1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/c2compiler.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/runtime.hpp"
  33 #if defined AD_MD_HPP
  34 # include AD_MD_HPP
  35 #elif defined TARGET_ARCH_MODEL_x86_32
  36 # include "adfiles/ad_x86_32.hpp"
  37 #elif defined TARGET_ARCH_MODEL_x86_64
  38 # include "adfiles/ad_x86_64.hpp"
  39 #elif defined TARGET_ARCH_MODEL_aarch64
  40 # include "adfiles/ad_aarch64.hpp"
  41 #elif defined TARGET_ARCH_MODEL_sparc
  42 # include "adfiles/ad_sparc.hpp"
  43 #elif defined TARGET_ARCH_MODEL_zero
  44 # include "adfiles/ad_zero.hpp"
  45 #elif defined TARGET_ARCH_MODEL_ppc_64
  46 # include "adfiles/ad_ppc_64.hpp"
  47 #endif
  48 
  49 // Optimization - Graph Style
  50 
  51 // Check whether val is not-null-decoded compressed oop,
  52 // i.e. will grab into the base of the heap if it represents NULL.
  53 static bool accesses_heap_base_zone(Node *val) {
  54   if (Universe::narrow_oop_base() != NULL) { // Implies UseCompressedOops.
  55     if (val && val->is_Mach()) {
  56       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  57         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  58         // decode NULL to point to the heap base (Decode_NN).
  59         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  60           return true;
  61         }
  62       }
  63       // Must recognize load operation with Decode matched in memory operand.
  64       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
  65       // returns true everywhere else. On PPC, no such memory operands
  66       // exist, therefore we did not yet implement a check for such operands.
  67       NOT_AIX(Unimplemented());
  68     }
  69   }
  70   return false;
  71 }
  72 
  73 static bool needs_explicit_null_check_for_read(Node *val) {
  74   // On some OSes (AIX) the page at address 0 is only write protected.
  75   // If so, only Store operations will trap.
  76   if (os::zero_page_read_protected()) {
  77     return false;  // Implicit null check will work.
  78   }
  79   // Also a read accessing the base of a heap-based compressed heap will trap.
  80   if (accesses_heap_base_zone(val) &&                    // Hits the base zone page.
  81       Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
  82     return false;
  83   }
  84 
  85   return true;
  86 }
  87 
  88 //------------------------------implicit_null_check----------------------------
  89 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  90 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  91 // I can generate a memory op if there is not one nearby.
  92 // The proj is the control projection for the not-null case.
  93 // The val is the pointer being checked for nullness or
  94 // decodeHeapOop_not_null node if it did not fold into address.
  95 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  96   // Assume if null check need for 0 offset then always needed
  97   // Intel solaris doesn't support any null checks yet and no
  98   // mechanism exists (yet) to set the switches at an os_cpu level
  99   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
 100 
 101   // Make sure the ptr-is-null path appears to be uncommon!
 102   float f = block->end()->as_MachIf()->_prob;
 103   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
 104   if( f > PROB_UNLIKELY_MAG(4) ) return;
 105 
 106   uint bidx = 0;                // Capture index of value into memop
 107   bool was_store;               // Memory op is a store op
 108 
 109   // Get the successor block for if the test ptr is non-null
 110   Block* not_null_block;  // this one goes with the proj
 111   Block* null_block;
 112   if (block->get_node(block->number_of_nodes()-1) == proj) {
 113     null_block     = block->_succs[0];
 114     not_null_block = block->_succs[1];
 115   } else {
 116     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 117     not_null_block = block->_succs[0];
 118     null_block     = block->_succs[1];
 119   }
 120   while (null_block->is_Empty() == Block::empty_with_goto) {
 121     null_block     = null_block->_succs[0];
 122   }
 123 
 124   // Search the exception block for an uncommon trap.
 125   // (See Parse::do_if and Parse::do_ifnull for the reason
 126   // we need an uncommon trap.  Briefly, we need a way to
 127   // detect failure of this optimization, as in 6366351.)
 128   {
 129     bool found_trap = false;
 130     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 131       Node* nn = null_block->get_node(i1);
 132       if (nn->is_MachCall() &&
 133           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 134         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 135         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 136           jint tr_con = trtype->is_int()->get_con();
 137           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 138           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 139           assert((int)reason < (int)BitsPerInt, "recode bit map");
 140           if (is_set_nth_bit(allowed_reasons, (int) reason)
 141               && action != Deoptimization::Action_none) {
 142             // This uncommon trap is sure to recompile, eventually.
 143             // When that happens, C->too_many_traps will prevent
 144             // this transformation from happening again.
 145             found_trap = true;
 146           }
 147         }
 148         break;
 149       }
 150     }
 151     if (!found_trap) {
 152       // We did not find an uncommon trap.
 153       return;
 154     }
 155   }
 156 
 157   // Check for decodeHeapOop_not_null node which did not fold into address
 158   bool is_decoden = ((intptr_t)val) & 1;
 159   val = (Node*)(((intptr_t)val) & ~1);
 160 
 161   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 162          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 163 
 164   // Search the successor block for a load or store who's base value is also
 165   // the tested value.  There may be several.
 166   Node_List *out = new Node_List(Thread::current()->resource_area());
 167   MachNode *best = NULL;        // Best found so far
 168   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 169     Node *m = val->out(i);
 170     if( !m->is_Mach() ) continue;
 171     MachNode *mach = m->as_Mach();
 172     was_store = false;
 173     int iop = mach->ideal_Opcode();
 174     switch( iop ) {
 175     case Op_LoadB:
 176     case Op_LoadUB:
 177     case Op_LoadUS:
 178     case Op_LoadD:
 179     case Op_LoadF:
 180     case Op_LoadI:
 181     case Op_LoadL:
 182     case Op_LoadP:
 183     case Op_LoadN:
 184     case Op_LoadS:
 185     case Op_LoadKlass:
 186     case Op_LoadNKlass:
 187     case Op_LoadRange:
 188     case Op_LoadD_unaligned:
 189     case Op_LoadL_unaligned:
 190     case Op_ShenandoahReadBarrier:
 191       assert(mach->in(2) == val, "should be address");
 192       break;
 193     case Op_StoreB:
 194     case Op_StoreC:
 195     case Op_StoreCM:
 196     case Op_StoreD:
 197     case Op_StoreF:
 198     case Op_StoreI:
 199     case Op_StoreL:
 200     case Op_StoreP:
 201     case Op_StoreN:
 202     case Op_StoreNKlass:
 203       was_store = true;         // Memory op is a store op
 204       // Stores will have their address in slot 2 (memory in slot 1).
 205       // If the value being nul-checked is in another slot, it means we
 206       // are storing the checked value, which does NOT check the value!
 207       if( mach->in(2) != val ) continue;
 208       break;                    // Found a memory op?
 209     case Op_StrComp:
 210     case Op_StrEquals:
 211     case Op_StrIndexOf:
 212     case Op_AryEq:
 213     case Op_EncodeISOArray:
 214       // Not a legit memory op for implicit null check regardless of
 215       // embedded loads
 216       continue;
 217     default:                    // Also check for embedded loads
 218       if( !mach->needs_anti_dependence_check() )
 219         continue;               // Not an memory op; skip it
 220       if( must_clone[iop] ) {
 221         // Do not move nodes which produce flags because
 222         // RA will try to clone it to place near branch and
 223         // it will cause recompilation, see clone_node().
 224         continue;
 225       }
 226       {
 227         // Check that value is used in memory address in
 228         // instructions with embedded load (CmpP val1,(val2+off)).
 229         Node* base;
 230         Node* index;
 231         const MachOper* oper = mach->memory_inputs(base, index);
 232         if (oper == NULL || oper == (MachOper*)-1) {
 233           continue;             // Not an memory op; skip it
 234         }
 235         if (val == base ||
 236             val == index && val->bottom_type()->isa_narrowoop()) {
 237           break;                // Found it
 238         } else {
 239           continue;             // Skip it
 240         }
 241       }
 242       break;
 243     }
 244 
 245     // On some OSes (AIX) the page at address 0 is only write protected.
 246     // If so, only Store operations will trap.
 247     // But a read accessing the base of a heap-based compressed heap will trap.
 248     if (!was_store && needs_explicit_null_check_for_read(val)) {
 249       continue;
 250     }
 251 
 252     // Check that node's control edge is not-null block's head or dominates it,
 253     // otherwise we can't hoist it because there are other control dependencies.
 254     Node* ctrl = mach->in(0);
 255     if (ctrl != NULL && !(ctrl == not_null_block->head() ||
 256         get_block_for_node(ctrl)->dominates(not_null_block))) {
 257       continue;
 258     }
 259 
 260     // check if the offset is not too high for implicit exception
 261     {
 262       intptr_t offset = 0;
 263       const TypePtr *adr_type = NULL;  // Do not need this return value here
 264       const Node* base = mach->get_base_and_disp(offset, adr_type);
 265       if (base == NULL || base == NodeSentinel) {
 266         // Narrow oop address doesn't have base, only index
 267         if( val->bottom_type()->isa_narrowoop() &&
 268             MacroAssembler::needs_explicit_null_check(offset) )
 269           continue;             // Give up if offset is beyond page size
 270         // cannot reason about it; is probably not implicit null exception
 271       } else {
 272         const TypePtr* tptr;
 273         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
 274                                   Universe::narrow_klass_shift() == 0)) {
 275           // 32-bits narrow oop can be the base of address expressions
 276           tptr = base->get_ptr_type();
 277         } else {
 278           // only regular oops are expected here
 279           tptr = base->bottom_type()->is_ptr();
 280         }
 281         // Give up if offset is not a compile-time constant
 282         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
 283           continue;
 284         offset += tptr->_offset; // correct if base is offseted
 285         if( MacroAssembler::needs_explicit_null_check(offset) )
 286           continue;             // Give up is reference is beyond 4K page size
 287       }
 288     }
 289 
 290     // Check ctrl input to see if the null-check dominates the memory op
 291     Block *cb = get_block_for_node(mach);
 292     cb = cb->_idom;             // Always hoist at least 1 block
 293     if( !was_store ) {          // Stores can be hoisted only one block
 294       while( cb->_dom_depth > (block->_dom_depth + 1))
 295         cb = cb->_idom;         // Hoist loads as far as we want
 296       // The non-null-block should dominate the memory op, too. Live
 297       // range spilling will insert a spill in the non-null-block if it is
 298       // needs to spill the memory op for an implicit null check.
 299       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 300         if (cb != not_null_block) continue;
 301         cb = cb->_idom;
 302       }
 303     }
 304     if( cb != block ) continue;
 305 
 306     // Found a memory user; see if it can be hoisted to check-block
 307     uint vidx = 0;              // Capture index of value into memop
 308     uint j;
 309     for( j = mach->req()-1; j > 0; j-- ) {
 310       if( mach->in(j) == val ) {
 311         vidx = j;
 312         // Ignore DecodeN val which could be hoisted to where needed.
 313         if( is_decoden ) continue;
 314       }
 315       // Block of memory-op input
 316       Block *inb = get_block_for_node(mach->in(j));
 317       Block *b = block;          // Start from nul check
 318       while( b != inb && b->_dom_depth > inb->_dom_depth )
 319         b = b->_idom;           // search upwards for input
 320       // See if input dominates null check
 321       if( b != inb )
 322         break;
 323     }
 324     if( j > 0 )
 325       continue;
 326     Block *mb = get_block_for_node(mach);
 327     // Hoisting stores requires more checks for the anti-dependence case.
 328     // Give up hoisting if we have to move the store past any load.
 329     if( was_store ) {
 330       Block *b = mb;            // Start searching here for a local load
 331       // mach use (faulting) trying to hoist
 332       // n might be blocker to hoisting
 333       while( b != block ) {
 334         uint k;
 335         for( k = 1; k < b->number_of_nodes(); k++ ) {
 336           Node *n = b->get_node(k);
 337           if( n->needs_anti_dependence_check() &&
 338               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 339             break;              // Found anti-dependent load
 340         }
 341         if( k < b->number_of_nodes() )
 342           break;                // Found anti-dependent load
 343         // Make sure control does not do a merge (would have to check allpaths)
 344         if( b->num_preds() != 2 ) break;
 345         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
 346       }
 347       if( b != block ) continue;
 348     }
 349 
 350     // Make sure this memory op is not already being used for a NullCheck
 351     Node *e = mb->end();
 352     if( e->is_MachNullCheck() && e->in(1) == mach )
 353       continue;                 // Already being used as a NULL check
 354 
 355     // Found a candidate!  Pick one with least dom depth - the highest
 356     // in the dom tree should be closest to the null check.
 357     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 358       best = mach;
 359       bidx = vidx;
 360     }
 361   }
 362   // No candidate!
 363   if (best == NULL) {
 364     return;
 365   }
 366 
 367   // ---- Found an implicit null check
 368   extern int implicit_null_checks;
 369   implicit_null_checks++;
 370 
 371   if( is_decoden ) {
 372     // Check if we need to hoist decodeHeapOop_not_null first.
 373     Block *valb = get_block_for_node(val);
 374     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 375       // Hoist it up to the end of the test block.
 376       valb->find_remove(val);
 377       block->add_inst(val);
 378       map_node_to_block(val, block);
 379       // DecodeN on x86 may kill flags. Check for flag-killing projections
 380       // that also need to be hoisted.
 381       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 382         Node* n = val->fast_out(j);
 383         if( n->is_MachProj() ) {
 384           get_block_for_node(n)->find_remove(n);
 385           block->add_inst(n);
 386           map_node_to_block(n, block);
 387         }
 388       }
 389     }
 390   }
 391   // Hoist the memory candidate up to the end of the test block.
 392   Block *old_block = get_block_for_node(best);
 393   old_block->find_remove(best);
 394   block->add_inst(best);
 395   map_node_to_block(best, block);
 396 
 397   // Move the control dependence if it is pinned to not-null block.
 398   // Don't change it in other cases: NULL or dominating control.
 399   if (best->in(0) == not_null_block->head()) {
 400     // Set it to control edge of null check.
 401     best->set_req(0, proj->in(0)->in(0));
 402   }
 403 
 404   // Check for flag-killing projections that also need to be hoisted
 405   // Should be DU safe because no edge updates.
 406   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 407     Node* n = best->fast_out(j);
 408     if( n->is_MachProj() ) {
 409       get_block_for_node(n)->find_remove(n);
 410       block->add_inst(n);
 411       map_node_to_block(n, block);
 412     }
 413   }
 414 
 415   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 416   // One of two graph shapes got matched:
 417   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 418   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 419   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 420   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 421   // We need to flip the projections to keep the same semantics.
 422   if( proj->Opcode() == Op_IfTrue ) {
 423     // Swap order of projections in basic block to swap branch targets
 424     Node *tmp1 = block->get_node(block->end_idx()+1);
 425     Node *tmp2 = block->get_node(block->end_idx()+2);
 426     block->map_node(tmp2, block->end_idx()+1);
 427     block->map_node(tmp1, block->end_idx()+2);
 428     Node *tmp = new (C) Node(C->top()); // Use not NULL input
 429     tmp1->replace_by(tmp);
 430     tmp2->replace_by(tmp1);
 431     tmp->replace_by(tmp2);
 432     tmp->destruct();
 433   }
 434 
 435   // Remove the existing null check; use a new implicit null check instead.
 436   // Since schedule-local needs precise def-use info, we need to correct
 437   // it as well.
 438   Node *old_tst = proj->in(0);
 439   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
 440   block->map_node(nul_chk, block->end_idx());
 441   map_node_to_block(nul_chk, block);
 442   // Redirect users of old_test to nul_chk
 443   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 444     old_tst->last_out(i2)->set_req(0, nul_chk);
 445   // Clean-up any dead code
 446   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 447     Node* in = old_tst->in(i3);
 448     old_tst->set_req(i3, NULL);
 449     if (in->outcnt() == 0) {
 450       // Remove dead input node
 451       in->disconnect_inputs(NULL, C);
 452       block->find_remove(in);
 453     }
 454   }
 455 
 456   latency_from_uses(nul_chk);
 457   latency_from_uses(best);
 458 
 459   // insert anti-dependences to defs in this block
 460   if (! best->needs_anti_dependence_check()) {
 461     for (uint k = 1; k < block->number_of_nodes(); k++) {
 462       Node *n = block->get_node(k);
 463       if (n->needs_anti_dependence_check() &&
 464           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
 465         // Found anti-dependent load
 466         insert_anti_dependences(block, n);
 467       }
 468     }
 469   }
 470 }
 471 
 472 
 473 //------------------------------select-----------------------------------------
 474 // Select a nice fellow from the worklist to schedule next. If there is only
 475 // one choice, then use it. Projections take top priority for correctness
 476 // reasons - if I see a projection, then it is next.  There are a number of
 477 // other special cases, for instructions that consume condition codes, et al.
 478 // These are chosen immediately. Some instructions are required to immediately
 479 // precede the last instruction in the block, and these are taken last. Of the
 480 // remaining cases (most), choose the instruction with the greatest latency
 481 // (that is, the most number of pseudo-cycles required to the end of the
 482 // routine). If there is a tie, choose the instruction with the most inputs.
 483 Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
 484 
 485   // If only a single entry on the stack, use it
 486   uint cnt = worklist.size();
 487   if (cnt == 1) {
 488     Node *n = worklist[0];
 489     worklist.map(0,worklist.pop());
 490     return n;
 491   }
 492 
 493   uint choice  = 0; // Bigger is most important
 494   uint latency = 0; // Bigger is scheduled first
 495   uint score   = 0; // Bigger is better
 496   int idx = -1;     // Index in worklist
 497   int cand_cnt = 0; // Candidate count
 498 
 499   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 500     // Order in worklist is used to break ties.
 501     // See caller for how this is used to delay scheduling
 502     // of induction variable increments to after the other
 503     // uses of the phi are scheduled.
 504     Node *n = worklist[i];      // Get Node on worklist
 505 
 506     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 507     if( n->is_Proj() ||         // Projections always win
 508         n->Opcode()== Op_Con || // So does constant 'Top'
 509         iop == Op_CreateEx ||   // Create-exception must start block
 510         iop == Op_CheckCastPP
 511         ) {
 512       worklist.map(i,worklist.pop());
 513       return n;
 514     }
 515 
 516     // Final call in a block must be adjacent to 'catch'
 517     Node *e = block->end();
 518     if( e->is_Catch() && e->in(0)->in(0) == n )
 519       continue;
 520 
 521     // Memory op for an implicit null check has to be at the end of the block
 522     if( e->is_MachNullCheck() && e->in(1) == n )
 523       continue;
 524 
 525     // Schedule IV increment last.
 526     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
 527         e->in(1)->in(1) == n && n->is_iteratively_computed())
 528       continue;
 529 
 530     uint n_choice  = 2;
 531 
 532     // See if this instruction is consumed by a branch. If so, then (as the
 533     // branch is the last instruction in the basic block) force it to the
 534     // end of the basic block
 535     if ( must_clone[iop] ) {
 536       // See if any use is a branch
 537       bool found_machif = false;
 538 
 539       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 540         Node* use = n->fast_out(j);
 541 
 542         // The use is a conditional branch, make them adjacent
 543         if (use->is_MachIf() && get_block_for_node(use) == block) {
 544           found_machif = true;
 545           break;
 546         }
 547 
 548         // More than this instruction pending for successor to be ready,
 549         // don't choose this if other opportunities are ready
 550         if (ready_cnt.at(use->_idx) > 1)
 551           n_choice = 1;
 552       }
 553 
 554       // loop terminated, prefer not to use this instruction
 555       if (found_machif)
 556         continue;
 557     }
 558 
 559     // See if this has a predecessor that is "must_clone", i.e. sets the
 560     // condition code. If so, choose this first
 561     for (uint j = 0; j < n->req() ; j++) {
 562       Node *inn = n->in(j);
 563       if (inn) {
 564         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 565           n_choice = 3;
 566           break;
 567         }
 568       }
 569     }
 570 
 571     // MachTemps should be scheduled last so they are near their uses
 572     if (n->is_MachTemp()) {
 573       n_choice = 1;
 574     }
 575 
 576     uint n_latency = get_latency_for_node(n);
 577     uint n_score   = n->req();   // Many inputs get high score to break ties
 578 
 579     // Keep best latency found
 580     cand_cnt++;
 581     if (choice < n_choice ||
 582         (choice == n_choice &&
 583          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 584           (!StressLCM &&
 585            (latency < n_latency ||
 586             (latency == n_latency &&
 587              (score < n_score))))))) {
 588       choice  = n_choice;
 589       latency = n_latency;
 590       score   = n_score;
 591       idx     = i;               // Also keep index in worklist
 592     }
 593   } // End of for all ready nodes in worklist
 594 
 595   assert(idx >= 0, "index should be set");
 596   Node *n = worklist[(uint)idx];      // Get the winner
 597 
 598   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 599   return n;
 600 }
 601 
 602 
 603 //------------------------------set_next_call----------------------------------
 604 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 605   if( next_call.test_set(n->_idx) ) return;
 606   for( uint i=0; i<n->len(); i++ ) {
 607     Node *m = n->in(i);
 608     if( !m ) continue;  // must see all nodes in block that precede call
 609     if (get_block_for_node(m) == block) {
 610       set_next_call(block, m, next_call);
 611     }
 612   }
 613 }
 614 
 615 //------------------------------needed_for_next_call---------------------------
 616 // Set the flag 'next_call' for each Node that is needed for the next call to
 617 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 618 // next subroutine call get priority - basically it moves things NOT needed
 619 // for the next call till after the call.  This prevents me from trying to
 620 // carry lots of stuff live across a call.
 621 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 622   // Find the next control-defining Node in this block
 623   Node* call = NULL;
 624   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 625     Node* m = this_call->fast_out(i);
 626     if (get_block_for_node(m) == block && // Local-block user
 627         m != this_call &&       // Not self-start node
 628         m->is_MachCall()) {
 629       call = m;
 630       break;
 631     }
 632   }
 633   if (call == NULL)  return;    // No next call (e.g., block end is near)
 634   // Set next-call for all inputs to this call
 635   set_next_call(block, call, next_call);
 636 }
 637 
 638 //------------------------------add_call_kills-------------------------------------
 639 // helper function that adds caller save registers to MachProjNode
 640 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe, bool exclude_fp) {
 641   // Fill in the kill mask for the call
 642   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 643     if (exclude_fp && (register_save_type[r] == Op_RegF || register_save_type[r] == Op_RegD)) {
 644       continue;
 645     }
 646     if( !regs.Member(r) ) {     // Not already defined by the call
 647       // Save-on-call register?
 648       if ((save_policy[r] == 'C') ||
 649           (save_policy[r] == 'A') ||
 650           ((save_policy[r] == 'E') && exclude_soe)) {
 651         proj->_rout.Insert(r);
 652       }
 653     }
 654   }
 655 }
 656 
 657 
 658 //------------------------------sched_call-------------------------------------
 659 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 660   RegMask regs;
 661 
 662   // Schedule all the users of the call right now.  All the users are
 663   // projection Nodes, so they must be scheduled next to the call.
 664   // Collect all the defined registers.
 665   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 666     Node* n = mcall->fast_out(i);
 667     assert( n->is_MachProj(), "" );
 668     int n_cnt = ready_cnt.at(n->_idx)-1;
 669     ready_cnt.at_put(n->_idx, n_cnt);
 670     assert( n_cnt == 0, "" );
 671     // Schedule next to call
 672     block->map_node(n, node_cnt++);
 673     // Collect defined registers
 674     regs.OR(n->out_RegMask());
 675     // Check for scheduling the next control-definer
 676     if( n->bottom_type() == Type::CONTROL )
 677       // Warm up next pile of heuristic bits
 678       needed_for_next_call(block, n, next_call);
 679 
 680     // Children of projections are now all ready
 681     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 682       Node* m = n->fast_out(j); // Get user
 683       if(get_block_for_node(m) != block) {
 684         continue;
 685       }
 686       if( m->is_Phi() ) continue;
 687       int m_cnt = ready_cnt.at(m->_idx)-1;
 688       ready_cnt.at_put(m->_idx, m_cnt);
 689       if( m_cnt == 0 )
 690         worklist.push(m);
 691     }
 692 
 693   }
 694 
 695   // Act as if the call defines the Frame Pointer.
 696   // Certainly the FP is alive and well after the call.
 697   regs.Insert(_matcher.c_frame_pointer());
 698 
 699   // Set all registers killed and not already defined by the call.
 700   uint r_cnt = mcall->tf()->range()->cnt();
 701   int op = mcall->ideal_Opcode();
 702   MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 703   map_node_to_block(proj, block);
 704   block->insert_node(proj, node_cnt++);
 705 
 706   // Select the right register save policy.
 707   const char *save_policy = NULL;
 708   switch (op) {
 709     case Op_CallRuntime:
 710     case Op_CallLeaf:
 711     case Op_CallLeafNoFP:
 712       // Calling C code so use C calling convention
 713       save_policy = _matcher._c_reg_save_policy;
 714       break;
 715 
 716     case Op_CallStaticJava:
 717     case Op_CallDynamicJava:
 718       // Calling Java code so use Java calling convention
 719       save_policy = _matcher._register_save_policy;
 720       break;
 721 
 722     default:
 723       ShouldNotReachHere();
 724   }
 725 
 726   // When using CallRuntime mark SOE registers as killed by the call
 727   // so values that could show up in the RegisterMap aren't live in a
 728   // callee saved register since the register wouldn't know where to
 729   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 730   // have debug info on them.  Strictly speaking this only needs to be
 731   // done for oops since idealreg2debugmask takes care of debug info
 732   // references but there no way to handle oops differently than other
 733   // pointers as far as the kill mask goes.
 734   bool exclude_soe = op == Op_CallRuntime;
 735 
 736   // If the call is a MethodHandle invoke, we need to exclude the
 737   // register which is used to save the SP value over MH invokes from
 738   // the mask.  Otherwise this register could be used for
 739   // deoptimization information.
 740   if (op == Op_CallStaticJava) {
 741     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 742     if (mcallstaticjava->_method_handle_invoke)
 743       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 744   }
 745 
 746   if (UseShenandoahGC && mcall->entry_point() == StubRoutines::shenandoah_wb_C()) {
 747     assert(op == Op_CallLeafNoFP, "shenandoah_wb_C should be called with Op_CallLeafNoFP");
 748     add_call_kills(proj, regs, save_policy, exclude_soe, true);
 749   } else {
 750     add_call_kills(proj, regs, save_policy, exclude_soe, false);
 751   }
 752 
 753   return node_cnt;
 754 }
 755 
 756 
 757 //------------------------------schedule_local---------------------------------
 758 // Topological sort within a block.  Someday become a real scheduler.
 759 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
 760   // Already "sorted" are the block start Node (as the first entry), and
 761   // the block-ending Node and any trailing control projections.  We leave
 762   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 763   // Node.  Everything else gets topo-sorted.
 764 
 765 #ifndef PRODUCT
 766     if (trace_opto_pipelining()) {
 767       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 768       for (uint i = 0;i < block->number_of_nodes(); i++) {
 769         tty->print("# ");
 770         block->get_node(i)->fast_dump();
 771       }
 772       tty->print_cr("#");
 773     }
 774 #endif
 775 
 776   // RootNode is already sorted
 777   if (block->number_of_nodes() == 1) {
 778     return true;
 779   }
 780 
 781   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 782   uint node_cnt = block->end_idx();
 783   uint phi_cnt = 1;
 784   uint i;
 785   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 786     Node *n = block->get_node(i);
 787     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 788         (n->is_Proj()  && n->in(0) == block->head()) ) {
 789       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 790       block->map_node(block->get_node(phi_cnt), i);
 791       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 792     } else {                    // All others
 793       // Count block-local inputs to 'n'
 794       uint cnt = n->len();      // Input count
 795       uint local = 0;
 796       for( uint j=0; j<cnt; j++ ) {
 797         Node *m = n->in(j);
 798         if( m && get_block_for_node(m) == block && !m->is_top() )
 799           local++;              // One more block-local input
 800       }
 801       ready_cnt.at_put(n->_idx, local); // Count em up
 802 
 803 #ifdef ASSERT
 804       if( UseConcMarkSweepGC || UseG1GC ) {
 805         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 806           // Check the precedence edges
 807           for (uint prec = n->req(); prec < n->len(); prec++) {
 808             Node* oop_store = n->in(prec);
 809             if (oop_store != NULL) {
 810               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
 811             }
 812           }
 813         }
 814       }
 815 #endif
 816 
 817       // A few node types require changing a required edge to a precedence edge
 818       // before allocation.
 819       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 820           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 821            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 822         // MemBarAcquire could be created without Precedent edge.
 823         // del_req() replaces the specified edge with the last input edge
 824         // and then removes the last edge. If the specified edge > number of
 825         // edges the last edge will be moved outside of the input edges array
 826         // and the edge will be lost. This is why this code should be
 827         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 828         Node *x = n->in(TypeFunc::Parms);
 829         n->del_req(TypeFunc::Parms);
 830         n->add_prec(x);
 831       }
 832     }
 833   }
 834   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
 835     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
 836 
 837   // All the prescheduled guys do not hold back internal nodes
 838   uint i3;
 839   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
 840     Node *n = block->get_node(i3);       // Get pre-scheduled
 841     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 842       Node* m = n->fast_out(j);
 843       if (get_block_for_node(m) == block) { // Local-block user
 844         int m_cnt = ready_cnt.at(m->_idx)-1;
 845         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
 846       }
 847     }
 848   }
 849 
 850   Node_List delay;
 851   // Make a worklist
 852   Node_List worklist;
 853   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 854     Node *m = block->get_node(i4);
 855     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
 856       if (m->is_iteratively_computed()) {
 857         // Push induction variable increments last to allow other uses
 858         // of the phi to be scheduled first. The select() method breaks
 859         // ties in scheduling by worklist order.
 860         delay.push(m);
 861       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 862         // Force the CreateEx to the top of the list so it's processed
 863         // first and ends up at the start of the block.
 864         worklist.insert(0, m);
 865       } else {
 866         worklist.push(m);         // Then on to worklist!
 867       }
 868     }
 869   }
 870   while (delay.size()) {
 871     Node* d = delay.pop();
 872     worklist.push(d);
 873   }
 874 
 875   // Warm up the 'next_call' heuristic bits
 876   needed_for_next_call(block, block->head(), next_call);
 877 
 878 #ifndef PRODUCT
 879     if (trace_opto_pipelining()) {
 880       for (uint j=0; j< block->number_of_nodes(); j++) {
 881         Node     *n = block->get_node(j);
 882         int     idx = n->_idx;
 883         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
 884         tty->print("latency:%3d  ", get_latency_for_node(n));
 885         tty->print("%4d: %s\n", idx, n->Name());
 886       }
 887     }
 888 #endif
 889 
 890   uint max_idx = (uint)ready_cnt.length();
 891   // Pull from worklist and schedule
 892   while( worklist.size() ) {    // Worklist is not ready
 893 
 894 #ifndef PRODUCT
 895     if (trace_opto_pipelining()) {
 896       tty->print("#   ready list:");
 897       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 898         Node *n = worklist[i];      // Get Node on worklist
 899         tty->print(" %d", n->_idx);
 900       }
 901       tty->cr();
 902     }
 903 #endif
 904 
 905     // Select and pop a ready guy from worklist
 906     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
 907     block->map_node(n, phi_cnt++);    // Schedule him next
 908 
 909 #ifndef PRODUCT
 910     if (trace_opto_pipelining()) {
 911       tty->print("#    select %d: %s", n->_idx, n->Name());
 912       tty->print(", latency:%d", get_latency_for_node(n));
 913       n->dump();
 914       if (Verbose) {
 915         tty->print("#   ready list:");
 916         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 917           Node *n = worklist[i];      // Get Node on worklist
 918           tty->print(" %d", n->_idx);
 919         }
 920         tty->cr();
 921       }
 922     }
 923 
 924 #endif
 925     if( n->is_MachCall() ) {
 926       MachCallNode *mcall = n->as_MachCall();
 927       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
 928       continue;
 929     }
 930 
 931     if (n->is_Mach() && n->as_Mach()->has_call()) {
 932       RegMask regs;
 933       regs.Insert(_matcher.c_frame_pointer());
 934       regs.OR(n->out_RegMask());
 935 
 936       MachProjNode *proj = new (C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
 937       map_node_to_block(proj, block);
 938       block->insert_node(proj, phi_cnt++);
 939 
 940       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false, false);
 941     }
 942 
 943     // Children are now all ready
 944     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
 945       Node* m = n->fast_out(i5); // Get user
 946       if (get_block_for_node(m) != block) {
 947         continue;
 948       }
 949       if( m->is_Phi() ) continue;
 950       if (m->_idx >= max_idx) { // new node, skip it
 951         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
 952         continue;
 953       }
 954       int m_cnt = ready_cnt.at(m->_idx)-1;
 955       ready_cnt.at_put(m->_idx, m_cnt);
 956       if( m_cnt == 0 )
 957         worklist.push(m);
 958     }
 959   }
 960 
 961   if( phi_cnt != block->end_idx() ) {
 962     // did not schedule all.  Retry, Bailout, or Die
 963     if (C->subsume_loads() == true && !C->failing()) {
 964       // Retry with subsume_loads == false
 965       // If this is the first failure, the sentinel string will "stick"
 966       // to the Compile object, and the C2Compiler will see it and retry.
 967       C->record_failure(C2Compiler::retry_no_subsuming_loads());
 968     } else {
 969       assert(false, "graph should be schedulable");
 970     }
 971     // assert( phi_cnt == end_idx(), "did not schedule all" );
 972     return false;
 973   }
 974 
 975 #ifndef PRODUCT
 976   if (trace_opto_pipelining()) {
 977     tty->print_cr("#");
 978     tty->print_cr("# after schedule_local");
 979     for (uint i = 0;i < block->number_of_nodes();i++) {
 980       tty->print("# ");
 981       block->get_node(i)->fast_dump();
 982     }
 983     tty->cr();
 984   }
 985 #endif
 986 
 987 
 988   return true;
 989 }
 990 
 991 //--------------------------catch_cleanup_fix_all_inputs-----------------------
 992 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
 993   for (uint l = 0; l < use->len(); l++) {
 994     if (use->in(l) == old_def) {
 995       if (l < use->req()) {
 996         use->set_req(l, new_def);
 997       } else {
 998         use->rm_prec(l);
 999         use->add_prec(new_def);
1000         l--;
1001       }
1002     }
1003   }
1004 }
1005 
1006 //------------------------------catch_cleanup_find_cloned_def------------------
1007 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1008   assert( use_blk != def_blk, "Inter-block cleanup only");
1009 
1010   // The use is some block below the Catch.  Find and return the clone of the def
1011   // that dominates the use. If there is no clone in a dominating block, then
1012   // create a phi for the def in a dominating block.
1013 
1014   // Find which successor block dominates this use.  The successor
1015   // blocks must all be single-entry (from the Catch only; I will have
1016   // split blocks to make this so), hence they all dominate.
1017   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1018     use_blk = use_blk->_idom;
1019 
1020   // Find the successor
1021   Node *fixup = NULL;
1022 
1023   uint j;
1024   for( j = 0; j < def_blk->_num_succs; j++ )
1025     if( use_blk == def_blk->_succs[j] )
1026       break;
1027 
1028   if( j == def_blk->_num_succs ) {
1029     // Block at same level in dom-tree is not a successor.  It needs a
1030     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1031     Node_Array inputs = new Node_List(Thread::current()->resource_area());
1032     for(uint k = 1; k < use_blk->num_preds(); k++) {
1033       Block* block = get_block_for_node(use_blk->pred(k));
1034       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1035     }
1036 
1037     // Check to see if the use_blk already has an identical phi inserted.
1038     // If it exists, it will be at the first position since all uses of a
1039     // def are processed together.
1040     Node *phi = use_blk->get_node(1);
1041     if( phi->is_Phi() ) {
1042       fixup = phi;
1043       for (uint k = 1; k < use_blk->num_preds(); k++) {
1044         if (phi->in(k) != inputs[k]) {
1045           // Not a match
1046           fixup = NULL;
1047           break;
1048         }
1049       }
1050     }
1051 
1052     // If an existing PhiNode was not found, make a new one.
1053     if (fixup == NULL) {
1054       Node *new_phi = PhiNode::make(use_blk->head(), def);
1055       use_blk->insert_node(new_phi, 1);
1056       map_node_to_block(new_phi, use_blk);
1057       for (uint k = 1; k < use_blk->num_preds(); k++) {
1058         new_phi->set_req(k, inputs[k]);
1059       }
1060       fixup = new_phi;
1061     }
1062 
1063   } else {
1064     // Found the use just below the Catch.  Make it use the clone.
1065     fixup = use_blk->get_node(n_clone_idx);
1066   }
1067 
1068   return fixup;
1069 }
1070 
1071 //--------------------------catch_cleanup_intra_block--------------------------
1072 // Fix all input edges in use that reference "def".  The use is in the same
1073 // block as the def and both have been cloned in each successor block.
1074 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1075 
1076   // Both the use and def have been cloned. For each successor block,
1077   // get the clone of the use, and make its input the clone of the def
1078   // found in that block.
1079 
1080   uint use_idx = blk->find_node(use);
1081   uint offset_idx = use_idx - beg;
1082   for( uint k = 0; k < blk->_num_succs; k++ ) {
1083     // Get clone in each successor block
1084     Block *sb = blk->_succs[k];
1085     Node *clone = sb->get_node(offset_idx+1);
1086     assert( clone->Opcode() == use->Opcode(), "" );
1087 
1088     // Make use-clone reference the def-clone
1089     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1090   }
1091 }
1092 
1093 //------------------------------catch_cleanup_inter_block---------------------
1094 // Fix all input edges in use that reference "def".  The use is in a different
1095 // block than the def.
1096 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1097   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1098 
1099   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1100   catch_cleanup_fix_all_inputs(use, def, new_def);
1101 }
1102 
1103 //------------------------------call_catch_cleanup-----------------------------
1104 // If we inserted any instructions between a Call and his CatchNode,
1105 // clone the instructions on all paths below the Catch.
1106 void PhaseCFG::call_catch_cleanup(Block* block) {
1107 
1108   // End of region to clone
1109   uint end = block->end_idx();
1110   if( !block->get_node(end)->is_Catch() ) return;
1111   // Start of region to clone
1112   uint beg = end;
1113   while(!block->get_node(beg-1)->is_MachProj() ||
1114         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1115     beg--;
1116     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1117   }
1118   // Range of inserted instructions is [beg, end)
1119   if( beg == end ) return;
1120 
1121   // Clone along all Catch output paths.  Clone area between the 'beg' and
1122   // 'end' indices.
1123   for( uint i = 0; i < block->_num_succs; i++ ) {
1124     Block *sb = block->_succs[i];
1125     // Clone the entire area; ignoring the edge fixup for now.
1126     for( uint j = end; j > beg; j-- ) {
1127       Node *clone = block->get_node(j-1)->clone();
1128       sb->insert_node(clone, 1);
1129       map_node_to_block(clone, sb);
1130       if (clone->needs_anti_dependence_check()) {
1131         insert_anti_dependences(sb, clone);
1132       }
1133     }
1134   }
1135 
1136 
1137   // Fixup edges.  Check the def-use info per cloned Node
1138   for(uint i2 = beg; i2 < end; i2++ ) {
1139     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1140     Node *n = block->get_node(i2);        // Node that got cloned
1141     // Need DU safe iterator because of edge manipulation in calls.
1142     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1143     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1144       out->push(n->fast_out(j1));
1145     }
1146     uint max = out->size();
1147     for (uint j = 0; j < max; j++) {// For all users
1148       Node *use = out->pop();
1149       Block *buse = get_block_for_node(use);
1150       if( use->is_Phi() ) {
1151         for( uint k = 1; k < use->req(); k++ )
1152           if( use->in(k) == n ) {
1153             Block* b = get_block_for_node(buse->pred(k));
1154             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1155             use->set_req(k, fixup);
1156           }
1157       } else {
1158         if (block == buse) {
1159           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1160         } else {
1161           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1162         }
1163       }
1164     } // End for all users
1165 
1166   } // End of for all Nodes in cloned area
1167 
1168   // Remove the now-dead cloned ops
1169   for(uint i3 = beg; i3 < end; i3++ ) {
1170     block->get_node(beg)->disconnect_inputs(NULL, C);
1171     block->remove_node(beg);
1172   }
1173 
1174   // If the successor blocks have a CreateEx node, move it back to the top
1175   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1176     Block *sb = block->_succs[i4];
1177     uint new_cnt = end - beg;
1178     // Remove any newly created, but dead, nodes.
1179     for( uint j = new_cnt; j > 0; j-- ) {
1180       Node *n = sb->get_node(j);
1181       if (n->outcnt() == 0 &&
1182           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1183         n->disconnect_inputs(NULL, C);
1184         sb->remove_node(j);
1185         new_cnt--;
1186       }
1187     }
1188     // If any newly created nodes remain, move the CreateEx node to the top
1189     if (new_cnt > 0) {
1190       Node *cex = sb->get_node(1+new_cnt);
1191       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1192         sb->remove_node(1+new_cnt);
1193         sb->insert_node(cex, 1);
1194       }
1195     }
1196   }
1197 }