arguments. I.e. what goes in, comes out.
 628       // It doesn't escape.
 629       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahBarrierNode::ValueIn), delayed_worklist);
 630       break;
 631     case Op_ShenandoahEnqueueBarrier:
 632       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
 633       break;
 634 #endif
 635     default:
 636       ; // Do nothing for nodes not related to EA.
 637   }
 638   return;
 639 }
 640 
 641 #ifdef ASSERT
 642 #define ELSE_FAIL(name)                               \
 643       /* Should not be called for not pointer type. */  \
 644       n->dump(1);                                       \
 645       assert(false, name);                              \
 646       break;
 647 #else
 648 #define ELSE_FAIL(name) \
 649       break;
 650 #endif
 651 
 652 // Add final simple edges to graph.
 653 void ConnectionGraph::add_final_edges(Node *n) {
 654   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 655 #ifdef ASSERT
 656   if (_verify && n_ptn->is_JavaObject())
 657     return; // This method does not change graph for JavaObject.
 658 #endif
 659 
 660   if (n->is_Call()) {
 661     process_call_arguments(n->as_Call());
 662     return;
 663   }
 664   assert(n->is_Store() || n->is_LoadStore() ||
 665          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 666          "node should be registered already");
 667   int opcode = n->Opcode();
 668   switch (opcode) {
 669     case Op_AddP: {
 670       Node* base = get_addp_base(n);
 671       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 672       assert(ptn_base != NULL, "field's base should be registered");
 673       add_base(n_ptn->as_Field(), ptn_base);
 674       break;
 675     }
 676     case Op_CastPP:
 677     case Op_CheckCastPP:
 678     case Op_EncodeP:
 679     case Op_DecodeN:
 680     case Op_EncodePKlass:
 681     case Op_DecodeNKlass: {
 682       add_local_var_and_edge(n, PointsToNode::NoEscape,
 683                              n->in(1), NULL);
 684       break;
 685     }
 686     case Op_CMoveP: {
 687       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 688         Node* in = n->in(i);
 689         if (in == NULL)
 690           continue;  // ignore NULL
 691         Node* uncast_in = in->uncast();
 692         if (uncast_in->is_top() || uncast_in == n)
 693           continue;  // ignore top or inputs which go back this node
 694         PointsToNode* ptn = ptnode_adr(in->_idx);
 695         assert(ptn != NULL, "node should be registered");
 696         add_edge(n_ptn, ptn);
 697       }
 698       break;
 699     }
 700     case Op_LoadP:
 701 #if INCLUDE_ZGC
 702     case Op_LoadBarrierSlowReg:
 703     case Op_LoadBarrierWeakSlowReg:
 704 #endif
 705     case Op_LoadN:
 706     case Op_LoadPLocked: {
 707       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 708       // ThreadLocal has RawPtr type.
 709       const Type* t = _igvn->type(n);
 710       if (t->make_ptr() != NULL) {
 711         Node* adr = n->in(MemNode::Address);
 712         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 713         break;
 714       }
 715       ELSE_FAIL("Op_LoadP");
 716     }
 717     case Op_Phi: {
 718       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 719       // ThreadLocal has RawPtr type.
 720       const Type* t = n->as_Phi()->type();
 721       if (t->make_ptr() != NULL) {
 722         for (uint i = 1; i < n->req(); i++) {
 723           Node* in = n->in(i);
 724           if (in == NULL)
 725             continue;  // ignore NULL
 726           Node* uncast_in = in->uncast();
 727           if (uncast_in->is_top() || uncast_in == n)
 728             continue;  // ignore top or inputs which go back this node
 729           PointsToNode* ptn = ptnode_adr(in->_idx);
 730           assert(ptn != NULL, "node should be registered");
 731           add_edge(n_ptn, ptn);
 732         }
 733         break;
 734       }
 735       ELSE_FAIL("Op_Phi");
 736     }
 737     case Op_Proj: {
 738       // we are only interested in the oop result projection from a call
 739       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 740           n->in(0)->as_Call()->returns_pointer()) {
 741         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 742         break;
 743       }
 744 #if INCLUDE_ZGC
 745       else if (UseZGC) {
 746         if (n->as_Proj()->_con == LoadBarrierNode::Oop && n->in(0)->is_LoadBarrier()) {
 747           add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0)->in(LoadBarrierNode::Oop), NULL);
 748           break;
 749         }
 750       }
 751 #endif
 752       ELSE_FAIL("Op_Proj");
 753     }
 754     case Op_Rethrow: // Exception object escapes
 755     case Op_Return: {
 756       if (n->req() > TypeFunc::Parms &&
 757           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 758         // Treat Return value as LocalVar with GlobalEscape escape state.
 759         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 760                                n->in(TypeFunc::Parms), NULL);
 761         break;
 762       }
 763       ELSE_FAIL("Op_Return");
 764     }
 765     case Op_StoreP:
 766     case Op_StoreN:
 767     case Op_StoreNKlass:
 768     case Op_StorePConditional:
 769     case Op_CompareAndExchangeP:
 770     case Op_CompareAndExchangeN:
 771     case Op_CompareAndSwapP:
 772     case Op_CompareAndSwapN:
 773     case Op_WeakCompareAndSwapP:
 774     case Op_WeakCompareAndSwapN:
 775 #if INCLUDE_SHENANDOAHGC
 776     case Op_ShenandoahCompareAndExchangeP:
 777     case Op_ShenandoahCompareAndExchangeN:
 778     case Op_ShenandoahCompareAndSwapP:
 779     case Op_ShenandoahCompareAndSwapN:
 780     case Op_ShenandoahWeakCompareAndSwapP:
 781     case Op_ShenandoahWeakCompareAndSwapN:
 782 #endif
 783     case Op_GetAndSetP:
 784     case Op_GetAndSetN: {
 785       Node* adr = n->in(MemNode::Address);
 786       const Type *adr_type = _igvn->type(adr);
 787       adr_type = adr_type->make_ptr();
 788 #ifdef ASSERT
 789       if (adr_type == NULL) {
 790         n->dump(1);
 791         assert(adr_type != NULL, "dead node should not be on list");
 792         break;
 793       }
 794 #endif
 795       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
 796 #if INCLUDE_SHENANDOAHGC
 797           opcode == Op_ShenandoahCompareAndExchangeN || opcode == Op_ShenandoahCompareAndExchangeP ||
 798 #endif
 799           opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
 800         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 801       }
 802       if (   adr_type->isa_oopptr()
 803           || (   (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 804               && adr_type == TypeRawPtr::NOTNULL
 805               && adr->in(AddPNode::Address)->is_Proj()
 806               && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 807         // Point Address to Value
 808         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 809         assert(adr_ptn != NULL &&
 810                adr_ptn->as_Field()->is_oop(), "node should be registered");
 811         Node *val = n->in(MemNode::ValueIn);
 812         PointsToNode* ptn = ptnode_adr(val->_idx);
 813         assert(ptn != NULL, "node should be registered");
 814         add_edge(adr_ptn, ptn);
 815         break;
 816       } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 817         // Stored value escapes in unsafe access.
 818         Node *val = n->in(MemNode::ValueIn);
 819         PointsToNode* ptn = ptnode_adr(val->_idx);
 820         assert(ptn != NULL, "node should be registered");
 821         set_escape_state(ptn, PointsToNode::GlobalEscape);
 822         // Add edge to object for unsafe access with offset.
 823         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 824         assert(adr_ptn != NULL, "node should be registered");
 825         if (adr_ptn->is_Field()) {
 826           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 827           add_edge(adr_ptn, ptn);
 828         }
 829         break;
 830       }
 831       ELSE_FAIL("Op_StoreP");
 832     }
 833     case Op_AryEq:
 834     case Op_HasNegatives:
 835     case Op_StrComp:
 836     case Op_StrEquals:
 837     case Op_StrIndexOf:
 838     case Op_StrIndexOfChar:
 839     case Op_StrInflatedCopy:
 840     case Op_StrCompressedCopy:
 841     case Op_EncodeISOArray: {
 842       // char[]/byte[] arrays passed to string intrinsic do not escape but
 843       // they are not scalar replaceable. Adjust escape state for them.
 844       // Start from in(2) edge since in(1) is memory edge.
 845       for (uint i = 2; i < n->req(); i++) {
 846         Node* adr = n->in(i);
 847         const Type* at = _igvn->type(adr);
 848         if (!adr->is_top() && at->isa_ptr()) {
 849           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 850                  at->isa_ptr() != NULL, "expecting a pointer");
 851           if (adr->is_AddP()) {
 852             adr = get_addp_base(adr);
 853           }
 854           PointsToNode* ptn = ptnode_adr(adr->_idx);
 855           assert(ptn != NULL, "node should be registered");
 856           add_edge(n_ptn, ptn);
 857         }
 858       }
 859       break;
 860     }
 861 #if INCLUDE_SHENANDOAHGC
 862     case Op_ShenandoahReadBarrier:
 863     case Op_ShenandoahWriteBarrier:
 864       // Barriers 'pass through' its arguments. I.e. what goes in, comes out.
 865       // It doesn't escape.
 866       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahBarrierNode::ValueIn), NULL);
 867       break;
 868     case Op_ShenandoahEnqueueBarrier:
 869       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), NULL);
 870       break;
 871 #endif
 872     default: {
 873       // This method should be called only for EA specific nodes which may
 874       // miss some edges when they were created.
 875 #ifdef ASSERT
 876       n->dump(1);
 877 #endif
 878       guarantee(false, "unknown node");
 879     }
 880   }
 881   return;
 882 }
 883 
 884 void ConnectionGraph::add_call_node(CallNode* call) {
 885   assert(call->returns_pointer(), "only for call which returns pointer");
 886   uint call_idx = call->_idx;
 887   if (call->is_Allocate()) {
 888     Node* k = call->in(AllocateNode::KlassNode);
 889     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 890     assert(kt != NULL, "TypeKlassPtr  required.");
 891     ciKlass* cik = kt->klass();
 892     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 893     bool scalar_replaceable = true;
 894     if (call->is_AllocateArray()) {
 895       if (!cik->is_array_klass()) { // StressReflectiveCode
 896         es = PointsToNode::GlobalEscape;
 897       } else {
 898         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 899         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 900           // Not scalar replaceable if the length is not constant or too big.
 901           scalar_replaceable = false;
 902         }
 903       }
 904     } else {  // Allocate instance
 905       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 906           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 907          !cik->is_instance_klass() || // StressReflectiveCode
 908          !cik->as_instance_klass()->can_be_instantiated() ||
 909           cik->as_instance_klass()->has_finalizer()) {
 910         es = PointsToNode::GlobalEscape;
 911       }
 912     }
 913     add_java_object(call, es);
 914     PointsToNode* ptn = ptnode_adr(call_idx);
 915     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 916       ptn->set_scalar_replaceable(false);
 917     }
 918   } else if (call->is_CallStaticJava()) {
 919     // Call nodes could be different types:
 920     //
 921     // 1. CallDynamicJavaNode (what happened during call is unknown):
 922     //
 923     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 924     //
 925     //    - all oop arguments are escaping globally;
 926     //
 927     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 928     //
 929     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 930     //
 931     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 932     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 933     //      during call is returned;
 934     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 935     //      which are returned and does not escape during call;
 936     //
 937     //    - oop arguments escaping status is defined by bytecode analysis;
 938     //
 939     // For a static call, we know exactly what method is being called.
 940     // Use bytecode estimator to record whether the call's return value escapes.
 941     ciMethod* meth = call->as_CallJava()->method();
 942     if (meth == NULL) {
 943       const char* name = call->as_CallStaticJava()->_name;
 944       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 945       // Returns a newly allocated unescaped object.
 946       add_java_object(call, PointsToNode::NoEscape);
 947       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 948     } else if (meth->is_boxing_method()) {
 949       // Returns boxing object
 950       PointsToNode::EscapeState es;
 951       vmIntrinsics::ID intr = meth->intrinsic_id();
 952       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 953         // It does not escape if object is always allocated.
 954         es = PointsToNode::NoEscape;
 955       } else {
 956         // It escapes globally if object could be loaded from cache.
 957         es = PointsToNode::GlobalEscape;
 958       }
 959       add_java_object(call, es);
 960     } else {
 961       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 962       call_analyzer->copy_dependencies(_compile->dependencies());
 963       if (call_analyzer->is_return_allocated()) {
 964         // Returns a newly allocated unescaped object, simply
 965         // update dependency information.
 966         // Mark it as NoEscape so that objects referenced by
 967         // it's fields will be marked as NoEscape at least.
 968         add_java_object(call, PointsToNode::NoEscape);
 969         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 970       } else {
 971         // Determine whether any arguments are returned.
 972         const TypeTuple* d = call->tf()->domain();
 973         bool ret_arg = false;
 974         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 975           if (d->field_at(i)->isa_ptr() != NULL &&
 976               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 977             ret_arg = true;
 978             break;
 979           }
 980         }
 981         if (ret_arg) {
 982           add_local_var(call, PointsToNode::ArgEscape);
 983         } else {
 984           // Returns unknown object.
 985           map_ideal_node(call, phantom_obj);
 986         }
 987       }
 988     }
 989   } else {
 990     // An other type of call, assume the worst case:
 991     // returned value is unknown and globally escapes.
 992     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 993     map_ideal_node(call, phantom_obj);
 994   }
 995 }
 996 
 997 void ConnectionGraph::process_call_arguments(CallNode *call) {
 998     bool is_arraycopy = false;
 999     switch (call->Opcode()) {
1000 #ifdef ASSERT
1001     case Op_Allocate:
1002     case Op_AllocateArray:
1003     case Op_Lock:
1004     case Op_Unlock:
1005       assert(false, "should be done already");
1006       break;
1007 #endif
1008     case Op_ArrayCopy:
1009     case Op_CallLeafNoFP:
1010       // Most array copies are ArrayCopy nodes at this point but there
1011       // are still a few direct calls to the copy subroutines (See
1012       // PhaseStringOpts::copy_string())
1013       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
1014         call->as_CallLeaf()->is_call_to_arraycopystub();
1015       // fall through
1016     case Op_CallLeaf: {
1017       // Stub calls, objects do not escape but they are not scale replaceable.
1018       // Adjust escape state for outgoing arguments.
1019       const TypeTuple * d = call->tf()->domain();
1020       bool src_has_oops = false;
1021       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1022         const Type* at = d->field_at(i);
1023         Node *arg = call->in(i);
1024         if (arg == NULL) {
1025           continue;
1026         }
1027         const Type *aat = _igvn->type(arg);
1028         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
1029           continue;
1030         if (arg->is_AddP()) {
1031           //
1032           // The inline_native_clone() case when the arraycopy stub is called
1033           // after the allocation before Initialize and CheckCastPP nodes.
1034           // Or normal arraycopy for object arrays case.
1035           //
1036           // Set AddP's base (Allocate) as not scalar replaceable since
1037           // pointer to the base (with offset) is passed as argument.
1038           //
1039           arg = get_addp_base(arg);
1040         }
1041         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1042         assert(arg_ptn != NULL, "should be registered");
1043         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
1044         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
1045           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
1046                  aat->isa_ptr() != NULL, "expecting an Ptr");
1047           bool arg_has_oops = aat->isa_oopptr() &&
1048                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
1049                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
1050           if (i == TypeFunc::Parms) {
1051             src_has_oops = arg_has_oops;
1052           }
1053           //
1054           // src or dst could be j.l.Object when other is basic type array:
1055           //
1056           //   arraycopy(char[],0,Object*,0,size);
1057           //   arraycopy(Object*,0,char[],0,size);
1058           //
1059           // Don't add edges in such cases.
1060           //
1061           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
1062                                        arg_has_oops && (i > TypeFunc::Parms);
1063 #ifdef ASSERT
1064           if (!(is_arraycopy ||
1065                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
1066                 (call->as_CallLeaf()->_name != NULL &&
1067                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
1068                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
1069                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
1070                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
1071                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
1072                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
1073                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
1074                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
1075                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
1076                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
1077                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
1078                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
1079                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
1080                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
1081                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
1082                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
1083                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1084                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1085                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1086                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1087                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1088                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
1089                  ))) {
1090             call->dump();
1091             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1092           }
1093 #endif
1094           // Always process arraycopy's destination object since
1095           // we need to add all possible edges to references in
1096           // source object.
1097           if (arg_esc >= PointsToNode::ArgEscape &&
1098               !arg_is_arraycopy_dest) {
1099             continue;
1100           }
1101           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1102           if (call->is_ArrayCopy()) {
1103             ArrayCopyNode* ac = call->as_ArrayCopy();
1104             if (ac->is_clonebasic() ||
1105                 ac->is_arraycopy_validated() ||
1106                 ac->is_copyof_validated() ||
1107                 ac->is_copyofrange_validated()) {
1108               es = PointsToNode::NoEscape;
1109             }
1110           }
1111           set_escape_state(arg_ptn, es);
1112           if (arg_is_arraycopy_dest) {
1113             Node* src = call->in(TypeFunc::Parms);
1114             if (src->is_AddP()) {
1115               src = get_addp_base(src);
1116             }
1117             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1118             assert(src_ptn != NULL, "should be registered");
1119             if (arg_ptn != src_ptn) {
1120               // Special arraycopy edge:
1121               // A destination object's field can't have the source object
1122               // as base since objects escape states are not related.
1123               // Only escape state of destination object's fields affects
1124               // escape state of fields in source object.
1125               add_arraycopy(call, es, src_ptn, arg_ptn);
1126             }
1127           }
1128         }
1129       }
1130       break;
1131     }
1132     case Op_CallStaticJava: {
1133       // For a static call, we know exactly what method is being called.
1134       // Use bytecode estimator to record the call's escape affects
1135 #ifdef ASSERT
1136       const char* name = call->as_CallStaticJava()->_name;
1137       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1138 #endif
1139       ciMethod* meth = call->as_CallJava()->method();
1140       if ((meth != NULL) && meth->is_boxing_method()) {
1141         break; // Boxing methods do not modify any oops.
1142       }
1143       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1144       // fall-through if not a Java method or no analyzer information
1145       if (call_analyzer != NULL) {
1146         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1147         const TypeTuple* d = call->tf()->domain();
1148         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1149           const Type* at = d->field_at(i);
1150           int k = i - TypeFunc::Parms;
1151           Node* arg = call->in(i);
1152           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1153           if (at->isa_ptr() != NULL &&
1154               call_analyzer->is_arg_returned(k)) {
1155             // The call returns arguments.
1156             if (call_ptn != NULL) { // Is call's result used?
1157               assert(call_ptn->is_LocalVar(), "node should be registered");
1158               assert(arg_ptn != NULL, "node should be registered");
1159               add_edge(call_ptn, arg_ptn);
1160             }
1161           }
1162           if (at->isa_oopptr() != NULL &&
1163               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1164             if (!call_analyzer->is_arg_stack(k)) {
1165               // The argument global escapes
1166               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1167             } else {
1168               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1169               if (!call_analyzer->is_arg_local(k)) {
1170                 // The argument itself doesn't escape, but any fields might
1171                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1172               }
1173             }
1174           }
1175         }
1176         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1177           // The call returns arguments.
1178           assert(call_ptn->edge_count() > 0, "sanity");
1179           if (!call_analyzer->is_return_local()) {
1180             // Returns also unknown object.
1181             add_edge(call_ptn, phantom_obj);
1182           }
1183         }
1184         break;
1185       }
1186     }
1187     default: {
1188       // Fall-through here if not a Java method or no analyzer information
1189       // or some other type of call, assume the worst case: all arguments
1190       // globally escape.
1191       const TypeTuple* d = call->tf()->domain();
1192       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1193         const Type* at = d->field_at(i);
1194         if (at->isa_oopptr() != NULL) {
1195           Node* arg = call->in(i);
1196           if (arg->is_AddP()) {
1197             arg = get_addp_base(arg);
1198           }
1199           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1200           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1201         }
1202       }
1203     }
1204   }
1205 }
1206 
1207 
1208 // Finish Graph construction.
1209 bool ConnectionGraph::complete_connection_graph(
1210                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1211                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1212                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1213                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1214   // Normally only 1-3 passes needed to build Connection Graph depending
1215   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1216   // Set limit to 20 to catch situation when something did go wrong and
1217   // bailout Escape Analysis.
1218   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1219 #define CG_BUILD_ITER_LIMIT 20
1220 
1221   // Propagate GlobalEscape and ArgEscape escape states and check that
1222   // we still have non-escaping objects. The method pushs on _worklist
1223   // Field nodes which reference phantom_object.
1224   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1225     return false; // Nothing to do.
1226   }
1227   // Now propagate references to all JavaObject nodes.
1228   int java_objects_length = java_objects_worklist.length();
1229   elapsedTimer time;
1230   bool timeout = false;
1231   int new_edges = 1;
1232   int iterations = 0;
1233   do {
1234     while ((new_edges > 0) &&
1235            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1236       double start_time = time.seconds();
1237       time.start();
1238       new_edges = 0;
1239       // Propagate references to phantom_object for nodes pushed on _worklist
1240       // by find_non_escaped_objects() and find_field_value().
1241       new_edges += add_java_object_edges(phantom_obj, false);
1242       for (int next = 0; next < java_objects_length; ++next) {
1243         JavaObjectNode* ptn = java_objects_worklist.at(next);
1244         new_edges += add_java_object_edges(ptn, true);
1245 
1246 #define SAMPLE_SIZE 4
1247         if ((next % SAMPLE_SIZE) == 0) {
1248           // Each 4 iterations calculate how much time it will take
1249           // to complete graph construction.
1250           time.stop();
1251           // Poll for requests from shutdown mechanism to quiesce compiler
1252           // because Connection graph construction may take long time.
1253           CompileBroker::maybe_block();
1254           double stop_time = time.seconds();
1255           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1256           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1257           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1258             timeout = true;
1259             break; // Timeout
1260           }
1261           start_time = stop_time;
1262           time.start();
1263         }
1264 #undef SAMPLE_SIZE
1265 
1266       }
1267       if (timeout) break;
1268       if (new_edges > 0) {
1269         // Update escape states on each iteration if graph was updated.
1270         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1271           return false; // Nothing to do.
1272         }
1273       }
1274       time.stop();
1275       if (time.seconds() >= EscapeAnalysisTimeout) {
1276         timeout = true;
1277         break;
1278       }
1279     }
1280     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1281       time.start();
1282       // Find fields which have unknown value.
1283       int fields_length = oop_fields_worklist.length();
1284       for (int next = 0; next < fields_length; next++) {
1285         FieldNode* field = oop_fields_worklist.at(next);
1286         if (field->edge_count() == 0) {
1287           new_edges += find_field_value(field);
1288           // This code may added new edges to phantom_object.
1289           // Need an other cycle to propagate references to phantom_object.
1290         }
1291       }
1292       time.stop();
1293       if (time.seconds() >= EscapeAnalysisTimeout) {
1294         timeout = true;
1295         break;
1296       }
1297     } else {
1298       new_edges = 0; // Bailout
1299     }
1300   } while (new_edges > 0);
1301 
1302   // Bailout if passed limits.
1303   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1304     Compile* C = _compile;
1305     if (C->log() != NULL) {
1306       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1307       C->log()->text("%s", timeout ? "time" : "iterations");
1308       C->log()->end_elem(" limit'");
1309     }
1310     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1311            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1312     // Possible infinite build_connection_graph loop,
1313     // bailout (no changes to ideal graph were made).
1314     return false;
1315   }
1316 #ifdef ASSERT
1317   if (Verbose && PrintEscapeAnalysis) {
1318     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1319                   iterations, nodes_size(), ptnodes_worklist.length());
1320   }
1321 #endif
1322 
1323 #undef CG_BUILD_ITER_LIMIT
1324 
1325   // Find fields initialized by NULL for non-escaping Allocations.
1326   int non_escaped_length = non_escaped_worklist.length();
1327   for (int next = 0; next < non_escaped_length; next++) {
1328     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1329     PointsToNode::EscapeState es = ptn->escape_state();
1330     assert(es <= PointsToNode::ArgEscape, "sanity");
1331     if (es == PointsToNode::NoEscape) {
1332       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1333         // Adding references to NULL object does not change escape states
1334         // since it does not escape. Also no fields are added to NULL object.
1335         add_java_object_edges(null_obj, false);
1336       }
1337     }
1338     Node* n = ptn->ideal_node();
1339     if (n->is_Allocate()) {
1340       // The object allocated by this Allocate node will never be
1341       // seen by an other thread. Mark it so that when it is
1342       // expanded no MemBarStoreStore is added.
1343       InitializeNode* ini = n->as_Allocate()->initialization();
1344       if (ini != NULL)
1345         ini->set_does_not_escape();
1346     }
1347   }
1348   return true; // Finished graph construction.
1349 }
1350 
1351 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1352 // and check that we still have non-escaping java objects.
1353 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1354                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1355   GrowableArray<PointsToNode*> escape_worklist;
1356   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1357   int ptnodes_length = ptnodes_worklist.length();
1358   for (int next = 0; next < ptnodes_length; ++next) {
1359     PointsToNode* ptn = ptnodes_worklist.at(next);
1360     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1361         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1362       escape_worklist.push(ptn);
1363     }
1364   }
1365   // Set escape states to referenced nodes (edges list).
1366   while (escape_worklist.length() > 0) {
1367     PointsToNode* ptn = escape_worklist.pop();
1368     PointsToNode::EscapeState es  = ptn->escape_state();
1369     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1370     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1371         es >= PointsToNode::ArgEscape) {
1372       // GlobalEscape or ArgEscape state of field means it has unknown value.
1373       if (add_edge(ptn, phantom_obj)) {
1374         // New edge was added
1375         add_field_uses_to_worklist(ptn->as_Field());
1376       }
1377     }
1378     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1379       PointsToNode* e = i.get();
1380       if (e->is_Arraycopy()) {
1381         assert(ptn->arraycopy_dst(), "sanity");
1382         // Propagate only fields escape state through arraycopy edge.
1383         if (e->fields_escape_state() < field_es) {
1384           set_fields_escape_state(e, field_es);
1385           escape_worklist.push(e);
1386         }
1387       } else if (es >= field_es) {
1388         // fields_escape_state is also set to 'es' if it is less than 'es'.
1389         if (e->escape_state() < es) {
1390           set_escape_state(e, es);
1391           escape_worklist.push(e);
1392         }
1393       } else {
1394         // Propagate field escape state.
1395         bool es_changed = false;
1396         if (e->fields_escape_state() < field_es) {
1397           set_fields_escape_state(e, field_es);
1398           es_changed = true;
1399         }
1400         if ((e->escape_state() < field_es) &&
1401             e->is_Field() && ptn->is_JavaObject() &&
1402             e->as_Field()->is_oop()) {
1403           // Change escape state of referenced fields.
1404           set_escape_state(e, field_es);
1405           es_changed = true;
1406         } else if (e->escape_state() < es) {
1407           set_escape_state(e, es);
1408           es_changed = true;
1409         }
1410         if (es_changed) {
1411           escape_worklist.push(e);
1412         }
1413       }
1414     }
1415   }
1416   // Remove escaped objects from non_escaped list.
1417   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1418     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1419     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1420       non_escaped_worklist.delete_at(next);
1421     }
1422     if (ptn->escape_state() == PointsToNode::NoEscape) {
1423       // Find fields in non-escaped allocations which have unknown value.
1424       find_init_values(ptn, phantom_obj, NULL);
1425     }
1426   }
1427   return (non_escaped_worklist.length() > 0);
1428 }
1429 
1430 // Add all references to JavaObject node by walking over all uses.
1431 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1432   int new_edges = 0;
1433   if (populate_worklist) {
1434     // Populate _worklist by uses of jobj's uses.
1435     for (UseIterator i(jobj); i.has_next(); i.next()) {
1436       PointsToNode* use = i.get();
1437       if (use->is_Arraycopy())
1438         continue;
1439       add_uses_to_worklist(use);
1440       if (use->is_Field() && use->as_Field()->is_oop()) {
1441         // Put on worklist all field's uses (loads) and
1442         // related field nodes (same base and offset).
1443         add_field_uses_to_worklist(use->as_Field());
1444       }
1445     }
1446   }
1447   for (int l = 0; l < _worklist.length(); l++) {
1448     PointsToNode* use = _worklist.at(l);
1449     if (PointsToNode::is_base_use(use)) {
1450       // Add reference from jobj to field and from field to jobj (field's base).
1451       use = PointsToNode::get_use_node(use)->as_Field();
1452       if (add_base(use->as_Field(), jobj)) {
1453         new_edges++;
1454       }
1455       continue;
1456     }
1457     assert(!use->is_JavaObject(), "sanity");
1458     if (use->is_Arraycopy()) {
1459       if (jobj == null_obj) // NULL object does not have field edges
1460         continue;
1461       // Added edge from Arraycopy node to arraycopy's source java object
1462       if (add_edge(use, jobj)) {
1463         jobj->set_arraycopy_src();
1464         new_edges++;
1465       }
1466       // and stop here.
1467       continue;
1468     }
1469     if (!add_edge(use, jobj))
1470       continue; // No new edge added, there was such edge already.
1471     new_edges++;
1472     if (use->is_LocalVar()) {
1473       add_uses_to_worklist(use);
1474       if (use->arraycopy_dst()) {
1475         for (EdgeIterator i(use); i.has_next(); i.next()) {
1476           PointsToNode* e = i.get();
1477           if (e->is_Arraycopy()) {
1478             if (jobj == null_obj) // NULL object does not have field edges
1479               continue;
1480             // Add edge from arraycopy's destination java object to Arraycopy node.
1481             if (add_edge(jobj, e)) {
1482               new_edges++;
1483               jobj->set_arraycopy_dst();
1484             }
1485           }
1486         }
1487       }
1488     } else {
1489       // Added new edge to stored in field values.
1490       // Put on worklist all field's uses (loads) and
1491       // related field nodes (same base and offset).
1492       add_field_uses_to_worklist(use->as_Field());
1493     }
1494   }
1495   _worklist.clear();
1496   _in_worklist.Reset();
1497   return new_edges;
1498 }
1499 
1500 // Put on worklist all related field nodes.
1501 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1502   assert(field->is_oop(), "sanity");
1503   int offset = field->offset();
1504   add_uses_to_worklist(field);
1505   // Loop over all bases of this field and push on worklist Field nodes
1506   // with the same offset and base (since they may reference the same field).
1507   for (BaseIterator i(field); i.has_next(); i.next()) {
1508     PointsToNode* base = i.get();
1509     add_fields_to_worklist(field, base);
1510     // Check if the base was source object of arraycopy and go over arraycopy's
1511     // destination objects since values stored to a field of source object are
1512     // accessable by uses (loads) of fields of destination objects.
1513     if (base->arraycopy_src()) {
1514       for (UseIterator j(base); j.has_next(); j.next()) {
1515         PointsToNode* arycp = j.get();
1516         if (arycp->is_Arraycopy()) {
1517           for (UseIterator k(arycp); k.has_next(); k.next()) {
1518             PointsToNode* abase = k.get();
1519             if (abase->arraycopy_dst() && abase != base) {
1520               // Look for the same arraycopy reference.
1521               add_fields_to_worklist(field, abase);
1522             }
1523           }
1524         }
1525       }
1526     }
1527   }
1528 }
1529 
1530 // Put on worklist all related field nodes.
1531 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1532   int offset = field->offset();
1533   if (base->is_LocalVar()) {
1534     for (UseIterator j(base); j.has_next(); j.next()) {
1535       PointsToNode* f = j.get();
1536       if (PointsToNode::is_base_use(f)) { // Field
1537         f = PointsToNode::get_use_node(f);
1538         if (f == field || !f->as_Field()->is_oop())
1539           continue;
1540         int offs = f->as_Field()->offset();
1541         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1542           add_to_worklist(f);
1543         }
1544       }
1545     }
1546   } else {
1547     assert(base->is_JavaObject(), "sanity");
1548     if (// Skip phantom_object since it is only used to indicate that
1549         // this field's content globally escapes.
1550         (base != phantom_obj) &&
1551         // NULL object node does not have fields.
1552         (base != null_obj)) {
1553       for (EdgeIterator i(base); i.has_next(); i.next()) {
1554         PointsToNode* f = i.get();
1555         // Skip arraycopy edge since store to destination object field
1556         // does not update value in source object field.
1557         if (f->is_Arraycopy()) {
1558           assert(base->arraycopy_dst(), "sanity");
1559           continue;
1560         }
1561         if (f == field || !f->as_Field()->is_oop())
1562           continue;
1563         int offs = f->as_Field()->offset();
1564         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1565           add_to_worklist(f);
1566         }
1567       }
1568     }
1569   }
1570 }
1571 
1572 // Find fields which have unknown value.
1573 int ConnectionGraph::find_field_value(FieldNode* field) {
1574   // Escaped fields should have init value already.
1575   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1576   int new_edges = 0;
1577   for (BaseIterator i(field); i.has_next(); i.next()) {
1578     PointsToNode* base = i.get();
1579     if (base->is_JavaObject()) {
1580       // Skip Allocate's fields which will be processed later.
1581       if (base->ideal_node()->is_Allocate())
1582         return 0;
1583       assert(base == null_obj, "only NULL ptr base expected here");
1584     }
1585   }
1586   if (add_edge(field, phantom_obj)) {
1587     // New edge was added
1588     new_edges++;
1589     add_field_uses_to_worklist(field);
1590   }
1591   return new_edges;
1592 }
1593 
1594 // Find fields initializing values for allocations.
1595 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1596   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1597   int new_edges = 0;
1598   Node* alloc = pta->ideal_node();
1599   if (init_val == phantom_obj) {
1600     // Do nothing for Allocate nodes since its fields values are
1601     // "known" unless they are initialized by arraycopy/clone.
1602     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1603       return 0;
1604     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1605 #ifdef ASSERT
1606     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1607       const char* name = alloc->as_CallStaticJava()->_name;
1608       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1609     }
1610 #endif
1611     // Non-escaped allocation returned from Java or runtime call have
1612     // unknown values in fields.
1613     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1614       PointsToNode* field = i.get();
1615       if (field->is_Field() && field->as_Field()->is_oop()) {
1616         if (add_edge(field, phantom_obj)) {
1617           // New edge was added
1618           new_edges++;
1619           add_field_uses_to_worklist(field->as_Field());
1620         }
1621       }
1622     }
1623     return new_edges;
1624   }
1625   assert(init_val == null_obj, "sanity");
1626   // Do nothing for Call nodes since its fields values are unknown.
1627   if (!alloc->is_Allocate())
1628     return 0;
1629 
1630   InitializeNode* ini = alloc->as_Allocate()->initialization();
1631   bool visited_bottom_offset = false;
1632   GrowableArray<int> offsets_worklist;
1633 
1634   // Check if an oop field's initializing value is recorded and add
1635   // a corresponding NULL if field's value if it is not recorded.
1636   // Connection Graph does not record a default initialization by NULL
1637   // captured by Initialize node.
1638   //
1639   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1640     PointsToNode* field = i.get(); // Field (AddP)
1641     if (!field->is_Field() || !field->as_Field()->is_oop())
1642       continue; // Not oop field
1643     int offset = field->as_Field()->offset();
1644     if (offset == Type::OffsetBot) {
1645       if (!visited_bottom_offset) {
1646         // OffsetBot is used to reference array's element,
1647         // always add reference to NULL to all Field nodes since we don't
1648         // known which element is referenced.
1649         if (add_edge(field, null_obj)) {
1650           // New edge was added
1651           new_edges++;
1652           add_field_uses_to_worklist(field->as_Field());
1653           visited_bottom_offset = true;
1654         }
1655       }
1656     } else {
1657       // Check only oop fields.
1658       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1659       if (adr_type->isa_rawptr()) {
1660 #ifdef ASSERT
1661         // Raw pointers are used for initializing stores so skip it
1662         // since it should be recorded already
1663         Node* base = get_addp_base(field->ideal_node());
1664         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1665                (base->in(0) == alloc),"unexpected pointer type");
1666 #endif
1667         continue;
1668       }
1669       if (!offsets_worklist.contains(offset)) {
1670         offsets_worklist.append(offset);
1671         Node* value = NULL;
1672         if (ini != NULL) {
1673           // StoreP::memory_type() == T_ADDRESS
1674           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1675           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1676           // Make sure initializing store has the same type as this AddP.
1677           // This AddP may reference non existing field because it is on a
1678           // dead branch of bimorphic call which is not eliminated yet.
1679           if (store != NULL && store->is_Store() &&
1680               store->as_Store()->memory_type() == ft) {
1681             value = store->in(MemNode::ValueIn);
1682 #ifdef ASSERT
1683             if (VerifyConnectionGraph) {
1684               // Verify that AddP already points to all objects the value points to.
1685               PointsToNode* val = ptnode_adr(value->_idx);
1686               assert((val != NULL), "should be processed already");
1687               PointsToNode* missed_obj = NULL;
1688               if (val->is_JavaObject()) {
1689                 if (!field->points_to(val->as_JavaObject())) {
1690                   missed_obj = val;
1691                 }
1692               } else {
1693                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1694                   tty->print_cr("----------init store has invalid value -----");
1695                   store->dump();
1696                   val->dump();
1697                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1698                 }
1699                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1700                   PointsToNode* obj = j.get();
1701                   if (obj->is_JavaObject()) {
1702                     if (!field->points_to(obj->as_JavaObject())) {
1703                       missed_obj = obj;
1704                       break;
1705                     }
1706                   }
1707                 }
1708               }
1709               if (missed_obj != NULL) {
1710                 tty->print_cr("----------field---------------------------------");
1711                 field->dump();
1712                 tty->print_cr("----------missed referernce to object-----------");
1713                 missed_obj->dump();
1714                 tty->print_cr("----------object referernced by init store -----");
1715                 store->dump();
1716                 val->dump();
1717                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1718               }
1719             }
1720 #endif
1721           } else {
1722             // There could be initializing stores which follow allocation.
1723             // For example, a volatile field store is not collected
1724             // by Initialize node.
1725             //
1726             // Need to check for dependent loads to separate such stores from
1727             // stores which follow loads. For now, add initial value NULL so
1728             // that compare pointers optimization works correctly.
1729           }
1730         }
1731         if (value == NULL) {
1732           // A field's initializing value was not recorded. Add NULL.
1733           if (add_edge(field, null_obj)) {
1734             // New edge was added
1735             new_edges++;
1736             add_field_uses_to_worklist(field->as_Field());
1737           }
1738         }
1739       }
1740     }
1741   }
1742   return new_edges;
1743 }
1744 
1745 // Adjust scalar_replaceable state after Connection Graph is built.
1746 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1747   // Search for non-escaping objects which are not scalar replaceable
1748   // and mark them to propagate the state to referenced objects.
1749 
1750   // 1. An object is not scalar replaceable if the field into which it is
1751   // stored has unknown offset (stored into unknown element of an array).
1752   //
1753   for (UseIterator i(jobj); i.has_next(); i.next()) {
1754     PointsToNode* use = i.get();
1755     if (use->is_Arraycopy()) {
1756       continue;
1757     }
1758     if (use->is_Field()) {
1759       FieldNode* field = use->as_Field();
1760       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1761       if (field->offset() == Type::OffsetBot) {
1762         jobj->set_scalar_replaceable(false);
1763         return;
1764       }
1765       // 2. An object is not scalar replaceable if the field into which it is
1766       // stored has multiple bases one of which is null.
1767       if (field->base_count() > 1) {
1768         for (BaseIterator i(field); i.has_next(); i.next()) {
1769           PointsToNode* base = i.get();
1770           if (base == null_obj) {
1771             jobj->set_scalar_replaceable(false);
1772             return;
1773           }
1774         }
1775       }
1776     }
1777     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1778     // 3. An object is not scalar replaceable if it is merged with other objects.
1779     for (EdgeIterator j(use); j.has_next(); j.next()) {
1780       PointsToNode* ptn = j.get();
1781       if (ptn->is_JavaObject() && ptn != jobj) {
1782         // Mark all objects.
1783         jobj->set_scalar_replaceable(false);
1784          ptn->set_scalar_replaceable(false);
1785       }
1786     }
1787     if (!jobj->scalar_replaceable()) {
1788       return;
1789     }
1790   }
1791 
1792   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1793     if (j.get()->is_Arraycopy()) {
1794       continue;
1795     }
1796 
1797     // Non-escaping object node should point only to field nodes.
1798     FieldNode* field = j.get()->as_Field();
1799     int offset = field->as_Field()->offset();
1800 
1801     // 4. An object is not scalar replaceable if it has a field with unknown
1802     // offset (array's element is accessed in loop).
1803     if (offset == Type::OffsetBot) {
1804       jobj->set_scalar_replaceable(false);
1805       return;
1806     }
1807     // 5. Currently an object is not scalar replaceable if a LoadStore node
1808     // access its field since the field value is unknown after it.
1809     //
1810     Node* n = field->ideal_node();
1811 
1812     // Test for an unsafe access that was parsed as maybe off heap
1813     // (with a CheckCastPP to raw memory).
1814     assert(n->is_AddP(), "expect an address computation");
1815     if (n->in(AddPNode::Base)->is_top() &&
1816         n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) {
1817       assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected");
1818       assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected");
1819       jobj->set_scalar_replaceable(false);
1820       return;
1821     }
1822 
1823     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1824       if (n->fast_out(i)->is_LoadStore()) {
1825         jobj->set_scalar_replaceable(false);
1826         return;
1827       }
1828     }
1829 
1830     // 6. Or the address may point to more then one object. This may produce
1831     // the false positive result (set not scalar replaceable)
1832     // since the flow-insensitive escape analysis can't separate
1833     // the case when stores overwrite the field's value from the case
1834     // when stores happened on different control branches.
1835     //
1836     // Note: it will disable scalar replacement in some cases:
1837     //
1838     //    Point p[] = new Point[1];
1839     //    p[0] = new Point(); // Will be not scalar replaced
1840     //
1841     // but it will save us from incorrect optimizations in next cases:
1842     //
1843     //    Point p[] = new Point[1];
1844     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1845     //
1846     if (field->base_count() > 1) {
1847       for (BaseIterator i(field); i.has_next(); i.next()) {
1848         PointsToNode* base = i.get();
1849         // Don't take into account LocalVar nodes which
1850         // may point to only one object which should be also
1851         // this field's base by now.
1852         if (base->is_JavaObject() && base != jobj) {
1853           // Mark all bases.
1854           jobj->set_scalar_replaceable(false);
1855           base->set_scalar_replaceable(false);
1856         }
1857       }
1858     }
1859   }
1860 }
1861 
1862 #ifdef ASSERT
1863 void ConnectionGraph::verify_connection_graph(
1864                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1865                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1866                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1867                          GrowableArray<Node*>& addp_worklist) {
1868   // Verify that graph is complete - no new edges could be added.
1869   int java_objects_length = java_objects_worklist.length();
1870   int non_escaped_length  = non_escaped_worklist.length();
1871   int new_edges = 0;
1872   for (int next = 0; next < java_objects_length; ++next) {
1873     JavaObjectNode* ptn = java_objects_worklist.at(next);
1874     new_edges += add_java_object_edges(ptn, true);
1875   }
1876   assert(new_edges == 0, "graph was not complete");
1877   // Verify that escape state is final.
1878   int length = non_escaped_worklist.length();
1879   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1880   assert((non_escaped_length == non_escaped_worklist.length()) &&
1881          (non_escaped_length == length) &&
1882          (_worklist.length() == 0), "escape state was not final");
1883 
1884   // Verify fields information.
1885   int addp_length = addp_worklist.length();
1886   for (int next = 0; next < addp_length; ++next ) {
1887     Node* n = addp_worklist.at(next);
1888     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1889     if (field->is_oop()) {
1890       // Verify that field has all bases
1891       Node* base = get_addp_base(n);
1892       PointsToNode* ptn = ptnode_adr(base->_idx);
1893       if (ptn->is_JavaObject()) {
1894         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1895       } else {
1896         assert(ptn->is_LocalVar(), "sanity");
1897         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1898           PointsToNode* e = i.get();
1899           if (e->is_JavaObject()) {
1900             assert(field->has_base(e->as_JavaObject()), "sanity");
1901           }
1902         }
1903       }
1904       // Verify that all fields have initializing values.
1905       if (field->edge_count() == 0) {
1906         tty->print_cr("----------field does not have references----------");
1907         field->dump();
1908         for (BaseIterator i(field); i.has_next(); i.next()) {
1909           PointsToNode* base = i.get();
1910           tty->print_cr("----------field has next base---------------------");
1911           base->dump();
1912           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1913             tty->print_cr("----------base has fields-------------------------");
1914             for (EdgeIterator j(base); j.has_next(); j.next()) {
1915               j.get()->dump();
1916             }
1917             tty->print_cr("----------base has references---------------------");
1918             for (UseIterator j(base); j.has_next(); j.next()) {
1919               j.get()->dump();
1920             }
1921           }
1922         }
1923         for (UseIterator i(field); i.has_next(); i.next()) {
1924           i.get()->dump();
1925         }
1926         assert(field->edge_count() > 0, "sanity");
1927       }
1928     }
1929   }
1930 }
1931 #endif
1932 
1933 // Optimize ideal graph.
1934 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1935                                            GrowableArray<Node*>& storestore_worklist) {
1936   Compile* C = _compile;
1937   PhaseIterGVN* igvn = _igvn;
1938   if (EliminateLocks) {
1939     // Mark locks before changing ideal graph.
1940     int cnt = C->macro_count();
1941     for( int i=0; i < cnt; i++ ) {
1942       Node *n = C->macro_node(i);
1943       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1944         AbstractLockNode* alock = n->as_AbstractLock();
1945         if (!alock->is_non_esc_obj()) {
1946           if (not_global_escape(alock->obj_node())) {
1947             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1948             // The lock could be marked eliminated by lock coarsening
1949             // code during first IGVN before EA. Replace coarsened flag
1950             // to eliminate all associated locks/unlocks.
1951 #ifdef ASSERT
1952             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1953 #endif
1954             alock->set_non_esc_obj();
1955           }
1956         }
1957       }
1958     }
1959   }
1960 
1961   if (OptimizePtrCompare) {
1962     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1963     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1964     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1965     // Optimize objects compare.
1966     while (ptr_cmp_worklist.length() != 0) {
1967       Node *n = ptr_cmp_worklist.pop();
1968       Node *res = optimize_ptr_compare(n);
1969       if (res != NULL) {
1970 #ifndef PRODUCT
1971         if (PrintOptimizePtrCompare) {
1972           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1973           if (Verbose) {
1974             n->dump(1);
1975           }
1976         }
1977 #endif
1978         igvn->replace_node(n, res);
1979       }
1980     }
1981     // cleanup
1982     if (_pcmp_neq->outcnt() == 0)
1983       igvn->hash_delete(_pcmp_neq);
1984     if (_pcmp_eq->outcnt()  == 0)
1985       igvn->hash_delete(_pcmp_eq);
1986   }
1987 
1988   // For MemBarStoreStore nodes added in library_call.cpp, check
1989   // escape status of associated AllocateNode and optimize out
1990   // MemBarStoreStore node if the allocated object never escapes.
1991   while (storestore_worklist.length() != 0) {
1992     Node *n = storestore_worklist.pop();
1993     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1994     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1995     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1996     if (not_global_escape(alloc)) {
1997       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1998       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1999       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
2000       igvn->register_new_node_with_optimizer(mb);
2001       igvn->replace_node(storestore, mb);
2002     }
2003   }
2004 }
2005 
2006 // Optimize objects compare.
2007 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
2008   assert(OptimizePtrCompare, "sanity");
2009   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
2010   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
2011   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
2012   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
2013   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
2014   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
2015 
2016   // Check simple cases first.
2017   if (jobj1 != NULL) {
2018     if (jobj1->escape_state() == PointsToNode::NoEscape) {
2019       if (jobj1 == jobj2) {
2020         // Comparing the same not escaping object.
2021         return _pcmp_eq;
2022       }
2023       Node* obj = jobj1->ideal_node();
2024       // Comparing not escaping allocation.
2025       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
2026           !ptn2->points_to(jobj1)) {
2027         return _pcmp_neq; // This includes nullness check.
2028       }
2029     }
2030   }
2031   if (jobj2 != NULL) {
2032     if (jobj2->escape_state() == PointsToNode::NoEscape) {
2033       Node* obj = jobj2->ideal_node();
2034       // Comparing not escaping allocation.
2035       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
2036           !ptn1->points_to(jobj2)) {
2037         return _pcmp_neq; // This includes nullness check.
2038       }
2039     }
2040   }
2041   if (jobj1 != NULL && jobj1 != phantom_obj &&
2042       jobj2 != NULL && jobj2 != phantom_obj &&
2043       jobj1->ideal_node()->is_Con() &&
2044       jobj2->ideal_node()->is_Con()) {
2045     // Klass or String constants compare. Need to be careful with
2046     // compressed pointers - compare types of ConN and ConP instead of nodes.
2047     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
2048     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
2049     if (t1->make_ptr() == t2->make_ptr()) {
2050       return _pcmp_eq;
2051     } else {
2052       return _pcmp_neq;
2053     }
2054   }
2055   if (ptn1->meet(ptn2)) {
2056     return NULL; // Sets are not disjoint
2057   }
2058 
2059   // Sets are disjoint.
2060   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
2061   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
2062   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
2063   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
2064   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
2065       (set2_has_unknown_ptr && set1_has_null_ptr)) {
2066     // Check nullness of unknown object.
2067     return NULL;
2068   }
2069 
2070   // Disjointness by itself is not sufficient since
2071   // alias analysis is not complete for escaped objects.
2072   // Disjoint sets are definitely unrelated only when
2073   // at least one set has only not escaping allocations.
2074   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
2075     if (ptn1->non_escaping_allocation()) {
2076       return _pcmp_neq;
2077     }
2078   }
2079   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
2080     if (ptn2->non_escaping_allocation()) {
2081       return _pcmp_neq;
2082     }
2083   }
2084   return NULL;
2085 }
2086 
2087 // Connection Graph constuction functions.
2088 
2089 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
2090   PointsToNode* ptadr = _nodes.at(n->_idx);
2091   if (ptadr != NULL) {
2092     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
2093     return;
2094   }
2095   Compile* C = _compile;
2096   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
2097   _nodes.at_put(n->_idx, ptadr);
2098 }
2099 
2100 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
2101   PointsToNode* ptadr = _nodes.at(n->_idx);
2102   if (ptadr != NULL) {
2103     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2104     return;
2105   }
2106   Compile* C = _compile;
2107   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2108   _nodes.at_put(n->_idx, ptadr);
2109 }
2110 
2111 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2112   PointsToNode* ptadr = _nodes.at(n->_idx);
2113   if (ptadr != NULL) {
2114     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2115     return;
2116   }
2117   bool unsafe = false;
2118   bool is_oop = is_oop_field(n, offset, &unsafe);
2119   if (unsafe) {
2120     es = PointsToNode::GlobalEscape;
2121   }
2122   Compile* C = _compile;
2123   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2124   _nodes.at_put(n->_idx, field);
2125 }
2126 
2127 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2128                                     PointsToNode* src, PointsToNode* dst) {
2129   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2130   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2131   PointsToNode* ptadr = _nodes.at(n->_idx);
2132   if (ptadr != NULL) {
2133     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2134     return;
2135   }
2136   Compile* C = _compile;
2137   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2138   _nodes.at_put(n->_idx, ptadr);
2139   // Add edge from arraycopy node to source object.
2140   (void)add_edge(ptadr, src);
2141   src->set_arraycopy_src();
2142   // Add edge from destination object to arraycopy node.
2143   (void)add_edge(dst, ptadr);
2144   dst->set_arraycopy_dst();
2145 }
2146 
2147 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2148   const Type* adr_type = n->as_AddP()->bottom_type();
2149   BasicType bt = T_INT;
2150   if (offset == Type::OffsetBot) {
2151     // Check only oop fields.
2152     if (!adr_type->isa_aryptr() ||
2153         (adr_type->isa_aryptr()->klass() == NULL) ||
2154          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2155       // OffsetBot is used to reference array's element. Ignore first AddP.
2156       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2157         bt = T_OBJECT;
2158       }
2159     }
2160   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2161     if (adr_type->isa_instptr()) {
2162       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2163       if (field != NULL) {
2164         bt = field->layout_type();
2165       } else {
2166         // Check for unsafe oop field access
2167         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2168             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2169 #if INCLUDE_SHENANDOAHGC
2170             n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) ||
2171             n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN) ||
2172 #endif
2173             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
2174           bt = T_OBJECT;
2175           (*unsafe) = true;
2176         }
2177       }
2178     } else if (adr_type->isa_aryptr()) {
2179       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2180         // Ignore array length load.
2181       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2182         // Ignore first AddP.
2183       } else {
2184         const Type* elemtype = adr_type->isa_aryptr()->elem();
2185         bt = elemtype->array_element_basic_type();
2186       }
2187     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2188       // Allocation initialization, ThreadLocal field access, unsafe access
2189       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2190           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2191           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
2192         bt = T_OBJECT;
2193       }
2194     }
2195   }
2196   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2197 }
2198 
2199 // Returns unique pointed java object or NULL.
2200 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2201   assert(!_collecting, "should not call when contructed graph");
2202   // If the node was created after the escape computation we can't answer.
2203   uint idx = n->_idx;
2204   if (idx >= nodes_size()) {
2205     return NULL;
2206   }
2207   PointsToNode* ptn = ptnode_adr(idx);
2208   if (ptn->is_JavaObject()) {
2209     return ptn->as_JavaObject();
2210   }
2211   assert(ptn->is_LocalVar(), "sanity");
2212   // Check all java objects it points to.
2213   JavaObjectNode* jobj = NULL;
2214   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2215     PointsToNode* e = i.get();
2216     if (e->is_JavaObject()) {
2217       if (jobj == NULL) {
2218         jobj = e->as_JavaObject();
2219       } else if (jobj != e) {
2220         return NULL;
2221       }
2222     }
2223   }
2224   return jobj;
2225 }
2226 
2227 // Return true if this node points only to non-escaping allocations.
2228 bool PointsToNode::non_escaping_allocation() {
2229   if (is_JavaObject()) {
2230     Node* n = ideal_node();
2231     if (n->is_Allocate() || n->is_CallStaticJava()) {
2232       return (escape_state() == PointsToNode::NoEscape);
2233     } else {
2234       return false;
2235     }
2236   }
2237   assert(is_LocalVar(), "sanity");
2238   // Check all java objects it points to.
2239   for (EdgeIterator i(this); i.has_next(); i.next()) {
2240     PointsToNode* e = i.get();
2241     if (e->is_JavaObject()) {
2242       Node* n = e->ideal_node();
2243       if ((e->escape_state() != PointsToNode::NoEscape) ||
2244           !(n->is_Allocate() || n->is_CallStaticJava())) {
2245         return false;
2246       }
2247     }
2248   }
2249   return true;
2250 }
2251 
2252 // Return true if we know the node does not escape globally.
2253 bool ConnectionGraph::not_global_escape(Node *n) {
2254   assert(!_collecting, "should not call during graph construction");
2255   // If the node was created after the escape computation we can't answer.
2256   uint idx = n->_idx;
2257   if (idx >= nodes_size()) {
2258     return false;
2259   }
2260   PointsToNode* ptn = ptnode_adr(idx);
2261   PointsToNode::EscapeState es = ptn->escape_state();
2262   // If we have already computed a value, return it.
2263   if (es >= PointsToNode::GlobalEscape)
2264     return false;
2265   if (ptn->is_JavaObject()) {
2266     return true; // (es < PointsToNode::GlobalEscape);
2267   }
2268   assert(ptn->is_LocalVar(), "sanity");
2269   // Check all java objects it points to.
2270   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2271     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2272       return false;
2273   }
2274   return true;
2275 }
2276 
2277 
2278 // Helper functions
2279 
2280 // Return true if this node points to specified node or nodes it points to.
2281 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2282   if (is_JavaObject()) {
2283     return (this == ptn);
2284   }
2285   assert(is_LocalVar() || is_Field(), "sanity");
2286   for (EdgeIterator i(this); i.has_next(); i.next()) {
2287     if (i.get() == ptn)
2288       return true;
2289   }
2290   return false;
2291 }
2292 
2293 // Return true if one node points to an other.
2294 bool PointsToNode::meet(PointsToNode* ptn) {
2295   if (this == ptn) {
2296     return true;
2297   } else if (ptn->is_JavaObject()) {
2298     return this->points_to(ptn->as_JavaObject());
2299   } else if (this->is_JavaObject()) {
2300     return ptn->points_to(this->as_JavaObject());
2301   }
2302   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2303   int ptn_count =  ptn->edge_count();
2304   for (EdgeIterator i(this); i.has_next(); i.next()) {
2305     PointsToNode* this_e = i.get();
2306     for (int j = 0; j < ptn_count; j++) {
2307       if (this_e == ptn->edge(j))
2308         return true;
2309     }
2310   }
2311   return false;
2312 }
2313 
2314 #ifdef ASSERT
2315 // Return true if bases point to this java object.
2316 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2317   for (BaseIterator i(this); i.has_next(); i.next()) {
2318     if (i.get() == jobj)
2319       return true;
2320   }
2321   return false;
2322 }
2323 #endif
2324 
2325 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2326   const Type *adr_type = phase->type(adr);
2327   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2328       adr->in(AddPNode::Address)->is_Proj() &&
2329       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2330     // We are computing a raw address for a store captured by an Initialize
2331     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2332     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2333     assert(offs != Type::OffsetBot ||
2334            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2335            "offset must be a constant or it is initialization of array");
2336     return offs;
2337   }
2338   const TypePtr *t_ptr = adr_type->isa_ptr();
2339   assert(t_ptr != NULL, "must be a pointer type");
2340   return t_ptr->offset();
2341 }
2342 
2343 Node* ConnectionGraph::get_addp_base(Node *addp) {
2344   assert(addp->is_AddP(), "must be AddP");
2345   //
2346   // AddP cases for Base and Address inputs:
2347   // case #1. Direct object's field reference:
2348   //     Allocate
2349   //       |
2350   //     Proj #5 ( oop result )
2351   //       |
2352   //     CheckCastPP (cast to instance type)
2353   //      | |
2354   //     AddP  ( base == address )
2355   //
2356   // case #2. Indirect object's field reference:
2357   //      Phi
2358   //       |
2359   //     CastPP (cast to instance type)
2360   //      | |
2361   //     AddP  ( base == address )
2362   //
2363   // case #3. Raw object's field reference for Initialize node:
2364   //      Allocate
2365   //        |
2366   //      Proj #5 ( oop result )
2367   //  top   |
2368   //     \  |
2369   //     AddP  ( base == top )
2370   //
2371   // case #4. Array's element reference:
2372   //   {CheckCastPP | CastPP}
2373   //     |  | |
2374   //     |  AddP ( array's element offset )
2375   //     |  |
2376   //     AddP ( array's offset )
2377   //
2378   // case #5. Raw object's field reference for arraycopy stub call:
2379   //          The inline_native_clone() case when the arraycopy stub is called
2380   //          after the allocation before Initialize and CheckCastPP nodes.
2381   //      Allocate
2382   //        |
2383   //      Proj #5 ( oop result )
2384   //       | |
2385   //       AddP  ( base == address )
2386   //
2387   // case #6. Constant Pool, ThreadLocal, CastX2P or
2388   //          Raw object's field reference:
2389   //      {ConP, ThreadLocal, CastX2P, raw Load}
2390   //  top   |
2391   //     \  |
2392   //     AddP  ( base == top )
2393   //
2394   // case #7. Klass's field reference.
2395   //      LoadKlass
2396   //       | |
2397   //       AddP  ( base == address )
2398   //
2399   // case #8. narrow Klass's field reference.
2400   //      LoadNKlass
2401   //       |
2402   //      DecodeN
2403   //       | |
2404   //       AddP  ( base == address )
2405   //
2406   // case #9. Mixed unsafe access
2407   //    {instance}
2408   //        |
2409   //      CheckCastPP (raw)
2410   //  top   |
2411   //     \  |
2412   //     AddP  ( base == top )
2413   //
2414   Node *base = addp->in(AddPNode::Base);
2415   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
2416     base = addp->in(AddPNode::Address);
2417     while (base->is_AddP()) {
2418       // Case #6 (unsafe access) may have several chained AddP nodes.
2419       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2420       base = base->in(AddPNode::Address);
2421     }
2422     if (base->Opcode() == Op_CheckCastPP &&
2423         base->bottom_type()->isa_rawptr() &&
2424         _igvn->type(base->in(1))->isa_oopptr()) {
2425       base = base->in(1); // Case #9
2426     } else {
2427       Node* uncast_base = base->uncast();
2428       int opcode = uncast_base->Opcode();
2429       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2430              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2431              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2432              (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()) ||
2433              uncast_base->is_ShenandoahBarrier(), "sanity");
2434     }
2435   }
2436   return base;
2437 }
2438 
2439 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2440   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2441   Node* addp2 = addp->raw_out(0);
2442   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2443       addp2->in(AddPNode::Base) == n &&
2444       addp2->in(AddPNode::Address) == addp) {
2445     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2446     //
2447     // Find array's offset to push it on worklist first and
2448     // as result process an array's element offset first (pushed second)
2449     // to avoid CastPP for the array's offset.
2450     // Otherwise the inserted CastPP (LocalVar) will point to what
2451     // the AddP (Field) points to. Which would be wrong since
2452     // the algorithm expects the CastPP has the same point as
2453     // as AddP's base CheckCastPP (LocalVar).
2454     //
2455     //    ArrayAllocation
2456     //     |
2457     //    CheckCastPP
2458     //     |
2459     //    memProj (from ArrayAllocation CheckCastPP)
2460     //     |  ||
2461     //     |  ||   Int (element index)
2462     //     |  ||    |   ConI (log(element size))
2463     //     |  ||    |   /
2464     //     |  ||   LShift
2465     //     |  ||  /
2466     //     |  AddP (array's element offset)
2467     //     |  |
2468     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2469     //     | / /
2470     //     AddP (array's offset)
2471     //      |
2472     //     Load/Store (memory operation on array's element)
2473     //
2474     return addp2;
2475   }
2476   return NULL;
2477 }
2478 
2479 //
2480 // Adjust the type and inputs of an AddP which computes the
2481 // address of a field of an instance
2482 //
2483 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2484   PhaseGVN* igvn = _igvn;
2485   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2486   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2487   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2488   if (t == NULL) {
2489     // We are computing a raw address for a store captured by an Initialize
2490     // compute an appropriate address type (cases #3 and #5).
2491     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2492     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2493     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2494     assert(offs != Type::OffsetBot, "offset must be a constant");
2495     t = base_t->add_offset(offs)->is_oopptr();
2496   }
2497   int inst_id =  base_t->instance_id();
2498   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2499                              "old type must be non-instance or match new type");
2500 
2501   // The type 't' could be subclass of 'base_t'.
2502   // As result t->offset() could be large then base_t's size and it will
2503   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2504   // constructor verifies correctness of the offset.
2505   //
2506   // It could happened on subclass's branch (from the type profiling
2507   // inlining) which was not eliminated during parsing since the exactness
2508   // of the allocation type was not propagated to the subclass type check.
2509   //
2510   // Or the type 't' could be not related to 'base_t' at all.
2511   // It could happened when CHA type is different from MDO type on a dead path
2512   // (for example, from instanceof check) which is not collapsed during parsing.
2513   //
2514   // Do nothing for such AddP node and don't process its users since
2515   // this code branch will go away.
2516   //
2517   if (!t->is_known_instance() &&
2518       !base_t->klass()->is_subtype_of(t->klass())) {
2519      return false; // bail out
2520   }
2521   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2522   // Do NOT remove the next line: ensure a new alias index is allocated
2523   // for the instance type. Note: C++ will not remove it since the call
2524   // has side effect.
2525   int alias_idx = _compile->get_alias_index(tinst);
2526   igvn->set_type(addp, tinst);
2527   // record the allocation in the node map
2528   set_map(addp, get_map(base->_idx));
2529   // Set addp's Base and Address to 'base'.
2530   Node *abase = addp->in(AddPNode::Base);
2531   Node *adr   = addp->in(AddPNode::Address);
2532   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2533       adr->in(0)->_idx == (uint)inst_id) {
2534     // Skip AddP cases #3 and #5.
2535   } else {
2536     assert(!abase->is_top(), "sanity"); // AddP case #3
2537     if (abase != base) {
2538       igvn->hash_delete(addp);
2539       addp->set_req(AddPNode::Base, base);
2540       if (abase == adr) {
2541         addp->set_req(AddPNode::Address, base);
2542       } else {
2543         // AddP case #4 (adr is array's element offset AddP node)
2544 #ifdef ASSERT
2545         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2546         assert(adr->is_AddP() && atype != NULL &&
2547                atype->instance_id() == inst_id, "array's element offset should be processed first");
2548 #endif
2549       }
2550       igvn->hash_insert(addp);
2551     }
2552   }
2553   // Put on IGVN worklist since at least addp's type was changed above.
2554   record_for_optimizer(addp);
2555   return true;
2556 }
2557 
2558 //
2559 // Create a new version of orig_phi if necessary. Returns either the newly
2560 // created phi or an existing phi.  Sets create_new to indicate whether a new
2561 // phi was created.  Cache the last newly created phi in the node map.
2562 //
2563 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2564   Compile *C = _compile;
2565   PhaseGVN* igvn = _igvn;
2566   new_created = false;
2567   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2568   // nothing to do if orig_phi is bottom memory or matches alias_idx
2569   if (phi_alias_idx == alias_idx) {
2570     return orig_phi;
2571   }
2572   // Have we recently created a Phi for this alias index?
2573   PhiNode *result = get_map_phi(orig_phi->_idx);
2574   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2575     return result;
2576   }
2577   // Previous check may fail when the same wide memory Phi was split into Phis
2578   // for different memory slices. Search all Phis for this region.
2579   if (result != NULL) {
2580     Node* region = orig_phi->in(0);
2581     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2582       Node* phi = region->fast_out(i);
2583       if (phi->is_Phi() &&
2584           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2585         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2586         return phi->as_Phi();
2587       }
2588     }
2589   }
2590   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2591     if (C->do_escape_analysis() == true && !C->failing()) {
2592       // Retry compilation without escape analysis.
2593       // If this is the first failure, the sentinel string will "stick"
2594       // to the Compile object, and the C2Compiler will see it and retry.
2595       C->record_failure(C2Compiler::retry_no_escape_analysis());
2596     }
2597     return NULL;
2598   }
2599   orig_phi_worklist.append_if_missing(orig_phi);
2600   const TypePtr *atype = C->get_adr_type(alias_idx);
2601   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2602   C->copy_node_notes_to(result, orig_phi);
2603   igvn->set_type(result, result->bottom_type());
2604   record_for_optimizer(result);
2605   set_map(orig_phi, result);
2606   new_created = true;
2607   return result;
2608 }
2609 
2610 //
2611 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2612 // specified alias index.
2613 //
2614 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2615   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2616   Compile *C = _compile;
2617   PhaseGVN* igvn = _igvn;
2618   bool new_phi_created;
2619   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2620   if (!new_phi_created) {
2621     return result;
2622   }
2623   GrowableArray<PhiNode *>  phi_list;
2624   GrowableArray<uint>  cur_input;
2625   PhiNode *phi = orig_phi;
2626   uint idx = 1;
2627   bool finished = false;
2628   while(!finished) {
2629     while (idx < phi->req()) {
2630       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2631       if (mem != NULL && mem->is_Phi()) {
2632         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2633         if (new_phi_created) {
2634           // found an phi for which we created a new split, push current one on worklist and begin
2635           // processing new one
2636           phi_list.push(phi);
2637           cur_input.push(idx);
2638           phi = mem->as_Phi();
2639           result = newphi;
2640           idx = 1;
2641           continue;
2642         } else {
2643           mem = newphi;
2644         }
2645       }
2646       if (C->failing()) {
2647         return NULL;
2648       }
2649       result->set_req(idx++, mem);
2650     }
2651 #ifdef ASSERT
2652     // verify that the new Phi has an input for each input of the original
2653     assert( phi->req() == result->req(), "must have same number of inputs.");
2654     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2655 #endif
2656     // Check if all new phi's inputs have specified alias index.
2657     // Otherwise use old phi.
2658     for (uint i = 1; i < phi->req(); i++) {
2659       Node* in = result->in(i);
2660       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2661     }
2662     // we have finished processing a Phi, see if there are any more to do
2663     finished = (phi_list.length() == 0 );
2664     if (!finished) {
2665       phi = phi_list.pop();
2666       idx = cur_input.pop();
2667       PhiNode *prev_result = get_map_phi(phi->_idx);
2668       prev_result->set_req(idx++, result);
2669       result = prev_result;
2670     }
2671   }
2672   return result;
2673 }
2674 
2675 //
2676 // The next methods are derived from methods in MemNode.
2677 //
2678 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2679   Node *mem = mmem;
2680   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2681   // means an array I have not precisely typed yet.  Do not do any
2682   // alias stuff with it any time soon.
2683   if (toop->base() != Type::AnyPtr &&
2684       !(toop->klass() != NULL &&
2685         toop->klass()->is_java_lang_Object() &&
2686         toop->offset() == Type::OffsetBot)) {
2687     mem = mmem->memory_at(alias_idx);
2688     // Update input if it is progress over what we have now
2689   }
2690   return mem;
2691 }
2692 
2693 //
2694 // Move memory users to their memory slices.
2695 //
2696 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2697   Compile* C = _compile;
2698   PhaseGVN* igvn = _igvn;
2699   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2700   assert(tp != NULL, "ptr type");
2701   int alias_idx = C->get_alias_index(tp);
2702   int general_idx = C->get_general_index(alias_idx);
2703 
2704   // Move users first
2705   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2706     Node* use = n->fast_out(i);
2707     if (use->is_MergeMem()) {
2708       MergeMemNode* mmem = use->as_MergeMem();
2709       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2710       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2711         continue; // Nothing to do
2712       }
2713       // Replace previous general reference to mem node.
2714       uint orig_uniq = C->unique();
2715       Node* m = find_inst_mem(n, general_idx, orig_phis);
2716       assert(orig_uniq == C->unique(), "no new nodes");
2717       mmem->set_memory_at(general_idx, m);
2718       --imax;
2719       --i;
2720     } else if (use->is_MemBar()) {
2721       assert(!use->is_Initialize(), "initializing stores should not be moved");
2722       if (use->req() > MemBarNode::Precedent &&
2723           use->in(MemBarNode::Precedent) == n) {
2724         // Don't move related membars.
2725         record_for_optimizer(use);
2726         continue;
2727       }
2728       tp = use->as_MemBar()->adr_type()->isa_ptr();
2729       if ((tp != NULL && C->get_alias_index(tp) == alias_idx) ||
2730           alias_idx == general_idx) {
2731         continue; // Nothing to do
2732       }
2733       // Move to general memory slice.
2734       uint orig_uniq = C->unique();
2735       Node* m = find_inst_mem(n, general_idx, orig_phis);
2736       assert(orig_uniq == C->unique(), "no new nodes");
2737       igvn->hash_delete(use);
2738       imax -= use->replace_edge(n, m);
2739       igvn->hash_insert(use);
2740       record_for_optimizer(use);
2741       --i;
2742 #ifdef ASSERT
2743     } else if (use->is_Mem()) {
2744       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2745         // Don't move related cardmark.
2746         continue;
2747       }
2748       // Memory nodes should have new memory input.
2749       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2750       assert(tp != NULL, "ptr type");
2751       int idx = C->get_alias_index(tp);
2752       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2753              "Following memory nodes should have new memory input or be on the same memory slice");
2754     } else if (use->is_Phi()) {
2755       // Phi nodes should be split and moved already.
2756       tp = use->as_Phi()->adr_type()->isa_ptr();
2757       assert(tp != NULL, "ptr type");
2758       int idx = C->get_alias_index(tp);
2759       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2760     } else {
2761       use->dump();
2762       assert(false, "should not be here");
2763 #endif
2764     }
2765   }
2766 }
2767 
2768 //
2769 // Search memory chain of "mem" to find a MemNode whose address
2770 // is the specified alias index.
2771 //
2772 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2773   if (orig_mem == NULL)
2774     return orig_mem;
2775   Compile* C = _compile;
2776   PhaseGVN* igvn = _igvn;
2777   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2778   bool is_instance = (toop != NULL) && toop->is_known_instance();
2779   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
2780   Node *prev = NULL;
2781   Node *result = orig_mem;
2782   while (prev != result) {
2783     prev = result;
2784     if (result == start_mem)
2785       break;  // hit one of our sentinels
2786     if (result->is_Mem()) {
2787       const Type *at = igvn->type(result->in(MemNode::Address));
2788       if (at == Type::TOP)
2789         break; // Dead
2790       assert (at->isa_ptr() != NULL, "pointer type required.");
2791       int idx = C->get_alias_index(at->is_ptr());
2792       if (idx == alias_idx)
2793         break; // Found
2794       if (!is_instance && (at->isa_oopptr() == NULL ||
2795                            !at->is_oopptr()->is_known_instance())) {
2796         break; // Do not skip store to general memory slice.
2797       }
2798       result = result->in(MemNode::Memory);
2799     }
2800     if (!is_instance)
2801       continue;  // don't search further for non-instance types
2802     // skip over a call which does not affect this memory slice
2803     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2804       Node *proj_in = result->in(0);
2805       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2806         break;  // hit one of our sentinels
2807       } else if (proj_in->is_Call()) {
2808         // ArrayCopy node processed here as well
2809         CallNode *call = proj_in->as_Call();
2810         if (!call->may_modify(toop, igvn)) {
2811           result = call->in(TypeFunc::Memory);
2812         }
2813       } else if (proj_in->is_Initialize()) {
2814         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2815         // Stop if this is the initialization for the object instance which
2816         // which contains this memory slice, otherwise skip over it.
2817         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2818           result = proj_in->in(TypeFunc::Memory);
2819         }
2820       } else if (proj_in->is_MemBar()) {
2821         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2822             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2823             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2824           // clone
2825           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2826           if (ac->may_modify(toop, igvn)) {
2827             break;
2828           }
2829         }
2830         result = proj_in->in(TypeFunc::Memory);
2831       }
2832     } else if (result->is_MergeMem()) {
2833       MergeMemNode *mmem = result->as_MergeMem();
2834       result = step_through_mergemem(mmem, alias_idx, toop);
2835       if (result == mmem->base_memory()) {
2836         // Didn't find instance memory, search through general slice recursively.
2837         result = mmem->memory_at(C->get_general_index(alias_idx));
2838         result = find_inst_mem(result, alias_idx, orig_phis);
2839         if (C->failing()) {
2840           return NULL;
2841         }
2842         mmem->set_memory_at(alias_idx, result);
2843       }
2844     } else if (result->is_Phi() &&
2845                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2846       Node *un = result->as_Phi()->unique_input(igvn);
2847       if (un != NULL) {
2848         orig_phis.append_if_missing(result->as_Phi());
2849         result = un;
2850       } else {
2851         break;
2852       }
2853     } else if (result->is_ClearArray()) {
2854       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2855         // Can not bypass initialization of the instance
2856         // we are looking for.
2857         break;
2858       }
2859       // Otherwise skip it (the call updated 'result' value).
2860     } else if (result->Opcode() == Op_SCMemProj) {
2861       Node* mem = result->in(0);
2862       Node* adr = NULL;
2863       if (mem->is_LoadStore()) {
2864         adr = mem->in(MemNode::Address);
2865       } else {
2866         assert(mem->Opcode() == Op_EncodeISOArray ||
2867                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2868         adr = mem->in(3); // Memory edge corresponds to destination array
2869       }
2870       const Type *at = igvn->type(adr);
2871       if (at != Type::TOP) {
2872         assert(at->isa_ptr() != NULL, "pointer type required.");
2873         int idx = C->get_alias_index(at->is_ptr());
2874         if (idx == alias_idx) {
2875           // Assert in debug mode
2876           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2877           break; // In product mode return SCMemProj node
2878         }
2879       }
2880       result = mem->in(MemNode::Memory);
2881     } else if (result->Opcode() == Op_StrInflatedCopy) {
2882       Node* adr = result->in(3); // Memory edge corresponds to destination array
2883       const Type *at = igvn->type(adr);
2884       if (at != Type::TOP) {
2885         assert(at->isa_ptr() != NULL, "pointer type required.");
2886         int idx = C->get_alias_index(at->is_ptr());
2887         if (idx == alias_idx) {
2888           // Assert in debug mode
2889           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2890           break; // In product mode return SCMemProj node
2891         }
2892       }
2893       result = result->in(MemNode::Memory);
2894     }
2895   }
2896   if (result->is_Phi()) {
2897     PhiNode *mphi = result->as_Phi();
2898     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2899     const TypePtr *t = mphi->adr_type();
2900     if (!is_instance) {
2901       // Push all non-instance Phis on the orig_phis worklist to update inputs
2902       // during Phase 4 if needed.
2903       orig_phis.append_if_missing(mphi);
2904     } else if (C->get_alias_index(t) != alias_idx) {
2905       // Create a new Phi with the specified alias index type.
2906       result = split_memory_phi(mphi, alias_idx, orig_phis);
2907     }
2908   }
2909   // the result is either MemNode, PhiNode, InitializeNode.
2910   return result;
2911 }
2912 
2913 //
2914 //  Convert the types of unescaped object to instance types where possible,
2915 //  propagate the new type information through the graph, and update memory
2916 //  edges and MergeMem inputs to reflect the new type.
2917 //
2918 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2919 //  The processing is done in 4 phases:
2920 //
2921 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2922 //            types for the CheckCastPP for allocations where possible.
2923 //            Propagate the new types through users as follows:
2924 //               casts and Phi:  push users on alloc_worklist
2925 //               AddP:  cast Base and Address inputs to the instance type
2926 //                      push any AddP users on alloc_worklist and push any memnode
2927 //                      users onto memnode_worklist.
2928 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2929 //            search the Memory chain for a store with the appropriate type
2930 //            address type.  If a Phi is found, create a new version with
2931 //            the appropriate memory slices from each of the Phi inputs.
2932 //            For stores, process the users as follows:
2933 //               MemNode:  push on memnode_worklist
2934 //               MergeMem: push on mergemem_worklist
2935 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2936 //            moving the first node encountered of each  instance type to the
2937 //            the input corresponding to its alias index.
2938 //            appropriate memory slice.
2939 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2940 //
2941 // In the following example, the CheckCastPP nodes are the cast of allocation
2942 // results and the allocation of node 29 is unescaped and eligible to be an
2943 // instance type.
2944 //
2945 // We start with:
2946 //
2947 //     7 Parm #memory
2948 //    10  ConI  "12"
2949 //    19  CheckCastPP   "Foo"
2950 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2951 //    29  CheckCastPP   "Foo"
2952 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2953 //
2954 //    40  StoreP  25   7  20   ... alias_index=4
2955 //    50  StoreP  35  40  30   ... alias_index=4
2956 //    60  StoreP  45  50  20   ... alias_index=4
2957 //    70  LoadP    _  60  30   ... alias_index=4
2958 //    80  Phi     75  50  60   Memory alias_index=4
2959 //    90  LoadP    _  80  30   ... alias_index=4
2960 //   100  LoadP    _  80  20   ... alias_index=4
2961 //
2962 //
2963 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2964 // and creating a new alias index for node 30.  This gives:
2965 //
2966 //     7 Parm #memory
2967 //    10  ConI  "12"
2968 //    19  CheckCastPP   "Foo"
2969 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2970 //    29  CheckCastPP   "Foo"  iid=24
2971 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2972 //
2973 //    40  StoreP  25   7  20   ... alias_index=4
2974 //    50  StoreP  35  40  30   ... alias_index=6
2975 //    60  StoreP  45  50  20   ... alias_index=4
2976 //    70  LoadP    _  60  30   ... alias_index=6
2977 //    80  Phi     75  50  60   Memory alias_index=4
2978 //    90  LoadP    _  80  30   ... alias_index=6
2979 //   100  LoadP    _  80  20   ... alias_index=4
2980 //
2981 // In phase 2, new memory inputs are computed for the loads and stores,
2982 // And a new version of the phi is created.  In phase 4, the inputs to
2983 // node 80 are updated and then the memory nodes are updated with the
2984 // values computed in phase 2.  This results in:
2985 //
2986 //     7 Parm #memory
2987 //    10  ConI  "12"
2988 //    19  CheckCastPP   "Foo"
2989 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2990 //    29  CheckCastPP   "Foo"  iid=24
2991 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2992 //
2993 //    40  StoreP  25  7   20   ... alias_index=4
2994 //    50  StoreP  35  7   30   ... alias_index=6
2995 //    60  StoreP  45  40  20   ... alias_index=4
2996 //    70  LoadP    _  50  30   ... alias_index=6
2997 //    80  Phi     75  40  60   Memory alias_index=4
2998 //   120  Phi     75  50  50   Memory alias_index=6
2999 //    90  LoadP    _ 120  30   ... alias_index=6
3000 //   100  LoadP    _  80  20   ... alias_index=4
3001 //
3002 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
3003   GrowableArray<Node *>  memnode_worklist;
3004   GrowableArray<PhiNode *>  orig_phis;
3005   PhaseIterGVN  *igvn = _igvn;
3006   uint new_index_start = (uint) _compile->num_alias_types();
3007   Arena* arena = Thread::current()->resource_area();
3008   VectorSet visited(arena);
3009   ideal_nodes.clear(); // Reset for use with set_map/get_map.
3010   uint unique_old = _compile->unique();
3011 
3012   //  Phase 1:  Process possible allocations from alloc_worklist.
3013   //  Create instance types for the CheckCastPP for allocations where possible.
3014   //
3015   // (Note: don't forget to change the order of the second AddP node on
3016   //  the alloc_worklist if the order of the worklist processing is changed,
3017   //  see the comment in find_second_addp().)
3018   //
3019   while (alloc_worklist.length() != 0) {
3020     Node *n = alloc_worklist.pop();
3021     uint ni = n->_idx;
3022     if (n->is_Call()) {
3023       CallNode *alloc = n->as_Call();
3024       // copy escape information to call node
3025       PointsToNode* ptn = ptnode_adr(alloc->_idx);
3026       PointsToNode::EscapeState es = ptn->escape_state();
3027       // We have an allocation or call which returns a Java object,
3028       // see if it is unescaped.
3029       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
3030         continue;
3031       // Find CheckCastPP for the allocate or for the return value of a call
3032       n = alloc->result_cast();
3033       if (n == NULL) {            // No uses except Initialize node
3034         if (alloc->is_Allocate()) {
3035           // Set the scalar_replaceable flag for allocation
3036           // so it could be eliminated if it has no uses.
3037           alloc->as_Allocate()->_is_scalar_replaceable = true;
3038         }
3039         if (alloc->is_CallStaticJava()) {
3040           // Set the scalar_replaceable flag for boxing method
3041           // so it could be eliminated if it has no uses.
3042           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
3043         }
3044         continue;
3045       }
3046       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
3047         assert(!alloc->is_Allocate(), "allocation should have unique type");
3048         continue;
3049       }
3050 
3051       // The inline code for Object.clone() casts the allocation result to
3052       // java.lang.Object and then to the actual type of the allocated
3053       // object. Detect this case and use the second cast.
3054       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
3055       // the allocation result is cast to java.lang.Object and then
3056       // to the actual Array type.
3057       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
3058           && (alloc->is_AllocateArray() ||
3059               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
3060         Node *cast2 = NULL;
3061         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3062           Node *use = n->fast_out(i);
3063           if (use->is_CheckCastPP()) {
3064             cast2 = use;
3065             break;
3066           }
3067         }
3068         if (cast2 != NULL) {
3069           n = cast2;
3070         } else {
3071           // Non-scalar replaceable if the allocation type is unknown statically
3072           // (reflection allocation), the object can't be restored during
3073           // deoptimization without precise type.
3074           continue;
3075         }
3076       }
3077 
3078       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
3079       if (t == NULL)
3080         continue;  // not a TypeOopPtr
3081       if (!t->klass_is_exact())
3082         continue; // not an unique type
3083 
3084       if (alloc->is_Allocate()) {
3085         // Set the scalar_replaceable flag for allocation
3086         // so it could be eliminated.
3087         alloc->as_Allocate()->_is_scalar_replaceable = true;
3088       }
3089       if (alloc->is_CallStaticJava()) {
3090         // Set the scalar_replaceable flag for boxing method
3091         // so it could be eliminated.
3092         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
3093       }
3094       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
3095       // in order for an object to be scalar-replaceable, it must be:
3096       //   - a direct allocation (not a call returning an object)
3097       //   - non-escaping
3098       //   - eligible to be a unique type
3099       //   - not determined to be ineligible by escape analysis
3100       set_map(alloc, n);
3101       set_map(n, alloc);
3102       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
3103       igvn->hash_delete(n);
3104       igvn->set_type(n,  tinst);
3105       n->raise_bottom_type(tinst);
3106       igvn->hash_insert(n);
3107       record_for_optimizer(n);
3108       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
3109 
3110         // First, put on the worklist all Field edges from Connection Graph
3111         // which is more accurate than putting immediate users from Ideal Graph.
3112         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
3113           PointsToNode* tgt = e.get();
3114           if (tgt->is_Arraycopy()) {
3115             continue;
3116           }
3117           Node* use = tgt->ideal_node();
3118           assert(tgt->is_Field() && use->is_AddP(),
3119                  "only AddP nodes are Field edges in CG");
3120           if (use->outcnt() > 0) { // Don't process dead nodes
3121             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
3122             if (addp2 != NULL) {
3123               assert(alloc->is_AllocateArray(),"array allocation was expected");
3124               alloc_worklist.append_if_missing(addp2);
3125             }
3126             alloc_worklist.append_if_missing(use);
3127           }
3128         }
3129 
3130         // An allocation may have an Initialize which has raw stores. Scan
3131         // the users of the raw allocation result and push AddP users
3132         // on alloc_worklist.
3133         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
3134         assert (raw_result != NULL, "must have an allocation result");
3135         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3136           Node *use = raw_result->fast_out(i);
3137           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3138             Node* addp2 = find_second_addp(use, raw_result);
3139             if (addp2 != NULL) {
3140               assert(alloc->is_AllocateArray(),"array allocation was expected");
3141               alloc_worklist.append_if_missing(addp2);
3142             }
3143             alloc_worklist.append_if_missing(use);
3144           } else if (use->is_MemBar()) {
3145             memnode_worklist.append_if_missing(use);
3146           }
3147         }
3148       }
3149     } else if (n->is_AddP()) {
3150       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3151       if (jobj == NULL || jobj == phantom_obj) {
3152 #ifdef ASSERT
3153         ptnode_adr(get_addp_base(n)->_idx)->dump();
3154         ptnode_adr(n->_idx)->dump();
3155         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3156 #endif
3157         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3158         return;
3159       }
3160       Node *base = get_map(jobj->idx());  // CheckCastPP node
3161       if (!split_AddP(n, base)) continue; // wrong type from dead path
3162     } else if (n->is_Phi() ||
3163                n->is_CheckCastPP() ||
3164                n->is_EncodeP() ||
3165                n->is_DecodeN() ||
3166                n->is_ShenandoahBarrier() ||
3167                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3168       if (visited.test_set(n->_idx)) {
3169         assert(n->is_Phi(), "loops only through Phi's");
3170         continue;  // already processed
3171       }
3172       JavaObjectNode* jobj = unique_java_object(n);
3173       if (jobj == NULL || jobj == phantom_obj) {
3174 #ifdef ASSERT
3175         ptnode_adr(n->_idx)->dump();
3176         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3177 #endif
3178         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3179         return;
3180       } else {
3181         Node *val = get_map(jobj->idx());   // CheckCastPP node
3182         TypeNode *tn = n->as_Type();
3183         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3184         assert(tinst != NULL && tinst->is_known_instance() &&
3185                tinst->instance_id() == jobj->idx() , "instance type expected.");
3186 
3187         const Type *tn_type = igvn->type(tn);
3188         const TypeOopPtr *tn_t;
3189         if (tn_type->isa_narrowoop()) {
3190           tn_t = tn_type->make_ptr()->isa_oopptr();
3191         } else {
3192           tn_t = tn_type->isa_oopptr();
3193         }
3194         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3195           if (tn_type->isa_narrowoop()) {
3196             tn_type = tinst->make_narrowoop();
3197           } else {
3198             tn_type = tinst;
3199           }
3200           igvn->hash_delete(tn);
3201           igvn->set_type(tn, tn_type);
3202           tn->set_type(tn_type);
3203           igvn->hash_insert(tn);
3204           record_for_optimizer(n);
3205         } else {
3206           assert(tn_type == TypePtr::NULL_PTR ||
3207                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3208                  "unexpected type");
3209           continue; // Skip dead path with different type
3210         }
3211       }
3212     } else {
3213       debug_only(n->dump();)
3214       assert(false, "EA: unexpected node");
3215       continue;
3216     }
3217     // push allocation's users on appropriate worklist
3218     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3219       Node *use = n->fast_out(i);
3220       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3221         // Load/store to instance's field
3222         memnode_worklist.append_if_missing(use);
3223       } else if (use->is_MemBar()) {
3224         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3225           memnode_worklist.append_if_missing(use);
3226         }
3227       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3228         Node* addp2 = find_second_addp(use, n);
3229         if (addp2 != NULL) {
3230           alloc_worklist.append_if_missing(addp2);
3231         }
3232         alloc_worklist.append_if_missing(use);
3233       } else if (use->is_Phi() ||
3234                  use->is_CheckCastPP() ||
3235                  use->is_EncodeNarrowPtr() ||
3236                  use->is_DecodeNarrowPtr() ||
3237                  use->is_ShenandoahBarrier() ||
3238                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3239         alloc_worklist.append_if_missing(use);
3240 #ifdef ASSERT
3241       } else if (use->is_Mem()) {
3242         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3243       } else if (use->is_MergeMem()) {
3244         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3245       } else if (use->is_SafePoint()) {
3246         // Look for MergeMem nodes for calls which reference unique allocation
3247         // (through CheckCastPP nodes) even for debug info.
3248         Node* m = use->in(TypeFunc::Memory);
3249         if (m->is_MergeMem()) {
3250           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3251         }
3252       } else if (use->Opcode() == Op_EncodeISOArray) {
3253         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3254           // EncodeISOArray overwrites destination array
3255           memnode_worklist.append_if_missing(use);
3256         }
3257       } else {
3258         uint op = use->Opcode();
3259         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3260             (use->in(MemNode::Memory) == n)) {
3261           // They overwrite memory edge corresponding to destination array,
3262           memnode_worklist.append_if_missing(use);
3263         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3264               op == Op_CastP2X || op == Op_StoreCM ||
3265               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3266               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3267               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
3268               op == Op_ShenandoahWBMemProj ||
3269               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
3270           n->dump();
3271           use->dump();
3272           assert(false, "EA: missing allocation reference path");
3273         }
3274 #endif
3275       }
3276     }
3277 
3278   }
3279 
3280   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3281   // type, record it in the ArrayCopy node so we know what memory this
3282   // node uses/modified.
3283   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3284     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3285     Node* dest = ac->in(ArrayCopyNode::Dest);
3286     if (dest->is_AddP()) {
3287       dest = get_addp_base(dest);
3288     }
3289     JavaObjectNode* jobj = unique_java_object(dest);
3290     if (jobj != NULL) {
3291       Node *base = get_map(jobj->idx());
3292       if (base != NULL) {
3293         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3294         ac->_dest_type = base_t;
3295       }
3296     }
3297     Node* src = ac->in(ArrayCopyNode::Src);
3298     if (src->is_AddP()) {
3299       src = get_addp_base(src);
3300     }
3301     jobj = unique_java_object(src);
3302     if (jobj != NULL) {
3303       Node* base = get_map(jobj->idx());
3304       if (base != NULL) {
3305         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3306         ac->_src_type = base_t;
3307       }
3308     }
3309   }
3310 
3311   // New alias types were created in split_AddP().
3312   uint new_index_end = (uint) _compile->num_alias_types();
3313   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3314 
3315   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3316   //            compute new values for Memory inputs  (the Memory inputs are not
3317   //            actually updated until phase 4.)
3318   if (memnode_worklist.length() == 0)
3319     return;  // nothing to do
3320   while (memnode_worklist.length() != 0) {
3321     Node *n = memnode_worklist.pop();
3322     if (visited.test_set(n->_idx))
3323       continue;
3324     if (n->is_Phi() || n->is_ClearArray()) {
3325       // we don't need to do anything, but the users must be pushed
3326     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3327       // we don't need to do anything, but the users must be pushed
3328       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
3329       if (n == NULL)
3330         continue;
3331     } else if (n->Opcode() == Op_StrCompressedCopy ||
3332                n->Opcode() == Op_EncodeISOArray) {
3333       // get the memory projection
3334       n = n->find_out_with(Op_SCMemProj);
3335       assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3336     } else {
3337       assert(n->is_Mem(), "memory node required.");
3338       Node *addr = n->in(MemNode::Address);
3339       const Type *addr_t = igvn->type(addr);
3340       if (addr_t == Type::TOP)
3341         continue;
3342       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3343       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3344       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3345       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3346       if (_compile->failing()) {
3347         return;
3348       }
3349       if (mem != n->in(MemNode::Memory)) {
3350         // We delay the memory edge update since we need old one in
3351         // MergeMem code below when instances memory slices are separated.
3352         set_map(n, mem);
3353       }
3354       if (n->is_Load()) {
3355         continue;  // don't push users
3356       } else if (n->is_LoadStore()) {
3357         // get the memory projection
3358         n = n->find_out_with(Op_SCMemProj);
3359         assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3360       }
3361     }
3362     // push user on appropriate worklist
3363     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3364       Node *use = n->fast_out(i);
3365       if (use->is_Phi() || use->is_ClearArray()) {
3366         memnode_worklist.append_if_missing(use);
3367       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3368         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3369           continue;
3370         memnode_worklist.append_if_missing(use);
3371       } else if (use->is_MemBar()) {
3372         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3373           memnode_worklist.append_if_missing(use);
3374         }
3375 #ifdef ASSERT
3376       } else if(use->is_Mem()) {
3377         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3378       } else if (use->is_MergeMem()) {
3379         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3380       } else if (use->Opcode() == Op_EncodeISOArray) {
3381         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3382           // EncodeISOArray overwrites destination array
3383           memnode_worklist.append_if_missing(use);
3384         }
3385       } else {
3386         uint op = use->Opcode();
3387         if ((use->in(MemNode::Memory) == n) &&
3388             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3389           // They overwrite memory edge corresponding to destination array,
3390           memnode_worklist.append_if_missing(use);
3391         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
3392               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3393               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3394               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3395           n->dump();
3396           use->dump();
3397           assert(false, "EA: missing memory path");
3398         }
3399 #endif
3400       }
3401     }
3402   }
3403 
3404   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3405   //            Walk each memory slice moving the first node encountered of each
3406   //            instance type to the the input corresponding to its alias index.
3407   uint length = _mergemem_worklist.length();
3408   for( uint next = 0; next < length; ++next ) {
3409     MergeMemNode* nmm = _mergemem_worklist.at(next);
3410     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3411     // Note: we don't want to use MergeMemStream here because we only want to
3412     // scan inputs which exist at the start, not ones we add during processing.
3413     // Note 2: MergeMem may already contains instance memory slices added
3414     // during find_inst_mem() call when memory nodes were processed above.
3415     igvn->hash_delete(nmm);
3416     uint nslices = MIN2(nmm->req(), new_index_start);
3417     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3418       Node* mem = nmm->in(i);
3419       Node* cur = NULL;
3420       if (mem == NULL || mem->is_top())
3421         continue;
3422       // First, update mergemem by moving memory nodes to corresponding slices
3423       // if their type became more precise since this mergemem was created.
3424       while (mem->is_Mem()) {
3425         const Type *at = igvn->type(mem->in(MemNode::Address));
3426         if (at != Type::TOP) {
3427           assert (at->isa_ptr() != NULL, "pointer type required.");
3428           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3429           if (idx == i) {
3430             if (cur == NULL)
3431               cur = mem;
3432           } else {
3433             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3434               nmm->set_memory_at(idx, mem);
3435             }
3436           }
3437         }
3438         mem = mem->in(MemNode::Memory);
3439       }
3440       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3441       // Find any instance of the current type if we haven't encountered
3442       // already a memory slice of the instance along the memory chain.
3443       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3444         if((uint)_compile->get_general_index(ni) == i) {
3445           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3446           if (nmm->is_empty_memory(m)) {
3447             Node* result = find_inst_mem(mem, ni, orig_phis);
3448             if (_compile->failing()) {
3449               return;
3450             }
3451             nmm->set_memory_at(ni, result);
3452           }
3453         }
3454       }
3455     }
3456     // Find the rest of instances values
3457     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3458       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3459       Node* result = step_through_mergemem(nmm, ni, tinst);
3460       if (result == nmm->base_memory()) {
3461         // Didn't find instance memory, search through general slice recursively.
3462         result = nmm->memory_at(_compile->get_general_index(ni));
3463         result = find_inst_mem(result, ni, orig_phis);
3464         if (_compile->failing()) {
3465           return;
3466         }
3467         nmm->set_memory_at(ni, result);
3468       }
3469     }
3470     igvn->hash_insert(nmm);
3471     record_for_optimizer(nmm);
3472   }
3473 
3474   //  Phase 4:  Update the inputs of non-instance memory Phis and
3475   //            the Memory input of memnodes
3476   // First update the inputs of any non-instance Phi's from
3477   // which we split out an instance Phi.  Note we don't have
3478   // to recursively process Phi's encounted on the input memory
3479   // chains as is done in split_memory_phi() since they  will
3480   // also be processed here.
3481   for (int j = 0; j < orig_phis.length(); j++) {
3482     PhiNode *phi = orig_phis.at(j);
3483     int alias_idx = _compile->get_alias_index(phi->adr_type());
3484     igvn->hash_delete(phi);
3485     for (uint i = 1; i < phi->req(); i++) {
3486       Node *mem = phi->in(i);
3487       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3488       if (_compile->failing()) {
3489         return;
3490       }
3491       if (mem != new_mem) {
3492         phi->set_req(i, new_mem);
3493       }
3494     }
3495     igvn->hash_insert(phi);
3496     record_for_optimizer(phi);
3497   }
3498 
3499   // Update the memory inputs of MemNodes with the value we computed
3500   // in Phase 2 and move stores memory users to corresponding memory slices.
3501   // Disable memory split verification code until the fix for 6984348.
3502   // Currently it produces false negative results since it does not cover all cases.
3503 #if 0 // ifdef ASSERT
3504   visited.Reset();
3505   Node_Stack old_mems(arena, _compile->unique() >> 2);
3506 #endif
3507   for (uint i = 0; i < ideal_nodes.size(); i++) {
3508     Node*    n = ideal_nodes.at(i);
3509     Node* nmem = get_map(n->_idx);
3510     assert(nmem != NULL, "sanity");
3511     if (n->is_Mem()) {
3512 #if 0 // ifdef ASSERT
3513       Node* old_mem = n->in(MemNode::Memory);
3514       if (!visited.test_set(old_mem->_idx)) {
3515         old_mems.push(old_mem, old_mem->outcnt());
3516       }
3517 #endif
3518       assert(n->in(MemNode::Memory) != nmem, "sanity");
3519       if (!n->is_Load()) {
3520         // Move memory users of a store first.
3521         move_inst_mem(n, orig_phis);
3522       }
3523       // Now update memory input
3524       igvn->hash_delete(n);
3525       n->set_req(MemNode::Memory, nmem);
3526       igvn->hash_insert(n);
3527       record_for_optimizer(n);
3528     } else {
3529       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3530              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3531     }
3532   }
3533 #if 0 // ifdef ASSERT
3534   // Verify that memory was split correctly
3535   while (old_mems.is_nonempty()) {
3536     Node* old_mem = old_mems.node();
3537     uint  old_cnt = old_mems.index();
3538     old_mems.pop();
3539     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3540   }
3541 #endif
3542 }
3543 
3544 #ifndef PRODUCT
3545 static const char *node_type_names[] = {
3546   "UnknownType",
3547   "JavaObject",
3548   "LocalVar",
3549   "Field",
3550   "Arraycopy"
3551 };
3552 
3553 static const char *esc_names[] = {
3554   "UnknownEscape",
3555   "NoEscape",
3556   "ArgEscape",
3557   "GlobalEscape"
3558 };
3559 
3560 void PointsToNode::dump(bool print_state) const {
3561   NodeType nt = node_type();
3562   tty->print("%s ", node_type_names[(int) nt]);
3563   if (print_state) {
3564     EscapeState es = escape_state();
3565     EscapeState fields_es = fields_escape_state();
3566     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3567     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3568       tty->print("NSR ");
3569   }
3570   if (is_Field()) {
3571     FieldNode* f = (FieldNode*)this;
3572     if (f->is_oop())
3573       tty->print("oop ");
3574     if (f->offset() > 0)
3575       tty->print("+%d ", f->offset());
3576     tty->print("(");
3577     for (BaseIterator i(f); i.has_next(); i.next()) {
3578       PointsToNode* b = i.get();
3579       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3580     }
3581     tty->print(" )");
3582   }
3583   tty->print("[");
3584   for (EdgeIterator i(this); i.has_next(); i.next()) {
3585     PointsToNode* e = i.get();
3586     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3587   }
3588   tty->print(" [");
3589   for (UseIterator i(this); i.has_next(); i.next()) {
3590     PointsToNode* u = i.get();
3591     bool is_base = false;
3592     if (PointsToNode::is_base_use(u)) {
3593       is_base = true;
3594       u = PointsToNode::get_use_node(u)->as_Field();
3595     }
3596     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3597   }
3598   tty->print(" ]]  ");
3599   if (_node == NULL)
3600     tty->print_cr("<null>");
3601   else
3602     _node->dump();
3603 }
3604 
3605 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3606   bool first = true;
3607   int ptnodes_length = ptnodes_worklist.length();
3608   for (int i = 0; i < ptnodes_length; i++) {
3609     PointsToNode *ptn = ptnodes_worklist.at(i);
3610     if (ptn == NULL || !ptn->is_JavaObject())
3611       continue;
3612     PointsToNode::EscapeState es = ptn->escape_state();
3613     if ((es != PointsToNode::NoEscape) && !Verbose) {
3614       continue;
3615     }
3616     Node* n = ptn->ideal_node();
3617     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3618                              n->as_CallStaticJava()->is_boxing_method())) {
3619       if (first) {
3620         tty->cr();
3621         tty->print("======== Connection graph for ");
3622         _compile->method()->print_short_name();
3623         tty->cr();
3624         first = false;
3625       }
3626       ptn->dump();
3627       // Print all locals and fields which reference this allocation
3628       for (UseIterator j(ptn); j.has_next(); j.next()) {
3629         PointsToNode* use = j.get();
3630         if (use->is_LocalVar()) {
3631           use->dump(Verbose);
3632         } else if (Verbose) {
3633           use->dump();
3634         }
3635       }
3636       tty->cr();
3637     }
3638   }
3639 }
3640 #endif