1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/c2compiler.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/runtime.hpp"
  33 #if defined AD_MD_HPP
  34 # include AD_MD_HPP
  35 #elif defined TARGET_ARCH_MODEL_x86_32
  36 # include "adfiles/ad_x86_32.hpp"
  37 #elif defined TARGET_ARCH_MODEL_x86_64
  38 # include "adfiles/ad_x86_64.hpp"
  39 #elif defined TARGET_ARCH_MODEL_aarch64
  40 # include "adfiles/ad_aarch64.hpp"
  41 #elif defined TARGET_ARCH_MODEL_sparc
  42 # include "adfiles/ad_sparc.hpp"
  43 #elif defined TARGET_ARCH_MODEL_zero
  44 # include "adfiles/ad_zero.hpp"
  45 #elif defined TARGET_ARCH_MODEL_ppc_64
  46 # include "adfiles/ad_ppc_64.hpp"
  47 #endif
  48 
  49 // Optimization - Graph Style
  50 
  51 // Check whether val is not-null-decoded compressed oop,
  52 // i.e. will grab into the base of the heap if it represents NULL.
  53 static bool accesses_heap_base_zone(Node *val) {
  54   if (Universe::narrow_oop_base() != NULL) { // Implies UseCompressedOops.
  55     if (val && val->is_Mach()) {
  56       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  57         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  58         // decode NULL to point to the heap base (Decode_NN).
  59         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  60           return true;
  61         }
  62       }
  63       // Must recognize load operation with Decode matched in memory operand.
  64       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
  65       // returns true everywhere else. On PPC, no such memory operands
  66       // exist, therefore we did not yet implement a check for such operands.
  67       NOT_AIX(Unimplemented());
  68     }
  69   }
  70   return false;
  71 }
  72 
  73 static bool needs_explicit_null_check_for_read(Node *val) {
  74   // On some OSes (AIX) the page at address 0 is only write protected.
  75   // If so, only Store operations will trap.
  76   if (os::zero_page_read_protected()) {
  77     return false;  // Implicit null check will work.
  78   }
  79   // Also a read accessing the base of a heap-based compressed heap will trap.
  80   if (accesses_heap_base_zone(val) &&                    // Hits the base zone page.
  81       Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
  82     return false;
  83   }
  84 
  85   return true;
  86 }
  87 
  88 //------------------------------implicit_null_check----------------------------
  89 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  90 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  91 // I can generate a memory op if there is not one nearby.
  92 // The proj is the control projection for the not-null case.
  93 // The val is the pointer being checked for nullness or
  94 // decodeHeapOop_not_null node if it did not fold into address.
  95 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  96   // Assume if null check need for 0 offset then always needed
  97   // Intel solaris doesn't support any null checks yet and no
  98   // mechanism exists (yet) to set the switches at an os_cpu level
  99   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
 100 
 101   // Make sure the ptr-is-null path appears to be uncommon!
 102   float f = block->end()->as_MachIf()->_prob;
 103   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
 104   if( f > PROB_UNLIKELY_MAG(4) ) return;
 105 
 106   uint bidx = 0;                // Capture index of value into memop
 107   bool was_store;               // Memory op is a store op
 108 
 109   // Get the successor block for if the test ptr is non-null
 110   Block* not_null_block;  // this one goes with the proj
 111   Block* null_block;
 112   if (block->get_node(block->number_of_nodes()-1) == proj) {
 113     null_block     = block->_succs[0];
 114     not_null_block = block->_succs[1];
 115   } else {
 116     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 117     not_null_block = block->_succs[0];
 118     null_block     = block->_succs[1];
 119   }
 120   while (null_block->is_Empty() == Block::empty_with_goto) {
 121     null_block     = null_block->_succs[0];
 122   }
 123 
 124   // Search the exception block for an uncommon trap.
 125   // (See Parse::do_if and Parse::do_ifnull for the reason
 126   // we need an uncommon trap.  Briefly, we need a way to
 127   // detect failure of this optimization, as in 6366351.)
 128   {
 129     bool found_trap = false;
 130     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 131       Node* nn = null_block->get_node(i1);
 132       if (nn->is_MachCall() &&
 133           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 134         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 135         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 136           jint tr_con = trtype->is_int()->get_con();
 137           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 138           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 139           assert((int)reason < (int)BitsPerInt, "recode bit map");
 140           if (is_set_nth_bit(allowed_reasons, (int) reason)
 141               && action != Deoptimization::Action_none) {
 142             // This uncommon trap is sure to recompile, eventually.
 143             // When that happens, C->too_many_traps will prevent
 144             // this transformation from happening again.
 145             found_trap = true;
 146           }
 147         }
 148         break;
 149       }
 150     }
 151     if (!found_trap) {
 152       // We did not find an uncommon trap.
 153       return;
 154     }
 155   }
 156 
 157   // Check for decodeHeapOop_not_null node which did not fold into address
 158   bool is_decoden = ((intptr_t)val) & 1;
 159   val = (Node*)(((intptr_t)val) & ~1);
 160 
 161   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 162          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 163 
 164   // Search the successor block for a load or store who's base value is also
 165   // the tested value.  There may be several.
 166   Node_List *out = new Node_List(Thread::current()->resource_area());
 167   MachNode *best = NULL;        // Best found so far
 168   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 169     Node *m = val->out(i);
 170     if( !m->is_Mach() ) continue;
 171     MachNode *mach = m->as_Mach();
 172     was_store = false;
 173     int iop = mach->ideal_Opcode();
 174     switch( iop ) {
 175     case Op_LoadB:
 176     case Op_LoadUB:
 177     case Op_LoadUS:
 178     case Op_LoadD:
 179     case Op_LoadF:
 180     case Op_LoadI:
 181     case Op_LoadL:
 182     case Op_LoadP:
 183     case Op_LoadN:
 184     case Op_LoadS:
 185     case Op_LoadKlass:
 186     case Op_LoadNKlass:
 187     case Op_LoadRange:
 188     case Op_LoadD_unaligned:
 189     case Op_LoadL_unaligned:
 190     case Op_ShenandoahReadBarrier:
 191     case Op_ShenandoahWriteBarrier:
 192       assert(mach->in(2) == val, "should be address");
 193       break;
 194     case Op_StoreB:
 195     case Op_StoreC:
 196     case Op_StoreCM:
 197     case Op_StoreD:
 198     case Op_StoreF:
 199     case Op_StoreI:
 200     case Op_StoreL:
 201     case Op_StoreP:
 202     case Op_StoreN:
 203     case Op_StoreNKlass:
 204       was_store = true;         // Memory op is a store op
 205       // Stores will have their address in slot 2 (memory in slot 1).
 206       // If the value being nul-checked is in another slot, it means we
 207       // are storing the checked value, which does NOT check the value!
 208       if( mach->in(2) != val ) continue;
 209       break;                    // Found a memory op?
 210     case Op_StrComp:
 211     case Op_StrEquals:
 212     case Op_StrIndexOf:
 213     case Op_AryEq:
 214     case Op_EncodeISOArray:
 215       // Not a legit memory op for implicit null check regardless of
 216       // embedded loads
 217       continue;
 218     default:                    // Also check for embedded loads
 219       if( !mach->needs_anti_dependence_check() )
 220         continue;               // Not an memory op; skip it
 221       if( must_clone[iop] ) {
 222         // Do not move nodes which produce flags because
 223         // RA will try to clone it to place near branch and
 224         // it will cause recompilation, see clone_node().
 225         continue;
 226       }
 227       {
 228         // Check that value is used in memory address in
 229         // instructions with embedded load (CmpP val1,(val2+off)).
 230         Node* base;
 231         Node* index;
 232         const MachOper* oper = mach->memory_inputs(base, index);
 233         if (oper == NULL || oper == (MachOper*)-1) {
 234           continue;             // Not an memory op; skip it
 235         }
 236         if (val == base ||
 237             val == index && val->bottom_type()->isa_narrowoop()) {
 238           break;                // Found it
 239         } else {
 240           continue;             // Skip it
 241         }
 242       }
 243       break;
 244     }
 245 
 246     // On some OSes (AIX) the page at address 0 is only write protected.
 247     // If so, only Store operations will trap.
 248     // But a read accessing the base of a heap-based compressed heap will trap.
 249     if (!was_store && needs_explicit_null_check_for_read(val)) {
 250       continue;
 251     }
 252 
 253     // Check that node's control edge is not-null block's head or dominates it,
 254     // otherwise we can't hoist it because there are other control dependencies.
 255     Node* ctrl = mach->in(0);
 256     if (ctrl != NULL && !(ctrl == not_null_block->head() ||
 257         get_block_for_node(ctrl)->dominates(not_null_block))) {
 258       continue;
 259     }
 260 
 261     // check if the offset is not too high for implicit exception
 262     {
 263       intptr_t offset = 0;
 264       const TypePtr *adr_type = NULL;  // Do not need this return value here
 265       const Node* base = mach->get_base_and_disp(offset, adr_type);
 266       if (base == NULL || base == NodeSentinel) {
 267         // Narrow oop address doesn't have base, only index
 268         if( val->bottom_type()->isa_narrowoop() &&
 269             MacroAssembler::needs_explicit_null_check(offset) )
 270           continue;             // Give up if offset is beyond page size
 271         // cannot reason about it; is probably not implicit null exception
 272       } else {
 273         const TypePtr* tptr;
 274         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
 275                                   Universe::narrow_klass_shift() == 0)) {
 276           // 32-bits narrow oop can be the base of address expressions
 277           tptr = base->get_ptr_type();
 278         } else {
 279           // only regular oops are expected here
 280           tptr = base->bottom_type()->is_ptr();
 281         }
 282         // Give up if offset is not a compile-time constant
 283         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
 284           continue;
 285         offset += tptr->_offset; // correct if base is offseted
 286         if( MacroAssembler::needs_explicit_null_check(offset) )
 287           continue;             // Give up is reference is beyond 4K page size
 288       }
 289     }
 290 
 291     // Check ctrl input to see if the null-check dominates the memory op
 292     Block *cb = get_block_for_node(mach);
 293     cb = cb->_idom;             // Always hoist at least 1 block
 294     if( !was_store ) {          // Stores can be hoisted only one block
 295       while( cb->_dom_depth > (block->_dom_depth + 1))
 296         cb = cb->_idom;         // Hoist loads as far as we want
 297       // The non-null-block should dominate the memory op, too. Live
 298       // range spilling will insert a spill in the non-null-block if it is
 299       // needs to spill the memory op for an implicit null check.
 300       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 301         if (cb != not_null_block) continue;
 302         cb = cb->_idom;
 303       }
 304     }
 305     if( cb != block ) continue;
 306 
 307     // Found a memory user; see if it can be hoisted to check-block
 308     uint vidx = 0;              // Capture index of value into memop
 309     uint j;
 310     for( j = mach->req()-1; j > 0; j-- ) {
 311       if( mach->in(j) == val ) {
 312         vidx = j;
 313         // Ignore DecodeN val which could be hoisted to where needed.
 314         if( is_decoden ) continue;
 315       }
 316       // Block of memory-op input
 317       Block *inb = get_block_for_node(mach->in(j));
 318       Block *b = block;          // Start from nul check
 319       while( b != inb && b->_dom_depth > inb->_dom_depth )
 320         b = b->_idom;           // search upwards for input
 321       // See if input dominates null check
 322       if( b != inb )
 323         break;
 324     }
 325     if( j > 0 )
 326       continue;
 327     Block *mb = get_block_for_node(mach);
 328     // Hoisting stores requires more checks for the anti-dependence case.
 329     // Give up hoisting if we have to move the store past any load.
 330     if( was_store ) {
 331       Block *b = mb;            // Start searching here for a local load
 332       // mach use (faulting) trying to hoist
 333       // n might be blocker to hoisting
 334       while( b != block ) {
 335         uint k;
 336         for( k = 1; k < b->number_of_nodes(); k++ ) {
 337           Node *n = b->get_node(k);
 338           if( n->needs_anti_dependence_check() &&
 339               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 340             break;              // Found anti-dependent load
 341         }
 342         if( k < b->number_of_nodes() )
 343           break;                // Found anti-dependent load
 344         // Make sure control does not do a merge (would have to check allpaths)
 345         if( b->num_preds() != 2 ) break;
 346         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
 347       }
 348       if( b != block ) continue;
 349     }
 350 
 351     // Make sure this memory op is not already being used for a NullCheck
 352     Node *e = mb->end();
 353     if( e->is_MachNullCheck() && e->in(1) == mach )
 354       continue;                 // Already being used as a NULL check
 355 
 356     // Found a candidate!  Pick one with least dom depth - the highest
 357     // in the dom tree should be closest to the null check.
 358     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 359       best = mach;
 360       bidx = vidx;
 361     }
 362   }
 363   // No candidate!
 364   if (best == NULL) {
 365     return;
 366   }
 367 
 368   // ---- Found an implicit null check
 369   extern int implicit_null_checks;
 370   implicit_null_checks++;
 371 
 372   if( is_decoden ) {
 373     // Check if we need to hoist decodeHeapOop_not_null first.
 374     Block *valb = get_block_for_node(val);
 375     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 376       // Hoist it up to the end of the test block.
 377       valb->find_remove(val);
 378       block->add_inst(val);
 379       map_node_to_block(val, block);
 380       // DecodeN on x86 may kill flags. Check for flag-killing projections
 381       // that also need to be hoisted.
 382       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 383         Node* n = val->fast_out(j);
 384         if( n->is_MachProj() ) {
 385           get_block_for_node(n)->find_remove(n);
 386           block->add_inst(n);
 387           map_node_to_block(n, block);
 388         }
 389       }
 390     }
 391   }
 392   // Hoist the memory candidate up to the end of the test block.
 393   Block *old_block = get_block_for_node(best);
 394   old_block->find_remove(best);
 395   block->add_inst(best);
 396   map_node_to_block(best, block);
 397 
 398   // Move the control dependence if it is pinned to not-null block.
 399   // Don't change it in other cases: NULL or dominating control.
 400   if (best->in(0) == not_null_block->head()) {
 401     // Set it to control edge of null check.
 402     best->set_req(0, proj->in(0)->in(0));
 403   }
 404 
 405   // Check for flag-killing projections that also need to be hoisted
 406   // Should be DU safe because no edge updates.
 407   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 408     Node* n = best->fast_out(j);
 409     if( n->is_MachProj() || n->Opcode() == Op_ShenandoahWBMemProj) {
 410       get_block_for_node(n)->find_remove(n);
 411       block->add_inst(n);
 412       map_node_to_block(n, block);
 413     }
 414   }
 415 
 416   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 417   // One of two graph shapes got matched:
 418   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 419   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 420   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 421   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 422   // We need to flip the projections to keep the same semantics.
 423   if( proj->Opcode() == Op_IfTrue ) {
 424     // Swap order of projections in basic block to swap branch targets
 425     Node *tmp1 = block->get_node(block->end_idx()+1);
 426     Node *tmp2 = block->get_node(block->end_idx()+2);
 427     block->map_node(tmp2, block->end_idx()+1);
 428     block->map_node(tmp1, block->end_idx()+2);
 429     Node *tmp = new (C) Node(C->top()); // Use not NULL input
 430     tmp1->replace_by(tmp);
 431     tmp2->replace_by(tmp1);
 432     tmp->replace_by(tmp2);
 433     tmp->destruct();
 434   }
 435 
 436   // Remove the existing null check; use a new implicit null check instead.
 437   // Since schedule-local needs precise def-use info, we need to correct
 438   // it as well.
 439   Node *old_tst = proj->in(0);
 440   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
 441   block->map_node(nul_chk, block->end_idx());
 442   map_node_to_block(nul_chk, block);
 443   // Redirect users of old_test to nul_chk
 444   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 445     old_tst->last_out(i2)->set_req(0, nul_chk);
 446   // Clean-up any dead code
 447   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 448     Node* in = old_tst->in(i3);
 449     old_tst->set_req(i3, NULL);
 450     if (in->outcnt() == 0) {
 451       // Remove dead input node
 452       in->disconnect_inputs(NULL, C);
 453       block->find_remove(in);
 454     }
 455   }
 456 
 457   latency_from_uses(nul_chk);
 458   latency_from_uses(best);
 459 
 460   // insert anti-dependences to defs in this block
 461   if (! best->needs_anti_dependence_check()) {
 462     for (uint k = 1; k < block->number_of_nodes(); k++) {
 463       Node *n = block->get_node(k);
 464       if (n->needs_anti_dependence_check() &&
 465           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
 466         // Found anti-dependent load
 467         insert_anti_dependences(block, n);
 468       }
 469     }
 470   }
 471 }
 472 
 473 
 474 //------------------------------select-----------------------------------------
 475 // Select a nice fellow from the worklist to schedule next. If there is only
 476 // one choice, then use it. Projections take top priority for correctness
 477 // reasons - if I see a projection, then it is next.  There are a number of
 478 // other special cases, for instructions that consume condition codes, et al.
 479 // These are chosen immediately. Some instructions are required to immediately
 480 // precede the last instruction in the block, and these are taken last. Of the
 481 // remaining cases (most), choose the instruction with the greatest latency
 482 // (that is, the most number of pseudo-cycles required to the end of the
 483 // routine). If there is a tie, choose the instruction with the most inputs.
 484 Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
 485 
 486   // If only a single entry on the stack, use it
 487   uint cnt = worklist.size();
 488   if (cnt == 1) {
 489     Node *n = worklist[0];
 490     worklist.map(0,worklist.pop());
 491     return n;
 492   }
 493 
 494   uint choice  = 0; // Bigger is most important
 495   uint latency = 0; // Bigger is scheduled first
 496   uint score   = 0; // Bigger is better
 497   int idx = -1;     // Index in worklist
 498   int cand_cnt = 0; // Candidate count
 499 
 500   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 501     // Order in worklist is used to break ties.
 502     // See caller for how this is used to delay scheduling
 503     // of induction variable increments to after the other
 504     // uses of the phi are scheduled.
 505     Node *n = worklist[i];      // Get Node on worklist
 506 
 507     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 508     if( n->is_Proj() ||         // Projections always win
 509         n->Opcode()== Op_Con || // So does constant 'Top'
 510         iop == Op_CreateEx ||   // Create-exception must start block
 511         iop == Op_CheckCastPP
 512         ) {
 513       worklist.map(i,worklist.pop());
 514       return n;
 515     }
 516 
 517     // Final call in a block must be adjacent to 'catch'
 518     Node *e = block->end();
 519     if( e->is_Catch() && e->in(0)->in(0) == n )
 520       continue;
 521 
 522     // Memory op for an implicit null check has to be at the end of the block
 523     if( e->is_MachNullCheck() && e->in(1) == n )
 524       continue;
 525 
 526     // Schedule IV increment last.
 527     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
 528         e->in(1)->in(1) == n && n->is_iteratively_computed())
 529       continue;
 530 
 531     uint n_choice  = 2;
 532 
 533     // See if this instruction is consumed by a branch. If so, then (as the
 534     // branch is the last instruction in the basic block) force it to the
 535     // end of the basic block
 536     if ( must_clone[iop] ) {
 537       // See if any use is a branch
 538       bool found_machif = false;
 539 
 540       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 541         Node* use = n->fast_out(j);
 542 
 543         // The use is a conditional branch, make them adjacent
 544         if (use->is_MachIf() && get_block_for_node(use) == block) {
 545           found_machif = true;
 546           break;
 547         }
 548 
 549         // More than this instruction pending for successor to be ready,
 550         // don't choose this if other opportunities are ready
 551         if (ready_cnt.at(use->_idx) > 1)
 552           n_choice = 1;
 553       }
 554 
 555       // loop terminated, prefer not to use this instruction
 556       if (found_machif)
 557         continue;
 558     }
 559 
 560     // See if this has a predecessor that is "must_clone", i.e. sets the
 561     // condition code. If so, choose this first
 562     for (uint j = 0; j < n->req() ; j++) {
 563       Node *inn = n->in(j);
 564       if (inn) {
 565         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 566           n_choice = 3;
 567           break;
 568         }
 569       }
 570     }
 571 
 572     // MachTemps should be scheduled last so they are near their uses
 573     if (n->is_MachTemp()) {
 574       n_choice = 1;
 575     }
 576 
 577     uint n_latency = get_latency_for_node(n);
 578     uint n_score   = n->req();   // Many inputs get high score to break ties
 579 
 580     // Keep best latency found
 581     cand_cnt++;
 582     if (choice < n_choice ||
 583         (choice == n_choice &&
 584          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 585           (!StressLCM &&
 586            (latency < n_latency ||
 587             (latency == n_latency &&
 588              (score < n_score))))))) {
 589       choice  = n_choice;
 590       latency = n_latency;
 591       score   = n_score;
 592       idx     = i;               // Also keep index in worklist
 593     }
 594   } // End of for all ready nodes in worklist
 595 
 596   assert(idx >= 0, "index should be set");
 597   Node *n = worklist[(uint)idx];      // Get the winner
 598 
 599   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 600   return n;
 601 }
 602 
 603 
 604 //------------------------------set_next_call----------------------------------
 605 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 606   if( next_call.test_set(n->_idx) ) return;
 607   for( uint i=0; i<n->len(); i++ ) {
 608     Node *m = n->in(i);
 609     if( !m ) continue;  // must see all nodes in block that precede call
 610     if (get_block_for_node(m) == block) {
 611       set_next_call(block, m, next_call);
 612     }
 613   }
 614 }
 615 
 616 //------------------------------needed_for_next_call---------------------------
 617 // Set the flag 'next_call' for each Node that is needed for the next call to
 618 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 619 // next subroutine call get priority - basically it moves things NOT needed
 620 // for the next call till after the call.  This prevents me from trying to
 621 // carry lots of stuff live across a call.
 622 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 623   // Find the next control-defining Node in this block
 624   Node* call = NULL;
 625   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 626     Node* m = this_call->fast_out(i);
 627     if (get_block_for_node(m) == block && // Local-block user
 628         m != this_call &&       // Not self-start node
 629         m->is_MachCall()) {
 630       call = m;
 631       break;
 632     }
 633   }
 634   if (call == NULL)  return;    // No next call (e.g., block end is near)
 635   // Set next-call for all inputs to this call
 636   set_next_call(block, call, next_call);
 637 }
 638 
 639 //------------------------------add_call_kills-------------------------------------
 640 // helper function that adds caller save registers to MachProjNode
 641 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe, bool exclude_fp) {
 642   // Fill in the kill mask for the call
 643   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 644     if (exclude_fp && (register_save_type[r] == Op_RegF || register_save_type[r] == Op_RegD)) {
 645       continue;
 646     }
 647     if( !regs.Member(r) ) {     // Not already defined by the call
 648       // Save-on-call register?
 649       if ((save_policy[r] == 'C') ||
 650           (save_policy[r] == 'A') ||
 651           ((save_policy[r] == 'E') && exclude_soe)) {
 652         proj->_rout.Insert(r);
 653       }
 654     }
 655   }
 656 }
 657 
 658 
 659 //------------------------------sched_call-------------------------------------
 660 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 661   RegMask regs;
 662 
 663   // Schedule all the users of the call right now.  All the users are
 664   // projection Nodes, so they must be scheduled next to the call.
 665   // Collect all the defined registers.
 666   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 667     Node* n = mcall->fast_out(i);
 668     assert( n->is_MachProj(), "" );
 669     int n_cnt = ready_cnt.at(n->_idx)-1;
 670     ready_cnt.at_put(n->_idx, n_cnt);
 671     assert( n_cnt == 0, "" );
 672     // Schedule next to call
 673     block->map_node(n, node_cnt++);
 674     // Collect defined registers
 675     regs.OR(n->out_RegMask());
 676     // Check for scheduling the next control-definer
 677     if( n->bottom_type() == Type::CONTROL )
 678       // Warm up next pile of heuristic bits
 679       needed_for_next_call(block, n, next_call);
 680 
 681     // Children of projections are now all ready
 682     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 683       Node* m = n->fast_out(j); // Get user
 684       if(get_block_for_node(m) != block) {
 685         continue;
 686       }
 687       if( m->is_Phi() ) continue;
 688       int m_cnt = ready_cnt.at(m->_idx)-1;
 689       ready_cnt.at_put(m->_idx, m_cnt);
 690       if( m_cnt == 0 )
 691         worklist.push(m);
 692     }
 693 
 694   }
 695 
 696   // Act as if the call defines the Frame Pointer.
 697   // Certainly the FP is alive and well after the call.
 698   regs.Insert(_matcher.c_frame_pointer());
 699 
 700   // Set all registers killed and not already defined by the call.
 701   uint r_cnt = mcall->tf()->range()->cnt();
 702   int op = mcall->ideal_Opcode();
 703   MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 704   map_node_to_block(proj, block);
 705   block->insert_node(proj, node_cnt++);
 706 
 707   // Select the right register save policy.
 708   const char *save_policy = NULL;
 709   switch (op) {
 710     case Op_CallRuntime:
 711     case Op_CallLeaf:
 712     case Op_CallLeafNoFP:
 713       // Calling C code so use C calling convention
 714       save_policy = _matcher._c_reg_save_policy;
 715       break;
 716 
 717     case Op_CallStaticJava:
 718     case Op_CallDynamicJava:
 719       // Calling Java code so use Java calling convention
 720       save_policy = _matcher._register_save_policy;
 721       break;
 722 
 723     default:
 724       ShouldNotReachHere();
 725   }
 726 
 727   // When using CallRuntime mark SOE registers as killed by the call
 728   // so values that could show up in the RegisterMap aren't live in a
 729   // callee saved register since the register wouldn't know where to
 730   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 731   // have debug info on them.  Strictly speaking this only needs to be
 732   // done for oops since idealreg2debugmask takes care of debug info
 733   // references but there no way to handle oops differently than other
 734   // pointers as far as the kill mask goes.
 735   bool exclude_soe = op == Op_CallRuntime;
 736 
 737   // If the call is a MethodHandle invoke, we need to exclude the
 738   // register which is used to save the SP value over MH invokes from
 739   // the mask.  Otherwise this register could be used for
 740   // deoptimization information.
 741   if (op == Op_CallStaticJava) {
 742     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 743     if (mcallstaticjava->_method_handle_invoke)
 744       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 745   }
 746 
 747   if (UseShenandoahGC && mcall->entry_point() == StubRoutines::shenandoah_wb_C()) {
 748     assert(op == Op_CallLeafNoFP, "shenandoah_wb_C should be called with Op_CallLeafNoFP");
 749     add_call_kills(proj, regs, save_policy, exclude_soe, true);
 750   } else {
 751     add_call_kills(proj, regs, save_policy, exclude_soe, false);
 752   }
 753 
 754   return node_cnt;
 755 }
 756 
 757 
 758 //------------------------------schedule_local---------------------------------
 759 // Topological sort within a block.  Someday become a real scheduler.
 760 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
 761   // Already "sorted" are the block start Node (as the first entry), and
 762   // the block-ending Node and any trailing control projections.  We leave
 763   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 764   // Node.  Everything else gets topo-sorted.
 765 
 766 #ifndef PRODUCT
 767     if (trace_opto_pipelining()) {
 768       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 769       for (uint i = 0;i < block->number_of_nodes(); i++) {
 770         tty->print("# ");
 771         block->get_node(i)->fast_dump();
 772       }
 773       tty->print_cr("#");
 774     }
 775 #endif
 776 
 777   // RootNode is already sorted
 778   if (block->number_of_nodes() == 1) {
 779     return true;
 780   }
 781 
 782   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 783   uint node_cnt = block->end_idx();
 784   uint phi_cnt = 1;
 785   uint i;
 786   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 787     Node *n = block->get_node(i);
 788     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 789         (n->is_Proj()  && n->in(0) == block->head()) ) {
 790       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 791       block->map_node(block->get_node(phi_cnt), i);
 792       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 793     } else {                    // All others
 794       // Count block-local inputs to 'n'
 795       uint cnt = n->len();      // Input count
 796       uint local = 0;
 797       for( uint j=0; j<cnt; j++ ) {
 798         Node *m = n->in(j);
 799         if( m && get_block_for_node(m) == block && !m->is_top() )
 800           local++;              // One more block-local input
 801       }
 802       ready_cnt.at_put(n->_idx, local); // Count em up
 803 
 804 #ifdef ASSERT
 805       if( UseConcMarkSweepGC || UseG1GC ) {
 806         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 807           // Check the precedence edges
 808           for (uint prec = n->req(); prec < n->len(); prec++) {
 809             Node* oop_store = n->in(prec);
 810             if (oop_store != NULL) {
 811               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
 812             }
 813           }
 814         }
 815       }
 816 #endif
 817 
 818       // A few node types require changing a required edge to a precedence edge
 819       // before allocation.
 820       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 821           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 822            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 823         // MemBarAcquire could be created without Precedent edge.
 824         // del_req() replaces the specified edge with the last input edge
 825         // and then removes the last edge. If the specified edge > number of
 826         // edges the last edge will be moved outside of the input edges array
 827         // and the edge will be lost. This is why this code should be
 828         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 829         Node *x = n->in(TypeFunc::Parms);
 830         n->del_req(TypeFunc::Parms);
 831         n->add_prec(x);
 832       }
 833     }
 834   }
 835   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
 836     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
 837 
 838   // All the prescheduled guys do not hold back internal nodes
 839   uint i3;
 840   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
 841     Node *n = block->get_node(i3);       // Get pre-scheduled
 842     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 843       Node* m = n->fast_out(j);
 844       if (get_block_for_node(m) == block) { // Local-block user
 845         int m_cnt = ready_cnt.at(m->_idx)-1;
 846         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
 847       }
 848     }
 849   }
 850 
 851   Node_List delay;
 852   // Make a worklist
 853   Node_List worklist;
 854   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 855     Node *m = block->get_node(i4);
 856     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
 857       if (m->is_iteratively_computed()) {
 858         // Push induction variable increments last to allow other uses
 859         // of the phi to be scheduled first. The select() method breaks
 860         // ties in scheduling by worklist order.
 861         delay.push(m);
 862       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 863         // Force the CreateEx to the top of the list so it's processed
 864         // first and ends up at the start of the block.
 865         worklist.insert(0, m);
 866       } else {
 867         worklist.push(m);         // Then on to worklist!
 868       }
 869     }
 870   }
 871   while (delay.size()) {
 872     Node* d = delay.pop();
 873     worklist.push(d);
 874   }
 875 
 876   // Warm up the 'next_call' heuristic bits
 877   needed_for_next_call(block, block->head(), next_call);
 878 
 879 #ifndef PRODUCT
 880     if (trace_opto_pipelining()) {
 881       for (uint j=0; j< block->number_of_nodes(); j++) {
 882         Node     *n = block->get_node(j);
 883         int     idx = n->_idx;
 884         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
 885         tty->print("latency:%3d  ", get_latency_for_node(n));
 886         tty->print("%4d: %s\n", idx, n->Name());
 887       }
 888     }
 889 #endif
 890 
 891   uint max_idx = (uint)ready_cnt.length();
 892   // Pull from worklist and schedule
 893   while( worklist.size() ) {    // Worklist is not ready
 894 
 895 #ifndef PRODUCT
 896     if (trace_opto_pipelining()) {
 897       tty->print("#   ready list:");
 898       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 899         Node *n = worklist[i];      // Get Node on worklist
 900         tty->print(" %d", n->_idx);
 901       }
 902       tty->cr();
 903     }
 904 #endif
 905 
 906     // Select and pop a ready guy from worklist
 907     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
 908     block->map_node(n, phi_cnt++);    // Schedule him next
 909 
 910 #ifndef PRODUCT
 911     if (trace_opto_pipelining()) {
 912       tty->print("#    select %d: %s", n->_idx, n->Name());
 913       tty->print(", latency:%d", get_latency_for_node(n));
 914       n->dump();
 915       if (Verbose) {
 916         tty->print("#   ready list:");
 917         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 918           Node *n = worklist[i];      // Get Node on worklist
 919           tty->print(" %d", n->_idx);
 920         }
 921         tty->cr();
 922       }
 923     }
 924 
 925 #endif
 926     if( n->is_MachCall() ) {
 927       MachCallNode *mcall = n->as_MachCall();
 928       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
 929       continue;
 930     }
 931 
 932     if (n->is_Mach() && n->as_Mach()->has_call()) {
 933       RegMask regs;
 934       regs.Insert(_matcher.c_frame_pointer());
 935       regs.OR(n->out_RegMask());
 936 
 937       MachProjNode *proj = new (C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
 938       map_node_to_block(proj, block);
 939       block->insert_node(proj, phi_cnt++);
 940 
 941       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false, false);
 942     }
 943 
 944     // Children are now all ready
 945     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
 946       Node* m = n->fast_out(i5); // Get user
 947       if (get_block_for_node(m) != block) {
 948         continue;
 949       }
 950       if( m->is_Phi() ) continue;
 951       if (m->_idx >= max_idx) { // new node, skip it
 952         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
 953         continue;
 954       }
 955       int m_cnt = ready_cnt.at(m->_idx)-1;
 956       ready_cnt.at_put(m->_idx, m_cnt);
 957       if( m_cnt == 0 )
 958         worklist.push(m);
 959     }
 960   }
 961 
 962   if( phi_cnt != block->end_idx() ) {
 963     // did not schedule all.  Retry, Bailout, or Die
 964     if (C->subsume_loads() == true && !C->failing()) {
 965       // Retry with subsume_loads == false
 966       // If this is the first failure, the sentinel string will "stick"
 967       // to the Compile object, and the C2Compiler will see it and retry.
 968       C->record_failure(C2Compiler::retry_no_subsuming_loads());
 969     } else {
 970       assert(false, "graph should be schedulable");
 971     }
 972     // assert( phi_cnt == end_idx(), "did not schedule all" );
 973     return false;
 974   }
 975 
 976 #ifndef PRODUCT
 977   if (trace_opto_pipelining()) {
 978     tty->print_cr("#");
 979     tty->print_cr("# after schedule_local");
 980     for (uint i = 0;i < block->number_of_nodes();i++) {
 981       tty->print("# ");
 982       block->get_node(i)->fast_dump();
 983     }
 984     tty->cr();
 985   }
 986 #endif
 987 
 988 
 989   return true;
 990 }
 991 
 992 //--------------------------catch_cleanup_fix_all_inputs-----------------------
 993 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
 994   for (uint l = 0; l < use->len(); l++) {
 995     if (use->in(l) == old_def) {
 996       if (l < use->req()) {
 997         use->set_req(l, new_def);
 998       } else {
 999         use->rm_prec(l);
1000         use->add_prec(new_def);
1001         l--;
1002       }
1003     }
1004   }
1005 }
1006 
1007 //------------------------------catch_cleanup_find_cloned_def------------------
1008 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1009   assert( use_blk != def_blk, "Inter-block cleanup only");
1010 
1011   // The use is some block below the Catch.  Find and return the clone of the def
1012   // that dominates the use. If there is no clone in a dominating block, then
1013   // create a phi for the def in a dominating block.
1014 
1015   // Find which successor block dominates this use.  The successor
1016   // blocks must all be single-entry (from the Catch only; I will have
1017   // split blocks to make this so), hence they all dominate.
1018   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1019     use_blk = use_blk->_idom;
1020 
1021   // Find the successor
1022   Node *fixup = NULL;
1023 
1024   uint j;
1025   for( j = 0; j < def_blk->_num_succs; j++ )
1026     if( use_blk == def_blk->_succs[j] )
1027       break;
1028 
1029   if( j == def_blk->_num_succs ) {
1030     // Block at same level in dom-tree is not a successor.  It needs a
1031     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1032     Node_Array inputs = new Node_List(Thread::current()->resource_area());
1033     for(uint k = 1; k < use_blk->num_preds(); k++) {
1034       Block* block = get_block_for_node(use_blk->pred(k));
1035       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1036     }
1037 
1038     // Check to see if the use_blk already has an identical phi inserted.
1039     // If it exists, it will be at the first position since all uses of a
1040     // def are processed together.
1041     Node *phi = use_blk->get_node(1);
1042     if( phi->is_Phi() ) {
1043       fixup = phi;
1044       for (uint k = 1; k < use_blk->num_preds(); k++) {
1045         if (phi->in(k) != inputs[k]) {
1046           // Not a match
1047           fixup = NULL;
1048           break;
1049         }
1050       }
1051     }
1052 
1053     // If an existing PhiNode was not found, make a new one.
1054     if (fixup == NULL) {
1055       Node *new_phi = PhiNode::make(use_blk->head(), def);
1056       use_blk->insert_node(new_phi, 1);
1057       map_node_to_block(new_phi, use_blk);
1058       for (uint k = 1; k < use_blk->num_preds(); k++) {
1059         new_phi->set_req(k, inputs[k]);
1060       }
1061       fixup = new_phi;
1062     }
1063 
1064   } else {
1065     // Found the use just below the Catch.  Make it use the clone.
1066     fixup = use_blk->get_node(n_clone_idx);
1067   }
1068 
1069   return fixup;
1070 }
1071 
1072 //--------------------------catch_cleanup_intra_block--------------------------
1073 // Fix all input edges in use that reference "def".  The use is in the same
1074 // block as the def and both have been cloned in each successor block.
1075 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1076 
1077   // Both the use and def have been cloned. For each successor block,
1078   // get the clone of the use, and make its input the clone of the def
1079   // found in that block.
1080 
1081   uint use_idx = blk->find_node(use);
1082   uint offset_idx = use_idx - beg;
1083   for( uint k = 0; k < blk->_num_succs; k++ ) {
1084     // Get clone in each successor block
1085     Block *sb = blk->_succs[k];
1086     Node *clone = sb->get_node(offset_idx+1);
1087     assert( clone->Opcode() == use->Opcode(), "" );
1088 
1089     // Make use-clone reference the def-clone
1090     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1091   }
1092 }
1093 
1094 //------------------------------catch_cleanup_inter_block---------------------
1095 // Fix all input edges in use that reference "def".  The use is in a different
1096 // block than the def.
1097 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1098   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1099 
1100   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1101   catch_cleanup_fix_all_inputs(use, def, new_def);
1102 }
1103 
1104 //------------------------------call_catch_cleanup-----------------------------
1105 // If we inserted any instructions between a Call and his CatchNode,
1106 // clone the instructions on all paths below the Catch.
1107 void PhaseCFG::call_catch_cleanup(Block* block) {
1108 
1109   // End of region to clone
1110   uint end = block->end_idx();
1111   if( !block->get_node(end)->is_Catch() ) return;
1112   // Start of region to clone
1113   uint beg = end;
1114   while(!block->get_node(beg-1)->is_MachProj() ||
1115         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1116     beg--;
1117     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1118   }
1119   // Range of inserted instructions is [beg, end)
1120   if( beg == end ) return;
1121 
1122   // Clone along all Catch output paths.  Clone area between the 'beg' and
1123   // 'end' indices.
1124   for( uint i = 0; i < block->_num_succs; i++ ) {
1125     Block *sb = block->_succs[i];
1126     // Clone the entire area; ignoring the edge fixup for now.
1127     for( uint j = end; j > beg; j-- ) {
1128       Node *clone = block->get_node(j-1)->clone();
1129       sb->insert_node(clone, 1);
1130       map_node_to_block(clone, sb);
1131       if (clone->needs_anti_dependence_check()) {
1132         insert_anti_dependences(sb, clone);
1133       }
1134     }
1135   }
1136 
1137 
1138   // Fixup edges.  Check the def-use info per cloned Node
1139   for(uint i2 = beg; i2 < end; i2++ ) {
1140     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1141     Node *n = block->get_node(i2);        // Node that got cloned
1142     // Need DU safe iterator because of edge manipulation in calls.
1143     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1144     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1145       out->push(n->fast_out(j1));
1146     }
1147     uint max = out->size();
1148     for (uint j = 0; j < max; j++) {// For all users
1149       Node *use = out->pop();
1150       Block *buse = get_block_for_node(use);
1151       if( use->is_Phi() ) {
1152         for( uint k = 1; k < use->req(); k++ )
1153           if( use->in(k) == n ) {
1154             Block* b = get_block_for_node(buse->pred(k));
1155             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1156             use->set_req(k, fixup);
1157           }
1158       } else {
1159         if (block == buse) {
1160           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1161         } else {
1162           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1163         }
1164       }
1165     } // End for all users
1166 
1167   } // End of for all Nodes in cloned area
1168 
1169   // Remove the now-dead cloned ops
1170   for(uint i3 = beg; i3 < end; i3++ ) {
1171     block->get_node(beg)->disconnect_inputs(NULL, C);
1172     block->remove_node(beg);
1173   }
1174 
1175   // If the successor blocks have a CreateEx node, move it back to the top
1176   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1177     Block *sb = block->_succs[i4];
1178     uint new_cnt = end - beg;
1179     // Remove any newly created, but dead, nodes.
1180     for( uint j = new_cnt; j > 0; j-- ) {
1181       Node *n = sb->get_node(j);
1182       if (n->outcnt() == 0 &&
1183           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1184         n->disconnect_inputs(NULL, C);
1185         sb->remove_node(j);
1186         new_cnt--;
1187       }
1188     }
1189     // If any newly created nodes remain, move the CreateEx node to the top
1190     if (new_cnt > 0) {
1191       Node *cex = sb->get_node(1+new_cnt);
1192       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1193         sb->remove_node(1+new_cnt);
1194         sb->insert_node(cex, 1);
1195       }
1196     }
1197   }
1198 }