1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "ci/ciCallSite.hpp"
  28 #include "ci/ciObjArray.hpp"
  29 #include "ci/ciMemberName.hpp"
  30 #include "ci/ciMethodHandle.hpp"
  31 #include "classfile/javaClasses.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/parse.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/runtime.hpp"
  41 #include "opto/shenandoahSupport.hpp"
  42 #include "opto/subnode.hpp"
  43 
  44 
  45 // Utility function.
  46 const TypeFunc* CallGenerator::tf() const {
  47   return TypeFunc::make(method());
  48 }
  49 
  50 //-----------------------------ParseGenerator---------------------------------
  51 // Internal class which handles all direct bytecode traversal.
  52 class ParseGenerator : public InlineCallGenerator {
  53 private:
  54   bool  _is_osr;
  55   float _expected_uses;
  56 
  57 public:
  58   ParseGenerator(ciMethod* method, float expected_uses, bool is_osr = false)
  59     : InlineCallGenerator(method)
  60   {
  61     _is_osr        = is_osr;
  62     _expected_uses = expected_uses;
  63     assert(InlineTree::check_can_parse(method) == NULL, "parse must be possible");
  64   }
  65 
  66   virtual bool      is_parse() const           { return true; }
  67   virtual JVMState* generate(JVMState* jvms);
  68   int is_osr() { return _is_osr; }
  69 
  70 };
  71 
  72 JVMState* ParseGenerator::generate(JVMState* jvms) {
  73   Compile* C = Compile::current();
  74 
  75   if (is_osr()) {
  76     // The JVMS for a OSR has a single argument (see its TypeFunc).
  77     assert(jvms->depth() == 1, "no inline OSR");
  78   }
  79 
  80   if (C->failing()) {
  81     return NULL;  // bailing out of the compile; do not try to parse
  82   }
  83 
  84   Parse parser(jvms, method(), _expected_uses);
  85   // Grab signature for matching/allocation
  86 #ifdef ASSERT
  87   if (parser.tf() != (parser.depth() == 1 ? C->tf() : tf())) {
  88     MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
  89     assert(C->env()->system_dictionary_modification_counter_changed(),
  90            "Must invalidate if TypeFuncs differ");
  91   }
  92 #endif
  93 
  94   GraphKit& exits = parser.exits();
  95 
  96   if (C->failing()) {
  97     while (exits.pop_exception_state() != NULL) ;
  98     return NULL;
  99   }
 100 
 101   assert(exits.jvms()->same_calls_as(jvms), "sanity");
 102 
 103   // Simply return the exit state of the parser,
 104   // augmented by any exceptional states.
 105   return exits.transfer_exceptions_into_jvms();
 106 }
 107 
 108 //---------------------------DirectCallGenerator------------------------------
 109 // Internal class which handles all out-of-line calls w/o receiver type checks.
 110 class DirectCallGenerator : public CallGenerator {
 111  private:
 112   CallStaticJavaNode* _call_node;
 113   // Force separate memory and I/O projections for the exceptional
 114   // paths to facilitate late inlinig.
 115   bool                _separate_io_proj;
 116 
 117  public:
 118   DirectCallGenerator(ciMethod* method, bool separate_io_proj)
 119     : CallGenerator(method),
 120       _separate_io_proj(separate_io_proj)
 121   {
 122   }
 123   virtual JVMState* generate(JVMState* jvms);
 124 
 125   CallStaticJavaNode* call_node() const { return _call_node; }
 126 };
 127 
 128 JVMState* DirectCallGenerator::generate(JVMState* jvms) {
 129   GraphKit kit(jvms);
 130   bool is_static = method()->is_static();
 131   address target = is_static ? SharedRuntime::get_resolve_static_call_stub()
 132                              : SharedRuntime::get_resolve_opt_virtual_call_stub();
 133 
 134   if (kit.C->log() != NULL) {
 135     kit.C->log()->elem("direct_call bci='%d'", jvms->bci());
 136   }
 137 
 138   CallStaticJavaNode *call = new (kit.C) CallStaticJavaNode(kit.C, tf(), target, method(), kit.bci());
 139   _call_node = call;  // Save the call node in case we need it later
 140   if (!is_static) {
 141     // Make an explicit receiver null_check as part of this call.
 142     // Since we share a map with the caller, his JVMS gets adjusted.
 143     kit.null_check_receiver_before_call(method());
 144     if (kit.stopped()) {
 145       // And dump it back to the caller, decorated with any exceptions:
 146       return kit.transfer_exceptions_into_jvms();
 147     }
 148     // Mark the call node as virtual, sort of:
 149     call->set_optimized_virtual(true);
 150     if (method()->is_method_handle_intrinsic() ||
 151         method()->is_compiled_lambda_form()) {
 152       call->set_method_handle_invoke(true);
 153     }
 154   }
 155   kit.set_arguments_for_java_call(call);
 156   kit.set_edges_for_java_call(call, false, _separate_io_proj);
 157   Node* ret = kit.set_results_for_java_call(call, _separate_io_proj);
 158   kit.push_node(method()->return_type()->basic_type(), ret);
 159   return kit.transfer_exceptions_into_jvms();
 160 }
 161 
 162 //--------------------------VirtualCallGenerator------------------------------
 163 // Internal class which handles all out-of-line calls checking receiver type.
 164 class VirtualCallGenerator : public CallGenerator {
 165 private:
 166   int _vtable_index;
 167 public:
 168   VirtualCallGenerator(ciMethod* method, int vtable_index)
 169     : CallGenerator(method), _vtable_index(vtable_index)
 170   {
 171     assert(vtable_index == Method::invalid_vtable_index ||
 172            vtable_index >= 0, "either invalid or usable");
 173   }
 174   virtual bool      is_virtual() const          { return true; }
 175   virtual JVMState* generate(JVMState* jvms);
 176 };
 177 
 178 JVMState* VirtualCallGenerator::generate(JVMState* jvms) {
 179   GraphKit kit(jvms);
 180   Node* receiver = kit.argument(0);
 181 
 182   if (kit.C->log() != NULL) {
 183     kit.C->log()->elem("virtual_call bci='%d'", jvms->bci());
 184   }
 185 
 186   // If the receiver is a constant null, do not torture the system
 187   // by attempting to call through it.  The compile will proceed
 188   // correctly, but may bail out in final_graph_reshaping, because
 189   // the call instruction will have a seemingly deficient out-count.
 190   // (The bailout says something misleading about an "infinite loop".)
 191   if (kit.gvn().type(receiver)->higher_equal(TypePtr::NULL_PTR)) {
 192     assert(Bytecodes::is_invoke(kit.java_bc()), err_msg("%d: %s", kit.java_bc(), Bytecodes::name(kit.java_bc())));
 193     ciMethod* declared_method = kit.method()->get_method_at_bci(kit.bci());
 194     int arg_size = declared_method->signature()->arg_size_for_bc(kit.java_bc());
 195     kit.inc_sp(arg_size);  // restore arguments
 196     kit.uncommon_trap(Deoptimization::Reason_null_check,
 197                       Deoptimization::Action_none,
 198                       NULL, "null receiver");
 199     return kit.transfer_exceptions_into_jvms();
 200   }
 201 
 202   // Ideally we would unconditionally do a null check here and let it
 203   // be converted to an implicit check based on profile information.
 204   // However currently the conversion to implicit null checks in
 205   // Block::implicit_null_check() only looks for loads and stores, not calls.
 206   ciMethod *caller = kit.method();
 207   ciMethodData *caller_md = (caller == NULL) ? NULL : caller->method_data();
 208   if (!UseInlineCaches || !ImplicitNullChecks || !os::zero_page_read_protected() ||
 209        ((ImplicitNullCheckThreshold > 0) && caller_md &&
 210        (caller_md->trap_count(Deoptimization::Reason_null_check)
 211        >= (uint)ImplicitNullCheckThreshold))) {
 212     // Make an explicit receiver null_check as part of this call.
 213     // Since we share a map with the caller, his JVMS gets adjusted.
 214     receiver = kit.null_check_receiver_before_call(method());
 215     if (kit.stopped()) {
 216       // And dump it back to the caller, decorated with any exceptions:
 217       return kit.transfer_exceptions_into_jvms();
 218     }
 219   }
 220 
 221   assert(!method()->is_static(), "virtual call must not be to static");
 222   assert(!method()->is_final(), "virtual call should not be to final");
 223   assert(!method()->is_private(), "virtual call should not be to private");
 224   assert(_vtable_index == Method::invalid_vtable_index || !UseInlineCaches,
 225          "no vtable calls if +UseInlineCaches ");
 226   address target = SharedRuntime::get_resolve_virtual_call_stub();
 227   // Normal inline cache used for call
 228   CallDynamicJavaNode *call = new (kit.C) CallDynamicJavaNode(tf(), target, method(), _vtable_index, kit.bci());
 229   kit.set_arguments_for_java_call(call);
 230   kit.set_edges_for_java_call(call);
 231   Node* ret = kit.set_results_for_java_call(call);
 232   kit.push_node(method()->return_type()->basic_type(), ret);
 233 
 234   // Represent the effect of an implicit receiver null_check
 235   // as part of this call.  Since we share a map with the caller,
 236   // his JVMS gets adjusted.
 237   kit.cast_not_null(receiver);
 238   return kit.transfer_exceptions_into_jvms();
 239 }
 240 
 241 CallGenerator* CallGenerator::for_inline(ciMethod* m, float expected_uses) {
 242   if (InlineTree::check_can_parse(m) != NULL)  return NULL;
 243   return new ParseGenerator(m, expected_uses);
 244 }
 245 
 246 // As a special case, the JVMS passed to this CallGenerator is
 247 // for the method execution already in progress, not just the JVMS
 248 // of the caller.  Thus, this CallGenerator cannot be mixed with others!
 249 CallGenerator* CallGenerator::for_osr(ciMethod* m, int osr_bci) {
 250   if (InlineTree::check_can_parse(m) != NULL)  return NULL;
 251   float past_uses = m->interpreter_invocation_count();
 252   float expected_uses = past_uses;
 253   return new ParseGenerator(m, expected_uses, true);
 254 }
 255 
 256 CallGenerator* CallGenerator::for_direct_call(ciMethod* m, bool separate_io_proj) {
 257   assert(!m->is_abstract(), "for_direct_call mismatch");
 258   return new DirectCallGenerator(m, separate_io_proj);
 259 }
 260 
 261 CallGenerator* CallGenerator::for_virtual_call(ciMethod* m, int vtable_index) {
 262   assert(!m->is_static(), "for_virtual_call mismatch");
 263   assert(!m->is_method_handle_intrinsic(), "should be a direct call");
 264   return new VirtualCallGenerator(m, vtable_index);
 265 }
 266 
 267 // Allow inlining decisions to be delayed
 268 class LateInlineCallGenerator : public DirectCallGenerator {
 269  protected:
 270   CallGenerator* _inline_cg;
 271 
 272   virtual bool do_late_inline_check(JVMState* jvms) { return true; }
 273 
 274  public:
 275   LateInlineCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
 276     DirectCallGenerator(method, true), _inline_cg(inline_cg) {}
 277 
 278   virtual bool      is_late_inline() const { return true; }
 279 
 280   // Convert the CallStaticJava into an inline
 281   virtual void do_late_inline();
 282 
 283   virtual JVMState* generate(JVMState* jvms) {
 284     Compile *C = Compile::current();
 285     C->print_inlining_skip(this);
 286 
 287     // Record that this call site should be revisited once the main
 288     // parse is finished.
 289     if (!is_mh_late_inline()) {
 290       C->add_late_inline(this);
 291     }
 292 
 293     // Emit the CallStaticJava and request separate projections so
 294     // that the late inlining logic can distinguish between fall
 295     // through and exceptional uses of the memory and io projections
 296     // as is done for allocations and macro expansion.
 297     return DirectCallGenerator::generate(jvms);
 298   }
 299 
 300   virtual void print_inlining_late(const char* msg) {
 301     CallNode* call = call_node();
 302     Compile* C = Compile::current();
 303     C->print_inlining_insert(this);
 304     C->print_inlining(method(), call->jvms()->depth()-1, call->jvms()->bci(), msg);
 305   }
 306 
 307 };
 308 
 309 void LateInlineCallGenerator::do_late_inline() {
 310   // Can't inline it
 311   CallStaticJavaNode* call = call_node();
 312   if (call == NULL || call->outcnt() == 0 ||
 313       call->in(0) == NULL || call->in(0)->is_top()) {
 314     return;
 315   }
 316 
 317   const TypeTuple *r = call->tf()->domain();
 318   for (int i1 = 0; i1 < method()->arg_size(); i1++) {
 319     if (call->in(TypeFunc::Parms + i1)->is_top() && r->field_at(TypeFunc::Parms + i1) != Type::HALF) {
 320       assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing");
 321       return;
 322     }
 323   }
 324 
 325   if (call->in(TypeFunc::Memory)->is_top()) {
 326     assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing");
 327     return;
 328   }
 329 
 330   Compile* C = Compile::current();
 331   // Remove inlined methods from Compiler's lists.
 332   if (call->is_macro()) {
 333     C->remove_macro_node(call);
 334   }
 335 
 336   // Make a clone of the JVMState that appropriate to use for driving a parse
 337   JVMState* old_jvms = call->jvms();
 338   JVMState* jvms = old_jvms->clone_shallow(C);
 339   uint size = call->req();
 340   SafePointNode* map = new (C) SafePointNode(size, jvms);
 341   for (uint i1 = 0; i1 < size; i1++) {
 342     map->init_req(i1, call->in(i1));
 343   }
 344 
 345   // Make sure the state is a MergeMem for parsing.
 346   if (!map->in(TypeFunc::Memory)->is_MergeMem()) {
 347     Node* mem = MergeMemNode::make(C, map->in(TypeFunc::Memory));
 348     C->initial_gvn()->set_type_bottom(mem);
 349     map->set_req(TypeFunc::Memory, mem);
 350   }
 351 
 352   uint nargs = method()->arg_size();
 353   // blow away old call arguments
 354   Node* top = C->top();
 355   for (uint i1 = 0; i1 < nargs; i1++) {
 356     map->set_req(TypeFunc::Parms + i1, top);
 357   }
 358   jvms->set_map(map);
 359 
 360   // Make enough space in the expression stack to transfer
 361   // the incoming arguments and return value.
 362   map->ensure_stack(jvms, jvms->method()->max_stack());
 363   for (uint i1 = 0; i1 < nargs; i1++) {
 364     map->set_argument(jvms, i1, call->in(TypeFunc::Parms + i1));
 365   }
 366 
 367   // This check is done here because for_method_handle_inline() method
 368   // needs jvms for inlined state.
 369   if (!do_late_inline_check(jvms)) {
 370     map->disconnect_inputs(NULL, C);
 371     return;
 372   }
 373 
 374   C->print_inlining_insert(this);
 375 
 376   CompileLog* log = C->log();
 377   if (log != NULL) {
 378     log->head("late_inline method='%d'", log->identify(method()));
 379     JVMState* p = jvms;
 380     while (p != NULL) {
 381       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
 382       p = p->caller();
 383     }
 384     log->tail("late_inline");
 385   }
 386 
 387   // Setup default node notes to be picked up by the inlining
 388   Node_Notes* old_nn = C->node_notes_at(call->_idx);
 389   if (old_nn != NULL) {
 390     Node_Notes* entry_nn = old_nn->clone(C);
 391     entry_nn->set_jvms(jvms);
 392     C->set_default_node_notes(entry_nn);
 393   }
 394 
 395   // Now perform the inling using the synthesized JVMState
 396   JVMState* new_jvms = _inline_cg->generate(jvms);
 397   if (new_jvms == NULL)  return;  // no change
 398   if (C->failing())      return;
 399 
 400   // Capture any exceptional control flow
 401   GraphKit kit(new_jvms);
 402 
 403   // Find the result object
 404   Node* result = C->top();
 405   int   result_size = method()->return_type()->size();
 406   if (result_size != 0 && !kit.stopped()) {
 407     result = (result_size == 1) ? kit.pop() : kit.pop_pair();
 408   }
 409 
 410   C->set_has_loops(C->has_loops() || _inline_cg->method()->has_loops());
 411   C->env()->notice_inlined_method(_inline_cg->method());
 412   C->set_inlining_progress(true);
 413 
 414   kit.replace_call(call, result, true);
 415 }
 416 
 417 
 418 CallGenerator* CallGenerator::for_late_inline(ciMethod* method, CallGenerator* inline_cg) {
 419   return new LateInlineCallGenerator(method, inline_cg);
 420 }
 421 
 422 class LateInlineMHCallGenerator : public LateInlineCallGenerator {
 423   ciMethod* _caller;
 424   int _attempt;
 425   bool _input_not_const;
 426 
 427   virtual bool do_late_inline_check(JVMState* jvms);
 428   virtual bool already_attempted() const { return _attempt > 0; }
 429 
 430  public:
 431   LateInlineMHCallGenerator(ciMethod* caller, ciMethod* callee, bool input_not_const) :
 432     LateInlineCallGenerator(callee, NULL), _caller(caller), _attempt(0), _input_not_const(input_not_const) {}
 433 
 434   virtual bool is_mh_late_inline() const { return true; }
 435 
 436   virtual JVMState* generate(JVMState* jvms) {
 437     JVMState* new_jvms = LateInlineCallGenerator::generate(jvms);
 438     if (_input_not_const) {
 439       // inlining won't be possible so no need to enqueue right now.
 440       call_node()->set_generator(this);
 441     } else {
 442       Compile::current()->add_late_inline(this);
 443     }
 444     return new_jvms;
 445   }
 446 
 447   virtual void print_inlining_late(const char* msg) {
 448     if (!_input_not_const) return;
 449     LateInlineCallGenerator::print_inlining_late(msg);
 450   }
 451 };
 452 
 453 bool LateInlineMHCallGenerator::do_late_inline_check(JVMState* jvms) {
 454 
 455   CallGenerator* cg = for_method_handle_inline(jvms, _caller, method(), _input_not_const);
 456 
 457   if (!_input_not_const) {
 458     _attempt++;
 459   }
 460 
 461   if (cg != NULL) {
 462     assert(!cg->is_late_inline() && cg->is_inline(), "we're doing late inlining");
 463     _inline_cg = cg;
 464     Compile::current()->dec_number_of_mh_late_inlines();
 465     return true;
 466   }
 467 
 468   call_node()->set_generator(this);
 469   return false;
 470 }
 471 
 472 CallGenerator* CallGenerator::for_mh_late_inline(ciMethod* caller, ciMethod* callee, bool input_not_const) {
 473   Compile::current()->inc_number_of_mh_late_inlines();
 474   CallGenerator* cg = new LateInlineMHCallGenerator(caller, callee, input_not_const);
 475   return cg;
 476 }
 477 
 478 class LateInlineStringCallGenerator : public LateInlineCallGenerator {
 479 
 480  public:
 481   LateInlineStringCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
 482     LateInlineCallGenerator(method, inline_cg) {}
 483 
 484   virtual JVMState* generate(JVMState* jvms) {
 485     Compile *C = Compile::current();
 486     C->print_inlining_skip(this);
 487 
 488     C->add_string_late_inline(this);
 489 
 490     JVMState* new_jvms =  DirectCallGenerator::generate(jvms);
 491     return new_jvms;
 492   }
 493 
 494   virtual bool is_string_late_inline() const { return true; }
 495 };
 496 
 497 CallGenerator* CallGenerator::for_string_late_inline(ciMethod* method, CallGenerator* inline_cg) {
 498   return new LateInlineStringCallGenerator(method, inline_cg);
 499 }
 500 
 501 class LateInlineBoxingCallGenerator : public LateInlineCallGenerator {
 502 
 503  public:
 504   LateInlineBoxingCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
 505     LateInlineCallGenerator(method, inline_cg) {}
 506 
 507   virtual JVMState* generate(JVMState* jvms) {
 508     Compile *C = Compile::current();
 509     C->print_inlining_skip(this);
 510 
 511     C->add_boxing_late_inline(this);
 512 
 513     JVMState* new_jvms =  DirectCallGenerator::generate(jvms);
 514     return new_jvms;
 515   }
 516 };
 517 
 518 CallGenerator* CallGenerator::for_boxing_late_inline(ciMethod* method, CallGenerator* inline_cg) {
 519   return new LateInlineBoxingCallGenerator(method, inline_cg);
 520 }
 521 
 522 //---------------------------WarmCallGenerator--------------------------------
 523 // Internal class which handles initial deferral of inlining decisions.
 524 class WarmCallGenerator : public CallGenerator {
 525   WarmCallInfo*   _call_info;
 526   CallGenerator*  _if_cold;
 527   CallGenerator*  _if_hot;
 528   bool            _is_virtual;   // caches virtuality of if_cold
 529   bool            _is_inline;    // caches inline-ness of if_hot
 530 
 531 public:
 532   WarmCallGenerator(WarmCallInfo* ci,
 533                     CallGenerator* if_cold,
 534                     CallGenerator* if_hot)
 535     : CallGenerator(if_cold->method())
 536   {
 537     assert(method() == if_hot->method(), "consistent choices");
 538     _call_info  = ci;
 539     _if_cold    = if_cold;
 540     _if_hot     = if_hot;
 541     _is_virtual = if_cold->is_virtual();
 542     _is_inline  = if_hot->is_inline();
 543   }
 544 
 545   virtual bool      is_inline() const           { return _is_inline; }
 546   virtual bool      is_virtual() const          { return _is_virtual; }
 547   virtual bool      is_deferred() const         { return true; }
 548 
 549   virtual JVMState* generate(JVMState* jvms);
 550 };
 551 
 552 
 553 CallGenerator* CallGenerator::for_warm_call(WarmCallInfo* ci,
 554                                             CallGenerator* if_cold,
 555                                             CallGenerator* if_hot) {
 556   return new WarmCallGenerator(ci, if_cold, if_hot);
 557 }
 558 
 559 JVMState* WarmCallGenerator::generate(JVMState* jvms) {
 560   Compile* C = Compile::current();
 561   if (C->log() != NULL) {
 562     C->log()->elem("warm_call bci='%d'", jvms->bci());
 563   }
 564   jvms = _if_cold->generate(jvms);
 565   if (jvms != NULL) {
 566     Node* m = jvms->map()->control();
 567     if (m->is_CatchProj()) m = m->in(0);  else m = C->top();
 568     if (m->is_Catch())     m = m->in(0);  else m = C->top();
 569     if (m->is_Proj())      m = m->in(0);  else m = C->top();
 570     if (m->is_CallJava()) {
 571       _call_info->set_call(m->as_Call());
 572       _call_info->set_hot_cg(_if_hot);
 573 #ifndef PRODUCT
 574       if (PrintOpto || PrintOptoInlining) {
 575         tty->print_cr("Queueing for warm inlining at bci %d:", jvms->bci());
 576         tty->print("WCI: ");
 577         _call_info->print();
 578       }
 579 #endif
 580       _call_info->set_heat(_call_info->compute_heat());
 581       C->set_warm_calls(_call_info->insert_into(C->warm_calls()));
 582     }
 583   }
 584   return jvms;
 585 }
 586 
 587 void WarmCallInfo::make_hot() {
 588   Unimplemented();
 589 }
 590 
 591 void WarmCallInfo::make_cold() {
 592   // No action:  Just dequeue.
 593 }
 594 
 595 
 596 //------------------------PredictedCallGenerator------------------------------
 597 // Internal class which handles all out-of-line calls checking receiver type.
 598 class PredictedCallGenerator : public CallGenerator {
 599   ciKlass*       _predicted_receiver;
 600   CallGenerator* _if_missed;
 601   CallGenerator* _if_hit;
 602   float          _hit_prob;
 603 
 604 public:
 605   PredictedCallGenerator(ciKlass* predicted_receiver,
 606                          CallGenerator* if_missed,
 607                          CallGenerator* if_hit, float hit_prob)
 608     : CallGenerator(if_missed->method())
 609   {
 610     // The call profile data may predict the hit_prob as extreme as 0 or 1.
 611     // Remove the extremes values from the range.
 612     if (hit_prob > PROB_MAX)   hit_prob = PROB_MAX;
 613     if (hit_prob < PROB_MIN)   hit_prob = PROB_MIN;
 614 
 615     _predicted_receiver = predicted_receiver;
 616     _if_missed          = if_missed;
 617     _if_hit             = if_hit;
 618     _hit_prob           = hit_prob;
 619   }
 620 
 621   virtual bool      is_virtual()   const    { return true; }
 622   virtual bool      is_inline()    const    { return _if_hit->is_inline(); }
 623   virtual bool      is_deferred()  const    { return _if_hit->is_deferred(); }
 624 
 625   virtual JVMState* generate(JVMState* jvms);
 626 };
 627 
 628 
 629 CallGenerator* CallGenerator::for_predicted_call(ciKlass* predicted_receiver,
 630                                                  CallGenerator* if_missed,
 631                                                  CallGenerator* if_hit,
 632                                                  float hit_prob) {
 633   return new PredictedCallGenerator(predicted_receiver, if_missed, if_hit, hit_prob);
 634 }
 635 
 636 
 637 JVMState* PredictedCallGenerator::generate(JVMState* jvms) {
 638   GraphKit kit(jvms);
 639   PhaseGVN& gvn = kit.gvn();
 640   // We need an explicit receiver null_check before checking its type.
 641   // We share a map with the caller, so his JVMS gets adjusted.
 642   Node* receiver = kit.argument(0);
 643 
 644   CompileLog* log = kit.C->log();
 645   if (log != NULL) {
 646     log->elem("predicted_call bci='%d' klass='%d'",
 647               jvms->bci(), log->identify(_predicted_receiver));
 648   }
 649 
 650   receiver = kit.null_check_receiver_before_call(method());
 651   if (kit.stopped()) {
 652     return kit.transfer_exceptions_into_jvms();
 653   }
 654 
 655   // Make a copy of the replaced nodes in case we need to restore them
 656   ReplacedNodes replaced_nodes = kit.map()->replaced_nodes();
 657   replaced_nodes.clone();
 658 
 659   Node* exact_receiver = receiver;  // will get updated in place...
 660   Node* slow_ctl = kit.type_check_receiver(receiver,
 661                                            _predicted_receiver, _hit_prob,
 662                                            &exact_receiver);
 663 
 664   SafePointNode* slow_map = NULL;
 665   JVMState* slow_jvms = NULL;
 666   { PreserveJVMState pjvms(&kit);
 667     kit.set_control(slow_ctl);
 668     if (!kit.stopped()) {
 669       slow_jvms = _if_missed->generate(kit.sync_jvms());
 670       if (kit.failing())
 671         return NULL;  // might happen because of NodeCountInliningCutoff
 672       assert(slow_jvms != NULL, "must be");
 673       kit.add_exception_states_from(slow_jvms);
 674       kit.set_map(slow_jvms->map());
 675       if (!kit.stopped())
 676         slow_map = kit.stop();
 677     }
 678   }
 679 
 680   if (kit.stopped()) {
 681     // Instance exactly does not matches the desired type.
 682     kit.set_jvms(slow_jvms);
 683     return kit.transfer_exceptions_into_jvms();
 684   }
 685 
 686   // fall through if the instance exactly matches the desired type
 687   kit.replace_in_map(receiver, exact_receiver);
 688 
 689   // Make the hot call:
 690   JVMState* new_jvms = _if_hit->generate(kit.sync_jvms());
 691   if (new_jvms == NULL) {
 692     // Inline failed, so make a direct call.
 693     assert(_if_hit->is_inline(), "must have been a failed inline");
 694     CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method());
 695     new_jvms = cg->generate(kit.sync_jvms());
 696   }
 697   kit.add_exception_states_from(new_jvms);
 698   kit.set_jvms(new_jvms);
 699 
 700   // Need to merge slow and fast?
 701   if (slow_map == NULL) {
 702     // The fast path is the only path remaining.
 703     return kit.transfer_exceptions_into_jvms();
 704   }
 705 
 706   if (kit.stopped()) {
 707     // Inlined method threw an exception, so it's just the slow path after all.
 708     kit.set_jvms(slow_jvms);
 709     return kit.transfer_exceptions_into_jvms();
 710   }
 711 
 712   // There are 2 branches and the replaced nodes are only valid on
 713   // one: restore the replaced nodes to what they were before the
 714   // branch.
 715   kit.map()->set_replaced_nodes(replaced_nodes);
 716 
 717   // Finish the diamond.
 718   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
 719   RegionNode* region = new (kit.C) RegionNode(3);
 720   region->init_req(1, kit.control());
 721   region->init_req(2, slow_map->control());
 722   kit.set_control(gvn.transform(region));
 723   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
 724   iophi->set_req(2, slow_map->i_o());
 725   kit.set_i_o(gvn.transform(iophi));
 726   // Merge memory
 727   kit.merge_memory(slow_map->merged_memory(), region, 2);
 728   // Transform new memory Phis.
 729   for (MergeMemStream mms(kit.merged_memory()); mms.next_non_empty();) {
 730     Node* phi = mms.memory();
 731     if (phi->is_Phi() && phi->in(0) == region) {
 732       mms.set_memory(gvn.transform(phi));
 733     }
 734   }
 735   uint tos = kit.jvms()->stkoff() + kit.sp();
 736   uint limit = slow_map->req();
 737   for (uint i = TypeFunc::Parms; i < limit; i++) {
 738     // Skip unused stack slots; fast forward to monoff();
 739     if (i == tos) {
 740       i = kit.jvms()->monoff();
 741       if( i >= limit ) break;
 742     }
 743     Node* m = kit.map()->in(i);
 744     Node* n = slow_map->in(i);
 745     if (m != n) {
 746       const Type* t = gvn.type(m)->meet_speculative(gvn.type(n));
 747       Node* phi = PhiNode::make(region, m, t);
 748       phi->set_req(2, n);
 749       kit.map()->set_req(i, gvn.transform(phi));
 750     }
 751   }
 752   return kit.transfer_exceptions_into_jvms();
 753 }
 754 
 755 
 756 CallGenerator* CallGenerator::for_method_handle_call(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool delayed_forbidden) {
 757   assert(callee->is_method_handle_intrinsic() ||
 758          callee->is_compiled_lambda_form(), "for_method_handle_call mismatch");
 759   bool input_not_const;
 760   CallGenerator* cg = CallGenerator::for_method_handle_inline(jvms, caller, callee, input_not_const);
 761   Compile* C = Compile::current();
 762   if (cg != NULL) {
 763     if (!delayed_forbidden && AlwaysIncrementalInline) {
 764       return CallGenerator::for_late_inline(callee, cg);
 765     } else {
 766       return cg;
 767     }
 768   }
 769   int bci = jvms->bci();
 770   ciCallProfile profile = caller->call_profile_at_bci(bci);
 771   int call_site_count = caller->scale_count(profile.count());
 772 
 773   if (IncrementalInline && call_site_count > 0 &&
 774       (input_not_const || !C->inlining_incrementally() || C->over_inlining_cutoff())) {
 775     return CallGenerator::for_mh_late_inline(caller, callee, input_not_const);
 776   } else {
 777     // Out-of-line call.
 778     return CallGenerator::for_direct_call(callee);
 779   }
 780 }
 781 
 782 CallGenerator* CallGenerator::for_method_handle_inline(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool& input_not_const) {
 783   GraphKit kit(jvms);
 784   PhaseGVN& gvn = kit.gvn();
 785   Compile* C = kit.C;
 786   vmIntrinsics::ID iid = callee->intrinsic_id();
 787   input_not_const = true;
 788   switch (iid) {
 789   case vmIntrinsics::_invokeBasic:
 790     {
 791       // Get MethodHandle receiver:
 792       Node* receiver = kit.argument(0);
 793       assert(!(ShenandoahBarrierNode::skip_through_barrier(receiver)->is_Con() && !receiver->is_Con()), "barrier prevents optimization");
 794       if (receiver->Opcode() == Op_ConP) {
 795         input_not_const = false;
 796         const TypeOopPtr* oop_ptr = receiver->bottom_type()->is_oopptr();
 797         ciMethod* target = oop_ptr->const_oop()->as_method_handle()->get_vmtarget();
 798         guarantee(!target->is_method_handle_intrinsic(), "should not happen");  // XXX remove
 799         const int vtable_index = Method::invalid_vtable_index;
 800         CallGenerator* cg = C->call_generator(target, vtable_index, false, jvms, true, PROB_ALWAYS, NULL, true, true);
 801         assert(cg == NULL || !cg->is_late_inline() || cg->is_mh_late_inline(), "no late inline here");
 802         if (cg != NULL && cg->is_inline())
 803           return cg;
 804       }
 805     }
 806     break;
 807 
 808   case vmIntrinsics::_linkToVirtual:
 809   case vmIntrinsics::_linkToStatic:
 810   case vmIntrinsics::_linkToSpecial:
 811   case vmIntrinsics::_linkToInterface:
 812     {
 813       // Get MemberName argument:
 814       Node* member_name = kit.argument(callee->arg_size() - 1);
 815       assert(!(ShenandoahBarrierNode::skip_through_barrier(member_name)->is_Con() && !member_name->is_Con()), "barrier prevents optimization");
 816       if (member_name->Opcode() == Op_ConP) {
 817         input_not_const = false;
 818         const TypeOopPtr* oop_ptr = member_name->bottom_type()->is_oopptr();
 819         ciMethod* target = oop_ptr->const_oop()->as_member_name()->get_vmtarget();
 820 
 821         // In lamda forms we erase signature types to avoid resolving issues
 822         // involving class loaders.  When we optimize a method handle invoke
 823         // to a direct call we must cast the receiver and arguments to its
 824         // actual types.
 825         ciSignature* signature = target->signature();
 826         const int receiver_skip = target->is_static() ? 0 : 1;
 827         // Cast receiver to its type.
 828         if (!target->is_static()) {
 829           Node* arg = kit.argument(0);
 830           const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr();
 831           const Type*       sig_type = TypeOopPtr::make_from_klass(signature->accessing_klass());
 832           if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
 833             Node* cast_obj = gvn.transform(new (C) CheckCastPPNode(kit.control(), arg, sig_type));
 834             kit.set_argument(0, cast_obj);
 835           }
 836         }
 837         // Cast reference arguments to its type.
 838         for (int i = 0, j = 0; i < signature->count(); i++) {
 839           ciType* t = signature->type_at(i);
 840           if (t->is_klass()) {
 841             Node* arg = kit.argument(receiver_skip + j);
 842             const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr();
 843             const Type*       sig_type = TypeOopPtr::make_from_klass(t->as_klass());
 844             if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
 845               Node* cast_obj = gvn.transform(new (C) CheckCastPPNode(kit.control(), arg, sig_type));
 846               kit.set_argument(receiver_skip + j, cast_obj);
 847             }
 848           }
 849           j += t->size();  // long and double take two slots
 850         }
 851 
 852         // Try to get the most accurate receiver type
 853         const bool is_virtual              = (iid == vmIntrinsics::_linkToVirtual);
 854         const bool is_virtual_or_interface = (is_virtual || iid == vmIntrinsics::_linkToInterface);
 855         int  vtable_index       = Method::invalid_vtable_index;
 856         bool call_does_dispatch = false;
 857 
 858         ciKlass* speculative_receiver_type = NULL;
 859         if (is_virtual_or_interface) {
 860           ciInstanceKlass* klass = target->holder();
 861           Node*             receiver_node = kit.argument(0);
 862           const TypeOopPtr* receiver_type = gvn.type(receiver_node)->isa_oopptr();
 863           // call_does_dispatch and vtable_index are out-parameters.  They might be changed.
 864           // optimize_virtual_call() takes 2 different holder
 865           // arguments for a corner case that doesn't apply here (see
 866           // Parse::do_call())
 867           target = C->optimize_virtual_call(caller, jvms->bci(), klass, klass,
 868                                             target, receiver_type, is_virtual,
 869                                             call_does_dispatch, vtable_index, // out-parameters
 870                                             /*check_access=*/false);
 871           // We lack profiling at this call but type speculation may
 872           // provide us with a type
 873           speculative_receiver_type = (receiver_type != NULL) ? receiver_type->speculative_type() : NULL;
 874         }
 875 
 876         CallGenerator* cg = C->call_generator(target, vtable_index, call_does_dispatch, jvms, true, PROB_ALWAYS, speculative_receiver_type, true, true);
 877         assert(cg == NULL || !cg->is_late_inline() || cg->is_mh_late_inline(), "no late inline here");
 878         if (cg != NULL && cg->is_inline())
 879           return cg;
 880       }
 881     }
 882     break;
 883 
 884   default:
 885     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 886     break;
 887   }
 888   return NULL;
 889 }
 890 
 891 
 892 //------------------------PredicatedIntrinsicGenerator------------------------------
 893 // Internal class which handles all predicated Intrinsic calls.
 894 class PredicatedIntrinsicGenerator : public CallGenerator {
 895   CallGenerator* _intrinsic;
 896   CallGenerator* _cg;
 897 
 898 public:
 899   PredicatedIntrinsicGenerator(CallGenerator* intrinsic,
 900                                CallGenerator* cg)
 901     : CallGenerator(cg->method())
 902   {
 903     _intrinsic = intrinsic;
 904     _cg        = cg;
 905   }
 906 
 907   virtual bool      is_virtual()   const    { return true; }
 908   virtual bool      is_inlined()   const    { return true; }
 909   virtual bool      is_intrinsic() const    { return true; }
 910 
 911   virtual JVMState* generate(JVMState* jvms);
 912 };
 913 
 914 
 915 CallGenerator* CallGenerator::for_predicated_intrinsic(CallGenerator* intrinsic,
 916                                                        CallGenerator* cg) {
 917   return new PredicatedIntrinsicGenerator(intrinsic, cg);
 918 }
 919 
 920 
 921 JVMState* PredicatedIntrinsicGenerator::generate(JVMState* jvms) {
 922   // The code we want to generate here is:
 923   //    if (receiver == NULL)
 924   //        uncommon_Trap
 925   //    if (predicate(0))
 926   //        do_intrinsic(0)
 927   //    else
 928   //    if (predicate(1))
 929   //        do_intrinsic(1)
 930   //    ...
 931   //    else
 932   //        do_java_comp
 933 
 934   GraphKit kit(jvms);
 935   PhaseGVN& gvn = kit.gvn();
 936 
 937   CompileLog* log = kit.C->log();
 938   if (log != NULL) {
 939     log->elem("predicated_intrinsic bci='%d' method='%d'",
 940               jvms->bci(), log->identify(method()));
 941   }
 942 
 943   if (!method()->is_static()) {
 944     // We need an explicit receiver null_check before checking its type in predicate.
 945     // We share a map with the caller, so his JVMS gets adjusted.
 946     Node* receiver = kit.null_check_receiver_before_call(method());
 947     if (kit.stopped()) {
 948       return kit.transfer_exceptions_into_jvms();
 949     }
 950   }
 951 
 952   int n_predicates = _intrinsic->predicates_count();
 953   assert(n_predicates > 0, "sanity");
 954 
 955   JVMState** result_jvms = NEW_RESOURCE_ARRAY(JVMState*, (n_predicates+1));
 956 
 957   // Region for normal compilation code if intrinsic failed.
 958   Node* slow_region = new (kit.C) RegionNode(1);
 959 
 960   int results = 0;
 961   for (int predicate = 0; (predicate < n_predicates) && !kit.stopped(); predicate++) {
 962 #ifdef ASSERT
 963     JVMState* old_jvms = kit.jvms();
 964     SafePointNode* old_map = kit.map();
 965     Node* old_io  = old_map->i_o();
 966     Node* old_mem = old_map->memory();
 967     Node* old_exc = old_map->next_exception();
 968 #endif
 969     Node* else_ctrl = _intrinsic->generate_predicate(kit.sync_jvms(), predicate);
 970 #ifdef ASSERT
 971     // Assert(no_new_memory && no_new_io && no_new_exceptions) after generate_predicate.
 972     assert(old_jvms == kit.jvms(), "generate_predicate should not change jvm state");
 973     SafePointNode* new_map = kit.map();
 974     assert(old_io  == new_map->i_o(), "generate_predicate should not change i_o");
 975     assert(old_mem == new_map->memory(), "generate_predicate should not change memory");
 976     assert(old_exc == new_map->next_exception(), "generate_predicate should not add exceptions");
 977 #endif
 978     if (!kit.stopped()) {
 979       PreserveJVMState pjvms(&kit);
 980       // Generate intrinsic code:
 981       JVMState* new_jvms = _intrinsic->generate(kit.sync_jvms());
 982       if (new_jvms == NULL) {
 983         // Intrinsic failed, use normal compilation path for this predicate.
 984         slow_region->add_req(kit.control());
 985       } else {
 986         kit.add_exception_states_from(new_jvms);
 987         kit.set_jvms(new_jvms);
 988         if (!kit.stopped()) {
 989           result_jvms[results++] = kit.jvms();
 990         }
 991       }
 992     }
 993     if (else_ctrl == NULL) {
 994       else_ctrl = kit.C->top();
 995     }
 996     kit.set_control(else_ctrl);
 997   }
 998   if (!kit.stopped()) {
 999     // Final 'else' after predicates.
1000     slow_region->add_req(kit.control());
1001   }
1002   if (slow_region->req() > 1) {
1003     PreserveJVMState pjvms(&kit);
1004     // Generate normal compilation code:
1005     kit.set_control(gvn.transform(slow_region));
1006     JVMState* new_jvms = _cg->generate(kit.sync_jvms());
1007     if (kit.failing())
1008       return NULL;  // might happen because of NodeCountInliningCutoff
1009     assert(new_jvms != NULL, "must be");
1010     kit.add_exception_states_from(new_jvms);
1011     kit.set_jvms(new_jvms);
1012     if (!kit.stopped()) {
1013       result_jvms[results++] = kit.jvms();
1014     }
1015   }
1016 
1017   if (results == 0) {
1018     // All paths ended in uncommon traps.
1019     (void) kit.stop();
1020     return kit.transfer_exceptions_into_jvms();
1021   }
1022 
1023   if (results == 1) { // Only one path
1024     kit.set_jvms(result_jvms[0]);
1025     return kit.transfer_exceptions_into_jvms();
1026   }
1027 
1028   // Merge all paths.
1029   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
1030   RegionNode* region = new (kit.C) RegionNode(results + 1);
1031   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
1032   for (int i = 0; i < results; i++) {
1033     JVMState* jvms = result_jvms[i];
1034     int path = i + 1;
1035     SafePointNode* map = jvms->map();
1036     region->init_req(path, map->control());
1037     iophi->set_req(path, map->i_o());
1038     if (i == 0) {
1039       kit.set_jvms(jvms);
1040     } else {
1041       kit.merge_memory(map->merged_memory(), region, path);
1042     }
1043   }
1044   kit.set_control(gvn.transform(region));
1045   kit.set_i_o(gvn.transform(iophi));
1046   // Transform new memory Phis.
1047   for (MergeMemStream mms(kit.merged_memory()); mms.next_non_empty();) {
1048     Node* phi = mms.memory();
1049     if (phi->is_Phi() && phi->in(0) == region) {
1050       mms.set_memory(gvn.transform(phi));
1051     }
1052   }
1053 
1054   // Merge debug info.
1055   Node** ins = NEW_RESOURCE_ARRAY(Node*, results);
1056   uint tos = kit.jvms()->stkoff() + kit.sp();
1057   Node* map = kit.map();
1058   uint limit = map->req();
1059   for (uint i = TypeFunc::Parms; i < limit; i++) {
1060     // Skip unused stack slots; fast forward to monoff();
1061     if (i == tos) {
1062       i = kit.jvms()->monoff();
1063       if( i >= limit ) break;
1064     }
1065     Node* n = map->in(i);
1066     ins[0] = n;
1067     const Type* t = gvn.type(n);
1068     bool needs_phi = false;
1069     for (int j = 1; j < results; j++) {
1070       JVMState* jvms = result_jvms[j];
1071       Node* jmap = jvms->map();
1072       Node* m = NULL;
1073       if (jmap->req() > i) {
1074         m = jmap->in(i);
1075         if (m != n) {
1076           needs_phi = true;
1077           t = t->meet_speculative(gvn.type(m));
1078         }
1079       }
1080       ins[j] = m;
1081     }
1082     if (needs_phi) {
1083       Node* phi = PhiNode::make(region, n, t);
1084       for (int j = 1; j < results; j++) {
1085         phi->set_req(j + 1, ins[j]);
1086       }
1087       map->set_req(i, gvn.transform(phi));
1088     }
1089   }
1090 
1091   return kit.transfer_exceptions_into_jvms();
1092 }
1093 
1094 //-------------------------UncommonTrapCallGenerator-----------------------------
1095 // Internal class which handles all out-of-line calls checking receiver type.
1096 class UncommonTrapCallGenerator : public CallGenerator {
1097   Deoptimization::DeoptReason _reason;
1098   Deoptimization::DeoptAction _action;
1099 
1100 public:
1101   UncommonTrapCallGenerator(ciMethod* m,
1102                             Deoptimization::DeoptReason reason,
1103                             Deoptimization::DeoptAction action)
1104     : CallGenerator(m)
1105   {
1106     _reason = reason;
1107     _action = action;
1108   }
1109 
1110   virtual bool      is_virtual() const          { ShouldNotReachHere(); return false; }
1111   virtual bool      is_trap() const             { return true; }
1112 
1113   virtual JVMState* generate(JVMState* jvms);
1114 };
1115 
1116 
1117 CallGenerator*
1118 CallGenerator::for_uncommon_trap(ciMethod* m,
1119                                  Deoptimization::DeoptReason reason,
1120                                  Deoptimization::DeoptAction action) {
1121   return new UncommonTrapCallGenerator(m, reason, action);
1122 }
1123 
1124 
1125 JVMState* UncommonTrapCallGenerator::generate(JVMState* jvms) {
1126   GraphKit kit(jvms);
1127   // Take the trap with arguments pushed on the stack.  (Cf. null_check_receiver).
1128   // Callsite signature can be different from actual method being called (i.e _linkTo* sites).
1129   // Use callsite signature always.
1130   ciMethod* declared_method = kit.method()->get_method_at_bci(kit.bci());
1131   int nargs = declared_method->arg_size();
1132   kit.inc_sp(nargs);
1133   assert(nargs <= kit.sp() && kit.sp() <= jvms->stk_size(), "sane sp w/ args pushed");
1134   if (_reason == Deoptimization::Reason_class_check &&
1135       _action == Deoptimization::Action_maybe_recompile) {
1136     // Temp fix for 6529811
1137     // Don't allow uncommon_trap to override our decision to recompile in the event
1138     // of a class cast failure for a monomorphic call as it will never let us convert
1139     // the call to either bi-morphic or megamorphic and can lead to unc-trap loops
1140     bool keep_exact_action = true;
1141     kit.uncommon_trap(_reason, _action, NULL, "monomorphic vcall checkcast", false, keep_exact_action);
1142   } else {
1143     kit.uncommon_trap(_reason, _action);
1144   }
1145   return kit.transfer_exceptions_into_jvms();
1146 }
1147 
1148 // (Note:  Moved hook_up_call to GraphKit::set_edges_for_java_call.)
1149 
1150 // (Node:  Merged hook_up_exits into ParseGenerator::generate.)
1151 
1152 #define NODES_OVERHEAD_PER_METHOD (30.0)
1153 #define NODES_PER_BYTECODE (9.5)
1154 
1155 void WarmCallInfo::init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor) {
1156   int call_count = profile.count();
1157   int code_size = call_method->code_size();
1158 
1159   // Expected execution count is based on the historical count:
1160   _count = call_count < 0 ? 1 : call_site->method()->scale_count(call_count, prof_factor);
1161 
1162   // Expected profit from inlining, in units of simple call-overheads.
1163   _profit = 1.0;
1164 
1165   // Expected work performed by the call in units of call-overheads.
1166   // %%% need an empirical curve fit for "work" (time in call)
1167   float bytecodes_per_call = 3;
1168   _work = 1.0 + code_size / bytecodes_per_call;
1169 
1170   // Expected size of compilation graph:
1171   // -XX:+PrintParseStatistics once reported:
1172   //  Methods seen: 9184  Methods parsed: 9184  Nodes created: 1582391
1173   //  Histogram of 144298 parsed bytecodes:
1174   // %%% Need an better predictor for graph size.
1175   _size = NODES_OVERHEAD_PER_METHOD + (NODES_PER_BYTECODE * code_size);
1176 }
1177 
1178 // is_cold:  Return true if the node should never be inlined.
1179 // This is true if any of the key metrics are extreme.
1180 bool WarmCallInfo::is_cold() const {
1181   if (count()  <  WarmCallMinCount)        return true;
1182   if (profit() <  WarmCallMinProfit)       return true;
1183   if (work()   >  WarmCallMaxWork)         return true;
1184   if (size()   >  WarmCallMaxSize)         return true;
1185   return false;
1186 }
1187 
1188 // is_hot:  Return true if the node should be inlined immediately.
1189 // This is true if any of the key metrics are extreme.
1190 bool WarmCallInfo::is_hot() const {
1191   assert(!is_cold(), "eliminate is_cold cases before testing is_hot");
1192   if (count()  >= HotCallCountThreshold)   return true;
1193   if (profit() >= HotCallProfitThreshold)  return true;
1194   if (work()   <= HotCallTrivialWork)      return true;
1195   if (size()   <= HotCallTrivialSize)      return true;
1196   return false;
1197 }
1198 
1199 // compute_heat:
1200 float WarmCallInfo::compute_heat() const {
1201   assert(!is_cold(), "compute heat only on warm nodes");
1202   assert(!is_hot(),  "compute heat only on warm nodes");
1203   int min_size = MAX2(0,   (int)HotCallTrivialSize);
1204   int max_size = MIN2(500, (int)WarmCallMaxSize);
1205   float method_size = (size() - min_size) / MAX2(1, max_size - min_size);
1206   float size_factor;
1207   if      (method_size < 0.05)  size_factor = 4;   // 2 sigmas better than avg.
1208   else if (method_size < 0.15)  size_factor = 2;   // 1 sigma better than avg.
1209   else if (method_size < 0.5)   size_factor = 1;   // better than avg.
1210   else                          size_factor = 0.5; // worse than avg.
1211   return (count() * profit() * size_factor);
1212 }
1213 
1214 bool WarmCallInfo::warmer_than(WarmCallInfo* that) {
1215   assert(this != that, "compare only different WCIs");
1216   assert(this->heat() != 0 && that->heat() != 0, "call compute_heat 1st");
1217   if (this->heat() > that->heat())   return true;
1218   if (this->heat() < that->heat())   return false;
1219   assert(this->heat() == that->heat(), "no NaN heat allowed");
1220   // Equal heat.  Break the tie some other way.
1221   if (!this->call() || !that->call())  return (address)this > (address)that;
1222   return this->call()->_idx > that->call()->_idx;
1223 }
1224 
1225 //#define UNINIT_NEXT ((WarmCallInfo*)badAddress)
1226 #define UNINIT_NEXT ((WarmCallInfo*)NULL)
1227 
1228 WarmCallInfo* WarmCallInfo::insert_into(WarmCallInfo* head) {
1229   assert(next() == UNINIT_NEXT, "not yet on any list");
1230   WarmCallInfo* prev_p = NULL;
1231   WarmCallInfo* next_p = head;
1232   while (next_p != NULL && next_p->warmer_than(this)) {
1233     prev_p = next_p;
1234     next_p = prev_p->next();
1235   }
1236   // Install this between prev_p and next_p.
1237   this->set_next(next_p);
1238   if (prev_p == NULL)
1239     head = this;
1240   else
1241     prev_p->set_next(this);
1242   return head;
1243 }
1244 
1245 WarmCallInfo* WarmCallInfo::remove_from(WarmCallInfo* head) {
1246   WarmCallInfo* prev_p = NULL;
1247   WarmCallInfo* next_p = head;
1248   while (next_p != this) {
1249     assert(next_p != NULL, "this must be in the list somewhere");
1250     prev_p = next_p;
1251     next_p = prev_p->next();
1252   }
1253   next_p = this->next();
1254   debug_only(this->set_next(UNINIT_NEXT));
1255   // Remove this from between prev_p and next_p.
1256   if (prev_p == NULL)
1257     head = next_p;
1258   else
1259     prev_p->set_next(next_p);
1260   return head;
1261 }
1262 
1263 WarmCallInfo WarmCallInfo::_always_hot(WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE(),
1264                                        WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE());
1265 WarmCallInfo WarmCallInfo::_always_cold(WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE(),
1266                                         WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE());
1267 
1268 WarmCallInfo* WarmCallInfo::always_hot() {
1269   assert(_always_hot.is_hot(), "must always be hot");
1270   return &_always_hot;
1271 }
1272 
1273 WarmCallInfo* WarmCallInfo::always_cold() {
1274   assert(_always_cold.is_cold(), "must always be cold");
1275   return &_always_cold;
1276 }
1277 
1278 
1279 #ifndef PRODUCT
1280 
1281 void WarmCallInfo::print() const {
1282   tty->print("%s : C=%6.1f P=%6.1f W=%6.1f S=%6.1f H=%6.1f -> %p",
1283              is_cold() ? "cold" : is_hot() ? "hot " : "warm",
1284              count(), profit(), work(), size(), compute_heat(), next());
1285   tty->cr();
1286   if (call() != NULL)  call()->dump();
1287 }
1288 
1289 void print_wci(WarmCallInfo* ci) {
1290   ci->print();
1291 }
1292 
1293 void WarmCallInfo::print_all() const {
1294   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
1295     p->print();
1296 }
1297 
1298 int WarmCallInfo::count_all() const {
1299   int cnt = 0;
1300   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
1301     cnt++;
1302   return cnt;
1303 }
1304 
1305 #endif //PRODUCT