1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "ci/ciCallSite.hpp"
  28 #include "ci/ciObjArray.hpp"
  29 #include "ci/ciMemberName.hpp"
  30 #include "ci/ciMethodHandle.hpp"
  31 #include "classfile/javaClasses.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/parse.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/runtime.hpp"
  41 #include "opto/subnode.hpp"
  42 
  43 
  44 // Utility function.
  45 const TypeFunc* CallGenerator::tf() const {
  46   return TypeFunc::make(method());
  47 }
  48 
  49 //-----------------------------ParseGenerator---------------------------------
  50 // Internal class which handles all direct bytecode traversal.
  51 class ParseGenerator : public InlineCallGenerator {
  52 private:
  53   bool  _is_osr;
  54   float _expected_uses;
  55 
  56 public:
  57   ParseGenerator(ciMethod* method, float expected_uses, bool is_osr = false)
  58     : InlineCallGenerator(method)
  59   {
  60     _is_osr        = is_osr;
  61     _expected_uses = expected_uses;
  62     assert(InlineTree::check_can_parse(method) == NULL, "parse must be possible");
  63   }
  64 
  65   virtual bool      is_parse() const           { return true; }
  66   virtual JVMState* generate(JVMState* jvms);
  67   int is_osr() { return _is_osr; }
  68 
  69 };
  70 
  71 JVMState* ParseGenerator::generate(JVMState* jvms) {
  72   Compile* C = Compile::current();
  73 
  74   if (is_osr()) {
  75     // The JVMS for a OSR has a single argument (see its TypeFunc).
  76     assert(jvms->depth() == 1, "no inline OSR");
  77   }
  78 
  79   if (C->failing()) {
  80     return NULL;  // bailing out of the compile; do not try to parse
  81   }
  82 
  83   Parse parser(jvms, method(), _expected_uses);
  84   // Grab signature for matching/allocation
  85 #ifdef ASSERT
  86   if (parser.tf() != (parser.depth() == 1 ? C->tf() : tf())) {
  87     MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
  88     assert(C->env()->system_dictionary_modification_counter_changed(),
  89            "Must invalidate if TypeFuncs differ");
  90   }
  91 #endif
  92 
  93   GraphKit& exits = parser.exits();
  94 
  95   if (C->failing()) {
  96     while (exits.pop_exception_state() != NULL) ;
  97     return NULL;
  98   }
  99 
 100   assert(exits.jvms()->same_calls_as(jvms), "sanity");
 101 
 102   // Simply return the exit state of the parser,
 103   // augmented by any exceptional states.
 104   return exits.transfer_exceptions_into_jvms();
 105 }
 106 
 107 //---------------------------DirectCallGenerator------------------------------
 108 // Internal class which handles all out-of-line calls w/o receiver type checks.
 109 class DirectCallGenerator : public CallGenerator {
 110  private:
 111   CallStaticJavaNode* _call_node;
 112   // Force separate memory and I/O projections for the exceptional
 113   // paths to facilitate late inlinig.
 114   bool                _separate_io_proj;
 115 
 116  public:
 117   DirectCallGenerator(ciMethod* method, bool separate_io_proj)
 118     : CallGenerator(method),
 119       _separate_io_proj(separate_io_proj)
 120   {
 121   }
 122   virtual JVMState* generate(JVMState* jvms);
 123 
 124   CallStaticJavaNode* call_node() const { return _call_node; }
 125 };
 126 
 127 JVMState* DirectCallGenerator::generate(JVMState* jvms) {
 128   GraphKit kit(jvms);
 129   bool is_static = method()->is_static();
 130   address target = is_static ? SharedRuntime::get_resolve_static_call_stub()
 131                              : SharedRuntime::get_resolve_opt_virtual_call_stub();
 132 
 133   if (kit.C->log() != NULL) {
 134     kit.C->log()->elem("direct_call bci='%d'", jvms->bci());
 135   }
 136 
 137   CallStaticJavaNode *call = new (kit.C) CallStaticJavaNode(kit.C, tf(), target, method(), kit.bci());
 138   _call_node = call;  // Save the call node in case we need it later
 139   if (!is_static) {
 140     // Make an explicit receiver null_check as part of this call.
 141     // Since we share a map with the caller, his JVMS gets adjusted.
 142     kit.null_check_receiver_before_call(method());
 143     if (kit.stopped()) {
 144       // And dump it back to the caller, decorated with any exceptions:
 145       return kit.transfer_exceptions_into_jvms();
 146     }
 147     // Mark the call node as virtual, sort of:
 148     call->set_optimized_virtual(true);
 149     if (method()->is_method_handle_intrinsic() ||
 150         method()->is_compiled_lambda_form()) {
 151       call->set_method_handle_invoke(true);
 152     }
 153   }
 154   kit.set_arguments_for_java_call(call);
 155   kit.set_edges_for_java_call(call, false, _separate_io_proj);
 156   Node* ret = kit.set_results_for_java_call(call, _separate_io_proj);
 157   kit.push_node(method()->return_type()->basic_type(), ret);
 158   return kit.transfer_exceptions_into_jvms();
 159 }
 160 
 161 //--------------------------VirtualCallGenerator------------------------------
 162 // Internal class which handles all out-of-line calls checking receiver type.
 163 class VirtualCallGenerator : public CallGenerator {
 164 private:
 165   int _vtable_index;
 166 public:
 167   VirtualCallGenerator(ciMethod* method, int vtable_index)
 168     : CallGenerator(method), _vtable_index(vtable_index)
 169   {
 170     assert(vtable_index == Method::invalid_vtable_index ||
 171            vtable_index >= 0, "either invalid or usable");
 172   }
 173   virtual bool      is_virtual() const          { return true; }
 174   virtual JVMState* generate(JVMState* jvms);
 175 };
 176 
 177 JVMState* VirtualCallGenerator::generate(JVMState* jvms) {
 178   GraphKit kit(jvms);
 179   Node* receiver = kit.argument(0);
 180 
 181   if (kit.C->log() != NULL) {
 182     kit.C->log()->elem("virtual_call bci='%d'", jvms->bci());
 183   }
 184 
 185   // If the receiver is a constant null, do not torture the system
 186   // by attempting to call through it.  The compile will proceed
 187   // correctly, but may bail out in final_graph_reshaping, because
 188   // the call instruction will have a seemingly deficient out-count.
 189   // (The bailout says something misleading about an "infinite loop".)
 190   if (kit.gvn().type(receiver)->higher_equal(TypePtr::NULL_PTR)) {
 191     assert(Bytecodes::is_invoke(kit.java_bc()), err_msg("%d: %s", kit.java_bc(), Bytecodes::name(kit.java_bc())));
 192     ciMethod* declared_method = kit.method()->get_method_at_bci(kit.bci());
 193     int arg_size = declared_method->signature()->arg_size_for_bc(kit.java_bc());
 194     kit.inc_sp(arg_size);  // restore arguments
 195     kit.uncommon_trap(Deoptimization::Reason_null_check,
 196                       Deoptimization::Action_none,
 197                       NULL, "null receiver");
 198     return kit.transfer_exceptions_into_jvms();
 199   }
 200 
 201   // Ideally we would unconditionally do a null check here and let it
 202   // be converted to an implicit check based on profile information.
 203   // However currently the conversion to implicit null checks in
 204   // Block::implicit_null_check() only looks for loads and stores, not calls.
 205   ciMethod *caller = kit.method();
 206   ciMethodData *caller_md = (caller == NULL) ? NULL : caller->method_data();
 207   if (!UseInlineCaches || !ImplicitNullChecks || !os::zero_page_read_protected() ||
 208        ((ImplicitNullCheckThreshold > 0) && caller_md &&
 209        (caller_md->trap_count(Deoptimization::Reason_null_check)
 210        >= (uint)ImplicitNullCheckThreshold))) {
 211     // Make an explicit receiver null_check as part of this call.
 212     // Since we share a map with the caller, his JVMS gets adjusted.
 213     receiver = kit.null_check_receiver_before_call(method());
 214     if (kit.stopped()) {
 215       // And dump it back to the caller, decorated with any exceptions:
 216       return kit.transfer_exceptions_into_jvms();
 217     }
 218   }
 219 
 220   assert(!method()->is_static(), "virtual call must not be to static");
 221   assert(!method()->is_final(), "virtual call should not be to final");
 222   assert(!method()->is_private(), "virtual call should not be to private");
 223   assert(_vtable_index == Method::invalid_vtable_index || !UseInlineCaches,
 224          "no vtable calls if +UseInlineCaches ");
 225   address target = SharedRuntime::get_resolve_virtual_call_stub();
 226   // Normal inline cache used for call
 227   CallDynamicJavaNode *call = new (kit.C) CallDynamicJavaNode(tf(), target, method(), _vtable_index, kit.bci());
 228   kit.set_arguments_for_java_call(call);
 229   kit.set_edges_for_java_call(call);
 230   Node* ret = kit.set_results_for_java_call(call);
 231   kit.push_node(method()->return_type()->basic_type(), ret);
 232 
 233   // Represent the effect of an implicit receiver null_check
 234   // as part of this call.  Since we share a map with the caller,
 235   // his JVMS gets adjusted.
 236   kit.cast_not_null(receiver);
 237   return kit.transfer_exceptions_into_jvms();
 238 }
 239 
 240 CallGenerator* CallGenerator::for_inline(ciMethod* m, float expected_uses) {
 241   if (InlineTree::check_can_parse(m) != NULL)  return NULL;
 242   return new ParseGenerator(m, expected_uses);
 243 }
 244 
 245 // As a special case, the JVMS passed to this CallGenerator is
 246 // for the method execution already in progress, not just the JVMS
 247 // of the caller.  Thus, this CallGenerator cannot be mixed with others!
 248 CallGenerator* CallGenerator::for_osr(ciMethod* m, int osr_bci) {
 249   if (InlineTree::check_can_parse(m) != NULL)  return NULL;
 250   float past_uses = m->interpreter_invocation_count();
 251   float expected_uses = past_uses;
 252   return new ParseGenerator(m, expected_uses, true);
 253 }
 254 
 255 CallGenerator* CallGenerator::for_direct_call(ciMethod* m, bool separate_io_proj) {
 256   assert(!m->is_abstract(), "for_direct_call mismatch");
 257   return new DirectCallGenerator(m, separate_io_proj);
 258 }
 259 
 260 CallGenerator* CallGenerator::for_virtual_call(ciMethod* m, int vtable_index) {
 261   assert(!m->is_static(), "for_virtual_call mismatch");
 262   assert(!m->is_method_handle_intrinsic(), "should be a direct call");
 263   return new VirtualCallGenerator(m, vtable_index);
 264 }
 265 
 266 // Allow inlining decisions to be delayed
 267 class LateInlineCallGenerator : public DirectCallGenerator {
 268  protected:
 269   CallGenerator* _inline_cg;
 270 
 271   virtual bool do_late_inline_check(JVMState* jvms) { return true; }
 272 
 273  public:
 274   LateInlineCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
 275     DirectCallGenerator(method, true), _inline_cg(inline_cg) {}
 276 
 277   virtual bool      is_late_inline() const { return true; }
 278 
 279   // Convert the CallStaticJava into an inline
 280   virtual void do_late_inline();
 281 
 282   virtual JVMState* generate(JVMState* jvms) {
 283     Compile *C = Compile::current();
 284     C->print_inlining_skip(this);
 285 
 286     // Record that this call site should be revisited once the main
 287     // parse is finished.
 288     if (!is_mh_late_inline()) {
 289       C->add_late_inline(this);
 290     }
 291 
 292     // Emit the CallStaticJava and request separate projections so
 293     // that the late inlining logic can distinguish between fall
 294     // through and exceptional uses of the memory and io projections
 295     // as is done for allocations and macro expansion.
 296     return DirectCallGenerator::generate(jvms);
 297   }
 298 
 299   virtual void print_inlining_late(const char* msg) {
 300     CallNode* call = call_node();
 301     Compile* C = Compile::current();
 302     C->print_inlining_insert(this);
 303     C->print_inlining(method(), call->jvms()->depth()-1, call->jvms()->bci(), msg);
 304   }
 305 
 306 };
 307 
 308 void LateInlineCallGenerator::do_late_inline() {
 309   // Can't inline it
 310   CallStaticJavaNode* call = call_node();
 311   if (call == NULL || call->outcnt() == 0 ||
 312       call->in(0) == NULL || call->in(0)->is_top()) {
 313     return;
 314   }
 315 
 316   const TypeTuple *r = call->tf()->domain();
 317   for (int i1 = 0; i1 < method()->arg_size(); i1++) {
 318     if (call->in(TypeFunc::Parms + i1)->is_top() && r->field_at(TypeFunc::Parms + i1) != Type::HALF) {
 319       assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing");
 320       return;
 321     }
 322   }
 323 
 324   if (call->in(TypeFunc::Memory)->is_top()) {
 325     assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing");
 326     return;
 327   }
 328 
 329   Compile* C = Compile::current();
 330   // Remove inlined methods from Compiler's lists.
 331   if (call->is_macro()) {
 332     C->remove_macro_node(call);
 333   }
 334 
 335   // Make a clone of the JVMState that appropriate to use for driving a parse
 336   JVMState* old_jvms = call->jvms();
 337   JVMState* jvms = old_jvms->clone_shallow(C);
 338   uint size = call->req();
 339   SafePointNode* map = new (C) SafePointNode(size, jvms);
 340   for (uint i1 = 0; i1 < size; i1++) {
 341     map->init_req(i1, call->in(i1));
 342   }
 343 
 344   // Make sure the state is a MergeMem for parsing.
 345   if (!map->in(TypeFunc::Memory)->is_MergeMem()) {
 346     Node* mem = MergeMemNode::make(C, map->in(TypeFunc::Memory));
 347     C->initial_gvn()->set_type_bottom(mem);
 348     map->set_req(TypeFunc::Memory, mem);
 349   }
 350 
 351   uint nargs = method()->arg_size();
 352   // blow away old call arguments
 353   Node* top = C->top();
 354   for (uint i1 = 0; i1 < nargs; i1++) {
 355     map->set_req(TypeFunc::Parms + i1, top);
 356   }
 357   jvms->set_map(map);
 358 
 359   // Make enough space in the expression stack to transfer
 360   // the incoming arguments and return value.
 361   map->ensure_stack(jvms, jvms->method()->max_stack());
 362   for (uint i1 = 0; i1 < nargs; i1++) {
 363     map->set_argument(jvms, i1, call->in(TypeFunc::Parms + i1));
 364   }
 365 
 366   // This check is done here because for_method_handle_inline() method
 367   // needs jvms for inlined state.
 368   if (!do_late_inline_check(jvms)) {
 369     map->disconnect_inputs(NULL, C);
 370     return;
 371   }
 372 
 373   C->print_inlining_insert(this);
 374 
 375   CompileLog* log = C->log();
 376   if (log != NULL) {
 377     log->head("late_inline method='%d'", log->identify(method()));
 378     JVMState* p = jvms;
 379     while (p != NULL) {
 380       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
 381       p = p->caller();
 382     }
 383     log->tail("late_inline");
 384   }
 385 
 386   // Setup default node notes to be picked up by the inlining
 387   Node_Notes* old_nn = C->node_notes_at(call->_idx);
 388   if (old_nn != NULL) {
 389     Node_Notes* entry_nn = old_nn->clone(C);
 390     entry_nn->set_jvms(jvms);
 391     C->set_default_node_notes(entry_nn);
 392   }
 393 
 394   // Now perform the inling using the synthesized JVMState
 395   JVMState* new_jvms = _inline_cg->generate(jvms);
 396   if (new_jvms == NULL)  return;  // no change
 397   if (C->failing())      return;
 398 
 399   // Capture any exceptional control flow
 400   GraphKit kit(new_jvms);
 401 
 402   // Find the result object
 403   Node* result = C->top();
 404   int   result_size = method()->return_type()->size();
 405   if (result_size != 0 && !kit.stopped()) {
 406     result = (result_size == 1) ? kit.pop() : kit.pop_pair();
 407   }
 408 
 409   C->set_has_loops(C->has_loops() || _inline_cg->method()->has_loops());
 410   C->env()->notice_inlined_method(_inline_cg->method());
 411   C->set_inlining_progress(true);
 412 
 413   kit.replace_call(call, result, true);
 414 }
 415 
 416 
 417 CallGenerator* CallGenerator::for_late_inline(ciMethod* method, CallGenerator* inline_cg) {
 418   return new LateInlineCallGenerator(method, inline_cg);
 419 }
 420 
 421 class LateInlineMHCallGenerator : public LateInlineCallGenerator {
 422   ciMethod* _caller;
 423   int _attempt;
 424   bool _input_not_const;
 425 
 426   virtual bool do_late_inline_check(JVMState* jvms);
 427   virtual bool already_attempted() const { return _attempt > 0; }
 428 
 429  public:
 430   LateInlineMHCallGenerator(ciMethod* caller, ciMethod* callee, bool input_not_const) :
 431     LateInlineCallGenerator(callee, NULL), _caller(caller), _attempt(0), _input_not_const(input_not_const) {}
 432 
 433   virtual bool is_mh_late_inline() const { return true; }
 434 
 435   virtual JVMState* generate(JVMState* jvms) {
 436     JVMState* new_jvms = LateInlineCallGenerator::generate(jvms);
 437     if (_input_not_const) {
 438       // inlining won't be possible so no need to enqueue right now.
 439       call_node()->set_generator(this);
 440     } else {
 441       Compile::current()->add_late_inline(this);
 442     }
 443     return new_jvms;
 444   }
 445 
 446   virtual void print_inlining_late(const char* msg) {
 447     if (!_input_not_const) return;
 448     LateInlineCallGenerator::print_inlining_late(msg);
 449   }
 450 };
 451 
 452 bool LateInlineMHCallGenerator::do_late_inline_check(JVMState* jvms) {
 453 
 454   CallGenerator* cg = for_method_handle_inline(jvms, _caller, method(), _input_not_const);
 455 
 456   if (!_input_not_const) {
 457     _attempt++;
 458   }
 459 
 460   if (cg != NULL) {
 461     assert(!cg->is_late_inline() && cg->is_inline(), "we're doing late inlining");
 462     _inline_cg = cg;
 463     Compile::current()->dec_number_of_mh_late_inlines();
 464     return true;
 465   }
 466 
 467   call_node()->set_generator(this);
 468   return false;
 469 }
 470 
 471 CallGenerator* CallGenerator::for_mh_late_inline(ciMethod* caller, ciMethod* callee, bool input_not_const) {
 472   Compile::current()->inc_number_of_mh_late_inlines();
 473   CallGenerator* cg = new LateInlineMHCallGenerator(caller, callee, input_not_const);
 474   return cg;
 475 }
 476 
 477 class LateInlineStringCallGenerator : public LateInlineCallGenerator {
 478 
 479  public:
 480   LateInlineStringCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
 481     LateInlineCallGenerator(method, inline_cg) {}
 482 
 483   virtual JVMState* generate(JVMState* jvms) {
 484     Compile *C = Compile::current();
 485     C->print_inlining_skip(this);
 486 
 487     C->add_string_late_inline(this);
 488 
 489     JVMState* new_jvms =  DirectCallGenerator::generate(jvms);
 490     return new_jvms;
 491   }
 492 
 493   virtual bool is_string_late_inline() const { return true; }
 494 };
 495 
 496 CallGenerator* CallGenerator::for_string_late_inline(ciMethod* method, CallGenerator* inline_cg) {
 497   return new LateInlineStringCallGenerator(method, inline_cg);
 498 }
 499 
 500 class LateInlineBoxingCallGenerator : public LateInlineCallGenerator {
 501 
 502  public:
 503   LateInlineBoxingCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
 504     LateInlineCallGenerator(method, inline_cg) {}
 505 
 506   virtual JVMState* generate(JVMState* jvms) {
 507     Compile *C = Compile::current();
 508     C->print_inlining_skip(this);
 509 
 510     C->add_boxing_late_inline(this);
 511 
 512     JVMState* new_jvms =  DirectCallGenerator::generate(jvms);
 513     return new_jvms;
 514   }
 515 };
 516 
 517 CallGenerator* CallGenerator::for_boxing_late_inline(ciMethod* method, CallGenerator* inline_cg) {
 518   return new LateInlineBoxingCallGenerator(method, inline_cg);
 519 }
 520 
 521 //---------------------------WarmCallGenerator--------------------------------
 522 // Internal class which handles initial deferral of inlining decisions.
 523 class WarmCallGenerator : public CallGenerator {
 524   WarmCallInfo*   _call_info;
 525   CallGenerator*  _if_cold;
 526   CallGenerator*  _if_hot;
 527   bool            _is_virtual;   // caches virtuality of if_cold
 528   bool            _is_inline;    // caches inline-ness of if_hot
 529 
 530 public:
 531   WarmCallGenerator(WarmCallInfo* ci,
 532                     CallGenerator* if_cold,
 533                     CallGenerator* if_hot)
 534     : CallGenerator(if_cold->method())
 535   {
 536     assert(method() == if_hot->method(), "consistent choices");
 537     _call_info  = ci;
 538     _if_cold    = if_cold;
 539     _if_hot     = if_hot;
 540     _is_virtual = if_cold->is_virtual();
 541     _is_inline  = if_hot->is_inline();
 542   }
 543 
 544   virtual bool      is_inline() const           { return _is_inline; }
 545   virtual bool      is_virtual() const          { return _is_virtual; }
 546   virtual bool      is_deferred() const         { return true; }
 547 
 548   virtual JVMState* generate(JVMState* jvms);
 549 };
 550 
 551 
 552 CallGenerator* CallGenerator::for_warm_call(WarmCallInfo* ci,
 553                                             CallGenerator* if_cold,
 554                                             CallGenerator* if_hot) {
 555   return new WarmCallGenerator(ci, if_cold, if_hot);
 556 }
 557 
 558 JVMState* WarmCallGenerator::generate(JVMState* jvms) {
 559   Compile* C = Compile::current();
 560   if (C->log() != NULL) {
 561     C->log()->elem("warm_call bci='%d'", jvms->bci());
 562   }
 563   jvms = _if_cold->generate(jvms);
 564   if (jvms != NULL) {
 565     Node* m = jvms->map()->control();
 566     if (m->is_CatchProj()) m = m->in(0);  else m = C->top();
 567     if (m->is_Catch())     m = m->in(0);  else m = C->top();
 568     if (m->is_Proj())      m = m->in(0);  else m = C->top();
 569     if (m->is_CallJava()) {
 570       _call_info->set_call(m->as_Call());
 571       _call_info->set_hot_cg(_if_hot);
 572 #ifndef PRODUCT
 573       if (PrintOpto || PrintOptoInlining) {
 574         tty->print_cr("Queueing for warm inlining at bci %d:", jvms->bci());
 575         tty->print("WCI: ");
 576         _call_info->print();
 577       }
 578 #endif
 579       _call_info->set_heat(_call_info->compute_heat());
 580       C->set_warm_calls(_call_info->insert_into(C->warm_calls()));
 581     }
 582   }
 583   return jvms;
 584 }
 585 
 586 void WarmCallInfo::make_hot() {
 587   Unimplemented();
 588 }
 589 
 590 void WarmCallInfo::make_cold() {
 591   // No action:  Just dequeue.
 592 }
 593 
 594 
 595 //------------------------PredictedCallGenerator------------------------------
 596 // Internal class which handles all out-of-line calls checking receiver type.
 597 class PredictedCallGenerator : public CallGenerator {
 598   ciKlass*       _predicted_receiver;
 599   CallGenerator* _if_missed;
 600   CallGenerator* _if_hit;
 601   float          _hit_prob;
 602 
 603 public:
 604   PredictedCallGenerator(ciKlass* predicted_receiver,
 605                          CallGenerator* if_missed,
 606                          CallGenerator* if_hit, float hit_prob)
 607     : CallGenerator(if_missed->method())
 608   {
 609     // The call profile data may predict the hit_prob as extreme as 0 or 1.
 610     // Remove the extremes values from the range.
 611     if (hit_prob > PROB_MAX)   hit_prob = PROB_MAX;
 612     if (hit_prob < PROB_MIN)   hit_prob = PROB_MIN;
 613 
 614     _predicted_receiver = predicted_receiver;
 615     _if_missed          = if_missed;
 616     _if_hit             = if_hit;
 617     _hit_prob           = hit_prob;
 618   }
 619 
 620   virtual bool      is_virtual()   const    { return true; }
 621   virtual bool      is_inline()    const    { return _if_hit->is_inline(); }
 622   virtual bool      is_deferred()  const    { return _if_hit->is_deferred(); }
 623 
 624   virtual JVMState* generate(JVMState* jvms);
 625 };
 626 
 627 
 628 CallGenerator* CallGenerator::for_predicted_call(ciKlass* predicted_receiver,
 629                                                  CallGenerator* if_missed,
 630                                                  CallGenerator* if_hit,
 631                                                  float hit_prob) {
 632   return new PredictedCallGenerator(predicted_receiver, if_missed, if_hit, hit_prob);
 633 }
 634 
 635 
 636 JVMState* PredictedCallGenerator::generate(JVMState* jvms) {
 637   GraphKit kit(jvms);
 638   PhaseGVN& gvn = kit.gvn();
 639   // We need an explicit receiver null_check before checking its type.
 640   // We share a map with the caller, so his JVMS gets adjusted.
 641   Node* receiver = kit.argument(0);
 642 
 643   CompileLog* log = kit.C->log();
 644   if (log != NULL) {
 645     log->elem("predicted_call bci='%d' klass='%d'",
 646               jvms->bci(), log->identify(_predicted_receiver));
 647   }
 648 
 649   receiver = kit.null_check_receiver_before_call(method());
 650   if (kit.stopped()) {
 651     return kit.transfer_exceptions_into_jvms();
 652   }
 653 
 654   // Make a copy of the replaced nodes in case we need to restore them
 655   ReplacedNodes replaced_nodes = kit.map()->replaced_nodes();
 656   replaced_nodes.clone();
 657 
 658   Node* exact_receiver = receiver;  // will get updated in place...
 659   Node* slow_ctl = kit.type_check_receiver(receiver,
 660                                            _predicted_receiver, _hit_prob,
 661                                            &exact_receiver);
 662 
 663   SafePointNode* slow_map = NULL;
 664   JVMState* slow_jvms = NULL;
 665   { PreserveJVMState pjvms(&kit);
 666     kit.set_control(slow_ctl);
 667     if (!kit.stopped()) {
 668       slow_jvms = _if_missed->generate(kit.sync_jvms());
 669       if (kit.failing())
 670         return NULL;  // might happen because of NodeCountInliningCutoff
 671       assert(slow_jvms != NULL, "must be");
 672       kit.add_exception_states_from(slow_jvms);
 673       kit.set_map(slow_jvms->map());
 674       if (!kit.stopped())
 675         slow_map = kit.stop();
 676     }
 677   }
 678 
 679   if (kit.stopped()) {
 680     // Instance exactly does not matches the desired type.
 681     kit.set_jvms(slow_jvms);
 682     return kit.transfer_exceptions_into_jvms();
 683   }
 684 
 685   // fall through if the instance exactly matches the desired type
 686   kit.replace_in_map(receiver, exact_receiver);
 687 
 688   // Make the hot call:
 689   JVMState* new_jvms = _if_hit->generate(kit.sync_jvms());
 690   if (new_jvms == NULL) {
 691     // Inline failed, so make a direct call.
 692     assert(_if_hit->is_inline(), "must have been a failed inline");
 693     CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method());
 694     new_jvms = cg->generate(kit.sync_jvms());
 695   }
 696   kit.add_exception_states_from(new_jvms);
 697   kit.set_jvms(new_jvms);
 698 
 699   // Need to merge slow and fast?
 700   if (slow_map == NULL) {
 701     // The fast path is the only path remaining.
 702     return kit.transfer_exceptions_into_jvms();
 703   }
 704 
 705   if (kit.stopped()) {
 706     // Inlined method threw an exception, so it's just the slow path after all.
 707     kit.set_jvms(slow_jvms);
 708     return kit.transfer_exceptions_into_jvms();
 709   }
 710 
 711   // There are 2 branches and the replaced nodes are only valid on
 712   // one: restore the replaced nodes to what they were before the
 713   // branch.
 714   kit.map()->set_replaced_nodes(replaced_nodes);
 715 
 716   // Finish the diamond.
 717   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
 718   RegionNode* region = new (kit.C) RegionNode(3);
 719   region->init_req(1, kit.control());
 720   region->init_req(2, slow_map->control());
 721   kit.set_control(gvn.transform(region));
 722   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
 723   iophi->set_req(2, slow_map->i_o());
 724   kit.set_i_o(gvn.transform(iophi));
 725   // Merge memory
 726   kit.merge_memory(slow_map->merged_memory(), region, 2);
 727   // Transform new memory Phis.
 728   for (MergeMemStream mms(kit.merged_memory()); mms.next_non_empty();) {
 729     Node* phi = mms.memory();
 730     if (phi->is_Phi() && phi->in(0) == region) {
 731       mms.set_memory(gvn.transform(phi));
 732     }
 733   }
 734   uint tos = kit.jvms()->stkoff() + kit.sp();
 735   uint limit = slow_map->req();
 736   for (uint i = TypeFunc::Parms; i < limit; i++) {
 737     // Skip unused stack slots; fast forward to monoff();
 738     if (i == tos) {
 739       i = kit.jvms()->monoff();
 740       if( i >= limit ) break;
 741     }
 742     Node* m = kit.map()->in(i);
 743     Node* n = slow_map->in(i);
 744     if (m != n) {
 745       const Type* t = gvn.type(m)->meet_speculative(gvn.type(n));
 746       Node* phi = PhiNode::make(region, m, t);
 747       phi->set_req(2, n);
 748       kit.map()->set_req(i, gvn.transform(phi));
 749     }
 750   }
 751   return kit.transfer_exceptions_into_jvms();
 752 }
 753 
 754 
 755 CallGenerator* CallGenerator::for_method_handle_call(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool delayed_forbidden) {
 756   assert(callee->is_method_handle_intrinsic() ||
 757          callee->is_compiled_lambda_form(), "for_method_handle_call mismatch");
 758   bool input_not_const;
 759   CallGenerator* cg = CallGenerator::for_method_handle_inline(jvms, caller, callee, input_not_const);
 760   Compile* C = Compile::current();
 761   if (cg != NULL) {
 762     if (!delayed_forbidden && AlwaysIncrementalInline) {
 763       return CallGenerator::for_late_inline(callee, cg);
 764     } else {
 765       return cg;
 766     }
 767   }
 768   int bci = jvms->bci();
 769   ciCallProfile profile = caller->call_profile_at_bci(bci);
 770   int call_site_count = caller->scale_count(profile.count());
 771 
 772   if (IncrementalInline && call_site_count > 0 &&
 773       (input_not_const || !C->inlining_incrementally() || C->over_inlining_cutoff())) {
 774     return CallGenerator::for_mh_late_inline(caller, callee, input_not_const);
 775   } else {
 776     // Out-of-line call.
 777     return CallGenerator::for_direct_call(callee);
 778   }
 779 }
 780 
 781 CallGenerator* CallGenerator::for_method_handle_inline(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool& input_not_const) {
 782   GraphKit kit(jvms);
 783   PhaseGVN& gvn = kit.gvn();
 784   Compile* C = kit.C;
 785   vmIntrinsics::ID iid = callee->intrinsic_id();
 786   input_not_const = true;
 787   switch (iid) {
 788   case vmIntrinsics::_invokeBasic:
 789     {
 790       // Get MethodHandle receiver:
 791       Node* receiver = kit.argument(0);
 792       if (receiver->Opcode() == Op_ConP) {
 793         input_not_const = false;
 794         const TypeOopPtr* oop_ptr = receiver->bottom_type()->is_oopptr();
 795         ciMethod* target = oop_ptr->const_oop()->as_method_handle()->get_vmtarget();
 796         guarantee(!target->is_method_handle_intrinsic(), "should not happen");  // XXX remove
 797         const int vtable_index = Method::invalid_vtable_index;
 798         CallGenerator* cg = C->call_generator(target, vtable_index, false, jvms, true, PROB_ALWAYS, NULL, true, true);
 799         assert(cg == NULL || !cg->is_late_inline() || cg->is_mh_late_inline(), "no late inline here");
 800         if (cg != NULL && cg->is_inline())
 801           return cg;
 802       }
 803     }
 804     break;
 805 
 806   case vmIntrinsics::_linkToVirtual:
 807   case vmIntrinsics::_linkToStatic:
 808   case vmIntrinsics::_linkToSpecial:
 809   case vmIntrinsics::_linkToInterface:
 810     {
 811       // Get MemberName argument:
 812       Node* member_name = kit.argument(callee->arg_size() - 1);
 813       if (member_name->Opcode() == Op_ConP) {
 814         input_not_const = false;
 815         const TypeOopPtr* oop_ptr = member_name->bottom_type()->is_oopptr();
 816         ciMethod* target = oop_ptr->const_oop()->as_member_name()->get_vmtarget();
 817 
 818         // In lamda forms we erase signature types to avoid resolving issues
 819         // involving class loaders.  When we optimize a method handle invoke
 820         // to a direct call we must cast the receiver and arguments to its
 821         // actual types.
 822         ciSignature* signature = target->signature();
 823         const int receiver_skip = target->is_static() ? 0 : 1;
 824         // Cast receiver to its type.
 825         if (!target->is_static()) {
 826           Node* arg = kit.argument(0);
 827           const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr();
 828           const Type*       sig_type = TypeOopPtr::make_from_klass(signature->accessing_klass());
 829           if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
 830             Node* cast_obj = gvn.transform(new (C) CheckCastPPNode(kit.control(), arg, sig_type));
 831             kit.set_argument(0, cast_obj);
 832           }
 833         }
 834         // Cast reference arguments to its type.
 835         for (int i = 0, j = 0; i < signature->count(); i++) {
 836           ciType* t = signature->type_at(i);
 837           if (t->is_klass()) {
 838             Node* arg = kit.argument(receiver_skip + j);
 839             const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr();
 840             const Type*       sig_type = TypeOopPtr::make_from_klass(t->as_klass());
 841             if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
 842               Node* cast_obj = gvn.transform(new (C) CheckCastPPNode(kit.control(), arg, sig_type));
 843               kit.set_argument(receiver_skip + j, cast_obj);
 844             }
 845           }
 846           j += t->size();  // long and double take two slots
 847         }
 848 
 849         // Try to get the most accurate receiver type
 850         const bool is_virtual              = (iid == vmIntrinsics::_linkToVirtual);
 851         const bool is_virtual_or_interface = (is_virtual || iid == vmIntrinsics::_linkToInterface);
 852         int  vtable_index       = Method::invalid_vtable_index;
 853         bool call_does_dispatch = false;
 854 
 855         ciKlass* speculative_receiver_type = NULL;
 856         if (is_virtual_or_interface) {
 857           ciInstanceKlass* klass = target->holder();
 858           Node*             receiver_node = kit.argument(0);
 859           const TypeOopPtr* receiver_type = gvn.type(receiver_node)->isa_oopptr();
 860           // call_does_dispatch and vtable_index are out-parameters.  They might be changed.
 861           // optimize_virtual_call() takes 2 different holder
 862           // arguments for a corner case that doesn't apply here (see
 863           // Parse::do_call())
 864           target = C->optimize_virtual_call(caller, jvms->bci(), klass, klass,
 865                                             target, receiver_type, is_virtual,
 866                                             call_does_dispatch, vtable_index, // out-parameters
 867                                             /*check_access=*/false);
 868           // We lack profiling at this call but type speculation may
 869           // provide us with a type
 870           speculative_receiver_type = (receiver_type != NULL) ? receiver_type->speculative_type() : NULL;
 871         }
 872 
 873         CallGenerator* cg = C->call_generator(target, vtable_index, call_does_dispatch, jvms, true, PROB_ALWAYS, speculative_receiver_type, true, true);
 874         assert(cg == NULL || !cg->is_late_inline() || cg->is_mh_late_inline(), "no late inline here");
 875         if (cg != NULL && cg->is_inline())
 876           return cg;
 877       }
 878     }
 879     break;
 880 
 881   default:
 882     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 883     break;
 884   }
 885   return NULL;
 886 }
 887 
 888 
 889 //------------------------PredicatedIntrinsicGenerator------------------------------
 890 // Internal class which handles all predicated Intrinsic calls.
 891 class PredicatedIntrinsicGenerator : public CallGenerator {
 892   CallGenerator* _intrinsic;
 893   CallGenerator* _cg;
 894 
 895 public:
 896   PredicatedIntrinsicGenerator(CallGenerator* intrinsic,
 897                                CallGenerator* cg)
 898     : CallGenerator(cg->method())
 899   {
 900     _intrinsic = intrinsic;
 901     _cg        = cg;
 902   }
 903 
 904   virtual bool      is_virtual()   const    { return true; }
 905   virtual bool      is_inlined()   const    { return true; }
 906   virtual bool      is_intrinsic() const    { return true; }
 907 
 908   virtual JVMState* generate(JVMState* jvms);
 909 };
 910 
 911 
 912 CallGenerator* CallGenerator::for_predicated_intrinsic(CallGenerator* intrinsic,
 913                                                        CallGenerator* cg) {
 914   return new PredicatedIntrinsicGenerator(intrinsic, cg);
 915 }
 916 
 917 
 918 JVMState* PredicatedIntrinsicGenerator::generate(JVMState* jvms) {
 919   // The code we want to generate here is:
 920   //    if (receiver == NULL)
 921   //        uncommon_Trap
 922   //    if (predicate(0))
 923   //        do_intrinsic(0)
 924   //    else
 925   //    if (predicate(1))
 926   //        do_intrinsic(1)
 927   //    ...
 928   //    else
 929   //        do_java_comp
 930 
 931   GraphKit kit(jvms);
 932   PhaseGVN& gvn = kit.gvn();
 933 
 934   CompileLog* log = kit.C->log();
 935   if (log != NULL) {
 936     log->elem("predicated_intrinsic bci='%d' method='%d'",
 937               jvms->bci(), log->identify(method()));
 938   }
 939 
 940   if (!method()->is_static()) {
 941     // We need an explicit receiver null_check before checking its type in predicate.
 942     // We share a map with the caller, so his JVMS gets adjusted.
 943     Node* receiver = kit.null_check_receiver_before_call(method());
 944     if (kit.stopped()) {
 945       return kit.transfer_exceptions_into_jvms();
 946     }
 947   }
 948 
 949   int n_predicates = _intrinsic->predicates_count();
 950   assert(n_predicates > 0, "sanity");
 951 
 952   JVMState** result_jvms = NEW_RESOURCE_ARRAY(JVMState*, (n_predicates+1));
 953 
 954   // Region for normal compilation code if intrinsic failed.
 955   Node* slow_region = new (kit.C) RegionNode(1);
 956 
 957   int results = 0;
 958   for (int predicate = 0; (predicate < n_predicates) && !kit.stopped(); predicate++) {
 959 #ifdef ASSERT
 960     JVMState* old_jvms = kit.jvms();
 961     SafePointNode* old_map = kit.map();
 962     Node* old_io  = old_map->i_o();
 963     Node* old_mem = old_map->memory();
 964     Node* old_exc = old_map->next_exception();
 965 #endif
 966     Node* else_ctrl = _intrinsic->generate_predicate(kit.sync_jvms(), predicate);
 967 #ifdef ASSERT
 968     // Assert(no_new_memory && no_new_io && no_new_exceptions) after generate_predicate.
 969     assert(old_jvms == kit.jvms(), "generate_predicate should not change jvm state");
 970     SafePointNode* new_map = kit.map();
 971     assert(old_io  == new_map->i_o(), "generate_predicate should not change i_o");
 972     assert(old_mem == new_map->memory(), "generate_predicate should not change memory");
 973     assert(old_exc == new_map->next_exception(), "generate_predicate should not add exceptions");
 974 #endif
 975     if (!kit.stopped()) {
 976       PreserveJVMState pjvms(&kit);
 977       // Generate intrinsic code:
 978       JVMState* new_jvms = _intrinsic->generate(kit.sync_jvms());
 979       if (new_jvms == NULL) {
 980         // Intrinsic failed, use normal compilation path for this predicate.
 981         slow_region->add_req(kit.control());
 982       } else {
 983         kit.add_exception_states_from(new_jvms);
 984         kit.set_jvms(new_jvms);
 985         if (!kit.stopped()) {
 986           result_jvms[results++] = kit.jvms();
 987         }
 988       }
 989     }
 990     if (else_ctrl == NULL) {
 991       else_ctrl = kit.C->top();
 992     }
 993     kit.set_control(else_ctrl);
 994   }
 995   if (!kit.stopped()) {
 996     // Final 'else' after predicates.
 997     slow_region->add_req(kit.control());
 998   }
 999   if (slow_region->req() > 1) {
1000     PreserveJVMState pjvms(&kit);
1001     // Generate normal compilation code:
1002     kit.set_control(gvn.transform(slow_region));
1003     JVMState* new_jvms = _cg->generate(kit.sync_jvms());
1004     if (kit.failing())
1005       return NULL;  // might happen because of NodeCountInliningCutoff
1006     assert(new_jvms != NULL, "must be");
1007     kit.add_exception_states_from(new_jvms);
1008     kit.set_jvms(new_jvms);
1009     if (!kit.stopped()) {
1010       result_jvms[results++] = kit.jvms();
1011     }
1012   }
1013 
1014   if (results == 0) {
1015     // All paths ended in uncommon traps.
1016     (void) kit.stop();
1017     return kit.transfer_exceptions_into_jvms();
1018   }
1019 
1020   if (results == 1) { // Only one path
1021     kit.set_jvms(result_jvms[0]);
1022     return kit.transfer_exceptions_into_jvms();
1023   }
1024 
1025   // Merge all paths.
1026   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
1027   RegionNode* region = new (kit.C) RegionNode(results + 1);
1028   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
1029   for (int i = 0; i < results; i++) {
1030     JVMState* jvms = result_jvms[i];
1031     int path = i + 1;
1032     SafePointNode* map = jvms->map();
1033     region->init_req(path, map->control());
1034     iophi->set_req(path, map->i_o());
1035     if (i == 0) {
1036       kit.set_jvms(jvms);
1037     } else {
1038       kit.merge_memory(map->merged_memory(), region, path);
1039     }
1040   }
1041   kit.set_control(gvn.transform(region));
1042   kit.set_i_o(gvn.transform(iophi));
1043   // Transform new memory Phis.
1044   for (MergeMemStream mms(kit.merged_memory()); mms.next_non_empty();) {
1045     Node* phi = mms.memory();
1046     if (phi->is_Phi() && phi->in(0) == region) {
1047       mms.set_memory(gvn.transform(phi));
1048     }
1049   }
1050 
1051   // Merge debug info.
1052   Node** ins = NEW_RESOURCE_ARRAY(Node*, results);
1053   uint tos = kit.jvms()->stkoff() + kit.sp();
1054   Node* map = kit.map();
1055   uint limit = map->req();
1056   for (uint i = TypeFunc::Parms; i < limit; i++) {
1057     // Skip unused stack slots; fast forward to monoff();
1058     if (i == tos) {
1059       i = kit.jvms()->monoff();
1060       if( i >= limit ) break;
1061     }
1062     Node* n = map->in(i);
1063     ins[0] = n;
1064     const Type* t = gvn.type(n);
1065     bool needs_phi = false;
1066     for (int j = 1; j < results; j++) {
1067       JVMState* jvms = result_jvms[j];
1068       Node* jmap = jvms->map();
1069       Node* m = NULL;
1070       if (jmap->req() > i) {
1071         m = jmap->in(i);
1072         if (m != n) {
1073           needs_phi = true;
1074           t = t->meet_speculative(gvn.type(m));
1075         }
1076       }
1077       ins[j] = m;
1078     }
1079     if (needs_phi) {
1080       Node* phi = PhiNode::make(region, n, t);
1081       for (int j = 1; j < results; j++) {
1082         phi->set_req(j + 1, ins[j]);
1083       }
1084       map->set_req(i, gvn.transform(phi));
1085     }
1086   }
1087 
1088   return kit.transfer_exceptions_into_jvms();
1089 }
1090 
1091 //-------------------------UncommonTrapCallGenerator-----------------------------
1092 // Internal class which handles all out-of-line calls checking receiver type.
1093 class UncommonTrapCallGenerator : public CallGenerator {
1094   Deoptimization::DeoptReason _reason;
1095   Deoptimization::DeoptAction _action;
1096 
1097 public:
1098   UncommonTrapCallGenerator(ciMethod* m,
1099                             Deoptimization::DeoptReason reason,
1100                             Deoptimization::DeoptAction action)
1101     : CallGenerator(m)
1102   {
1103     _reason = reason;
1104     _action = action;
1105   }
1106 
1107   virtual bool      is_virtual() const          { ShouldNotReachHere(); return false; }
1108   virtual bool      is_trap() const             { return true; }
1109 
1110   virtual JVMState* generate(JVMState* jvms);
1111 };
1112 
1113 
1114 CallGenerator*
1115 CallGenerator::for_uncommon_trap(ciMethod* m,
1116                                  Deoptimization::DeoptReason reason,
1117                                  Deoptimization::DeoptAction action) {
1118   return new UncommonTrapCallGenerator(m, reason, action);
1119 }
1120 
1121 
1122 JVMState* UncommonTrapCallGenerator::generate(JVMState* jvms) {
1123   GraphKit kit(jvms);
1124   // Take the trap with arguments pushed on the stack.  (Cf. null_check_receiver).
1125   // Callsite signature can be different from actual method being called (i.e _linkTo* sites).
1126   // Use callsite signature always.
1127   ciMethod* declared_method = kit.method()->get_method_at_bci(kit.bci());
1128   int nargs = declared_method->arg_size();
1129   kit.inc_sp(nargs);
1130   assert(nargs <= kit.sp() && kit.sp() <= jvms->stk_size(), "sane sp w/ args pushed");
1131   if (_reason == Deoptimization::Reason_class_check &&
1132       _action == Deoptimization::Action_maybe_recompile) {
1133     // Temp fix for 6529811
1134     // Don't allow uncommon_trap to override our decision to recompile in the event
1135     // of a class cast failure for a monomorphic call as it will never let us convert
1136     // the call to either bi-morphic or megamorphic and can lead to unc-trap loops
1137     bool keep_exact_action = true;
1138     kit.uncommon_trap(_reason, _action, NULL, "monomorphic vcall checkcast", false, keep_exact_action);
1139   } else {
1140     kit.uncommon_trap(_reason, _action);
1141   }
1142   return kit.transfer_exceptions_into_jvms();
1143 }
1144 
1145 // (Note:  Moved hook_up_call to GraphKit::set_edges_for_java_call.)
1146 
1147 // (Node:  Merged hook_up_exits into ParseGenerator::generate.)
1148 
1149 #define NODES_OVERHEAD_PER_METHOD (30.0)
1150 #define NODES_PER_BYTECODE (9.5)
1151 
1152 void WarmCallInfo::init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor) {
1153   int call_count = profile.count();
1154   int code_size = call_method->code_size();
1155 
1156   // Expected execution count is based on the historical count:
1157   _count = call_count < 0 ? 1 : call_site->method()->scale_count(call_count, prof_factor);
1158 
1159   // Expected profit from inlining, in units of simple call-overheads.
1160   _profit = 1.0;
1161 
1162   // Expected work performed by the call in units of call-overheads.
1163   // %%% need an empirical curve fit for "work" (time in call)
1164   float bytecodes_per_call = 3;
1165   _work = 1.0 + code_size / bytecodes_per_call;
1166 
1167   // Expected size of compilation graph:
1168   // -XX:+PrintParseStatistics once reported:
1169   //  Methods seen: 9184  Methods parsed: 9184  Nodes created: 1582391
1170   //  Histogram of 144298 parsed bytecodes:
1171   // %%% Need an better predictor for graph size.
1172   _size = NODES_OVERHEAD_PER_METHOD + (NODES_PER_BYTECODE * code_size);
1173 }
1174 
1175 // is_cold:  Return true if the node should never be inlined.
1176 // This is true if any of the key metrics are extreme.
1177 bool WarmCallInfo::is_cold() const {
1178   if (count()  <  WarmCallMinCount)        return true;
1179   if (profit() <  WarmCallMinProfit)       return true;
1180   if (work()   >  WarmCallMaxWork)         return true;
1181   if (size()   >  WarmCallMaxSize)         return true;
1182   return false;
1183 }
1184 
1185 // is_hot:  Return true if the node should be inlined immediately.
1186 // This is true if any of the key metrics are extreme.
1187 bool WarmCallInfo::is_hot() const {
1188   assert(!is_cold(), "eliminate is_cold cases before testing is_hot");
1189   if (count()  >= HotCallCountThreshold)   return true;
1190   if (profit() >= HotCallProfitThreshold)  return true;
1191   if (work()   <= HotCallTrivialWork)      return true;
1192   if (size()   <= HotCallTrivialSize)      return true;
1193   return false;
1194 }
1195 
1196 // compute_heat:
1197 float WarmCallInfo::compute_heat() const {
1198   assert(!is_cold(), "compute heat only on warm nodes");
1199   assert(!is_hot(),  "compute heat only on warm nodes");
1200   int min_size = MAX2(0,   (int)HotCallTrivialSize);
1201   int max_size = MIN2(500, (int)WarmCallMaxSize);
1202   float method_size = (size() - min_size) / MAX2(1, max_size - min_size);
1203   float size_factor;
1204   if      (method_size < 0.05)  size_factor = 4;   // 2 sigmas better than avg.
1205   else if (method_size < 0.15)  size_factor = 2;   // 1 sigma better than avg.
1206   else if (method_size < 0.5)   size_factor = 1;   // better than avg.
1207   else                          size_factor = 0.5; // worse than avg.
1208   return (count() * profit() * size_factor);
1209 }
1210 
1211 bool WarmCallInfo::warmer_than(WarmCallInfo* that) {
1212   assert(this != that, "compare only different WCIs");
1213   assert(this->heat() != 0 && that->heat() != 0, "call compute_heat 1st");
1214   if (this->heat() > that->heat())   return true;
1215   if (this->heat() < that->heat())   return false;
1216   assert(this->heat() == that->heat(), "no NaN heat allowed");
1217   // Equal heat.  Break the tie some other way.
1218   if (!this->call() || !that->call())  return (address)this > (address)that;
1219   return this->call()->_idx > that->call()->_idx;
1220 }
1221 
1222 //#define UNINIT_NEXT ((WarmCallInfo*)badAddress)
1223 #define UNINIT_NEXT ((WarmCallInfo*)NULL)
1224 
1225 WarmCallInfo* WarmCallInfo::insert_into(WarmCallInfo* head) {
1226   assert(next() == UNINIT_NEXT, "not yet on any list");
1227   WarmCallInfo* prev_p = NULL;
1228   WarmCallInfo* next_p = head;
1229   while (next_p != NULL && next_p->warmer_than(this)) {
1230     prev_p = next_p;
1231     next_p = prev_p->next();
1232   }
1233   // Install this between prev_p and next_p.
1234   this->set_next(next_p);
1235   if (prev_p == NULL)
1236     head = this;
1237   else
1238     prev_p->set_next(this);
1239   return head;
1240 }
1241 
1242 WarmCallInfo* WarmCallInfo::remove_from(WarmCallInfo* head) {
1243   WarmCallInfo* prev_p = NULL;
1244   WarmCallInfo* next_p = head;
1245   while (next_p != this) {
1246     assert(next_p != NULL, "this must be in the list somewhere");
1247     prev_p = next_p;
1248     next_p = prev_p->next();
1249   }
1250   next_p = this->next();
1251   debug_only(this->set_next(UNINIT_NEXT));
1252   // Remove this from between prev_p and next_p.
1253   if (prev_p == NULL)
1254     head = next_p;
1255   else
1256     prev_p->set_next(next_p);
1257   return head;
1258 }
1259 
1260 WarmCallInfo WarmCallInfo::_always_hot(WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE(),
1261                                        WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE());
1262 WarmCallInfo WarmCallInfo::_always_cold(WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE(),
1263                                         WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE());
1264 
1265 WarmCallInfo* WarmCallInfo::always_hot() {
1266   assert(_always_hot.is_hot(), "must always be hot");
1267   return &_always_hot;
1268 }
1269 
1270 WarmCallInfo* WarmCallInfo::always_cold() {
1271   assert(_always_cold.is_cold(), "must always be cold");
1272   return &_always_cold;
1273 }
1274 
1275 
1276 #ifndef PRODUCT
1277 
1278 void WarmCallInfo::print() const {
1279   tty->print("%s : C=%6.1f P=%6.1f W=%6.1f S=%6.1f H=%6.1f -> %p",
1280              is_cold() ? "cold" : is_hot() ? "hot " : "warm",
1281              count(), profit(), work(), size(), compute_heat(), next());
1282   tty->cr();
1283   if (call() != NULL)  call()->dump();
1284 }
1285 
1286 void print_wci(WarmCallInfo* ci) {
1287   ci->print();
1288 }
1289 
1290 void WarmCallInfo::print_all() const {
1291   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
1292     p->print();
1293 }
1294 
1295 int WarmCallInfo::count_all() const {
1296   int cnt = 0;
1297   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
1298     cnt++;
1299   return cnt;
1300 }
1301 
1302 #endif //PRODUCT