1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/biasedLocking.hpp"
  36 #include "runtime/interfaceSupport.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/os.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  44 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  45 #include "gc_implementation/g1/heapRegion.hpp"
  46 #include "gc_implementation/shenandoah/shenandoahHeap.inline.hpp"
  47 #include "gc_implementation/shenandoah/shenandoahHeapRegion.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 
  50 #ifdef PRODUCT
  51 #define BLOCK_COMMENT(str) /* nothing */
  52 #define STOP(error) stop(error)
  53 #else
  54 #define BLOCK_COMMENT(str) block_comment(str)
  55 #define STOP(error) block_comment(error); stop(error)
  56 #endif
  57 
  58 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  59 
  60 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  61 
  62 #ifdef ASSERT
  63 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  64 #endif
  65 
  66 static Assembler::Condition reverse[] = {
  67     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  68     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  69     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  70     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  71     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  72     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  73     Assembler::above          /* belowEqual    = 0x6 */ ,
  74     Assembler::belowEqual     /* above         = 0x7 */ ,
  75     Assembler::positive       /* negative      = 0x8 */ ,
  76     Assembler::negative       /* positive      = 0x9 */ ,
  77     Assembler::noParity       /* parity        = 0xa */ ,
  78     Assembler::parity         /* noParity      = 0xb */ ,
  79     Assembler::greaterEqual   /* less          = 0xc */ ,
  80     Assembler::less           /* greaterEqual  = 0xd */ ,
  81     Assembler::greater        /* lessEqual     = 0xe */ ,
  82     Assembler::lessEqual      /* greater       = 0xf, */
  83 
  84 };
  85 
  86 
  87 // Implementation of MacroAssembler
  88 
  89 // First all the versions that have distinct versions depending on 32/64 bit
  90 // Unless the difference is trivial (1 line or so).
  91 
  92 #ifndef _LP64
  93 
  94 // 32bit versions
  95 
  96 Address MacroAssembler::as_Address(AddressLiteral adr) {
  97   return Address(adr.target(), adr.rspec());
  98 }
  99 
 100 Address MacroAssembler::as_Address(ArrayAddress adr) {
 101   return Address::make_array(adr);
 102 }
 103 
 104 void MacroAssembler::call_VM_leaf_base(address entry_point,
 105                                        int number_of_arguments) {
 106   call(RuntimeAddress(entry_point));
 107   increment(rsp, number_of_arguments * wordSize);
 108 }
 109 
 110 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 111   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 112 }
 113 
 114 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 115   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 116 }
 117 
 118 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 119   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 120 }
 121 
 122 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 123   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 124 }
 125 
 126 void MacroAssembler::extend_sign(Register hi, Register lo) {
 127   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 128   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 129     cdql();
 130   } else {
 131     movl(hi, lo);
 132     sarl(hi, 31);
 133   }
 134 }
 135 
 136 void MacroAssembler::jC2(Register tmp, Label& L) {
 137   // set parity bit if FPU flag C2 is set (via rax)
 138   save_rax(tmp);
 139   fwait(); fnstsw_ax();
 140   sahf();
 141   restore_rax(tmp);
 142   // branch
 143   jcc(Assembler::parity, L);
 144 }
 145 
 146 void MacroAssembler::jnC2(Register tmp, Label& L) {
 147   // set parity bit if FPU flag C2 is set (via rax)
 148   save_rax(tmp);
 149   fwait(); fnstsw_ax();
 150   sahf();
 151   restore_rax(tmp);
 152   // branch
 153   jcc(Assembler::noParity, L);
 154 }
 155 
 156 // 32bit can do a case table jump in one instruction but we no longer allow the base
 157 // to be installed in the Address class
 158 void MacroAssembler::jump(ArrayAddress entry) {
 159   jmp(as_Address(entry));
 160 }
 161 
 162 // Note: y_lo will be destroyed
 163 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 164   // Long compare for Java (semantics as described in JVM spec.)
 165   Label high, low, done;
 166 
 167   cmpl(x_hi, y_hi);
 168   jcc(Assembler::less, low);
 169   jcc(Assembler::greater, high);
 170   // x_hi is the return register
 171   xorl(x_hi, x_hi);
 172   cmpl(x_lo, y_lo);
 173   jcc(Assembler::below, low);
 174   jcc(Assembler::equal, done);
 175 
 176   bind(high);
 177   xorl(x_hi, x_hi);
 178   increment(x_hi);
 179   jmp(done);
 180 
 181   bind(low);
 182   xorl(x_hi, x_hi);
 183   decrementl(x_hi);
 184 
 185   bind(done);
 186 }
 187 
 188 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 189     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 190 }
 191 
 192 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 193   // leal(dst, as_Address(adr));
 194   // see note in movl as to why we must use a move
 195   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 196 }
 197 
 198 void MacroAssembler::leave() {
 199   mov(rsp, rbp);
 200   pop(rbp);
 201 }
 202 
 203 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 204   // Multiplication of two Java long values stored on the stack
 205   // as illustrated below. Result is in rdx:rax.
 206   //
 207   // rsp ---> [  ??  ] \               \
 208   //            ....    | y_rsp_offset  |
 209   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 210   //          [ y_hi ]                  | (in bytes)
 211   //            ....                    |
 212   //          [ x_lo ]                 /
 213   //          [ x_hi ]
 214   //            ....
 215   //
 216   // Basic idea: lo(result) = lo(x_lo * y_lo)
 217   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 218   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 219   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 220   Label quick;
 221   // load x_hi, y_hi and check if quick
 222   // multiplication is possible
 223   movl(rbx, x_hi);
 224   movl(rcx, y_hi);
 225   movl(rax, rbx);
 226   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 227   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 228   // do full multiplication
 229   // 1st step
 230   mull(y_lo);                                    // x_hi * y_lo
 231   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 232   // 2nd step
 233   movl(rax, x_lo);
 234   mull(rcx);                                     // x_lo * y_hi
 235   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 236   // 3rd step
 237   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 238   movl(rax, x_lo);
 239   mull(y_lo);                                    // x_lo * y_lo
 240   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 241 }
 242 
 243 void MacroAssembler::lneg(Register hi, Register lo) {
 244   negl(lo);
 245   adcl(hi, 0);
 246   negl(hi);
 247 }
 248 
 249 void MacroAssembler::lshl(Register hi, Register lo) {
 250   // Java shift left long support (semantics as described in JVM spec., p.305)
 251   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 252   // shift value is in rcx !
 253   assert(hi != rcx, "must not use rcx");
 254   assert(lo != rcx, "must not use rcx");
 255   const Register s = rcx;                        // shift count
 256   const int      n = BitsPerWord;
 257   Label L;
 258   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 259   cmpl(s, n);                                    // if (s < n)
 260   jcc(Assembler::less, L);                       // else (s >= n)
 261   movl(hi, lo);                                  // x := x << n
 262   xorl(lo, lo);
 263   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 264   bind(L);                                       // s (mod n) < n
 265   shldl(hi, lo);                                 // x := x << s
 266   shll(lo);
 267 }
 268 
 269 
 270 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 271   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 272   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 273   assert(hi != rcx, "must not use rcx");
 274   assert(lo != rcx, "must not use rcx");
 275   const Register s = rcx;                        // shift count
 276   const int      n = BitsPerWord;
 277   Label L;
 278   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 279   cmpl(s, n);                                    // if (s < n)
 280   jcc(Assembler::less, L);                       // else (s >= n)
 281   movl(lo, hi);                                  // x := x >> n
 282   if (sign_extension) sarl(hi, 31);
 283   else                xorl(hi, hi);
 284   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 285   bind(L);                                       // s (mod n) < n
 286   shrdl(lo, hi);                                 // x := x >> s
 287   if (sign_extension) sarl(hi);
 288   else                shrl(hi);
 289 }
 290 
 291 void MacroAssembler::movoop(Register dst, jobject obj) {
 292   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 293 }
 294 
 295 void MacroAssembler::movoop(Address dst, jobject obj) {
 296   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 297 }
 298 
 299 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 300   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 301 }
 302 
 303 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 304   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 305 }
 306 
 307 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 308   // scratch register is not used,
 309   // it is defined to match parameters of 64-bit version of this method.
 310   if (src.is_lval()) {
 311     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 312   } else {
 313     movl(dst, as_Address(src));
 314   }
 315 }
 316 
 317 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 318   movl(as_Address(dst), src);
 319 }
 320 
 321 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 322   movl(dst, as_Address(src));
 323 }
 324 
 325 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 326 void MacroAssembler::movptr(Address dst, intptr_t src) {
 327   movl(dst, src);
 328 }
 329 
 330 
 331 void MacroAssembler::pop_callee_saved_registers() {
 332   pop(rcx);
 333   pop(rdx);
 334   pop(rdi);
 335   pop(rsi);
 336 }
 337 
 338 void MacroAssembler::pop_fTOS() {
 339   fld_d(Address(rsp, 0));
 340   addl(rsp, 2 * wordSize);
 341 }
 342 
 343 void MacroAssembler::push_callee_saved_registers() {
 344   push(rsi);
 345   push(rdi);
 346   push(rdx);
 347   push(rcx);
 348 }
 349 
 350 void MacroAssembler::push_fTOS() {
 351   subl(rsp, 2 * wordSize);
 352   fstp_d(Address(rsp, 0));
 353 }
 354 
 355 
 356 void MacroAssembler::pushoop(jobject obj) {
 357   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 358 }
 359 
 360 void MacroAssembler::pushklass(Metadata* obj) {
 361   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 362 }
 363 
 364 void MacroAssembler::pushptr(AddressLiteral src) {
 365   if (src.is_lval()) {
 366     push_literal32((int32_t)src.target(), src.rspec());
 367   } else {
 368     pushl(as_Address(src));
 369   }
 370 }
 371 
 372 void MacroAssembler::set_word_if_not_zero(Register dst) {
 373   xorl(dst, dst);
 374   set_byte_if_not_zero(dst);
 375 }
 376 
 377 static void pass_arg0(MacroAssembler* masm, Register arg) {
 378   masm->push(arg);
 379 }
 380 
 381 static void pass_arg1(MacroAssembler* masm, Register arg) {
 382   masm->push(arg);
 383 }
 384 
 385 static void pass_arg2(MacroAssembler* masm, Register arg) {
 386   masm->push(arg);
 387 }
 388 
 389 static void pass_arg3(MacroAssembler* masm, Register arg) {
 390   masm->push(arg);
 391 }
 392 
 393 #ifndef PRODUCT
 394 extern "C" void findpc(intptr_t x);
 395 #endif
 396 
 397 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 398   // In order to get locks to work, we need to fake a in_VM state
 399   JavaThread* thread = JavaThread::current();
 400   JavaThreadState saved_state = thread->thread_state();
 401   thread->set_thread_state(_thread_in_vm);
 402   if (ShowMessageBoxOnError) {
 403     JavaThread* thread = JavaThread::current();
 404     JavaThreadState saved_state = thread->thread_state();
 405     thread->set_thread_state(_thread_in_vm);
 406     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 407       ttyLocker ttyl;
 408       BytecodeCounter::print();
 409     }
 410     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 411     // This is the value of eip which points to where verify_oop will return.
 412     if (os::message_box(msg, "Execution stopped, print registers?")) {
 413       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 414       BREAKPOINT;
 415     }
 416   } else {
 417     ttyLocker ttyl;
 418     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 419   }
 420   // Don't assert holding the ttyLock
 421     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 422   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 423 }
 424 
 425 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 426   ttyLocker ttyl;
 427   FlagSetting fs(Debugging, true);
 428   tty->print_cr("eip = 0x%08x", eip);
 429 #ifndef PRODUCT
 430   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 431     tty->cr();
 432     findpc(eip);
 433     tty->cr();
 434   }
 435 #endif
 436 #define PRINT_REG(rax) \
 437   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 438   PRINT_REG(rax);
 439   PRINT_REG(rbx);
 440   PRINT_REG(rcx);
 441   PRINT_REG(rdx);
 442   PRINT_REG(rdi);
 443   PRINT_REG(rsi);
 444   PRINT_REG(rbp);
 445   PRINT_REG(rsp);
 446 #undef PRINT_REG
 447   // Print some words near top of staack.
 448   int* dump_sp = (int*) rsp;
 449   for (int col1 = 0; col1 < 8; col1++) {
 450     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 451     os::print_location(tty, *dump_sp++);
 452   }
 453   for (int row = 0; row < 16; row++) {
 454     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 455     for (int col = 0; col < 8; col++) {
 456       tty->print(" 0x%08x", *dump_sp++);
 457     }
 458     tty->cr();
 459   }
 460   // Print some instructions around pc:
 461   Disassembler::decode((address)eip-64, (address)eip);
 462   tty->print_cr("--------");
 463   Disassembler::decode((address)eip, (address)eip+32);
 464 }
 465 
 466 void MacroAssembler::stop(const char* msg) {
 467   ExternalAddress message((address)msg);
 468   // push address of message
 469   pushptr(message.addr());
 470   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 471   pusha();                                            // push registers
 472   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 473   hlt();
 474 }
 475 
 476 void MacroAssembler::warn(const char* msg) {
 477   push_CPU_state();
 478 
 479   ExternalAddress message((address) msg);
 480   // push address of message
 481   pushptr(message.addr());
 482 
 483   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 484   addl(rsp, wordSize);       // discard argument
 485   pop_CPU_state();
 486 }
 487 
 488 void MacroAssembler::print_state() {
 489   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 490   pusha();                                            // push registers
 491 
 492   push_CPU_state();
 493   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 494   pop_CPU_state();
 495 
 496   popa();
 497   addl(rsp, wordSize);
 498 }
 499 
 500 #else // _LP64
 501 
 502 // 64 bit versions
 503 
 504 Address MacroAssembler::as_Address(AddressLiteral adr) {
 505   // amd64 always does this as a pc-rel
 506   // we can be absolute or disp based on the instruction type
 507   // jmp/call are displacements others are absolute
 508   assert(!adr.is_lval(), "must be rval");
 509   assert(reachable(adr), "must be");
 510   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 511 
 512 }
 513 
 514 Address MacroAssembler::as_Address(ArrayAddress adr) {
 515   AddressLiteral base = adr.base();
 516   lea(rscratch1, base);
 517   Address index = adr.index();
 518   assert(index._disp == 0, "must not have disp"); // maybe it can?
 519   Address array(rscratch1, index._index, index._scale, index._disp);
 520   return array;
 521 }
 522 
 523 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 524   Label L, E;
 525 
 526 #ifdef _WIN64
 527   // Windows always allocates space for it's register args
 528   assert(num_args <= 4, "only register arguments supported");
 529   subq(rsp,  frame::arg_reg_save_area_bytes);
 530 #endif
 531 
 532   // Align stack if necessary
 533   testl(rsp, 15);
 534   jcc(Assembler::zero, L);
 535 
 536   subq(rsp, 8);
 537   {
 538     call(RuntimeAddress(entry_point));
 539   }
 540   addq(rsp, 8);
 541   jmp(E);
 542 
 543   bind(L);
 544   {
 545     call(RuntimeAddress(entry_point));
 546   }
 547 
 548   bind(E);
 549 
 550 #ifdef _WIN64
 551   // restore stack pointer
 552   addq(rsp, frame::arg_reg_save_area_bytes);
 553 #endif
 554 
 555 }
 556 
 557 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 558   assert(!src2.is_lval(), "should use cmpptr");
 559 
 560   if (reachable(src2)) {
 561     cmpq(src1, as_Address(src2));
 562   } else {
 563     lea(rscratch1, src2);
 564     Assembler::cmpq(src1, Address(rscratch1, 0));
 565   }
 566 }
 567 
 568 int MacroAssembler::corrected_idivq(Register reg) {
 569   // Full implementation of Java ldiv and lrem; checks for special
 570   // case as described in JVM spec., p.243 & p.271.  The function
 571   // returns the (pc) offset of the idivl instruction - may be needed
 572   // for implicit exceptions.
 573   //
 574   //         normal case                           special case
 575   //
 576   // input : rax: dividend                         min_long
 577   //         reg: divisor   (may not be eax/edx)   -1
 578   //
 579   // output: rax: quotient  (= rax idiv reg)       min_long
 580   //         rdx: remainder (= rax irem reg)       0
 581   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 582   static const int64_t min_long = 0x8000000000000000;
 583   Label normal_case, special_case;
 584 
 585   // check for special case
 586   cmp64(rax, ExternalAddress((address) &min_long));
 587   jcc(Assembler::notEqual, normal_case);
 588   xorl(rdx, rdx); // prepare rdx for possible special case (where
 589                   // remainder = 0)
 590   cmpq(reg, -1);
 591   jcc(Assembler::equal, special_case);
 592 
 593   // handle normal case
 594   bind(normal_case);
 595   cdqq();
 596   int idivq_offset = offset();
 597   idivq(reg);
 598 
 599   // normal and special case exit
 600   bind(special_case);
 601 
 602   return idivq_offset;
 603 }
 604 
 605 void MacroAssembler::decrementq(Register reg, int value) {
 606   if (value == min_jint) { subq(reg, value); return; }
 607   if (value <  0) { incrementq(reg, -value); return; }
 608   if (value == 0) {                        ; return; }
 609   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 610   /* else */      { subq(reg, value)       ; return; }
 611 }
 612 
 613 void MacroAssembler::decrementq(Address dst, int value) {
 614   if (value == min_jint) { subq(dst, value); return; }
 615   if (value <  0) { incrementq(dst, -value); return; }
 616   if (value == 0) {                        ; return; }
 617   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 618   /* else */      { subq(dst, value)       ; return; }
 619 }
 620 
 621 void MacroAssembler::incrementq(AddressLiteral dst) {
 622   if (reachable(dst)) {
 623     incrementq(as_Address(dst));
 624   } else {
 625     lea(rscratch1, dst);
 626     incrementq(Address(rscratch1, 0));
 627   }
 628 }
 629 
 630 void MacroAssembler::incrementq(Register reg, int value) {
 631   if (value == min_jint) { addq(reg, value); return; }
 632   if (value <  0) { decrementq(reg, -value); return; }
 633   if (value == 0) {                        ; return; }
 634   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 635   /* else */      { addq(reg, value)       ; return; }
 636 }
 637 
 638 void MacroAssembler::incrementq(Address dst, int value) {
 639   if (value == min_jint) { addq(dst, value); return; }
 640   if (value <  0) { decrementq(dst, -value); return; }
 641   if (value == 0) {                        ; return; }
 642   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 643   /* else */      { addq(dst, value)       ; return; }
 644 }
 645 
 646 // 32bit can do a case table jump in one instruction but we no longer allow the base
 647 // to be installed in the Address class
 648 void MacroAssembler::jump(ArrayAddress entry) {
 649   lea(rscratch1, entry.base());
 650   Address dispatch = entry.index();
 651   assert(dispatch._base == noreg, "must be");
 652   dispatch._base = rscratch1;
 653   jmp(dispatch);
 654 }
 655 
 656 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 657   ShouldNotReachHere(); // 64bit doesn't use two regs
 658   cmpq(x_lo, y_lo);
 659 }
 660 
 661 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 662     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 663 }
 664 
 665 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 666   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 667   movptr(dst, rscratch1);
 668 }
 669 
 670 void MacroAssembler::leave() {
 671   // %%% is this really better? Why not on 32bit too?
 672   emit_int8((unsigned char)0xC9); // LEAVE
 673 }
 674 
 675 void MacroAssembler::lneg(Register hi, Register lo) {
 676   ShouldNotReachHere(); // 64bit doesn't use two regs
 677   negq(lo);
 678 }
 679 
 680 void MacroAssembler::movoop(Register dst, jobject obj) {
 681   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 682 }
 683 
 684 void MacroAssembler::movoop(Address dst, jobject obj) {
 685   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 686   movq(dst, rscratch1);
 687 }
 688 
 689 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 690   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 691 }
 692 
 693 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 694   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 695   movq(dst, rscratch1);
 696 }
 697 
 698 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 699   if (src.is_lval()) {
 700     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 701   } else {
 702     if (reachable(src)) {
 703       movq(dst, as_Address(src));
 704     } else {
 705       lea(scratch, src);
 706       movq(dst, Address(scratch, 0));
 707     }
 708   }
 709 }
 710 
 711 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 712   movq(as_Address(dst), src);
 713 }
 714 
 715 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 716   movq(dst, as_Address(src));
 717 }
 718 
 719 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 720 void MacroAssembler::movptr(Address dst, intptr_t src) {
 721   mov64(rscratch1, src);
 722   movq(dst, rscratch1);
 723 }
 724 
 725 // These are mostly for initializing NULL
 726 void MacroAssembler::movptr(Address dst, int32_t src) {
 727   movslq(dst, src);
 728 }
 729 
 730 void MacroAssembler::movptr(Register dst, int32_t src) {
 731   mov64(dst, (intptr_t)src);
 732 }
 733 
 734 void MacroAssembler::pushoop(jobject obj) {
 735   movoop(rscratch1, obj);
 736   push(rscratch1);
 737 }
 738 
 739 void MacroAssembler::pushklass(Metadata* obj) {
 740   mov_metadata(rscratch1, obj);
 741   push(rscratch1);
 742 }
 743 
 744 void MacroAssembler::pushptr(AddressLiteral src) {
 745   lea(rscratch1, src);
 746   if (src.is_lval()) {
 747     push(rscratch1);
 748   } else {
 749     pushq(Address(rscratch1, 0));
 750   }
 751 }
 752 
 753 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 754   // we must set sp to zero to clear frame
 755   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 756   // must clear fp, so that compiled frames are not confused; it is
 757   // possible that we need it only for debugging
 758   if (clear_fp) {
 759     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 760   }
 761 
 762   // Always clear the pc because it could have been set by make_walkable()
 763   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 764 }
 765 
 766 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 767                                          Register last_java_fp,
 768                                          address  last_java_pc) {
 769   // determine last_java_sp register
 770   if (!last_java_sp->is_valid()) {
 771     last_java_sp = rsp;
 772   }
 773 
 774   // last_java_fp is optional
 775   if (last_java_fp->is_valid()) {
 776     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 777            last_java_fp);
 778   }
 779 
 780   // last_java_pc is optional
 781   if (last_java_pc != NULL) {
 782     Address java_pc(r15_thread,
 783                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 784     lea(rscratch1, InternalAddress(last_java_pc));
 785     movptr(java_pc, rscratch1);
 786   }
 787 
 788   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 789 }
 790 
 791 static void pass_arg0(MacroAssembler* masm, Register arg) {
 792   if (c_rarg0 != arg ) {
 793     masm->mov(c_rarg0, arg);
 794   }
 795 }
 796 
 797 static void pass_arg1(MacroAssembler* masm, Register arg) {
 798   if (c_rarg1 != arg ) {
 799     masm->mov(c_rarg1, arg);
 800   }
 801 }
 802 
 803 static void pass_arg2(MacroAssembler* masm, Register arg) {
 804   if (c_rarg2 != arg ) {
 805     masm->mov(c_rarg2, arg);
 806   }
 807 }
 808 
 809 static void pass_arg3(MacroAssembler* masm, Register arg) {
 810   if (c_rarg3 != arg ) {
 811     masm->mov(c_rarg3, arg);
 812   }
 813 }
 814 
 815 void MacroAssembler::stop(const char* msg) {
 816   address rip = pc();
 817   pusha(); // get regs on stack
 818   lea(c_rarg0, ExternalAddress((address) msg));
 819   lea(c_rarg1, InternalAddress(rip));
 820   movq(c_rarg2, rsp); // pass pointer to regs array
 821   andq(rsp, -16); // align stack as required by ABI
 822   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 823   hlt();
 824 }
 825 
 826 void MacroAssembler::warn(const char* msg) {
 827   push(rbp);
 828   movq(rbp, rsp);
 829   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 830   push_CPU_state();   // keeps alignment at 16 bytes
 831   lea(c_rarg0, ExternalAddress((address) msg));
 832   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 833   pop_CPU_state();
 834   mov(rsp, rbp);
 835   pop(rbp);
 836 }
 837 
 838 void MacroAssembler::print_state() {
 839   address rip = pc();
 840   pusha();            // get regs on stack
 841   push(rbp);
 842   movq(rbp, rsp);
 843   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 844   push_CPU_state();   // keeps alignment at 16 bytes
 845 
 846   lea(c_rarg0, InternalAddress(rip));
 847   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 848   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 849 
 850   pop_CPU_state();
 851   mov(rsp, rbp);
 852   pop(rbp);
 853   popa();
 854 }
 855 
 856 #ifndef PRODUCT
 857 extern "C" void findpc(intptr_t x);
 858 #endif
 859 
 860 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 861   // In order to get locks to work, we need to fake a in_VM state
 862   if (ShowMessageBoxOnError) {
 863     JavaThread* thread = JavaThread::current();
 864     JavaThreadState saved_state = thread->thread_state();
 865     thread->set_thread_state(_thread_in_vm);
 866 #ifndef PRODUCT
 867     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 868       ttyLocker ttyl;
 869       BytecodeCounter::print();
 870     }
 871 #endif
 872     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 873     // XXX correct this offset for amd64
 874     // This is the value of eip which points to where verify_oop will return.
 875     if (os::message_box(msg, "Execution stopped, print registers?")) {
 876       print_state64(pc, regs);
 877       BREAKPOINT;
 878       assert(false, "start up GDB");
 879     }
 880     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 881   } else {
 882     ttyLocker ttyl;
 883     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 884                     msg);
 885     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 886   }
 887 }
 888 
 889 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 890   ttyLocker ttyl;
 891   FlagSetting fs(Debugging, true);
 892   tty->print_cr("rip = 0x%016lx", pc);
 893 #ifndef PRODUCT
 894   tty->cr();
 895   findpc(pc);
 896   tty->cr();
 897 #endif
 898 #define PRINT_REG(rax, value) \
 899   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 900   PRINT_REG(rax, regs[15]);
 901   PRINT_REG(rbx, regs[12]);
 902   PRINT_REG(rcx, regs[14]);
 903   PRINT_REG(rdx, regs[13]);
 904   PRINT_REG(rdi, regs[8]);
 905   PRINT_REG(rsi, regs[9]);
 906   PRINT_REG(rbp, regs[10]);
 907   PRINT_REG(rsp, regs[11]);
 908   PRINT_REG(r8 , regs[7]);
 909   PRINT_REG(r9 , regs[6]);
 910   PRINT_REG(r10, regs[5]);
 911   PRINT_REG(r11, regs[4]);
 912   PRINT_REG(r12, regs[3]);
 913   PRINT_REG(r13, regs[2]);
 914   PRINT_REG(r14, regs[1]);
 915   PRINT_REG(r15, regs[0]);
 916 #undef PRINT_REG
 917   // Print some words near top of staack.
 918   int64_t* rsp = (int64_t*) regs[11];
 919   int64_t* dump_sp = rsp;
 920   for (int col1 = 0; col1 < 8; col1++) {
 921     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 922     os::print_location(tty, *dump_sp++);
 923   }
 924   for (int row = 0; row < 25; row++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     for (int col = 0; col < 4; col++) {
 927       tty->print(" 0x%016lx", *dump_sp++);
 928     }
 929     tty->cr();
 930   }
 931   // Print some instructions around pc:
 932   Disassembler::decode((address)pc-64, (address)pc);
 933   tty->print_cr("--------");
 934   Disassembler::decode((address)pc, (address)pc+32);
 935 }
 936 
 937 #endif // _LP64
 938 
 939 // Now versions that are common to 32/64 bit
 940 
 941 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 942   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 943 }
 944 
 945 void MacroAssembler::addptr(Register dst, Register src) {
 946   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 947 }
 948 
 949 void MacroAssembler::addptr(Address dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 954   if (reachable(src)) {
 955     Assembler::addsd(dst, as_Address(src));
 956   } else {
 957     lea(rscratch1, src);
 958     Assembler::addsd(dst, Address(rscratch1, 0));
 959   }
 960 }
 961 
 962 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 963   if (reachable(src)) {
 964     addss(dst, as_Address(src));
 965   } else {
 966     lea(rscratch1, src);
 967     addss(dst, Address(rscratch1, 0));
 968   }
 969 }
 970 
 971 void MacroAssembler::align(int modulus) {
 972   if (offset() % modulus != 0) {
 973     nop(modulus - (offset() % modulus));
 974   }
 975 }
 976 
 977 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 978   // Used in sign-masking with aligned address.
 979   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 980   if (reachable(src)) {
 981     Assembler::andpd(dst, as_Address(src));
 982   } else {
 983     lea(rscratch1, src);
 984     Assembler::andpd(dst, Address(rscratch1, 0));
 985   }
 986 }
 987 
 988 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
 989   // Used in sign-masking with aligned address.
 990   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 991   if (reachable(src)) {
 992     Assembler::andps(dst, as_Address(src));
 993   } else {
 994     lea(rscratch1, src);
 995     Assembler::andps(dst, Address(rscratch1, 0));
 996   }
 997 }
 998 
 999 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1000   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1001 }
1002 
1003 void MacroAssembler::atomic_incl(Address counter_addr) {
1004   if (os::is_MP())
1005     lock();
1006   incrementl(counter_addr);
1007 }
1008 
1009 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1010   if (reachable(counter_addr)) {
1011     atomic_incl(as_Address(counter_addr));
1012   } else {
1013     lea(scr, counter_addr);
1014     atomic_incl(Address(scr, 0));
1015   }
1016 }
1017 
1018 #ifdef _LP64
1019 void MacroAssembler::atomic_incq(Address counter_addr) {
1020   if (os::is_MP())
1021     lock();
1022   incrementq(counter_addr);
1023 }
1024 
1025 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1026   if (reachable(counter_addr)) {
1027     atomic_incq(as_Address(counter_addr));
1028   } else {
1029     lea(scr, counter_addr);
1030     atomic_incq(Address(scr, 0));
1031   }
1032 }
1033 #endif
1034 
1035 // Writes to stack successive pages until offset reached to check for
1036 // stack overflow + shadow pages.  This clobbers tmp.
1037 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1038   movptr(tmp, rsp);
1039   // Bang stack for total size given plus shadow page size.
1040   // Bang one page at a time because large size can bang beyond yellow and
1041   // red zones.
1042   Label loop;
1043   bind(loop);
1044   movl(Address(tmp, (-os::vm_page_size())), size );
1045   subptr(tmp, os::vm_page_size());
1046   subl(size, os::vm_page_size());
1047   jcc(Assembler::greater, loop);
1048 
1049   // Bang down shadow pages too.
1050   // At this point, (tmp-0) is the last address touched, so don't
1051   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1052   // was post-decremented.)  Skip this address by starting at i=1, and
1053   // touch a few more pages below.  N.B.  It is important to touch all
1054   // the way down to and including i=StackShadowPages.
1055   for (int i = 1; i < StackShadowPages; i++) {
1056     // this could be any sized move but this is can be a debugging crumb
1057     // so the bigger the better.
1058     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1059   }
1060 }
1061 
1062 int MacroAssembler::biased_locking_enter(Register lock_reg,
1063                                          Register obj_reg,
1064                                          Register swap_reg,
1065                                          Register tmp_reg,
1066                                          bool swap_reg_contains_mark,
1067                                          Label& done,
1068                                          Label* slow_case,
1069                                          BiasedLockingCounters* counters) {
1070   assert(UseBiasedLocking, "why call this otherwise?");
1071   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1072   LP64_ONLY( assert(tmp_reg != noreg, "tmp_reg must be supplied"); )
1073   bool need_tmp_reg = false;
1074   if (tmp_reg == noreg) {
1075     need_tmp_reg = true;
1076     tmp_reg = lock_reg;
1077     assert_different_registers(lock_reg, obj_reg, swap_reg);
1078   } else {
1079     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1080   }
1081   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1082   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1083   Address saved_mark_addr(lock_reg, 0);
1084 
1085   if (PrintBiasedLockingStatistics && counters == NULL) {
1086     counters = BiasedLocking::counters();
1087   }
1088   // Biased locking
1089   // See whether the lock is currently biased toward our thread and
1090   // whether the epoch is still valid
1091   // Note that the runtime guarantees sufficient alignment of JavaThread
1092   // pointers to allow age to be placed into low bits
1093   // First check to see whether biasing is even enabled for this object
1094   Label cas_label;
1095   int null_check_offset = -1;
1096   if (!swap_reg_contains_mark) {
1097     null_check_offset = offset();
1098     movptr(swap_reg, mark_addr);
1099   }
1100   if (need_tmp_reg) {
1101     push(tmp_reg);
1102   }
1103   movptr(tmp_reg, swap_reg);
1104   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1105   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1106   if (need_tmp_reg) {
1107     pop(tmp_reg);
1108   }
1109   jcc(Assembler::notEqual, cas_label);
1110   // The bias pattern is present in the object's header. Need to check
1111   // whether the bias owner and the epoch are both still current.
1112 #ifndef _LP64
1113   // Note that because there is no current thread register on x86_32 we
1114   // need to store off the mark word we read out of the object to
1115   // avoid reloading it and needing to recheck invariants below. This
1116   // store is unfortunate but it makes the overall code shorter and
1117   // simpler.
1118   movptr(saved_mark_addr, swap_reg);
1119 #endif
1120   if (need_tmp_reg) {
1121     push(tmp_reg);
1122   }
1123   if (swap_reg_contains_mark) {
1124     null_check_offset = offset();
1125   }
1126   load_prototype_header(tmp_reg, obj_reg);
1127 #ifdef _LP64
1128   orptr(tmp_reg, r15_thread);
1129   xorptr(tmp_reg, swap_reg);
1130   Register header_reg = tmp_reg;
1131 #else
1132   xorptr(tmp_reg, swap_reg);
1133   get_thread(swap_reg);
1134   xorptr(swap_reg, tmp_reg);
1135   Register header_reg = swap_reg;
1136 #endif
1137   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1138   if (need_tmp_reg) {
1139     pop(tmp_reg);
1140   }
1141   if (counters != NULL) {
1142     cond_inc32(Assembler::zero,
1143                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1144   }
1145   jcc(Assembler::equal, done);
1146 
1147   Label try_revoke_bias;
1148   Label try_rebias;
1149 
1150   // At this point we know that the header has the bias pattern and
1151   // that we are not the bias owner in the current epoch. We need to
1152   // figure out more details about the state of the header in order to
1153   // know what operations can be legally performed on the object's
1154   // header.
1155 
1156   // If the low three bits in the xor result aren't clear, that means
1157   // the prototype header is no longer biased and we have to revoke
1158   // the bias on this object.
1159   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1160   jccb_if_possible(Assembler::notZero, try_revoke_bias);
1161 
1162   // Biasing is still enabled for this data type. See whether the
1163   // epoch of the current bias is still valid, meaning that the epoch
1164   // bits of the mark word are equal to the epoch bits of the
1165   // prototype header. (Note that the prototype header's epoch bits
1166   // only change at a safepoint.) If not, attempt to rebias the object
1167   // toward the current thread. Note that we must be absolutely sure
1168   // that the current epoch is invalid in order to do this because
1169   // otherwise the manipulations it performs on the mark word are
1170   // illegal.
1171   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1172   jccb_if_possible(Assembler::notZero, try_rebias);
1173 
1174   // The epoch of the current bias is still valid but we know nothing
1175   // about the owner; it might be set or it might be clear. Try to
1176   // acquire the bias of the object using an atomic operation. If this
1177   // fails we will go in to the runtime to revoke the object's bias.
1178   // Note that we first construct the presumed unbiased header so we
1179   // don't accidentally blow away another thread's valid bias.
1180   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1181   andptr(swap_reg,
1182          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1183   if (need_tmp_reg) {
1184     push(tmp_reg);
1185   }
1186 #ifdef _LP64
1187   movptr(tmp_reg, swap_reg);
1188   orptr(tmp_reg, r15_thread);
1189 #else
1190   get_thread(tmp_reg);
1191   orptr(tmp_reg, swap_reg);
1192 #endif
1193   if (os::is_MP()) {
1194     lock();
1195   }
1196   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1197   if (need_tmp_reg) {
1198     pop(tmp_reg);
1199   }
1200   // If the biasing toward our thread failed, this means that
1201   // another thread succeeded in biasing it toward itself and we
1202   // need to revoke that bias. The revocation will occur in the
1203   // interpreter runtime in the slow case.
1204   if (counters != NULL) {
1205     cond_inc32(Assembler::zero,
1206                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1207   }
1208   if (slow_case != NULL) {
1209     jcc(Assembler::notZero, *slow_case);
1210   }
1211   jmp(done);
1212 
1213   bind(try_rebias);
1214   // At this point we know the epoch has expired, meaning that the
1215   // current "bias owner", if any, is actually invalid. Under these
1216   // circumstances _only_, we are allowed to use the current header's
1217   // value as the comparison value when doing the cas to acquire the
1218   // bias in the current epoch. In other words, we allow transfer of
1219   // the bias from one thread to another directly in this situation.
1220   //
1221   // FIXME: due to a lack of registers we currently blow away the age
1222   // bits in this situation. Should attempt to preserve them.
1223   if (need_tmp_reg) {
1224     push(tmp_reg);
1225   }
1226   load_prototype_header(tmp_reg, obj_reg);
1227 #ifdef _LP64
1228   orptr(tmp_reg, r15_thread);
1229 #else
1230   get_thread(swap_reg);
1231   orptr(tmp_reg, swap_reg);
1232   movptr(swap_reg, saved_mark_addr);
1233 #endif
1234   if (os::is_MP()) {
1235     lock();
1236   }
1237   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1238   if (need_tmp_reg) {
1239     pop(tmp_reg);
1240   }
1241   // If the biasing toward our thread failed, then another thread
1242   // succeeded in biasing it toward itself and we need to revoke that
1243   // bias. The revocation will occur in the runtime in the slow case.
1244   if (counters != NULL) {
1245     cond_inc32(Assembler::zero,
1246                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1247   }
1248   if (slow_case != NULL) {
1249     jcc(Assembler::notZero, *slow_case);
1250   }
1251   jmp(done);
1252 
1253   bind(try_revoke_bias);
1254   // The prototype mark in the klass doesn't have the bias bit set any
1255   // more, indicating that objects of this data type are not supposed
1256   // to be biased any more. We are going to try to reset the mark of
1257   // this object to the prototype value and fall through to the
1258   // CAS-based locking scheme. Note that if our CAS fails, it means
1259   // that another thread raced us for the privilege of revoking the
1260   // bias of this particular object, so it's okay to continue in the
1261   // normal locking code.
1262   //
1263   // FIXME: due to a lack of registers we currently blow away the age
1264   // bits in this situation. Should attempt to preserve them.
1265   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1266   if (need_tmp_reg) {
1267     push(tmp_reg);
1268   }
1269   load_prototype_header(tmp_reg, obj_reg);
1270   if (os::is_MP()) {
1271     lock();
1272   }
1273   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1274   if (need_tmp_reg) {
1275     pop(tmp_reg);
1276   }
1277   // Fall through to the normal CAS-based lock, because no matter what
1278   // the result of the above CAS, some thread must have succeeded in
1279   // removing the bias bit from the object's header.
1280   if (counters != NULL) {
1281     cond_inc32(Assembler::zero,
1282                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1283   }
1284 
1285   bind(cas_label);
1286 
1287   return null_check_offset;
1288 }
1289 
1290 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1291   assert(UseBiasedLocking, "why call this otherwise?");
1292 
1293   // Check for biased locking unlock case, which is a no-op
1294   // Note: we do not have to check the thread ID for two reasons.
1295   // First, the interpreter checks for IllegalMonitorStateException at
1296   // a higher level. Second, if the bias was revoked while we held the
1297   // lock, the object could not be rebiased toward another thread, so
1298   // the bias bit would be clear.
1299   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1300   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1301   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1302   jcc(Assembler::equal, done);
1303 }
1304 
1305 #ifdef COMPILER2
1306 
1307 #if INCLUDE_RTM_OPT
1308 
1309 // Update rtm_counters based on abort status
1310 // input: abort_status
1311 //        rtm_counters (RTMLockingCounters*)
1312 // flags are killed
1313 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1314 
1315   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1316   if (PrintPreciseRTMLockingStatistics) {
1317     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1318       Label check_abort;
1319       testl(abort_status, (1<<i));
1320       jccb(Assembler::equal, check_abort);
1321       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1322       bind(check_abort);
1323     }
1324   }
1325 }
1326 
1327 // Branch if (random & (count-1) != 0), count is 2^n
1328 // tmp, scr and flags are killed
1329 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1330   assert(tmp == rax, "");
1331   assert(scr == rdx, "");
1332   rdtsc(); // modifies EDX:EAX
1333   andptr(tmp, count-1);
1334   jccb(Assembler::notZero, brLabel);
1335 }
1336 
1337 // Perform abort ratio calculation, set no_rtm bit if high ratio
1338 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1339 // tmpReg, rtm_counters_Reg and flags are killed
1340 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1341                                                  Register rtm_counters_Reg,
1342                                                  RTMLockingCounters* rtm_counters,
1343                                                  Metadata* method_data) {
1344   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1345 
1346   if (RTMLockingCalculationDelay > 0) {
1347     // Delay calculation
1348     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1349     testptr(tmpReg, tmpReg);
1350     jccb(Assembler::equal, L_done);
1351   }
1352   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1353   //   Aborted transactions = abort_count * 100
1354   //   All transactions = total_count *  RTMTotalCountIncrRate
1355   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1356 
1357   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1358   cmpptr(tmpReg, RTMAbortThreshold);
1359   jccb(Assembler::below, L_check_always_rtm2);
1360   imulptr(tmpReg, tmpReg, 100);
1361 
1362   Register scrReg = rtm_counters_Reg;
1363   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1364   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1365   imulptr(scrReg, scrReg, RTMAbortRatio);
1366   cmpptr(tmpReg, scrReg);
1367   jccb(Assembler::below, L_check_always_rtm1);
1368   if (method_data != NULL) {
1369     // set rtm_state to "no rtm" in MDO
1370     mov_metadata(tmpReg, method_data);
1371     if (os::is_MP()) {
1372       lock();
1373     }
1374     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1375   }
1376   jmpb(L_done);
1377   bind(L_check_always_rtm1);
1378   // Reload RTMLockingCounters* address
1379   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1380   bind(L_check_always_rtm2);
1381   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1382   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1383   jccb(Assembler::below, L_done);
1384   if (method_data != NULL) {
1385     // set rtm_state to "always rtm" in MDO
1386     mov_metadata(tmpReg, method_data);
1387     if (os::is_MP()) {
1388       lock();
1389     }
1390     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1391   }
1392   bind(L_done);
1393 }
1394 
1395 // Update counters and perform abort ratio calculation
1396 // input:  abort_status_Reg
1397 // rtm_counters_Reg, flags are killed
1398 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1399                                    Register rtm_counters_Reg,
1400                                    RTMLockingCounters* rtm_counters,
1401                                    Metadata* method_data,
1402                                    bool profile_rtm) {
1403 
1404   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1405   // update rtm counters based on rax value at abort
1406   // reads abort_status_Reg, updates flags
1407   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1408   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1409   if (profile_rtm) {
1410     // Save abort status because abort_status_Reg is used by following code.
1411     if (RTMRetryCount > 0) {
1412       push(abort_status_Reg);
1413     }
1414     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1415     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1416     // restore abort status
1417     if (RTMRetryCount > 0) {
1418       pop(abort_status_Reg);
1419     }
1420   }
1421 }
1422 
1423 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1424 // inputs: retry_count_Reg
1425 //       : abort_status_Reg
1426 // output: retry_count_Reg decremented by 1
1427 // flags are killed
1428 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1429   Label doneRetry;
1430   assert(abort_status_Reg == rax, "");
1431   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1432   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1433   // if reason is in 0x6 and retry count != 0 then retry
1434   andptr(abort_status_Reg, 0x6);
1435   jccb(Assembler::zero, doneRetry);
1436   testl(retry_count_Reg, retry_count_Reg);
1437   jccb(Assembler::zero, doneRetry);
1438   pause();
1439   decrementl(retry_count_Reg);
1440   jmp(retryLabel);
1441   bind(doneRetry);
1442 }
1443 
1444 // Spin and retry if lock is busy,
1445 // inputs: box_Reg (monitor address)
1446 //       : retry_count_Reg
1447 // output: retry_count_Reg decremented by 1
1448 //       : clear z flag if retry count exceeded
1449 // tmp_Reg, scr_Reg, flags are killed
1450 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1451                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1452   Label SpinLoop, SpinExit, doneRetry;
1453   // Clean monitor_value bit to get valid pointer
1454   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
1455 
1456   testl(retry_count_Reg, retry_count_Reg);
1457   jccb(Assembler::zero, doneRetry);
1458   decrementl(retry_count_Reg);
1459   movptr(scr_Reg, RTMSpinLoopCount);
1460 
1461   bind(SpinLoop);
1462   pause();
1463   decrementl(scr_Reg);
1464   jccb(Assembler::lessEqual, SpinExit);
1465   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1466   testptr(tmp_Reg, tmp_Reg);
1467   jccb(Assembler::notZero, SpinLoop);
1468 
1469   bind(SpinExit);
1470   jmp(retryLabel);
1471   bind(doneRetry);
1472   incrementl(retry_count_Reg); // clear z flag
1473 }
1474 
1475 // Use RTM for normal stack locks
1476 // Input: objReg (object to lock)
1477 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1478                                        Register retry_on_abort_count_Reg,
1479                                        RTMLockingCounters* stack_rtm_counters,
1480                                        Metadata* method_data, bool profile_rtm,
1481                                        Label& DONE_LABEL, Label& IsInflated) {
1482   assert(UseRTMForStackLocks, "why call this otherwise?");
1483   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1484   assert(tmpReg == rax, "");
1485   assert(scrReg == rdx, "");
1486   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1487 
1488   if (RTMRetryCount > 0) {
1489     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1490     bind(L_rtm_retry);
1491   }
1492   movptr(tmpReg, Address(objReg, 0));
1493   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1494   jcc(Assembler::notZero, IsInflated);
1495 
1496   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1497     Label L_noincrement;
1498     if (RTMTotalCountIncrRate > 1) {
1499       // tmpReg, scrReg and flags are killed
1500       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1501     }
1502     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1503     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1504     bind(L_noincrement);
1505   }
1506   xbegin(L_on_abort);
1507   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1508   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1509   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1510   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1511 
1512   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1513   if (UseRTMXendForLockBusy) {
1514     xend();
1515     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1516     jmp(L_decrement_retry);
1517   }
1518   else {
1519     xabort(0);
1520   }
1521   bind(L_on_abort);
1522   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1523     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1524   }
1525   bind(L_decrement_retry);
1526   if (RTMRetryCount > 0) {
1527     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1528     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1529   }
1530 }
1531 
1532 // Use RTM for inflating locks
1533 // inputs: objReg (object to lock)
1534 //         boxReg (on-stack box address (displaced header location) - KILLED)
1535 //         tmpReg (ObjectMonitor address + 2(monitor_value))
1536 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1537                                           Register scrReg, Register retry_on_busy_count_Reg,
1538                                           Register retry_on_abort_count_Reg,
1539                                           RTMLockingCounters* rtm_counters,
1540                                           Metadata* method_data, bool profile_rtm,
1541                                           Label& DONE_LABEL) {
1542   assert(UseRTMLocking, "why call this otherwise?");
1543   assert(tmpReg == rax, "");
1544   assert(scrReg == rdx, "");
1545   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1546   // Clean monitor_value bit to get valid pointer
1547   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
1548 
1549   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1550   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1551   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1552 
1553   if (RTMRetryCount > 0) {
1554     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1555     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1556     bind(L_rtm_retry);
1557   }
1558   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1559     Label L_noincrement;
1560     if (RTMTotalCountIncrRate > 1) {
1561       // tmpReg, scrReg and flags are killed
1562       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1563     }
1564     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1565     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1566     bind(L_noincrement);
1567   }
1568   xbegin(L_on_abort);
1569   movptr(tmpReg, Address(objReg, 0));
1570   movptr(tmpReg, Address(tmpReg, owner_offset));
1571   testptr(tmpReg, tmpReg);
1572   jcc(Assembler::zero, DONE_LABEL);
1573   if (UseRTMXendForLockBusy) {
1574     xend();
1575     jmp(L_decrement_retry);
1576   }
1577   else {
1578     xabort(0);
1579   }
1580   bind(L_on_abort);
1581   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1582   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1583     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1584   }
1585   if (RTMRetryCount > 0) {
1586     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1587     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1588   }
1589 
1590   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1591   testptr(tmpReg, tmpReg) ;
1592   jccb(Assembler::notZero, L_decrement_retry) ;
1593 
1594   // Appears unlocked - try to swing _owner from null to non-null.
1595   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1596 #ifdef _LP64
1597   Register threadReg = r15_thread;
1598 #else
1599   get_thread(scrReg);
1600   Register threadReg = scrReg;
1601 #endif
1602   if (os::is_MP()) {
1603     lock();
1604   }
1605   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1606 
1607   if (RTMRetryCount > 0) {
1608     // success done else retry
1609     jccb(Assembler::equal, DONE_LABEL) ;
1610     bind(L_decrement_retry);
1611     // Spin and retry if lock is busy.
1612     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1613   }
1614   else {
1615     bind(L_decrement_retry);
1616   }
1617 }
1618 
1619 #endif //  INCLUDE_RTM_OPT
1620 
1621 // Fast_Lock and Fast_Unlock used by C2
1622 
1623 // Because the transitions from emitted code to the runtime
1624 // monitorenter/exit helper stubs are so slow it's critical that
1625 // we inline both the stack-locking fast-path and the inflated fast path.
1626 //
1627 // See also: cmpFastLock and cmpFastUnlock.
1628 //
1629 // What follows is a specialized inline transliteration of the code
1630 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1631 // another option would be to emit TrySlowEnter and TrySlowExit methods
1632 // at startup-time.  These methods would accept arguments as
1633 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1634 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1635 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1636 // In practice, however, the # of lock sites is bounded and is usually small.
1637 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1638 // if the processor uses simple bimodal branch predictors keyed by EIP
1639 // Since the helper routines would be called from multiple synchronization
1640 // sites.
1641 //
1642 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1643 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1644 // to those specialized methods.  That'd give us a mostly platform-independent
1645 // implementation that the JITs could optimize and inline at their pleasure.
1646 // Done correctly, the only time we'd need to cross to native could would be
1647 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1648 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1649 // (b) explicit barriers or fence operations.
1650 //
1651 // TODO:
1652 //
1653 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1654 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1655 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1656 //    the lock operators would typically be faster than reifying Self.
1657 //
1658 // *  Ideally I'd define the primitives as:
1659 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1660 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1661 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1662 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1663 //    Furthermore the register assignments are overconstrained, possibly resulting in
1664 //    sub-optimal code near the synchronization site.
1665 //
1666 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1667 //    Alternately, use a better sp-proximity test.
1668 //
1669 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1670 //    Either one is sufficient to uniquely identify a thread.
1671 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1672 //
1673 // *  Intrinsify notify() and notifyAll() for the common cases where the
1674 //    object is locked by the calling thread but the waitlist is empty.
1675 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1676 //
1677 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1678 //    But beware of excessive branch density on AMD Opterons.
1679 //
1680 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1681 //    or failure of the fast-path.  If the fast-path fails then we pass
1682 //    control to the slow-path, typically in C.  In Fast_Lock and
1683 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1684 //    will emit a conditional branch immediately after the node.
1685 //    So we have branches to branches and lots of ICC.ZF games.
1686 //    Instead, it might be better to have C2 pass a "FailureLabel"
1687 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1688 //    will drop through the node.  ICC.ZF is undefined at exit.
1689 //    In the case of failure, the node will branch directly to the
1690 //    FailureLabel
1691 
1692 
1693 // obj: object to lock
1694 // box: on-stack box address (displaced header location) - KILLED
1695 // rax,: tmp -- KILLED
1696 // scr: tmp -- KILLED
1697 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1698                                Register scrReg, Register cx1Reg, Register cx2Reg,
1699                                BiasedLockingCounters* counters,
1700                                RTMLockingCounters* rtm_counters,
1701                                RTMLockingCounters* stack_rtm_counters,
1702                                Metadata* method_data,
1703                                bool use_rtm, bool profile_rtm) {
1704   // Ensure the register assignents are disjoint
1705   assert(tmpReg == rax, "");
1706 
1707   if (use_rtm) {
1708     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1709   } else {
1710     assert(cx1Reg == noreg, "");
1711     assert(cx2Reg == noreg, "");
1712     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1713   }
1714 
1715   if (counters != NULL) {
1716     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1717   }
1718   if (EmitSync & 1) {
1719       // set box->dhw = unused_mark (3)
1720       // Force all sync thru slow-path: slow_enter() and slow_exit()
1721       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1722       cmpptr (rsp, (int32_t)NULL_WORD);
1723   } else
1724   if (EmitSync & 2) {
1725       Label DONE_LABEL ;
1726       if (UseBiasedLocking) {
1727          // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
1728          biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1729       }
1730 
1731       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1732       orptr (tmpReg, 0x1);
1733       movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS
1734       if (os::is_MP()) {
1735         lock();
1736       }
1737       cmpxchgptr(boxReg, Address(objReg, 0));       // Updates tmpReg
1738       jccb(Assembler::equal, DONE_LABEL);
1739       // Recursive locking
1740       subptr(tmpReg, rsp);
1741       andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1742       movptr(Address(boxReg, 0), tmpReg);
1743       bind(DONE_LABEL);
1744   } else {
1745     // Possible cases that we'll encounter in fast_lock
1746     // ------------------------------------------------
1747     // * Inflated
1748     //    -- unlocked
1749     //    -- Locked
1750     //       = by self
1751     //       = by other
1752     // * biased
1753     //    -- by Self
1754     //    -- by other
1755     // * neutral
1756     // * stack-locked
1757     //    -- by self
1758     //       = sp-proximity test hits
1759     //       = sp-proximity test generates false-negative
1760     //    -- by other
1761     //
1762 
1763     Label IsInflated, DONE_LABEL;
1764 
1765     // it's stack-locked, biased or neutral
1766     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1767     // order to reduce the number of conditional branches in the most common cases.
1768     // Beware -- there's a subtle invariant that fetch of the markword
1769     // at [FETCH], below, will never observe a biased encoding (*101b).
1770     // If this invariant is not held we risk exclusion (safety) failure.
1771     if (UseBiasedLocking && !UseOptoBiasInlining) {
1772       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1773     }
1774 
1775 #if INCLUDE_RTM_OPT
1776     if (UseRTMForStackLocks && use_rtm) {
1777       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1778                         stack_rtm_counters, method_data, profile_rtm,
1779                         DONE_LABEL, IsInflated);
1780     }
1781 #endif // INCLUDE_RTM_OPT
1782 
1783     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1784     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1785     jccb_if_possible(Assembler::notZero, IsInflated);
1786 
1787     // Attempt stack-locking ...
1788     orptr (tmpReg, markOopDesc::unlocked_value);
1789     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1790     if (os::is_MP()) {
1791       lock();
1792     }
1793     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1794     if (counters != NULL) {
1795       cond_inc32(Assembler::equal,
1796                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1797     }
1798     jcc(Assembler::equal, DONE_LABEL);           // Success
1799 
1800     // Recursive locking.
1801     // The object is stack-locked: markword contains stack pointer to BasicLock.
1802     // Locked by current thread if difference with current SP is less than one page.
1803     subptr(tmpReg, rsp);
1804     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1805     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1806     movptr(Address(boxReg, 0), tmpReg);
1807     if (counters != NULL) {
1808       cond_inc32(Assembler::equal,
1809                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1810     }
1811     jmp(DONE_LABEL);
1812 
1813     bind(IsInflated);
1814     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + 2(monitor_value)
1815 
1816 #if INCLUDE_RTM_OPT
1817     // Use the same RTM locking code in 32- and 64-bit VM.
1818     if (use_rtm) {
1819       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1820                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1821     } else {
1822 #endif // INCLUDE_RTM_OPT
1823 
1824 #ifndef _LP64
1825     // The object is inflated.
1826     //
1827     // TODO-FIXME: eliminate the ugly use of manifest constants:
1828     //   Use markOopDesc::monitor_value instead of "2".
1829     //   use markOop::unused_mark() instead of "3".
1830     // The tmpReg value is an objectMonitor reference ORed with
1831     // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
1832     // objectmonitor pointer by masking off the "2" bit or we can just
1833     // use tmpReg as an objectmonitor pointer but bias the objectmonitor
1834     // field offsets with "-2" to compensate for and annul the low-order tag bit.
1835     //
1836     // I use the latter as it avoids AGI stalls.
1837     // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
1838     // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
1839     //
1840     #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
1841 
1842     // boxReg refers to the on-stack BasicLock in the current frame.
1843     // We'd like to write:
1844     //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
1845     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1846     // additional latency as we have another ST in the store buffer that must drain.
1847 
1848     if (EmitSync & 8192) {
1849        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1850        get_thread (scrReg);
1851        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1852        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1853        if (os::is_MP()) {
1854          lock();
1855        }
1856        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1857     } else
1858     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1859        movptr(scrReg, boxReg);
1860        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1861 
1862        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1863        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1864           // prefetchw [eax + Offset(_owner)-2]
1865           prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
1866        }
1867 
1868        if ((EmitSync & 64) == 0) {
1869          // Optimistic form: consider XORL tmpReg,tmpReg
1870          movptr(tmpReg, NULL_WORD);
1871        } else {
1872          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1873          // Test-And-CAS instead of CAS
1874          movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
1875          testptr(tmpReg, tmpReg);                   // Locked ?
1876          jccb_if_possible(Assembler::notZero, DONE_LABEL);
1877        }
1878 
1879        // Appears unlocked - try to swing _owner from null to non-null.
1880        // Ideally, I'd manifest "Self" with get_thread and then attempt
1881        // to CAS the register containing Self into m->Owner.
1882        // But we don't have enough registers, so instead we can either try to CAS
1883        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1884        // we later store "Self" into m->Owner.  Transiently storing a stack address
1885        // (rsp or the address of the box) into  m->owner is harmless.
1886        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1887        if (os::is_MP()) {
1888          lock();
1889        }
1890        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1891        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1892        jccb_if_possible(Assembler::notZero, DONE_LABEL);
1893        get_thread (scrReg);                    // beware: clobbers ICCs
1894        movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg);
1895        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1896 
1897        // If the CAS fails we can either retry or pass control to the slow-path.
1898        // We use the latter tactic.
1899        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1900        // If the CAS was successful ...
1901        //   Self has acquired the lock
1902        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1903        // Intentional fall-through into DONE_LABEL ...
1904     } else {
1905        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1906        movptr(boxReg, tmpReg);
1907 
1908        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1909        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1910           // prefetchw [eax + Offset(_owner)-2]
1911           prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
1912        }
1913 
1914        if ((EmitSync & 64) == 0) {
1915          // Optimistic form
1916          xorptr  (tmpReg, tmpReg);
1917        } else {
1918          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1919          movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
1920          testptr(tmpReg, tmpReg);                   // Locked ?
1921          jccb_if_possible(Assembler::notZero, DONE_LABEL);
1922        }
1923 
1924        // Appears unlocked - try to swing _owner from null to non-null.
1925        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1926        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1927        get_thread (scrReg);
1928        if (os::is_MP()) {
1929          lock();
1930        }
1931        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1932 
1933        // If the CAS fails we can either retry or pass control to the slow-path.
1934        // We use the latter tactic.
1935        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1936        // If the CAS was successful ...
1937        //   Self has acquired the lock
1938        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1939        // Intentional fall-through into DONE_LABEL ...
1940     }
1941 #else // _LP64
1942     // It's inflated
1943 
1944     // TODO: someday avoid the ST-before-CAS penalty by
1945     // relocating (deferring) the following ST.
1946     // We should also think about trying a CAS without having
1947     // fetched _owner.  If the CAS is successful we may
1948     // avoid an RTO->RTS upgrade on the $line.
1949 
1950     // Without cast to int32_t a movptr will destroy r10 which is typically obj
1951     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1952 
1953     movptr (boxReg, tmpReg);
1954     movptr (tmpReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1955     testptr(tmpReg, tmpReg);
1956     jccb_if_possible(Assembler::notZero, DONE_LABEL);
1957 
1958     // It's inflated and appears unlocked
1959     if (os::is_MP()) {
1960       lock();
1961     }
1962     cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1963     // Intentional fall-through into DONE_LABEL ...
1964 #endif // _LP64
1965 
1966 #if INCLUDE_RTM_OPT
1967     } // use_rtm()
1968 #endif
1969     // DONE_LABEL is a hot target - we'd really like to place it at the
1970     // start of cache line by padding with NOPs.
1971     // See the AMD and Intel software optimization manuals for the
1972     // most efficient "long" NOP encodings.
1973     // Unfortunately none of our alignment mechanisms suffice.
1974     bind(DONE_LABEL);
1975 
1976     // At DONE_LABEL the icc ZFlag is set as follows ...
1977     // Fast_Unlock uses the same protocol.
1978     // ZFlag == 1 -> Success
1979     // ZFlag == 0 -> Failure - force control through the slow-path
1980   }
1981 }
1982 
1983 // obj: object to unlock
1984 // box: box address (displaced header location), killed.  Must be EAX.
1985 // tmp: killed, cannot be obj nor box.
1986 //
1987 // Some commentary on balanced locking:
1988 //
1989 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1990 // Methods that don't have provably balanced locking are forced to run in the
1991 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1992 // The interpreter provides two properties:
1993 // I1:  At return-time the interpreter automatically and quietly unlocks any
1994 //      objects acquired the current activation (frame).  Recall that the
1995 //      interpreter maintains an on-stack list of locks currently held by
1996 //      a frame.
1997 // I2:  If a method attempts to unlock an object that is not held by the
1998 //      the frame the interpreter throws IMSX.
1999 //
2000 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
2001 // B() doesn't have provably balanced locking so it runs in the interpreter.
2002 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
2003 // is still locked by A().
2004 //
2005 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
2006 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
2007 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
2008 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
2009 
2010 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
2011   assert(boxReg == rax, "");
2012   assert_different_registers(objReg, boxReg, tmpReg);
2013 
2014   if (EmitSync & 4) {
2015     // Disable - inhibit all inlining.  Force control through the slow-path
2016     cmpptr (rsp, 0);
2017   } else
2018   if (EmitSync & 8) {
2019     Label DONE_LABEL;
2020     if (UseBiasedLocking) {
2021        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
2022     }
2023     // Classic stack-locking code ...
2024     // Check whether the displaced header is 0
2025     //(=> recursive unlock)
2026     movptr(tmpReg, Address(boxReg, 0));
2027     testptr(tmpReg, tmpReg);
2028     jccb(Assembler::zero, DONE_LABEL);
2029     // If not recursive lock, reset the header to displaced header
2030     if (os::is_MP()) {
2031       lock();
2032     }
2033     cmpxchgptr(tmpReg, Address(objReg, 0));   // Uses RAX which is box
2034     bind(DONE_LABEL);
2035   } else {
2036     Label DONE_LABEL, Stacked, CheckSucc;
2037 
2038     // Critically, the biased locking test must have precedence over
2039     // and appear before the (box->dhw == 0) recursive stack-lock test.
2040     if (UseBiasedLocking && !UseOptoBiasInlining) {
2041        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
2042     }
2043 
2044 #if INCLUDE_RTM_OPT
2045     if (UseRTMForStackLocks && use_rtm) {
2046       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2047       Label L_regular_unlock;
2048       movptr(tmpReg, Address(objReg, 0));           // fetch markword
2049       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2050       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
2051       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
2052       xend();                                       // otherwise end...
2053       jmp(DONE_LABEL);                              // ... and we're done
2054       bind(L_regular_unlock);
2055     }
2056 #endif
2057 
2058     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
2059     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
2060     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
2061     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2062     jccb  (Assembler::zero, Stacked);
2063 
2064     // It's inflated.
2065 #if INCLUDE_RTM_OPT
2066     if (use_rtm) {
2067       Label L_regular_inflated_unlock;
2068       // Clean monitor_value bit to get valid pointer
2069       int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
2070       movptr(boxReg, Address(tmpReg, owner_offset));
2071       testptr(boxReg, boxReg);
2072       jccb(Assembler::notZero, L_regular_inflated_unlock);
2073       xend();
2074       jmpb_if_possible(DONE_LABEL);
2075       bind(L_regular_inflated_unlock);
2076     }
2077 #endif
2078 
2079     // Despite our balanced locking property we still check that m->_owner == Self
2080     // as java routines or native JNI code called by this thread might
2081     // have released the lock.
2082     // Refer to the comments in synchronizer.cpp for how we might encode extra
2083     // state in _succ so we can avoid fetching EntryList|cxq.
2084     //
2085     // I'd like to add more cases in fast_lock() and fast_unlock() --
2086     // such as recursive enter and exit -- but we have to be wary of
2087     // I$ bloat, T$ effects and BP$ effects.
2088     //
2089     // If there's no contention try a 1-0 exit.  That is, exit without
2090     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2091     // we detect and recover from the race that the 1-0 exit admits.
2092     //
2093     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2094     // before it STs null into _owner, releasing the lock.  Updates
2095     // to data protected by the critical section must be visible before
2096     // we drop the lock (and thus before any other thread could acquire
2097     // the lock and observe the fields protected by the lock).
2098     // IA32's memory-model is SPO, so STs are ordered with respect to
2099     // each other and there's no need for an explicit barrier (fence).
2100     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2101 #ifndef _LP64
2102     get_thread (boxReg);
2103     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2104       // prefetchw [ebx + Offset(_owner)-2]
2105       prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2106     }
2107 
2108     // Note that we could employ various encoding schemes to reduce
2109     // the number of loads below (currently 4) to just 2 or 3.
2110     // Refer to the comments in synchronizer.cpp.
2111     // In practice the chain of fetches doesn't seem to impact performance, however.
2112     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2113        // Attempt to reduce branch density - AMD's branch predictor.
2114        xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2115        orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
2116        orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
2117        orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
2118        jccb_if_possible(Assembler::notZero, DONE_LABEL);
2119        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
2120        jmpb_if_possible(DONE_LABEL);
2121     } else {
2122        xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2123        orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
2124        jccb_if_possible(Assembler::notZero, DONE_LABEL);
2125        movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
2126        orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
2127        jccb_if_possible(Assembler::notZero, CheckSucc);
2128        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
2129        jmpb_if_possible(DONE_LABEL);
2130     }
2131 
2132     // The Following code fragment (EmitSync & 65536) improves the performance of
2133     // contended applications and contended synchronization microbenchmarks.
2134     // Unfortunately the emission of the code - even though not executed - causes regressions
2135     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2136     // with an equal number of never-executed NOPs results in the same regression.
2137     // We leave it off by default.
2138 
2139     if ((EmitSync & 65536) != 0) {
2140        Label LSuccess, LGoSlowPath ;
2141 
2142        bind  (CheckSucc);
2143 
2144        // Optional pre-test ... it's safe to elide this
2145        if ((EmitSync & 16) == 0) {
2146           cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
2147           jccb  (Assembler::zero, LGoSlowPath);
2148        }
2149 
2150        // We have a classic Dekker-style idiom:
2151        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2152        // There are a number of ways to implement the barrier:
2153        // (1) lock:andl &m->_owner, 0
2154        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2155        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2156        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2157        // (2) If supported, an explicit MFENCE is appealing.
2158        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2159        //     particularly if the write-buffer is full as might be the case if
2160        //     if stores closely precede the fence or fence-equivalent instruction.
2161        //     In more modern implementations MFENCE appears faster, however.
2162        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2163        //     The $lines underlying the top-of-stack should be in M-state.
2164        //     The locked add instruction is serializing, of course.
2165        // (4) Use xchg, which is serializing
2166        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2167        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2168        //     The integer condition codes will tell us if succ was 0.
2169        //     Since _succ and _owner should reside in the same $line and
2170        //     we just stored into _owner, it's likely that the $line
2171        //     remains in M-state for the lock:orl.
2172        //
2173        // We currently use (3), although it's likely that switching to (2)
2174        // is correct for the future.
2175 
2176        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
2177        if (os::is_MP()) {
2178           if (VM_Version::supports_sse2() && 1 == FenceInstruction) {
2179             mfence();
2180           } else {
2181             lock (); addptr(Address(rsp, 0), 0);
2182           }
2183        }
2184        // Ratify _succ remains non-null
2185        cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0);
2186        jccb  (Assembler::notZero, LSuccess);
2187 
2188        xorptr(boxReg, boxReg);                  // box is really EAX
2189        if (os::is_MP()) { lock(); }
2190        cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2191        jccb  (Assembler::notEqual, LSuccess);
2192        // Since we're low on registers we installed rsp as a placeholding in _owner.
2193        // Now install Self over rsp.  This is safe as we're transitioning from
2194        // non-null to non=null
2195        get_thread (boxReg);
2196        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg);
2197        // Intentional fall-through into LGoSlowPath ...
2198 
2199        bind  (LGoSlowPath);
2200        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2201        jmpb_if_possible(DONE_LABEL);
2202 
2203        bind  (LSuccess);
2204        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2205        jmpb_if_possible(DONE_LABEL);
2206     }
2207 
2208     bind (Stacked);
2209     // It's not inflated and it's not recursively stack-locked and it's not biased.
2210     // It must be stack-locked.
2211     // Try to reset the header to displaced header.
2212     // The "box" value on the stack is stable, so we can reload
2213     // and be assured we observe the same value as above.
2214     movptr(tmpReg, Address(boxReg, 0));
2215     if (os::is_MP()) {
2216       lock();
2217     }
2218     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2219     // Intention fall-thru into DONE_LABEL
2220 
2221     // DONE_LABEL is a hot target - we'd really like to place it at the
2222     // start of cache line by padding with NOPs.
2223     // See the AMD and Intel software optimization manuals for the
2224     // most efficient "long" NOP encodings.
2225     // Unfortunately none of our alignment mechanisms suffice.
2226     if ((EmitSync & 65536) == 0) {
2227        bind (CheckSucc);
2228     }
2229 #else // _LP64
2230     // It's inflated
2231     movptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2232     xorptr(boxReg, r15_thread);
2233     orptr (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
2234     jccb_if_possible(Assembler::notZero, DONE_LABEL);
2235     movptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
2236     orptr (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
2237     jccb  (Assembler::notZero, CheckSucc);
2238     movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
2239     jmpb_if_possible(DONE_LABEL);
2240 
2241     if ((EmitSync & 65536) == 0) {
2242       Label LSuccess, LGoSlowPath ;
2243       bind  (CheckSucc);
2244       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
2245       jccb  (Assembler::zero, LGoSlowPath);
2246 
2247       // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
2248       // the explicit ST;MEMBAR combination, but masm doesn't currently support
2249       // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
2250       // are all faster when the write buffer is populated.
2251       movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
2252       if (os::is_MP()) {
2253          lock (); addl (Address(rsp, 0), 0);
2254       }
2255       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
2256       jccb  (Assembler::notZero, LSuccess);
2257 
2258       movptr (boxReg, (int32_t)NULL_WORD);                   // box is really EAX
2259       if (os::is_MP()) { lock(); }
2260       cmpxchgptr(r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2261       jccb  (Assembler::notEqual, LSuccess);
2262       // Intentional fall-through into slow-path
2263 
2264       bind  (LGoSlowPath);
2265       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2266       jmpb_if_possible(DONE_LABEL);
2267 
2268       bind  (LSuccess);
2269       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2270       jmpb_if_possible(DONE_LABEL);
2271     }
2272 
2273     bind  (Stacked);
2274     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2275     if (os::is_MP()) { lock(); }
2276     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2277 
2278     if (EmitSync & 65536) {
2279        bind (CheckSucc);
2280     }
2281 #endif
2282     bind(DONE_LABEL);
2283     // Avoid branch to branch on AMD processors
2284     if (EmitSync & 32768) {
2285        nop();
2286     }
2287   }
2288 }
2289 #endif // COMPILER2
2290 
2291 void MacroAssembler::c2bool(Register x) {
2292   // implements x == 0 ? 0 : 1
2293   // note: must only look at least-significant byte of x
2294   //       since C-style booleans are stored in one byte
2295   //       only! (was bug)
2296   andl(x, 0xFF);
2297   setb(Assembler::notZero, x);
2298 }
2299 
2300 // Wouldn't need if AddressLiteral version had new name
2301 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2302   Assembler::call(L, rtype);
2303 }
2304 
2305 void MacroAssembler::call(Register entry) {
2306   Assembler::call(entry);
2307 }
2308 
2309 void MacroAssembler::call(AddressLiteral entry) {
2310   if (reachable(entry)) {
2311     Assembler::call_literal(entry.target(), entry.rspec());
2312   } else {
2313     lea(rscratch1, entry);
2314     Assembler::call(rscratch1);
2315   }
2316 }
2317 
2318 void MacroAssembler::ic_call(address entry) {
2319   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2320   movptr(rax, (intptr_t)Universe::non_oop_word());
2321   call(AddressLiteral(entry, rh));
2322 }
2323 
2324 // Implementation of call_VM versions
2325 
2326 void MacroAssembler::call_VM(Register oop_result,
2327                              address entry_point,
2328                              bool check_exceptions) {
2329   Label C, E;
2330   call(C, relocInfo::none);
2331   jmp(E);
2332 
2333   bind(C);
2334   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2335   ret(0);
2336 
2337   bind(E);
2338 }
2339 
2340 void MacroAssembler::call_VM(Register oop_result,
2341                              address entry_point,
2342                              Register arg_1,
2343                              bool check_exceptions) {
2344   Label C, E;
2345   call(C, relocInfo::none);
2346   jmp(E);
2347 
2348   bind(C);
2349   pass_arg1(this, arg_1);
2350   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2351   ret(0);
2352 
2353   bind(E);
2354 }
2355 
2356 void MacroAssembler::call_VM(Register oop_result,
2357                              address entry_point,
2358                              Register arg_1,
2359                              Register arg_2,
2360                              bool check_exceptions) {
2361   Label C, E;
2362   call(C, relocInfo::none);
2363   jmp(E);
2364 
2365   bind(C);
2366 
2367   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2368 
2369   pass_arg2(this, arg_2);
2370   pass_arg1(this, arg_1);
2371   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2372   ret(0);
2373 
2374   bind(E);
2375 }
2376 
2377 void MacroAssembler::call_VM(Register oop_result,
2378                              address entry_point,
2379                              Register arg_1,
2380                              Register arg_2,
2381                              Register arg_3,
2382                              bool check_exceptions) {
2383   Label C, E;
2384   call(C, relocInfo::none);
2385   jmp(E);
2386 
2387   bind(C);
2388 
2389   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2390   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2391   pass_arg3(this, arg_3);
2392 
2393   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2394   pass_arg2(this, arg_2);
2395 
2396   pass_arg1(this, arg_1);
2397   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2398   ret(0);
2399 
2400   bind(E);
2401 }
2402 
2403 void MacroAssembler::call_VM(Register oop_result,
2404                              Register last_java_sp,
2405                              address entry_point,
2406                              int number_of_arguments,
2407                              bool check_exceptions) {
2408   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2409   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2410 }
2411 
2412 void MacroAssembler::call_VM(Register oop_result,
2413                              Register last_java_sp,
2414                              address entry_point,
2415                              Register arg_1,
2416                              bool check_exceptions) {
2417   pass_arg1(this, arg_1);
2418   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2419 }
2420 
2421 void MacroAssembler::call_VM(Register oop_result,
2422                              Register last_java_sp,
2423                              address entry_point,
2424                              Register arg_1,
2425                              Register arg_2,
2426                              bool check_exceptions) {
2427 
2428   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2429   pass_arg2(this, arg_2);
2430   pass_arg1(this, arg_1);
2431   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2432 }
2433 
2434 void MacroAssembler::call_VM(Register oop_result,
2435                              Register last_java_sp,
2436                              address entry_point,
2437                              Register arg_1,
2438                              Register arg_2,
2439                              Register arg_3,
2440                              bool check_exceptions) {
2441   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2442   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2443   pass_arg3(this, arg_3);
2444   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2445   pass_arg2(this, arg_2);
2446   pass_arg1(this, arg_1);
2447   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2448 }
2449 
2450 void MacroAssembler::super_call_VM(Register oop_result,
2451                                    Register last_java_sp,
2452                                    address entry_point,
2453                                    int number_of_arguments,
2454                                    bool check_exceptions) {
2455   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2456   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2457 }
2458 
2459 void MacroAssembler::super_call_VM(Register oop_result,
2460                                    Register last_java_sp,
2461                                    address entry_point,
2462                                    Register arg_1,
2463                                    bool check_exceptions) {
2464   pass_arg1(this, arg_1);
2465   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2466 }
2467 
2468 void MacroAssembler::super_call_VM(Register oop_result,
2469                                    Register last_java_sp,
2470                                    address entry_point,
2471                                    Register arg_1,
2472                                    Register arg_2,
2473                                    bool check_exceptions) {
2474 
2475   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2476   pass_arg2(this, arg_2);
2477   pass_arg1(this, arg_1);
2478   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2479 }
2480 
2481 void MacroAssembler::super_call_VM(Register oop_result,
2482                                    Register last_java_sp,
2483                                    address entry_point,
2484                                    Register arg_1,
2485                                    Register arg_2,
2486                                    Register arg_3,
2487                                    bool check_exceptions) {
2488   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2489   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2490   pass_arg3(this, arg_3);
2491   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2492   pass_arg2(this, arg_2);
2493   pass_arg1(this, arg_1);
2494   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2495 }
2496 
2497 void MacroAssembler::call_VM_base(Register oop_result,
2498                                   Register java_thread,
2499                                   Register last_java_sp,
2500                                   address  entry_point,
2501                                   int      number_of_arguments,
2502                                   bool     check_exceptions) {
2503   // determine java_thread register
2504   if (!java_thread->is_valid()) {
2505 #ifdef _LP64
2506     java_thread = r15_thread;
2507 #else
2508     java_thread = rdi;
2509     get_thread(java_thread);
2510 #endif // LP64
2511   }
2512   // determine last_java_sp register
2513   if (!last_java_sp->is_valid()) {
2514     last_java_sp = rsp;
2515   }
2516   // debugging support
2517   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2518   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2519 #ifdef ASSERT
2520   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2521   // r12 is the heapbase.
2522   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2523 #endif // ASSERT
2524 
2525   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2526   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2527 
2528   // push java thread (becomes first argument of C function)
2529 
2530   NOT_LP64(push(java_thread); number_of_arguments++);
2531   LP64_ONLY(mov(c_rarg0, r15_thread));
2532 
2533   // set last Java frame before call
2534   assert(last_java_sp != rbp, "can't use ebp/rbp");
2535 
2536   // Only interpreter should have to set fp
2537   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2538 
2539   // do the call, remove parameters
2540   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2541 
2542   // restore the thread (cannot use the pushed argument since arguments
2543   // may be overwritten by C code generated by an optimizing compiler);
2544   // however can use the register value directly if it is callee saved.
2545   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2546     // rdi & rsi (also r15) are callee saved -> nothing to do
2547 #ifdef ASSERT
2548     guarantee(java_thread != rax, "change this code");
2549     push(rax);
2550     { Label L;
2551       get_thread(rax);
2552       cmpptr(java_thread, rax);
2553       jcc(Assembler::equal, L);
2554       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2555       bind(L);
2556     }
2557     pop(rax);
2558 #endif
2559   } else {
2560     get_thread(java_thread);
2561   }
2562   // reset last Java frame
2563   // Only interpreter should have to clear fp
2564   reset_last_Java_frame(java_thread, true);
2565 
2566 #ifndef CC_INTERP
2567    // C++ interp handles this in the interpreter
2568   check_and_handle_popframe(java_thread);
2569   check_and_handle_earlyret(java_thread);
2570 #endif /* CC_INTERP */
2571 
2572   if (check_exceptions) {
2573     // check for pending exceptions (java_thread is set upon return)
2574     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2575 #ifndef _LP64
2576     jump_cc(Assembler::notEqual,
2577             RuntimeAddress(StubRoutines::forward_exception_entry()));
2578 #else
2579     // This used to conditionally jump to forward_exception however it is
2580     // possible if we relocate that the branch will not reach. So we must jump
2581     // around so we can always reach
2582 
2583     Label ok;
2584     jcc(Assembler::equal, ok);
2585     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2586     bind(ok);
2587 #endif // LP64
2588   }
2589 
2590   // get oop result if there is one and reset the value in the thread
2591   if (oop_result->is_valid()) {
2592     get_vm_result(oop_result, java_thread);
2593   }
2594 }
2595 
2596 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2597 
2598   // Calculate the value for last_Java_sp
2599   // somewhat subtle. call_VM does an intermediate call
2600   // which places a return address on the stack just under the
2601   // stack pointer as the user finsihed with it. This allows
2602   // use to retrieve last_Java_pc from last_Java_sp[-1].
2603   // On 32bit we then have to push additional args on the stack to accomplish
2604   // the actual requested call. On 64bit call_VM only can use register args
2605   // so the only extra space is the return address that call_VM created.
2606   // This hopefully explains the calculations here.
2607 
2608 #ifdef _LP64
2609   // We've pushed one address, correct last_Java_sp
2610   lea(rax, Address(rsp, wordSize));
2611 #else
2612   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2613 #endif // LP64
2614 
2615   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2616 
2617 }
2618 
2619 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2620   call_VM_leaf_base(entry_point, number_of_arguments);
2621 }
2622 
2623 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2624   pass_arg0(this, arg_0);
2625   call_VM_leaf(entry_point, 1);
2626 }
2627 
2628 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2629 
2630   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2631   pass_arg1(this, arg_1);
2632   pass_arg0(this, arg_0);
2633   call_VM_leaf(entry_point, 2);
2634 }
2635 
2636 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2637   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2638   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2639   pass_arg2(this, arg_2);
2640   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2641   pass_arg1(this, arg_1);
2642   pass_arg0(this, arg_0);
2643   call_VM_leaf(entry_point, 3);
2644 }
2645 
2646 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2647   pass_arg0(this, arg_0);
2648   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2649 }
2650 
2651 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2652 
2653   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2654   pass_arg1(this, arg_1);
2655   pass_arg0(this, arg_0);
2656   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2657 }
2658 
2659 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2660   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2661   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2662   pass_arg2(this, arg_2);
2663   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2664   pass_arg1(this, arg_1);
2665   pass_arg0(this, arg_0);
2666   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2667 }
2668 
2669 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2670   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2671   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2672   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2673   pass_arg3(this, arg_3);
2674   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2675   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2676   pass_arg2(this, arg_2);
2677   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2678   pass_arg1(this, arg_1);
2679   pass_arg0(this, arg_0);
2680   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2681 }
2682 
2683 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2684   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2685   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2686   verify_oop(oop_result, "broken oop in call_VM_base");
2687 }
2688 
2689 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2690   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2691   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2692 }
2693 
2694 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2695 }
2696 
2697 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2698 }
2699 
2700 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2701   if (reachable(src1)) {
2702     cmpl(as_Address(src1), imm);
2703   } else {
2704     lea(rscratch1, src1);
2705     cmpl(Address(rscratch1, 0), imm);
2706   }
2707 }
2708 
2709 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2710   assert(!src2.is_lval(), "use cmpptr");
2711   if (reachable(src2)) {
2712     cmpl(src1, as_Address(src2));
2713   } else {
2714     lea(rscratch1, src2);
2715     cmpl(src1, Address(rscratch1, 0));
2716   }
2717 }
2718 
2719 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2720   Assembler::cmpl(src1, imm);
2721 }
2722 
2723 void MacroAssembler::cmp32(Register src1, Address src2) {
2724   Assembler::cmpl(src1, src2);
2725 }
2726 
2727 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2728   ucomisd(opr1, opr2);
2729 
2730   Label L;
2731   if (unordered_is_less) {
2732     movl(dst, -1);
2733     jcc(Assembler::parity, L);
2734     jcc(Assembler::below , L);
2735     movl(dst, 0);
2736     jcc(Assembler::equal , L);
2737     increment(dst);
2738   } else { // unordered is greater
2739     movl(dst, 1);
2740     jcc(Assembler::parity, L);
2741     jcc(Assembler::above , L);
2742     movl(dst, 0);
2743     jcc(Assembler::equal , L);
2744     decrementl(dst);
2745   }
2746   bind(L);
2747 }
2748 
2749 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2750   ucomiss(opr1, opr2);
2751 
2752   Label L;
2753   if (unordered_is_less) {
2754     movl(dst, -1);
2755     jcc(Assembler::parity, L);
2756     jcc(Assembler::below , L);
2757     movl(dst, 0);
2758     jcc(Assembler::equal , L);
2759     increment(dst);
2760   } else { // unordered is greater
2761     movl(dst, 1);
2762     jcc(Assembler::parity, L);
2763     jcc(Assembler::above , L);
2764     movl(dst, 0);
2765     jcc(Assembler::equal , L);
2766     decrementl(dst);
2767   }
2768   bind(L);
2769 }
2770 
2771 
2772 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2773   if (reachable(src1)) {
2774     cmpb(as_Address(src1), imm);
2775   } else {
2776     lea(rscratch1, src1);
2777     cmpb(Address(rscratch1, 0), imm);
2778   }
2779 }
2780 
2781 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2782 #ifdef _LP64
2783   if (src2.is_lval()) {
2784     movptr(rscratch1, src2);
2785     Assembler::cmpq(src1, rscratch1);
2786   } else if (reachable(src2)) {
2787     cmpq(src1, as_Address(src2));
2788   } else {
2789     lea(rscratch1, src2);
2790     Assembler::cmpq(src1, Address(rscratch1, 0));
2791   }
2792 #else
2793   if (src2.is_lval()) {
2794     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2795   } else {
2796     cmpl(src1, as_Address(src2));
2797   }
2798 #endif // _LP64
2799 }
2800 
2801 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2802   assert(src2.is_lval(), "not a mem-mem compare");
2803 #ifdef _LP64
2804   // moves src2's literal address
2805   movptr(rscratch1, src2);
2806   Assembler::cmpq(src1, rscratch1);
2807 #else
2808   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2809 #endif // _LP64
2810 }
2811 
2812 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2813   if (reachable(adr)) {
2814     if (os::is_MP())
2815       lock();
2816     cmpxchgptr(reg, as_Address(adr));
2817   } else {
2818     lea(rscratch1, adr);
2819     if (os::is_MP())
2820       lock();
2821     cmpxchgptr(reg, Address(rscratch1, 0));
2822   }
2823 }
2824 
2825 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2826   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2827 }
2828 
2829 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2830   if (reachable(src)) {
2831     Assembler::comisd(dst, as_Address(src));
2832   } else {
2833     lea(rscratch1, src);
2834     Assembler::comisd(dst, Address(rscratch1, 0));
2835   }
2836 }
2837 
2838 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2839   if (reachable(src)) {
2840     Assembler::comiss(dst, as_Address(src));
2841   } else {
2842     lea(rscratch1, src);
2843     Assembler::comiss(dst, Address(rscratch1, 0));
2844   }
2845 }
2846 
2847 
2848 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2849   Condition negated_cond = negate_condition(cond);
2850   Label L;
2851   jcc(negated_cond, L);
2852   pushf(); // Preserve flags
2853   atomic_incl(counter_addr);
2854   popf();
2855   bind(L);
2856 }
2857 
2858 int MacroAssembler::corrected_idivl(Register reg) {
2859   // Full implementation of Java idiv and irem; checks for
2860   // special case as described in JVM spec., p.243 & p.271.
2861   // The function returns the (pc) offset of the idivl
2862   // instruction - may be needed for implicit exceptions.
2863   //
2864   //         normal case                           special case
2865   //
2866   // input : rax,: dividend                         min_int
2867   //         reg: divisor   (may not be rax,/rdx)   -1
2868   //
2869   // output: rax,: quotient  (= rax, idiv reg)       min_int
2870   //         rdx: remainder (= rax, irem reg)       0
2871   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2872   const int min_int = 0x80000000;
2873   Label normal_case, special_case;
2874 
2875   // check for special case
2876   cmpl(rax, min_int);
2877   jcc(Assembler::notEqual, normal_case);
2878   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2879   cmpl(reg, -1);
2880   jcc(Assembler::equal, special_case);
2881 
2882   // handle normal case
2883   bind(normal_case);
2884   cdql();
2885   int idivl_offset = offset();
2886   idivl(reg);
2887 
2888   // normal and special case exit
2889   bind(special_case);
2890 
2891   return idivl_offset;
2892 }
2893 
2894 
2895 
2896 void MacroAssembler::decrementl(Register reg, int value) {
2897   if (value == min_jint) {subl(reg, value) ; return; }
2898   if (value <  0) { incrementl(reg, -value); return; }
2899   if (value == 0) {                        ; return; }
2900   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2901   /* else */      { subl(reg, value)       ; return; }
2902 }
2903 
2904 void MacroAssembler::decrementl(Address dst, int value) {
2905   if (value == min_jint) {subl(dst, value) ; return; }
2906   if (value <  0) { incrementl(dst, -value); return; }
2907   if (value == 0) {                        ; return; }
2908   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2909   /* else */      { subl(dst, value)       ; return; }
2910 }
2911 
2912 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2913   assert (shift_value > 0, "illegal shift value");
2914   Label _is_positive;
2915   testl (reg, reg);
2916   jcc (Assembler::positive, _is_positive);
2917   int offset = (1 << shift_value) - 1 ;
2918 
2919   if (offset == 1) {
2920     incrementl(reg);
2921   } else {
2922     addl(reg, offset);
2923   }
2924 
2925   bind (_is_positive);
2926   sarl(reg, shift_value);
2927 }
2928 
2929 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2930   if (reachable(src)) {
2931     Assembler::divsd(dst, as_Address(src));
2932   } else {
2933     lea(rscratch1, src);
2934     Assembler::divsd(dst, Address(rscratch1, 0));
2935   }
2936 }
2937 
2938 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2939   if (reachable(src)) {
2940     Assembler::divss(dst, as_Address(src));
2941   } else {
2942     lea(rscratch1, src);
2943     Assembler::divss(dst, Address(rscratch1, 0));
2944   }
2945 }
2946 
2947 // !defined(COMPILER2) is because of stupid core builds
2948 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
2949 void MacroAssembler::empty_FPU_stack() {
2950   if (VM_Version::supports_mmx()) {
2951     emms();
2952   } else {
2953     for (int i = 8; i-- > 0; ) ffree(i);
2954   }
2955 }
2956 #endif // !LP64 || C1 || !C2
2957 
2958 
2959 // Defines obj, preserves var_size_in_bytes
2960 void MacroAssembler::eden_allocate(Register obj,
2961                                    Register var_size_in_bytes,
2962                                    int con_size_in_bytes,
2963                                    Register t1,
2964                                    Label& slow_case) {
2965   assert(obj == rax, "obj must be in rax, for cmpxchg");
2966   assert_different_registers(obj, var_size_in_bytes, t1);
2967   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
2968     jmp(slow_case);
2969   } else {
2970     Register end = t1;
2971     Label retry;
2972     bind(retry);
2973     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2974     movptr(obj, heap_top);
2975     if (var_size_in_bytes == noreg) {
2976       lea(end, Address(obj, con_size_in_bytes));
2977     } else {
2978       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2979     }
2980     // if end < obj then we wrapped around => object too long => slow case
2981     cmpptr(end, obj);
2982     jcc(Assembler::below, slow_case);
2983     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2984     jcc(Assembler::above, slow_case);
2985     // Compare obj with the top addr, and if still equal, store the new top addr in
2986     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2987     // it otherwise. Use lock prefix for atomicity on MPs.
2988     locked_cmpxchgptr(end, heap_top);
2989     jcc(Assembler::notEqual, retry);
2990   }
2991 }
2992 
2993 void MacroAssembler::enter() {
2994   push(rbp);
2995   mov(rbp, rsp);
2996 }
2997 
2998 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2999 void MacroAssembler::fat_nop() {
3000   if (UseAddressNop) {
3001     addr_nop_5();
3002   } else {
3003     emit_int8(0x26); // es:
3004     emit_int8(0x2e); // cs:
3005     emit_int8(0x64); // fs:
3006     emit_int8(0x65); // gs:
3007     emit_int8((unsigned char)0x90);
3008   }
3009 }
3010 
3011 void MacroAssembler::fcmp(Register tmp) {
3012   fcmp(tmp, 1, true, true);
3013 }
3014 
3015 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
3016   assert(!pop_right || pop_left, "usage error");
3017   if (VM_Version::supports_cmov()) {
3018     assert(tmp == noreg, "unneeded temp");
3019     if (pop_left) {
3020       fucomip(index);
3021     } else {
3022       fucomi(index);
3023     }
3024     if (pop_right) {
3025       fpop();
3026     }
3027   } else {
3028     assert(tmp != noreg, "need temp");
3029     if (pop_left) {
3030       if (pop_right) {
3031         fcompp();
3032       } else {
3033         fcomp(index);
3034       }
3035     } else {
3036       fcom(index);
3037     }
3038     // convert FPU condition into eflags condition via rax,
3039     save_rax(tmp);
3040     fwait(); fnstsw_ax();
3041     sahf();
3042     restore_rax(tmp);
3043   }
3044   // condition codes set as follows:
3045   //
3046   // CF (corresponds to C0) if x < y
3047   // PF (corresponds to C2) if unordered
3048   // ZF (corresponds to C3) if x = y
3049 }
3050 
3051 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3052   fcmp2int(dst, unordered_is_less, 1, true, true);
3053 }
3054 
3055 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3056   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3057   Label L;
3058   if (unordered_is_less) {
3059     movl(dst, -1);
3060     jcc(Assembler::parity, L);
3061     jcc(Assembler::below , L);
3062     movl(dst, 0);
3063     jcc(Assembler::equal , L);
3064     increment(dst);
3065   } else { // unordered is greater
3066     movl(dst, 1);
3067     jcc(Assembler::parity, L);
3068     jcc(Assembler::above , L);
3069     movl(dst, 0);
3070     jcc(Assembler::equal , L);
3071     decrementl(dst);
3072   }
3073   bind(L);
3074 }
3075 
3076 void MacroAssembler::fld_d(AddressLiteral src) {
3077   fld_d(as_Address(src));
3078 }
3079 
3080 void MacroAssembler::fld_s(AddressLiteral src) {
3081   fld_s(as_Address(src));
3082 }
3083 
3084 void MacroAssembler::fld_x(AddressLiteral src) {
3085   Assembler::fld_x(as_Address(src));
3086 }
3087 
3088 void MacroAssembler::fldcw(AddressLiteral src) {
3089   Assembler::fldcw(as_Address(src));
3090 }
3091 
3092 void MacroAssembler::pow_exp_core_encoding() {
3093   // kills rax, rcx, rdx
3094   subptr(rsp,sizeof(jdouble));
3095   // computes 2^X. Stack: X ...
3096   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
3097   // keep it on the thread's stack to compute 2^int(X) later
3098   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
3099   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
3100   fld_s(0);                 // Stack: X X ...
3101   frndint();                // Stack: int(X) X ...
3102   fsuba(1);                 // Stack: int(X) X-int(X) ...
3103   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
3104   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
3105   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
3106   faddp(1);                 // Stack: 2^(X-int(X))
3107   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
3108   // shift int(X)+1023 to exponent position.
3109   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
3110   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
3111   // values so detect them and set result to NaN.
3112   movl(rax,Address(rsp,0));
3113   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
3114   addl(rax, 1023);
3115   movl(rdx,rax);
3116   shll(rax,20);
3117   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
3118   addl(rdx,1);
3119   // Check that 1 < int(X)+1023+1 < 2048
3120   // in 3 steps:
3121   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
3122   // 2- (int(X)+1023+1)&-2048 != 0
3123   // 3- (int(X)+1023+1)&-2048 != 1
3124   // Do 2- first because addl just updated the flags.
3125   cmov32(Assembler::equal,rax,rcx);
3126   cmpl(rdx,1);
3127   cmov32(Assembler::equal,rax,rcx);
3128   testl(rdx,rcx);
3129   cmov32(Assembler::notEqual,rax,rcx);
3130   movl(Address(rsp,4),rax);
3131   movl(Address(rsp,0),0);
3132   fmul_d(Address(rsp,0));   // Stack: 2^X ...
3133   addptr(rsp,sizeof(jdouble));
3134 }
3135 
3136 void MacroAssembler::increase_precision() {
3137   subptr(rsp, BytesPerWord);
3138   fnstcw(Address(rsp, 0));
3139   movl(rax, Address(rsp, 0));
3140   orl(rax, 0x300);
3141   push(rax);
3142   fldcw(Address(rsp, 0));
3143   pop(rax);
3144 }
3145 
3146 void MacroAssembler::restore_precision() {
3147   fldcw(Address(rsp, 0));
3148   addptr(rsp, BytesPerWord);
3149 }
3150 
3151 void MacroAssembler::fast_pow() {
3152   // computes X^Y = 2^(Y * log2(X))
3153   // if fast computation is not possible, result is NaN. Requires
3154   // fallback from user of this macro.
3155   // increase precision for intermediate steps of the computation
3156   BLOCK_COMMENT("fast_pow {");
3157   increase_precision();
3158   fyl2x();                 // Stack: (Y*log2(X)) ...
3159   pow_exp_core_encoding(); // Stack: exp(X) ...
3160   restore_precision();
3161   BLOCK_COMMENT("} fast_pow");
3162 }
3163 
3164 void MacroAssembler::fast_exp() {
3165   // computes exp(X) = 2^(X * log2(e))
3166   // if fast computation is not possible, result is NaN. Requires
3167   // fallback from user of this macro.
3168   // increase precision for intermediate steps of the computation
3169   increase_precision();
3170   fldl2e();                // Stack: log2(e) X ...
3171   fmulp(1);                // Stack: (X*log2(e)) ...
3172   pow_exp_core_encoding(); // Stack: exp(X) ...
3173   restore_precision();
3174 }
3175 
3176 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
3177   // kills rax, rcx, rdx
3178   // pow and exp needs 2 extra registers on the fpu stack.
3179   Label slow_case, done;
3180   Register tmp = noreg;
3181   if (!VM_Version::supports_cmov()) {
3182     // fcmp needs a temporary so preserve rdx,
3183     tmp = rdx;
3184   }
3185   Register tmp2 = rax;
3186   Register tmp3 = rcx;
3187 
3188   if (is_exp) {
3189     // Stack: X
3190     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
3191     fast_exp();                 // Stack: exp(X) X
3192     fcmp(tmp, 0, false, false); // Stack: exp(X) X
3193     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
3194     jcc(Assembler::parity, slow_case);
3195     // get rid of duplicate argument. Stack: exp(X)
3196     if (num_fpu_regs_in_use > 0) {
3197       fxch();
3198       fpop();
3199     } else {
3200       ffree(1);
3201     }
3202     jmp(done);
3203   } else {
3204     // Stack: X Y
3205     Label x_negative, y_not_2;
3206 
3207     static double two = 2.0;
3208     ExternalAddress two_addr((address)&two);
3209 
3210     // constant maybe too far on 64 bit
3211     lea(tmp2, two_addr);
3212     fld_d(Address(tmp2, 0));    // Stack: 2 X Y
3213     fcmp(tmp, 2, true, false);  // Stack: X Y
3214     jcc(Assembler::parity, y_not_2);
3215     jcc(Assembler::notEqual, y_not_2);
3216 
3217     fxch(); fpop();             // Stack: X
3218     fmul(0);                    // Stack: X*X
3219 
3220     jmp(done);
3221 
3222     bind(y_not_2);
3223 
3224     fldz();                     // Stack: 0 X Y
3225     fcmp(tmp, 1, true, false);  // Stack: X Y
3226     jcc(Assembler::above, x_negative);
3227 
3228     // X >= 0
3229 
3230     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3231     fld_s(1);                   // Stack: X Y X Y
3232     fast_pow();                 // Stack: X^Y X Y
3233     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
3234     // X^Y not equal to itself: X^Y is NaN go to slow case.
3235     jcc(Assembler::parity, slow_case);
3236     // get rid of duplicate arguments. Stack: X^Y
3237     if (num_fpu_regs_in_use > 0) {
3238       fxch(); fpop();
3239       fxch(); fpop();
3240     } else {
3241       ffree(2);
3242       ffree(1);
3243     }
3244     jmp(done);
3245 
3246     // X <= 0
3247     bind(x_negative);
3248 
3249     fld_s(1);                   // Stack: Y X Y
3250     frndint();                  // Stack: int(Y) X Y
3251     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
3252     jcc(Assembler::notEqual, slow_case);
3253 
3254     subptr(rsp, 8);
3255 
3256     // For X^Y, when X < 0, Y has to be an integer and the final
3257     // result depends on whether it's odd or even. We just checked
3258     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
3259     // integer to test its parity. If int(Y) is huge and doesn't fit
3260     // in the 64 bit integer range, the integer indefinite value will
3261     // end up in the gp registers. Huge numbers are all even, the
3262     // integer indefinite number is even so it's fine.
3263 
3264 #ifdef ASSERT
3265     // Let's check we don't end up with an integer indefinite number
3266     // when not expected. First test for huge numbers: check whether
3267     // int(Y)+1 == int(Y) which is true for very large numbers and
3268     // those are all even. A 64 bit integer is guaranteed to not
3269     // overflow for numbers where y+1 != y (when precision is set to
3270     // double precision).
3271     Label y_not_huge;
3272 
3273     fld1();                     // Stack: 1 int(Y) X Y
3274     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
3275 
3276 #ifdef _LP64
3277     // trip to memory to force the precision down from double extended
3278     // precision
3279     fstp_d(Address(rsp, 0));
3280     fld_d(Address(rsp, 0));
3281 #endif
3282 
3283     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
3284 #endif
3285 
3286     // move int(Y) as 64 bit integer to thread's stack
3287     fistp_d(Address(rsp,0));    // Stack: X Y
3288 
3289 #ifdef ASSERT
3290     jcc(Assembler::notEqual, y_not_huge);
3291 
3292     // Y is huge so we know it's even. It may not fit in a 64 bit
3293     // integer and we don't want the debug code below to see the
3294     // integer indefinite value so overwrite int(Y) on the thread's
3295     // stack with 0.
3296     movl(Address(rsp, 0), 0);
3297     movl(Address(rsp, 4), 0);
3298 
3299     bind(y_not_huge);
3300 #endif
3301 
3302     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3303     fld_s(1);                   // Stack: X Y X Y
3304     fabs();                     // Stack: abs(X) Y X Y
3305     fast_pow();                 // Stack: abs(X)^Y X Y
3306     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
3307     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
3308 
3309     pop(tmp2);
3310     NOT_LP64(pop(tmp3));
3311     jcc(Assembler::parity, slow_case);
3312 
3313 #ifdef ASSERT
3314     // Check that int(Y) is not integer indefinite value (int
3315     // overflow). Shouldn't happen because for values that would
3316     // overflow, 1+int(Y)==Y which was tested earlier.
3317 #ifndef _LP64
3318     {
3319       Label integer;
3320       testl(tmp2, tmp2);
3321       jcc(Assembler::notZero, integer);
3322       cmpl(tmp3, 0x80000000);
3323       jcc(Assembler::notZero, integer);
3324       STOP("integer indefinite value shouldn't be seen here");
3325       bind(integer);
3326     }
3327 #else
3328     {
3329       Label integer;
3330       mov(tmp3, tmp2); // preserve tmp2 for parity check below
3331       shlq(tmp3, 1);
3332       jcc(Assembler::carryClear, integer);
3333       jcc(Assembler::notZero, integer);
3334       STOP("integer indefinite value shouldn't be seen here");
3335       bind(integer);
3336     }
3337 #endif
3338 #endif
3339 
3340     // get rid of duplicate arguments. Stack: X^Y
3341     if (num_fpu_regs_in_use > 0) {
3342       fxch(); fpop();
3343       fxch(); fpop();
3344     } else {
3345       ffree(2);
3346       ffree(1);
3347     }
3348 
3349     testl(tmp2, 1);
3350     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
3351     // X <= 0, Y even: X^Y = -abs(X)^Y
3352 
3353     fchs();                     // Stack: -abs(X)^Y Y
3354     jmp(done);
3355   }
3356 
3357   // slow case: runtime call
3358   bind(slow_case);
3359 
3360   fpop();                       // pop incorrect result or int(Y)
3361 
3362   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
3363                       is_exp ? 1 : 2, num_fpu_regs_in_use);
3364 
3365   // Come here with result in F-TOS
3366   bind(done);
3367 }
3368 
3369 void MacroAssembler::fpop() {
3370   ffree();
3371   fincstp();
3372 }
3373 
3374 void MacroAssembler::fremr(Register tmp) {
3375   save_rax(tmp);
3376   { Label L;
3377     bind(L);
3378     fprem();
3379     fwait(); fnstsw_ax();
3380 #ifdef _LP64
3381     testl(rax, 0x400);
3382     jcc(Assembler::notEqual, L);
3383 #else
3384     sahf();
3385     jcc(Assembler::parity, L);
3386 #endif // _LP64
3387   }
3388   restore_rax(tmp);
3389   // Result is in ST0.
3390   // Note: fxch & fpop to get rid of ST1
3391   // (otherwise FPU stack could overflow eventually)
3392   fxch(1);
3393   fpop();
3394 }
3395 
3396 
3397 void MacroAssembler::incrementl(AddressLiteral dst) {
3398   if (reachable(dst)) {
3399     incrementl(as_Address(dst));
3400   } else {
3401     lea(rscratch1, dst);
3402     incrementl(Address(rscratch1, 0));
3403   }
3404 }
3405 
3406 void MacroAssembler::incrementl(ArrayAddress dst) {
3407   incrementl(as_Address(dst));
3408 }
3409 
3410 void MacroAssembler::incrementl(Register reg, int value) {
3411   if (value == min_jint) {addl(reg, value) ; return; }
3412   if (value <  0) { decrementl(reg, -value); return; }
3413   if (value == 0) {                        ; return; }
3414   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3415   /* else */      { addl(reg, value)       ; return; }
3416 }
3417 
3418 void MacroAssembler::incrementl(Address dst, int value) {
3419   if (value == min_jint) {addl(dst, value) ; return; }
3420   if (value <  0) { decrementl(dst, -value); return; }
3421   if (value == 0) {                        ; return; }
3422   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3423   /* else */      { addl(dst, value)       ; return; }
3424 }
3425 
3426 void MacroAssembler::jump(AddressLiteral dst) {
3427   if (reachable(dst)) {
3428     jmp_literal(dst.target(), dst.rspec());
3429   } else {
3430     lea(rscratch1, dst);
3431     jmp(rscratch1);
3432   }
3433 }
3434 
3435 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3436   if (reachable(dst)) {
3437     InstructionMark im(this);
3438     relocate(dst.reloc());
3439     const int short_size = 2;
3440     const int long_size = 6;
3441     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3442     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3443       // 0111 tttn #8-bit disp
3444       emit_int8(0x70 | cc);
3445       emit_int8((offs - short_size) & 0xFF);
3446     } else {
3447       // 0000 1111 1000 tttn #32-bit disp
3448       emit_int8(0x0F);
3449       emit_int8((unsigned char)(0x80 | cc));
3450       emit_int32(offs - long_size);
3451     }
3452   } else {
3453 #ifdef ASSERT
3454     warning("reversing conditional branch");
3455 #endif /* ASSERT */
3456     Label skip;
3457     jccb(reverse[cc], skip);
3458     lea(rscratch1, dst);
3459     Assembler::jmp(rscratch1);
3460     bind(skip);
3461   }
3462 }
3463 
3464 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3465   if (reachable(src)) {
3466     Assembler::ldmxcsr(as_Address(src));
3467   } else {
3468     lea(rscratch1, src);
3469     Assembler::ldmxcsr(Address(rscratch1, 0));
3470   }
3471 }
3472 
3473 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3474   int off;
3475   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3476     off = offset();
3477     movsbl(dst, src); // movsxb
3478   } else {
3479     off = load_unsigned_byte(dst, src);
3480     shll(dst, 24);
3481     sarl(dst, 24);
3482   }
3483   return off;
3484 }
3485 
3486 // Note: load_signed_short used to be called load_signed_word.
3487 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3488 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3489 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3490 int MacroAssembler::load_signed_short(Register dst, Address src) {
3491   int off;
3492   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3493     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3494     // version but this is what 64bit has always done. This seems to imply
3495     // that users are only using 32bits worth.
3496     off = offset();
3497     movswl(dst, src); // movsxw
3498   } else {
3499     off = load_unsigned_short(dst, src);
3500     shll(dst, 16);
3501     sarl(dst, 16);
3502   }
3503   return off;
3504 }
3505 
3506 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3507   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3508   // and "3.9 Partial Register Penalties", p. 22).
3509   int off;
3510   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3511     off = offset();
3512     movzbl(dst, src); // movzxb
3513   } else {
3514     xorl(dst, dst);
3515     off = offset();
3516     movb(dst, src);
3517   }
3518   return off;
3519 }
3520 
3521 // Note: load_unsigned_short used to be called load_unsigned_word.
3522 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3523   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3524   // and "3.9 Partial Register Penalties", p. 22).
3525   int off;
3526   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3527     off = offset();
3528     movzwl(dst, src); // movzxw
3529   } else {
3530     xorl(dst, dst);
3531     off = offset();
3532     movw(dst, src);
3533   }
3534   return off;
3535 }
3536 
3537 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3538   switch (size_in_bytes) {
3539 #ifndef _LP64
3540   case  8:
3541     assert(dst2 != noreg, "second dest register required");
3542     movl(dst,  src);
3543     movl(dst2, src.plus_disp(BytesPerInt));
3544     break;
3545 #else
3546   case  8:  movq(dst, src); break;
3547 #endif
3548   case  4:  movl(dst, src); break;
3549   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3550   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3551   default:  ShouldNotReachHere();
3552   }
3553 }
3554 
3555 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3556   switch (size_in_bytes) {
3557 #ifndef _LP64
3558   case  8:
3559     assert(src2 != noreg, "second source register required");
3560     movl(dst,                        src);
3561     movl(dst.plus_disp(BytesPerInt), src2);
3562     break;
3563 #else
3564   case  8:  movq(dst, src); break;
3565 #endif
3566   case  4:  movl(dst, src); break;
3567   case  2:  movw(dst, src); break;
3568   case  1:  movb(dst, src); break;
3569   default:  ShouldNotReachHere();
3570   }
3571 }
3572 
3573 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3574   if (reachable(dst)) {
3575     movl(as_Address(dst), src);
3576   } else {
3577     lea(rscratch1, dst);
3578     movl(Address(rscratch1, 0), src);
3579   }
3580 }
3581 
3582 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3583   if (reachable(src)) {
3584     movl(dst, as_Address(src));
3585   } else {
3586     lea(rscratch1, src);
3587     movl(dst, Address(rscratch1, 0));
3588   }
3589 }
3590 
3591 // C++ bool manipulation
3592 
3593 void MacroAssembler::movbool(Register dst, Address src) {
3594   if(sizeof(bool) == 1)
3595     movb(dst, src);
3596   else if(sizeof(bool) == 2)
3597     movw(dst, src);
3598   else if(sizeof(bool) == 4)
3599     movl(dst, src);
3600   else
3601     // unsupported
3602     ShouldNotReachHere();
3603 }
3604 
3605 void MacroAssembler::movbool(Address dst, bool boolconst) {
3606   if(sizeof(bool) == 1)
3607     movb(dst, (int) boolconst);
3608   else if(sizeof(bool) == 2)
3609     movw(dst, (int) boolconst);
3610   else if(sizeof(bool) == 4)
3611     movl(dst, (int) boolconst);
3612   else
3613     // unsupported
3614     ShouldNotReachHere();
3615 }
3616 
3617 void MacroAssembler::movbool(Address dst, Register src) {
3618   if(sizeof(bool) == 1)
3619     movb(dst, src);
3620   else if(sizeof(bool) == 2)
3621     movw(dst, src);
3622   else if(sizeof(bool) == 4)
3623     movl(dst, src);
3624   else
3625     // unsupported
3626     ShouldNotReachHere();
3627 }
3628 
3629 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3630   movb(as_Address(dst), src);
3631 }
3632 
3633 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3634   if (reachable(src)) {
3635     movdl(dst, as_Address(src));
3636   } else {
3637     lea(rscratch1, src);
3638     movdl(dst, Address(rscratch1, 0));
3639   }
3640 }
3641 
3642 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3643   if (reachable(src)) {
3644     movq(dst, as_Address(src));
3645   } else {
3646     lea(rscratch1, src);
3647     movq(dst, Address(rscratch1, 0));
3648   }
3649 }
3650 
3651 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3652   if (reachable(src)) {
3653     if (UseXmmLoadAndClearUpper) {
3654       movsd (dst, as_Address(src));
3655     } else {
3656       movlpd(dst, as_Address(src));
3657     }
3658   } else {
3659     lea(rscratch1, src);
3660     if (UseXmmLoadAndClearUpper) {
3661       movsd (dst, Address(rscratch1, 0));
3662     } else {
3663       movlpd(dst, Address(rscratch1, 0));
3664     }
3665   }
3666 }
3667 
3668 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3669   if (reachable(src)) {
3670     movss(dst, as_Address(src));
3671   } else {
3672     lea(rscratch1, src);
3673     movss(dst, Address(rscratch1, 0));
3674   }
3675 }
3676 
3677 void MacroAssembler::movptr(Register dst, Register src) {
3678   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3679 }
3680 
3681 void MacroAssembler::movptr(Register dst, Address src) {
3682   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3683 }
3684 
3685 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3686 void MacroAssembler::movptr(Register dst, intptr_t src) {
3687   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3688 }
3689 
3690 void MacroAssembler::movptr(Address dst, Register src) {
3691   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3692 }
3693 
3694 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3695   if (reachable(src)) {
3696     Assembler::movdqu(dst, as_Address(src));
3697   } else {
3698     lea(rscratch1, src);
3699     Assembler::movdqu(dst, Address(rscratch1, 0));
3700   }
3701 }
3702 
3703 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3704   if (reachable(src)) {
3705     Assembler::movdqa(dst, as_Address(src));
3706   } else {
3707     lea(rscratch1, src);
3708     Assembler::movdqa(dst, Address(rscratch1, 0));
3709   }
3710 }
3711 
3712 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3713   if (reachable(src)) {
3714     Assembler::movsd(dst, as_Address(src));
3715   } else {
3716     lea(rscratch1, src);
3717     Assembler::movsd(dst, Address(rscratch1, 0));
3718   }
3719 }
3720 
3721 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3722   if (reachable(src)) {
3723     Assembler::movss(dst, as_Address(src));
3724   } else {
3725     lea(rscratch1, src);
3726     Assembler::movss(dst, Address(rscratch1, 0));
3727   }
3728 }
3729 
3730 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3731   if (reachable(src)) {
3732     Assembler::mulsd(dst, as_Address(src));
3733   } else {
3734     lea(rscratch1, src);
3735     Assembler::mulsd(dst, Address(rscratch1, 0));
3736   }
3737 }
3738 
3739 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3740   if (reachable(src)) {
3741     Assembler::mulss(dst, as_Address(src));
3742   } else {
3743     lea(rscratch1, src);
3744     Assembler::mulss(dst, Address(rscratch1, 0));
3745   }
3746 }
3747 
3748 void MacroAssembler::null_check(Register reg, int offset) {
3749   if (needs_explicit_null_check(offset)) {
3750     // provoke OS NULL exception if reg = NULL by
3751     // accessing M[reg] w/o changing any (non-CC) registers
3752     // NOTE: cmpl is plenty here to provoke a segv
3753     cmpptr(rax, Address(reg, 0));
3754     // Note: should probably use testl(rax, Address(reg, 0));
3755     //       may be shorter code (however, this version of
3756     //       testl needs to be implemented first)
3757   } else {
3758     // nothing to do, (later) access of M[reg + offset]
3759     // will provoke OS NULL exception if reg = NULL
3760   }
3761 }
3762 
3763 void MacroAssembler::os_breakpoint() {
3764   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3765   // (e.g., MSVC can't call ps() otherwise)
3766   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3767 }
3768 
3769 void MacroAssembler::pop_CPU_state() {
3770   pop_FPU_state();
3771   pop_IU_state();
3772 }
3773 
3774 void MacroAssembler::pop_FPU_state() {
3775   NOT_LP64(frstor(Address(rsp, 0));)
3776   LP64_ONLY(fxrstor(Address(rsp, 0));)
3777   addptr(rsp, FPUStateSizeInWords * wordSize);
3778 }
3779 
3780 void MacroAssembler::pop_IU_state() {
3781   popa();
3782   LP64_ONLY(addq(rsp, 8));
3783   popf();
3784 }
3785 
3786 // Save Integer and Float state
3787 // Warning: Stack must be 16 byte aligned (64bit)
3788 void MacroAssembler::push_CPU_state() {
3789   push_IU_state();
3790   push_FPU_state();
3791 }
3792 
3793 void MacroAssembler::push_FPU_state() {
3794   subptr(rsp, FPUStateSizeInWords * wordSize);
3795 #ifndef _LP64
3796   fnsave(Address(rsp, 0));
3797   fwait();
3798 #else
3799   fxsave(Address(rsp, 0));
3800 #endif // LP64
3801 }
3802 
3803 void MacroAssembler::push_IU_state() {
3804   // Push flags first because pusha kills them
3805   pushf();
3806   // Make sure rsp stays 16-byte aligned
3807   LP64_ONLY(subq(rsp, 8));
3808   pusha();
3809 }
3810 
3811 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) {
3812   // determine java_thread register
3813   if (!java_thread->is_valid()) {
3814     java_thread = rdi;
3815     get_thread(java_thread);
3816   }
3817   // we must set sp to zero to clear frame
3818   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3819   if (clear_fp) {
3820     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3821   }
3822 
3823   // Always clear the pc because it could have been set by make_walkable()
3824   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3825 
3826 }
3827 
3828 void MacroAssembler::restore_rax(Register tmp) {
3829   if (tmp == noreg) pop(rax);
3830   else if (tmp != rax) mov(rax, tmp);
3831 }
3832 
3833 void MacroAssembler::round_to(Register reg, int modulus) {
3834   addptr(reg, modulus - 1);
3835   andptr(reg, -modulus);
3836 }
3837 
3838 void MacroAssembler::save_rax(Register tmp) {
3839   if (tmp == noreg) push(rax);
3840   else if (tmp != rax) mov(tmp, rax);
3841 }
3842 
3843 // Write serialization page so VM thread can do a pseudo remote membar.
3844 // We use the current thread pointer to calculate a thread specific
3845 // offset to write to within the page. This minimizes bus traffic
3846 // due to cache line collision.
3847 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3848   movl(tmp, thread);
3849   shrl(tmp, os::get_serialize_page_shift_count());
3850   andl(tmp, (os::vm_page_size() - sizeof(int)));
3851 
3852   Address index(noreg, tmp, Address::times_1);
3853   ExternalAddress page(os::get_memory_serialize_page());
3854 
3855   // Size of store must match masking code above
3856   movl(as_Address(ArrayAddress(page, index)), tmp);
3857 }
3858 
3859 // Special Shenandoah CAS implementation that handles false negatives
3860 // due to concurrent evacuation.
3861 #if INCLUDE_ALL_GCS
3862 #ifndef _LP64
3863 void MacroAssembler::cmpxchg_oop_shenandoah(Register res, Address addr, Register oldval, Register newval,
3864                               bool exchange,
3865                               Register tmp1, Register tmp2) {
3866   // Shenandoah has no 32-bit version for this.
3867   Unimplemented();
3868 }
3869 #else
3870 void MacroAssembler::cmpxchg_oop_shenandoah(Register res, Address addr, Register oldval, Register newval,
3871                               bool exchange,
3872                               Register tmp1, Register tmp2) {
3873   assert (UseShenandoahGC && ShenandoahCASBarrier, "Should only be used with Shenandoah");
3874   assert(oldval == rax, "must be in rax for implicit use in cmpxchg");
3875 
3876   Label retry, done;
3877 
3878   // Remember oldval for retry logic below
3879   if (UseCompressedOops) {
3880     movl(tmp1, oldval);
3881   } else {
3882     movptr(tmp1, oldval);
3883   }
3884 
3885   // Step 1. Try to CAS with given arguments. If successful, then we are done,
3886   // and can safely return.
3887   if (os::is_MP()) lock();
3888   if (UseCompressedOops) {
3889     cmpxchgl(newval, addr);
3890   } else {
3891     cmpxchgptr(newval, addr);
3892   }
3893   jcc(Assembler::equal, done, true);
3894 
3895   // Step 2. CAS had failed. This may be a false negative.
3896   //
3897   // The trouble comes when we compare the to-space pointer with the from-space
3898   // pointer to the same object. To resolve this, it will suffice to read both
3899   // oldval and the value from memory through the read barriers -- this will give
3900   // both to-space pointers. If they mismatch, then it was a legitimate failure.
3901   //
3902   if (UseCompressedOops) {
3903     decode_heap_oop(tmp1);
3904   }
3905   oopDesc::bs()->interpreter_read_barrier(this, tmp1);
3906 
3907   if (UseCompressedOops) {
3908     movl(tmp2, oldval);
3909     decode_heap_oop(tmp2);
3910   } else {
3911     movptr(tmp2, oldval);
3912   }
3913   oopDesc::bs()->interpreter_read_barrier(this, tmp2);
3914 
3915   cmpptr(tmp1, tmp2);
3916   jcc(Assembler::notEqual, done, true);
3917 
3918   // Step 3. Try to CAS again with resolved to-space pointers.
3919   //
3920   // Corner case: it may happen that somebody stored the from-space pointer
3921   // to memory while we were preparing for retry. Therefore, we can fail again
3922   // on retry, and so need to do this in loop, always re-reading the failure
3923   // witness through the read barrier.
3924   bind(retry);
3925   if (os::is_MP()) lock();
3926   if (UseCompressedOops) {
3927     cmpxchgl(newval, addr);
3928   } else {
3929     cmpxchgptr(newval, addr);
3930   }
3931   jcc(Assembler::equal, done, true);
3932 
3933   if (UseCompressedOops) {
3934     movl(tmp2, oldval);
3935     decode_heap_oop(tmp2);
3936   } else {
3937     movptr(tmp2, oldval);
3938   }
3939   oopDesc::bs()->interpreter_read_barrier(this, tmp2);
3940 
3941   cmpptr(tmp1, tmp2);
3942   jcc(Assembler::equal, retry, true);
3943 
3944   // Step 4. If we need a boolean result out of CAS, check the flag again,
3945   // and promote the result. Note that we handle the flag from both the CAS
3946   // itself and from the retry loop.
3947   bind(done);
3948   if (!exchange) {
3949     setb(Assembler::equal, res);
3950     movzbl(res, res);
3951   }
3952 }
3953 #endif // INCLUDE_ALL_GCS
3954 #endif // LP64
3955 
3956 // Calls to C land
3957 //
3958 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3959 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3960 // has to be reset to 0. This is required to allow proper stack traversal.
3961 void MacroAssembler::set_last_Java_frame(Register java_thread,
3962                                          Register last_java_sp,
3963                                          Register last_java_fp,
3964                                          address  last_java_pc) {
3965   // determine java_thread register
3966   if (!java_thread->is_valid()) {
3967     java_thread = rdi;
3968     get_thread(java_thread);
3969   }
3970   // determine last_java_sp register
3971   if (!last_java_sp->is_valid()) {
3972     last_java_sp = rsp;
3973   }
3974 
3975   // last_java_fp is optional
3976 
3977   if (last_java_fp->is_valid()) {
3978     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3979   }
3980 
3981   // last_java_pc is optional
3982 
3983   if (last_java_pc != NULL) {
3984     lea(Address(java_thread,
3985                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3986         InternalAddress(last_java_pc));
3987 
3988   }
3989   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3990 }
3991 
3992 void MacroAssembler::shlptr(Register dst, int imm8) {
3993   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3994 }
3995 
3996 void MacroAssembler::shrptr(Register dst, int imm8) {
3997   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3998 }
3999 
4000 void MacroAssembler::sign_extend_byte(Register reg) {
4001   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
4002     movsbl(reg, reg); // movsxb
4003   } else {
4004     shll(reg, 24);
4005     sarl(reg, 24);
4006   }
4007 }
4008 
4009 void MacroAssembler::sign_extend_short(Register reg) {
4010   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
4011     movswl(reg, reg); // movsxw
4012   } else {
4013     shll(reg, 16);
4014     sarl(reg, 16);
4015   }
4016 }
4017 
4018 void MacroAssembler::testl(Register dst, AddressLiteral src) {
4019   assert(reachable(src), "Address should be reachable");
4020   testl(dst, as_Address(src));
4021 }
4022 
4023 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
4024   if (reachable(src)) {
4025     Assembler::sqrtsd(dst, as_Address(src));
4026   } else {
4027     lea(rscratch1, src);
4028     Assembler::sqrtsd(dst, Address(rscratch1, 0));
4029   }
4030 }
4031 
4032 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
4033   if (reachable(src)) {
4034     Assembler::sqrtss(dst, as_Address(src));
4035   } else {
4036     lea(rscratch1, src);
4037     Assembler::sqrtss(dst, Address(rscratch1, 0));
4038   }
4039 }
4040 
4041 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4042   if (reachable(src)) {
4043     Assembler::subsd(dst, as_Address(src));
4044   } else {
4045     lea(rscratch1, src);
4046     Assembler::subsd(dst, Address(rscratch1, 0));
4047   }
4048 }
4049 
4050 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4051   if (reachable(src)) {
4052     Assembler::subss(dst, as_Address(src));
4053   } else {
4054     lea(rscratch1, src);
4055     Assembler::subss(dst, Address(rscratch1, 0));
4056   }
4057 }
4058 
4059 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4060   if (reachable(src)) {
4061     Assembler::ucomisd(dst, as_Address(src));
4062   } else {
4063     lea(rscratch1, src);
4064     Assembler::ucomisd(dst, Address(rscratch1, 0));
4065   }
4066 }
4067 
4068 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4069   if (reachable(src)) {
4070     Assembler::ucomiss(dst, as_Address(src));
4071   } else {
4072     lea(rscratch1, src);
4073     Assembler::ucomiss(dst, Address(rscratch1, 0));
4074   }
4075 }
4076 
4077 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4078   // Used in sign-bit flipping with aligned address.
4079   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4080   if (reachable(src)) {
4081     Assembler::xorpd(dst, as_Address(src));
4082   } else {
4083     lea(rscratch1, src);
4084     Assembler::xorpd(dst, Address(rscratch1, 0));
4085   }
4086 }
4087 
4088 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4089   // Used in sign-bit flipping with aligned address.
4090   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4091   if (reachable(src)) {
4092     Assembler::xorps(dst, as_Address(src));
4093   } else {
4094     lea(rscratch1, src);
4095     Assembler::xorps(dst, Address(rscratch1, 0));
4096   }
4097 }
4098 
4099 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4100   // Used in sign-bit flipping with aligned address.
4101   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4102   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4103   if (reachable(src)) {
4104     Assembler::pshufb(dst, as_Address(src));
4105   } else {
4106     lea(rscratch1, src);
4107     Assembler::pshufb(dst, Address(rscratch1, 0));
4108   }
4109 }
4110 
4111 // AVX 3-operands instructions
4112 
4113 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4114   if (reachable(src)) {
4115     vaddsd(dst, nds, as_Address(src));
4116   } else {
4117     lea(rscratch1, src);
4118     vaddsd(dst, nds, Address(rscratch1, 0));
4119   }
4120 }
4121 
4122 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4123   if (reachable(src)) {
4124     vaddss(dst, nds, as_Address(src));
4125   } else {
4126     lea(rscratch1, src);
4127     vaddss(dst, nds, Address(rscratch1, 0));
4128   }
4129 }
4130 
4131 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4132   if (reachable(src)) {
4133     vandpd(dst, nds, as_Address(src), vector256);
4134   } else {
4135     lea(rscratch1, src);
4136     vandpd(dst, nds, Address(rscratch1, 0), vector256);
4137   }
4138 }
4139 
4140 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4141   if (reachable(src)) {
4142     vandps(dst, nds, as_Address(src), vector256);
4143   } else {
4144     lea(rscratch1, src);
4145     vandps(dst, nds, Address(rscratch1, 0), vector256);
4146   }
4147 }
4148 
4149 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4150   if (reachable(src)) {
4151     vdivsd(dst, nds, as_Address(src));
4152   } else {
4153     lea(rscratch1, src);
4154     vdivsd(dst, nds, Address(rscratch1, 0));
4155   }
4156 }
4157 
4158 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4159   if (reachable(src)) {
4160     vdivss(dst, nds, as_Address(src));
4161   } else {
4162     lea(rscratch1, src);
4163     vdivss(dst, nds, Address(rscratch1, 0));
4164   }
4165 }
4166 
4167 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4168   if (reachable(src)) {
4169     vmulsd(dst, nds, as_Address(src));
4170   } else {
4171     lea(rscratch1, src);
4172     vmulsd(dst, nds, Address(rscratch1, 0));
4173   }
4174 }
4175 
4176 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4177   if (reachable(src)) {
4178     vmulss(dst, nds, as_Address(src));
4179   } else {
4180     lea(rscratch1, src);
4181     vmulss(dst, nds, Address(rscratch1, 0));
4182   }
4183 }
4184 
4185 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4186   if (reachable(src)) {
4187     vsubsd(dst, nds, as_Address(src));
4188   } else {
4189     lea(rscratch1, src);
4190     vsubsd(dst, nds, Address(rscratch1, 0));
4191   }
4192 }
4193 
4194 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4195   if (reachable(src)) {
4196     vsubss(dst, nds, as_Address(src));
4197   } else {
4198     lea(rscratch1, src);
4199     vsubss(dst, nds, Address(rscratch1, 0));
4200   }
4201 }
4202 
4203 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4204   if (reachable(src)) {
4205     vxorpd(dst, nds, as_Address(src), vector256);
4206   } else {
4207     lea(rscratch1, src);
4208     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
4209   }
4210 }
4211 
4212 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4213   if (reachable(src)) {
4214     vxorps(dst, nds, as_Address(src), vector256);
4215   } else {
4216     lea(rscratch1, src);
4217     vxorps(dst, nds, Address(rscratch1, 0), vector256);
4218   }
4219 }
4220 
4221 
4222 //////////////////////////////////////////////////////////////////////////////////
4223 #if INCLUDE_ALL_GCS
4224 
4225 void MacroAssembler::g1_write_barrier_pre(Register obj,
4226                                           Register pre_val,
4227                                           Register thread,
4228                                           Register tmp,
4229                                           bool tosca_live,
4230                                           bool expand_call) {
4231 
4232   // If expand_call is true then we expand the call_VM_leaf macro
4233   // directly to skip generating the check by
4234   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
4235 
4236 #ifdef _LP64
4237   assert(thread == r15_thread, "must be");
4238 #endif // _LP64
4239 
4240   Label done;
4241   Label runtime;
4242 
4243   assert(pre_val != noreg, "check this code");
4244 
4245   if (obj != noreg) {
4246     assert_different_registers(obj, pre_val, tmp);
4247     assert(pre_val != rax, "check this code");
4248   }
4249 
4250   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4251                                        PtrQueue::byte_offset_of_active()));
4252   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4253                                        PtrQueue::byte_offset_of_index()));
4254   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4255                                        PtrQueue::byte_offset_of_buf()));
4256 
4257   if (UseShenandoahGC) {
4258     Address gc_state(thread, in_bytes(JavaThread::gc_state_offset()));
4259     testb(gc_state, ShenandoahHeap::MARKING);
4260     jcc(Assembler::zero, done);
4261   } else {
4262     assert(UseG1GC, "Should be");
4263     // Is marking active?
4264     if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4265       cmpl(in_progress, 0);
4266     } else {
4267       assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
4268       cmpb(in_progress, 0);
4269     }
4270     jcc(Assembler::equal, done);
4271   }
4272 
4273   // Do we need to load the previous value?
4274   if (obj != noreg) {
4275     load_heap_oop(pre_val, Address(obj, 0));
4276   }
4277 
4278   // Is the previous value null?
4279   cmpptr(pre_val, (int32_t) NULL_WORD);
4280   jcc(Assembler::equal, done);
4281 
4282   // Can we store original value in the thread's buffer?
4283   // Is index == 0?
4284   // (The index field is typed as size_t.)
4285 
4286   movptr(tmp, index);                   // tmp := *index_adr
4287   cmpptr(tmp, 0);                       // tmp == 0?
4288   jcc(Assembler::equal, runtime);       // If yes, goto runtime
4289 
4290   subptr(tmp, wordSize);                // tmp := tmp - wordSize
4291   movptr(index, tmp);                   // *index_adr := tmp
4292   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
4293 
4294   // Record the previous value
4295   movptr(Address(tmp, 0), pre_val);
4296   jmp(done);
4297 
4298   bind(runtime);
4299   // save the live input values
4300   if(tosca_live) push(rax);
4301 
4302   if (obj != noreg && obj != rax)
4303     push(obj);
4304 
4305   if (pre_val != rax)
4306     push(pre_val);
4307 
4308   // Calling the runtime using the regular call_VM_leaf mechanism generates
4309   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
4310   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
4311   //
4312   // If we care generating the pre-barrier without a frame (e.g. in the
4313   // intrinsified Reference.get() routine) then ebp might be pointing to
4314   // the caller frame and so this check will most likely fail at runtime.
4315   //
4316   // Expanding the call directly bypasses the generation of the check.
4317   // So when we do not have have a full interpreter frame on the stack
4318   // expand_call should be passed true.
4319 
4320   NOT_LP64( push(thread); )
4321 
4322   if (expand_call) {
4323     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
4324     pass_arg1(this, thread);
4325     pass_arg0(this, pre_val);
4326     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
4327   } else {
4328     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
4329   }
4330 
4331   NOT_LP64( pop(thread); )
4332 
4333   // save the live input values
4334   if (pre_val != rax)
4335     pop(pre_val);
4336 
4337   if (obj != noreg && obj != rax)
4338     pop(obj);
4339 
4340   if(tosca_live) pop(rax);
4341 
4342   bind(done);
4343 }
4344 
4345 void MacroAssembler::g1_write_barrier_post(Register store_addr,
4346                                            Register new_val,
4347                                            Register thread,
4348                                            Register tmp,
4349                                            Register tmp2) {
4350 #ifdef _LP64
4351   assert(thread == r15_thread, "must be");
4352 #endif // _LP64
4353 
4354   if (UseShenandoahGC) {
4355     // No need for this in Shenandoah.
4356     return;
4357   }
4358 
4359   assert(UseG1GC, "expect G1 GC");
4360 
4361   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4362                                        PtrQueue::byte_offset_of_index()));
4363   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4364                                        PtrQueue::byte_offset_of_buf()));
4365 
4366   BarrierSet* bs = Universe::heap()->barrier_set();
4367   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
4368   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4369 
4370   Label done;
4371   Label runtime;
4372 
4373   // Does store cross heap regions?
4374 
4375   movptr(tmp, store_addr);
4376   xorptr(tmp, new_val);
4377   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
4378   jcc(Assembler::equal, done);
4379 
4380   // crosses regions, storing NULL?
4381 
4382   cmpptr(new_val, (int32_t) NULL_WORD);
4383   jcc(Assembler::equal, done);
4384 
4385   // storing region crossing non-NULL, is card already dirty?
4386 
4387   const Register card_addr = tmp;
4388   const Register cardtable = tmp2;
4389 
4390   movptr(card_addr, store_addr);
4391   shrptr(card_addr, CardTableModRefBS::card_shift);
4392   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
4393   // a valid address and therefore is not properly handled by the relocation code.
4394   movptr(cardtable, (intptr_t)ct->byte_map_base);
4395   addptr(card_addr, cardtable);
4396 
4397   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
4398   jcc(Assembler::equal, done);
4399 
4400   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4401   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4402   jcc(Assembler::equal, done);
4403 
4404 
4405   // storing a region crossing, non-NULL oop, card is clean.
4406   // dirty card and log.
4407 
4408   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4409 
4410   cmpl(queue_index, 0);
4411   jcc(Assembler::equal, runtime);
4412   subl(queue_index, wordSize);
4413   movptr(tmp2, buffer);
4414 #ifdef _LP64
4415   movslq(rscratch1, queue_index);
4416   addq(tmp2, rscratch1);
4417   movq(Address(tmp2, 0), card_addr);
4418 #else
4419   addl(tmp2, queue_index);
4420   movl(Address(tmp2, 0), card_addr);
4421 #endif
4422   jmp(done);
4423 
4424   bind(runtime);
4425   // save the live input values
4426   push(store_addr);
4427   push(new_val);
4428 #ifdef _LP64
4429   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
4430 #else
4431   push(thread);
4432   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
4433   pop(thread);
4434 #endif
4435   pop(new_val);
4436   pop(store_addr);
4437 
4438   bind(done);
4439 }
4440 
4441 #ifndef _LP64
4442 void MacroAssembler::shenandoah_write_barrier(Register dst) {
4443   Unimplemented();
4444 }
4445 #else
4446 void MacroAssembler::shenandoah_write_barrier(Register dst) {
4447   assert(UseShenandoahGC && ShenandoahWriteBarrier, "Should be enabled");
4448 
4449   Label done;
4450 
4451   Address gc_state(r15_thread, in_bytes(JavaThread::gc_state_offset()));
4452 
4453   // Check for heap stability
4454   testb(gc_state, ShenandoahHeap::HAS_FORWARDED | ShenandoahHeap::EVACUATION);
4455   jccb(Assembler::zero, done);
4456 
4457   // Heap is unstable, need to perform the read-barrier even if WB is inactive
4458   if (ShenandoahWriteBarrierRB) {
4459     movptr(dst, Address(dst, BrooksPointer::byte_offset()));
4460   }
4461 
4462   // Check for evacuation-in-progress and jump to WB slow-path if needed
4463   testb(gc_state, ShenandoahHeap::EVACUATION);
4464   jccb(Assembler::zero, done);
4465 
4466   if (dst != rax) {
4467     xchgptr(dst, rax); // Move obj into rax and save rax into obj.
4468   }
4469 
4470   assert(StubRoutines::x86::shenandoah_wb() != NULL, "need write barrier stub");
4471   call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::shenandoah_wb())));
4472 
4473   if (dst != rax) {
4474     xchgptr(rax, dst); // Swap back obj with rax.
4475   }
4476 
4477   bind(done);
4478 }
4479 #endif // _LP64
4480 
4481 #endif // INCLUDE_ALL_GCS
4482 //////////////////////////////////////////////////////////////////////////////////
4483 
4484 
4485 void MacroAssembler::store_check(Register obj) {
4486   // Does a store check for the oop in register obj. The content of
4487   // register obj is destroyed afterwards.
4488   store_check_part_1(obj);
4489   store_check_part_2(obj);
4490 }
4491 
4492 void MacroAssembler::store_check(Register obj, Address dst) {
4493   store_check(obj);
4494 }
4495 
4496 
4497 // split the store check operation so that other instructions can be scheduled inbetween
4498 void MacroAssembler::store_check_part_1(Register obj) {
4499   BarrierSet* bs = Universe::heap()->barrier_set();
4500   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4501   shrptr(obj, CardTableModRefBS::card_shift);
4502 }
4503 
4504 void MacroAssembler::store_check_part_2(Register obj) {
4505   BarrierSet* bs = Universe::heap()->barrier_set();
4506   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4507   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
4508   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4509 
4510   // The calculation for byte_map_base is as follows:
4511   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
4512   // So this essentially converts an address to a displacement and it will
4513   // never need to be relocated. On 64bit however the value may be too
4514   // large for a 32bit displacement.
4515   intptr_t disp = (intptr_t) ct->byte_map_base;
4516   if (is_simm32(disp)) {
4517     Address cardtable(noreg, obj, Address::times_1, disp);
4518     movb(cardtable, 0);
4519   } else {
4520     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
4521     // displacement and done in a single instruction given favorable mapping and a
4522     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
4523     // entry and that entry is not properly handled by the relocation code.
4524     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
4525     Address index(noreg, obj, Address::times_1);
4526     movb(as_Address(ArrayAddress(cardtable, index)), 0);
4527   }
4528 }
4529 
4530 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4531   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4532 }
4533 
4534 // Force generation of a 4 byte immediate value even if it fits into 8bit
4535 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4536   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4537 }
4538 
4539 void MacroAssembler::subptr(Register dst, Register src) {
4540   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4541 }
4542 
4543 // C++ bool manipulation
4544 void MacroAssembler::testbool(Register dst) {
4545   if(sizeof(bool) == 1)
4546     testb(dst, 0xff);
4547   else if(sizeof(bool) == 2) {
4548     // testw implementation needed for two byte bools
4549     ShouldNotReachHere();
4550   } else if(sizeof(bool) == 4)
4551     testl(dst, dst);
4552   else
4553     // unsupported
4554     ShouldNotReachHere();
4555 }
4556 
4557 void MacroAssembler::testptr(Register dst, Register src) {
4558   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4559 }
4560 
4561 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4562 void MacroAssembler::tlab_allocate(Register obj,
4563                                    Register var_size_in_bytes,
4564                                    int con_size_in_bytes,
4565                                    Register t1,
4566                                    Register t2,
4567                                    Label& slow_case) {
4568   assert_different_registers(obj, t1, t2);
4569   assert_different_registers(obj, var_size_in_bytes, t1);
4570   Register end = t2;
4571   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
4572 
4573   verify_tlab();
4574 
4575   NOT_LP64(get_thread(thread));
4576 
4577   uint oop_extra_words = Universe::heap()->oop_extra_words();
4578 
4579   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
4580   if (var_size_in_bytes == noreg) {
4581     lea(end, Address(obj, con_size_in_bytes + oop_extra_words * HeapWordSize));
4582   } else {
4583     if (oop_extra_words > 0) {
4584       addptr(var_size_in_bytes, oop_extra_words * HeapWordSize);
4585     }
4586     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
4587   }
4588   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
4589   jcc(Assembler::above, slow_case);
4590 
4591   // update the tlab top pointer
4592   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
4593 
4594   Universe::heap()->compile_prepare_oop(this, obj);
4595 
4596   // recover var_size_in_bytes if necessary
4597   if (var_size_in_bytes == end) {
4598     subptr(var_size_in_bytes, obj);
4599   }
4600   verify_tlab();
4601 }
4602 
4603 // Preserves rbx, and rdx.
4604 Register MacroAssembler::tlab_refill(Label& retry,
4605                                      Label& try_eden,
4606                                      Label& slow_case) {
4607   Register top = rax;
4608   Register t1  = rcx;
4609   Register t2  = rsi;
4610   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
4611   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
4612   Label do_refill, discard_tlab;
4613 
4614   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
4615     // No allocation in the shared eden.
4616     jmp(slow_case);
4617   }
4618 
4619   NOT_LP64(get_thread(thread_reg));
4620 
4621   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4622   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4623 
4624   // calculate amount of free space
4625   subptr(t1, top);
4626   shrptr(t1, LogHeapWordSize);
4627 
4628   // Retain tlab and allocate object in shared space if
4629   // the amount free in the tlab is too large to discard.
4630   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
4631   jcc(Assembler::lessEqual, discard_tlab);
4632 
4633   // Retain
4634   // %%% yuck as movptr...
4635   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
4636   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
4637   if (TLABStats) {
4638     // increment number of slow_allocations
4639     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
4640   }
4641   jmp(try_eden);
4642 
4643   bind(discard_tlab);
4644   if (TLABStats) {
4645     // increment number of refills
4646     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
4647     // accumulate wastage -- t1 is amount free in tlab
4648     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
4649   }
4650 
4651   // if tlab is currently allocated (top or end != null) then
4652   // fill [top, end + alignment_reserve) with array object
4653   testptr(top, top);
4654   jcc(Assembler::zero, do_refill);
4655 
4656   // set up the mark word
4657   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
4658   // set the length to the remaining space
4659   subptr(t1, typeArrayOopDesc::header_size(T_INT));
4660   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
4661   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
4662   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
4663   // set klass to intArrayKlass
4664   // dubious reloc why not an oop reloc?
4665   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
4666   // store klass last.  concurrent gcs assumes klass length is valid if
4667   // klass field is not null.
4668   store_klass(top, t1);
4669 
4670   movptr(t1, top);
4671   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4672   incr_allocated_bytes(thread_reg, t1, 0);
4673 
4674   // refill the tlab with an eden allocation
4675   bind(do_refill);
4676   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4677   shlptr(t1, LogHeapWordSize);
4678   // allocate new tlab, address returned in top
4679   eden_allocate(top, t1, 0, t2, slow_case);
4680 
4681   // Check that t1 was preserved in eden_allocate.
4682 #ifdef ASSERT
4683   if (UseTLAB) {
4684     Label ok;
4685     Register tsize = rsi;
4686     assert_different_registers(tsize, thread_reg, t1);
4687     push(tsize);
4688     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4689     shlptr(tsize, LogHeapWordSize);
4690     cmpptr(t1, tsize);
4691     jcc(Assembler::equal, ok);
4692     STOP("assert(t1 != tlab size)");
4693     should_not_reach_here();
4694 
4695     bind(ok);
4696     pop(tsize);
4697   }
4698 #endif
4699   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
4700   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
4701   addptr(top, t1);
4702   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
4703   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
4704   verify_tlab();
4705   jmp(retry);
4706 
4707   return thread_reg; // for use by caller
4708 }
4709 
4710 void MacroAssembler::incr_allocated_bytes(Register thread,
4711                                           Register var_size_in_bytes,
4712                                           int con_size_in_bytes,
4713                                           Register t1) {
4714   if (!thread->is_valid()) {
4715 #ifdef _LP64
4716     thread = r15_thread;
4717 #else
4718     assert(t1->is_valid(), "need temp reg");
4719     thread = t1;
4720     get_thread(thread);
4721 #endif
4722   }
4723 
4724 #ifdef _LP64
4725   if (var_size_in_bytes->is_valid()) {
4726     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4727   } else {
4728     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4729   }
4730 #else
4731   if (var_size_in_bytes->is_valid()) {
4732     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4733   } else {
4734     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4735   }
4736   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
4737 #endif
4738 }
4739 
4740 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
4741   pusha();
4742 
4743   save_vector_registers();
4744 
4745   // if we are coming from c1, xmm registers may be live
4746 
4747   // Preserve registers across runtime call
4748   int incoming_argument_and_return_value_offset = -1;
4749   if (num_fpu_regs_in_use > 1) {
4750     // Must preserve all other FPU regs (could alternatively convert
4751     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
4752     // FPU state, but can not trust C compiler)
4753     NEEDS_CLEANUP;
4754     // NOTE that in this case we also push the incoming argument(s) to
4755     // the stack and restore it later; we also use this stack slot to
4756     // hold the return value from dsin, dcos etc.
4757     for (int i = 0; i < num_fpu_regs_in_use; i++) {
4758       subptr(rsp, sizeof(jdouble));
4759       fstp_d(Address(rsp, 0));
4760     }
4761     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
4762     for (int i = nb_args-1; i >= 0; i--) {
4763       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
4764     }
4765   }
4766 
4767   subptr(rsp, nb_args*sizeof(jdouble));
4768   for (int i = 0; i < nb_args; i++) {
4769     fstp_d(Address(rsp, i*sizeof(jdouble)));
4770   }
4771 
4772 #ifdef _LP64
4773   if (nb_args > 0) {
4774     movdbl(xmm0, Address(rsp, 0));
4775   }
4776   if (nb_args > 1) {
4777     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
4778   }
4779   assert(nb_args <= 2, "unsupported number of args");
4780 #endif // _LP64
4781 
4782   // NOTE: we must not use call_VM_leaf here because that requires a
4783   // complete interpreter frame in debug mode -- same bug as 4387334
4784   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
4785   // do proper 64bit abi
4786 
4787   NEEDS_CLEANUP;
4788   // Need to add stack banging before this runtime call if it needs to
4789   // be taken; however, there is no generic stack banging routine at
4790   // the MacroAssembler level
4791 
4792   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
4793 
4794 #ifdef _LP64
4795   movsd(Address(rsp, 0), xmm0);
4796   fld_d(Address(rsp, 0));
4797 #endif // _LP64
4798   addptr(rsp, sizeof(jdouble) * nb_args);
4799   if (num_fpu_regs_in_use > 1) {
4800     // Must save return value to stack and then restore entire FPU
4801     // stack except incoming arguments
4802     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
4803     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
4804       fld_d(Address(rsp, 0));
4805       addptr(rsp, sizeof(jdouble));
4806     }
4807     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
4808     addptr(rsp, sizeof(jdouble) * nb_args);
4809   }
4810 
4811   restore_vector_registers();
4812   popa();
4813 }
4814 
4815 void MacroAssembler::save_vector_registers() {
4816   int off = 0;
4817   if (UseSSE == 1)  {
4818     subptr(rsp, sizeof(jdouble)*8);
4819     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
4820     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
4821     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
4822     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
4823     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
4824     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
4825     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
4826     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
4827   } else if (UseSSE >= 2)  {
4828 #ifdef COMPILER2
4829     if (MaxVectorSize > 16) {
4830       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
4831       // Save upper half of YMM registes
4832       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4833       vextractf128h(Address(rsp,  0),xmm0);
4834       vextractf128h(Address(rsp, 16),xmm1);
4835       vextractf128h(Address(rsp, 32),xmm2);
4836       vextractf128h(Address(rsp, 48),xmm3);
4837       vextractf128h(Address(rsp, 64),xmm4);
4838       vextractf128h(Address(rsp, 80),xmm5);
4839       vextractf128h(Address(rsp, 96),xmm6);
4840       vextractf128h(Address(rsp,112),xmm7);
4841 #ifdef _LP64
4842       vextractf128h(Address(rsp,128),xmm8);
4843       vextractf128h(Address(rsp,144),xmm9);
4844       vextractf128h(Address(rsp,160),xmm10);
4845       vextractf128h(Address(rsp,176),xmm11);
4846       vextractf128h(Address(rsp,192),xmm12);
4847       vextractf128h(Address(rsp,208),xmm13);
4848       vextractf128h(Address(rsp,224),xmm14);
4849       vextractf128h(Address(rsp,240),xmm15);
4850 #endif
4851     }
4852 #endif
4853     // Save whole 128bit (16 bytes) XMM regiters
4854     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4855     movdqu(Address(rsp,off++*16),xmm0);
4856     movdqu(Address(rsp,off++*16),xmm1);
4857     movdqu(Address(rsp,off++*16),xmm2);
4858     movdqu(Address(rsp,off++*16),xmm3);
4859     movdqu(Address(rsp,off++*16),xmm4);
4860     movdqu(Address(rsp,off++*16),xmm5);
4861     movdqu(Address(rsp,off++*16),xmm6);
4862     movdqu(Address(rsp,off++*16),xmm7);
4863 #ifdef _LP64
4864     movdqu(Address(rsp,off++*16),xmm8);
4865     movdqu(Address(rsp,off++*16),xmm9);
4866     movdqu(Address(rsp,off++*16),xmm10);
4867     movdqu(Address(rsp,off++*16),xmm11);
4868     movdqu(Address(rsp,off++*16),xmm12);
4869     movdqu(Address(rsp,off++*16),xmm13);
4870     movdqu(Address(rsp,off++*16),xmm14);
4871     movdqu(Address(rsp,off++*16),xmm15);
4872 #endif
4873   }
4874 }
4875 
4876 void MacroAssembler::restore_vector_registers() {
4877   int off = 0;
4878   if (UseSSE == 1)  {
4879     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
4880     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
4881     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
4882     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
4883     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
4884     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
4885     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
4886     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
4887     addptr(rsp, sizeof(jdouble)*8);
4888   } else if (UseSSE >= 2)  {
4889     // Restore whole 128bit (16 bytes) XMM regiters
4890     movdqu(xmm0, Address(rsp,off++*16));
4891     movdqu(xmm1, Address(rsp,off++*16));
4892     movdqu(xmm2, Address(rsp,off++*16));
4893     movdqu(xmm3, Address(rsp,off++*16));
4894     movdqu(xmm4, Address(rsp,off++*16));
4895     movdqu(xmm5, Address(rsp,off++*16));
4896     movdqu(xmm6, Address(rsp,off++*16));
4897     movdqu(xmm7, Address(rsp,off++*16));
4898 #ifdef _LP64
4899     movdqu(xmm8, Address(rsp,off++*16));
4900     movdqu(xmm9, Address(rsp,off++*16));
4901     movdqu(xmm10, Address(rsp,off++*16));
4902     movdqu(xmm11, Address(rsp,off++*16));
4903     movdqu(xmm12, Address(rsp,off++*16));
4904     movdqu(xmm13, Address(rsp,off++*16));
4905     movdqu(xmm14, Address(rsp,off++*16));
4906     movdqu(xmm15, Address(rsp,off++*16));
4907 #endif
4908     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4909 #ifdef COMPILER2
4910     if (MaxVectorSize > 16) {
4911       // Restore upper half of YMM registes.
4912       vinsertf128h(xmm0, Address(rsp,  0));
4913       vinsertf128h(xmm1, Address(rsp, 16));
4914       vinsertf128h(xmm2, Address(rsp, 32));
4915       vinsertf128h(xmm3, Address(rsp, 48));
4916       vinsertf128h(xmm4, Address(rsp, 64));
4917       vinsertf128h(xmm5, Address(rsp, 80));
4918       vinsertf128h(xmm6, Address(rsp, 96));
4919       vinsertf128h(xmm7, Address(rsp,112));
4920 #ifdef _LP64
4921       vinsertf128h(xmm8, Address(rsp,128));
4922       vinsertf128h(xmm9, Address(rsp,144));
4923       vinsertf128h(xmm10, Address(rsp,160));
4924       vinsertf128h(xmm11, Address(rsp,176));
4925       vinsertf128h(xmm12, Address(rsp,192));
4926       vinsertf128h(xmm13, Address(rsp,208));
4927       vinsertf128h(xmm14, Address(rsp,224));
4928       vinsertf128h(xmm15, Address(rsp,240));
4929 #endif
4930       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4931     }
4932 #endif
4933   }
4934 }
4935 
4936 static const double     pi_4 =  0.7853981633974483;
4937 
4938 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
4939   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
4940   // was attempted in this code; unfortunately it appears that the
4941   // switch to 80-bit precision and back causes this to be
4942   // unprofitable compared with simply performing a runtime call if
4943   // the argument is out of the (-pi/4, pi/4) range.
4944 
4945   Register tmp = noreg;
4946   if (!VM_Version::supports_cmov()) {
4947     // fcmp needs a temporary so preserve rbx,
4948     tmp = rbx;
4949     push(tmp);
4950   }
4951 
4952   Label slow_case, done;
4953 
4954   ExternalAddress pi4_adr = (address)&pi_4;
4955   if (reachable(pi4_adr)) {
4956     // x ?<= pi/4
4957     fld_d(pi4_adr);
4958     fld_s(1);                // Stack:  X  PI/4  X
4959     fabs();                  // Stack: |X| PI/4  X
4960     fcmp(tmp);
4961     jcc(Assembler::above, slow_case);
4962 
4963     // fastest case: -pi/4 <= x <= pi/4
4964     switch(trig) {
4965     case 's':
4966       fsin();
4967       break;
4968     case 'c':
4969       fcos();
4970       break;
4971     case 't':
4972       ftan();
4973       break;
4974     default:
4975       assert(false, "bad intrinsic");
4976       break;
4977     }
4978     jmp(done);
4979   }
4980 
4981   // slow case: runtime call
4982   bind(slow_case);
4983 
4984   switch(trig) {
4985   case 's':
4986     {
4987       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
4988     }
4989     break;
4990   case 'c':
4991     {
4992       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
4993     }
4994     break;
4995   case 't':
4996     {
4997       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
4998     }
4999     break;
5000   default:
5001     assert(false, "bad intrinsic");
5002     break;
5003   }
5004 
5005   // Come here with result in F-TOS
5006   bind(done);
5007 
5008   if (tmp != noreg) {
5009     pop(tmp);
5010   }
5011 }
5012 
5013 
5014 // Look up the method for a megamorphic invokeinterface call.
5015 // The target method is determined by <intf_klass, itable_index>.
5016 // The receiver klass is in recv_klass.
5017 // On success, the result will be in method_result, and execution falls through.
5018 // On failure, execution transfers to the given label.
5019 void MacroAssembler::lookup_interface_method(Register recv_klass,
5020                                              Register intf_klass,
5021                                              RegisterOrConstant itable_index,
5022                                              Register method_result,
5023                                              Register scan_temp,
5024                                              Label& L_no_such_interface,
5025                                              bool return_method) {
5026   assert_different_registers(recv_klass, intf_klass, scan_temp);
5027   assert_different_registers(method_result, intf_klass, scan_temp);
5028   assert(recv_klass != method_result || !return_method,
5029          "recv_klass can be destroyed when method isn't needed");
5030 
5031   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5032          "caller must use same register for non-constant itable index as for method");
5033 
5034   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5035   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
5036   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5037   int scan_step   = itableOffsetEntry::size() * wordSize;
5038   int vte_size    = vtableEntry::size() * wordSize;
5039   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5040   assert(vte_size == wordSize, "else adjust times_vte_scale");
5041 
5042   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
5043 
5044   // %%% Could store the aligned, prescaled offset in the klassoop.
5045   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5046   if (HeapWordsPerLong > 1) {
5047     // Round up to align_object_offset boundary
5048     // see code for InstanceKlass::start_of_itable!
5049     round_to(scan_temp, BytesPerLong);
5050   }
5051 
5052   if (return_method) {
5053     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5054     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5055     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5056   }
5057 
5058   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5059   //   if (scan->interface() == intf) {
5060   //     result = (klass + scan->offset() + itable_index);
5061   //   }
5062   // }
5063   Label search, found_method;
5064 
5065   for (int peel = 1; peel >= 0; peel--) {
5066     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5067     cmpptr(intf_klass, method_result);
5068 
5069     if (peel) {
5070       jccb(Assembler::equal, found_method);
5071     } else {
5072       jccb(Assembler::notEqual, search);
5073       // (invert the test to fall through to found_method...)
5074     }
5075 
5076     if (!peel)  break;
5077 
5078     bind(search);
5079 
5080     // Check that the previous entry is non-null.  A null entry means that
5081     // the receiver class doesn't implement the interface, and wasn't the
5082     // same as when the caller was compiled.
5083     testptr(method_result, method_result);
5084     jcc(Assembler::zero, L_no_such_interface);
5085     addptr(scan_temp, scan_step);
5086   }
5087 
5088   bind(found_method);
5089 
5090   if (return_method) {
5091     // Got a hit.
5092     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5093     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5094   }
5095 }
5096 
5097 
5098 // virtual method calling
5099 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5100                                            RegisterOrConstant vtable_index,
5101                                            Register method_result) {
5102   const int base = InstanceKlass::vtable_start_offset() * wordSize;
5103   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5104   Address vtable_entry_addr(recv_klass,
5105                             vtable_index, Address::times_ptr,
5106                             base + vtableEntry::method_offset_in_bytes());
5107   movptr(method_result, vtable_entry_addr);
5108 }
5109 
5110 
5111 void MacroAssembler::check_klass_subtype(Register sub_klass,
5112                            Register super_klass,
5113                            Register temp_reg,
5114                            Label& L_success) {
5115   Label L_failure;
5116   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5117   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5118   bind(L_failure);
5119 }
5120 
5121 
5122 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5123                                                    Register super_klass,
5124                                                    Register temp_reg,
5125                                                    Label* L_success,
5126                                                    Label* L_failure,
5127                                                    Label* L_slow_path,
5128                                         RegisterOrConstant super_check_offset) {
5129   assert_different_registers(sub_klass, super_klass, temp_reg);
5130   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5131   if (super_check_offset.is_register()) {
5132     assert_different_registers(sub_klass, super_klass,
5133                                super_check_offset.as_register());
5134   } else if (must_load_sco) {
5135     assert(temp_reg != noreg, "supply either a temp or a register offset");
5136   }
5137 
5138   Label L_fallthrough;
5139   int label_nulls = 0;
5140   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5141   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5142   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5143   assert(label_nulls <= 1, "at most one NULL in the batch");
5144 
5145   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5146   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5147   Address super_check_offset_addr(super_klass, sco_offset);
5148 
5149   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5150   // range of a jccb.  If this routine grows larger, reconsider at
5151   // least some of these.
5152 #define local_jcc(assembler_cond, label)                                \
5153   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5154   else                             jcc( assembler_cond, label) /*omit semi*/
5155 
5156   // Hacked jmp, which may only be used just before L_fallthrough.
5157 #define final_jmp(label)                                                \
5158   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5159   else                            jmp(label)                /*omit semi*/
5160 
5161   // If the pointers are equal, we are done (e.g., String[] elements).
5162   // This self-check enables sharing of secondary supertype arrays among
5163   // non-primary types such as array-of-interface.  Otherwise, each such
5164   // type would need its own customized SSA.
5165   // We move this check to the front of the fast path because many
5166   // type checks are in fact trivially successful in this manner,
5167   // so we get a nicely predicted branch right at the start of the check.
5168   cmpptr(sub_klass, super_klass);
5169   local_jcc(Assembler::equal, *L_success);
5170 
5171   // Check the supertype display:
5172   if (must_load_sco) {
5173     // Positive movl does right thing on LP64.
5174     movl(temp_reg, super_check_offset_addr);
5175     super_check_offset = RegisterOrConstant(temp_reg);
5176   }
5177   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5178   cmpptr(super_klass, super_check_addr); // load displayed supertype
5179 
5180   // This check has worked decisively for primary supers.
5181   // Secondary supers are sought in the super_cache ('super_cache_addr').
5182   // (Secondary supers are interfaces and very deeply nested subtypes.)
5183   // This works in the same check above because of a tricky aliasing
5184   // between the super_cache and the primary super display elements.
5185   // (The 'super_check_addr' can address either, as the case requires.)
5186   // Note that the cache is updated below if it does not help us find
5187   // what we need immediately.
5188   // So if it was a primary super, we can just fail immediately.
5189   // Otherwise, it's the slow path for us (no success at this point).
5190 
5191   if (super_check_offset.is_register()) {
5192     local_jcc(Assembler::equal, *L_success);
5193     cmpl(super_check_offset.as_register(), sc_offset);
5194     if (L_failure == &L_fallthrough) {
5195       local_jcc(Assembler::equal, *L_slow_path);
5196     } else {
5197       local_jcc(Assembler::notEqual, *L_failure);
5198       final_jmp(*L_slow_path);
5199     }
5200   } else if (super_check_offset.as_constant() == sc_offset) {
5201     // Need a slow path; fast failure is impossible.
5202     if (L_slow_path == &L_fallthrough) {
5203       local_jcc(Assembler::equal, *L_success);
5204     } else {
5205       local_jcc(Assembler::notEqual, *L_slow_path);
5206       final_jmp(*L_success);
5207     }
5208   } else {
5209     // No slow path; it's a fast decision.
5210     if (L_failure == &L_fallthrough) {
5211       local_jcc(Assembler::equal, *L_success);
5212     } else {
5213       local_jcc(Assembler::notEqual, *L_failure);
5214       final_jmp(*L_success);
5215     }
5216   }
5217 
5218   bind(L_fallthrough);
5219 
5220 #undef local_jcc
5221 #undef final_jmp
5222 }
5223 
5224 
5225 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5226                                                    Register super_klass,
5227                                                    Register temp_reg,
5228                                                    Register temp2_reg,
5229                                                    Label* L_success,
5230                                                    Label* L_failure,
5231                                                    bool set_cond_codes) {
5232   assert_different_registers(sub_klass, super_klass, temp_reg);
5233   if (temp2_reg != noreg)
5234     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5235 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5236 
5237   Label L_fallthrough;
5238   int label_nulls = 0;
5239   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5240   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5241   assert(label_nulls <= 1, "at most one NULL in the batch");
5242 
5243   // a couple of useful fields in sub_klass:
5244   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5245   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5246   Address secondary_supers_addr(sub_klass, ss_offset);
5247   Address super_cache_addr(     sub_klass, sc_offset);
5248 
5249   // Do a linear scan of the secondary super-klass chain.
5250   // This code is rarely used, so simplicity is a virtue here.
5251   // The repne_scan instruction uses fixed registers, which we must spill.
5252   // Don't worry too much about pre-existing connections with the input regs.
5253 
5254   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5255   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5256 
5257   // Get super_klass value into rax (even if it was in rdi or rcx).
5258   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5259   if (super_klass != rax || UseCompressedOops) {
5260     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5261     mov(rax, super_klass);
5262   }
5263   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5264   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5265 
5266 #ifndef PRODUCT
5267   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5268   ExternalAddress pst_counter_addr((address) pst_counter);
5269   NOT_LP64(  incrementl(pst_counter_addr) );
5270   LP64_ONLY( lea(rcx, pst_counter_addr) );
5271   LP64_ONLY( incrementl(Address(rcx, 0)) );
5272 #endif //PRODUCT
5273 
5274   // We will consult the secondary-super array.
5275   movptr(rdi, secondary_supers_addr);
5276   // Load the array length.  (Positive movl does right thing on LP64.)
5277   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5278   // Skip to start of data.
5279   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5280 
5281   // Scan RCX words at [RDI] for an occurrence of RAX.
5282   // Set NZ/Z based on last compare.
5283   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5284   // not change flags (only scas instruction which is repeated sets flags).
5285   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5286 
5287     testptr(rax,rax); // Set Z = 0
5288     repne_scan();
5289 
5290   // Unspill the temp. registers:
5291   if (pushed_rdi)  pop(rdi);
5292   if (pushed_rcx)  pop(rcx);
5293   if (pushed_rax)  pop(rax);
5294 
5295   if (set_cond_codes) {
5296     // Special hack for the AD files:  rdi is guaranteed non-zero.
5297     assert(!pushed_rdi, "rdi must be left non-NULL");
5298     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5299   }
5300 
5301   if (L_failure == &L_fallthrough)
5302         jccb(Assembler::notEqual, *L_failure);
5303   else  jcc(Assembler::notEqual, *L_failure);
5304 
5305   // Success.  Cache the super we found and proceed in triumph.
5306   movptr(super_cache_addr, super_klass);
5307 
5308   if (L_success != &L_fallthrough) {
5309     jmp(*L_success);
5310   }
5311 
5312 #undef IS_A_TEMP
5313 
5314   bind(L_fallthrough);
5315 }
5316 
5317 
5318 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5319   if (VM_Version::supports_cmov()) {
5320     cmovl(cc, dst, src);
5321   } else {
5322     Label L;
5323     jccb(negate_condition(cc), L);
5324     movl(dst, src);
5325     bind(L);
5326   }
5327 }
5328 
5329 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5330   if (VM_Version::supports_cmov()) {
5331     cmovl(cc, dst, src);
5332   } else {
5333     Label L;
5334     jccb(negate_condition(cc), L);
5335     movl(dst, src);
5336     bind(L);
5337   }
5338 }
5339 
5340 void MacroAssembler::verify_oop(Register reg, const char* s) {
5341   if (!VerifyOops) return;
5342 
5343   // Pass register number to verify_oop_subroutine
5344   const char* b = NULL;
5345   {
5346     ResourceMark rm;
5347     stringStream ss;
5348     ss.print("verify_oop: %s: %s", reg->name(), s);
5349     b = code_string(ss.as_string());
5350   }
5351   BLOCK_COMMENT("verify_oop {");
5352 #ifdef _LP64
5353   push(rscratch1);                    // save r10, trashed by movptr()
5354 #endif
5355   push(rax);                          // save rax,
5356   push(reg);                          // pass register argument
5357   ExternalAddress buffer((address) b);
5358   // avoid using pushptr, as it modifies scratch registers
5359   // and our contract is not to modify anything
5360   movptr(rax, buffer.addr());
5361   push(rax);
5362   // call indirectly to solve generation ordering problem
5363   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5364   call(rax);
5365   // Caller pops the arguments (oop, message) and restores rax, r10
5366   BLOCK_COMMENT("} verify_oop");
5367 }
5368 
5369 #if INCLUDE_ALL_GCS
5370 void MacroAssembler::in_heap_check(Register raddr, Register tmp, Label& done) {
5371   ShenandoahHeap *h = (ShenandoahHeap *)Universe::heap();
5372 
5373   HeapWord* heap_base = (HeapWord*) h->base();
5374   HeapWord* last_region_end = heap_base + (ShenandoahHeapRegion::region_size_bytes() / HeapWordSize) * h->num_regions();
5375   guarantee(heap_base < last_region_end, err_msg("sanity: %p < %p", heap_base, last_region_end));
5376   movptr(tmp, (intptr_t) heap_base);
5377   cmpptr(raddr, tmp);
5378   jcc(Assembler::below, done);
5379   movptr(tmp, (intptr_t) last_region_end);
5380   cmpptr(raddr, tmp);
5381   jcc(Assembler::aboveEqual, done);
5382 
5383 }
5384 #endif
5385 
5386 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5387                                                       Register tmp,
5388                                                       int offset) {
5389   intptr_t value = *delayed_value_addr;
5390   if (value != 0)
5391     return RegisterOrConstant(value + offset);
5392 
5393   // load indirectly to solve generation ordering problem
5394   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5395 
5396 #ifdef ASSERT
5397   { Label L;
5398     testptr(tmp, tmp);
5399     if (WizardMode) {
5400       const char* buf = NULL;
5401       {
5402         ResourceMark rm;
5403         stringStream ss;
5404         ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
5405         buf = code_string(ss.as_string());
5406       }
5407       jcc(Assembler::notZero, L);
5408       STOP(buf);
5409     } else {
5410       jccb(Assembler::notZero, L);
5411       hlt();
5412     }
5413     bind(L);
5414   }
5415 #endif
5416 
5417   if (offset != 0)
5418     addptr(tmp, offset);
5419 
5420   return RegisterOrConstant(tmp);
5421 }
5422 
5423 
5424 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5425                                          int extra_slot_offset) {
5426   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5427   int stackElementSize = Interpreter::stackElementSize;
5428   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5429 #ifdef ASSERT
5430   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5431   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5432 #endif
5433   Register             scale_reg    = noreg;
5434   Address::ScaleFactor scale_factor = Address::no_scale;
5435   if (arg_slot.is_constant()) {
5436     offset += arg_slot.as_constant() * stackElementSize;
5437   } else {
5438     scale_reg    = arg_slot.as_register();
5439     scale_factor = Address::times(stackElementSize);
5440   }
5441   offset += wordSize;           // return PC is on stack
5442   return Address(rsp, scale_reg, scale_factor, offset);
5443 }
5444 
5445 
5446 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5447   if (!VerifyOops) return;
5448 
5449   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5450   // Pass register number to verify_oop_subroutine
5451   const char* b = NULL;
5452   {
5453     ResourceMark rm;
5454     stringStream ss;
5455     ss.print("verify_oop_addr: %s", s);
5456     b = code_string(ss.as_string());
5457   }
5458 #ifdef _LP64
5459   push(rscratch1);                    // save r10, trashed by movptr()
5460 #endif
5461   push(rax);                          // save rax,
5462   // addr may contain rsp so we will have to adjust it based on the push
5463   // we just did (and on 64 bit we do two pushes)
5464   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5465   // stores rax into addr which is backwards of what was intended.
5466   if (addr.uses(rsp)) {
5467     lea(rax, addr);
5468     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5469   } else {
5470     pushptr(addr);
5471   }
5472 
5473   ExternalAddress buffer((address) b);
5474   // pass msg argument
5475   // avoid using pushptr, as it modifies scratch registers
5476   // and our contract is not to modify anything
5477   movptr(rax, buffer.addr());
5478   push(rax);
5479 
5480   // call indirectly to solve generation ordering problem
5481   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5482   call(rax);
5483   // Caller pops the arguments (addr, message) and restores rax, r10.
5484 }
5485 
5486 void MacroAssembler::verify_tlab() {
5487 #ifdef ASSERT
5488   if (UseTLAB && VerifyOops) {
5489     Label next, ok;
5490     Register t1 = rsi;
5491     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5492 
5493     push(t1);
5494     NOT_LP64(push(thread_reg));
5495     NOT_LP64(get_thread(thread_reg));
5496 
5497     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5498     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5499     jcc(Assembler::aboveEqual, next);
5500     STOP("assert(top >= start)");
5501     should_not_reach_here();
5502 
5503     bind(next);
5504     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5505     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5506     jcc(Assembler::aboveEqual, ok);
5507     STOP("assert(top <= end)");
5508     should_not_reach_here();
5509 
5510     bind(ok);
5511     NOT_LP64(pop(thread_reg));
5512     pop(t1);
5513   }
5514 #endif
5515 }
5516 
5517 class ControlWord {
5518  public:
5519   int32_t _value;
5520 
5521   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5522   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5523   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5524   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5525   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5526   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5527   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5528   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5529 
5530   void print() const {
5531     // rounding control
5532     const char* rc;
5533     switch (rounding_control()) {
5534       case 0: rc = "round near"; break;
5535       case 1: rc = "round down"; break;
5536       case 2: rc = "round up  "; break;
5537       case 3: rc = "chop      "; break;
5538     };
5539     // precision control
5540     const char* pc;
5541     switch (precision_control()) {
5542       case 0: pc = "24 bits "; break;
5543       case 1: pc = "reserved"; break;
5544       case 2: pc = "53 bits "; break;
5545       case 3: pc = "64 bits "; break;
5546     };
5547     // flags
5548     char f[9];
5549     f[0] = ' ';
5550     f[1] = ' ';
5551     f[2] = (precision   ()) ? 'P' : 'p';
5552     f[3] = (underflow   ()) ? 'U' : 'u';
5553     f[4] = (overflow    ()) ? 'O' : 'o';
5554     f[5] = (zero_divide ()) ? 'Z' : 'z';
5555     f[6] = (denormalized()) ? 'D' : 'd';
5556     f[7] = (invalid     ()) ? 'I' : 'i';
5557     f[8] = '\x0';
5558     // output
5559     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5560   }
5561 
5562 };
5563 
5564 class StatusWord {
5565  public:
5566   int32_t _value;
5567 
5568   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5569   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5570   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5571   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5572   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5573   int  top() const                     { return  (_value >> 11) & 7      ; }
5574   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5575   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5576   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5577   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5578   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5579   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5580   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5581   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5582 
5583   void print() const {
5584     // condition codes
5585     char c[5];
5586     c[0] = (C3()) ? '3' : '-';
5587     c[1] = (C2()) ? '2' : '-';
5588     c[2] = (C1()) ? '1' : '-';
5589     c[3] = (C0()) ? '0' : '-';
5590     c[4] = '\x0';
5591     // flags
5592     char f[9];
5593     f[0] = (error_status()) ? 'E' : '-';
5594     f[1] = (stack_fault ()) ? 'S' : '-';
5595     f[2] = (precision   ()) ? 'P' : '-';
5596     f[3] = (underflow   ()) ? 'U' : '-';
5597     f[4] = (overflow    ()) ? 'O' : '-';
5598     f[5] = (zero_divide ()) ? 'Z' : '-';
5599     f[6] = (denormalized()) ? 'D' : '-';
5600     f[7] = (invalid     ()) ? 'I' : '-';
5601     f[8] = '\x0';
5602     // output
5603     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5604   }
5605 
5606 };
5607 
5608 class TagWord {
5609  public:
5610   int32_t _value;
5611 
5612   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5613 
5614   void print() const {
5615     printf("%04x", _value & 0xFFFF);
5616   }
5617 
5618 };
5619 
5620 class FPU_Register {
5621  public:
5622   int32_t _m0;
5623   int32_t _m1;
5624   int16_t _ex;
5625 
5626   bool is_indefinite() const           {
5627     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5628   }
5629 
5630   void print() const {
5631     char  sign = (_ex < 0) ? '-' : '+';
5632     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5633     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5634   };
5635 
5636 };
5637 
5638 class FPU_State {
5639  public:
5640   enum {
5641     register_size       = 10,
5642     number_of_registers =  8,
5643     register_mask       =  7
5644   };
5645 
5646   ControlWord  _control_word;
5647   StatusWord   _status_word;
5648   TagWord      _tag_word;
5649   int32_t      _error_offset;
5650   int32_t      _error_selector;
5651   int32_t      _data_offset;
5652   int32_t      _data_selector;
5653   int8_t       _register[register_size * number_of_registers];
5654 
5655   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5656   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5657 
5658   const char* tag_as_string(int tag) const {
5659     switch (tag) {
5660       case 0: return "valid";
5661       case 1: return "zero";
5662       case 2: return "special";
5663       case 3: return "empty";
5664     }
5665     ShouldNotReachHere();
5666     return NULL;
5667   }
5668 
5669   void print() const {
5670     // print computation registers
5671     { int t = _status_word.top();
5672       for (int i = 0; i < number_of_registers; i++) {
5673         int j = (i - t) & register_mask;
5674         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5675         st(j)->print();
5676         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5677       }
5678     }
5679     printf("\n");
5680     // print control registers
5681     printf("ctrl = "); _control_word.print(); printf("\n");
5682     printf("stat = "); _status_word .print(); printf("\n");
5683     printf("tags = "); _tag_word    .print(); printf("\n");
5684   }
5685 
5686 };
5687 
5688 class Flag_Register {
5689  public:
5690   int32_t _value;
5691 
5692   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5693   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5694   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5695   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5696   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5697   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5698   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5699 
5700   void print() const {
5701     // flags
5702     char f[8];
5703     f[0] = (overflow       ()) ? 'O' : '-';
5704     f[1] = (direction      ()) ? 'D' : '-';
5705     f[2] = (sign           ()) ? 'S' : '-';
5706     f[3] = (zero           ()) ? 'Z' : '-';
5707     f[4] = (auxiliary_carry()) ? 'A' : '-';
5708     f[5] = (parity         ()) ? 'P' : '-';
5709     f[6] = (carry          ()) ? 'C' : '-';
5710     f[7] = '\x0';
5711     // output
5712     printf("%08x  flags = %s", _value, f);
5713   }
5714 
5715 };
5716 
5717 class IU_Register {
5718  public:
5719   int32_t _value;
5720 
5721   void print() const {
5722     printf("%08x  %11d", _value, _value);
5723   }
5724 
5725 };
5726 
5727 class IU_State {
5728  public:
5729   Flag_Register _eflags;
5730   IU_Register   _rdi;
5731   IU_Register   _rsi;
5732   IU_Register   _rbp;
5733   IU_Register   _rsp;
5734   IU_Register   _rbx;
5735   IU_Register   _rdx;
5736   IU_Register   _rcx;
5737   IU_Register   _rax;
5738 
5739   void print() const {
5740     // computation registers
5741     printf("rax,  = "); _rax.print(); printf("\n");
5742     printf("rbx,  = "); _rbx.print(); printf("\n");
5743     printf("rcx  = "); _rcx.print(); printf("\n");
5744     printf("rdx  = "); _rdx.print(); printf("\n");
5745     printf("rdi  = "); _rdi.print(); printf("\n");
5746     printf("rsi  = "); _rsi.print(); printf("\n");
5747     printf("rbp,  = "); _rbp.print(); printf("\n");
5748     printf("rsp  = "); _rsp.print(); printf("\n");
5749     printf("\n");
5750     // control registers
5751     printf("flgs = "); _eflags.print(); printf("\n");
5752   }
5753 };
5754 
5755 
5756 class CPU_State {
5757  public:
5758   FPU_State _fpu_state;
5759   IU_State  _iu_state;
5760 
5761   void print() const {
5762     printf("--------------------------------------------------\n");
5763     _iu_state .print();
5764     printf("\n");
5765     _fpu_state.print();
5766     printf("--------------------------------------------------\n");
5767   }
5768 
5769 };
5770 
5771 
5772 static void _print_CPU_state(CPU_State* state) {
5773   state->print();
5774 };
5775 
5776 
5777 void MacroAssembler::print_CPU_state() {
5778   push_CPU_state();
5779   push(rsp);                // pass CPU state
5780   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5781   addptr(rsp, wordSize);       // discard argument
5782   pop_CPU_state();
5783 }
5784 
5785 
5786 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5787   static int counter = 0;
5788   FPU_State* fs = &state->_fpu_state;
5789   counter++;
5790   // For leaf calls, only verify that the top few elements remain empty.
5791   // We only need 1 empty at the top for C2 code.
5792   if( stack_depth < 0 ) {
5793     if( fs->tag_for_st(7) != 3 ) {
5794       printf("FPR7 not empty\n");
5795       state->print();
5796       assert(false, "error");
5797       return false;
5798     }
5799     return true;                // All other stack states do not matter
5800   }
5801 
5802   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5803          "bad FPU control word");
5804 
5805   // compute stack depth
5806   int i = 0;
5807   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5808   int d = i;
5809   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5810   // verify findings
5811   if (i != FPU_State::number_of_registers) {
5812     // stack not contiguous
5813     printf("%s: stack not contiguous at ST%d\n", s, i);
5814     state->print();
5815     assert(false, "error");
5816     return false;
5817   }
5818   // check if computed stack depth corresponds to expected stack depth
5819   if (stack_depth < 0) {
5820     // expected stack depth is -stack_depth or less
5821     if (d > -stack_depth) {
5822       // too many elements on the stack
5823       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5824       state->print();
5825       assert(false, "error");
5826       return false;
5827     }
5828   } else {
5829     // expected stack depth is stack_depth
5830     if (d != stack_depth) {
5831       // wrong stack depth
5832       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5833       state->print();
5834       assert(false, "error");
5835       return false;
5836     }
5837   }
5838   // everything is cool
5839   return true;
5840 }
5841 
5842 
5843 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5844   if (!VerifyFPU) return;
5845   push_CPU_state();
5846   push(rsp);                // pass CPU state
5847   ExternalAddress msg((address) s);
5848   // pass message string s
5849   pushptr(msg.addr());
5850   push(stack_depth);        // pass stack depth
5851   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5852   addptr(rsp, 3 * wordSize);   // discard arguments
5853   // check for error
5854   { Label L;
5855     testl(rax, rax);
5856     jcc(Assembler::notZero, L);
5857     int3();                  // break if error condition
5858     bind(L);
5859   }
5860   pop_CPU_state();
5861 }
5862 
5863 void MacroAssembler::restore_cpu_control_state_after_jni() {
5864   // Either restore the MXCSR register after returning from the JNI Call
5865   // or verify that it wasn't changed (with -Xcheck:jni flag).
5866   if (VM_Version::supports_sse()) {
5867     if (RestoreMXCSROnJNICalls) {
5868       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5869     } else if (CheckJNICalls) {
5870       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5871     }
5872   }
5873   if (VM_Version::supports_avx()) {
5874     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5875     vzeroupper();
5876   }
5877 
5878 #ifndef _LP64
5879   // Either restore the x87 floating pointer control word after returning
5880   // from the JNI call or verify that it wasn't changed.
5881   if (CheckJNICalls) {
5882     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5883   }
5884 #endif // _LP64
5885 }
5886 
5887 
5888 void MacroAssembler::load_klass(Register dst, Register src) {
5889 #ifdef _LP64
5890   if (UseCompressedClassPointers) {
5891     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5892     decode_klass_not_null(dst);
5893   } else
5894 #endif
5895     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5896 }
5897 
5898 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5899   load_klass(dst, src);
5900   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5901 }
5902 
5903 void MacroAssembler::store_klass(Register dst, Register src) {
5904 #ifdef _LP64
5905   if (UseCompressedClassPointers) {
5906     encode_klass_not_null(src);
5907     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5908   } else
5909 #endif
5910     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5911 }
5912 
5913 void MacroAssembler::load_heap_oop(Register dst, Address src) {
5914 #ifdef _LP64
5915   // FIXME: Must change all places where we try to load the klass.
5916   if (UseCompressedOops) {
5917     movl(dst, src);
5918     decode_heap_oop(dst);
5919   } else
5920 #endif
5921     movptr(dst, src);
5922 }
5923 
5924 // Doesn't do verfication, generates fixed size code
5925 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
5926 #ifdef _LP64
5927   if (UseCompressedOops) {
5928     movl(dst, src);
5929     decode_heap_oop_not_null(dst);
5930   } else
5931 #endif
5932     movptr(dst, src);
5933 }
5934 
5935 void MacroAssembler::store_heap_oop(Address dst, Register src) {
5936 #ifdef _LP64
5937   if (UseCompressedOops) {
5938     assert(!dst.uses(src), "not enough registers");
5939     encode_heap_oop(src);
5940     movl(dst, src);
5941   } else
5942 #endif
5943     movptr(dst, src);
5944 }
5945 
5946 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
5947   assert_different_registers(src1, tmp);
5948 #ifdef _LP64
5949   if (UseCompressedOops) {
5950     bool did_push = false;
5951     if (tmp == noreg) {
5952       tmp = rax;
5953       push(tmp);
5954       did_push = true;
5955       assert(!src2.uses(rsp), "can't push");
5956     }
5957     load_heap_oop(tmp, src2);
5958     cmpptr(src1, tmp);
5959     if (did_push)  pop(tmp);
5960   } else
5961 #endif
5962     cmpptr(src1, src2);
5963 }
5964 
5965 // Used for storing NULLs.
5966 void MacroAssembler::store_heap_oop_null(Address dst) {
5967 #ifdef _LP64
5968   if (UseCompressedOops) {
5969     movl(dst, (int32_t)NULL_WORD);
5970   } else {
5971     movslq(dst, (int32_t)NULL_WORD);
5972   }
5973 #else
5974   movl(dst, (int32_t)NULL_WORD);
5975 #endif
5976 }
5977 
5978 #ifdef _LP64
5979 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5980   if (UseCompressedClassPointers) {
5981     // Store to klass gap in destination
5982     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5983   }
5984 }
5985 
5986 #ifdef ASSERT
5987 void MacroAssembler::verify_heapbase(const char* msg) {
5988   assert (UseCompressedOops, "should be compressed");
5989   assert (Universe::heap() != NULL, "java heap should be initialized");
5990   if (CheckCompressedOops) {
5991     Label ok;
5992     push(rscratch1); // cmpptr trashes rscratch1
5993     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5994     jcc(Assembler::equal, ok);
5995     STOP(msg);
5996     bind(ok);
5997     pop(rscratch1);
5998   }
5999 }
6000 #endif
6001 
6002 // Algorithm must match oop.inline.hpp encode_heap_oop.
6003 void MacroAssembler::encode_heap_oop(Register r) {
6004 #ifdef ASSERT
6005   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6006 #endif
6007   verify_oop(r, "broken oop in encode_heap_oop");
6008   if (Universe::narrow_oop_base() == NULL) {
6009     if (Universe::narrow_oop_shift() != 0) {
6010       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6011       shrq(r, LogMinObjAlignmentInBytes);
6012     }
6013     return;
6014   }
6015   testq(r, r);
6016   cmovq(Assembler::equal, r, r12_heapbase);
6017   subq(r, r12_heapbase);
6018   shrq(r, LogMinObjAlignmentInBytes);
6019 }
6020 
6021 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6022 #ifdef ASSERT
6023   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6024   if (CheckCompressedOops) {
6025     Label ok;
6026     testq(r, r);
6027     jcc(Assembler::notEqual, ok);
6028     STOP("null oop passed to encode_heap_oop_not_null");
6029     bind(ok);
6030   }
6031 #endif
6032   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6033   if (Universe::narrow_oop_base() != NULL) {
6034     subq(r, r12_heapbase);
6035   }
6036   if (Universe::narrow_oop_shift() != 0) {
6037     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6038     shrq(r, LogMinObjAlignmentInBytes);
6039   }
6040 }
6041 
6042 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6043 #ifdef ASSERT
6044   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6045   if (CheckCompressedOops) {
6046     Label ok;
6047     testq(src, src);
6048     jcc(Assembler::notEqual, ok);
6049     STOP("null oop passed to encode_heap_oop_not_null2");
6050     bind(ok);
6051   }
6052 #endif
6053   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6054   if (dst != src) {
6055     movq(dst, src);
6056   }
6057   if (Universe::narrow_oop_base() != NULL) {
6058     subq(dst, r12_heapbase);
6059   }
6060   if (Universe::narrow_oop_shift() != 0) {
6061     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6062     shrq(dst, LogMinObjAlignmentInBytes);
6063   }
6064 }
6065 
6066 void  MacroAssembler::decode_heap_oop(Register r) {
6067 #ifdef ASSERT
6068   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6069 #endif
6070   if (Universe::narrow_oop_base() == NULL) {
6071     if (Universe::narrow_oop_shift() != 0) {
6072       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6073       shlq(r, LogMinObjAlignmentInBytes);
6074     }
6075   } else {
6076     Label done;
6077     shlq(r, LogMinObjAlignmentInBytes);
6078     jccb(Assembler::equal, done);
6079     addq(r, r12_heapbase);
6080     bind(done);
6081   }
6082   verify_oop(r, "broken oop in decode_heap_oop");
6083 }
6084 
6085 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6086   // Note: it will change flags
6087   assert (UseCompressedOops, "should only be used for compressed headers");
6088   assert (Universe::heap() != NULL, "java heap should be initialized");
6089   // Cannot assert, unverified entry point counts instructions (see .ad file)
6090   // vtableStubs also counts instructions in pd_code_size_limit.
6091   // Also do not verify_oop as this is called by verify_oop.
6092   if (Universe::narrow_oop_shift() != 0) {
6093     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6094     shlq(r, LogMinObjAlignmentInBytes);
6095     if (Universe::narrow_oop_base() != NULL) {
6096       addq(r, r12_heapbase);
6097     }
6098   } else {
6099     assert (Universe::narrow_oop_base() == NULL, "sanity");
6100   }
6101 }
6102 
6103 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6104   // Note: it will change flags
6105   assert (UseCompressedOops, "should only be used for compressed headers");
6106   assert (Universe::heap() != NULL, "java heap should be initialized");
6107   // Cannot assert, unverified entry point counts instructions (see .ad file)
6108   // vtableStubs also counts instructions in pd_code_size_limit.
6109   // Also do not verify_oop as this is called by verify_oop.
6110   if (Universe::narrow_oop_shift() != 0) {
6111     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6112     if (LogMinObjAlignmentInBytes == Address::times_8) {
6113       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6114     } else {
6115       if (dst != src) {
6116         movq(dst, src);
6117       }
6118       shlq(dst, LogMinObjAlignmentInBytes);
6119       if (Universe::narrow_oop_base() != NULL) {
6120         addq(dst, r12_heapbase);
6121       }
6122     }
6123   } else {
6124     assert (Universe::narrow_oop_base() == NULL, "sanity");
6125     if (dst != src) {
6126       movq(dst, src);
6127     }
6128   }
6129 }
6130 
6131 void MacroAssembler::encode_klass_not_null(Register r) {
6132   if (Universe::narrow_klass_base() != NULL) {
6133     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6134     assert(r != r12_heapbase, "Encoding a klass in r12");
6135     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6136     subq(r, r12_heapbase);
6137   }
6138   if (Universe::narrow_klass_shift() != 0) {
6139     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6140     shrq(r, LogKlassAlignmentInBytes);
6141   }
6142   if (Universe::narrow_klass_base() != NULL) {
6143     reinit_heapbase();
6144   }
6145 }
6146 
6147 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6148   if (dst == src) {
6149     encode_klass_not_null(src);
6150   } else {
6151     if (Universe::narrow_klass_base() != NULL) {
6152       mov64(dst, (int64_t)Universe::narrow_klass_base());
6153       negq(dst);
6154       addq(dst, src);
6155     } else {
6156       movptr(dst, src);
6157     }
6158     if (Universe::narrow_klass_shift() != 0) {
6159       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6160       shrq(dst, LogKlassAlignmentInBytes);
6161     }
6162   }
6163 }
6164 
6165 // Function instr_size_for_decode_klass_not_null() counts the instructions
6166 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6167 // when (Universe::heap() != NULL).  Hence, if the instructions they
6168 // generate change, then this method needs to be updated.
6169 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6170   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6171   if (Universe::narrow_klass_base() != NULL) {
6172     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6173     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6174   } else {
6175     // longest load decode klass function, mov64, leaq
6176     return 16;
6177   }
6178 }
6179 
6180 // !!! If the instructions that get generated here change then function
6181 // instr_size_for_decode_klass_not_null() needs to get updated.
6182 void  MacroAssembler::decode_klass_not_null(Register r) {
6183   // Note: it will change flags
6184   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6185   assert(r != r12_heapbase, "Decoding a klass in r12");
6186   // Cannot assert, unverified entry point counts instructions (see .ad file)
6187   // vtableStubs also counts instructions in pd_code_size_limit.
6188   // Also do not verify_oop as this is called by verify_oop.
6189   if (Universe::narrow_klass_shift() != 0) {
6190     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6191     shlq(r, LogKlassAlignmentInBytes);
6192   }
6193   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6194   if (Universe::narrow_klass_base() != NULL) {
6195     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6196     addq(r, r12_heapbase);
6197     reinit_heapbase();
6198   }
6199 }
6200 
6201 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6202   // Note: it will change flags
6203   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6204   if (dst == src) {
6205     decode_klass_not_null(dst);
6206   } else {
6207     // Cannot assert, unverified entry point counts instructions (see .ad file)
6208     // vtableStubs also counts instructions in pd_code_size_limit.
6209     // Also do not verify_oop as this is called by verify_oop.
6210     mov64(dst, (int64_t)Universe::narrow_klass_base());
6211     if (Universe::narrow_klass_shift() != 0) {
6212       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6213       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6214       leaq(dst, Address(dst, src, Address::times_8, 0));
6215     } else {
6216       addq(dst, src);
6217     }
6218   }
6219 }
6220 
6221 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6222   assert (UseCompressedOops, "should only be used for compressed headers");
6223   assert (Universe::heap() != NULL, "java heap should be initialized");
6224   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6225   int oop_index = oop_recorder()->find_index(obj);
6226   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6227   mov_narrow_oop(dst, oop_index, rspec);
6228 }
6229 
6230 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6231   assert (UseCompressedOops, "should only be used for compressed headers");
6232   assert (Universe::heap() != NULL, "java heap should be initialized");
6233   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6234   int oop_index = oop_recorder()->find_index(obj);
6235   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6236   mov_narrow_oop(dst, oop_index, rspec);
6237 }
6238 
6239 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6240   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6241   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6242   int klass_index = oop_recorder()->find_index(k);
6243   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6244   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6245 }
6246 
6247 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6248   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6249   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6250   int klass_index = oop_recorder()->find_index(k);
6251   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6252   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6253 }
6254 
6255 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6256   assert (UseCompressedOops, "should only be used for compressed headers");
6257   assert (Universe::heap() != NULL, "java heap should be initialized");
6258   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6259   int oop_index = oop_recorder()->find_index(obj);
6260   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6261   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6262 }
6263 
6264 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6265   assert (UseCompressedOops, "should only be used for compressed headers");
6266   assert (Universe::heap() != NULL, "java heap should be initialized");
6267   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6268   int oop_index = oop_recorder()->find_index(obj);
6269   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6270   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6271 }
6272 
6273 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6274   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6275   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6276   int klass_index = oop_recorder()->find_index(k);
6277   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6278   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6279 }
6280 
6281 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6282   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6283   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6284   int klass_index = oop_recorder()->find_index(k);
6285   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6286   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6287 }
6288 
6289 void MacroAssembler::reinit_heapbase() {
6290   if (UseCompressedOops || UseCompressedClassPointers) {
6291     if (Universe::heap() != NULL) {
6292       if (Universe::narrow_oop_base() == NULL) {
6293         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6294       } else {
6295         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6296       }
6297     } else {
6298       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6299     }
6300   }
6301 }
6302 
6303 #endif // _LP64
6304 
6305 
6306 // C2 compiled method's prolog code.
6307 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6308 
6309   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6310   // NativeJump::patch_verified_entry will be able to patch out the entry
6311   // code safely. The push to verify stack depth is ok at 5 bytes,
6312   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6313   // stack bang then we must use the 6 byte frame allocation even if
6314   // we have no frame. :-(
6315   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6316 
6317   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6318   // Remove word for return addr
6319   framesize -= wordSize;
6320   stack_bang_size -= wordSize;
6321 
6322   // Calls to C2R adapters often do not accept exceptional returns.
6323   // We require that their callers must bang for them.  But be careful, because
6324   // some VM calls (such as call site linkage) can use several kilobytes of
6325   // stack.  But the stack safety zone should account for that.
6326   // See bugs 4446381, 4468289, 4497237.
6327   if (stack_bang_size > 0) {
6328     generate_stack_overflow_check(stack_bang_size);
6329 
6330     // We always push rbp, so that on return to interpreter rbp, will be
6331     // restored correctly and we can correct the stack.
6332     push(rbp);
6333     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6334     if (PreserveFramePointer) {
6335       mov(rbp, rsp);
6336     }
6337     // Remove word for ebp
6338     framesize -= wordSize;
6339 
6340     // Create frame
6341     if (framesize) {
6342       subptr(rsp, framesize);
6343     }
6344   } else {
6345     // Create frame (force generation of a 4 byte immediate value)
6346     subptr_imm32(rsp, framesize);
6347 
6348     // Save RBP register now.
6349     framesize -= wordSize;
6350     movptr(Address(rsp, framesize), rbp);
6351     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6352     if (PreserveFramePointer) {
6353       movptr(rbp, rsp);
6354       if (framesize > 0) {
6355         addptr(rbp, framesize);
6356       }
6357     }
6358   }
6359 
6360   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6361     framesize -= wordSize;
6362     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6363   }
6364 
6365 #ifndef _LP64
6366   // If method sets FPU control word do it now
6367   if (fp_mode_24b) {
6368     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6369   }
6370   if (UseSSE >= 2 && VerifyFPU) {
6371     verify_FPU(0, "FPU stack must be clean on entry");
6372   }
6373 #endif
6374 
6375 #ifdef ASSERT
6376   if (VerifyStackAtCalls) {
6377     Label L;
6378     push(rax);
6379     mov(rax, rsp);
6380     andptr(rax, StackAlignmentInBytes-1);
6381     cmpptr(rax, StackAlignmentInBytes-wordSize);
6382     pop(rax);
6383     jcc(Assembler::equal, L);
6384     STOP("Stack is not properly aligned!");
6385     bind(L);
6386   }
6387 #endif
6388 
6389 }
6390 
6391 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
6392   // cnt - number of qwords (8-byte words).
6393   // base - start address, qword aligned.
6394   assert(base==rdi, "base register must be edi for rep stos");
6395   assert(tmp==rax,   "tmp register must be eax for rep stos");
6396   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6397 
6398   xorptr(tmp, tmp);
6399   if (UseFastStosb) {
6400     shlptr(cnt,3); // convert to number of bytes
6401     rep_stosb();
6402   } else {
6403     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
6404     rep_stos();
6405   }
6406 }
6407 
6408 // IndexOf for constant substrings with size >= 8 chars
6409 // which don't need to be loaded through stack.
6410 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6411                                       Register cnt1, Register cnt2,
6412                                       int int_cnt2,  Register result,
6413                                       XMMRegister vec, Register tmp) {
6414   ShortBranchVerifier sbv(this);
6415   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6416 
6417   // This method uses pcmpestri inxtruction with bound registers
6418   //   inputs:
6419   //     xmm - substring
6420   //     rax - substring length (elements count)
6421   //     mem - scanned string
6422   //     rdx - string length (elements count)
6423   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6424   //   outputs:
6425   //     rcx - matched index in string
6426   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6427 
6428   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6429         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6430         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6431 
6432   // Note, inline_string_indexOf() generates checks:
6433   // if (substr.count > string.count) return -1;
6434   // if (substr.count == 0) return 0;
6435   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
6436 
6437   // Load substring.
6438   movdqu(vec, Address(str2, 0));
6439   movl(cnt2, int_cnt2);
6440   movptr(result, str1); // string addr
6441 
6442   if (int_cnt2 > 8) {
6443     jmpb(SCAN_TO_SUBSTR);
6444 
6445     // Reload substr for rescan, this code
6446     // is executed only for large substrings (> 8 chars)
6447     bind(RELOAD_SUBSTR);
6448     movdqu(vec, Address(str2, 0));
6449     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6450 
6451     bind(RELOAD_STR);
6452     // We came here after the beginning of the substring was
6453     // matched but the rest of it was not so we need to search
6454     // again. Start from the next element after the previous match.
6455 
6456     // cnt2 is number of substring reminding elements and
6457     // cnt1 is number of string reminding elements when cmp failed.
6458     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6459     subl(cnt1, cnt2);
6460     addl(cnt1, int_cnt2);
6461     movl(cnt2, int_cnt2); // Now restore cnt2
6462 
6463     decrementl(cnt1);     // Shift to next element
6464     cmpl(cnt1, cnt2);
6465     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6466 
6467     addptr(result, 2);
6468 
6469   } // (int_cnt2 > 8)
6470 
6471   // Scan string for start of substr in 16-byte vectors
6472   bind(SCAN_TO_SUBSTR);
6473   pcmpestri(vec, Address(result, 0), 0x0d);
6474   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6475   subl(cnt1, 8);
6476   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6477   cmpl(cnt1, cnt2);
6478   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6479   addptr(result, 16);
6480   jmpb(SCAN_TO_SUBSTR);
6481 
6482   // Found a potential substr
6483   bind(FOUND_CANDIDATE);
6484   // Matched whole vector if first element matched (tmp(rcx) == 0).
6485   if (int_cnt2 == 8) {
6486     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6487   } else { // int_cnt2 > 8
6488     jccb(Assembler::overflow, FOUND_SUBSTR);
6489   }
6490   // After pcmpestri tmp(rcx) contains matched element index
6491   // Compute start addr of substr
6492   lea(result, Address(result, tmp, Address::times_2));
6493 
6494   // Make sure string is still long enough
6495   subl(cnt1, tmp);
6496   cmpl(cnt1, cnt2);
6497   if (int_cnt2 == 8) {
6498     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6499   } else { // int_cnt2 > 8
6500     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6501   }
6502   // Left less then substring.
6503 
6504   bind(RET_NOT_FOUND);
6505   movl(result, -1);
6506   jmpb(EXIT);
6507 
6508   if (int_cnt2 > 8) {
6509     // This code is optimized for the case when whole substring
6510     // is matched if its head is matched.
6511     bind(MATCH_SUBSTR_HEAD);
6512     pcmpestri(vec, Address(result, 0), 0x0d);
6513     // Reload only string if does not match
6514     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
6515 
6516     Label CONT_SCAN_SUBSTR;
6517     // Compare the rest of substring (> 8 chars).
6518     bind(FOUND_SUBSTR);
6519     // First 8 chars are already matched.
6520     negptr(cnt2);
6521     addptr(cnt2, 8);
6522 
6523     bind(SCAN_SUBSTR);
6524     subl(cnt1, 8);
6525     cmpl(cnt2, -8); // Do not read beyond substring
6526     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6527     // Back-up strings to avoid reading beyond substring:
6528     // cnt1 = cnt1 - cnt2 + 8
6529     addl(cnt1, cnt2); // cnt2 is negative
6530     addl(cnt1, 8);
6531     movl(cnt2, 8); negptr(cnt2);
6532     bind(CONT_SCAN_SUBSTR);
6533     if (int_cnt2 < (int)G) {
6534       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
6535       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
6536     } else {
6537       // calculate index in register to avoid integer overflow (int_cnt2*2)
6538       movl(tmp, int_cnt2);
6539       addptr(tmp, cnt2);
6540       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
6541       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
6542     }
6543     // Need to reload strings pointers if not matched whole vector
6544     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6545     addptr(cnt2, 8);
6546     jcc(Assembler::negative, SCAN_SUBSTR);
6547     // Fall through if found full substring
6548 
6549   } // (int_cnt2 > 8)
6550 
6551   bind(RET_FOUND);
6552   // Found result if we matched full small substring.
6553   // Compute substr offset
6554   subptr(result, str1);
6555   shrl(result, 1); // index
6556   bind(EXIT);
6557 
6558 } // string_indexofC8
6559 
6560 // Small strings are loaded through stack if they cross page boundary.
6561 void MacroAssembler::string_indexof(Register str1, Register str2,
6562                                     Register cnt1, Register cnt2,
6563                                     int int_cnt2,  Register result,
6564                                     XMMRegister vec, Register tmp) {
6565   ShortBranchVerifier sbv(this);
6566   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6567   //
6568   // int_cnt2 is length of small (< 8 chars) constant substring
6569   // or (-1) for non constant substring in which case its length
6570   // is in cnt2 register.
6571   //
6572   // Note, inline_string_indexOf() generates checks:
6573   // if (substr.count > string.count) return -1;
6574   // if (substr.count == 0) return 0;
6575   //
6576   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
6577 
6578   // This method uses pcmpestri inxtruction with bound registers
6579   //   inputs:
6580   //     xmm - substring
6581   //     rax - substring length (elements count)
6582   //     mem - scanned string
6583   //     rdx - string length (elements count)
6584   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6585   //   outputs:
6586   //     rcx - matched index in string
6587   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6588 
6589   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6590         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6591         FOUND_CANDIDATE;
6592 
6593   { //========================================================
6594     // We don't know where these strings are located
6595     // and we can't read beyond them. Load them through stack.
6596     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6597 
6598     movptr(tmp, rsp); // save old SP
6599 
6600     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6601       if (int_cnt2 == 1) {  // One char
6602         load_unsigned_short(result, Address(str2, 0));
6603         movdl(vec, result); // move 32 bits
6604       } else if (int_cnt2 == 2) { // Two chars
6605         movdl(vec, Address(str2, 0)); // move 32 bits
6606       } else if (int_cnt2 == 4) { // Four chars
6607         movq(vec, Address(str2, 0));  // move 64 bits
6608       } else { // cnt2 = { 3, 5, 6, 7 }
6609         // Array header size is 12 bytes in 32-bit VM
6610         // + 6 bytes for 3 chars == 18 bytes,
6611         // enough space to load vec and shift.
6612         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6613         movdqu(vec, Address(str2, (int_cnt2*2)-16));
6614         psrldq(vec, 16-(int_cnt2*2));
6615       }
6616     } else { // not constant substring
6617       cmpl(cnt2, 8);
6618       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6619 
6620       // We can read beyond string if srt+16 does not cross page boundary
6621       // since heaps are aligned and mapped by pages.
6622       assert(os::vm_page_size() < (int)G, "default page should be small");
6623       movl(result, str2); // We need only low 32 bits
6624       andl(result, (os::vm_page_size()-1));
6625       cmpl(result, (os::vm_page_size()-16));
6626       jccb(Assembler::belowEqual, CHECK_STR);
6627 
6628       // Move small strings to stack to allow load 16 bytes into vec.
6629       subptr(rsp, 16);
6630       int stk_offset = wordSize-2;
6631       push(cnt2);
6632 
6633       bind(COPY_SUBSTR);
6634       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
6635       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6636       decrement(cnt2);
6637       jccb(Assembler::notZero, COPY_SUBSTR);
6638 
6639       pop(cnt2);
6640       movptr(str2, rsp);  // New substring address
6641     } // non constant
6642 
6643     bind(CHECK_STR);
6644     cmpl(cnt1, 8);
6645     jccb(Assembler::aboveEqual, BIG_STRINGS);
6646 
6647     // Check cross page boundary.
6648     movl(result, str1); // We need only low 32 bits
6649     andl(result, (os::vm_page_size()-1));
6650     cmpl(result, (os::vm_page_size()-16));
6651     jccb(Assembler::belowEqual, BIG_STRINGS);
6652 
6653     subptr(rsp, 16);
6654     int stk_offset = -2;
6655     if (int_cnt2 < 0) { // not constant
6656       push(cnt2);
6657       stk_offset += wordSize;
6658     }
6659     movl(cnt2, cnt1);
6660 
6661     bind(COPY_STR);
6662     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
6663     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6664     decrement(cnt2);
6665     jccb(Assembler::notZero, COPY_STR);
6666 
6667     if (int_cnt2 < 0) { // not constant
6668       pop(cnt2);
6669     }
6670     movptr(str1, rsp);  // New string address
6671 
6672     bind(BIG_STRINGS);
6673     // Load substring.
6674     if (int_cnt2 < 0) { // -1
6675       movdqu(vec, Address(str2, 0));
6676       push(cnt2);       // substr count
6677       push(str2);       // substr addr
6678       push(str1);       // string addr
6679     } else {
6680       // Small (< 8 chars) constant substrings are loaded already.
6681       movl(cnt2, int_cnt2);
6682     }
6683     push(tmp);  // original SP
6684 
6685   } // Finished loading
6686 
6687   //========================================================
6688   // Start search
6689   //
6690 
6691   movptr(result, str1); // string addr
6692 
6693   if (int_cnt2  < 0) {  // Only for non constant substring
6694     jmpb(SCAN_TO_SUBSTR);
6695 
6696     // SP saved at sp+0
6697     // String saved at sp+1*wordSize
6698     // Substr saved at sp+2*wordSize
6699     // Substr count saved at sp+3*wordSize
6700 
6701     // Reload substr for rescan, this code
6702     // is executed only for large substrings (> 8 chars)
6703     bind(RELOAD_SUBSTR);
6704     movptr(str2, Address(rsp, 2*wordSize));
6705     movl(cnt2, Address(rsp, 3*wordSize));
6706     movdqu(vec, Address(str2, 0));
6707     // We came here after the beginning of the substring was
6708     // matched but the rest of it was not so we need to search
6709     // again. Start from the next element after the previous match.
6710     subptr(str1, result); // Restore counter
6711     shrl(str1, 1);
6712     addl(cnt1, str1);
6713     decrementl(cnt1);   // Shift to next element
6714     cmpl(cnt1, cnt2);
6715     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6716 
6717     addptr(result, 2);
6718   } // non constant
6719 
6720   // Scan string for start of substr in 16-byte vectors
6721   bind(SCAN_TO_SUBSTR);
6722   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6723   pcmpestri(vec, Address(result, 0), 0x0d);
6724   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6725   subl(cnt1, 8);
6726   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6727   cmpl(cnt1, cnt2);
6728   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6729   addptr(result, 16);
6730 
6731   bind(ADJUST_STR);
6732   cmpl(cnt1, 8); // Do not read beyond string
6733   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6734   // Back-up string to avoid reading beyond string.
6735   lea(result, Address(result, cnt1, Address::times_2, -16));
6736   movl(cnt1, 8);
6737   jmpb(SCAN_TO_SUBSTR);
6738 
6739   // Found a potential substr
6740   bind(FOUND_CANDIDATE);
6741   // After pcmpestri tmp(rcx) contains matched element index
6742 
6743   // Make sure string is still long enough
6744   subl(cnt1, tmp);
6745   cmpl(cnt1, cnt2);
6746   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6747   // Left less then substring.
6748 
6749   bind(RET_NOT_FOUND);
6750   movl(result, -1);
6751   jmpb(CLEANUP);
6752 
6753   bind(FOUND_SUBSTR);
6754   // Compute start addr of substr
6755   lea(result, Address(result, tmp, Address::times_2));
6756 
6757   if (int_cnt2 > 0) { // Constant substring
6758     // Repeat search for small substring (< 8 chars)
6759     // from new point without reloading substring.
6760     // Have to check that we don't read beyond string.
6761     cmpl(tmp, 8-int_cnt2);
6762     jccb(Assembler::greater, ADJUST_STR);
6763     // Fall through if matched whole substring.
6764   } else { // non constant
6765     assert(int_cnt2 == -1, "should be != 0");
6766 
6767     addl(tmp, cnt2);
6768     // Found result if we matched whole substring.
6769     cmpl(tmp, 8);
6770     jccb(Assembler::lessEqual, RET_FOUND);
6771 
6772     // Repeat search for small substring (<= 8 chars)
6773     // from new point 'str1' without reloading substring.
6774     cmpl(cnt2, 8);
6775     // Have to check that we don't read beyond string.
6776     jccb(Assembler::lessEqual, ADJUST_STR);
6777 
6778     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6779     // Compare the rest of substring (> 8 chars).
6780     movptr(str1, result);
6781 
6782     cmpl(tmp, cnt2);
6783     // First 8 chars are already matched.
6784     jccb(Assembler::equal, CHECK_NEXT);
6785 
6786     bind(SCAN_SUBSTR);
6787     pcmpestri(vec, Address(str1, 0), 0x0d);
6788     // Need to reload strings pointers if not matched whole vector
6789     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6790 
6791     bind(CHECK_NEXT);
6792     subl(cnt2, 8);
6793     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6794     addptr(str1, 16);
6795     addptr(str2, 16);
6796     subl(cnt1, 8);
6797     cmpl(cnt2, 8); // Do not read beyond substring
6798     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6799     // Back-up strings to avoid reading beyond substring.
6800     lea(str2, Address(str2, cnt2, Address::times_2, -16));
6801     lea(str1, Address(str1, cnt2, Address::times_2, -16));
6802     subl(cnt1, cnt2);
6803     movl(cnt2, 8);
6804     addl(cnt1, 8);
6805     bind(CONT_SCAN_SUBSTR);
6806     movdqu(vec, Address(str2, 0));
6807     jmpb(SCAN_SUBSTR);
6808 
6809     bind(RET_FOUND_LONG);
6810     movptr(str1, Address(rsp, wordSize));
6811   } // non constant
6812 
6813   bind(RET_FOUND);
6814   // Compute substr offset
6815   subptr(result, str1);
6816   shrl(result, 1); // index
6817 
6818   bind(CLEANUP);
6819   pop(rsp); // restore SP
6820 
6821 } // string_indexof
6822 
6823 // Compare strings.
6824 void MacroAssembler::string_compare(Register str1, Register str2,
6825                                     Register cnt1, Register cnt2, Register result,
6826                                     XMMRegister vec1) {
6827   ShortBranchVerifier sbv(this);
6828   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6829 
6830   // Compute the minimum of the string lengths and the
6831   // difference of the string lengths (stack).
6832   // Do the conditional move stuff
6833   movl(result, cnt1);
6834   subl(cnt1, cnt2);
6835   push(cnt1);
6836   cmov32(Assembler::lessEqual, cnt2, result);
6837 
6838   // Is the minimum length zero?
6839   testl(cnt2, cnt2);
6840   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6841 
6842   // Compare first characters
6843   load_unsigned_short(result, Address(str1, 0));
6844   load_unsigned_short(cnt1, Address(str2, 0));
6845   subl(result, cnt1);
6846   jcc(Assembler::notZero,  POP_LABEL);
6847   cmpl(cnt2, 1);
6848   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6849 
6850   // Check if the strings start at the same location.
6851   cmpptr(str1, str2);
6852   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6853 
6854   Address::ScaleFactor scale = Address::times_2;
6855   int stride = 8;
6856 
6857   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6858     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6859     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6860     Label COMPARE_TAIL_LONG;
6861     int pcmpmask = 0x19;
6862 
6863     // Setup to compare 16-chars (32-bytes) vectors,
6864     // start from first character again because it has aligned address.
6865     int stride2 = 16;
6866     int adr_stride  = stride  << scale;
6867     int adr_stride2 = stride2 << scale;
6868 
6869     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6870     // rax and rdx are used by pcmpestri as elements counters
6871     movl(result, cnt2);
6872     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6873     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6874 
6875     // fast path : compare first 2 8-char vectors.
6876     bind(COMPARE_16_CHARS);
6877     movdqu(vec1, Address(str1, 0));
6878     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6879     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6880 
6881     movdqu(vec1, Address(str1, adr_stride));
6882     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6883     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6884     addl(cnt1, stride);
6885 
6886     // Compare the characters at index in cnt1
6887     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
6888     load_unsigned_short(result, Address(str1, cnt1, scale));
6889     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6890     subl(result, cnt2);
6891     jmp(POP_LABEL);
6892 
6893     // Setup the registers to start vector comparison loop
6894     bind(COMPARE_WIDE_VECTORS);
6895     lea(str1, Address(str1, result, scale));
6896     lea(str2, Address(str2, result, scale));
6897     subl(result, stride2);
6898     subl(cnt2, stride2);
6899     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
6900     negptr(result);
6901 
6902     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6903     bind(COMPARE_WIDE_VECTORS_LOOP);
6904     vmovdqu(vec1, Address(str1, result, scale));
6905     vpxor(vec1, Address(str2, result, scale));
6906     vptest(vec1, vec1);
6907     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
6908     addptr(result, stride2);
6909     subl(cnt2, stride2);
6910     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6911     // clean upper bits of YMM registers
6912     vpxor(vec1, vec1);
6913 
6914     // compare wide vectors tail
6915     bind(COMPARE_WIDE_TAIL);
6916     testptr(result, result);
6917     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6918 
6919     movl(result, stride2);
6920     movl(cnt2, result);
6921     negptr(result);
6922     jmpb(COMPARE_WIDE_VECTORS_LOOP);
6923 
6924     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6925     bind(VECTOR_NOT_EQUAL);
6926     // clean upper bits of YMM registers
6927     vpxor(vec1, vec1);
6928     lea(str1, Address(str1, result, scale));
6929     lea(str2, Address(str2, result, scale));
6930     jmp(COMPARE_16_CHARS);
6931 
6932     // Compare tail chars, length between 1 to 15 chars
6933     bind(COMPARE_TAIL_LONG);
6934     movl(cnt2, result);
6935     cmpl(cnt2, stride);
6936     jccb(Assembler::less, COMPARE_SMALL_STR);
6937 
6938     movdqu(vec1, Address(str1, 0));
6939     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6940     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6941     subptr(cnt2, stride);
6942     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6943     lea(str1, Address(str1, result, scale));
6944     lea(str2, Address(str2, result, scale));
6945     negptr(cnt2);
6946     jmpb(WHILE_HEAD_LABEL);
6947 
6948     bind(COMPARE_SMALL_STR);
6949   } else if (UseSSE42Intrinsics) {
6950     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6951     int pcmpmask = 0x19;
6952     // Setup to compare 8-char (16-byte) vectors,
6953     // start from first character again because it has aligned address.
6954     movl(result, cnt2);
6955     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6956     jccb(Assembler::zero, COMPARE_TAIL);
6957 
6958     lea(str1, Address(str1, result, scale));
6959     lea(str2, Address(str2, result, scale));
6960     negptr(result);
6961 
6962     // pcmpestri
6963     //   inputs:
6964     //     vec1- substring
6965     //     rax - negative string length (elements count)
6966     //     mem - scaned string
6967     //     rdx - string length (elements count)
6968     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6969     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6970     //   outputs:
6971     //     rcx - first mismatched element index
6972     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6973 
6974     bind(COMPARE_WIDE_VECTORS);
6975     movdqu(vec1, Address(str1, result, scale));
6976     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6977     // After pcmpestri cnt1(rcx) contains mismatched element index
6978 
6979     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6980     addptr(result, stride);
6981     subptr(cnt2, stride);
6982     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6983 
6984     // compare wide vectors tail
6985     testptr(result, result);
6986     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6987 
6988     movl(cnt2, stride);
6989     movl(result, stride);
6990     negptr(result);
6991     movdqu(vec1, Address(str1, result, scale));
6992     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6993     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6994 
6995     // Mismatched characters in the vectors
6996     bind(VECTOR_NOT_EQUAL);
6997     addptr(cnt1, result);
6998     load_unsigned_short(result, Address(str1, cnt1, scale));
6999     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
7000     subl(result, cnt2);
7001     jmpb(POP_LABEL);
7002 
7003     bind(COMPARE_TAIL); // limit is zero
7004     movl(cnt2, result);
7005     // Fallthru to tail compare
7006   }
7007   // Shift str2 and str1 to the end of the arrays, negate min
7008   lea(str1, Address(str1, cnt2, scale));
7009   lea(str2, Address(str2, cnt2, scale));
7010   decrementl(cnt2);  // first character was compared already
7011   negptr(cnt2);
7012 
7013   // Compare the rest of the elements
7014   bind(WHILE_HEAD_LABEL);
7015   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
7016   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
7017   subl(result, cnt1);
7018   jccb(Assembler::notZero, POP_LABEL);
7019   increment(cnt2);
7020   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
7021 
7022   // Strings are equal up to min length.  Return the length difference.
7023   bind(LENGTH_DIFF_LABEL);
7024   pop(result);
7025   jmpb(DONE_LABEL);
7026 
7027   // Discard the stored length difference
7028   bind(POP_LABEL);
7029   pop(cnt1);
7030 
7031   // That's it
7032   bind(DONE_LABEL);
7033 }
7034 
7035 // Compare char[] arrays aligned to 4 bytes or substrings.
7036 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
7037                                         Register limit, Register result, Register chr,
7038                                         XMMRegister vec1, XMMRegister vec2) {
7039   ShortBranchVerifier sbv(this);
7040   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
7041 
7042   int length_offset  = arrayOopDesc::length_offset_in_bytes();
7043   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
7044 
7045   // Check the input args
7046   if (is_array_equ) {
7047     cmpoops(ary1, ary2);
7048   } else {
7049     cmpptr(ary1, ary2);
7050   }
7051   jcc(Assembler::equal, TRUE_LABEL);
7052 
7053   if (is_array_equ) {
7054     // Need additional checks for arrays_equals.
7055     testptr(ary1, ary1);
7056     jcc(Assembler::zero, FALSE_LABEL);
7057     testptr(ary2, ary2);
7058     jcc(Assembler::zero, FALSE_LABEL);
7059 
7060     // Check the lengths
7061     movl(limit, Address(ary1, length_offset));
7062     cmpl(limit, Address(ary2, length_offset));
7063     jcc(Assembler::notEqual, FALSE_LABEL);
7064   }
7065 
7066   // count == 0
7067   testl(limit, limit);
7068   jcc(Assembler::zero, TRUE_LABEL);
7069 
7070   if (is_array_equ) {
7071     // Load array address
7072     lea(ary1, Address(ary1, base_offset));
7073     lea(ary2, Address(ary2, base_offset));
7074   }
7075 
7076   shll(limit, 1);      // byte count != 0
7077   movl(result, limit); // copy
7078 
7079   if (UseAVX >= 2) {
7080     // With AVX2, use 32-byte vector compare
7081     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7082 
7083     // Compare 32-byte vectors
7084     andl(result, 0x0000001e);  //   tail count (in bytes)
7085     andl(limit, 0xffffffe0);   // vector count (in bytes)
7086     jccb(Assembler::zero, COMPARE_TAIL);
7087 
7088     lea(ary1, Address(ary1, limit, Address::times_1));
7089     lea(ary2, Address(ary2, limit, Address::times_1));
7090     negptr(limit);
7091 
7092     bind(COMPARE_WIDE_VECTORS);
7093     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
7094     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
7095     vpxor(vec1, vec2);
7096 
7097     vptest(vec1, vec1);
7098     jccb(Assembler::notZero, FALSE_LABEL);
7099     addptr(limit, 32);
7100     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7101 
7102     testl(result, result);
7103     jccb(Assembler::zero, TRUE_LABEL);
7104 
7105     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7106     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
7107     vpxor(vec1, vec2);
7108 
7109     vptest(vec1, vec1);
7110     jccb(Assembler::notZero, FALSE_LABEL);
7111     jmpb(TRUE_LABEL);
7112 
7113     bind(COMPARE_TAIL); // limit is zero
7114     movl(limit, result);
7115     // Fallthru to tail compare
7116   } else if (UseSSE42Intrinsics) {
7117     // With SSE4.2, use double quad vector compare
7118     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7119 
7120     // Compare 16-byte vectors
7121     andl(result, 0x0000000e);  //   tail count (in bytes)
7122     andl(limit, 0xfffffff0);   // vector count (in bytes)
7123     jccb(Assembler::zero, COMPARE_TAIL);
7124 
7125     lea(ary1, Address(ary1, limit, Address::times_1));
7126     lea(ary2, Address(ary2, limit, Address::times_1));
7127     negptr(limit);
7128 
7129     bind(COMPARE_WIDE_VECTORS);
7130     movdqu(vec1, Address(ary1, limit, Address::times_1));
7131     movdqu(vec2, Address(ary2, limit, Address::times_1));
7132     pxor(vec1, vec2);
7133 
7134     ptest(vec1, vec1);
7135     jccb(Assembler::notZero, FALSE_LABEL);
7136     addptr(limit, 16);
7137     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7138 
7139     testl(result, result);
7140     jccb(Assembler::zero, TRUE_LABEL);
7141 
7142     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7143     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
7144     pxor(vec1, vec2);
7145 
7146     ptest(vec1, vec1);
7147     jccb(Assembler::notZero, FALSE_LABEL);
7148     jmpb(TRUE_LABEL);
7149 
7150     bind(COMPARE_TAIL); // limit is zero
7151     movl(limit, result);
7152     // Fallthru to tail compare
7153   }
7154 
7155   // Compare 4-byte vectors
7156   andl(limit, 0xfffffffc); // vector count (in bytes)
7157   jccb(Assembler::zero, COMPARE_CHAR);
7158 
7159   lea(ary1, Address(ary1, limit, Address::times_1));
7160   lea(ary2, Address(ary2, limit, Address::times_1));
7161   negptr(limit);
7162 
7163   bind(COMPARE_VECTORS);
7164   movl(chr, Address(ary1, limit, Address::times_1));
7165   cmpl(chr, Address(ary2, limit, Address::times_1));
7166   jccb(Assembler::notEqual, FALSE_LABEL);
7167   addptr(limit, 4);
7168   jcc(Assembler::notZero, COMPARE_VECTORS);
7169 
7170   // Compare trailing char (final 2 bytes), if any
7171   bind(COMPARE_CHAR);
7172   testl(result, 0x2);   // tail  char
7173   jccb(Assembler::zero, TRUE_LABEL);
7174   load_unsigned_short(chr, Address(ary1, 0));
7175   load_unsigned_short(limit, Address(ary2, 0));
7176   cmpl(chr, limit);
7177   jccb(Assembler::notEqual, FALSE_LABEL);
7178 
7179   bind(TRUE_LABEL);
7180   movl(result, 1);   // return true
7181   jmpb(DONE);
7182 
7183   bind(FALSE_LABEL);
7184   xorl(result, result); // return false
7185 
7186   // That's it
7187   bind(DONE);
7188   if (UseAVX >= 2) {
7189     // clean upper bits of YMM registers
7190     vpxor(vec1, vec1);
7191     vpxor(vec2, vec2);
7192   }
7193 }
7194 
7195 void MacroAssembler::generate_fill(BasicType t, bool aligned,
7196                                    Register to, Register value, Register count,
7197                                    Register rtmp, XMMRegister xtmp) {
7198   ShortBranchVerifier sbv(this);
7199   assert_different_registers(to, value, count, rtmp);
7200   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
7201   Label L_fill_2_bytes, L_fill_4_bytes;
7202 
7203   int shift = -1;
7204   switch (t) {
7205     case T_BYTE:
7206       shift = 2;
7207       break;
7208     case T_SHORT:
7209       shift = 1;
7210       break;
7211     case T_INT:
7212       shift = 0;
7213       break;
7214     default: ShouldNotReachHere();
7215   }
7216 
7217   if (t == T_BYTE) {
7218     andl(value, 0xff);
7219     movl(rtmp, value);
7220     shll(rtmp, 8);
7221     orl(value, rtmp);
7222   }
7223   if (t == T_SHORT) {
7224     andl(value, 0xffff);
7225   }
7226   if (t == T_BYTE || t == T_SHORT) {
7227     movl(rtmp, value);
7228     shll(rtmp, 16);
7229     orl(value, rtmp);
7230   }
7231 
7232   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7233   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7234   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7235     // align source address at 4 bytes address boundary
7236     if (t == T_BYTE) {
7237       // One byte misalignment happens only for byte arrays
7238       testptr(to, 1);
7239       jccb(Assembler::zero, L_skip_align1);
7240       movb(Address(to, 0), value);
7241       increment(to);
7242       decrement(count);
7243       BIND(L_skip_align1);
7244     }
7245     // Two bytes misalignment happens only for byte and short (char) arrays
7246     testptr(to, 2);
7247     jccb(Assembler::zero, L_skip_align2);
7248     movw(Address(to, 0), value);
7249     addptr(to, 2);
7250     subl(count, 1<<(shift-1));
7251     BIND(L_skip_align2);
7252   }
7253   if (UseSSE < 2) {
7254     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7255     // Fill 32-byte chunks
7256     subl(count, 8 << shift);
7257     jcc(Assembler::less, L_check_fill_8_bytes);
7258     align(16);
7259 
7260     BIND(L_fill_32_bytes_loop);
7261 
7262     for (int i = 0; i < 32; i += 4) {
7263       movl(Address(to, i), value);
7264     }
7265 
7266     addptr(to, 32);
7267     subl(count, 8 << shift);
7268     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7269     BIND(L_check_fill_8_bytes);
7270     addl(count, 8 << shift);
7271     jccb(Assembler::zero, L_exit);
7272     jmpb(L_fill_8_bytes);
7273 
7274     //
7275     // length is too short, just fill qwords
7276     //
7277     BIND(L_fill_8_bytes_loop);
7278     movl(Address(to, 0), value);
7279     movl(Address(to, 4), value);
7280     addptr(to, 8);
7281     BIND(L_fill_8_bytes);
7282     subl(count, 1 << (shift + 1));
7283     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7284     // fall through to fill 4 bytes
7285   } else {
7286     Label L_fill_32_bytes;
7287     if (!UseUnalignedLoadStores) {
7288       // align to 8 bytes, we know we are 4 byte aligned to start
7289       testptr(to, 4);
7290       jccb(Assembler::zero, L_fill_32_bytes);
7291       movl(Address(to, 0), value);
7292       addptr(to, 4);
7293       subl(count, 1<<shift);
7294     }
7295     BIND(L_fill_32_bytes);
7296     {
7297       assert( UseSSE >= 2, "supported cpu only" );
7298       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7299       movdl(xtmp, value);
7300       if (UseAVX >= 2 && UseUnalignedLoadStores) {
7301         // Fill 64-byte chunks
7302         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7303         vpbroadcastd(xtmp, xtmp);
7304 
7305         subl(count, 16 << shift);
7306         jcc(Assembler::less, L_check_fill_32_bytes);
7307         align(16);
7308 
7309         BIND(L_fill_64_bytes_loop);
7310         vmovdqu(Address(to, 0), xtmp);
7311         vmovdqu(Address(to, 32), xtmp);
7312         addptr(to, 64);
7313         subl(count, 16 << shift);
7314         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7315 
7316         BIND(L_check_fill_32_bytes);
7317         addl(count, 8 << shift);
7318         jccb(Assembler::less, L_check_fill_8_bytes);
7319         vmovdqu(Address(to, 0), xtmp);
7320         addptr(to, 32);
7321         subl(count, 8 << shift);
7322 
7323         BIND(L_check_fill_8_bytes);
7324         // clean upper bits of YMM registers
7325         movdl(xtmp, value);
7326         pshufd(xtmp, xtmp, 0);
7327       } else {
7328         // Fill 32-byte chunks
7329         pshufd(xtmp, xtmp, 0);
7330 
7331         subl(count, 8 << shift);
7332         jcc(Assembler::less, L_check_fill_8_bytes);
7333         align(16);
7334 
7335         BIND(L_fill_32_bytes_loop);
7336 
7337         if (UseUnalignedLoadStores) {
7338           movdqu(Address(to, 0), xtmp);
7339           movdqu(Address(to, 16), xtmp);
7340         } else {
7341           movq(Address(to, 0), xtmp);
7342           movq(Address(to, 8), xtmp);
7343           movq(Address(to, 16), xtmp);
7344           movq(Address(to, 24), xtmp);
7345         }
7346 
7347         addptr(to, 32);
7348         subl(count, 8 << shift);
7349         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7350 
7351         BIND(L_check_fill_8_bytes);
7352       }
7353       addl(count, 8 << shift);
7354       jccb(Assembler::zero, L_exit);
7355       jmpb(L_fill_8_bytes);
7356 
7357       //
7358       // length is too short, just fill qwords
7359       //
7360       BIND(L_fill_8_bytes_loop);
7361       movq(Address(to, 0), xtmp);
7362       addptr(to, 8);
7363       BIND(L_fill_8_bytes);
7364       subl(count, 1 << (shift + 1));
7365       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7366     }
7367   }
7368   // fill trailing 4 bytes
7369   BIND(L_fill_4_bytes);
7370   testl(count, 1<<shift);
7371   jccb(Assembler::zero, L_fill_2_bytes);
7372   movl(Address(to, 0), value);
7373   if (t == T_BYTE || t == T_SHORT) {
7374     addptr(to, 4);
7375     BIND(L_fill_2_bytes);
7376     // fill trailing 2 bytes
7377     testl(count, 1<<(shift-1));
7378     jccb(Assembler::zero, L_fill_byte);
7379     movw(Address(to, 0), value);
7380     if (t == T_BYTE) {
7381       addptr(to, 2);
7382       BIND(L_fill_byte);
7383       // fill trailing byte
7384       testl(count, 1);
7385       jccb(Assembler::zero, L_exit);
7386       movb(Address(to, 0), value);
7387     } else {
7388       BIND(L_fill_byte);
7389     }
7390   } else {
7391     BIND(L_fill_2_bytes);
7392   }
7393   BIND(L_exit);
7394 }
7395 
7396 // encode char[] to byte[] in ISO_8859_1
7397 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7398                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7399                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7400                                       Register tmp5, Register result) {
7401   // rsi: src
7402   // rdi: dst
7403   // rdx: len
7404   // rcx: tmp5
7405   // rax: result
7406   ShortBranchVerifier sbv(this);
7407   assert_different_registers(src, dst, len, tmp5, result);
7408   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7409 
7410   // set result
7411   xorl(result, result);
7412   // check for zero length
7413   testl(len, len);
7414   jcc(Assembler::zero, L_done);
7415   movl(result, len);
7416 
7417   // Setup pointers
7418   lea(src, Address(src, len, Address::times_2)); // char[]
7419   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7420   negptr(len);
7421 
7422   if (UseSSE42Intrinsics || UseAVX >= 2) {
7423     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
7424     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7425 
7426     if (UseAVX >= 2) {
7427       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7428       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7429       movdl(tmp1Reg, tmp5);
7430       vpbroadcastd(tmp1Reg, tmp1Reg);
7431       jmpb(L_chars_32_check);
7432 
7433       bind(L_copy_32_chars);
7434       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7435       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7436       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
7437       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7438       jccb(Assembler::notZero, L_copy_32_chars_exit);
7439       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
7440       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
7441       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7442 
7443       bind(L_chars_32_check);
7444       addptr(len, 32);
7445       jccb(Assembler::lessEqual, L_copy_32_chars);
7446 
7447       bind(L_copy_32_chars_exit);
7448       subptr(len, 16);
7449       jccb(Assembler::greater, L_copy_16_chars_exit);
7450 
7451     } else if (UseSSE42Intrinsics) {
7452       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7453       movdl(tmp1Reg, tmp5);
7454       pshufd(tmp1Reg, tmp1Reg, 0);
7455       jmpb(L_chars_16_check);
7456     }
7457 
7458     bind(L_copy_16_chars);
7459     if (UseAVX >= 2) {
7460       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7461       vptest(tmp2Reg, tmp1Reg);
7462       jccb(Assembler::notZero, L_copy_16_chars_exit);
7463       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
7464       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
7465     } else {
7466       if (UseAVX > 0) {
7467         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7468         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7469         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
7470       } else {
7471         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7472         por(tmp2Reg, tmp3Reg);
7473         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7474         por(tmp2Reg, tmp4Reg);
7475       }
7476       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7477       jccb(Assembler::notZero, L_copy_16_chars_exit);
7478       packuswb(tmp3Reg, tmp4Reg);
7479     }
7480     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7481 
7482     bind(L_chars_16_check);
7483     addptr(len, 16);
7484     jccb(Assembler::lessEqual, L_copy_16_chars);
7485 
7486     bind(L_copy_16_chars_exit);
7487     if (UseAVX >= 2) {
7488       // clean upper bits of YMM registers
7489       vpxor(tmp2Reg, tmp2Reg);
7490       vpxor(tmp3Reg, tmp3Reg);
7491       vpxor(tmp4Reg, tmp4Reg);
7492       movdl(tmp1Reg, tmp5);
7493       pshufd(tmp1Reg, tmp1Reg, 0);
7494     }
7495     subptr(len, 8);
7496     jccb(Assembler::greater, L_copy_8_chars_exit);
7497 
7498     bind(L_copy_8_chars);
7499     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7500     ptest(tmp3Reg, tmp1Reg);
7501     jccb(Assembler::notZero, L_copy_8_chars_exit);
7502     packuswb(tmp3Reg, tmp1Reg);
7503     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7504     addptr(len, 8);
7505     jccb(Assembler::lessEqual, L_copy_8_chars);
7506 
7507     bind(L_copy_8_chars_exit);
7508     subptr(len, 8);
7509     jccb(Assembler::zero, L_done);
7510   }
7511 
7512   bind(L_copy_1_char);
7513   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7514   testl(tmp5, 0xff00);      // check if Unicode char
7515   jccb(Assembler::notZero, L_copy_1_char_exit);
7516   movb(Address(dst, len, Address::times_1, 0), tmp5);
7517   addptr(len, 1);
7518   jccb(Assembler::less, L_copy_1_char);
7519 
7520   bind(L_copy_1_char_exit);
7521   addptr(result, len); // len is negative count of not processed elements
7522   bind(L_done);
7523 }
7524 
7525 #ifdef _LP64
7526 /**
7527  * Helper for multiply_to_len().
7528  */
7529 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7530   addq(dest_lo, src1);
7531   adcq(dest_hi, 0);
7532   addq(dest_lo, src2);
7533   adcq(dest_hi, 0);
7534 }
7535 
7536 /**
7537  * Multiply 64 bit by 64 bit first loop.
7538  */
7539 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7540                                            Register y, Register y_idx, Register z,
7541                                            Register carry, Register product,
7542                                            Register idx, Register kdx) {
7543   //
7544   //  jlong carry, x[], y[], z[];
7545   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7546   //    huge_128 product = y[idx] * x[xstart] + carry;
7547   //    z[kdx] = (jlong)product;
7548   //    carry  = (jlong)(product >>> 64);
7549   //  }
7550   //  z[xstart] = carry;
7551   //
7552 
7553   Label L_first_loop, L_first_loop_exit;
7554   Label L_one_x, L_one_y, L_multiply;
7555 
7556   decrementl(xstart);
7557   jcc(Assembler::negative, L_one_x);
7558 
7559   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7560   rorq(x_xstart, 32); // convert big-endian to little-endian
7561 
7562   bind(L_first_loop);
7563   decrementl(idx);
7564   jcc(Assembler::negative, L_first_loop_exit);
7565   decrementl(idx);
7566   jcc(Assembler::negative, L_one_y);
7567   movq(y_idx, Address(y, idx, Address::times_4,  0));
7568   rorq(y_idx, 32); // convert big-endian to little-endian
7569   bind(L_multiply);
7570   movq(product, x_xstart);
7571   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7572   addq(product, carry);
7573   adcq(rdx, 0);
7574   subl(kdx, 2);
7575   movl(Address(z, kdx, Address::times_4,  4), product);
7576   shrq(product, 32);
7577   movl(Address(z, kdx, Address::times_4,  0), product);
7578   movq(carry, rdx);
7579   jmp(L_first_loop);
7580 
7581   bind(L_one_y);
7582   movl(y_idx, Address(y,  0));
7583   jmp(L_multiply);
7584 
7585   bind(L_one_x);
7586   movl(x_xstart, Address(x,  0));
7587   jmp(L_first_loop);
7588 
7589   bind(L_first_loop_exit);
7590 }
7591 
7592 /**
7593  * Multiply 64 bit by 64 bit and add 128 bit.
7594  */
7595 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7596                                             Register yz_idx, Register idx,
7597                                             Register carry, Register product, int offset) {
7598   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7599   //     z[kdx] = (jlong)product;
7600 
7601   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7602   rorq(yz_idx, 32); // convert big-endian to little-endian
7603   movq(product, x_xstart);
7604   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7605   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7606   rorq(yz_idx, 32); // convert big-endian to little-endian
7607 
7608   add2_with_carry(rdx, product, carry, yz_idx);
7609 
7610   movl(Address(z, idx, Address::times_4,  offset+4), product);
7611   shrq(product, 32);
7612   movl(Address(z, idx, Address::times_4,  offset), product);
7613 
7614 }
7615 
7616 /**
7617  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7618  */
7619 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7620                                              Register yz_idx, Register idx, Register jdx,
7621                                              Register carry, Register product,
7622                                              Register carry2) {
7623   //   jlong carry, x[], y[], z[];
7624   //   int kdx = ystart+1;
7625   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7626   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7627   //     z[kdx+idx+1] = (jlong)product;
7628   //     jlong carry2  = (jlong)(product >>> 64);
7629   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7630   //     z[kdx+idx] = (jlong)product;
7631   //     carry  = (jlong)(product >>> 64);
7632   //   }
7633   //   idx += 2;
7634   //   if (idx > 0) {
7635   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7636   //     z[kdx+idx] = (jlong)product;
7637   //     carry  = (jlong)(product >>> 64);
7638   //   }
7639   //
7640 
7641   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7642 
7643   movl(jdx, idx);
7644   andl(jdx, 0xFFFFFFFC);
7645   shrl(jdx, 2);
7646 
7647   bind(L_third_loop);
7648   subl(jdx, 1);
7649   jcc(Assembler::negative, L_third_loop_exit);
7650   subl(idx, 4);
7651 
7652   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7653   movq(carry2, rdx);
7654 
7655   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7656   movq(carry, rdx);
7657   jmp(L_third_loop);
7658 
7659   bind (L_third_loop_exit);
7660 
7661   andl (idx, 0x3);
7662   jcc(Assembler::zero, L_post_third_loop_done);
7663 
7664   Label L_check_1;
7665   subl(idx, 2);
7666   jcc(Assembler::negative, L_check_1);
7667 
7668   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7669   movq(carry, rdx);
7670 
7671   bind (L_check_1);
7672   addl (idx, 0x2);
7673   andl (idx, 0x1);
7674   subl(idx, 1);
7675   jcc(Assembler::negative, L_post_third_loop_done);
7676 
7677   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7678   movq(product, x_xstart);
7679   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7680   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7681 
7682   add2_with_carry(rdx, product, yz_idx, carry);
7683 
7684   movl(Address(z, idx, Address::times_4,  0), product);
7685   shrq(product, 32);
7686 
7687   shlq(rdx, 32);
7688   orq(product, rdx);
7689   movq(carry, product);
7690 
7691   bind(L_post_third_loop_done);
7692 }
7693 
7694 /**
7695  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7696  *
7697  */
7698 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7699                                                   Register carry, Register carry2,
7700                                                   Register idx, Register jdx,
7701                                                   Register yz_idx1, Register yz_idx2,
7702                                                   Register tmp, Register tmp3, Register tmp4) {
7703   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7704 
7705   //   jlong carry, x[], y[], z[];
7706   //   int kdx = ystart+1;
7707   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7708   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7709   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7710   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7711   //     carry  = (jlong)(tmp4 >>> 64);
7712   //     z[kdx+idx+1] = (jlong)tmp3;
7713   //     z[kdx+idx] = (jlong)tmp4;
7714   //   }
7715   //   idx += 2;
7716   //   if (idx > 0) {
7717   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7718   //     z[kdx+idx] = (jlong)yz_idx1;
7719   //     carry  = (jlong)(yz_idx1 >>> 64);
7720   //   }
7721   //
7722 
7723   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7724 
7725   movl(jdx, idx);
7726   andl(jdx, 0xFFFFFFFC);
7727   shrl(jdx, 2);
7728 
7729   bind(L_third_loop);
7730   subl(jdx, 1);
7731   jcc(Assembler::negative, L_third_loop_exit);
7732   subl(idx, 4);
7733 
7734   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7735   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7736   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7737   rorxq(yz_idx2, yz_idx2, 32);
7738 
7739   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7740   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7741 
7742   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7743   rorxq(yz_idx1, yz_idx1, 32);
7744   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7745   rorxq(yz_idx2, yz_idx2, 32);
7746 
7747   if (VM_Version::supports_adx()) {
7748     adcxq(tmp3, carry);
7749     adoxq(tmp3, yz_idx1);
7750 
7751     adcxq(tmp4, tmp);
7752     adoxq(tmp4, yz_idx2);
7753 
7754     movl(carry, 0); // does not affect flags
7755     adcxq(carry2, carry);
7756     adoxq(carry2, carry);
7757   } else {
7758     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7759     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7760   }
7761   movq(carry, carry2);
7762 
7763   movl(Address(z, idx, Address::times_4, 12), tmp3);
7764   shrq(tmp3, 32);
7765   movl(Address(z, idx, Address::times_4,  8), tmp3);
7766 
7767   movl(Address(z, idx, Address::times_4,  4), tmp4);
7768   shrq(tmp4, 32);
7769   movl(Address(z, idx, Address::times_4,  0), tmp4);
7770 
7771   jmp(L_third_loop);
7772 
7773   bind (L_third_loop_exit);
7774 
7775   andl (idx, 0x3);
7776   jcc(Assembler::zero, L_post_third_loop_done);
7777 
7778   Label L_check_1;
7779   subl(idx, 2);
7780   jcc(Assembler::negative, L_check_1);
7781 
7782   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7783   rorxq(yz_idx1, yz_idx1, 32);
7784   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7785   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7786   rorxq(yz_idx2, yz_idx2, 32);
7787 
7788   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7789 
7790   movl(Address(z, idx, Address::times_4,  4), tmp3);
7791   shrq(tmp3, 32);
7792   movl(Address(z, idx, Address::times_4,  0), tmp3);
7793   movq(carry, tmp4);
7794 
7795   bind (L_check_1);
7796   addl (idx, 0x2);
7797   andl (idx, 0x1);
7798   subl(idx, 1);
7799   jcc(Assembler::negative, L_post_third_loop_done);
7800   movl(tmp4, Address(y, idx, Address::times_4,  0));
7801   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7802   movl(tmp4, Address(z, idx, Address::times_4,  0));
7803 
7804   add2_with_carry(carry2, tmp3, tmp4, carry);
7805 
7806   movl(Address(z, idx, Address::times_4,  0), tmp3);
7807   shrq(tmp3, 32);
7808 
7809   shlq(carry2, 32);
7810   orq(tmp3, carry2);
7811   movq(carry, tmp3);
7812 
7813   bind(L_post_third_loop_done);
7814 }
7815 
7816 /**
7817  * Code for BigInteger::multiplyToLen() instrinsic.
7818  *
7819  * rdi: x
7820  * rax: xlen
7821  * rsi: y
7822  * rcx: ylen
7823  * r8:  z
7824  * r11: zlen
7825  * r12: tmp1
7826  * r13: tmp2
7827  * r14: tmp3
7828  * r15: tmp4
7829  * rbx: tmp5
7830  *
7831  */
7832 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7833                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7834   ShortBranchVerifier sbv(this);
7835   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7836 
7837   push(tmp1);
7838   push(tmp2);
7839   push(tmp3);
7840   push(tmp4);
7841   push(tmp5);
7842 
7843   push(xlen);
7844   push(zlen);
7845 
7846   const Register idx = tmp1;
7847   const Register kdx = tmp2;
7848   const Register xstart = tmp3;
7849 
7850   const Register y_idx = tmp4;
7851   const Register carry = tmp5;
7852   const Register product  = xlen;
7853   const Register x_xstart = zlen;  // reuse register
7854 
7855   // First Loop.
7856   //
7857   //  final static long LONG_MASK = 0xffffffffL;
7858   //  int xstart = xlen - 1;
7859   //  int ystart = ylen - 1;
7860   //  long carry = 0;
7861   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7862   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7863   //    z[kdx] = (int)product;
7864   //    carry = product >>> 32;
7865   //  }
7866   //  z[xstart] = (int)carry;
7867   //
7868 
7869   movl(idx, ylen);      // idx = ylen;
7870   movl(kdx, zlen);      // kdx = xlen+ylen;
7871   xorq(carry, carry);   // carry = 0;
7872 
7873   Label L_done;
7874 
7875   movl(xstart, xlen);
7876   decrementl(xstart);
7877   jcc(Assembler::negative, L_done);
7878 
7879   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7880 
7881   Label L_second_loop;
7882   testl(kdx, kdx);
7883   jcc(Assembler::zero, L_second_loop);
7884 
7885   Label L_carry;
7886   subl(kdx, 1);
7887   jcc(Assembler::zero, L_carry);
7888 
7889   movl(Address(z, kdx, Address::times_4,  0), carry);
7890   shrq(carry, 32);
7891   subl(kdx, 1);
7892 
7893   bind(L_carry);
7894   movl(Address(z, kdx, Address::times_4,  0), carry);
7895 
7896   // Second and third (nested) loops.
7897   //
7898   // for (int i = xstart-1; i >= 0; i--) { // Second loop
7899   //   carry = 0;
7900   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
7901   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
7902   //                    (z[k] & LONG_MASK) + carry;
7903   //     z[k] = (int)product;
7904   //     carry = product >>> 32;
7905   //   }
7906   //   z[i] = (int)carry;
7907   // }
7908   //
7909   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
7910 
7911   const Register jdx = tmp1;
7912 
7913   bind(L_second_loop);
7914   xorl(carry, carry);    // carry = 0;
7915   movl(jdx, ylen);       // j = ystart+1
7916 
7917   subl(xstart, 1);       // i = xstart-1;
7918   jcc(Assembler::negative, L_done);
7919 
7920   push (z);
7921 
7922   Label L_last_x;
7923   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
7924   subl(xstart, 1);       // i = xstart-1;
7925   jcc(Assembler::negative, L_last_x);
7926 
7927   if (UseBMI2Instructions) {
7928     movq(rdx,  Address(x, xstart, Address::times_4,  0));
7929     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
7930   } else {
7931     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7932     rorq(x_xstart, 32);  // convert big-endian to little-endian
7933   }
7934 
7935   Label L_third_loop_prologue;
7936   bind(L_third_loop_prologue);
7937 
7938   push (x);
7939   push (xstart);
7940   push (ylen);
7941 
7942 
7943   if (UseBMI2Instructions) {
7944     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
7945   } else { // !UseBMI2Instructions
7946     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
7947   }
7948 
7949   pop(ylen);
7950   pop(xlen);
7951   pop(x);
7952   pop(z);
7953 
7954   movl(tmp3, xlen);
7955   addl(tmp3, 1);
7956   movl(Address(z, tmp3, Address::times_4,  0), carry);
7957   subl(tmp3, 1);
7958   jccb(Assembler::negative, L_done);
7959 
7960   shrq(carry, 32);
7961   movl(Address(z, tmp3, Address::times_4,  0), carry);
7962   jmp(L_second_loop);
7963 
7964   // Next infrequent code is moved outside loops.
7965   bind(L_last_x);
7966   if (UseBMI2Instructions) {
7967     movl(rdx, Address(x,  0));
7968   } else {
7969     movl(x_xstart, Address(x,  0));
7970   }
7971   jmp(L_third_loop_prologue);
7972 
7973   bind(L_done);
7974 
7975   pop(zlen);
7976   pop(xlen);
7977 
7978   pop(tmp5);
7979   pop(tmp4);
7980   pop(tmp3);
7981   pop(tmp2);
7982   pop(tmp1);
7983 }
7984 
7985 //Helper functions for square_to_len()
7986 
7987 /**
7988  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
7989  * Preserves x and z and modifies rest of the registers.
7990  */
7991 
7992 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7993   // Perform square and right shift by 1
7994   // Handle odd xlen case first, then for even xlen do the following
7995   // jlong carry = 0;
7996   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
7997   //     huge_128 product = x[j:j+1] * x[j:j+1];
7998   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
7999   //     z[i+2:i+3] = (jlong)(product >>> 1);
8000   //     carry = (jlong)product;
8001   // }
8002 
8003   xorq(tmp5, tmp5);     // carry
8004   xorq(rdxReg, rdxReg);
8005   xorl(tmp1, tmp1);     // index for x
8006   xorl(tmp4, tmp4);     // index for z
8007 
8008   Label L_first_loop, L_first_loop_exit;
8009 
8010   testl(xlen, 1);
8011   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
8012 
8013   // Square and right shift by 1 the odd element using 32 bit multiply
8014   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
8015   imulq(raxReg, raxReg);
8016   shrq(raxReg, 1);
8017   adcq(tmp5, 0);
8018   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
8019   incrementl(tmp1);
8020   addl(tmp4, 2);
8021 
8022   // Square and  right shift by 1 the rest using 64 bit multiply
8023   bind(L_first_loop);
8024   cmpptr(tmp1, xlen);
8025   jccb(Assembler::equal, L_first_loop_exit);
8026 
8027   // Square
8028   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
8029   rorq(raxReg, 32);    // convert big-endian to little-endian
8030   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
8031 
8032   // Right shift by 1 and save carry
8033   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
8034   rcrq(rdxReg, 1);
8035   rcrq(raxReg, 1);
8036   adcq(tmp5, 0);
8037 
8038   // Store result in z
8039   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
8040   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
8041 
8042   // Update indices for x and z
8043   addl(tmp1, 2);
8044   addl(tmp4, 4);
8045   jmp(L_first_loop);
8046 
8047   bind(L_first_loop_exit);
8048 }
8049 
8050 
8051 /**
8052  * Perform the following multiply add operation using BMI2 instructions
8053  * carry:sum = sum + op1*op2 + carry
8054  * op2 should be in rdx
8055  * op2 is preserved, all other registers are modified
8056  */
8057 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
8058   // assert op2 is rdx
8059   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
8060   addq(sum, carry);
8061   adcq(tmp2, 0);
8062   addq(sum, op1);
8063   adcq(tmp2, 0);
8064   movq(carry, tmp2);
8065 }
8066 
8067 /**
8068  * Perform the following multiply add operation:
8069  * carry:sum = sum + op1*op2 + carry
8070  * Preserves op1, op2 and modifies rest of registers
8071  */
8072 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
8073   // rdx:rax = op1 * op2
8074   movq(raxReg, op2);
8075   mulq(op1);
8076 
8077   //  rdx:rax = sum + carry + rdx:rax
8078   addq(sum, carry);
8079   adcq(rdxReg, 0);
8080   addq(sum, raxReg);
8081   adcq(rdxReg, 0);
8082 
8083   // carry:sum = rdx:sum
8084   movq(carry, rdxReg);
8085 }
8086 
8087 /**
8088  * Add 64 bit long carry into z[] with carry propogation.
8089  * Preserves z and carry register values and modifies rest of registers.
8090  *
8091  */
8092 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
8093   Label L_fourth_loop, L_fourth_loop_exit;
8094 
8095   movl(tmp1, 1);
8096   subl(zlen, 2);
8097   addq(Address(z, zlen, Address::times_4, 0), carry);
8098 
8099   bind(L_fourth_loop);
8100   jccb(Assembler::carryClear, L_fourth_loop_exit);
8101   subl(zlen, 2);
8102   jccb(Assembler::negative, L_fourth_loop_exit);
8103   addq(Address(z, zlen, Address::times_4, 0), tmp1);
8104   jmp(L_fourth_loop);
8105   bind(L_fourth_loop_exit);
8106 }
8107 
8108 /**
8109  * Shift z[] left by 1 bit.
8110  * Preserves x, len, z and zlen registers and modifies rest of the registers.
8111  *
8112  */
8113 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
8114 
8115   Label L_fifth_loop, L_fifth_loop_exit;
8116 
8117   // Fifth loop
8118   // Perform primitiveLeftShift(z, zlen, 1)
8119 
8120   const Register prev_carry = tmp1;
8121   const Register new_carry = tmp4;
8122   const Register value = tmp2;
8123   const Register zidx = tmp3;
8124 
8125   // int zidx, carry;
8126   // long value;
8127   // carry = 0;
8128   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
8129   //    (carry:value)  = (z[i] << 1) | carry ;
8130   //    z[i] = value;
8131   // }
8132 
8133   movl(zidx, zlen);
8134   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
8135 
8136   bind(L_fifth_loop);
8137   decl(zidx);  // Use decl to preserve carry flag
8138   decl(zidx);
8139   jccb(Assembler::negative, L_fifth_loop_exit);
8140 
8141   if (UseBMI2Instructions) {
8142      movq(value, Address(z, zidx, Address::times_4, 0));
8143      rclq(value, 1);
8144      rorxq(value, value, 32);
8145      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8146   }
8147   else {
8148     // clear new_carry
8149     xorl(new_carry, new_carry);
8150 
8151     // Shift z[i] by 1, or in previous carry and save new carry
8152     movq(value, Address(z, zidx, Address::times_4, 0));
8153     shlq(value, 1);
8154     adcl(new_carry, 0);
8155 
8156     orq(value, prev_carry);
8157     rorq(value, 0x20);
8158     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8159 
8160     // Set previous carry = new carry
8161     movl(prev_carry, new_carry);
8162   }
8163   jmp(L_fifth_loop);
8164 
8165   bind(L_fifth_loop_exit);
8166 }
8167 
8168 
8169 /**
8170  * Code for BigInteger::squareToLen() intrinsic
8171  *
8172  * rdi: x
8173  * rsi: len
8174  * r8:  z
8175  * rcx: zlen
8176  * r12: tmp1
8177  * r13: tmp2
8178  * r14: tmp3
8179  * r15: tmp4
8180  * rbx: tmp5
8181  *
8182  */
8183 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8184 
8185   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
8186   push(tmp1);
8187   push(tmp2);
8188   push(tmp3);
8189   push(tmp4);
8190   push(tmp5);
8191 
8192   // First loop
8193   // Store the squares, right shifted one bit (i.e., divided by 2).
8194   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
8195 
8196   // Add in off-diagonal sums.
8197   //
8198   // Second, third (nested) and fourth loops.
8199   // zlen +=2;
8200   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
8201   //    carry = 0;
8202   //    long op2 = x[xidx:xidx+1];
8203   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
8204   //       k -= 2;
8205   //       long op1 = x[j:j+1];
8206   //       long sum = z[k:k+1];
8207   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
8208   //       z[k:k+1] = sum;
8209   //    }
8210   //    add_one_64(z, k, carry, tmp_regs);
8211   // }
8212 
8213   const Register carry = tmp5;
8214   const Register sum = tmp3;
8215   const Register op1 = tmp4;
8216   Register op2 = tmp2;
8217 
8218   push(zlen);
8219   push(len);
8220   addl(zlen,2);
8221   bind(L_second_loop);
8222   xorq(carry, carry);
8223   subl(zlen, 4);
8224   subl(len, 2);
8225   push(zlen);
8226   push(len);
8227   cmpl(len, 0);
8228   jccb(Assembler::lessEqual, L_second_loop_exit);
8229 
8230   // Multiply an array by one 64 bit long.
8231   if (UseBMI2Instructions) {
8232     op2 = rdxReg;
8233     movq(op2, Address(x, len, Address::times_4,  0));
8234     rorxq(op2, op2, 32);
8235   }
8236   else {
8237     movq(op2, Address(x, len, Address::times_4,  0));
8238     rorq(op2, 32);
8239   }
8240 
8241   bind(L_third_loop);
8242   decrementl(len);
8243   jccb(Assembler::negative, L_third_loop_exit);
8244   decrementl(len);
8245   jccb(Assembler::negative, L_last_x);
8246 
8247   movq(op1, Address(x, len, Address::times_4,  0));
8248   rorq(op1, 32);
8249 
8250   bind(L_multiply);
8251   subl(zlen, 2);
8252   movq(sum, Address(z, zlen, Address::times_4,  0));
8253 
8254   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8255   if (UseBMI2Instructions) {
8256     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8257   }
8258   else {
8259     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8260   }
8261 
8262   movq(Address(z, zlen, Address::times_4, 0), sum);
8263 
8264   jmp(L_third_loop);
8265   bind(L_third_loop_exit);
8266 
8267   // Fourth loop
8268   // Add 64 bit long carry into z with carry propogation.
8269   // Uses offsetted zlen.
8270   add_one_64(z, zlen, carry, tmp1);
8271 
8272   pop(len);
8273   pop(zlen);
8274   jmp(L_second_loop);
8275 
8276   // Next infrequent code is moved outside loops.
8277   bind(L_last_x);
8278   movl(op1, Address(x, 0));
8279   jmp(L_multiply);
8280 
8281   bind(L_second_loop_exit);
8282   pop(len);
8283   pop(zlen);
8284   pop(len);
8285   pop(zlen);
8286 
8287   // Fifth loop
8288   // Shift z left 1 bit.
8289   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8290 
8291   // z[zlen-1] |= x[len-1] & 1;
8292   movl(tmp3, Address(x, len, Address::times_4, -4));
8293   andl(tmp3, 1);
8294   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8295 
8296   pop(tmp5);
8297   pop(tmp4);
8298   pop(tmp3);
8299   pop(tmp2);
8300   pop(tmp1);
8301 }
8302 
8303 /**
8304  * Helper function for mul_add()
8305  * Multiply the in[] by int k and add to out[] starting at offset offs using
8306  * 128 bit by 32 bit multiply and return the carry in tmp5.
8307  * Only quad int aligned length of in[] is operated on in this function.
8308  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8309  * This function preserves out, in and k registers.
8310  * len and offset point to the appropriate index in "in" & "out" correspondingly
8311  * tmp5 has the carry.
8312  * other registers are temporary and are modified.
8313  *
8314  */
8315 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8316   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8317   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8318 
8319   Label L_first_loop, L_first_loop_exit;
8320 
8321   movl(tmp1, len);
8322   shrl(tmp1, 2);
8323 
8324   bind(L_first_loop);
8325   subl(tmp1, 1);
8326   jccb(Assembler::negative, L_first_loop_exit);
8327 
8328   subl(len, 4);
8329   subl(offset, 4);
8330 
8331   Register op2 = tmp2;
8332   const Register sum = tmp3;
8333   const Register op1 = tmp4;
8334   const Register carry = tmp5;
8335 
8336   if (UseBMI2Instructions) {
8337     op2 = rdxReg;
8338   }
8339 
8340   movq(op1, Address(in, len, Address::times_4,  8));
8341   rorq(op1, 32);
8342   movq(sum, Address(out, offset, Address::times_4,  8));
8343   rorq(sum, 32);
8344   if (UseBMI2Instructions) {
8345     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8346   }
8347   else {
8348     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8349   }
8350   // Store back in big endian from little endian
8351   rorq(sum, 0x20);
8352   movq(Address(out, offset, Address::times_4,  8), sum);
8353 
8354   movq(op1, Address(in, len, Address::times_4,  0));
8355   rorq(op1, 32);
8356   movq(sum, Address(out, offset, Address::times_4,  0));
8357   rorq(sum, 32);
8358   if (UseBMI2Instructions) {
8359     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8360   }
8361   else {
8362     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8363   }
8364   // Store back in big endian from little endian
8365   rorq(sum, 0x20);
8366   movq(Address(out, offset, Address::times_4,  0), sum);
8367 
8368   jmp(L_first_loop);
8369   bind(L_first_loop_exit);
8370 }
8371 
8372 /**
8373  * Code for BigInteger::mulAdd() intrinsic
8374  *
8375  * rdi: out
8376  * rsi: in
8377  * r11: offs (out.length - offset)
8378  * rcx: len
8379  * r8:  k
8380  * r12: tmp1
8381  * r13: tmp2
8382  * r14: tmp3
8383  * r15: tmp4
8384  * rbx: tmp5
8385  * Multiply the in[] by word k and add to out[], return the carry in rax
8386  */
8387 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8388    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8389    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8390 
8391   Label L_carry, L_last_in, L_done;
8392 
8393 // carry = 0;
8394 // for (int j=len-1; j >= 0; j--) {
8395 //    long product = (in[j] & LONG_MASK) * kLong +
8396 //                   (out[offs] & LONG_MASK) + carry;
8397 //    out[offs--] = (int)product;
8398 //    carry = product >>> 32;
8399 // }
8400 //
8401   push(tmp1);
8402   push(tmp2);
8403   push(tmp3);
8404   push(tmp4);
8405   push(tmp5);
8406 
8407   Register op2 = tmp2;
8408   const Register sum = tmp3;
8409   const Register op1 = tmp4;
8410   const Register carry =  tmp5;
8411 
8412   if (UseBMI2Instructions) {
8413     op2 = rdxReg;
8414     movl(op2, k);
8415   }
8416   else {
8417     movl(op2, k);
8418   }
8419 
8420   xorq(carry, carry);
8421 
8422   //First loop
8423 
8424   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8425   //The carry is in tmp5
8426   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8427 
8428   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8429   decrementl(len);
8430   jccb(Assembler::negative, L_carry);
8431   decrementl(len);
8432   jccb(Assembler::negative, L_last_in);
8433 
8434   movq(op1, Address(in, len, Address::times_4,  0));
8435   rorq(op1, 32);
8436 
8437   subl(offs, 2);
8438   movq(sum, Address(out, offs, Address::times_4,  0));
8439   rorq(sum, 32);
8440 
8441   if (UseBMI2Instructions) {
8442     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8443   }
8444   else {
8445     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8446   }
8447 
8448   // Store back in big endian from little endian
8449   rorq(sum, 0x20);
8450   movq(Address(out, offs, Address::times_4,  0), sum);
8451 
8452   testl(len, len);
8453   jccb(Assembler::zero, L_carry);
8454 
8455   //Multiply the last in[] entry, if any
8456   bind(L_last_in);
8457   movl(op1, Address(in, 0));
8458   movl(sum, Address(out, offs, Address::times_4,  -4));
8459 
8460   movl(raxReg, k);
8461   mull(op1); //tmp4 * eax -> edx:eax
8462   addl(sum, carry);
8463   adcl(rdxReg, 0);
8464   addl(sum, raxReg);
8465   adcl(rdxReg, 0);
8466   movl(carry, rdxReg);
8467 
8468   movl(Address(out, offs, Address::times_4,  -4), sum);
8469 
8470   bind(L_carry);
8471   //return tmp5/carry as carry in rax
8472   movl(rax, carry);
8473 
8474   bind(L_done);
8475   pop(tmp5);
8476   pop(tmp4);
8477   pop(tmp3);
8478   pop(tmp2);
8479   pop(tmp1);
8480 }
8481 #endif
8482 
8483 /**
8484  * Emits code to update CRC-32 with a byte value according to constants in table
8485  *
8486  * @param [in,out]crc   Register containing the crc.
8487  * @param [in]val       Register containing the byte to fold into the CRC.
8488  * @param [in]table     Register containing the table of crc constants.
8489  *
8490  * uint32_t crc;
8491  * val = crc_table[(val ^ crc) & 0xFF];
8492  * crc = val ^ (crc >> 8);
8493  *
8494  */
8495 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8496   xorl(val, crc);
8497   andl(val, 0xFF);
8498   shrl(crc, 8); // unsigned shift
8499   xorl(crc, Address(table, val, Address::times_4, 0));
8500 }
8501 
8502 /**
8503  * Fold 128-bit data chunk
8504  */
8505 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8506   if (UseAVX > 0) {
8507     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8508     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8509     vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
8510     pxor(xcrc, xtmp);
8511   } else {
8512     movdqa(xtmp, xcrc);
8513     pclmulhdq(xtmp, xK);   // [123:64]
8514     pclmulldq(xcrc, xK);   // [63:0]
8515     pxor(xcrc, xtmp);
8516     movdqu(xtmp, Address(buf, offset));
8517     pxor(xcrc, xtmp);
8518   }
8519 }
8520 
8521 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8522   if (UseAVX > 0) {
8523     vpclmulhdq(xtmp, xK, xcrc);
8524     vpclmulldq(xcrc, xK, xcrc);
8525     pxor(xcrc, xbuf);
8526     pxor(xcrc, xtmp);
8527   } else {
8528     movdqa(xtmp, xcrc);
8529     pclmulhdq(xtmp, xK);
8530     pclmulldq(xcrc, xK);
8531     pxor(xcrc, xbuf);
8532     pxor(xcrc, xtmp);
8533   }
8534 }
8535 
8536 /**
8537  * 8-bit folds to compute 32-bit CRC
8538  *
8539  * uint64_t xcrc;
8540  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8541  */
8542 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8543   movdl(tmp, xcrc);
8544   andl(tmp, 0xFF);
8545   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8546   psrldq(xcrc, 1); // unsigned shift one byte
8547   pxor(xcrc, xtmp);
8548 }
8549 
8550 /**
8551  * uint32_t crc;
8552  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8553  */
8554 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8555   movl(tmp, crc);
8556   andl(tmp, 0xFF);
8557   shrl(crc, 8);
8558   xorl(crc, Address(table, tmp, Address::times_4, 0));
8559 }
8560 
8561 /**
8562  * @param crc   register containing existing CRC (32-bit)
8563  * @param buf   register pointing to input byte buffer (byte*)
8564  * @param len   register containing number of bytes
8565  * @param table register that will contain address of CRC table
8566  * @param tmp   scratch register
8567  */
8568 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8569   assert_different_registers(crc, buf, len, table, tmp, rax);
8570 
8571   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8572   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8573 
8574   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8575   notl(crc); // ~crc
8576   cmpl(len, 16);
8577   jcc(Assembler::less, L_tail);
8578 
8579   // Align buffer to 16 bytes
8580   movl(tmp, buf);
8581   andl(tmp, 0xF);
8582   jccb(Assembler::zero, L_aligned);
8583   subl(tmp,  16);
8584   addl(len, tmp);
8585 
8586   align(4);
8587   BIND(L_align_loop);
8588   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8589   update_byte_crc32(crc, rax, table);
8590   increment(buf);
8591   incrementl(tmp);
8592   jccb(Assembler::less, L_align_loop);
8593 
8594   BIND(L_aligned);
8595   movl(tmp, len); // save
8596   shrl(len, 4);
8597   jcc(Assembler::zero, L_tail_restore);
8598 
8599   // Fold crc into first bytes of vector
8600   movdqa(xmm1, Address(buf, 0));
8601   movdl(rax, xmm1);
8602   xorl(crc, rax);
8603   pinsrd(xmm1, crc, 0);
8604   addptr(buf, 16);
8605   subl(len, 4); // len > 0
8606   jcc(Assembler::less, L_fold_tail);
8607 
8608   movdqa(xmm2, Address(buf,  0));
8609   movdqa(xmm3, Address(buf, 16));
8610   movdqa(xmm4, Address(buf, 32));
8611   addptr(buf, 48);
8612   subl(len, 3);
8613   jcc(Assembler::lessEqual, L_fold_512b);
8614 
8615   // Fold total 512 bits of polynomial on each iteration,
8616   // 128 bits per each of 4 parallel streams.
8617   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8618 
8619   align(32);
8620   BIND(L_fold_512b_loop);
8621   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8622   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
8623   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
8624   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
8625   addptr(buf, 64);
8626   subl(len, 4);
8627   jcc(Assembler::greater, L_fold_512b_loop);
8628 
8629   // Fold 512 bits to 128 bits.
8630   BIND(L_fold_512b);
8631   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8632   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
8633   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
8634   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
8635 
8636   // Fold the rest of 128 bits data chunks
8637   BIND(L_fold_tail);
8638   addl(len, 3);
8639   jccb(Assembler::lessEqual, L_fold_128b);
8640   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8641 
8642   BIND(L_fold_tail_loop);
8643   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8644   addptr(buf, 16);
8645   decrementl(len);
8646   jccb(Assembler::greater, L_fold_tail_loop);
8647 
8648   // Fold 128 bits in xmm1 down into 32 bits in crc register.
8649   BIND(L_fold_128b);
8650   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
8651   if (UseAVX > 0) {
8652     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
8653     vpand(xmm3, xmm0, xmm2, false /* vector256 */);
8654     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
8655   } else {
8656     movdqa(xmm2, xmm0);
8657     pclmulqdq(xmm2, xmm1, 0x1);
8658     movdqa(xmm3, xmm0);
8659     pand(xmm3, xmm2);
8660     pclmulqdq(xmm0, xmm3, 0x1);
8661   }
8662   psrldq(xmm1, 8);
8663   psrldq(xmm2, 4);
8664   pxor(xmm0, xmm1);
8665   pxor(xmm0, xmm2);
8666 
8667   // 8 8-bit folds to compute 32-bit CRC.
8668   for (int j = 0; j < 4; j++) {
8669     fold_8bit_crc32(xmm0, table, xmm1, rax);
8670   }
8671   movdl(crc, xmm0); // mov 32 bits to general register
8672   for (int j = 0; j < 4; j++) {
8673     fold_8bit_crc32(crc, table, rax);
8674   }
8675 
8676   BIND(L_tail_restore);
8677   movl(len, tmp); // restore
8678   BIND(L_tail);
8679   andl(len, 0xf);
8680   jccb(Assembler::zero, L_exit);
8681 
8682   // Fold the rest of bytes
8683   align(4);
8684   BIND(L_tail_loop);
8685   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8686   update_byte_crc32(crc, rax, table);
8687   increment(buf);
8688   decrementl(len);
8689   jccb(Assembler::greater, L_tail_loop);
8690 
8691   BIND(L_exit);
8692   notl(crc); // ~c
8693 }
8694 
8695 #undef BIND
8696 #undef BLOCK_COMMENT
8697 
8698 
8699 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
8700   switch (cond) {
8701     // Note some conditions are synonyms for others
8702     case Assembler::zero:         return Assembler::notZero;
8703     case Assembler::notZero:      return Assembler::zero;
8704     case Assembler::less:         return Assembler::greaterEqual;
8705     case Assembler::lessEqual:    return Assembler::greater;
8706     case Assembler::greater:      return Assembler::lessEqual;
8707     case Assembler::greaterEqual: return Assembler::less;
8708     case Assembler::below:        return Assembler::aboveEqual;
8709     case Assembler::belowEqual:   return Assembler::above;
8710     case Assembler::above:        return Assembler::belowEqual;
8711     case Assembler::aboveEqual:   return Assembler::below;
8712     case Assembler::overflow:     return Assembler::noOverflow;
8713     case Assembler::noOverflow:   return Assembler::overflow;
8714     case Assembler::negative:     return Assembler::positive;
8715     case Assembler::positive:     return Assembler::negative;
8716     case Assembler::parity:       return Assembler::noParity;
8717     case Assembler::noParity:     return Assembler::parity;
8718   }
8719   ShouldNotReachHere(); return Assembler::overflow;
8720 }
8721 
8722 SkipIfEqual::SkipIfEqual(
8723     MacroAssembler* masm, const bool* flag_addr, bool value) {
8724   _masm = masm;
8725   _masm->cmp8(ExternalAddress((address)flag_addr), value);
8726   _masm->jcc(Assembler::equal, _label);
8727 }
8728 
8729 SkipIfEqual::~SkipIfEqual() {
8730   _masm->bind(_label);
8731 }
8732 
8733 void MacroAssembler::cmpoops(Register src1, Register src2) {
8734   cmpptr(src1, src2);
8735   oopDesc::bs()->asm_acmp_barrier(this, src1, src2);
8736 }
8737 
8738 void MacroAssembler::cmpoops(Register src1, Address src2) {
8739   cmpptr(src1, src2);
8740 #if INCLUDE_ALL_GCS
8741   if (UseShenandoahGC && ShenandoahAcmpBarrier) {
8742     Label done;
8743     jccb(Assembler::equal, done);
8744     movptr(rscratch2, src2);
8745     oopDesc::bs()->interpreter_read_barrier(this, src1);
8746     oopDesc::bs()->interpreter_read_barrier(this, rscratch2);
8747     cmpptr(src1, rscratch2);
8748     bind(done);
8749   }
8750 #endif
8751 }