1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/connode.hpp"
  35 #include "opto/idealKit.hpp"
  36 #include "opto/mathexactnode.hpp"
  37 #include "opto/mulnode.hpp"
  38 #include "opto/parse.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/shenandoahSupport.hpp"
  41 #include "opto/subnode.hpp"
  42 #include "prims/nativeLookup.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "trace/traceMacros.hpp"
  45 
  46 class LibraryIntrinsic : public InlineCallGenerator {
  47   // Extend the set of intrinsics known to the runtime:
  48  public:
  49  private:
  50   bool             _is_virtual;
  51   bool             _does_virtual_dispatch;
  52   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  53   int8_t           _last_predicate; // Last generated predicate
  54   vmIntrinsics::ID _intrinsic_id;
  55 
  56  public:
  57   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  58     : InlineCallGenerator(m),
  59       _is_virtual(is_virtual),
  60       _does_virtual_dispatch(does_virtual_dispatch),
  61       _predicates_count((int8_t)predicates_count),
  62       _last_predicate((int8_t)-1),
  63       _intrinsic_id(id)
  64   {
  65   }
  66   virtual bool is_intrinsic() const { return true; }
  67   virtual bool is_virtual()   const { return _is_virtual; }
  68   virtual bool is_predicated() const { return _predicates_count > 0; }
  69   virtual int  predicates_count() const { return _predicates_count; }
  70   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  71   virtual JVMState* generate(JVMState* jvms);
  72   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  73   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  74 };
  75 
  76 
  77 // Local helper class for LibraryIntrinsic:
  78 class LibraryCallKit : public GraphKit {
  79  private:
  80   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  81   Node*             _result;        // the result node, if any
  82   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  83 
  84   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  85 
  86  public:
  87   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  88     : GraphKit(jvms),
  89       _intrinsic(intrinsic),
  90       _result(NULL)
  91   {
  92     // Check if this is a root compile.  In that case we don't have a caller.
  93     if (!jvms->has_method()) {
  94       _reexecute_sp = sp();
  95     } else {
  96       // Find out how many arguments the interpreter needs when deoptimizing
  97       // and save the stack pointer value so it can used by uncommon_trap.
  98       // We find the argument count by looking at the declared signature.
  99       bool ignored_will_link;
 100       ciSignature* declared_signature = NULL;
 101       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 102       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 103       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 104     }
 105   }
 106 
 107   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 108 
 109   ciMethod*         caller()    const    { return jvms()->method(); }
 110   int               bci()       const    { return jvms()->bci(); }
 111   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 112   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 113   ciMethod*         callee()    const    { return _intrinsic->method(); }
 114 
 115   bool  try_to_inline(int predicate);
 116   Node* try_to_predicate(int predicate);
 117 
 118   void push_result() {
 119     // Push the result onto the stack.
 120     if (!stopped() && result() != NULL) {
 121       BasicType bt = result()->bottom_type()->basic_type();
 122       push_node(bt, result());
 123     }
 124   }
 125 
 126  private:
 127   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 128     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 129   }
 130 
 131   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 132   void  set_result(RegionNode* region, PhiNode* value);
 133   Node*     result() { return _result; }
 134 
 135   virtual int reexecute_sp() { return _reexecute_sp; }
 136 
 137   // Helper functions to inline natives
 138   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 139   Node* generate_slow_guard(Node* test, RegionNode* region);
 140   Node* generate_fair_guard(Node* test, RegionNode* region);
 141   Node* generate_negative_guard(Node* index, RegionNode* region,
 142                                 // resulting CastII of index:
 143                                 Node* *pos_index = NULL);
 144   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 145                                    // resulting CastII of index:
 146                                    Node* *pos_index = NULL);
 147   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 148                              Node* array_length,
 149                              RegionNode* region);
 150   Node* generate_current_thread(Node* &tls_output);
 151   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 152                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 153   Node* load_mirror_from_klass(Node* klass);
 154   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 155                                       RegionNode* region, int null_path,
 156                                       int offset);
 157   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 158                                RegionNode* region, int null_path) {
 159     int offset = java_lang_Class::klass_offset_in_bytes();
 160     return load_klass_from_mirror_common(mirror, never_see_null,
 161                                          region, null_path,
 162                                          offset);
 163   }
 164   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 165                                      RegionNode* region, int null_path) {
 166     int offset = java_lang_Class::array_klass_offset_in_bytes();
 167     return load_klass_from_mirror_common(mirror, never_see_null,
 168                                          region, null_path,
 169                                          offset);
 170   }
 171   Node* generate_access_flags_guard(Node* kls,
 172                                     int modifier_mask, int modifier_bits,
 173                                     RegionNode* region);
 174   Node* generate_interface_guard(Node* kls, RegionNode* region);
 175   Node* generate_array_guard(Node* kls, RegionNode* region) {
 176     return generate_array_guard_common(kls, region, false, false);
 177   }
 178   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 179     return generate_array_guard_common(kls, region, false, true);
 180   }
 181   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 182     return generate_array_guard_common(kls, region, true, false);
 183   }
 184   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 185     return generate_array_guard_common(kls, region, true, true);
 186   }
 187   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 188                                     bool obj_array, bool not_array);
 189   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 190   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 191                                      bool is_virtual = false, bool is_static = false);
 192   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 193     return generate_method_call(method_id, false, true);
 194   }
 195   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 196     return generate_method_call(method_id, true, false);
 197   }
 198   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 199 
 200   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 201   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 202   bool inline_string_compareTo();
 203   bool inline_string_indexOf();
 204   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 205   bool inline_string_equals();
 206   Node* round_double_node(Node* n);
 207   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 208   bool inline_math_native(vmIntrinsics::ID id);
 209   bool inline_trig(vmIntrinsics::ID id);
 210   bool inline_math(vmIntrinsics::ID id);
 211   template <typename OverflowOp>
 212   bool inline_math_overflow(Node* arg1, Node* arg2);
 213   void inline_math_mathExact(Node* math, Node* test);
 214   bool inline_math_addExactI(bool is_increment);
 215   bool inline_math_addExactL(bool is_increment);
 216   bool inline_math_multiplyExactI();
 217   bool inline_math_multiplyExactL();
 218   bool inline_math_negateExactI();
 219   bool inline_math_negateExactL();
 220   bool inline_math_subtractExactI(bool is_decrement);
 221   bool inline_math_subtractExactL(bool is_decrement);
 222   bool inline_exp();
 223   bool inline_pow();
 224   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 225   bool inline_min_max(vmIntrinsics::ID id);
 226   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 227   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 228   int classify_unsafe_addr(Node* &base, Node* &offset);
 229   Node* make_unsafe_address(Node* base, Node* offset, bool is_store);
 230   // Helper for inline_unsafe_access.
 231   // Generates the guards that check whether the result of
 232   // Unsafe.getObject should be recorded in an SATB log buffer.
 233   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 234   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool is_unaligned);
 235   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 236   static bool klass_needs_init_guard(Node* kls);
 237   bool inline_unsafe_allocate();
 238   bool inline_unsafe_copyMemory();
 239   bool inline_native_currentThread();
 240 #ifdef TRACE_HAVE_INTRINSICS
 241   bool inline_native_classID();
 242   bool inline_native_threadID();
 243 #endif
 244   bool inline_native_time_funcs(address method, const char* funcName);
 245   bool inline_native_isInterrupted();
 246   bool inline_native_Class_query(vmIntrinsics::ID id);
 247   bool inline_native_subtype_check();
 248 
 249   bool inline_native_newArray();
 250   bool inline_native_getLength();
 251   bool inline_array_copyOf(bool is_copyOfRange);
 252   bool inline_array_equals();
 253   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 254   bool inline_native_clone(bool is_virtual);
 255   bool inline_native_Reflection_getCallerClass();
 256   // Helper function for inlining native object hash method
 257   bool inline_native_hashcode(bool is_virtual, bool is_static);
 258   bool inline_native_getClass();
 259 
 260   // Helper functions for inlining arraycopy
 261   bool inline_arraycopy();
 262   void generate_arraycopy(const TypePtr* adr_type,
 263                           BasicType basic_elem_type,
 264                           Node* src,  Node* src_offset,
 265                           Node* dest, Node* dest_offset,
 266                           Node* copy_length,
 267                           bool disjoint_bases = false,
 268                           bool length_never_negative = false,
 269                           RegionNode* slow_region = NULL);
 270   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 271                                                 RegionNode* slow_region);
 272   void generate_clear_array(const TypePtr* adr_type,
 273                             Node* dest,
 274                             BasicType basic_elem_type,
 275                             Node* slice_off,
 276                             Node* slice_len,
 277                             Node* slice_end);
 278   bool generate_block_arraycopy(const TypePtr* adr_type,
 279                                 BasicType basic_elem_type,
 280                                 AllocateNode* alloc,
 281                                 Node* src,  Node* src_offset,
 282                                 Node* dest, Node* dest_offset,
 283                                 Node* dest_size, bool dest_uninitialized);
 284   void generate_slow_arraycopy(const TypePtr* adr_type,
 285                                Node* src,  Node* src_offset,
 286                                Node* dest, Node* dest_offset,
 287                                Node* copy_length, bool dest_uninitialized);
 288   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 289                                      Node* dest_elem_klass,
 290                                      Node* src,  Node* src_offset,
 291                                      Node* dest, Node* dest_offset,
 292                                      Node* copy_length, bool dest_uninitialized);
 293   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 294                                    Node* src,  Node* src_offset,
 295                                    Node* dest, Node* dest_offset,
 296                                    Node* copy_length, bool dest_uninitialized);
 297   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 298                                     BasicType basic_elem_type,
 299                                     bool disjoint_bases,
 300                                     Node* src,  Node* src_offset,
 301                                     Node* dest, Node* dest_offset,
 302                                     Node* copy_length, bool dest_uninitialized);
 303   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 304   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 305   bool inline_unsafe_ordered_store(BasicType type);
 306   bool inline_unsafe_fence(vmIntrinsics::ID id);
 307   bool inline_fp_conversions(vmIntrinsics::ID id);
 308   bool inline_number_methods(vmIntrinsics::ID id);
 309   bool inline_reference_get();
 310   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 311   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 312   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 313   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 314   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 315   bool inline_sha_implCompress(vmIntrinsics::ID id);
 316   bool inline_digestBase_implCompressMB(int predicate);
 317   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 318                                  bool long_state, address stubAddr, const char *stubName,
 319                                  Node* src_start, Node* ofs, Node* limit);
 320   Node* get_state_from_sha_object(Node *sha_object);
 321   Node* get_state_from_sha5_object(Node *sha_object);
 322   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 323   bool inline_encodeISOArray();
 324   bool inline_updateCRC32();
 325   bool inline_updateBytesCRC32();
 326   bool inline_updateByteBufferCRC32();
 327   bool inline_multiplyToLen();
 328   bool inline_squareToLen();
 329   bool inline_mulAdd();
 330   bool inline_montgomeryMultiply();
 331   bool inline_montgomerySquare();
 332 
 333   bool inline_profileBoolean();
 334 
 335   Node* shenandoah_cast_not_null(Node* n) {
 336     return UseShenandoahGC ? cast_not_null(n, false) : n;
 337   }
 338 };
 339 
 340 
 341 //---------------------------make_vm_intrinsic----------------------------
 342 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 343   vmIntrinsics::ID id = m->intrinsic_id();
 344   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 345 
 346   ccstr disable_intr = NULL;
 347 
 348   if ((DisableIntrinsic[0] != '\0'
 349        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 350       (method_has_option_value("DisableIntrinsic", disable_intr)
 351        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 352     // disabled by a user request on the command line:
 353     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 354     return NULL;
 355   }
 356 
 357   if (!m->is_loaded()) {
 358     // do not attempt to inline unloaded methods
 359     return NULL;
 360   }
 361 
 362   // Only a few intrinsics implement a virtual dispatch.
 363   // They are expensive calls which are also frequently overridden.
 364   if (is_virtual) {
 365     switch (id) {
 366     case vmIntrinsics::_hashCode:
 367     case vmIntrinsics::_clone:
 368       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 369       break;
 370     default:
 371       return NULL;
 372     }
 373   }
 374 
 375   // -XX:-InlineNatives disables nearly all intrinsics:
 376   if (!InlineNatives) {
 377     switch (id) {
 378     case vmIntrinsics::_indexOf:
 379     case vmIntrinsics::_compareTo:
 380     case vmIntrinsics::_equals:
 381     case vmIntrinsics::_equalsC:
 382     case vmIntrinsics::_getAndAddInt:
 383     case vmIntrinsics::_getAndAddLong:
 384     case vmIntrinsics::_getAndSetInt:
 385     case vmIntrinsics::_getAndSetLong:
 386     case vmIntrinsics::_getAndSetObject:
 387     case vmIntrinsics::_loadFence:
 388     case vmIntrinsics::_storeFence:
 389     case vmIntrinsics::_fullFence:
 390       break;  // InlineNatives does not control String.compareTo
 391     case vmIntrinsics::_Reference_get:
 392       break;  // InlineNatives does not control Reference.get
 393     default:
 394       return NULL;
 395     }
 396   }
 397 
 398   int predicates = 0;
 399   bool does_virtual_dispatch = false;
 400 
 401   switch (id) {
 402   case vmIntrinsics::_compareTo:
 403     if (!SpecialStringCompareTo)  return NULL;
 404     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 405     break;
 406   case vmIntrinsics::_indexOf:
 407     if (!SpecialStringIndexOf)  return NULL;
 408     break;
 409   case vmIntrinsics::_equals:
 410     if (!SpecialStringEquals)  return NULL;
 411     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 412     break;
 413   case vmIntrinsics::_equalsC:
 414     if (!SpecialArraysEquals)  return NULL;
 415     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 416     break;
 417   case vmIntrinsics::_arraycopy:
 418     if (!InlineArrayCopy)  return NULL;
 419     break;
 420   case vmIntrinsics::_copyMemory:
 421     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 422     if (!InlineArrayCopy)  return NULL;
 423     break;
 424   case vmIntrinsics::_hashCode:
 425     if (!InlineObjectHash)  return NULL;
 426     does_virtual_dispatch = true;
 427     break;
 428   case vmIntrinsics::_clone:
 429     does_virtual_dispatch = true;
 430   case vmIntrinsics::_copyOf:
 431   case vmIntrinsics::_copyOfRange:
 432     if (!InlineObjectCopy)  return NULL;
 433     // These also use the arraycopy intrinsic mechanism:
 434     if (!InlineArrayCopy)  return NULL;
 435     break;
 436   case vmIntrinsics::_encodeISOArray:
 437     if (!SpecialEncodeISOArray)  return NULL;
 438     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 439     break;
 440   case vmIntrinsics::_checkIndex:
 441     // We do not intrinsify this.  The optimizer does fine with it.
 442     return NULL;
 443 
 444   case vmIntrinsics::_getCallerClass:
 445     if (!UseNewReflection)  return NULL;
 446     if (!InlineReflectionGetCallerClass)  return NULL;
 447     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 448     break;
 449 
 450   case vmIntrinsics::_bitCount_i:
 451     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 452     break;
 453 
 454   case vmIntrinsics::_bitCount_l:
 455     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 456     break;
 457 
 458   case vmIntrinsics::_numberOfLeadingZeros_i:
 459     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 460     break;
 461 
 462   case vmIntrinsics::_numberOfLeadingZeros_l:
 463     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 464     break;
 465 
 466   case vmIntrinsics::_numberOfTrailingZeros_i:
 467     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 468     break;
 469 
 470   case vmIntrinsics::_numberOfTrailingZeros_l:
 471     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 472     break;
 473 
 474   case vmIntrinsics::_reverseBytes_c:
 475     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 476     break;
 477   case vmIntrinsics::_reverseBytes_s:
 478     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 479     break;
 480   case vmIntrinsics::_reverseBytes_i:
 481     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 482     break;
 483   case vmIntrinsics::_reverseBytes_l:
 484     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 485     break;
 486 
 487   case vmIntrinsics::_Reference_get:
 488     // Use the intrinsic version of Reference.get() so that the value in
 489     // the referent field can be registered by the G1 pre-barrier code.
 490     // Also add memory barrier to prevent commoning reads from this field
 491     // across safepoint since GC can change it value.
 492     break;
 493 
 494   case vmIntrinsics::_compareAndSwapObject:
 495 #ifdef _LP64
 496     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 497 #endif
 498     break;
 499 
 500   case vmIntrinsics::_compareAndSwapLong:
 501     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 502     break;
 503 
 504   case vmIntrinsics::_getAndAddInt:
 505     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 506     break;
 507 
 508   case vmIntrinsics::_getAndAddLong:
 509     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 510     break;
 511 
 512   case vmIntrinsics::_getAndSetInt:
 513     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 514     break;
 515 
 516   case vmIntrinsics::_getAndSetLong:
 517     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 518     break;
 519 
 520   case vmIntrinsics::_getAndSetObject:
 521 #ifdef _LP64
 522     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 523     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 524     break;
 525 #else
 526     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 527     break;
 528 #endif
 529 
 530   case vmIntrinsics::_aescrypt_encryptBlock:
 531   case vmIntrinsics::_aescrypt_decryptBlock:
 532     if (!UseAESIntrinsics) return NULL;
 533     break;
 534 
 535   case vmIntrinsics::_multiplyToLen:
 536     if (!UseMultiplyToLenIntrinsic) return NULL;
 537     break;
 538 
 539   case vmIntrinsics::_squareToLen:
 540     if (!UseSquareToLenIntrinsic) return NULL;
 541     break;
 542 
 543   case vmIntrinsics::_mulAdd:
 544     if (!UseMulAddIntrinsic) return NULL;
 545     break;
 546 
 547   case vmIntrinsics::_montgomeryMultiply:
 548      if (!UseMontgomeryMultiplyIntrinsic) return NULL;
 549     break;
 550   case vmIntrinsics::_montgomerySquare:
 551      if (!UseMontgomerySquareIntrinsic) return NULL;
 552     break;
 553 
 554   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 555   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 556     if (!UseAESIntrinsics) return NULL;
 557     // these two require the predicated logic
 558     predicates = 1;
 559     break;
 560 
 561   case vmIntrinsics::_sha_implCompress:
 562     if (!UseSHA1Intrinsics) return NULL;
 563     break;
 564 
 565   case vmIntrinsics::_sha2_implCompress:
 566     if (!UseSHA256Intrinsics) return NULL;
 567     break;
 568 
 569   case vmIntrinsics::_sha5_implCompress:
 570     if (!UseSHA512Intrinsics) return NULL;
 571     break;
 572 
 573   case vmIntrinsics::_digestBase_implCompressMB:
 574     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 575     predicates = 3;
 576     break;
 577 
 578   case vmIntrinsics::_updateCRC32:
 579   case vmIntrinsics::_updateBytesCRC32:
 580   case vmIntrinsics::_updateByteBufferCRC32:
 581     if (!UseCRC32Intrinsics) return NULL;
 582     break;
 583 
 584   case vmIntrinsics::_incrementExactI:
 585   case vmIntrinsics::_addExactI:
 586     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 587     break;
 588   case vmIntrinsics::_incrementExactL:
 589   case vmIntrinsics::_addExactL:
 590     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 591     break;
 592   case vmIntrinsics::_decrementExactI:
 593   case vmIntrinsics::_subtractExactI:
 594     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 595     break;
 596   case vmIntrinsics::_decrementExactL:
 597   case vmIntrinsics::_subtractExactL:
 598     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 599     break;
 600   case vmIntrinsics::_negateExactI:
 601     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 602     break;
 603   case vmIntrinsics::_negateExactL:
 604     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 605     break;
 606   case vmIntrinsics::_multiplyExactI:
 607     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 608     break;
 609   case vmIntrinsics::_multiplyExactL:
 610     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 611     break;
 612 
 613  default:
 614     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 615     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 616     break;
 617   }
 618 
 619   // -XX:-InlineClassNatives disables natives from the Class class.
 620   // The flag applies to all reflective calls, notably Array.newArray
 621   // (visible to Java programmers as Array.newInstance).
 622   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 623       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 624     if (!InlineClassNatives)  return NULL;
 625   }
 626 
 627   // -XX:-InlineThreadNatives disables natives from the Thread class.
 628   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 629     if (!InlineThreadNatives)  return NULL;
 630   }
 631 
 632   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 633   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 634       m->holder()->name() == ciSymbol::java_lang_Float() ||
 635       m->holder()->name() == ciSymbol::java_lang_Double()) {
 636     if (!InlineMathNatives)  return NULL;
 637   }
 638 
 639   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 640   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 641     if (!InlineUnsafeOps)  return NULL;
 642   }
 643 
 644   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 645 }
 646 
 647 //----------------------register_library_intrinsics-----------------------
 648 // Initialize this file's data structures, for each Compile instance.
 649 void Compile::register_library_intrinsics() {
 650   // Nothing to do here.
 651 }
 652 
 653 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 654   LibraryCallKit kit(jvms, this);
 655   Compile* C = kit.C;
 656   int nodes = C->unique();
 657 #ifndef PRODUCT
 658   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 659     char buf[1000];
 660     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 661     tty->print_cr("Intrinsic %s", str);
 662   }
 663 #endif
 664   ciMethod* callee = kit.callee();
 665   const int bci    = kit.bci();
 666 
 667   // Try to inline the intrinsic.
 668   if (kit.try_to_inline(_last_predicate)) {
 669     if (C->print_intrinsics() || C->print_inlining()) {
 670       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 671     }
 672     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 673     if (C->log()) {
 674       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 675                      vmIntrinsics::name_at(intrinsic_id()),
 676                      (is_virtual() ? " virtual='1'" : ""),
 677                      C->unique() - nodes);
 678     }
 679     // Push the result from the inlined method onto the stack.
 680     kit.push_result();
 681     return kit.transfer_exceptions_into_jvms();
 682   }
 683 
 684   // The intrinsic bailed out
 685   if (C->print_intrinsics() || C->print_inlining()) {
 686     if (jvms->has_method()) {
 687       // Not a root compile.
 688       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 689       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 690     } else {
 691       // Root compile
 692       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 693                vmIntrinsics::name_at(intrinsic_id()),
 694                (is_virtual() ? " (virtual)" : ""), bci);
 695     }
 696   }
 697   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 698   return NULL;
 699 }
 700 
 701 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 702   LibraryCallKit kit(jvms, this);
 703   Compile* C = kit.C;
 704   int nodes = C->unique();
 705   _last_predicate = predicate;
 706 #ifndef PRODUCT
 707   assert(is_predicated() && predicate < predicates_count(), "sanity");
 708   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 709     char buf[1000];
 710     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 711     tty->print_cr("Predicate for intrinsic %s", str);
 712   }
 713 #endif
 714   ciMethod* callee = kit.callee();
 715   const int bci    = kit.bci();
 716 
 717   Node* slow_ctl = kit.try_to_predicate(predicate);
 718   if (!kit.failing()) {
 719     if (C->print_intrinsics() || C->print_inlining()) {
 720       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 721     }
 722     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 723     if (C->log()) {
 724       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 725                      vmIntrinsics::name_at(intrinsic_id()),
 726                      (is_virtual() ? " virtual='1'" : ""),
 727                      C->unique() - nodes);
 728     }
 729     return slow_ctl; // Could be NULL if the check folds.
 730   }
 731 
 732   // The intrinsic bailed out
 733   if (C->print_intrinsics() || C->print_inlining()) {
 734     if (jvms->has_method()) {
 735       // Not a root compile.
 736       const char* msg = "failed to generate predicate for intrinsic";
 737       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 738     } else {
 739       // Root compile
 740       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 741                                         vmIntrinsics::name_at(intrinsic_id()),
 742                                         (is_virtual() ? " (virtual)" : ""), bci);
 743     }
 744   }
 745   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 746   return NULL;
 747 }
 748 
 749 bool LibraryCallKit::try_to_inline(int predicate) {
 750   // Handle symbolic names for otherwise undistinguished boolean switches:
 751   const bool is_store       = true;
 752   const bool is_native_ptr  = true;
 753   const bool is_static      = true;
 754   const bool is_volatile    = true;
 755 
 756   if (!jvms()->has_method()) {
 757     // Root JVMState has a null method.
 758     assert(map()->memory()->Opcode() == Op_Parm, "");
 759     // Insert the memory aliasing node
 760     set_all_memory(reset_memory());
 761   }
 762   assert(merged_memory(), "");
 763 
 764 
 765   switch (intrinsic_id()) {
 766   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 767   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 768   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 769 
 770   case vmIntrinsics::_dsin:
 771   case vmIntrinsics::_dcos:
 772   case vmIntrinsics::_dtan:
 773   case vmIntrinsics::_dabs:
 774   case vmIntrinsics::_datan2:
 775   case vmIntrinsics::_dsqrt:
 776   case vmIntrinsics::_dexp:
 777   case vmIntrinsics::_dlog:
 778   case vmIntrinsics::_dlog10:
 779   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 780 
 781   case vmIntrinsics::_min:
 782   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 783 
 784   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 785   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 786   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 787   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 788   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 789   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 790   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 791   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 792   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 793   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 794   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 795   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 796 
 797   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 798 
 799   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 800   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 801   case vmIntrinsics::_equals:                   return inline_string_equals();
 802 
 803   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile, false);
 804   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile, false);
 805   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 806   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 807   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 808   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 809   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 810   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 811   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 812 
 813   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile, false);
 814   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile, false);
 815   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 816   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 817   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 818   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 819   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 820   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 821   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 822 
 823   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 824   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 825   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 826   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 827   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 828   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 829   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 830   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile, false);
 831 
 832   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 833   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 834   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 835   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 836   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 837   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 838   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 839   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile, false);
 840 
 841   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile, false);
 842   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile, false);
 843   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile, false);
 844   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile, false);
 845   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile, false);
 846   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile, false);
 847   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile, false);
 848   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile, false);
 849   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile, false);
 850 
 851   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile, false);
 852   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile, false);
 853   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile, false);
 854   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile, false);
 855   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile, false);
 856   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile, false);
 857   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile, false);
 858   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile, false);
 859   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile, false);
 860 
 861   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 862   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 863   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 864   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 865 
 866   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 867   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 868   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 869 
 870   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 871   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 872   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 873 
 874   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 875   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 876   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 877   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 878   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 879 
 880   case vmIntrinsics::_loadFence:
 881   case vmIntrinsics::_storeFence:
 882   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 883 
 884   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 885   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 886 
 887 #ifdef TRACE_HAVE_INTRINSICS
 888   case vmIntrinsics::_classID:                  return inline_native_classID();
 889   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 890   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 891 #endif
 892   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 893   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 894   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 895   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 896   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 897   case vmIntrinsics::_getLength:                return inline_native_getLength();
 898   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 899   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 900   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 901   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 902 
 903   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 904 
 905   case vmIntrinsics::_isInstance:
 906   case vmIntrinsics::_getModifiers:
 907   case vmIntrinsics::_isInterface:
 908   case vmIntrinsics::_isArray:
 909   case vmIntrinsics::_isPrimitive:
 910   case vmIntrinsics::_getSuperclass:
 911   case vmIntrinsics::_getComponentType:
 912   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 913 
 914   case vmIntrinsics::_floatToRawIntBits:
 915   case vmIntrinsics::_floatToIntBits:
 916   case vmIntrinsics::_intBitsToFloat:
 917   case vmIntrinsics::_doubleToRawLongBits:
 918   case vmIntrinsics::_doubleToLongBits:
 919   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 920 
 921   case vmIntrinsics::_numberOfLeadingZeros_i:
 922   case vmIntrinsics::_numberOfLeadingZeros_l:
 923   case vmIntrinsics::_numberOfTrailingZeros_i:
 924   case vmIntrinsics::_numberOfTrailingZeros_l:
 925   case vmIntrinsics::_bitCount_i:
 926   case vmIntrinsics::_bitCount_l:
 927   case vmIntrinsics::_reverseBytes_i:
 928   case vmIntrinsics::_reverseBytes_l:
 929   case vmIntrinsics::_reverseBytes_s:
 930   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 931 
 932   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 933 
 934   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 935 
 936   case vmIntrinsics::_aescrypt_encryptBlock:
 937   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 938 
 939   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 940   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 941     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 942 
 943   case vmIntrinsics::_sha_implCompress:
 944   case vmIntrinsics::_sha2_implCompress:
 945   case vmIntrinsics::_sha5_implCompress:
 946     return inline_sha_implCompress(intrinsic_id());
 947 
 948   case vmIntrinsics::_digestBase_implCompressMB:
 949     return inline_digestBase_implCompressMB(predicate);
 950 
 951   case vmIntrinsics::_multiplyToLen:
 952     return inline_multiplyToLen();
 953 
 954   case vmIntrinsics::_squareToLen:
 955     return inline_squareToLen();
 956 
 957   case vmIntrinsics::_mulAdd:
 958     return inline_mulAdd();
 959 
 960   case vmIntrinsics::_montgomeryMultiply:
 961     return inline_montgomeryMultiply();
 962   case vmIntrinsics::_montgomerySquare:
 963     return inline_montgomerySquare();
 964 
 965   case vmIntrinsics::_encodeISOArray:
 966     return inline_encodeISOArray();
 967 
 968   case vmIntrinsics::_updateCRC32:
 969     return inline_updateCRC32();
 970   case vmIntrinsics::_updateBytesCRC32:
 971     return inline_updateBytesCRC32();
 972   case vmIntrinsics::_updateByteBufferCRC32:
 973     return inline_updateByteBufferCRC32();
 974 
 975   case vmIntrinsics::_profileBoolean:
 976     return inline_profileBoolean();
 977 
 978   default:
 979     // If you get here, it may be that someone has added a new intrinsic
 980     // to the list in vmSymbols.hpp without implementing it here.
 981 #ifndef PRODUCT
 982     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 983       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 984                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 985     }
 986 #endif
 987     return false;
 988   }
 989 }
 990 
 991 Node* LibraryCallKit::try_to_predicate(int predicate) {
 992   if (!jvms()->has_method()) {
 993     // Root JVMState has a null method.
 994     assert(map()->memory()->Opcode() == Op_Parm, "");
 995     // Insert the memory aliasing node
 996     set_all_memory(reset_memory());
 997   }
 998   assert(merged_memory(), "");
 999 
1000   switch (intrinsic_id()) {
1001   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
1002     return inline_cipherBlockChaining_AESCrypt_predicate(false);
1003   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
1004     return inline_cipherBlockChaining_AESCrypt_predicate(true);
1005   case vmIntrinsics::_digestBase_implCompressMB:
1006     return inline_digestBase_implCompressMB_predicate(predicate);
1007 
1008   default:
1009     // If you get here, it may be that someone has added a new intrinsic
1010     // to the list in vmSymbols.hpp without implementing it here.
1011 #ifndef PRODUCT
1012     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
1013       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
1014                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
1015     }
1016 #endif
1017     Node* slow_ctl = control();
1018     set_control(top()); // No fast path instrinsic
1019     return slow_ctl;
1020   }
1021 }
1022 
1023 //------------------------------set_result-------------------------------
1024 // Helper function for finishing intrinsics.
1025 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
1026   record_for_igvn(region);
1027   set_control(_gvn.transform(region));
1028   set_result( _gvn.transform(value));
1029   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
1030 }
1031 
1032 //------------------------------generate_guard---------------------------
1033 // Helper function for generating guarded fast-slow graph structures.
1034 // The given 'test', if true, guards a slow path.  If the test fails
1035 // then a fast path can be taken.  (We generally hope it fails.)
1036 // In all cases, GraphKit::control() is updated to the fast path.
1037 // The returned value represents the control for the slow path.
1038 // The return value is never 'top'; it is either a valid control
1039 // or NULL if it is obvious that the slow path can never be taken.
1040 // Also, if region and the slow control are not NULL, the slow edge
1041 // is appended to the region.
1042 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
1043   if (stopped()) {
1044     // Already short circuited.
1045     return NULL;
1046   }
1047 
1048   // Build an if node and its projections.
1049   // If test is true we take the slow path, which we assume is uncommon.
1050   if (_gvn.type(test) == TypeInt::ZERO) {
1051     // The slow branch is never taken.  No need to build this guard.
1052     return NULL;
1053   }
1054 
1055   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1056 
1057   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
1058   if (if_slow == top()) {
1059     // The slow branch is never taken.  No need to build this guard.
1060     return NULL;
1061   }
1062 
1063   if (region != NULL)
1064     region->add_req(if_slow);
1065 
1066   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
1067   set_control(if_fast);
1068 
1069   return if_slow;
1070 }
1071 
1072 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1073   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1074 }
1075 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1076   return generate_guard(test, region, PROB_FAIR);
1077 }
1078 
1079 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1080                                                      Node* *pos_index) {
1081   if (stopped())
1082     return NULL;                // already stopped
1083   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1084     return NULL;                // index is already adequately typed
1085   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1086   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1087   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1088   if (is_neg != NULL && pos_index != NULL) {
1089     // Emulate effect of Parse::adjust_map_after_if.
1090     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
1091     ccast->set_req(0, control());
1092     (*pos_index) = _gvn.transform(ccast);
1093   }
1094   return is_neg;
1095 }
1096 
1097 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1098                                                         Node* *pos_index) {
1099   if (stopped())
1100     return NULL;                // already stopped
1101   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1102     return NULL;                // index is already adequately typed
1103   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1104   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1105   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1106   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1107   if (is_notp != NULL && pos_index != NULL) {
1108     // Emulate effect of Parse::adjust_map_after_if.
1109     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1110     ccast->set_req(0, control());
1111     (*pos_index) = _gvn.transform(ccast);
1112   }
1113   return is_notp;
1114 }
1115 
1116 // Make sure that 'position' is a valid limit index, in [0..length].
1117 // There are two equivalent plans for checking this:
1118 //   A. (offset + copyLength)  unsigned<=  arrayLength
1119 //   B. offset  <=  (arrayLength - copyLength)
1120 // We require that all of the values above, except for the sum and
1121 // difference, are already known to be non-negative.
1122 // Plan A is robust in the face of overflow, if offset and copyLength
1123 // are both hugely positive.
1124 //
1125 // Plan B is less direct and intuitive, but it does not overflow at
1126 // all, since the difference of two non-negatives is always
1127 // representable.  Whenever Java methods must perform the equivalent
1128 // check they generally use Plan B instead of Plan A.
1129 // For the moment we use Plan A.
1130 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1131                                                   Node* subseq_length,
1132                                                   Node* array_length,
1133                                                   RegionNode* region) {
1134   if (stopped())
1135     return NULL;                // already stopped
1136   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1137   if (zero_offset && subseq_length->eqv_uncast(array_length))
1138     return NULL;                // common case of whole-array copy
1139   Node* last = subseq_length;
1140   if (!zero_offset)             // last += offset
1141     last = _gvn.transform(new (C) AddINode(last, offset));
1142   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1143   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1144   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1145   return is_over;
1146 }
1147 
1148 
1149 //--------------------------generate_current_thread--------------------
1150 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1151   ciKlass*    thread_klass = env()->Thread_klass();
1152   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1153   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1154   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1155   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1156   tls_output = thread;
1157   return threadObj;
1158 }
1159 
1160 
1161 //------------------------------make_string_method_node------------------------
1162 // Helper method for String intrinsic functions. This version is called
1163 // with str1 and str2 pointing to String object nodes.
1164 //
1165 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1166   Node* no_ctrl = NULL;
1167 
1168   // Get start addr of string
1169   Node* str1_value   = load_String_value(no_ctrl, str1);
1170   str1_value = shenandoah_cast_not_null(str1_value);
1171   str1_value = shenandoah_read_barrier(str1_value);
1172   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1173   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1174 
1175   // Get length of string 1
1176   Node* str1_len  = load_String_length(no_ctrl, str1);
1177 
1178   Node* str2_value   = load_String_value(no_ctrl, str2);
1179   str2_value = shenandoah_cast_not_null(str2_value);
1180   str2_value = shenandoah_read_barrier(str2_value);
1181   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1182   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1183 
1184   Node* str2_len = NULL;
1185   Node* result = NULL;
1186 
1187   switch (opcode) {
1188   case Op_StrIndexOf:
1189     // Get length of string 2
1190     str2_len = load_String_length(no_ctrl, str2);
1191 
1192     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1193                                  str1_start, str1_len, str2_start, str2_len);
1194     break;
1195   case Op_StrComp:
1196     // Get length of string 2
1197     str2_len = load_String_length(no_ctrl, str2);
1198 
1199     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1200                                  str1_start, str1_len, str2_start, str2_len);
1201     break;
1202   case Op_StrEquals:
1203     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1204                                str1_start, str2_start, str1_len);
1205     break;
1206   default:
1207     ShouldNotReachHere();
1208     return NULL;
1209   }
1210 
1211   // All these intrinsics have checks.
1212   C->set_has_split_ifs(true); // Has chance for split-if optimization
1213 
1214   return _gvn.transform(result);
1215 }
1216 
1217 // Helper method for String intrinsic functions. This version is called
1218 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1219 // to Int nodes containing the lenghts of str1 and str2.
1220 //
1221 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1222   Node* result = NULL;
1223   switch (opcode) {
1224   case Op_StrIndexOf:
1225     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1226                                  str1_start, cnt1, str2_start, cnt2);
1227     break;
1228   case Op_StrComp:
1229     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1230                                  str1_start, cnt1, str2_start, cnt2);
1231     break;
1232   case Op_StrEquals:
1233     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1234                                  str1_start, str2_start, cnt1);
1235     break;
1236   default:
1237     ShouldNotReachHere();
1238     return NULL;
1239   }
1240 
1241   // All these intrinsics have checks.
1242   C->set_has_split_ifs(true); // Has chance for split-if optimization
1243 
1244   return _gvn.transform(result);
1245 }
1246 
1247 //------------------------------inline_string_compareTo------------------------
1248 // public int java.lang.String.compareTo(String anotherString);
1249 bool LibraryCallKit::inline_string_compareTo() {
1250   Node* receiver = null_check(argument(0));
1251   Node* arg      = null_check(argument(1));
1252   if (stopped()) {
1253     return true;
1254   }
1255 
1256   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1257   return true;
1258 }
1259 
1260 //------------------------------inline_string_equals------------------------
1261 bool LibraryCallKit::inline_string_equals() {
1262   Node* receiver = null_check_receiver();
1263   // NOTE: Do not null check argument for String.equals() because spec
1264   // allows to specify NULL as argument.
1265   Node* argument = this->argument(1);
1266   if (stopped()) {
1267     return true;
1268   }
1269 
1270   // paths (plus control) merge
1271   RegionNode* region = new (C) RegionNode(5);
1272   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1273 
1274   // does source == target string?
1275   receiver = shenandoah_write_barrier(receiver);
1276   argument = shenandoah_write_barrier(argument);
1277   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1278   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1279 
1280   Node* if_eq = generate_slow_guard(bol, NULL);
1281   if (if_eq != NULL) {
1282     // receiver == argument
1283     phi->init_req(2, intcon(1));
1284     region->init_req(2, if_eq);
1285   }
1286 
1287   // get String klass for instanceOf
1288   ciInstanceKlass* klass = env()->String_klass();
1289 
1290   if (!stopped()) {
1291     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1292     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1293     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1294 
1295     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1296     //instanceOf == true, fallthrough
1297 
1298     if (inst_false != NULL) {
1299       phi->init_req(3, intcon(0));
1300       region->init_req(3, inst_false);
1301     }
1302   }
1303 
1304   if (!stopped()) {
1305     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1306 
1307     // Properly cast the argument to String
1308     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1309     // This path is taken only when argument's type is String:NotNull.
1310     argument = cast_not_null(argument, false);
1311 
1312     Node* no_ctrl = NULL;
1313 
1314     // Get start addr of receiver
1315     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1316     receiver_val = shenandoah_cast_not_null(receiver_val);
1317     receiver_val = shenandoah_read_barrier(receiver_val);
1318     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1319     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1320 
1321     // Get length of receiver
1322     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1323 
1324     // Get start addr of argument
1325     Node* argument_val    = load_String_value(no_ctrl, argument);
1326     argument_val = shenandoah_cast_not_null(argument_val);
1327     argument_val = shenandoah_read_barrier(argument_val);
1328     Node* argument_offset = load_String_offset(no_ctrl, argument);
1329     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1330 
1331     // Get length of argument
1332     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1333 
1334     // Check for receiver count != argument count
1335     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1336     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1337     Node* if_ne = generate_slow_guard(bol, NULL);
1338     if (if_ne != NULL) {
1339       phi->init_req(4, intcon(0));
1340       region->init_req(4, if_ne);
1341     }
1342 
1343     // Check for count == 0 is done by assembler code for StrEquals.
1344 
1345     if (!stopped()) {
1346       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1347       phi->init_req(1, equals);
1348       region->init_req(1, control());
1349     }
1350   }
1351 
1352   // post merge
1353   set_control(_gvn.transform(region));
1354   record_for_igvn(region);
1355 
1356   set_result(_gvn.transform(phi));
1357   return true;
1358 }
1359 
1360 //------------------------------inline_array_equals----------------------------
1361 bool LibraryCallKit::inline_array_equals() {
1362   Node* arg1 = argument(0);
1363   Node* arg2 = argument(1);
1364 
1365   arg1 = shenandoah_read_barrier(arg1);
1366   arg2 = shenandoah_read_barrier(arg2);
1367 
1368   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1369   return true;
1370 }
1371 
1372 // Java version of String.indexOf(constant string)
1373 // class StringDecl {
1374 //   StringDecl(char[] ca) {
1375 //     offset = 0;
1376 //     count = ca.length;
1377 //     value = ca;
1378 //   }
1379 //   int offset;
1380 //   int count;
1381 //   char[] value;
1382 // }
1383 //
1384 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1385 //                             int targetOffset, int cache_i, int md2) {
1386 //   int cache = cache_i;
1387 //   int sourceOffset = string_object.offset;
1388 //   int sourceCount = string_object.count;
1389 //   int targetCount = target_object.length;
1390 //
1391 //   int targetCountLess1 = targetCount - 1;
1392 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1393 //
1394 //   char[] source = string_object.value;
1395 //   char[] target = target_object;
1396 //   int lastChar = target[targetCountLess1];
1397 //
1398 //  outer_loop:
1399 //   for (int i = sourceOffset; i < sourceEnd; ) {
1400 //     int src = source[i + targetCountLess1];
1401 //     if (src == lastChar) {
1402 //       // With random strings and a 4-character alphabet,
1403 //       // reverse matching at this point sets up 0.8% fewer
1404 //       // frames, but (paradoxically) makes 0.3% more probes.
1405 //       // Since those probes are nearer the lastChar probe,
1406 //       // there is may be a net D$ win with reverse matching.
1407 //       // But, reversing loop inhibits unroll of inner loop
1408 //       // for unknown reason.  So, does running outer loop from
1409 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1410 //       for (int j = 0; j < targetCountLess1; j++) {
1411 //         if (target[targetOffset + j] != source[i+j]) {
1412 //           if ((cache & (1 << source[i+j])) == 0) {
1413 //             if (md2 < j+1) {
1414 //               i += j+1;
1415 //               continue outer_loop;
1416 //             }
1417 //           }
1418 //           i += md2;
1419 //           continue outer_loop;
1420 //         }
1421 //       }
1422 //       return i - sourceOffset;
1423 //     }
1424 //     if ((cache & (1 << src)) == 0) {
1425 //       i += targetCountLess1;
1426 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1427 //     i++;
1428 //   }
1429 //   return -1;
1430 // }
1431 
1432 //------------------------------string_indexOf------------------------
1433 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1434                                      jint cache_i, jint md2_i) {
1435 
1436   Node* no_ctrl  = NULL;
1437   float likely   = PROB_LIKELY(0.9);
1438   float unlikely = PROB_UNLIKELY(0.9);
1439 
1440   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1441 
1442   Node* source        = load_String_value(no_ctrl, string_object);
1443   source = shenandoah_cast_not_null(source);
1444   source = shenandoah_read_barrier(source);
1445   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1446   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1447 
1448   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1449   jint target_length = target_array->length();
1450   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1451   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1452 
1453   // String.value field is known to be @Stable.
1454   if (UseImplicitStableValues) {
1455     target = cast_array_to_stable(target, target_type);
1456   }
1457 
1458   target = shenandoah_read_barrier(target);
1459 
1460   IdealKit kit(this, false, true);
1461 #define __ kit.
1462   Node* zero             = __ ConI(0);
1463   Node* one              = __ ConI(1);
1464   Node* cache            = __ ConI(cache_i);
1465   Node* md2              = __ ConI(md2_i);
1466   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1467   Node* targetCount      = __ ConI(target_length);
1468   Node* targetCountLess1 = __ ConI(target_length - 1);
1469   Node* targetOffset     = __ ConI(targetOffset_i);
1470   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1471 
1472   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1473   Node* outer_loop = __ make_label(2 /* goto */);
1474   Node* return_    = __ make_label(1);
1475 
1476   __ set(rtn,__ ConI(-1));
1477   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1478        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1479        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1480        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1481        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1482          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1483               Node* tpj = __ AddI(targetOffset, __ value(j));
1484               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1485               Node* ipj  = __ AddI(__ value(i), __ value(j));
1486               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1487               __ if_then(targ, BoolTest::ne, src2); {
1488                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1489                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1490                     __ increment(i, __ AddI(__ value(j), one));
1491                     __ goto_(outer_loop);
1492                   } __ end_if(); __ dead(j);
1493                 }__ end_if(); __ dead(j);
1494                 __ increment(i, md2);
1495                 __ goto_(outer_loop);
1496               }__ end_if();
1497               __ increment(j, one);
1498          }__ end_loop(); __ dead(j);
1499          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1500          __ goto_(return_);
1501        }__ end_if();
1502        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1503          __ increment(i, targetCountLess1);
1504        }__ end_if();
1505        __ increment(i, one);
1506        __ bind(outer_loop);
1507   }__ end_loop(); __ dead(i);
1508   __ bind(return_);
1509 
1510   // Final sync IdealKit and GraphKit.
1511   final_sync(kit);
1512   Node* result = __ value(rtn);
1513 #undef __
1514   C->set_has_loops(true);
1515   return result;
1516 }
1517 
1518 //------------------------------inline_string_indexOf------------------------
1519 bool LibraryCallKit::inline_string_indexOf() {
1520   Node* receiver = argument(0);
1521   Node* arg      = argument(1);
1522 
1523   Node* result;
1524   // Disable the use of pcmpestri until it can be guaranteed that
1525   // the load doesn't cross into the uncommited space.
1526   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1527       UseSSE42Intrinsics) {
1528     // Generate SSE4.2 version of indexOf
1529     // We currently only have match rules that use SSE4.2
1530 
1531     receiver = null_check(receiver);
1532     arg      = null_check(arg);
1533     if (stopped()) {
1534       return true;
1535     }
1536 
1537     ciInstanceKlass* str_klass = env()->String_klass();
1538     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1539 
1540     // Make the merge point
1541     RegionNode* result_rgn = new (C) RegionNode(4);
1542     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1543     Node* no_ctrl  = NULL;
1544 
1545     // Get start addr of source string
1546     Node* source = load_String_value(no_ctrl, receiver);
1547     source = shenandoah_cast_not_null(source);
1548     source = shenandoah_read_barrier(source);
1549     Node* source_offset = load_String_offset(no_ctrl, receiver);
1550     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1551 
1552     // Get length of source string
1553     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1554 
1555     // Get start addr of substring
1556     Node* substr = load_String_value(no_ctrl, arg);
1557     substr = shenandoah_cast_not_null(substr);
1558     substr = shenandoah_read_barrier(substr);
1559     Node* substr_offset = load_String_offset(no_ctrl, arg);
1560     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1561 
1562     // Get length of source string
1563     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1564 
1565     // Check for substr count > string count
1566     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1567     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1568     Node* if_gt = generate_slow_guard(bol, NULL);
1569     if (if_gt != NULL) {
1570       result_phi->init_req(2, intcon(-1));
1571       result_rgn->init_req(2, if_gt);
1572     }
1573 
1574     if (!stopped()) {
1575       // Check for substr count == 0
1576       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1577       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1578       Node* if_zero = generate_slow_guard(bol, NULL);
1579       if (if_zero != NULL) {
1580         result_phi->init_req(3, intcon(0));
1581         result_rgn->init_req(3, if_zero);
1582       }
1583     }
1584 
1585     if (!stopped()) {
1586       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1587       result_phi->init_req(1, result);
1588       result_rgn->init_req(1, control());
1589     }
1590     set_control(_gvn.transform(result_rgn));
1591     record_for_igvn(result_rgn);
1592     result = _gvn.transform(result_phi);
1593 
1594   } else { // Use LibraryCallKit::string_indexOf
1595     // don't intrinsify if argument isn't a constant string.
1596     if (!arg->is_Con()) {
1597      return false;
1598     }
1599     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1600     if (str_type == NULL) {
1601       return false;
1602     }
1603     ciInstanceKlass* klass = env()->String_klass();
1604     ciObject* str_const = str_type->const_oop();
1605     if (str_const == NULL || str_const->klass() != klass) {
1606       return false;
1607     }
1608     ciInstance* str = str_const->as_instance();
1609     assert(str != NULL, "must be instance");
1610 
1611     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1612     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1613 
1614     int o;
1615     int c;
1616     if (java_lang_String::has_offset_field()) {
1617       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1618       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1619     } else {
1620       o = 0;
1621       c = pat->length();
1622     }
1623 
1624     // constant strings have no offset and count == length which
1625     // simplifies the resulting code somewhat so lets optimize for that.
1626     if (o != 0 || c != pat->length()) {
1627      return false;
1628     }
1629 
1630     receiver = null_check(receiver, T_OBJECT);
1631     receiver = shenandoah_read_barrier(receiver);
1632     // NOTE: No null check on the argument is needed since it's a constant String oop.
1633     if (stopped()) {
1634       return true;
1635     }
1636 
1637     // The null string as a pattern always returns 0 (match at beginning of string)
1638     if (c == 0) {
1639       set_result(intcon(0));
1640       return true;
1641     }
1642 
1643     // Generate default indexOf
1644     jchar lastChar = pat->char_at(o + (c - 1));
1645     int cache = 0;
1646     int i;
1647     for (i = 0; i < c - 1; i++) {
1648       assert(i < pat->length(), "out of range");
1649       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1650     }
1651 
1652     int md2 = c;
1653     for (i = 0; i < c - 1; i++) {
1654       assert(i < pat->length(), "out of range");
1655       if (pat->char_at(o + i) == lastChar) {
1656         md2 = (c - 1) - i;
1657       }
1658     }
1659 
1660     result = string_indexOf(receiver, pat, o, cache, md2);
1661   }
1662   set_result(result);
1663   return true;
1664 }
1665 
1666 //--------------------------round_double_node--------------------------------
1667 // Round a double node if necessary.
1668 Node* LibraryCallKit::round_double_node(Node* n) {
1669   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1670     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1671   return n;
1672 }
1673 
1674 //------------------------------inline_math-----------------------------------
1675 // public static double Math.abs(double)
1676 // public static double Math.sqrt(double)
1677 // public static double Math.log(double)
1678 // public static double Math.log10(double)
1679 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1680   Node* arg = round_double_node(argument(0));
1681   Node* n = NULL;
1682   switch (id) {
1683   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1684   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1685   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1686   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1687   default:  fatal_unexpected_iid(id);  break;
1688   }
1689   set_result(_gvn.transform(n));
1690   return true;
1691 }
1692 
1693 //------------------------------inline_trig----------------------------------
1694 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1695 // argument reduction which will turn into a fast/slow diamond.
1696 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1697   Node* arg = round_double_node(argument(0));
1698   Node* n = NULL;
1699 
1700   switch (id) {
1701   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1702   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1703   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1704   default:  fatal_unexpected_iid(id);  break;
1705   }
1706   n = _gvn.transform(n);
1707 
1708   // Rounding required?  Check for argument reduction!
1709   if (Matcher::strict_fp_requires_explicit_rounding) {
1710     static const double     pi_4 =  0.7853981633974483;
1711     static const double neg_pi_4 = -0.7853981633974483;
1712     // pi/2 in 80-bit extended precision
1713     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1714     // -pi/2 in 80-bit extended precision
1715     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1716     // Cutoff value for using this argument reduction technique
1717     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1718     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1719 
1720     // Pseudocode for sin:
1721     // if (x <= Math.PI / 4.0) {
1722     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1723     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1724     // } else {
1725     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1726     // }
1727     // return StrictMath.sin(x);
1728 
1729     // Pseudocode for cos:
1730     // if (x <= Math.PI / 4.0) {
1731     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1732     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1733     // } else {
1734     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1735     // }
1736     // return StrictMath.cos(x);
1737 
1738     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1739     // requires a special machine instruction to load it.  Instead we'll try
1740     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1741     // probably do the math inside the SIN encoding.
1742 
1743     // Make the merge point
1744     RegionNode* r = new (C) RegionNode(3);
1745     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1746 
1747     // Flatten arg so we need only 1 test
1748     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1749     // Node for PI/4 constant
1750     Node *pi4 = makecon(TypeD::make(pi_4));
1751     // Check PI/4 : abs(arg)
1752     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1753     // Check: If PI/4 < abs(arg) then go slow
1754     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1755     // Branch either way
1756     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1757     set_control(opt_iff(r,iff));
1758 
1759     // Set fast path result
1760     phi->init_req(2, n);
1761 
1762     // Slow path - non-blocking leaf call
1763     Node* call = NULL;
1764     switch (id) {
1765     case vmIntrinsics::_dsin:
1766       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1767                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1768                                "Sin", NULL, arg, top());
1769       break;
1770     case vmIntrinsics::_dcos:
1771       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1772                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1773                                "Cos", NULL, arg, top());
1774       break;
1775     case vmIntrinsics::_dtan:
1776       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1777                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1778                                "Tan", NULL, arg, top());
1779       break;
1780     }
1781     assert(control()->in(0) == call, "");
1782     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1783     r->init_req(1, control());
1784     phi->init_req(1, slow_result);
1785 
1786     // Post-merge
1787     set_control(_gvn.transform(r));
1788     record_for_igvn(r);
1789     n = _gvn.transform(phi);
1790 
1791     C->set_has_split_ifs(true); // Has chance for split-if optimization
1792   }
1793   set_result(n);
1794   return true;
1795 }
1796 
1797 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1798   //-------------------
1799   //result=(result.isNaN())? funcAddr():result;
1800   // Check: If isNaN() by checking result!=result? then either trap
1801   // or go to runtime
1802   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1803   // Build the boolean node
1804   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1805 
1806   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1807     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1808       // The pow or exp intrinsic returned a NaN, which requires a call
1809       // to the runtime.  Recompile with the runtime call.
1810       uncommon_trap(Deoptimization::Reason_intrinsic,
1811                     Deoptimization::Action_make_not_entrant);
1812     }
1813     return result;
1814   } else {
1815     // If this inlining ever returned NaN in the past, we compile a call
1816     // to the runtime to properly handle corner cases
1817 
1818     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1819     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1820     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1821 
1822     if (!if_slow->is_top()) {
1823       RegionNode* result_region = new (C) RegionNode(3);
1824       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1825 
1826       result_region->init_req(1, if_fast);
1827       result_val->init_req(1, result);
1828 
1829       set_control(if_slow);
1830 
1831       const TypePtr* no_memory_effects = NULL;
1832       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1833                                    no_memory_effects,
1834                                    x, top(), y, y ? top() : NULL);
1835       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1836 #ifdef ASSERT
1837       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1838       assert(value_top == top(), "second value must be top");
1839 #endif
1840 
1841       result_region->init_req(2, control());
1842       result_val->init_req(2, value);
1843       set_control(_gvn.transform(result_region));
1844       return _gvn.transform(result_val);
1845     } else {
1846       return result;
1847     }
1848   }
1849 }
1850 
1851 //------------------------------inline_exp-------------------------------------
1852 // Inline exp instructions, if possible.  The Intel hardware only misses
1853 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1854 bool LibraryCallKit::inline_exp() {
1855   Node* arg = round_double_node(argument(0));
1856   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1857 
1858   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1859   set_result(n);
1860 
1861   C->set_has_split_ifs(true); // Has chance for split-if optimization
1862   return true;
1863 }
1864 
1865 //------------------------------inline_pow-------------------------------------
1866 // Inline power instructions, if possible.
1867 bool LibraryCallKit::inline_pow() {
1868   // Pseudocode for pow
1869   // if (y == 2) {
1870   //   return x * x;
1871   // } else {
1872   //   if (x <= 0.0) {
1873   //     long longy = (long)y;
1874   //     if ((double)longy == y) { // if y is long
1875   //       if (y + 1 == y) longy = 0; // huge number: even
1876   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1877   //     } else {
1878   //       result = NaN;
1879   //     }
1880   //   } else {
1881   //     result = DPow(x,y);
1882   //   }
1883   //   if (result != result)?  {
1884   //     result = uncommon_trap() or runtime_call();
1885   //   }
1886   //   return result;
1887   // }
1888 
1889   Node* x = round_double_node(argument(0));
1890   Node* y = round_double_node(argument(2));
1891 
1892   Node* result = NULL;
1893 
1894   Node*   const_two_node = makecon(TypeD::make(2.0));
1895   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
1896   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
1897   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1898   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
1899   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
1900 
1901   RegionNode* region_node = new (C) RegionNode(3);
1902   region_node->init_req(1, if_true);
1903 
1904   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
1905   // special case for x^y where y == 2, we can convert it to x * x
1906   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
1907 
1908   // set control to if_false since we will now process the false branch
1909   set_control(if_false);
1910 
1911   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1912     // Short form: skip the fancy tests and just check for NaN result.
1913     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1914   } else {
1915     // If this inlining ever returned NaN in the past, include all
1916     // checks + call to the runtime.
1917 
1918     // Set the merge point for If node with condition of (x <= 0.0)
1919     // There are four possible paths to region node and phi node
1920     RegionNode *r = new (C) RegionNode(4);
1921     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1922 
1923     // Build the first if node: if (x <= 0.0)
1924     // Node for 0 constant
1925     Node *zeronode = makecon(TypeD::ZERO);
1926     // Check x:0
1927     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1928     // Check: If (x<=0) then go complex path
1929     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1930     // Branch either way
1931     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1932     // Fast path taken; set region slot 3
1933     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1934     r->init_req(3,fast_taken); // Capture fast-control
1935 
1936     // Fast path not-taken, i.e. slow path
1937     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1938 
1939     // Set fast path result
1940     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1941     phi->init_req(3, fast_result);
1942 
1943     // Complex path
1944     // Build the second if node (if y is long)
1945     // Node for (long)y
1946     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1947     // Node for (double)((long) y)
1948     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1949     // Check (double)((long) y) : y
1950     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1951     // Check if (y isn't long) then go to slow path
1952 
1953     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1954     // Branch either way
1955     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1956     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1957 
1958     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1959 
1960     // Calculate DPow(abs(x), y)*(1 & (long)y)
1961     // Node for constant 1
1962     Node *conone = longcon(1);
1963     // 1& (long)y
1964     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1965 
1966     // A huge number is always even. Detect a huge number by checking
1967     // if y + 1 == y and set integer to be tested for parity to 0.
1968     // Required for corner case:
1969     // (long)9.223372036854776E18 = max_jlong
1970     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1971     // max_jlong is odd but 9.223372036854776E18 is even
1972     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1973     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1974     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1975     Node* correctedsign = NULL;
1976     if (ConditionalMoveLimit != 0) {
1977       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1978     } else {
1979       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1980       RegionNode *r = new (C) RegionNode(3);
1981       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1982       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1983       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1984       phi->init_req(1, signnode);
1985       phi->init_req(2, longcon(0));
1986       correctedsign = _gvn.transform(phi);
1987       ylong_path = _gvn.transform(r);
1988       record_for_igvn(r);
1989     }
1990 
1991     // zero node
1992     Node *conzero = longcon(0);
1993     // Check (1&(long)y)==0?
1994     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1995     // Check if (1&(long)y)!=0?, if so the result is negative
1996     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1997     // abs(x)
1998     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1999     // abs(x)^y
2000     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
2001     // -abs(x)^y
2002     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
2003     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
2004     Node *signresult = NULL;
2005     if (ConditionalMoveLimit != 0) {
2006       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
2007     } else {
2008       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
2009       RegionNode *r = new (C) RegionNode(3);
2010       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
2011       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
2012       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
2013       phi->init_req(1, absxpowy);
2014       phi->init_req(2, negabsxpowy);
2015       signresult = _gvn.transform(phi);
2016       ylong_path = _gvn.transform(r);
2017       record_for_igvn(r);
2018     }
2019     // Set complex path fast result
2020     r->init_req(2, ylong_path);
2021     phi->init_req(2, signresult);
2022 
2023     static const jlong nan_bits = CONST64(0x7ff8000000000000);
2024     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
2025     r->init_req(1,slow_path);
2026     phi->init_req(1,slow_result);
2027 
2028     // Post merge
2029     set_control(_gvn.transform(r));
2030     record_for_igvn(r);
2031     result = _gvn.transform(phi);
2032   }
2033 
2034   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
2035 
2036   // control from finish_pow_exp is now input to the region node
2037   region_node->set_req(2, control());
2038   // the result from finish_pow_exp is now input to the phi node
2039   phi_node->init_req(2, result);
2040   set_control(_gvn.transform(region_node));
2041   record_for_igvn(region_node);
2042   set_result(_gvn.transform(phi_node));
2043 
2044   C->set_has_split_ifs(true); // Has chance for split-if optimization
2045   return true;
2046 }
2047 
2048 //------------------------------runtime_math-----------------------------
2049 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
2050   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
2051          "must be (DD)D or (D)D type");
2052 
2053   // Inputs
2054   Node* a = round_double_node(argument(0));
2055   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
2056 
2057   const TypePtr* no_memory_effects = NULL;
2058   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
2059                                  no_memory_effects,
2060                                  a, top(), b, b ? top() : NULL);
2061   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
2062 #ifdef ASSERT
2063   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
2064   assert(value_top == top(), "second value must be top");
2065 #endif
2066 
2067   set_result(value);
2068   return true;
2069 }
2070 
2071 //------------------------------inline_math_native-----------------------------
2072 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
2073 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
2074   switch (id) {
2075     // These intrinsics are not properly supported on all hardware
2076   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
2077     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
2078   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
2079     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
2080   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
2081     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
2082 
2083   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
2084     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
2085   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
2086     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
2087 
2088     // These intrinsics are supported on all hardware
2089   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
2090   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
2091 
2092   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
2093     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
2094   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
2095     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
2096 #undef FN_PTR
2097 
2098    // These intrinsics are not yet correctly implemented
2099   case vmIntrinsics::_datan2:
2100     return false;
2101 
2102   default:
2103     fatal_unexpected_iid(id);
2104     return false;
2105   }
2106 }
2107 
2108 static bool is_simple_name(Node* n) {
2109   return (n->req() == 1         // constant
2110           || (n->is_Type() && n->as_Type()->type()->singleton())
2111           || n->is_Proj()       // parameter or return value
2112           || n->is_Phi()        // local of some sort
2113           );
2114 }
2115 
2116 //----------------------------inline_min_max-----------------------------------
2117 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2118   set_result(generate_min_max(id, argument(0), argument(1)));
2119   return true;
2120 }
2121 
2122 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2123   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
2124   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2125   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
2126   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
2127 
2128   {
2129     PreserveJVMState pjvms(this);
2130     PreserveReexecuteState preexecs(this);
2131     jvms()->set_should_reexecute(true);
2132 
2133     set_control(slow_path);
2134     set_i_o(i_o());
2135 
2136     uncommon_trap(Deoptimization::Reason_intrinsic,
2137                   Deoptimization::Action_none);
2138   }
2139 
2140   set_control(fast_path);
2141   set_result(math);
2142 }
2143 
2144 template <typename OverflowOp>
2145 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2146   typedef typename OverflowOp::MathOp MathOp;
2147 
2148   MathOp* mathOp = new(C) MathOp(arg1, arg2);
2149   Node* operation = _gvn.transform( mathOp );
2150   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
2151   inline_math_mathExact(operation, ofcheck);
2152   return true;
2153 }
2154 
2155 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2156   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2157 }
2158 
2159 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2160   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2161 }
2162 
2163 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2164   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2165 }
2166 
2167 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2168   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2169 }
2170 
2171 bool LibraryCallKit::inline_math_negateExactI() {
2172   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2173 }
2174 
2175 bool LibraryCallKit::inline_math_negateExactL() {
2176   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2177 }
2178 
2179 bool LibraryCallKit::inline_math_multiplyExactI() {
2180   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2181 }
2182 
2183 bool LibraryCallKit::inline_math_multiplyExactL() {
2184   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2185 }
2186 
2187 Node*
2188 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2189   // These are the candidate return value:
2190   Node* xvalue = x0;
2191   Node* yvalue = y0;
2192 
2193   if (xvalue == yvalue) {
2194     return xvalue;
2195   }
2196 
2197   bool want_max = (id == vmIntrinsics::_max);
2198 
2199   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2200   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2201   if (txvalue == NULL || tyvalue == NULL)  return top();
2202   // This is not really necessary, but it is consistent with a
2203   // hypothetical MaxINode::Value method:
2204   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2205 
2206   // %%% This folding logic should (ideally) be in a different place.
2207   // Some should be inside IfNode, and there to be a more reliable
2208   // transformation of ?: style patterns into cmoves.  We also want
2209   // more powerful optimizations around cmove and min/max.
2210 
2211   // Try to find a dominating comparison of these guys.
2212   // It can simplify the index computation for Arrays.copyOf
2213   // and similar uses of System.arraycopy.
2214   // First, compute the normalized version of CmpI(x, y).
2215   int   cmp_op = Op_CmpI;
2216   Node* xkey = xvalue;
2217   Node* ykey = yvalue;
2218   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2219   if (ideal_cmpxy->is_Cmp()) {
2220     // E.g., if we have CmpI(length - offset, count),
2221     // it might idealize to CmpI(length, count + offset)
2222     cmp_op = ideal_cmpxy->Opcode();
2223     xkey = ideal_cmpxy->in(1);
2224     ykey = ideal_cmpxy->in(2);
2225   }
2226 
2227   // Start by locating any relevant comparisons.
2228   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2229   Node* cmpxy = NULL;
2230   Node* cmpyx = NULL;
2231   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2232     Node* cmp = start_from->fast_out(k);
2233     if (cmp->outcnt() > 0 &&            // must have prior uses
2234         cmp->in(0) == NULL &&           // must be context-independent
2235         cmp->Opcode() == cmp_op) {      // right kind of compare
2236       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2237       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2238     }
2239   }
2240 
2241   const int NCMPS = 2;
2242   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2243   int cmpn;
2244   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2245     if (cmps[cmpn] != NULL)  break;     // find a result
2246   }
2247   if (cmpn < NCMPS) {
2248     // Look for a dominating test that tells us the min and max.
2249     int depth = 0;                // Limit search depth for speed
2250     Node* dom = control();
2251     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2252       if (++depth >= 100)  break;
2253       Node* ifproj = dom;
2254       if (!ifproj->is_Proj())  continue;
2255       Node* iff = ifproj->in(0);
2256       if (!iff->is_If())  continue;
2257       Node* bol = iff->in(1);
2258       if (!bol->is_Bool())  continue;
2259       Node* cmp = bol->in(1);
2260       if (cmp == NULL)  continue;
2261       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2262         if (cmps[cmpn] == cmp)  break;
2263       if (cmpn == NCMPS)  continue;
2264       BoolTest::mask btest = bol->as_Bool()->_test._test;
2265       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2266       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2267       // At this point, we know that 'x btest y' is true.
2268       switch (btest) {
2269       case BoolTest::eq:
2270         // They are proven equal, so we can collapse the min/max.
2271         // Either value is the answer.  Choose the simpler.
2272         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2273           return yvalue;
2274         return xvalue;
2275       case BoolTest::lt:          // x < y
2276       case BoolTest::le:          // x <= y
2277         return (want_max ? yvalue : xvalue);
2278       case BoolTest::gt:          // x > y
2279       case BoolTest::ge:          // x >= y
2280         return (want_max ? xvalue : yvalue);
2281       }
2282     }
2283   }
2284 
2285   // We failed to find a dominating test.
2286   // Let's pick a test that might GVN with prior tests.
2287   Node*          best_bol   = NULL;
2288   BoolTest::mask best_btest = BoolTest::illegal;
2289   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2290     Node* cmp = cmps[cmpn];
2291     if (cmp == NULL)  continue;
2292     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2293       Node* bol = cmp->fast_out(j);
2294       if (!bol->is_Bool())  continue;
2295       BoolTest::mask btest = bol->as_Bool()->_test._test;
2296       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2297       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2298       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2299         best_bol   = bol->as_Bool();
2300         best_btest = btest;
2301       }
2302     }
2303   }
2304 
2305   Node* answer_if_true  = NULL;
2306   Node* answer_if_false = NULL;
2307   switch (best_btest) {
2308   default:
2309     if (cmpxy == NULL)
2310       cmpxy = ideal_cmpxy;
2311     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2312     // and fall through:
2313   case BoolTest::lt:          // x < y
2314   case BoolTest::le:          // x <= y
2315     answer_if_true  = (want_max ? yvalue : xvalue);
2316     answer_if_false = (want_max ? xvalue : yvalue);
2317     break;
2318   case BoolTest::gt:          // x > y
2319   case BoolTest::ge:          // x >= y
2320     answer_if_true  = (want_max ? xvalue : yvalue);
2321     answer_if_false = (want_max ? yvalue : xvalue);
2322     break;
2323   }
2324 
2325   jint hi, lo;
2326   if (want_max) {
2327     // We can sharpen the minimum.
2328     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2329     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2330   } else {
2331     // We can sharpen the maximum.
2332     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2333     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2334   }
2335 
2336   // Use a flow-free graph structure, to avoid creating excess control edges
2337   // which could hinder other optimizations.
2338   // Since Math.min/max is often used with arraycopy, we want
2339   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2340   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2341                                answer_if_false, answer_if_true,
2342                                TypeInt::make(lo, hi, widen));
2343 
2344   return _gvn.transform(cmov);
2345 
2346   /*
2347   // This is not as desirable as it may seem, since Min and Max
2348   // nodes do not have a full set of optimizations.
2349   // And they would interfere, anyway, with 'if' optimizations
2350   // and with CMoveI canonical forms.
2351   switch (id) {
2352   case vmIntrinsics::_min:
2353     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2354   case vmIntrinsics::_max:
2355     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2356   default:
2357     ShouldNotReachHere();
2358   }
2359   */
2360 }
2361 
2362 inline int
2363 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2364   const TypePtr* base_type = TypePtr::NULL_PTR;
2365   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2366   if (base_type == NULL) {
2367     // Unknown type.
2368     return Type::AnyPtr;
2369   } else if (base_type == TypePtr::NULL_PTR) {
2370     // Since this is a NULL+long form, we have to switch to a rawptr.
2371     base   = _gvn.transform(new (C) CastX2PNode(offset));
2372     offset = MakeConX(0);
2373     return Type::RawPtr;
2374   } else if (base_type->base() == Type::RawPtr) {
2375     return Type::RawPtr;
2376   } else if (base_type->isa_oopptr()) {
2377     // Base is never null => always a heap address.
2378     if (base_type->ptr() == TypePtr::NotNull) {
2379       return Type::OopPtr;
2380     }
2381     // Offset is small => always a heap address.
2382     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2383     if (offset_type != NULL &&
2384         base_type->offset() == 0 &&     // (should always be?)
2385         offset_type->_lo >= 0 &&
2386         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2387       return Type::OopPtr;
2388     }
2389     // Otherwise, it might either be oop+off or NULL+addr.
2390     return Type::AnyPtr;
2391   } else {
2392     // No information:
2393     return Type::AnyPtr;
2394   }
2395 }
2396 
2397 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset, bool is_store) {
2398   int kind = classify_unsafe_addr(base, offset);
2399   if (kind == Type::RawPtr) {
2400     return basic_plus_adr(top(), base, offset);
2401   } else {
2402     if (UseShenandoahGC) {
2403       if (kind == Type::OopPtr) {
2404         // A cast without a null check should be sufficient here (we
2405         // know base is an oop with a low offset so it can't be null)
2406         // but if there's a dominating null check with both branches
2407         // taken and the cast is pushed in both branches, the cast
2408         // will become top in the null branch but the control flow
2409         // won't go away. Use a null check instead. Worst case, the
2410         // null check becomes an implicit null check with the follow
2411         // barrier and is essentially free.
2412         Node* ctrl = top();
2413         base = null_check_oop(base, &ctrl, true);
2414         if (is_store) {
2415           base = shenandoah_write_barrier(base);
2416         } else {
2417           base = shenandoah_read_barrier(base);
2418         }
2419       } else if (kind == Type::AnyPtr) {
2420         if (UseShenandoahGC &&
2421             _gvn.type(base)->isa_aryptr()) {
2422           Node* ctrl = top();
2423           base = null_check_oop(base, &ctrl, true);
2424         }
2425 
2426         if (is_store) {
2427           base = shenandoah_write_barrier(base);
2428         } else {
2429           base = shenandoah_read_barrier(base);
2430         }
2431       }
2432     }
2433     return basic_plus_adr(base, offset);
2434   }
2435 }
2436 
2437 //--------------------------inline_number_methods-----------------------------
2438 // inline int     Integer.numberOfLeadingZeros(int)
2439 // inline int        Long.numberOfLeadingZeros(long)
2440 //
2441 // inline int     Integer.numberOfTrailingZeros(int)
2442 // inline int        Long.numberOfTrailingZeros(long)
2443 //
2444 // inline int     Integer.bitCount(int)
2445 // inline int        Long.bitCount(long)
2446 //
2447 // inline char  Character.reverseBytes(char)
2448 // inline short     Short.reverseBytes(short)
2449 // inline int     Integer.reverseBytes(int)
2450 // inline long       Long.reverseBytes(long)
2451 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2452   Node* arg = argument(0);
2453   Node* n = NULL;
2454   switch (id) {
2455   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2456   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2457   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2458   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2459   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2460   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2461   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2462   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2463   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2464   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2465   default:  fatal_unexpected_iid(id);  break;
2466   }
2467   set_result(_gvn.transform(n));
2468   return true;
2469 }
2470 
2471 //----------------------------inline_unsafe_access----------------------------
2472 
2473 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2474 
2475 // Helper that guards and inserts a pre-barrier.
2476 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2477                                         Node* pre_val, bool need_mem_bar) {
2478   // We could be accessing the referent field of a reference object. If so, when G1
2479   // is enabled, we need to log the value in the referent field in an SATB buffer.
2480   // This routine performs some compile time filters and generates suitable
2481   // runtime filters that guard the pre-barrier code.
2482   // Also add memory barrier for non volatile load from the referent field
2483   // to prevent commoning of loads across safepoint.
2484   if (!(UseG1GC || UseShenandoahGC) && !need_mem_bar)
2485     return;
2486 
2487   // Some compile time checks.
2488 
2489   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2490   const TypeX* otype = offset->find_intptr_t_type();
2491   if (otype != NULL && otype->is_con() &&
2492       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2493     // Constant offset but not the reference_offset so just return
2494     return;
2495   }
2496 
2497   // We only need to generate the runtime guards for instances.
2498   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2499   if (btype != NULL) {
2500     if (btype->isa_aryptr()) {
2501       // Array type so nothing to do
2502       return;
2503     }
2504 
2505     const TypeInstPtr* itype = btype->isa_instptr();
2506     if (itype != NULL) {
2507       // Can the klass of base_oop be statically determined to be
2508       // _not_ a sub-class of Reference and _not_ Object?
2509       ciKlass* klass = itype->klass();
2510       if ( klass->is_loaded() &&
2511           !klass->is_subtype_of(env()->Reference_klass()) &&
2512           !env()->Object_klass()->is_subtype_of(klass)) {
2513         return;
2514       }
2515     }
2516   }
2517 
2518   // The compile time filters did not reject base_oop/offset so
2519   // we need to generate the following runtime filters
2520   //
2521   // if (offset == java_lang_ref_Reference::_reference_offset) {
2522   //   if (instance_of(base, java.lang.ref.Reference)) {
2523   //     pre_barrier(_, pre_val, ...);
2524   //   }
2525   // }
2526 
2527   float likely   = PROB_LIKELY(  0.999);
2528   float unlikely = PROB_UNLIKELY(0.999);
2529 
2530   IdealKit ideal(this);
2531 #define __ ideal.
2532 
2533   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2534 
2535   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2536       // Update graphKit memory and control from IdealKit.
2537       sync_kit(ideal);
2538 
2539       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2540       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2541 
2542       // Update IdealKit memory and control from graphKit.
2543       __ sync_kit(this);
2544 
2545       Node* one = __ ConI(1);
2546       // is_instof == 0 if base_oop == NULL
2547       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2548 
2549         // Update graphKit from IdeakKit.
2550         sync_kit(ideal);
2551 
2552         // Use the pre-barrier to record the value in the referent field
2553         pre_barrier(false /* do_load */,
2554                     __ ctrl(),
2555                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2556                     pre_val /* pre_val */,
2557                     T_OBJECT);
2558         if (need_mem_bar) {
2559           // Add memory barrier to prevent commoning reads from this field
2560           // across safepoint since GC can change its value.
2561           insert_mem_bar(Op_MemBarCPUOrder);
2562         }
2563         // Update IdealKit from graphKit.
2564         __ sync_kit(this);
2565 
2566       } __ end_if(); // _ref_type != ref_none
2567   } __ end_if(); // offset == referent_offset
2568 
2569   // Final sync IdealKit and GraphKit.
2570   final_sync(ideal);
2571 #undef __
2572 }
2573 
2574 
2575 // Interpret Unsafe.fieldOffset cookies correctly:
2576 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2577 
2578 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2579   // Attempt to infer a sharper value type from the offset and base type.
2580   ciKlass* sharpened_klass = NULL;
2581 
2582   // See if it is an instance field, with an object type.
2583   if (alias_type->field() != NULL) {
2584     assert(!is_native_ptr, "native pointer op cannot use a java address");
2585     if (alias_type->field()->type()->is_klass()) {
2586       sharpened_klass = alias_type->field()->type()->as_klass();
2587     }
2588   }
2589 
2590   // See if it is a narrow oop array.
2591   if (adr_type->isa_aryptr()) {
2592     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2593       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2594       if (elem_type != NULL) {
2595         sharpened_klass = elem_type->klass();
2596       }
2597     }
2598   }
2599 
2600   // The sharpened class might be unloaded if there is no class loader
2601   // contraint in place.
2602   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2603     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2604 
2605 #ifndef PRODUCT
2606     if (C->print_intrinsics() || C->print_inlining()) {
2607       tty->print("  from base type: ");  adr_type->dump();
2608       tty->print("  sharpened value: ");  tjp->dump();
2609     }
2610 #endif
2611     // Sharpen the value type.
2612     return tjp;
2613   }
2614   return NULL;
2615 }
2616 
2617 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool unaligned) {
2618   if (callee()->is_static())  return false;  // caller must have the capability!
2619   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2620 
2621 #ifndef PRODUCT
2622   {
2623     ResourceMark rm;
2624     // Check the signatures.
2625     ciSignature* sig = callee()->signature();
2626 #ifdef ASSERT
2627     if (!is_store) {
2628       // Object getObject(Object base, int/long offset), etc.
2629       BasicType rtype = sig->return_type()->basic_type();
2630       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2631           rtype = T_ADDRESS;  // it is really a C void*
2632       assert(rtype == type, "getter must return the expected value");
2633       if (!is_native_ptr) {
2634         assert(sig->count() == 2, "oop getter has 2 arguments");
2635         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2636         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2637       } else {
2638         assert(sig->count() == 1, "native getter has 1 argument");
2639         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2640       }
2641     } else {
2642       // void putObject(Object base, int/long offset, Object x), etc.
2643       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2644       if (!is_native_ptr) {
2645         assert(sig->count() == 3, "oop putter has 3 arguments");
2646         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2647         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2648       } else {
2649         assert(sig->count() == 2, "native putter has 2 arguments");
2650         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2651       }
2652       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2653       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2654         vtype = T_ADDRESS;  // it is really a C void*
2655       assert(vtype == type, "putter must accept the expected value");
2656     }
2657 #endif // ASSERT
2658  }
2659 #endif //PRODUCT
2660 
2661   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2662 
2663   Node* receiver = argument(0);  // type: oop
2664 
2665   // Build address expression.  See the code in inline_unsafe_prefetch.
2666   Node* adr;
2667   Node* heap_base_oop = top();
2668   Node* offset = top();
2669   Node* val;
2670 
2671   if (!is_native_ptr) {
2672     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2673     Node* base = argument(1);  // type: oop
2674     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2675     offset = argument(2);  // type: long
2676     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2677     // to be plain byte offsets, which are also the same as those accepted
2678     // by oopDesc::field_base.
2679     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2680            "fieldOffset must be byte-scaled");
2681     // 32-bit machines ignore the high half!
2682     offset = ConvL2X(offset);
2683     adr = make_unsafe_address(base, offset, is_store);
2684     heap_base_oop = base;
2685     val = is_store ? argument(4) : NULL;
2686   } else {
2687     Node* ptr = argument(1);  // type: long
2688     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2689     adr = make_unsafe_address(NULL, ptr, is_store);
2690     val = is_store ? argument(3) : NULL;
2691   }
2692 
2693   // Can base be NULL? Otherwise, always on-heap access.
2694   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop));
2695 
2696   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2697 
2698   // Try to categorize the address.
2699   Compile::AliasType* alias_type = C->alias_type(adr_type);
2700   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2701 
2702   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2703       alias_type->adr_type() == TypeAryPtr::RANGE) {
2704     return false; // not supported
2705   }
2706 
2707   bool mismatched = false;
2708   BasicType bt = alias_type->basic_type();
2709   if (bt != T_ILLEGAL) {
2710     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2711     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2712       // Alias type doesn't differentiate between byte[] and boolean[]).
2713       // Use address type to get the element type.
2714       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2715     }
2716     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2717       // accessing an array field with getObject is not a mismatch
2718       bt = T_OBJECT;
2719     }
2720     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2721       // Don't intrinsify mismatched object accesses
2722       return false;
2723     }
2724     mismatched = (bt != type);
2725   }
2726 
2727   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2728 
2729   // First guess at the value type.
2730   const Type *value_type = Type::get_const_basic_type(type);
2731 
2732   // We will need memory barriers unless we can determine a unique
2733   // alias category for this reference.  (Note:  If for some reason
2734   // the barriers get omitted and the unsafe reference begins to "pollute"
2735   // the alias analysis of the rest of the graph, either Compile::can_alias
2736   // or Compile::must_alias will throw a diagnostic assert.)
2737   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2738 
2739   // If we are reading the value of the referent field of a Reference
2740   // object (either by using Unsafe directly or through reflection)
2741   // then, if G1 is enabled, we need to record the referent in an
2742   // SATB log buffer using the pre-barrier mechanism.
2743   // Also we need to add memory barrier to prevent commoning reads
2744   // from this field across safepoint since GC can change its value.
2745   bool need_read_barrier = !is_native_ptr && !is_store &&
2746                            offset != top() && heap_base_oop != top();
2747 
2748   if (!is_store && type == T_OBJECT) {
2749     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2750     if (tjp != NULL) {
2751       value_type = tjp;
2752     }
2753   }
2754 
2755   receiver = null_check(receiver);
2756   if (stopped()) {
2757     return true;
2758   }
2759   // Heap pointers get a null-check from the interpreter,
2760   // as a courtesy.  However, this is not guaranteed by Unsafe,
2761   // and it is not possible to fully distinguish unintended nulls
2762   // from intended ones in this API.
2763 
2764   if (is_volatile) {
2765     // We need to emit leading and trailing CPU membars (see below) in
2766     // addition to memory membars when is_volatile. This is a little
2767     // too strong, but avoids the need to insert per-alias-type
2768     // volatile membars (for stores; compare Parse::do_put_xxx), which
2769     // we cannot do effectively here because we probably only have a
2770     // rough approximation of type.
2771     need_mem_bar = true;
2772     // For Stores, place a memory ordering barrier now.
2773     if (is_store) {
2774       insert_mem_bar(Op_MemBarRelease);
2775     } else {
2776       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2777         insert_mem_bar(Op_MemBarVolatile);
2778       }
2779     }
2780   }
2781 
2782   // Memory barrier to prevent normal and 'unsafe' accesses from
2783   // bypassing each other.  Happens after null checks, so the
2784   // exception paths do not take memory state from the memory barrier,
2785   // so there's no problems making a strong assert about mixing users
2786   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2787   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2788   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2789 
2790   if (!is_store) {
2791     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2792     // To be valid, unsafe loads may depend on other conditions than
2793     // the one that guards them: pin the Load node
2794     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile, unaligned, mismatched);
2795     // load value
2796     switch (type) {
2797     case T_BOOLEAN:
2798     case T_CHAR:
2799     case T_BYTE:
2800     case T_SHORT:
2801     case T_INT:
2802     case T_LONG:
2803     case T_FLOAT:
2804     case T_DOUBLE:
2805       break;
2806     case T_OBJECT:
2807       if (need_read_barrier) {
2808         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2809       }
2810       break;
2811     case T_ADDRESS:
2812       // Cast to an int type.
2813       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2814       p = ConvX2UL(p);
2815       break;
2816     default:
2817       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2818       break;
2819     }
2820     // The load node has the control of the preceding MemBarCPUOrder.  All
2821     // following nodes will have the control of the MemBarCPUOrder inserted at
2822     // the end of this method.  So, pushing the load onto the stack at a later
2823     // point is fine.
2824     set_result(p);
2825   } else {
2826     // place effect of store into memory
2827     switch (type) {
2828     case T_DOUBLE:
2829       val = dstore_rounding(val);
2830       break;
2831     case T_ADDRESS:
2832       // Repackage the long as a pointer.
2833       val = ConvL2X(val);
2834       val = _gvn.transform(new (C) CastX2PNode(val));
2835       break;
2836     }
2837 
2838     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2839     if (type != T_OBJECT ) {
2840       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile, unaligned, mismatched);
2841     } else {
2842       // Possibly an oop being stored to Java heap or native memory
2843       if (!can_access_non_heap) {
2844         // oop to Java heap.
2845         val = shenandoah_read_barrier_storeval(val);
2846         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2847       } else {
2848         // We can't tell at compile time if we are storing in the Java heap or outside
2849         // of it. So we need to emit code to conditionally do the proper type of
2850         // store.
2851 
2852         IdealKit ideal(this);
2853 #define __ ideal.
2854         // QQQ who knows what probability is here??
2855         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2856           // Sync IdealKit and graphKit.
2857           sync_kit(ideal);
2858           Node* rb = shenandoah_read_barrier_storeval(val);
2859           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, rb, type, mo, mismatched);
2860           // Update IdealKit memory.
2861           __ sync_kit(this);
2862         } __ else_(); {
2863           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile, mismatched);
2864         } __ end_if();
2865         // Final sync IdealKit and GraphKit.
2866         final_sync(ideal);
2867 #undef __
2868       }
2869     }
2870   }
2871 
2872   if (is_volatile) {
2873     if (!is_store) {
2874       insert_mem_bar(Op_MemBarAcquire);
2875     } else {
2876       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2877         insert_mem_bar(Op_MemBarVolatile);
2878       }
2879     }
2880   }
2881 
2882   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2883 
2884   return true;
2885 }
2886 
2887 //----------------------------inline_unsafe_prefetch----------------------------
2888 
2889 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2890 #ifndef PRODUCT
2891   {
2892     ResourceMark rm;
2893     // Check the signatures.
2894     ciSignature* sig = callee()->signature();
2895 #ifdef ASSERT
2896     // Object getObject(Object base, int/long offset), etc.
2897     BasicType rtype = sig->return_type()->basic_type();
2898     if (!is_native_ptr) {
2899       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2900       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2901       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2902     } else {
2903       assert(sig->count() == 1, "native prefetch has 1 argument");
2904       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2905     }
2906 #endif // ASSERT
2907   }
2908 #endif // !PRODUCT
2909 
2910   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2911 
2912   const int idx = is_static ? 0 : 1;
2913   if (!is_static) {
2914     null_check_receiver();
2915     if (stopped()) {
2916       return true;
2917     }
2918   }
2919 
2920   // Build address expression.  See the code in inline_unsafe_access.
2921   Node *adr;
2922   if (!is_native_ptr) {
2923     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2924     Node* base   = argument(idx + 0);  // type: oop
2925     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2926     Node* offset = argument(idx + 1);  // type: long
2927     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2928     // to be plain byte offsets, which are also the same as those accepted
2929     // by oopDesc::field_base.
2930     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2931            "fieldOffset must be byte-scaled");
2932     // 32-bit machines ignore the high half!
2933     offset = ConvL2X(offset);
2934     adr = make_unsafe_address(base, offset, false);
2935   } else {
2936     Node* ptr = argument(idx + 0);  // type: long
2937     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2938     adr = make_unsafe_address(NULL, ptr, false);
2939   }
2940 
2941   // Generate the read or write prefetch
2942   Node *prefetch;
2943   if (is_store) {
2944     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2945   } else {
2946     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2947   }
2948   prefetch->init_req(0, control());
2949   set_i_o(_gvn.transform(prefetch));
2950 
2951   return true;
2952 }
2953 
2954 //----------------------------inline_unsafe_load_store----------------------------
2955 // This method serves a couple of different customers (depending on LoadStoreKind):
2956 //
2957 // LS_cmpxchg:
2958 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2959 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2960 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2961 //
2962 // LS_xadd:
2963 //   public int  getAndAddInt( Object o, long offset, int  delta)
2964 //   public long getAndAddLong(Object o, long offset, long delta)
2965 //
2966 // LS_xchg:
2967 //   int    getAndSet(Object o, long offset, int    newValue)
2968 //   long   getAndSet(Object o, long offset, long   newValue)
2969 //   Object getAndSet(Object o, long offset, Object newValue)
2970 //
2971 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2972   // This basic scheme here is the same as inline_unsafe_access, but
2973   // differs in enough details that combining them would make the code
2974   // overly confusing.  (This is a true fact! I originally combined
2975   // them, but even I was confused by it!) As much code/comments as
2976   // possible are retained from inline_unsafe_access though to make
2977   // the correspondences clearer. - dl
2978 
2979   if (callee()->is_static())  return false;  // caller must have the capability!
2980 
2981 #ifndef PRODUCT
2982   BasicType rtype;
2983   {
2984     ResourceMark rm;
2985     // Check the signatures.
2986     ciSignature* sig = callee()->signature();
2987     rtype = sig->return_type()->basic_type();
2988     if (kind == LS_xadd || kind == LS_xchg) {
2989       // Check the signatures.
2990 #ifdef ASSERT
2991       assert(rtype == type, "get and set must return the expected type");
2992       assert(sig->count() == 3, "get and set has 3 arguments");
2993       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2994       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2995       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2996 #endif // ASSERT
2997     } else if (kind == LS_cmpxchg) {
2998       // Check the signatures.
2999 #ifdef ASSERT
3000       assert(rtype == T_BOOLEAN, "CAS must return boolean");
3001       assert(sig->count() == 4, "CAS has 4 arguments");
3002       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
3003       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
3004 #endif // ASSERT
3005     } else {
3006       ShouldNotReachHere();
3007     }
3008   }
3009 #endif //PRODUCT
3010 
3011   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3012 
3013   // Get arguments:
3014   Node* receiver = NULL;
3015   Node* base     = NULL;
3016   Node* offset   = NULL;
3017   Node* oldval   = NULL;
3018   Node* newval   = NULL;
3019   if (kind == LS_cmpxchg) {
3020     const bool two_slot_type = type2size[type] == 2;
3021     receiver = argument(0);  // type: oop
3022     base     = argument(1);  // type: oop
3023     offset   = argument(2);  // type: long
3024     oldval   = argument(4);  // type: oop, int, or long
3025     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
3026   } else if (kind == LS_xadd || kind == LS_xchg){
3027     receiver = argument(0);  // type: oop
3028     base     = argument(1);  // type: oop
3029     offset   = argument(2);  // type: long
3030     oldval   = NULL;
3031     newval   = argument(4);  // type: oop, int, or long
3032   }
3033 
3034   // Build field offset expression.
3035   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
3036   // to be plain byte offsets, which are also the same as those accepted
3037   // by oopDesc::field_base.
3038   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3039   // 32-bit machines ignore the high half of long offsets
3040   offset = ConvL2X(offset);
3041   Node* adr = make_unsafe_address(base, offset, true);
3042   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3043 
3044   Compile::AliasType* alias_type = C->alias_type(adr_type);
3045   BasicType bt = alias_type->basic_type();
3046   if (bt != T_ILLEGAL &&
3047       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
3048     // Don't intrinsify mismatched object accesses.
3049     return false;
3050   }
3051 
3052   // For CAS, unlike inline_unsafe_access, there seems no point in
3053   // trying to refine types. Just use the coarse types here.
3054   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
3055   const Type *value_type = Type::get_const_basic_type(type);
3056 
3057   if (kind == LS_xchg && type == T_OBJECT) {
3058     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
3059     if (tjp != NULL) {
3060       value_type = tjp;
3061     }
3062   }
3063 
3064   // Null check receiver.
3065   receiver = null_check(receiver);
3066   if (stopped()) {
3067     return true;
3068   }
3069 
3070   int alias_idx = C->get_alias_index(adr_type);
3071 
3072   // Memory-model-wise, a LoadStore acts like a little synchronized
3073   // block, so needs barriers on each side.  These don't translate
3074   // into actual barriers on most machines, but we still need rest of
3075   // compiler to respect ordering.
3076 
3077   insert_mem_bar(Op_MemBarRelease);
3078   insert_mem_bar(Op_MemBarCPUOrder);
3079 
3080   // 4984716: MemBars must be inserted before this
3081   //          memory node in order to avoid a false
3082   //          dependency which will confuse the scheduler.
3083   Node *mem = memory(alias_idx);
3084 
3085   // For now, we handle only those cases that actually exist: ints,
3086   // longs, and Object. Adding others should be straightforward.
3087   Node* load_store = NULL;
3088   switch(type) {
3089   case T_INT:
3090     if (kind == LS_xadd) {
3091       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
3092     } else if (kind == LS_xchg) {
3093       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
3094     } else if (kind == LS_cmpxchg) {
3095       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
3096     } else {
3097       ShouldNotReachHere();
3098     }
3099     break;
3100   case T_LONG:
3101     if (kind == LS_xadd) {
3102       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
3103     } else if (kind == LS_xchg) {
3104       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
3105     } else if (kind == LS_cmpxchg) {
3106       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
3107     } else {
3108       ShouldNotReachHere();
3109     }
3110     break;
3111   case T_OBJECT:
3112     // Transformation of a value which could be NULL pointer (CastPP #NULL)
3113     // could be delayed during Parse (for example, in adjust_map_after_if()).
3114     // Execute transformation here to avoid barrier generation in such case.
3115     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3116       newval = _gvn.makecon(TypePtr::NULL_PTR);
3117 
3118     newval = shenandoah_read_barrier_storeval(newval);
3119 
3120     // Reference stores need a store barrier.
3121     if (kind == LS_xchg) {
3122       // If pre-barrier must execute before the oop store, old value will require do_load here.
3123       if (!can_move_pre_barrier()) {
3124         pre_barrier(true /* do_load*/,
3125                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
3126                     NULL /* pre_val*/,
3127                     T_OBJECT);
3128       } // Else move pre_barrier to use load_store value, see below.
3129     } else if (kind == LS_cmpxchg) {
3130       // Same as for newval above:
3131       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
3132         oldval = _gvn.makecon(TypePtr::NULL_PTR);
3133       }
3134       // The only known value which might get overwritten is oldval.
3135       pre_barrier(false /* do_load */,
3136                   control(), NULL, NULL, max_juint, NULL, NULL,
3137                   oldval /* pre_val */,
3138                   T_OBJECT);
3139     } else {
3140       ShouldNotReachHere();
3141     }
3142 
3143 #ifdef _LP64
3144     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3145       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
3146       if (kind == LS_xchg) {
3147         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
3148                                                            newval_enc, adr_type, value_type->make_narrowoop()));
3149       } else {
3150         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3151         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3152         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
3153                                                                 newval_enc, oldval_enc));
3154       }
3155     } else
3156 #endif
3157     {
3158       if (kind == LS_xchg) {
3159         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3160       } else {
3161         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3162         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
3163       }
3164     }
3165     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3166     break;
3167   default:
3168     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
3169     break;
3170   }
3171 
3172   // SCMemProjNodes represent the memory state of a LoadStore. Their
3173   // main role is to prevent LoadStore nodes from being optimized away
3174   // when their results aren't used.
3175   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
3176   set_memory(proj, alias_idx);
3177 
3178   if (type == T_OBJECT && kind == LS_xchg) {
3179 #ifdef _LP64
3180     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3181       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
3182     }
3183 #endif
3184     if (can_move_pre_barrier()) {
3185       // Don't need to load pre_val. The old value is returned by load_store.
3186       // The pre_barrier can execute after the xchg as long as no safepoint
3187       // gets inserted between them.
3188       pre_barrier(false /* do_load */,
3189                   control(), NULL, NULL, max_juint, NULL, NULL,
3190                   load_store /* pre_val */,
3191                   T_OBJECT);
3192     }
3193   }
3194 
3195   // Add the trailing membar surrounding the access
3196   insert_mem_bar(Op_MemBarCPUOrder);
3197   insert_mem_bar(Op_MemBarAcquire);
3198 
3199   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3200   set_result(load_store);
3201   return true;
3202 }
3203 
3204 //----------------------------inline_unsafe_ordered_store----------------------
3205 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3206 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3207 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3208 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3209   // This is another variant of inline_unsafe_access, differing in
3210   // that it always issues store-store ("release") barrier and ensures
3211   // store-atomicity (which only matters for "long").
3212 
3213   if (callee()->is_static())  return false;  // caller must have the capability!
3214 
3215 #ifndef PRODUCT
3216   {
3217     ResourceMark rm;
3218     // Check the signatures.
3219     ciSignature* sig = callee()->signature();
3220 #ifdef ASSERT
3221     BasicType rtype = sig->return_type()->basic_type();
3222     assert(rtype == T_VOID, "must return void");
3223     assert(sig->count() == 3, "has 3 arguments");
3224     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3225     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3226 #endif // ASSERT
3227   }
3228 #endif //PRODUCT
3229 
3230   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3231 
3232   // Get arguments:
3233   Node* receiver = argument(0);  // type: oop
3234   Node* base     = argument(1);  // type: oop
3235   Node* offset   = argument(2);  // type: long
3236   Node* val      = argument(4);  // type: oop, int, or long
3237 
3238   // Null check receiver.
3239   receiver = null_check(receiver);
3240   if (stopped()) {
3241     return true;
3242   }
3243 
3244   // Build field offset expression.
3245   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3246   // 32-bit machines ignore the high half of long offsets
3247   offset = ConvL2X(offset);
3248   Node* adr = make_unsafe_address(base, offset, true);
3249   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3250   const Type *value_type = Type::get_const_basic_type(type);
3251   Compile::AliasType* alias_type = C->alias_type(adr_type);
3252 
3253   insert_mem_bar(Op_MemBarRelease);
3254   insert_mem_bar(Op_MemBarCPUOrder);
3255   // Ensure that the store is atomic for longs:
3256   const bool require_atomic_access = true;
3257   Node* store;
3258   if (type == T_OBJECT) { // reference stores need a store barrier.
3259     val = shenandoah_read_barrier_storeval(val);
3260     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3261   } else {
3262     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3263   }
3264   insert_mem_bar(Op_MemBarCPUOrder);
3265   return true;
3266 }
3267 
3268 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3269   // Regardless of form, don't allow previous ld/st to move down,
3270   // then issue acquire, release, or volatile mem_bar.
3271   insert_mem_bar(Op_MemBarCPUOrder);
3272   switch(id) {
3273     case vmIntrinsics::_loadFence:
3274       insert_mem_bar(Op_LoadFence);
3275       return true;
3276     case vmIntrinsics::_storeFence:
3277       insert_mem_bar(Op_StoreFence);
3278       return true;
3279     case vmIntrinsics::_fullFence:
3280       insert_mem_bar(Op_MemBarVolatile);
3281       return true;
3282     default:
3283       fatal_unexpected_iid(id);
3284       return false;
3285   }
3286 }
3287 
3288 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3289   if (!kls->is_Con()) {
3290     return true;
3291   }
3292   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3293   if (klsptr == NULL) {
3294     return true;
3295   }
3296   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3297   // don't need a guard for a klass that is already initialized
3298   return !ik->is_initialized();
3299 }
3300 
3301 //----------------------------inline_unsafe_allocate---------------------------
3302 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3303 bool LibraryCallKit::inline_unsafe_allocate() {
3304   if (callee()->is_static())  return false;  // caller must have the capability!
3305 
3306   null_check_receiver();  // null-check, then ignore
3307   Node* cls = null_check(argument(1));
3308   if (stopped())  return true;
3309 
3310   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3311   kls = null_check(kls);
3312   if (stopped())  return true;  // argument was like int.class
3313 
3314   Node* test = NULL;
3315   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3316     // Note:  The argument might still be an illegal value like
3317     // Serializable.class or Object[].class.   The runtime will handle it.
3318     // But we must make an explicit check for initialization.
3319     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3320     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3321     // can generate code to load it as unsigned byte.
3322     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3323     Node* bits = intcon(InstanceKlass::fully_initialized);
3324     test = _gvn.transform(new (C) SubINode(inst, bits));
3325     // The 'test' is non-zero if we need to take a slow path.
3326   }
3327 
3328   Node* obj = new_instance(kls, test);
3329   set_result(obj);
3330   return true;
3331 }
3332 
3333 #ifdef TRACE_HAVE_INTRINSICS
3334 /*
3335  * oop -> myklass
3336  * myklass->trace_id |= USED
3337  * return myklass->trace_id & ~0x3
3338  */
3339 bool LibraryCallKit::inline_native_classID() {
3340   null_check_receiver();  // null-check, then ignore
3341   Node* cls = null_check(argument(1), T_OBJECT);
3342   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3343   kls = null_check(kls, T_OBJECT);
3344   ByteSize offset = TRACE_ID_OFFSET;
3345   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3346   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3347   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3348   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3349   Node* clsused = longcon(0x01l); // set the class bit
3350   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3351 
3352   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3353   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3354   set_result(andl);
3355   return true;
3356 }
3357 
3358 bool LibraryCallKit::inline_native_threadID() {
3359   Node* tls_ptr = NULL;
3360   Node* cur_thr = generate_current_thread(tls_ptr);
3361   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3362   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3363   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3364 
3365   Node* threadid = NULL;
3366   size_t thread_id_size = OSThread::thread_id_size();
3367   if (thread_id_size == (size_t) BytesPerLong) {
3368     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3369   } else if (thread_id_size == (size_t) BytesPerInt) {
3370     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3371   } else {
3372     ShouldNotReachHere();
3373   }
3374   set_result(threadid);
3375   return true;
3376 }
3377 #endif
3378 
3379 //------------------------inline_native_time_funcs--------------
3380 // inline code for System.currentTimeMillis() and System.nanoTime()
3381 // these have the same type and signature
3382 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3383   const TypeFunc* tf = OptoRuntime::void_long_Type();
3384   const TypePtr* no_memory_effects = NULL;
3385   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3386   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3387 #ifdef ASSERT
3388   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3389   assert(value_top == top(), "second value must be top");
3390 #endif
3391   set_result(value);
3392   return true;
3393 }
3394 
3395 //------------------------inline_native_currentThread------------------
3396 bool LibraryCallKit::inline_native_currentThread() {
3397   Node* junk = NULL;
3398   set_result(generate_current_thread(junk));
3399   return true;
3400 }
3401 
3402 //------------------------inline_native_isInterrupted------------------
3403 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3404 bool LibraryCallKit::inline_native_isInterrupted() {
3405   // Add a fast path to t.isInterrupted(clear_int):
3406   //   (t == Thread.current() &&
3407   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3408   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3409   // So, in the common case that the interrupt bit is false,
3410   // we avoid making a call into the VM.  Even if the interrupt bit
3411   // is true, if the clear_int argument is false, we avoid the VM call.
3412   // However, if the receiver is not currentThread, we must call the VM,
3413   // because there must be some locking done around the operation.
3414 
3415   // We only go to the fast case code if we pass two guards.
3416   // Paths which do not pass are accumulated in the slow_region.
3417 
3418   enum {
3419     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3420     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3421     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3422     PATH_LIMIT
3423   };
3424 
3425   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3426   // out of the function.
3427   insert_mem_bar(Op_MemBarCPUOrder);
3428 
3429   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3430   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3431 
3432   RegionNode* slow_region = new (C) RegionNode(1);
3433   record_for_igvn(slow_region);
3434 
3435   // (a) Receiving thread must be the current thread.
3436   Node* rec_thr = argument(0);
3437   Node* tls_ptr = NULL;
3438   Node* cur_thr = generate_current_thread(tls_ptr);
3439   cur_thr = shenandoah_write_barrier(cur_thr);
3440   rec_thr = shenandoah_write_barrier(rec_thr);
3441   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3442   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3443 
3444   generate_slow_guard(bol_thr, slow_region);
3445 
3446   // (b) Interrupt bit on TLS must be false.
3447   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3448   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3449   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3450 
3451   // Set the control input on the field _interrupted read to prevent it floating up.
3452   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3453   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3454   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3455 
3456   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3457 
3458   // First fast path:  if (!TLS._interrupted) return false;
3459   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3460   result_rgn->init_req(no_int_result_path, false_bit);
3461   result_val->init_req(no_int_result_path, intcon(0));
3462 
3463   // drop through to next case
3464   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3465 
3466 #ifndef TARGET_OS_FAMILY_windows
3467   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3468   Node* clr_arg = argument(1);
3469   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3470   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3471   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3472 
3473   // Second fast path:  ... else if (!clear_int) return true;
3474   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3475   result_rgn->init_req(no_clear_result_path, false_arg);
3476   result_val->init_req(no_clear_result_path, intcon(1));
3477 
3478   // drop through to next case
3479   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3480 #else
3481   // To return true on Windows you must read the _interrupted field
3482   // and check the the event state i.e. take the slow path.
3483 #endif // TARGET_OS_FAMILY_windows
3484 
3485   // (d) Otherwise, go to the slow path.
3486   slow_region->add_req(control());
3487   set_control( _gvn.transform(slow_region));
3488 
3489   if (stopped()) {
3490     // There is no slow path.
3491     result_rgn->init_req(slow_result_path, top());
3492     result_val->init_req(slow_result_path, top());
3493   } else {
3494     // non-virtual because it is a private non-static
3495     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3496 
3497     Node* slow_val = set_results_for_java_call(slow_call);
3498     // this->control() comes from set_results_for_java_call
3499 
3500     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3501     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3502 
3503     // These two phis are pre-filled with copies of of the fast IO and Memory
3504     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3505     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3506 
3507     result_rgn->init_req(slow_result_path, control());
3508     result_io ->init_req(slow_result_path, i_o());
3509     result_mem->init_req(slow_result_path, reset_memory());
3510     result_val->init_req(slow_result_path, slow_val);
3511 
3512     set_all_memory(_gvn.transform(result_mem));
3513     set_i_o(       _gvn.transform(result_io));
3514   }
3515 
3516   C->set_has_split_ifs(true); // Has chance for split-if optimization
3517   set_result(result_rgn, result_val);
3518   return true;
3519 }
3520 
3521 //---------------------------load_mirror_from_klass----------------------------
3522 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3523 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3524   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3525   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3526 }
3527 
3528 //-----------------------load_klass_from_mirror_common-------------------------
3529 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3530 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3531 // and branch to the given path on the region.
3532 // If never_see_null, take an uncommon trap on null, so we can optimistically
3533 // compile for the non-null case.
3534 // If the region is NULL, force never_see_null = true.
3535 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3536                                                     bool never_see_null,
3537                                                     RegionNode* region,
3538                                                     int null_path,
3539                                                     int offset) {
3540   if (region == NULL)  never_see_null = true;
3541   Node* p = basic_plus_adr(mirror, offset);
3542   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3543   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3544   Node* null_ctl = top();
3545   kls = null_check_oop(kls, &null_ctl, never_see_null);
3546   if (region != NULL) {
3547     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3548     region->init_req(null_path, null_ctl);
3549   } else {
3550     assert(null_ctl == top(), "no loose ends");
3551   }
3552   return kls;
3553 }
3554 
3555 //--------------------(inline_native_Class_query helpers)---------------------
3556 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3557 // Fall through if (mods & mask) == bits, take the guard otherwise.
3558 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3559   // Branch around if the given klass has the given modifier bit set.
3560   // Like generate_guard, adds a new path onto the region.
3561   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3562   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3563   Node* mask = intcon(modifier_mask);
3564   Node* bits = intcon(modifier_bits);
3565   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3566   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3567   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3568   return generate_fair_guard(bol, region);
3569 }
3570 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3571   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3572 }
3573 
3574 //-------------------------inline_native_Class_query-------------------
3575 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3576   const Type* return_type = TypeInt::BOOL;
3577   Node* prim_return_value = top();  // what happens if it's a primitive class?
3578   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3579   bool expect_prim = false;     // most of these guys expect to work on refs
3580 
3581   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3582 
3583   Node* mirror = argument(0);
3584   Node* obj    = top();
3585 
3586   switch (id) {
3587   case vmIntrinsics::_isInstance:
3588     // nothing is an instance of a primitive type
3589     prim_return_value = intcon(0);
3590     obj = argument(1);
3591     break;
3592   case vmIntrinsics::_getModifiers:
3593     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3594     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3595     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3596     break;
3597   case vmIntrinsics::_isInterface:
3598     prim_return_value = intcon(0);
3599     break;
3600   case vmIntrinsics::_isArray:
3601     prim_return_value = intcon(0);
3602     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3603     break;
3604   case vmIntrinsics::_isPrimitive:
3605     prim_return_value = intcon(1);
3606     expect_prim = true;  // obviously
3607     break;
3608   case vmIntrinsics::_getSuperclass:
3609     prim_return_value = null();
3610     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3611     break;
3612   case vmIntrinsics::_getComponentType:
3613     prim_return_value = null();
3614     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3615     break;
3616   case vmIntrinsics::_getClassAccessFlags:
3617     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3618     return_type = TypeInt::INT;  // not bool!  6297094
3619     break;
3620   default:
3621     fatal_unexpected_iid(id);
3622     break;
3623   }
3624 
3625   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3626   if (mirror_con == NULL)  return false;  // cannot happen?
3627 
3628 #ifndef PRODUCT
3629   if (C->print_intrinsics() || C->print_inlining()) {
3630     ciType* k = mirror_con->java_mirror_type();
3631     if (k) {
3632       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3633       k->print_name();
3634       tty->cr();
3635     }
3636   }
3637 #endif
3638 
3639   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3640   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3641   record_for_igvn(region);
3642   PhiNode* phi = new (C) PhiNode(region, return_type);
3643 
3644   // The mirror will never be null of Reflection.getClassAccessFlags, however
3645   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3646   // if it is. See bug 4774291.
3647 
3648   // For Reflection.getClassAccessFlags(), the null check occurs in
3649   // the wrong place; see inline_unsafe_access(), above, for a similar
3650   // situation.
3651   mirror = null_check(mirror);
3652   // If mirror or obj is dead, only null-path is taken.
3653   if (stopped())  return true;
3654 
3655   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3656 
3657   // Now load the mirror's klass metaobject, and null-check it.
3658   // Side-effects region with the control path if the klass is null.
3659   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3660   // If kls is null, we have a primitive mirror.
3661   phi->init_req(_prim_path, prim_return_value);
3662   if (stopped()) { set_result(region, phi); return true; }
3663   bool safe_for_replace = (region->in(_prim_path) == top());
3664 
3665   Node* p;  // handy temp
3666   Node* null_ctl;
3667 
3668   // Now that we have the non-null klass, we can perform the real query.
3669   // For constant classes, the query will constant-fold in LoadNode::Value.
3670   Node* query_value = top();
3671   switch (id) {
3672   case vmIntrinsics::_isInstance:
3673     // nothing is an instance of a primitive type
3674     query_value = gen_instanceof(obj, kls, safe_for_replace);
3675     break;
3676 
3677   case vmIntrinsics::_getModifiers:
3678     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3679     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3680     break;
3681 
3682   case vmIntrinsics::_isInterface:
3683     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3684     if (generate_interface_guard(kls, region) != NULL)
3685       // A guard was added.  If the guard is taken, it was an interface.
3686       phi->add_req(intcon(1));
3687     // If we fall through, it's a plain class.
3688     query_value = intcon(0);
3689     break;
3690 
3691   case vmIntrinsics::_isArray:
3692     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3693     if (generate_array_guard(kls, region) != NULL)
3694       // A guard was added.  If the guard is taken, it was an array.
3695       phi->add_req(intcon(1));
3696     // If we fall through, it's a plain class.
3697     query_value = intcon(0);
3698     break;
3699 
3700   case vmIntrinsics::_isPrimitive:
3701     query_value = intcon(0); // "normal" path produces false
3702     break;
3703 
3704   case vmIntrinsics::_getSuperclass:
3705     // The rules here are somewhat unfortunate, but we can still do better
3706     // with random logic than with a JNI call.
3707     // Interfaces store null or Object as _super, but must report null.
3708     // Arrays store an intermediate super as _super, but must report Object.
3709     // Other types can report the actual _super.
3710     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3711     if (generate_interface_guard(kls, region) != NULL)
3712       // A guard was added.  If the guard is taken, it was an interface.
3713       phi->add_req(null());
3714     if (generate_array_guard(kls, region) != NULL)
3715       // A guard was added.  If the guard is taken, it was an array.
3716       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3717     // If we fall through, it's a plain class.  Get its _super.
3718     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3719     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3720     null_ctl = top();
3721     kls = null_check_oop(kls, &null_ctl);
3722     if (null_ctl != top()) {
3723       // If the guard is taken, Object.superClass is null (both klass and mirror).
3724       region->add_req(null_ctl);
3725       phi   ->add_req(null());
3726     }
3727     if (!stopped()) {
3728       query_value = load_mirror_from_klass(kls);
3729     }
3730     break;
3731 
3732   case vmIntrinsics::_getComponentType:
3733     if (generate_array_guard(kls, region) != NULL) {
3734       // Be sure to pin the oop load to the guard edge just created:
3735       Node* is_array_ctrl = region->in(region->req()-1);
3736       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3737       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3738       phi->add_req(cmo);
3739     }
3740     query_value = null();  // non-array case is null
3741     break;
3742 
3743   case vmIntrinsics::_getClassAccessFlags:
3744     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3745     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3746     break;
3747 
3748   default:
3749     fatal_unexpected_iid(id);
3750     break;
3751   }
3752 
3753   // Fall-through is the normal case of a query to a real class.
3754   phi->init_req(1, query_value);
3755   region->init_req(1, control());
3756 
3757   C->set_has_split_ifs(true); // Has chance for split-if optimization
3758   set_result(region, phi);
3759   return true;
3760 }
3761 
3762 //--------------------------inline_native_subtype_check------------------------
3763 // This intrinsic takes the JNI calls out of the heart of
3764 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3765 bool LibraryCallKit::inline_native_subtype_check() {
3766   // Pull both arguments off the stack.
3767   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3768   args[0] = argument(0);
3769   args[1] = argument(1);
3770   Node* klasses[2];             // corresponding Klasses: superk, subk
3771   klasses[0] = klasses[1] = top();
3772 
3773   enum {
3774     // A full decision tree on {superc is prim, subc is prim}:
3775     _prim_0_path = 1,           // {P,N} => false
3776                                 // {P,P} & superc!=subc => false
3777     _prim_same_path,            // {P,P} & superc==subc => true
3778     _prim_1_path,               // {N,P} => false
3779     _ref_subtype_path,          // {N,N} & subtype check wins => true
3780     _both_ref_path,             // {N,N} & subtype check loses => false
3781     PATH_LIMIT
3782   };
3783 
3784   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3785   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3786   Node*       mem_phi= new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
3787   record_for_igvn(region);
3788   Node* init_mem = map()->memory();
3789 
3790   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3791   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3792   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3793 
3794   // First null-check both mirrors and load each mirror's klass metaobject.
3795   int which_arg;
3796   for (which_arg = 0; which_arg <= 1; which_arg++) {
3797     Node* arg = args[which_arg];
3798     arg = null_check(arg);
3799     if (stopped())  break;
3800     args[which_arg] = arg;
3801 
3802     Node* p = basic_plus_adr(arg, class_klass_offset);
3803     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3804     klasses[which_arg] = _gvn.transform(kls);
3805   }
3806 
3807   args[0] = shenandoah_write_barrier(args[0]);
3808   args[1] = shenandoah_write_barrier(args[1]);
3809 
3810   // Having loaded both klasses, test each for null.
3811   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3812   for (which_arg = 0; which_arg <= 1; which_arg++) {
3813     Node* kls = klasses[which_arg];
3814     Node* null_ctl = top();
3815     kls = null_check_oop(kls, &null_ctl, never_see_null);
3816     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3817     region->init_req(prim_path, null_ctl);
3818     if (stopped())  break;
3819     klasses[which_arg] = kls;
3820   }
3821 
3822   if (!stopped()) {
3823     // now we have two reference types, in klasses[0..1]
3824     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3825     Node* superk = klasses[0];  // the receiver
3826     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3827     // now we have a successful reference subtype check
3828     region->set_req(_ref_subtype_path, control());
3829   }
3830 
3831   // If both operands are primitive (both klasses null), then
3832   // we must return true when they are identical primitives.
3833   // It is convenient to test this after the first null klass check.
3834   set_control(region->in(_prim_0_path)); // go back to first null check
3835   if (!stopped()) {
3836     // Since superc is primitive, make a guard for the superc==subc case.
3837     Node* cmp_eq = _gvn.transform(new (C)CmpPNode(args[0], args[1]));
3838     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3839     generate_guard(bol_eq, region, PROB_FAIR);
3840     if (region->req() == PATH_LIMIT+1) {
3841       // A guard was added.  If the added guard is taken, superc==subc.
3842       region->swap_edges(PATH_LIMIT, _prim_same_path);
3843       region->del_req(PATH_LIMIT);
3844     }
3845     region->set_req(_prim_0_path, control()); // Not equal after all.
3846   }
3847 
3848   // these are the only paths that produce 'true':
3849   phi->set_req(_prim_same_path,   intcon(1));
3850   phi->set_req(_ref_subtype_path, intcon(1));
3851 
3852   // pull together the cases:
3853   assert(region->req() == PATH_LIMIT, "sane region");
3854   Node* cur_mem = reset_memory();
3855   for (uint i = 1; i < region->req(); i++) {
3856     Node* ctl = region->in(i);
3857     if (ctl == NULL || ctl == top()) {
3858       region->set_req(i, top());
3859       phi   ->set_req(i, top());
3860       mem_phi->set_req(i, top());
3861     } else {
3862       if (phi->in(i) == NULL) {
3863       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3864     }
3865       mem_phi->set_req(i, (i == _prim_0_path || i == _prim_same_path) ?  cur_mem : init_mem);
3866     }
3867   }
3868 
3869   set_control(_gvn.transform(region));
3870   set_result(_gvn.transform(phi));
3871   set_all_memory(_gvn.transform(mem_phi));
3872   return true;
3873 }
3874 
3875 //---------------------generate_array_guard_common------------------------
3876 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3877                                                   bool obj_array, bool not_array) {
3878   // If obj_array/non_array==false/false:
3879   // Branch around if the given klass is in fact an array (either obj or prim).
3880   // If obj_array/non_array==false/true:
3881   // Branch around if the given klass is not an array klass of any kind.
3882   // If obj_array/non_array==true/true:
3883   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3884   // If obj_array/non_array==true/false:
3885   // Branch around if the kls is an oop array (Object[] or subtype)
3886   //
3887   // Like generate_guard, adds a new path onto the region.
3888   jint  layout_con = 0;
3889   Node* layout_val = get_layout_helper(kls, layout_con);
3890   if (layout_val == NULL) {
3891     bool query = (obj_array
3892                   ? Klass::layout_helper_is_objArray(layout_con)
3893                   : Klass::layout_helper_is_array(layout_con));
3894     if (query == not_array) {
3895       return NULL;                       // never a branch
3896     } else {                             // always a branch
3897       Node* always_branch = control();
3898       if (region != NULL)
3899         region->add_req(always_branch);
3900       set_control(top());
3901       return always_branch;
3902     }
3903   }
3904   // Now test the correct condition.
3905   jint  nval = (obj_array
3906                 ? ((jint)Klass::_lh_array_tag_type_value
3907                    <<    Klass::_lh_array_tag_shift)
3908                 : Klass::_lh_neutral_value);
3909   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3910   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3911   // invert the test if we are looking for a non-array
3912   if (not_array)  btest = BoolTest(btest).negate();
3913   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3914   return generate_fair_guard(bol, region);
3915 }
3916 
3917 
3918 //-----------------------inline_native_newArray--------------------------
3919 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3920 bool LibraryCallKit::inline_native_newArray() {
3921   Node* mirror    = argument(0);
3922   Node* count_val = argument(1);
3923 
3924   mirror = null_check(mirror);
3925   // If mirror or obj is dead, only null-path is taken.
3926   if (stopped())  return true;
3927 
3928   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3929   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3930   PhiNode*    result_val = new(C) PhiNode(result_reg,
3931                                           TypeInstPtr::NOTNULL);
3932   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3933   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3934                                           TypePtr::BOTTOM);
3935 
3936   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3937   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3938                                                   result_reg, _slow_path);
3939   Node* normal_ctl   = control();
3940   Node* no_array_ctl = result_reg->in(_slow_path);
3941 
3942   // Generate code for the slow case.  We make a call to newArray().
3943   set_control(no_array_ctl);
3944   if (!stopped()) {
3945     // Either the input type is void.class, or else the
3946     // array klass has not yet been cached.  Either the
3947     // ensuing call will throw an exception, or else it
3948     // will cache the array klass for next time.
3949     PreserveJVMState pjvms(this);
3950     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3951     Node* slow_result = set_results_for_java_call(slow_call);
3952     // this->control() comes from set_results_for_java_call
3953     result_reg->set_req(_slow_path, control());
3954     result_val->set_req(_slow_path, slow_result);
3955     result_io ->set_req(_slow_path, i_o());
3956     result_mem->set_req(_slow_path, reset_memory());
3957   }
3958 
3959   set_control(normal_ctl);
3960   if (!stopped()) {
3961     // Normal case:  The array type has been cached in the java.lang.Class.
3962     // The following call works fine even if the array type is polymorphic.
3963     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3964     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3965     result_reg->init_req(_normal_path, control());
3966     result_val->init_req(_normal_path, obj);
3967     result_io ->init_req(_normal_path, i_o());
3968     result_mem->init_req(_normal_path, reset_memory());
3969   }
3970 
3971   // Return the combined state.
3972   set_i_o(        _gvn.transform(result_io)  );
3973   set_all_memory( _gvn.transform(result_mem));
3974 
3975   C->set_has_split_ifs(true); // Has chance for split-if optimization
3976   set_result(result_reg, result_val);
3977   return true;
3978 }
3979 
3980 //----------------------inline_native_getLength--------------------------
3981 // public static native int java.lang.reflect.Array.getLength(Object array);
3982 bool LibraryCallKit::inline_native_getLength() {
3983   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3984 
3985   Node* array = null_check(argument(0));
3986   // If array is dead, only null-path is taken.
3987   if (stopped())  return true;
3988 
3989   // Deoptimize if it is a non-array.
3990   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3991 
3992   if (non_array != NULL) {
3993     PreserveJVMState pjvms(this);
3994     set_control(non_array);
3995     uncommon_trap(Deoptimization::Reason_intrinsic,
3996                   Deoptimization::Action_maybe_recompile);
3997   }
3998 
3999   // If control is dead, only non-array-path is taken.
4000   if (stopped())  return true;
4001 
4002   // The works fine even if the array type is polymorphic.
4003   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4004   Node* result = load_array_length(array);
4005 
4006   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4007   set_result(result);
4008   return true;
4009 }
4010 
4011 //------------------------inline_array_copyOf----------------------------
4012 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4013 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4014 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4015   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4016 
4017   // Get the arguments.
4018   Node* original          = argument(0);
4019   Node* start             = is_copyOfRange? argument(1): intcon(0);
4020   Node* end               = is_copyOfRange? argument(2): argument(1);
4021   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4022 
4023   Node* newcopy = NULL;
4024 
4025   // Set the original stack and the reexecute bit for the interpreter to reexecute
4026   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4027   { PreserveReexecuteState preexecs(this);
4028     jvms()->set_should_reexecute(true);
4029 
4030     array_type_mirror = null_check(array_type_mirror);
4031     original          = null_check(original);
4032 
4033     // Check if a null path was taken unconditionally.
4034     if (stopped())  return true;
4035 
4036     Node* orig_length = load_array_length(original);
4037 
4038     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
4039     klass_node = null_check(klass_node);
4040 
4041     RegionNode* bailout = new (C) RegionNode(1);
4042     record_for_igvn(bailout);
4043 
4044     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4045     // Bail out if that is so.
4046     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4047     if (not_objArray != NULL) {
4048       // Improve the klass node's type from the new optimistic assumption:
4049       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4050       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4051       Node* cast = new (C) CastPPNode(klass_node, akls);
4052       cast->init_req(0, control());
4053       klass_node = _gvn.transform(cast);
4054     }
4055 
4056     // Bail out if either start or end is negative.
4057     generate_negative_guard(start, bailout, &start);
4058     generate_negative_guard(end,   bailout, &end);
4059 
4060     Node* length = end;
4061     if (_gvn.type(start) != TypeInt::ZERO) {
4062       length = _gvn.transform(new (C) SubINode(end, start));
4063     }
4064 
4065     // Bail out if length is negative.
4066     // Without this the new_array would throw
4067     // NegativeArraySizeException but IllegalArgumentException is what
4068     // should be thrown
4069     generate_negative_guard(length, bailout, &length);
4070 
4071     if (bailout->req() > 1) {
4072       PreserveJVMState pjvms(this);
4073       set_control(_gvn.transform(bailout));
4074       uncommon_trap(Deoptimization::Reason_intrinsic,
4075                     Deoptimization::Action_maybe_recompile);
4076     }
4077 
4078     if (!stopped()) {
4079       // How many elements will we copy from the original?
4080       // The answer is MinI(orig_length - start, length).
4081       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
4082       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4083 
4084       newcopy = new_array(klass_node, length, 0);  // no argments to push
4085 
4086       original = shenandoah_read_barrier(original);
4087 
4088       // Generate a direct call to the right arraycopy function(s).
4089       // We know the copy is disjoint but we might not know if the
4090       // oop stores need checking.
4091       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4092       // This will fail a store-check if x contains any non-nulls.
4093       bool disjoint_bases = true;
4094       // if start > orig_length then the length of the copy may be
4095       // negative.
4096       bool length_never_negative = !is_copyOfRange;
4097       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4098                          original, start, newcopy, intcon(0), moved,
4099                          disjoint_bases, length_never_negative);
4100     }
4101   } // original reexecute is set back here
4102 
4103   C->set_has_split_ifs(true); // Has chance for split-if optimization
4104   if (!stopped()) {
4105     set_result(newcopy);
4106   }
4107   return true;
4108 }
4109 
4110 
4111 //----------------------generate_virtual_guard---------------------------
4112 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4113 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4114                                              RegionNode* slow_region) {
4115   ciMethod* method = callee();
4116   int vtable_index = method->vtable_index();
4117   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4118          err_msg_res("bad index %d", vtable_index));
4119   // Get the Method* out of the appropriate vtable entry.
4120   int entry_offset  = (InstanceKlass::vtable_start_offset() +
4121                      vtable_index*vtableEntry::size()) * wordSize +
4122                      vtableEntry::method_offset_in_bytes();
4123   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4124   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4125 
4126   // Compare the target method with the expected method (e.g., Object.hashCode).
4127   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4128 
4129   Node* native_call = makecon(native_call_addr);
4130   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
4131   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
4132 
4133   return generate_slow_guard(test_native, slow_region);
4134 }
4135 
4136 //-----------------------generate_method_call----------------------------
4137 // Use generate_method_call to make a slow-call to the real
4138 // method if the fast path fails.  An alternative would be to
4139 // use a stub like OptoRuntime::slow_arraycopy_Java.
4140 // This only works for expanding the current library call,
4141 // not another intrinsic.  (E.g., don't use this for making an
4142 // arraycopy call inside of the copyOf intrinsic.)
4143 CallJavaNode*
4144 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4145   // When compiling the intrinsic method itself, do not use this technique.
4146   guarantee(callee() != C->method(), "cannot make slow-call to self");
4147 
4148   ciMethod* method = callee();
4149   // ensure the JVMS we have will be correct for this call
4150   guarantee(method_id == method->intrinsic_id(), "must match");
4151 
4152   const TypeFunc* tf = TypeFunc::make(method);
4153   CallJavaNode* slow_call;
4154   if (is_static) {
4155     assert(!is_virtual, "");
4156     slow_call = new(C) CallStaticJavaNode(C, tf,
4157                            SharedRuntime::get_resolve_static_call_stub(),
4158                            method, bci());
4159   } else if (is_virtual) {
4160     null_check_receiver();
4161     int vtable_index = Method::invalid_vtable_index;
4162     if (UseInlineCaches) {
4163       // Suppress the vtable call
4164     } else {
4165       // hashCode and clone are not a miranda methods,
4166       // so the vtable index is fixed.
4167       // No need to use the linkResolver to get it.
4168        vtable_index = method->vtable_index();
4169        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4170               err_msg_res("bad index %d", vtable_index));
4171     }
4172     slow_call = new(C) CallDynamicJavaNode(tf,
4173                           SharedRuntime::get_resolve_virtual_call_stub(),
4174                           method, vtable_index, bci());
4175   } else {  // neither virtual nor static:  opt_virtual
4176     null_check_receiver();
4177     slow_call = new(C) CallStaticJavaNode(C, tf,
4178                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4179                                 method, bci());
4180     slow_call->set_optimized_virtual(true);
4181   }
4182   set_arguments_for_java_call(slow_call);
4183   set_edges_for_java_call(slow_call);
4184   return slow_call;
4185 }
4186 
4187 
4188 /**
4189  * Build special case code for calls to hashCode on an object. This call may
4190  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4191  * slightly different code.
4192  */
4193 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4194   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4195   assert(!(is_virtual && is_static), "either virtual, special, or static");
4196 
4197   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4198 
4199   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4200   PhiNode*    result_val = new(C) PhiNode(result_reg, TypeInt::INT);
4201   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
4202   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4203   Node* obj = NULL;
4204   if (!is_static) {
4205     // Check for hashing null object
4206     obj = null_check_receiver();
4207     if (stopped())  return true;        // unconditionally null
4208     result_reg->init_req(_null_path, top());
4209     result_val->init_req(_null_path, top());
4210   } else {
4211     // Do a null check, and return zero if null.
4212     // System.identityHashCode(null) == 0
4213     obj = argument(0);
4214     Node* null_ctl = top();
4215     obj = null_check_oop(obj, &null_ctl);
4216     result_reg->init_req(_null_path, null_ctl);
4217     result_val->init_req(_null_path, _gvn.intcon(0));
4218   }
4219 
4220   // Unconditionally null?  Then return right away.
4221   if (stopped()) {
4222     set_control( result_reg->in(_null_path));
4223     if (!stopped())
4224       set_result(result_val->in(_null_path));
4225     return true;
4226   }
4227 
4228   // We only go to the fast case code if we pass a number of guards.  The
4229   // paths which do not pass are accumulated in the slow_region.
4230   RegionNode* slow_region = new (C) RegionNode(1);
4231   record_for_igvn(slow_region);
4232 
4233   // If this is a virtual call, we generate a funny guard.  We pull out
4234   // the vtable entry corresponding to hashCode() from the target object.
4235   // If the target method which we are calling happens to be the native
4236   // Object hashCode() method, we pass the guard.  We do not need this
4237   // guard for non-virtual calls -- the caller is known to be the native
4238   // Object hashCode().
4239   if (is_virtual) {
4240     // After null check, get the object's klass.
4241     Node* obj_klass = load_object_klass(obj);
4242     generate_virtual_guard(obj_klass, slow_region);
4243   }
4244 
4245   // Get the header out of the object, use LoadMarkNode when available
4246   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4247   // The control of the load must be NULL. Otherwise, the load can move before
4248   // the null check after castPP removal.
4249   Node* no_ctrl = NULL;
4250   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4251 
4252   // Test the header to see if it is unlocked.
4253   Node* lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4254   Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4255   Node* unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4256   Node* chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4257   Node* test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4258 
4259   generate_slow_guard(test_unlocked, slow_region);
4260 
4261   // Get the hash value and check to see that it has been properly assigned.
4262   // We depend on hash_mask being at most 32 bits and avoid the use of
4263   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4264   // vm: see markOop.hpp.
4265   Node* hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4266   Node* hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4267   Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4268   // This hack lets the hash bits live anywhere in the mark object now, as long
4269   // as the shift drops the relevant bits into the low 32 bits.  Note that
4270   // Java spec says that HashCode is an int so there's no point in capturing
4271   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4272   hshifted_header      = ConvX2I(hshifted_header);
4273   Node* hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4274 
4275   Node* no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4276   Node* chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4277   Node* test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4278 
4279   generate_slow_guard(test_assigned, slow_region);
4280 
4281   Node* init_mem = reset_memory();
4282   // fill in the rest of the null path:
4283   result_io ->init_req(_null_path, i_o());
4284   result_mem->init_req(_null_path, init_mem);
4285 
4286   result_val->init_req(_fast_path, hash_val);
4287   result_reg->init_req(_fast_path, control());
4288   result_io ->init_req(_fast_path, i_o());
4289   result_mem->init_req(_fast_path, init_mem);
4290 
4291   // Generate code for the slow case.  We make a call to hashCode().
4292   set_control(_gvn.transform(slow_region));
4293   if (!stopped()) {
4294     // No need for PreserveJVMState, because we're using up the present state.
4295     set_all_memory(init_mem);
4296     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4297     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4298     Node* slow_result = set_results_for_java_call(slow_call);
4299     // this->control() comes from set_results_for_java_call
4300     result_reg->init_req(_slow_path, control());
4301     result_val->init_req(_slow_path, slow_result);
4302     result_io  ->set_req(_slow_path, i_o());
4303     result_mem ->set_req(_slow_path, reset_memory());
4304   }
4305 
4306   // Return the combined state.
4307   set_i_o(        _gvn.transform(result_io)  );
4308   set_all_memory( _gvn.transform(result_mem));
4309 
4310   set_result(result_reg, result_val);
4311   return true;
4312 }
4313 
4314 //---------------------------inline_native_getClass----------------------------
4315 // public final native Class<?> java.lang.Object.getClass();
4316 //
4317 // Build special case code for calls to getClass on an object.
4318 bool LibraryCallKit::inline_native_getClass() {
4319   Node* obj = null_check_receiver();
4320   if (stopped())  return true;
4321   set_result(load_mirror_from_klass(load_object_klass(obj)));
4322   return true;
4323 }
4324 
4325 //-----------------inline_native_Reflection_getCallerClass---------------------
4326 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4327 //
4328 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4329 //
4330 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4331 // in that it must skip particular security frames and checks for
4332 // caller sensitive methods.
4333 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4334 #ifndef PRODUCT
4335   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4336     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4337   }
4338 #endif
4339 
4340   if (!jvms()->has_method()) {
4341 #ifndef PRODUCT
4342     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4343       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4344     }
4345 #endif
4346     return false;
4347   }
4348 
4349   // Walk back up the JVM state to find the caller at the required
4350   // depth.
4351   JVMState* caller_jvms = jvms();
4352 
4353   // Cf. JVM_GetCallerClass
4354   // NOTE: Start the loop at depth 1 because the current JVM state does
4355   // not include the Reflection.getCallerClass() frame.
4356   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4357     ciMethod* m = caller_jvms->method();
4358     switch (n) {
4359     case 0:
4360       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4361       break;
4362     case 1:
4363       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4364       if (!m->caller_sensitive()) {
4365 #ifndef PRODUCT
4366         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4367           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4368         }
4369 #endif
4370         return false;  // bail-out; let JVM_GetCallerClass do the work
4371       }
4372       break;
4373     default:
4374       if (!m->is_ignored_by_security_stack_walk()) {
4375         // We have reached the desired frame; return the holder class.
4376         // Acquire method holder as java.lang.Class and push as constant.
4377         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4378         ciInstance* caller_mirror = caller_klass->java_mirror();
4379         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4380 
4381 #ifndef PRODUCT
4382         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4383           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4384           tty->print_cr("  JVM state at this point:");
4385           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4386             ciMethod* m = jvms()->of_depth(i)->method();
4387             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4388           }
4389         }
4390 #endif
4391         return true;
4392       }
4393       break;
4394     }
4395   }
4396 
4397 #ifndef PRODUCT
4398   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4399     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4400     tty->print_cr("  JVM state at this point:");
4401     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4402       ciMethod* m = jvms()->of_depth(i)->method();
4403       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4404     }
4405   }
4406 #endif
4407 
4408   return false;  // bail-out; let JVM_GetCallerClass do the work
4409 }
4410 
4411 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4412   Node* arg = argument(0);
4413   Node* result = NULL;
4414 
4415   switch (id) {
4416   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4417   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4418   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4419   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4420 
4421   case vmIntrinsics::_doubleToLongBits: {
4422     // two paths (plus control) merge in a wood
4423     RegionNode *r = new (C) RegionNode(3);
4424     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4425 
4426     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4427     // Build the boolean node
4428     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4429 
4430     // Branch either way.
4431     // NaN case is less traveled, which makes all the difference.
4432     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4433     Node *opt_isnan = _gvn.transform(ifisnan);
4434     assert( opt_isnan->is_If(), "Expect an IfNode");
4435     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4436     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4437 
4438     set_control(iftrue);
4439 
4440     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4441     Node *slow_result = longcon(nan_bits); // return NaN
4442     phi->init_req(1, _gvn.transform( slow_result ));
4443     r->init_req(1, iftrue);
4444 
4445     // Else fall through
4446     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4447     set_control(iffalse);
4448 
4449     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4450     r->init_req(2, iffalse);
4451 
4452     // Post merge
4453     set_control(_gvn.transform(r));
4454     record_for_igvn(r);
4455 
4456     C->set_has_split_ifs(true); // Has chance for split-if optimization
4457     result = phi;
4458     assert(result->bottom_type()->isa_long(), "must be");
4459     break;
4460   }
4461 
4462   case vmIntrinsics::_floatToIntBits: {
4463     // two paths (plus control) merge in a wood
4464     RegionNode *r = new (C) RegionNode(3);
4465     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4466 
4467     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4468     // Build the boolean node
4469     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4470 
4471     // Branch either way.
4472     // NaN case is less traveled, which makes all the difference.
4473     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4474     Node *opt_isnan = _gvn.transform(ifisnan);
4475     assert( opt_isnan->is_If(), "Expect an IfNode");
4476     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4477     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4478 
4479     set_control(iftrue);
4480 
4481     static const jint nan_bits = 0x7fc00000;
4482     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4483     phi->init_req(1, _gvn.transform( slow_result ));
4484     r->init_req(1, iftrue);
4485 
4486     // Else fall through
4487     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4488     set_control(iffalse);
4489 
4490     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4491     r->init_req(2, iffalse);
4492 
4493     // Post merge
4494     set_control(_gvn.transform(r));
4495     record_for_igvn(r);
4496 
4497     C->set_has_split_ifs(true); // Has chance for split-if optimization
4498     result = phi;
4499     assert(result->bottom_type()->isa_int(), "must be");
4500     break;
4501   }
4502 
4503   default:
4504     fatal_unexpected_iid(id);
4505     break;
4506   }
4507   set_result(_gvn.transform(result));
4508   return true;
4509 }
4510 
4511 #ifdef _LP64
4512 #define XTOP ,top() /*additional argument*/
4513 #else  //_LP64
4514 #define XTOP        /*no additional argument*/
4515 #endif //_LP64
4516 
4517 //----------------------inline_unsafe_copyMemory-------------------------
4518 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4519 bool LibraryCallKit::inline_unsafe_copyMemory() {
4520   if (callee()->is_static())  return false;  // caller must have the capability!
4521   null_check_receiver();  // null-check receiver
4522   if (stopped())  return true;
4523 
4524   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4525 
4526   Node* src_ptr =         argument(1);   // type: oop
4527   Node* src_off = ConvL2X(argument(2));  // type: long
4528   Node* dst_ptr =         argument(4);   // type: oop
4529   Node* dst_off = ConvL2X(argument(5));  // type: long
4530   Node* size    = ConvL2X(argument(7));  // type: long
4531 
4532   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4533          "fieldOffset must be byte-scaled");
4534 
4535   Node* src = make_unsafe_address(src_ptr, src_off, false);
4536   Node* dst = make_unsafe_address(dst_ptr, dst_off, true);
4537 
4538   // Conservatively insert a memory barrier on all memory slices.
4539   // Do not let writes of the copy source or destination float below the copy.
4540   insert_mem_bar(Op_MemBarCPUOrder);
4541 
4542   // Call it.  Note that the length argument is not scaled.
4543   make_runtime_call(RC_LEAF|RC_NO_FP,
4544                     OptoRuntime::fast_arraycopy_Type(),
4545                     StubRoutines::unsafe_arraycopy(),
4546                     "unsafe_arraycopy",
4547                     TypeRawPtr::BOTTOM,
4548                     src, dst, size XTOP);
4549 
4550   // Do not let reads of the copy destination float above the copy.
4551   insert_mem_bar(Op_MemBarCPUOrder);
4552 
4553   return true;
4554 }
4555 
4556 //------------------------clone_coping-----------------------------------
4557 // Helper function for inline_native_clone.
4558 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4559   assert(obj_size != NULL, "");
4560   Node* raw_obj = alloc_obj->in(1);
4561   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4562 
4563   obj = shenandoah_read_barrier(obj);
4564 
4565   AllocateNode* alloc = NULL;
4566   if (ReduceBulkZeroing) {
4567     // We will be completely responsible for initializing this object -
4568     // mark Initialize node as complete.
4569     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4570     // The object was just allocated - there should be no any stores!
4571     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4572     // Mark as complete_with_arraycopy so that on AllocateNode
4573     // expansion, we know this AllocateNode is initialized by an array
4574     // copy and a StoreStore barrier exists after the array copy.
4575     alloc->initialization()->set_complete_with_arraycopy();
4576   }
4577 
4578   // Copy the fastest available way.
4579   // TODO: generate fields copies for small objects instead.
4580   Node* src  = obj;
4581   Node* dest = alloc_obj;
4582   Node* size = _gvn.transform(obj_size);
4583 
4584   // Exclude the header but include array length to copy by 8 bytes words.
4585   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4586   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4587                             instanceOopDesc::base_offset_in_bytes();
4588   // base_off:
4589   // 8  - 32-bit VM
4590   // 12 - 64-bit VM, compressed klass
4591   // 16 - 64-bit VM, normal klass
4592   if (base_off % BytesPerLong != 0) {
4593     assert(UseCompressedClassPointers, "");
4594     if (is_array) {
4595       // Exclude length to copy by 8 bytes words.
4596       base_off += sizeof(int);
4597     } else {
4598       // Include klass to copy by 8 bytes words.
4599       base_off = instanceOopDesc::klass_offset_in_bytes();
4600     }
4601     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4602   }
4603   src  = basic_plus_adr(src,  base_off);
4604   dest = basic_plus_adr(dest, base_off);
4605 
4606   // Compute the length also, if needed:
4607   Node* countx = size;
4608   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4609   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4610 
4611   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4612   bool disjoint_bases = true;
4613   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4614                                src, NULL, dest, NULL, countx,
4615                                /*dest_uninitialized*/true);
4616 
4617   if (UseShenandoahGC && ShenandoahCloneBarrier) {
4618     // Make sure that references in the cloned object are updated for Shenandoah.
4619     make_runtime_call(RC_LEAF|RC_NO_FP,
4620                       OptoRuntime::shenandoah_clone_barrier_Type(),
4621                       CAST_FROM_FN_PTR(address, SharedRuntime::shenandoah_clone_barrier),
4622                       "shenandoah_clone_barrier", TypePtr::BOTTOM,
4623                       alloc_obj);
4624   }
4625 
4626   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4627   if (card_mark) {
4628     assert(!is_array, "");
4629     // Put in store barrier for any and all oops we are sticking
4630     // into this object.  (We could avoid this if we could prove
4631     // that the object type contains no oop fields at all.)
4632     Node* no_particular_value = NULL;
4633     Node* no_particular_field = NULL;
4634     int raw_adr_idx = Compile::AliasIdxRaw;
4635     post_barrier(control(),
4636                  memory(raw_adr_type),
4637                  alloc_obj,
4638                  no_particular_field,
4639                  raw_adr_idx,
4640                  no_particular_value,
4641                  T_OBJECT,
4642                  false);
4643   }
4644 
4645   // Do not let reads from the cloned object float above the arraycopy.
4646   if (alloc != NULL) {
4647     // Do not let stores that initialize this object be reordered with
4648     // a subsequent store that would make this object accessible by
4649     // other threads.
4650     // Record what AllocateNode this StoreStore protects so that
4651     // escape analysis can go from the MemBarStoreStoreNode to the
4652     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4653     // based on the escape status of the AllocateNode.
4654     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4655   } else {
4656     insert_mem_bar(Op_MemBarCPUOrder);
4657   }
4658 }
4659 
4660 //------------------------inline_native_clone----------------------------
4661 // protected native Object java.lang.Object.clone();
4662 //
4663 // Here are the simple edge cases:
4664 //  null receiver => normal trap
4665 //  virtual and clone was overridden => slow path to out-of-line clone
4666 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4667 //
4668 // The general case has two steps, allocation and copying.
4669 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4670 //
4671 // Copying also has two cases, oop arrays and everything else.
4672 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4673 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4674 //
4675 // These steps fold up nicely if and when the cloned object's klass
4676 // can be sharply typed as an object array, a type array, or an instance.
4677 //
4678 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4679   PhiNode* result_val;
4680 
4681   // Set the reexecute bit for the interpreter to reexecute
4682   // the bytecode that invokes Object.clone if deoptimization happens.
4683   { PreserveReexecuteState preexecs(this);
4684     jvms()->set_should_reexecute(true);
4685 
4686     Node* obj = null_check_receiver();
4687     if (stopped())  return true;
4688 
4689     Node* obj_klass = load_object_klass(obj);
4690     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4691     const TypeOopPtr*   toop   = ((tklass != NULL)
4692                                 ? tklass->as_instance_type()
4693                                 : TypeInstPtr::NOTNULL);
4694 
4695     // Conservatively insert a memory barrier on all memory slices.
4696     // Do not let writes into the original float below the clone.
4697     insert_mem_bar(Op_MemBarCPUOrder);
4698 
4699     // paths into result_reg:
4700     enum {
4701       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4702       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4703       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4704       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4705       PATH_LIMIT
4706     };
4707     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4708     result_val             = new(C) PhiNode(result_reg,
4709                                             TypeInstPtr::NOTNULL);
4710     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4711     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4712                                             TypePtr::BOTTOM);
4713     record_for_igvn(result_reg);
4714 
4715     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4716     int raw_adr_idx = Compile::AliasIdxRaw;
4717 
4718     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4719     if (array_ctl != NULL) {
4720       // It's an array.
4721       PreserveJVMState pjvms(this);
4722       set_control(array_ctl);
4723       Node* obj_length = load_array_length(obj);
4724       Node* obj_size  = NULL;
4725       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4726 
4727       if (!use_ReduceInitialCardMarks()) {
4728         // If it is an oop array, it requires very special treatment,
4729         // because card marking is required on each card of the array.
4730         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4731         if (is_obja != NULL) {
4732           PreserveJVMState pjvms2(this);
4733           set_control(is_obja);
4734 
4735           obj = shenandoah_read_barrier(obj);
4736 
4737           // Generate a direct call to the right arraycopy function(s).
4738           bool disjoint_bases = true;
4739           bool length_never_negative = true;
4740           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4741                              obj, intcon(0), alloc_obj, intcon(0),
4742                              obj_length,
4743                              disjoint_bases, length_never_negative);
4744           result_reg->init_req(_objArray_path, control());
4745           result_val->init_req(_objArray_path, alloc_obj);
4746           result_i_o ->set_req(_objArray_path, i_o());
4747           result_mem ->set_req(_objArray_path, reset_memory());
4748         }
4749       }
4750       // Otherwise, there are no card marks to worry about.
4751       // (We can dispense with card marks if we know the allocation
4752       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4753       //  causes the non-eden paths to take compensating steps to
4754       //  simulate a fresh allocation, so that no further
4755       //  card marks are required in compiled code to initialize
4756       //  the object.)
4757 
4758       if (!stopped()) {
4759         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4760 
4761         // Present the results of the copy.
4762         result_reg->init_req(_array_path, control());
4763         result_val->init_req(_array_path, alloc_obj);
4764         result_i_o ->set_req(_array_path, i_o());
4765         result_mem ->set_req(_array_path, reset_memory());
4766       }
4767     }
4768 
4769     // We only go to the instance fast case code if we pass a number of guards.
4770     // The paths which do not pass are accumulated in the slow_region.
4771     RegionNode* slow_region = new (C) RegionNode(1);
4772     record_for_igvn(slow_region);
4773     if (!stopped()) {
4774       // It's an instance (we did array above).  Make the slow-path tests.
4775       // If this is a virtual call, we generate a funny guard.  We grab
4776       // the vtable entry corresponding to clone() from the target object.
4777       // If the target method which we are calling happens to be the
4778       // Object clone() method, we pass the guard.  We do not need this
4779       // guard for non-virtual calls; the caller is known to be the native
4780       // Object clone().
4781       if (is_virtual) {
4782         generate_virtual_guard(obj_klass, slow_region);
4783       }
4784 
4785       // The object must be cloneable and must not have a finalizer.
4786       // Both of these conditions may be checked in a single test.
4787       // We could optimize the cloneable test further, but we don't care.
4788       generate_access_flags_guard(obj_klass,
4789                                   // Test both conditions:
4790                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4791                                   // Must be cloneable but not finalizer:
4792                                   JVM_ACC_IS_CLONEABLE,
4793                                   slow_region);
4794     }
4795 
4796     if (!stopped()) {
4797       // It's an instance, and it passed the slow-path tests.
4798       PreserveJVMState pjvms(this);
4799       Node* obj_size  = NULL;
4800       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4801       // is reexecuted if deoptimization occurs and there could be problems when merging
4802       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4803       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4804 
4805       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4806 
4807       // Present the results of the slow call.
4808       result_reg->init_req(_instance_path, control());
4809       result_val->init_req(_instance_path, alloc_obj);
4810       result_i_o ->set_req(_instance_path, i_o());
4811       result_mem ->set_req(_instance_path, reset_memory());
4812     }
4813 
4814     // Generate code for the slow case.  We make a call to clone().
4815     set_control(_gvn.transform(slow_region));
4816     if (!stopped()) {
4817       PreserveJVMState pjvms(this);
4818       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4819       Node* slow_result = set_results_for_java_call(slow_call);
4820       // this->control() comes from set_results_for_java_call
4821       result_reg->init_req(_slow_path, control());
4822       result_val->init_req(_slow_path, slow_result);
4823       result_i_o ->set_req(_slow_path, i_o());
4824       result_mem ->set_req(_slow_path, reset_memory());
4825     }
4826 
4827     // Return the combined state.
4828     set_control(    _gvn.transform(result_reg));
4829     set_i_o(        _gvn.transform(result_i_o));
4830     set_all_memory( _gvn.transform(result_mem));
4831   } // original reexecute is set back here
4832 
4833   set_result(_gvn.transform(result_val));
4834   return true;
4835 }
4836 
4837 //------------------------------basictype2arraycopy----------------------------
4838 address LibraryCallKit::basictype2arraycopy(BasicType t,
4839                                             Node* src_offset,
4840                                             Node* dest_offset,
4841                                             bool disjoint_bases,
4842                                             const char* &name,
4843                                             bool dest_uninitialized) {
4844   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4845   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4846 
4847   bool aligned = false;
4848   bool disjoint = disjoint_bases;
4849 
4850   // if the offsets are the same, we can treat the memory regions as
4851   // disjoint, because either the memory regions are in different arrays,
4852   // or they are identical (which we can treat as disjoint.)  We can also
4853   // treat a copy with a destination index  less that the source index
4854   // as disjoint since a low->high copy will work correctly in this case.
4855   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4856       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4857     // both indices are constants
4858     int s_offs = src_offset_inttype->get_con();
4859     int d_offs = dest_offset_inttype->get_con();
4860     int element_size = type2aelembytes(t);
4861     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4862               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4863     if (s_offs >= d_offs)  disjoint = true;
4864   } else if (src_offset == dest_offset && src_offset != NULL) {
4865     // This can occur if the offsets are identical non-constants.
4866     disjoint = true;
4867   }
4868 
4869   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4870 }
4871 
4872 
4873 //------------------------------inline_arraycopy-----------------------
4874 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4875 //                                                      Object dest, int destPos,
4876 //                                                      int length);
4877 bool LibraryCallKit::inline_arraycopy() {
4878   // Get the arguments.
4879   Node* src         = argument(0);  // type: oop
4880   Node* src_offset  = argument(1);  // type: int
4881   Node* dest        = argument(2);  // type: oop
4882   Node* dest_offset = argument(3);  // type: int
4883   Node* length      = argument(4);  // type: int
4884 
4885   // Compile time checks.  If any of these checks cannot be verified at compile time,
4886   // we do not make a fast path for this call.  Instead, we let the call remain as it
4887   // is.  The checks we choose to mandate at compile time are:
4888   //
4889   // (1) src and dest are arrays.
4890   const Type* src_type  = src->Value(&_gvn);
4891   const Type* dest_type = dest->Value(&_gvn);
4892   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4893   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4894 
4895   // Do we have the type of src?
4896   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4897   // Do we have the type of dest?
4898   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4899   // Is the type for src from speculation?
4900   bool src_spec = false;
4901   // Is the type for dest from speculation?
4902   bool dest_spec = false;
4903 
4904   if (!has_src || !has_dest) {
4905     // We don't have sufficient type information, let's see if
4906     // speculative types can help. We need to have types for both src
4907     // and dest so that it pays off.
4908 
4909     // Do we already have or could we have type information for src
4910     bool could_have_src = has_src;
4911     // Do we already have or could we have type information for dest
4912     bool could_have_dest = has_dest;
4913 
4914     ciKlass* src_k = NULL;
4915     if (!has_src) {
4916       src_k = src_type->speculative_type();
4917       if (src_k != NULL && src_k->is_array_klass()) {
4918         could_have_src = true;
4919       }
4920     }
4921 
4922     ciKlass* dest_k = NULL;
4923     if (!has_dest) {
4924       dest_k = dest_type->speculative_type();
4925       if (dest_k != NULL && dest_k->is_array_klass()) {
4926         could_have_dest = true;
4927       }
4928     }
4929 
4930     if (could_have_src && could_have_dest) {
4931       // This is going to pay off so emit the required guards
4932       if (!has_src) {
4933         src = maybe_cast_profiled_obj(src, src_k);
4934         src_type  = _gvn.type(src);
4935         top_src  = src_type->isa_aryptr();
4936         has_src = (top_src != NULL && top_src->klass() != NULL);
4937         src_spec = true;
4938       }
4939       if (!has_dest) {
4940         dest = maybe_cast_profiled_obj(dest, dest_k);
4941         dest_type  = _gvn.type(dest);
4942         top_dest  = dest_type->isa_aryptr();
4943         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4944         dest_spec = true;
4945       }
4946     }
4947   }
4948 
4949   if (!has_src || !has_dest) {
4950     // Conservatively insert a memory barrier on all memory slices.
4951     // Do not let writes into the source float below the arraycopy.
4952     insert_mem_bar(Op_MemBarCPUOrder);
4953 
4954     src = shenandoah_read_barrier(src);
4955     dest = shenandoah_write_barrier(dest);
4956 
4957     // Call StubRoutines::generic_arraycopy stub.
4958     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4959                        src, src_offset, dest, dest_offset, length);
4960 
4961     // Do not let reads from the destination float above the arraycopy.
4962     // Since we cannot type the arrays, we don't know which slices
4963     // might be affected.  We could restrict this barrier only to those
4964     // memory slices which pertain to array elements--but don't bother.
4965     if (!InsertMemBarAfterArraycopy)
4966       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4967       insert_mem_bar(Op_MemBarCPUOrder);
4968     return true;
4969   }
4970 
4971   // (2) src and dest arrays must have elements of the same BasicType
4972   // Figure out the size and type of the elements we will be copying.
4973   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4974   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4975   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4976   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4977 
4978   if (src_elem != dest_elem || dest_elem == T_VOID) {
4979     // The component types are not the same or are not recognized.  Punt.
4980     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4981 
4982     src = shenandoah_read_barrier(src);
4983     dest = shenandoah_write_barrier(dest);
4984 
4985     generate_slow_arraycopy(TypePtr::BOTTOM,
4986                             src, src_offset, dest, dest_offset, length,
4987                             /*dest_uninitialized*/false);
4988     return true;
4989   }
4990 
4991   if (src_elem == T_OBJECT) {
4992     // If both arrays are object arrays then having the exact types
4993     // for both will remove the need for a subtype check at runtime
4994     // before the call and may make it possible to pick a faster copy
4995     // routine (without a subtype check on every element)
4996     // Do we have the exact type of src?
4997     bool could_have_src = src_spec;
4998     // Do we have the exact type of dest?
4999     bool could_have_dest = dest_spec;
5000     ciKlass* src_k = top_src->klass();
5001     ciKlass* dest_k = top_dest->klass();
5002     if (!src_spec) {
5003       src_k = src_type->speculative_type();
5004       if (src_k != NULL && src_k->is_array_klass()) {
5005           could_have_src = true;
5006       }
5007     }
5008     if (!dest_spec) {
5009       dest_k = dest_type->speculative_type();
5010       if (dest_k != NULL && dest_k->is_array_klass()) {
5011         could_have_dest = true;
5012       }
5013     }
5014     if (could_have_src && could_have_dest) {
5015       // If we can have both exact types, emit the missing guards
5016       if (could_have_src && !src_spec) {
5017         src = maybe_cast_profiled_obj(src, src_k);
5018       }
5019       if (could_have_dest && !dest_spec) {
5020         dest = maybe_cast_profiled_obj(dest, dest_k);
5021       }
5022     }
5023   }
5024 
5025   //---------------------------------------------------------------------------
5026   // We will make a fast path for this call to arraycopy.
5027 
5028   // We have the following tests left to perform:
5029   //
5030   // (3) src and dest must not be null.
5031   // (4) src_offset must not be negative.
5032   // (5) dest_offset must not be negative.
5033   // (6) length must not be negative.
5034   // (7) src_offset + length must not exceed length of src.
5035   // (8) dest_offset + length must not exceed length of dest.
5036   // (9) each element of an oop array must be assignable
5037 
5038   RegionNode* slow_region = new (C) RegionNode(1);
5039   record_for_igvn(slow_region);
5040 
5041   // (3) operands must not be null
5042   // We currently perform our null checks with the null_check routine.
5043   // This means that the null exceptions will be reported in the caller
5044   // rather than (correctly) reported inside of the native arraycopy call.
5045   // This should be corrected, given time.  We do our null check with the
5046   // stack pointer restored.
5047   src  = null_check(src,  T_ARRAY);
5048   dest = null_check(dest, T_ARRAY);
5049 
5050   src = shenandoah_read_barrier(src);
5051   dest = shenandoah_write_barrier(dest);
5052 
5053   // (4) src_offset must not be negative.
5054   generate_negative_guard(src_offset, slow_region);
5055 
5056   // (5) dest_offset must not be negative.
5057   generate_negative_guard(dest_offset, slow_region);
5058 
5059   // (6) length must not be negative (moved to generate_arraycopy()).
5060   // generate_negative_guard(length, slow_region);
5061 
5062   // (7) src_offset + length must not exceed length of src.
5063   generate_limit_guard(src_offset, length,
5064                        load_array_length(src),
5065                        slow_region);
5066 
5067   // (8) dest_offset + length must not exceed length of dest.
5068   generate_limit_guard(dest_offset, length,
5069                        load_array_length(dest),
5070                        slow_region);
5071 
5072   // (9) each element of an oop array must be assignable
5073   // The generate_arraycopy subroutine checks this.
5074 
5075   // This is where the memory effects are placed:
5076   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
5077   generate_arraycopy(adr_type, dest_elem,
5078                      src, src_offset, dest, dest_offset, length,
5079                      false, false, slow_region);
5080 
5081   return true;
5082 }
5083 
5084 //-----------------------------generate_arraycopy----------------------
5085 // Generate an optimized call to arraycopy.
5086 // Caller must guard against non-arrays.
5087 // Caller must determine a common array basic-type for both arrays.
5088 // Caller must validate offsets against array bounds.
5089 // The slow_region has already collected guard failure paths
5090 // (such as out of bounds length or non-conformable array types).
5091 // The generated code has this shape, in general:
5092 //
5093 //     if (length == 0)  return   // via zero_path
5094 //     slowval = -1
5095 //     if (types unknown) {
5096 //       slowval = call generic copy loop
5097 //       if (slowval == 0)  return  // via checked_path
5098 //     } else if (indexes in bounds) {
5099 //       if ((is object array) && !(array type check)) {
5100 //         slowval = call checked copy loop
5101 //         if (slowval == 0)  return  // via checked_path
5102 //       } else {
5103 //         call bulk copy loop
5104 //         return  // via fast_path
5105 //       }
5106 //     }
5107 //     // adjust params for remaining work:
5108 //     if (slowval != -1) {
5109 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
5110 //     }
5111 //   slow_region:
5112 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
5113 //     return  // via slow_call_path
5114 //
5115 // This routine is used from several intrinsics:  System.arraycopy,
5116 // Object.clone (the array subcase), and Arrays.copyOf[Range].
5117 //
5118 void
5119 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
5120                                    BasicType basic_elem_type,
5121                                    Node* src,  Node* src_offset,
5122                                    Node* dest, Node* dest_offset,
5123                                    Node* copy_length,
5124                                    bool disjoint_bases,
5125                                    bool length_never_negative,
5126                                    RegionNode* slow_region) {
5127 
5128   if (slow_region == NULL) {
5129     slow_region = new(C) RegionNode(1);
5130     record_for_igvn(slow_region);
5131   }
5132 
5133   Node* original_dest      = dest;
5134   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
5135   bool  dest_uninitialized = false;
5136 
5137   // See if this is the initialization of a newly-allocated array.
5138   // If so, we will take responsibility here for initializing it to zero.
5139   // (Note:  Because tightly_coupled_allocation performs checks on the
5140   // out-edges of the dest, we need to avoid making derived pointers
5141   // from it until we have checked its uses.)
5142   if (ReduceBulkZeroing
5143       && !ZeroTLAB              // pointless if already zeroed
5144       && basic_elem_type != T_CONFLICT // avoid corner case
5145       && !src->eqv_uncast(dest)
5146       && ((alloc = tightly_coupled_allocation(dest, slow_region))
5147           != NULL)
5148       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
5149       && alloc->maybe_set_complete(&_gvn)) {
5150     // "You break it, you buy it."
5151     InitializeNode* init = alloc->initialization();
5152     assert(init->is_complete(), "we just did this");
5153     init->set_complete_with_arraycopy();
5154     assert(dest->is_CheckCastPP(), "sanity");
5155     assert(dest->in(0)->in(0) == init, "dest pinned");
5156     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
5157     // From this point on, every exit path is responsible for
5158     // initializing any non-copied parts of the object to zero.
5159     // Also, if this flag is set we make sure that arraycopy interacts properly
5160     // with G1, eliding pre-barriers. See CR 6627983.
5161     dest_uninitialized = true;
5162   } else {
5163     // No zeroing elimination here.
5164     alloc             = NULL;
5165     //original_dest   = dest;
5166     //dest_uninitialized = false;
5167   }
5168 
5169   // Results are placed here:
5170   enum { fast_path        = 1,  // normal void-returning assembly stub
5171          checked_path     = 2,  // special assembly stub with cleanup
5172          slow_call_path   = 3,  // something went wrong; call the VM
5173          zero_path        = 4,  // bypass when length of copy is zero
5174          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
5175          PATH_LIMIT       = 6
5176   };
5177   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
5178   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
5179   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
5180   record_for_igvn(result_region);
5181   _gvn.set_type_bottom(result_i_o);
5182   _gvn.set_type_bottom(result_memory);
5183   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
5184 
5185   // The slow_control path:
5186   Node* slow_control;
5187   Node* slow_i_o = i_o();
5188   Node* slow_mem = memory(adr_type);
5189   debug_only(slow_control = (Node*) badAddress);
5190 
5191   // Checked control path:
5192   Node* checked_control = top();
5193   Node* checked_mem     = NULL;
5194   Node* checked_i_o     = NULL;
5195   Node* checked_value   = NULL;
5196 
5197   if (basic_elem_type == T_CONFLICT) {
5198     assert(!dest_uninitialized, "");
5199     Node* cv = generate_generic_arraycopy(adr_type,
5200                                           src, src_offset, dest, dest_offset,
5201                                           copy_length, dest_uninitialized);
5202     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5203     checked_control = control();
5204     checked_i_o     = i_o();
5205     checked_mem     = memory(adr_type);
5206     checked_value   = cv;
5207     set_control(top());         // no fast path
5208   }
5209 
5210   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
5211   if (not_pos != NULL) {
5212     PreserveJVMState pjvms(this);
5213     set_control(not_pos);
5214 
5215     // (6) length must not be negative.
5216     if (!length_never_negative) {
5217       generate_negative_guard(copy_length, slow_region);
5218     }
5219 
5220     // copy_length is 0.
5221     if (!stopped() && dest_uninitialized) {
5222       Node* dest_length = alloc->in(AllocateNode::ALength);
5223       if (copy_length->eqv_uncast(dest_length)
5224           || _gvn.find_int_con(dest_length, 1) <= 0) {
5225         // There is no zeroing to do. No need for a secondary raw memory barrier.
5226       } else {
5227         // Clear the whole thing since there are no source elements to copy.
5228         generate_clear_array(adr_type, dest, basic_elem_type,
5229                              intcon(0), NULL,
5230                              alloc->in(AllocateNode::AllocSize));
5231         // Use a secondary InitializeNode as raw memory barrier.
5232         // Currently it is needed only on this path since other
5233         // paths have stub or runtime calls as raw memory barriers.
5234         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
5235                                                        Compile::AliasIdxRaw,
5236                                                        top())->as_Initialize();
5237         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
5238       }
5239     }
5240 
5241     // Present the results of the fast call.
5242     result_region->init_req(zero_path, control());
5243     result_i_o   ->init_req(zero_path, i_o());
5244     result_memory->init_req(zero_path, memory(adr_type));
5245   }
5246 
5247   if (!stopped() && dest_uninitialized) {
5248     // We have to initialize the *uncopied* part of the array to zero.
5249     // The copy destination is the slice dest[off..off+len].  The other slices
5250     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
5251     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
5252     Node* dest_length = alloc->in(AllocateNode::ALength);
5253     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
5254                                                           copy_length));
5255 
5256     // If there is a head section that needs zeroing, do it now.
5257     if (find_int_con(dest_offset, -1) != 0) {
5258       generate_clear_array(adr_type, dest, basic_elem_type,
5259                            intcon(0), dest_offset,
5260                            NULL);
5261     }
5262 
5263     // Next, perform a dynamic check on the tail length.
5264     // It is often zero, and we can win big if we prove this.
5265     // There are two wins:  Avoid generating the ClearArray
5266     // with its attendant messy index arithmetic, and upgrade
5267     // the copy to a more hardware-friendly word size of 64 bits.
5268     Node* tail_ctl = NULL;
5269     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5270       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5271       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5272       tail_ctl = generate_slow_guard(bol_lt, NULL);
5273       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5274     }
5275 
5276     // At this point, let's assume there is no tail.
5277     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5278       // There is no tail.  Try an upgrade to a 64-bit copy.
5279       bool didit = false;
5280       { PreserveJVMState pjvms(this);
5281         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5282                                          src, src_offset, dest, dest_offset,
5283                                          dest_size, dest_uninitialized);
5284         if (didit) {
5285           // Present the results of the block-copying fast call.
5286           result_region->init_req(bcopy_path, control());
5287           result_i_o   ->init_req(bcopy_path, i_o());
5288           result_memory->init_req(bcopy_path, memory(adr_type));
5289         }
5290       }
5291       if (didit)
5292         set_control(top());     // no regular fast path
5293     }
5294 
5295     // Clear the tail, if any.
5296     if (tail_ctl != NULL) {
5297       Node* notail_ctl = stopped() ? NULL : control();
5298       set_control(tail_ctl);
5299       if (notail_ctl == NULL) {
5300         generate_clear_array(adr_type, dest, basic_elem_type,
5301                              dest_tail, NULL,
5302                              dest_size);
5303       } else {
5304         // Make a local merge.
5305         Node* done_ctl = new(C) RegionNode(3);
5306         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5307         done_ctl->init_req(1, notail_ctl);
5308         done_mem->init_req(1, memory(adr_type));
5309         generate_clear_array(adr_type, dest, basic_elem_type,
5310                              dest_tail, NULL,
5311                              dest_size);
5312         done_ctl->init_req(2, control());
5313         done_mem->init_req(2, memory(adr_type));
5314         set_control( _gvn.transform(done_ctl));
5315         set_memory(  _gvn.transform(done_mem), adr_type );
5316       }
5317     }
5318   }
5319 
5320   BasicType copy_type = basic_elem_type;
5321   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5322   if (!stopped() && copy_type == T_OBJECT) {
5323     // If src and dest have compatible element types, we can copy bits.
5324     // Types S[] and D[] are compatible if D is a supertype of S.
5325     //
5326     // If they are not, we will use checked_oop_disjoint_arraycopy,
5327     // which performs a fast optimistic per-oop check, and backs off
5328     // further to JVM_ArrayCopy on the first per-oop check that fails.
5329     // (Actually, we don't move raw bits only; the GC requires card marks.)
5330 
5331     // Get the Klass* for both src and dest
5332     Node* src_klass  = load_object_klass(src);
5333     Node* dest_klass = load_object_klass(dest);
5334 
5335     // Generate the subtype check.
5336     // This might fold up statically, or then again it might not.
5337     //
5338     // Non-static example:  Copying List<String>.elements to a new String[].
5339     // The backing store for a List<String> is always an Object[],
5340     // but its elements are always type String, if the generic types
5341     // are correct at the source level.
5342     //
5343     // Test S[] against D[], not S against D, because (probably)
5344     // the secondary supertype cache is less busy for S[] than S.
5345     // This usually only matters when D is an interface.
5346     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5347     // Plug failing path into checked_oop_disjoint_arraycopy
5348     if (not_subtype_ctrl != top()) {
5349       PreserveJVMState pjvms(this);
5350       set_control(not_subtype_ctrl);
5351       // (At this point we can assume disjoint_bases, since types differ.)
5352       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5353       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5354       Node* n1 = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5355       Node* dest_elem_klass = _gvn.transform(n1);
5356       Node* cv = generate_checkcast_arraycopy(adr_type,
5357                                               dest_elem_klass,
5358                                               src, src_offset, dest, dest_offset,
5359                                               ConvI2X(copy_length), dest_uninitialized);
5360       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5361       checked_control = control();
5362       checked_i_o     = i_o();
5363       checked_mem     = memory(adr_type);
5364       checked_value   = cv;
5365     }
5366     // At this point we know we do not need type checks on oop stores.
5367 
5368     // Let's see if we need card marks:
5369     if (alloc != NULL && use_ReduceInitialCardMarks() && ! UseShenandoahGC) {
5370       // If we do not need card marks, copy using the jint or jlong stub.
5371       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5372       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5373              "sizes agree");
5374     }
5375   }
5376 
5377   if (!stopped()) {
5378     // Generate the fast path, if possible.
5379     PreserveJVMState pjvms(this);
5380     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5381                                  src, src_offset, dest, dest_offset,
5382                                  ConvI2X(copy_length), dest_uninitialized);
5383 
5384     // Present the results of the fast call.
5385     result_region->init_req(fast_path, control());
5386     result_i_o   ->init_req(fast_path, i_o());
5387     result_memory->init_req(fast_path, memory(adr_type));
5388   }
5389 
5390   // Here are all the slow paths up to this point, in one bundle:
5391   slow_control = top();
5392   if (slow_region != NULL)
5393     slow_control = _gvn.transform(slow_region);
5394   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5395 
5396   set_control(checked_control);
5397   if (!stopped()) {
5398     // Clean up after the checked call.
5399     // The returned value is either 0 or -1^K,
5400     // where K = number of partially transferred array elements.
5401     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5402     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5403     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5404 
5405     // If it is 0, we are done, so transfer to the end.
5406     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5407     result_region->init_req(checked_path, checks_done);
5408     result_i_o   ->init_req(checked_path, checked_i_o);
5409     result_memory->init_req(checked_path, checked_mem);
5410 
5411     // If it is not zero, merge into the slow call.
5412     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5413     RegionNode* slow_reg2 = new(C) RegionNode(3);
5414     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5415     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5416     record_for_igvn(slow_reg2);
5417     slow_reg2  ->init_req(1, slow_control);
5418     slow_i_o2  ->init_req(1, slow_i_o);
5419     slow_mem2  ->init_req(1, slow_mem);
5420     slow_reg2  ->init_req(2, control());
5421     slow_i_o2  ->init_req(2, checked_i_o);
5422     slow_mem2  ->init_req(2, checked_mem);
5423 
5424     slow_control = _gvn.transform(slow_reg2);
5425     slow_i_o     = _gvn.transform(slow_i_o2);
5426     slow_mem     = _gvn.transform(slow_mem2);
5427 
5428     if (alloc != NULL) {
5429       // We'll restart from the very beginning, after zeroing the whole thing.
5430       // This can cause double writes, but that's OK since dest is brand new.
5431       // So we ignore the low 31 bits of the value returned from the stub.
5432     } else {
5433       // We must continue the copy exactly where it failed, or else
5434       // another thread might see the wrong number of writes to dest.
5435       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5436       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5437       slow_offset->init_req(1, intcon(0));
5438       slow_offset->init_req(2, checked_offset);
5439       slow_offset  = _gvn.transform(slow_offset);
5440 
5441       // Adjust the arguments by the conditionally incoming offset.
5442       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5443       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5444       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5445 
5446       // Tweak the node variables to adjust the code produced below:
5447       src_offset  = src_off_plus;
5448       dest_offset = dest_off_plus;
5449       copy_length = length_minus;
5450     }
5451   }
5452 
5453   set_control(slow_control);
5454   if (!stopped()) {
5455     // Generate the slow path, if needed.
5456     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5457 
5458     set_memory(slow_mem, adr_type);
5459     set_i_o(slow_i_o);
5460 
5461     if (dest_uninitialized) {
5462       generate_clear_array(adr_type, dest, basic_elem_type,
5463                            intcon(0), NULL,
5464                            alloc->in(AllocateNode::AllocSize));
5465     }
5466 
5467     generate_slow_arraycopy(adr_type,
5468                             src, src_offset, dest, dest_offset,
5469                             copy_length, /*dest_uninitialized*/false);
5470 
5471     result_region->init_req(slow_call_path, control());
5472     result_i_o   ->init_req(slow_call_path, i_o());
5473     result_memory->init_req(slow_call_path, memory(adr_type));
5474   }
5475 
5476   // Remove unused edges.
5477   for (uint i = 1; i < result_region->req(); i++) {
5478     if (result_region->in(i) == NULL)
5479       result_region->init_req(i, top());
5480   }
5481 
5482   // Finished; return the combined state.
5483   set_control( _gvn.transform(result_region));
5484   set_i_o(     _gvn.transform(result_i_o)    );
5485   set_memory(  _gvn.transform(result_memory), adr_type );
5486 
5487   // The memory edges above are precise in order to model effects around
5488   // array copies accurately to allow value numbering of field loads around
5489   // arraycopy.  Such field loads, both before and after, are common in Java
5490   // collections and similar classes involving header/array data structures.
5491   //
5492   // But with low number of register or when some registers are used or killed
5493   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5494   // The next memory barrier is added to avoid it. If the arraycopy can be
5495   // optimized away (which it can, sometimes) then we can manually remove
5496   // the membar also.
5497   //
5498   // Do not let reads from the cloned object float above the arraycopy.
5499   if (alloc != NULL) {
5500     // Do not let stores that initialize this object be reordered with
5501     // a subsequent store that would make this object accessible by
5502     // other threads.
5503     // Record what AllocateNode this StoreStore protects so that
5504     // escape analysis can go from the MemBarStoreStoreNode to the
5505     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5506     // based on the escape status of the AllocateNode.
5507     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5508   } else if (InsertMemBarAfterArraycopy)
5509     insert_mem_bar(Op_MemBarCPUOrder);
5510 }
5511 
5512 
5513 // Helper function which determines if an arraycopy immediately follows
5514 // an allocation, with no intervening tests or other escapes for the object.
5515 AllocateArrayNode*
5516 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5517                                            RegionNode* slow_region) {
5518   if (stopped())             return NULL;  // no fast path
5519   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5520 
5521   ptr = ShenandoahBarrierNode::skip_through_barrier(ptr);
5522 
5523   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5524   if (alloc == NULL)  return NULL;
5525 
5526   Node* rawmem = memory(Compile::AliasIdxRaw);
5527   // Is the allocation's memory state untouched?
5528   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5529     // Bail out if there have been raw-memory effects since the allocation.
5530     // (Example:  There might have been a call or safepoint.)
5531     return NULL;
5532   }
5533   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5534   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5535     return NULL;
5536   }
5537 
5538   // There must be no unexpected observers of this allocation.
5539   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5540     Node* obs = ptr->fast_out(i);
5541     if (obs != this->map()) {
5542       return NULL;
5543     }
5544   }
5545 
5546   // This arraycopy must unconditionally follow the allocation of the ptr.
5547   Node* alloc_ctl = ptr->in(0);
5548   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5549 
5550   Node* ctl = control();
5551   while (ctl != alloc_ctl) {
5552     // There may be guards which feed into the slow_region.
5553     // Any other control flow means that we might not get a chance
5554     // to finish initializing the allocated object.
5555     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5556       IfNode* iff = ctl->in(0)->as_If();
5557       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5558       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5559       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5560         ctl = iff->in(0);       // This test feeds the known slow_region.
5561         continue;
5562       }
5563       // One more try:  Various low-level checks bottom out in
5564       // uncommon traps.  If the debug-info of the trap omits
5565       // any reference to the allocation, as we've already
5566       // observed, then there can be no objection to the trap.
5567       bool found_trap = false;
5568       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5569         Node* obs = not_ctl->fast_out(j);
5570         if (obs->in(0) == not_ctl && obs->is_Call() &&
5571             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5572           found_trap = true; break;
5573         }
5574       }
5575       if (found_trap) {
5576         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5577         continue;
5578       }
5579     }
5580     return NULL;
5581   }
5582 
5583   // If we get this far, we have an allocation which immediately
5584   // precedes the arraycopy, and we can take over zeroing the new object.
5585   // The arraycopy will finish the initialization, and provide
5586   // a new control state to which we will anchor the destination pointer.
5587 
5588   return alloc;
5589 }
5590 
5591 // Helper for initialization of arrays, creating a ClearArray.
5592 // It writes zero bits in [start..end), within the body of an array object.
5593 // The memory effects are all chained onto the 'adr_type' alias category.
5594 //
5595 // Since the object is otherwise uninitialized, we are free
5596 // to put a little "slop" around the edges of the cleared area,
5597 // as long as it does not go back into the array's header,
5598 // or beyond the array end within the heap.
5599 //
5600 // The lower edge can be rounded down to the nearest jint and the
5601 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5602 //
5603 // Arguments:
5604 //   adr_type           memory slice where writes are generated
5605 //   dest               oop of the destination array
5606 //   basic_elem_type    element type of the destination
5607 //   slice_idx          array index of first element to store
5608 //   slice_len          number of elements to store (or NULL)
5609 //   dest_size          total size in bytes of the array object
5610 //
5611 // Exactly one of slice_len or dest_size must be non-NULL.
5612 // If dest_size is non-NULL, zeroing extends to the end of the object.
5613 // If slice_len is non-NULL, the slice_idx value must be a constant.
5614 void
5615 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5616                                      Node* dest,
5617                                      BasicType basic_elem_type,
5618                                      Node* slice_idx,
5619                                      Node* slice_len,
5620                                      Node* dest_size) {
5621   // one or the other but not both of slice_len and dest_size:
5622   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5623   if (slice_len == NULL)  slice_len = top();
5624   if (dest_size == NULL)  dest_size = top();
5625 
5626   // operate on this memory slice:
5627   Node* mem = memory(adr_type); // memory slice to operate on
5628 
5629   // scaling and rounding of indexes:
5630   int scale = exact_log2(type2aelembytes(basic_elem_type));
5631   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5632   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5633   int bump_bit  = (-1 << scale) & BytesPerInt;
5634 
5635   // determine constant starts and ends
5636   const intptr_t BIG_NEG = -128;
5637   assert(BIG_NEG + 2*abase < 0, "neg enough");
5638   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5639   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5640   if (slice_len_con == 0) {
5641     return;                     // nothing to do here
5642   }
5643   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5644   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5645   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5646     assert(end_con < 0, "not two cons");
5647     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5648                        BytesPerLong);
5649   }
5650 
5651   if (start_con >= 0 && end_con >= 0) {
5652     // Constant start and end.  Simple.
5653     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5654                                        start_con, end_con, &_gvn);
5655   } else if (start_con >= 0 && dest_size != top()) {
5656     // Constant start, pre-rounded end after the tail of the array.
5657     Node* end = dest_size;
5658     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5659                                        start_con, end, &_gvn);
5660   } else if (start_con >= 0 && slice_len != top()) {
5661     // Constant start, non-constant end.  End needs rounding up.
5662     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5663     intptr_t end_base  = abase + (slice_idx_con << scale);
5664     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5665     Node*    end       = ConvI2X(slice_len);
5666     if (scale != 0)
5667       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5668     end_base += end_round;
5669     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5670     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5671     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5672                                        start_con, end, &_gvn);
5673   } else if (start_con < 0 && dest_size != top()) {
5674     // Non-constant start, pre-rounded end after the tail of the array.
5675     // This is almost certainly a "round-to-end" operation.
5676     Node* start = slice_idx;
5677     start = ConvI2X(start);
5678     if (scale != 0)
5679       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5680     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5681     if ((bump_bit | clear_low) != 0) {
5682       int to_clear = (bump_bit | clear_low);
5683       // Align up mod 8, then store a jint zero unconditionally
5684       // just before the mod-8 boundary.
5685       if (((abase + bump_bit) & ~to_clear) - bump_bit
5686           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5687         bump_bit = 0;
5688         assert((abase & to_clear) == 0, "array base must be long-aligned");
5689       } else {
5690         // Bump 'start' up to (or past) the next jint boundary:
5691         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5692         assert((abase & clear_low) == 0, "array base must be int-aligned");
5693       }
5694       // Round bumped 'start' down to jlong boundary in body of array.
5695       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5696       if (bump_bit != 0) {
5697         // Store a zero to the immediately preceding jint:
5698         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5699         Node* p1 = basic_plus_adr(dest, x1);
5700         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5701         mem = _gvn.transform(mem);
5702       }
5703     }
5704     Node* end = dest_size; // pre-rounded
5705     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5706                                        start, end, &_gvn);
5707   } else {
5708     // Non-constant start, unrounded non-constant end.
5709     // (Nobody zeroes a random midsection of an array using this routine.)
5710     ShouldNotReachHere();       // fix caller
5711   }
5712 
5713   // Done.
5714   set_memory(mem, adr_type);
5715 }
5716 
5717 
5718 bool
5719 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5720                                          BasicType basic_elem_type,
5721                                          AllocateNode* alloc,
5722                                          Node* src,  Node* src_offset,
5723                                          Node* dest, Node* dest_offset,
5724                                          Node* dest_size, bool dest_uninitialized) {
5725   // See if there is an advantage from block transfer.
5726   int scale = exact_log2(type2aelembytes(basic_elem_type));
5727   if (scale >= LogBytesPerLong)
5728     return false;               // it is already a block transfer
5729 
5730   // Look at the alignment of the starting offsets.
5731   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5732 
5733   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5734   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5735   if (src_off_con < 0 || dest_off_con < 0)
5736     // At present, we can only understand constants.
5737     return false;
5738 
5739   intptr_t src_off  = abase + (src_off_con  << scale);
5740   intptr_t dest_off = abase + (dest_off_con << scale);
5741 
5742   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5743     // Non-aligned; too bad.
5744     // One more chance:  Pick off an initial 32-bit word.
5745     // This is a common case, since abase can be odd mod 8.
5746     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5747         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5748       Node* sptr = basic_plus_adr(src,  src_off);
5749       Node* dptr = basic_plus_adr(dest, dest_off);
5750       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5751       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5752       src_off += BytesPerInt;
5753       dest_off += BytesPerInt;
5754     } else {
5755       return false;
5756     }
5757   }
5758   assert(src_off % BytesPerLong == 0, "");
5759   assert(dest_off % BytesPerLong == 0, "");
5760 
5761   // Do this copy by giant steps.
5762   Node* sptr  = basic_plus_adr(src,  src_off);
5763   Node* dptr  = basic_plus_adr(dest, dest_off);
5764   Node* countx = dest_size;
5765   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5766   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5767 
5768   bool disjoint_bases = true;   // since alloc != NULL
5769   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5770                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5771 
5772   return true;
5773 }
5774 
5775 
5776 // Helper function; generates code for the slow case.
5777 // We make a call to a runtime method which emulates the native method,
5778 // but without the native wrapper overhead.
5779 void
5780 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5781                                         Node* src,  Node* src_offset,
5782                                         Node* dest, Node* dest_offset,
5783                                         Node* copy_length, bool dest_uninitialized) {
5784   assert(!dest_uninitialized, "Invariant");
5785   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5786                                  OptoRuntime::slow_arraycopy_Type(),
5787                                  OptoRuntime::slow_arraycopy_Java(),
5788                                  "slow_arraycopy", adr_type,
5789                                  src, src_offset, dest, dest_offset,
5790                                  copy_length);
5791 
5792   // Handle exceptions thrown by this fellow:
5793   make_slow_call_ex(call, env()->Throwable_klass(), false);
5794 }
5795 
5796 // Helper function; generates code for cases requiring runtime checks.
5797 Node*
5798 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5799                                              Node* dest_elem_klass,
5800                                              Node* src,  Node* src_offset,
5801                                              Node* dest, Node* dest_offset,
5802                                              Node* copy_length, bool dest_uninitialized) {
5803   if (stopped())  return NULL;
5804 
5805   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5806   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5807     return NULL;
5808   }
5809 
5810   // Pick out the parameters required to perform a store-check
5811   // for the target array.  This is an optimistic check.  It will
5812   // look in each non-null element's class, at the desired klass's
5813   // super_check_offset, for the desired klass.
5814   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5815   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5816   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5817   Node* check_offset = ConvI2X(_gvn.transform(n3));
5818   Node* check_value  = dest_elem_klass;
5819 
5820   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5821   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5822 
5823   // (We know the arrays are never conjoint, because their types differ.)
5824   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5825                                  OptoRuntime::checkcast_arraycopy_Type(),
5826                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5827                                  // five arguments, of which two are
5828                                  // intptr_t (jlong in LP64)
5829                                  src_start, dest_start,
5830                                  copy_length XTOP,
5831                                  check_offset XTOP,
5832                                  check_value);
5833 
5834   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5835 }
5836 
5837 
5838 // Helper function; generates code for cases requiring runtime checks.
5839 Node*
5840 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5841                                            Node* src,  Node* src_offset,
5842                                            Node* dest, Node* dest_offset,
5843                                            Node* copy_length, bool dest_uninitialized) {
5844   assert(!dest_uninitialized, "Invariant");
5845   if (stopped())  return NULL;
5846   address copyfunc_addr = StubRoutines::generic_arraycopy();
5847   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5848     return NULL;
5849   }
5850 
5851   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5852                     OptoRuntime::generic_arraycopy_Type(),
5853                     copyfunc_addr, "generic_arraycopy", adr_type,
5854                     src, src_offset, dest, dest_offset, copy_length);
5855 
5856   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5857 }
5858 
5859 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5860 void
5861 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5862                                              BasicType basic_elem_type,
5863                                              bool disjoint_bases,
5864                                              Node* src,  Node* src_offset,
5865                                              Node* dest, Node* dest_offset,
5866                                              Node* copy_length, bool dest_uninitialized) {
5867   if (stopped())  return;               // nothing to do
5868 
5869   Node* src_start  = src;
5870   Node* dest_start = dest;
5871   if (src_offset != NULL || dest_offset != NULL) {
5872     assert(src_offset != NULL && dest_offset != NULL, "");
5873     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5874     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5875   }
5876 
5877   // Figure out which arraycopy runtime method to call.
5878   const char* copyfunc_name = "arraycopy";
5879   address     copyfunc_addr =
5880       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5881                           disjoint_bases, copyfunc_name, dest_uninitialized);
5882 
5883   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5884   make_runtime_call(RC_LEAF|RC_NO_FP,
5885                     OptoRuntime::fast_arraycopy_Type(),
5886                     copyfunc_addr, copyfunc_name, adr_type,
5887                     src_start, dest_start, copy_length XTOP);
5888 }
5889 
5890 //-------------inline_encodeISOArray-----------------------------------
5891 // encode char[] to byte[] in ISO_8859_1
5892 bool LibraryCallKit::inline_encodeISOArray() {
5893   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5894   // no receiver since it is static method
5895   Node *src         = argument(0);
5896   Node *src_offset  = argument(1);
5897   Node *dst         = argument(2);
5898   Node *dst_offset  = argument(3);
5899   Node *length      = argument(4);
5900 
5901   src = shenandoah_cast_not_null(src);
5902   dst = shenandoah_cast_not_null(dst);
5903 
5904   src = shenandoah_read_barrier(src);
5905   dst = shenandoah_write_barrier(dst);
5906 
5907   const Type* src_type = src->Value(&_gvn);
5908   const Type* dst_type = dst->Value(&_gvn);
5909   const TypeAryPtr* top_src = src_type->isa_aryptr();
5910   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5911   if (top_src  == NULL || top_src->klass()  == NULL ||
5912       top_dest == NULL || top_dest->klass() == NULL) {
5913     // failed array check
5914     return false;
5915   }
5916 
5917   // Figure out the size and type of the elements we will be copying.
5918   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5919   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5920   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5921     return false;
5922   }
5923   Node* src_start = array_element_address(src, src_offset, src_elem);
5924   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5925   // 'src_start' points to src array + scaled offset
5926   // 'dst_start' points to dst array + scaled offset
5927 
5928   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5929   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5930   enc = _gvn.transform(enc);
5931   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5932   set_memory(res_mem, mtype);
5933   set_result(enc);
5934   return true;
5935 }
5936 
5937 //-------------inline_multiplyToLen-----------------------------------
5938 bool LibraryCallKit::inline_multiplyToLen() {
5939   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5940 
5941   address stubAddr = StubRoutines::multiplyToLen();
5942   if (stubAddr == NULL) {
5943     return false; // Intrinsic's stub is not implemented on this platform
5944   }
5945   const char* stubName = "multiplyToLen";
5946 
5947   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5948 
5949   // no receiver because it is a static method
5950   Node* x    = argument(0);
5951   Node* xlen = argument(1);
5952   Node* y    = argument(2);
5953   Node* ylen = argument(3);
5954   Node* z    = argument(4);
5955 
5956   x = shenandoah_cast_not_null(x);
5957   x = shenandoah_read_barrier(x);
5958   y = shenandoah_cast_not_null(y);
5959   y = shenandoah_read_barrier(y);
5960   z = shenandoah_write_barrier(z);
5961 
5962   const Type* x_type = x->Value(&_gvn);
5963   const Type* y_type = y->Value(&_gvn);
5964   const TypeAryPtr* top_x = x_type->isa_aryptr();
5965   const TypeAryPtr* top_y = y_type->isa_aryptr();
5966   if (top_x  == NULL || top_x->klass()  == NULL ||
5967       top_y == NULL || top_y->klass() == NULL) {
5968     // failed array check
5969     return false;
5970   }
5971 
5972   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5973   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5974   if (x_elem != T_INT || y_elem != T_INT) {
5975     return false;
5976   }
5977 
5978   // Set the original stack and the reexecute bit for the interpreter to reexecute
5979   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5980   // on the return from z array allocation in runtime.
5981   { PreserveReexecuteState preexecs(this);
5982     jvms()->set_should_reexecute(true);
5983 
5984     Node* x_start = array_element_address(x, intcon(0), x_elem);
5985     Node* y_start = array_element_address(y, intcon(0), y_elem);
5986     // 'x_start' points to x array + scaled xlen
5987     // 'y_start' points to y array + scaled ylen
5988 
5989     // Allocate the result array
5990     Node* zlen = _gvn.transform(new(C) AddINode(xlen, ylen));
5991     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5992     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5993 
5994     IdealKit ideal(this);
5995 
5996 #define __ ideal.
5997      Node* one = __ ConI(1);
5998      Node* zero = __ ConI(0);
5999      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
6000      __ set(need_alloc, zero);
6001      __ set(z_alloc, z);
6002      __ if_then(z, BoolTest::eq, null()); {
6003        __ increment (need_alloc, one);
6004      } __ else_(); {
6005        // Update graphKit memory and control from IdealKit.
6006        sync_kit(ideal);
6007        Node* zlen_arg = NULL;
6008        if (UseShenandoahGC) {
6009          Node *cast = new (C) CastPPNode(z, TypePtr::NOTNULL);
6010          cast->init_req(0, control());
6011          _gvn.set_type(cast, cast->bottom_type());
6012          C->record_for_igvn(cast);
6013          zlen_arg = load_array_length(cast);
6014        } else {
6015          zlen_arg = load_array_length(z);
6016        }
6017        // Update IdealKit memory and control from graphKit.
6018        __ sync_kit(this);
6019        __ if_then(zlen_arg, BoolTest::lt, zlen); {
6020          __ increment (need_alloc, one);
6021        } __ end_if();
6022      } __ end_if();
6023 
6024      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
6025        // Update graphKit memory and control from IdealKit.
6026        sync_kit(ideal);
6027        Node * narr = new_array(klass_node, zlen, 1);
6028        // Update IdealKit memory and control from graphKit.
6029        __ sync_kit(this);
6030        __ set(z_alloc, narr);
6031      } __ end_if();
6032 
6033      sync_kit(ideal);
6034      z = __ value(z_alloc);
6035      // Can't use TypeAryPtr::INTS which uses Bottom offset.
6036      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
6037      // Final sync IdealKit and GraphKit.
6038      final_sync(ideal);
6039 #undef __
6040 
6041     Node* z_start = array_element_address(z, intcon(0), T_INT);
6042 
6043     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6044                                    OptoRuntime::multiplyToLen_Type(),
6045                                    stubAddr, stubName, TypePtr::BOTTOM,
6046                                    x_start, xlen, y_start, ylen, z_start, zlen);
6047   } // original reexecute is set back here
6048 
6049   C->set_has_split_ifs(true); // Has chance for split-if optimization
6050   set_result(z);
6051   return true;
6052 }
6053 
6054 //-------------inline_squareToLen------------------------------------
6055 bool LibraryCallKit::inline_squareToLen() {
6056   assert(UseSquareToLenIntrinsic, "not implementated on this platform");
6057 
6058   address stubAddr = StubRoutines::squareToLen();
6059   if (stubAddr == NULL) {
6060     return false; // Intrinsic's stub is not implemented on this platform
6061   }
6062   const char* stubName = "squareToLen";
6063 
6064   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
6065 
6066   Node* x    = argument(0);
6067   Node* len  = argument(1);
6068   Node* z    = argument(2);
6069   Node* zlen = argument(3);
6070 
6071   x = shenandoah_cast_not_null(x);
6072   x = shenandoah_read_barrier(x);
6073   z = shenandoah_cast_not_null(z);
6074   z = shenandoah_write_barrier(z);
6075 
6076   const Type* x_type = x->Value(&_gvn);
6077   const Type* z_type = z->Value(&_gvn);
6078   const TypeAryPtr* top_x = x_type->isa_aryptr();
6079   const TypeAryPtr* top_z = z_type->isa_aryptr();
6080   if (top_x  == NULL || top_x->klass()  == NULL ||
6081       top_z  == NULL || top_z->klass()  == NULL) {
6082     // failed array check
6083     return false;
6084   }
6085 
6086   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6087   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6088   if (x_elem != T_INT || z_elem != T_INT) {
6089     return false;
6090   }
6091 
6092 
6093   Node* x_start = array_element_address(x, intcon(0), x_elem);
6094   Node* z_start = array_element_address(z, intcon(0), z_elem);
6095 
6096   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6097                                   OptoRuntime::squareToLen_Type(),
6098                                   stubAddr, stubName, TypePtr::BOTTOM,
6099                                   x_start, len, z_start, zlen);
6100 
6101   set_result(z);
6102   return true;
6103 }
6104 
6105 //-------------inline_mulAdd------------------------------------------
6106 bool LibraryCallKit::inline_mulAdd() {
6107   assert(UseMulAddIntrinsic, "not implementated on this platform");
6108 
6109   address stubAddr = StubRoutines::mulAdd();
6110   if (stubAddr == NULL) {
6111     return false; // Intrinsic's stub is not implemented on this platform
6112   }
6113   const char* stubName = "mulAdd";
6114 
6115   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6116 
6117   Node* out      = argument(0);
6118   Node* in       = argument(1);
6119   Node* offset   = argument(2);
6120   Node* len      = argument(3);
6121   Node* k        = argument(4);
6122 
6123   in = shenandoah_read_barrier(in);
6124   out = shenandoah_cast_not_null(out);
6125   out = shenandoah_write_barrier(out);
6126 
6127   const Type* out_type = out->Value(&_gvn);
6128   const Type* in_type = in->Value(&_gvn);
6129   const TypeAryPtr* top_out = out_type->isa_aryptr();
6130   const TypeAryPtr* top_in = in_type->isa_aryptr();
6131   if (top_out  == NULL || top_out->klass()  == NULL ||
6132       top_in == NULL || top_in->klass() == NULL) {
6133     // failed array check
6134     return false;
6135   }
6136 
6137   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6138   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6139   if (out_elem != T_INT || in_elem != T_INT) {
6140     return false;
6141   }
6142 
6143   Node* outlen = load_array_length(out);
6144   Node* new_offset = _gvn.transform(new (C) SubINode(outlen, offset));
6145   Node* out_start = array_element_address(out, intcon(0), out_elem);
6146   Node* in_start = array_element_address(in, intcon(0), in_elem);
6147 
6148   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6149                                   OptoRuntime::mulAdd_Type(),
6150                                   stubAddr, stubName, TypePtr::BOTTOM,
6151                                   out_start,in_start, new_offset, len, k);
6152   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6153   set_result(result);
6154   return true;
6155 }
6156 
6157 //-------------inline_montgomeryMultiply-----------------------------------
6158 bool LibraryCallKit::inline_montgomeryMultiply() {
6159   address stubAddr = StubRoutines::montgomeryMultiply();
6160   if (stubAddr == NULL) {
6161     return false; // Intrinsic's stub is not implemented on this platform
6162   }
6163 
6164   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6165   const char* stubName = "montgomery_multiply";
6166 
6167   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6168 
6169   Node* a    = argument(0);
6170   Node* b    = argument(1);
6171   Node* n    = argument(2);
6172   Node* len  = argument(3);
6173   Node* inv  = argument(4);
6174   Node* m    = argument(6);
6175 
6176   a = shenandoah_read_barrier(a);
6177   b = shenandoah_read_barrier(b);
6178   n = shenandoah_read_barrier(n);
6179   m = shenandoah_write_barrier(m);
6180 
6181   const Type* a_type = a->Value(&_gvn);
6182   const TypeAryPtr* top_a = a_type->isa_aryptr();
6183   const Type* b_type = b->Value(&_gvn);
6184   const TypeAryPtr* top_b = b_type->isa_aryptr();
6185   const Type* n_type = a->Value(&_gvn);
6186   const TypeAryPtr* top_n = n_type->isa_aryptr();
6187   const Type* m_type = a->Value(&_gvn);
6188   const TypeAryPtr* top_m = m_type->isa_aryptr();
6189   if (top_a  == NULL || top_a->klass()  == NULL ||
6190       top_b == NULL || top_b->klass()  == NULL ||
6191       top_n == NULL || top_n->klass()  == NULL ||
6192       top_m == NULL || top_m->klass()  == NULL) {
6193     // failed array check
6194     return false;
6195   }
6196 
6197   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6198   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6199   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6200   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6201   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6202     return false;
6203   }
6204 
6205   // Make the call
6206   {
6207     Node* a_start = array_element_address(a, intcon(0), a_elem);
6208     Node* b_start = array_element_address(b, intcon(0), b_elem);
6209     Node* n_start = array_element_address(n, intcon(0), n_elem);
6210     Node* m_start = array_element_address(m, intcon(0), m_elem);
6211 
6212     Node* call = NULL;
6213     if (CCallingConventionRequiresIntsAsLongs) {
6214       Node* len_I2L = ConvI2L(len);
6215       call = make_runtime_call(RC_LEAF,
6216                                OptoRuntime::montgomeryMultiply_Type(),
6217                                stubAddr, stubName, TypePtr::BOTTOM,
6218                                a_start, b_start, n_start, len_I2L XTOP, inv,
6219                                top(), m_start);
6220     } else {
6221       call = make_runtime_call(RC_LEAF,
6222                                OptoRuntime::montgomeryMultiply_Type(),
6223                                stubAddr, stubName, TypePtr::BOTTOM,
6224                                a_start, b_start, n_start, len, inv, top(),
6225                                m_start);
6226     }
6227     set_result(m);
6228   }
6229 
6230   return true;
6231 }
6232 
6233 bool LibraryCallKit::inline_montgomerySquare() {
6234   address stubAddr = StubRoutines::montgomerySquare();
6235   if (stubAddr == NULL) {
6236     return false; // Intrinsic's stub is not implemented on this platform
6237   }
6238 
6239   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6240   const char* stubName = "montgomery_square";
6241 
6242   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6243 
6244   Node* a    = argument(0);
6245   Node* n    = argument(1);
6246   Node* len  = argument(2);
6247   Node* inv  = argument(3);
6248   Node* m    = argument(5);
6249 
6250   a = shenandoah_read_barrier(a);
6251   n = shenandoah_read_barrier(n);
6252   m = shenandoah_write_barrier(m);
6253 
6254   const Type* a_type = a->Value(&_gvn);
6255   const TypeAryPtr* top_a = a_type->isa_aryptr();
6256   const Type* n_type = a->Value(&_gvn);
6257   const TypeAryPtr* top_n = n_type->isa_aryptr();
6258   const Type* m_type = a->Value(&_gvn);
6259   const TypeAryPtr* top_m = m_type->isa_aryptr();
6260   if (top_a  == NULL || top_a->klass()  == NULL ||
6261       top_n == NULL || top_n->klass()  == NULL ||
6262       top_m == NULL || top_m->klass()  == NULL) {
6263     // failed array check
6264     return false;
6265   }
6266 
6267   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6268   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6269   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6270   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6271     return false;
6272   }
6273 
6274   // Make the call
6275   {
6276     Node* a_start = array_element_address(a, intcon(0), a_elem);
6277     Node* n_start = array_element_address(n, intcon(0), n_elem);
6278     Node* m_start = array_element_address(m, intcon(0), m_elem);
6279 
6280     Node* call = NULL;
6281     if (CCallingConventionRequiresIntsAsLongs) {
6282       Node* len_I2L = ConvI2L(len);
6283       call = make_runtime_call(RC_LEAF,
6284                                OptoRuntime::montgomerySquare_Type(),
6285                                stubAddr, stubName, TypePtr::BOTTOM,
6286                                a_start, n_start, len_I2L XTOP, inv, top(),
6287                                m_start);
6288     } else {
6289       call = make_runtime_call(RC_LEAF,
6290                                OptoRuntime::montgomerySquare_Type(),
6291                                stubAddr, stubName, TypePtr::BOTTOM,
6292                                a_start, n_start, len, inv, top(),
6293                                m_start);
6294     }
6295 
6296     set_result(m);
6297   }
6298 
6299   return true;
6300 }
6301 
6302 
6303 /**
6304  * Calculate CRC32 for byte.
6305  * int java.util.zip.CRC32.update(int crc, int b)
6306  */
6307 bool LibraryCallKit::inline_updateCRC32() {
6308   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6309   assert(callee()->signature()->size() == 2, "update has 2 parameters");
6310   // no receiver since it is static method
6311   Node* crc  = argument(0); // type: int
6312   Node* b    = argument(1); // type: int
6313 
6314   /*
6315    *    int c = ~ crc;
6316    *    b = timesXtoThe32[(b ^ c) & 0xFF];
6317    *    b = b ^ (c >>> 8);
6318    *    crc = ~b;
6319    */
6320 
6321   Node* M1 = intcon(-1);
6322   crc = _gvn.transform(new (C) XorINode(crc, M1));
6323   Node* result = _gvn.transform(new (C) XorINode(crc, b));
6324   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
6325 
6326   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
6327   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
6328   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
6329   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
6330 
6331   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
6332   result = _gvn.transform(new (C) XorINode(crc, result));
6333   result = _gvn.transform(new (C) XorINode(result, M1));
6334   set_result(result);
6335   return true;
6336 }
6337 
6338 /**
6339  * Calculate CRC32 for byte[] array.
6340  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
6341  */
6342 bool LibraryCallKit::inline_updateBytesCRC32() {
6343   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6344   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6345   // no receiver since it is static method
6346   Node* crc     = argument(0); // type: int
6347   Node* src     = argument(1); // type: oop
6348   Node* offset  = argument(2); // type: int
6349   Node* length  = argument(3); // type: int
6350 
6351   const Type* src_type = src->Value(&_gvn);
6352   const TypeAryPtr* top_src = src_type->isa_aryptr();
6353   if (top_src  == NULL || top_src->klass()  == NULL) {
6354     // failed array check
6355     return false;
6356   }
6357 
6358   // Figure out the size and type of the elements we will be copying.
6359   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6360   if (src_elem != T_BYTE) {
6361     return false;
6362   }
6363 
6364   // 'src_start' points to src array + scaled offset
6365   src = shenandoah_cast_not_null(src);
6366   src = shenandoah_read_barrier(src);
6367   src = shenandoah_read_barrier(src);
6368   Node* src_start = array_element_address(src, offset, src_elem);
6369 
6370   // We assume that range check is done by caller.
6371   // TODO: generate range check (offset+length < src.length) in debug VM.
6372 
6373   // Call the stub.
6374   address stubAddr = StubRoutines::updateBytesCRC32();
6375   const char *stubName = "updateBytesCRC32";
6376 
6377   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6378                                  stubAddr, stubName, TypePtr::BOTTOM,
6379                                  crc, src_start, length);
6380   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6381   set_result(result);
6382   return true;
6383 }
6384 
6385 /**
6386  * Calculate CRC32 for ByteBuffer.
6387  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6388  */
6389 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6390   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6391   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6392   // no receiver since it is static method
6393   Node* crc     = argument(0); // type: int
6394   Node* src     = argument(1); // type: long
6395   Node* offset  = argument(3); // type: int
6396   Node* length  = argument(4); // type: int
6397 
6398   src = ConvL2X(src);  // adjust Java long to machine word
6399   Node* base = _gvn.transform(new (C) CastX2PNode(src));
6400   offset = ConvI2X(offset);
6401 
6402   // 'src_start' points to src array + scaled offset
6403   Node* src_start = basic_plus_adr(top(), base, offset);
6404 
6405   // Call the stub.
6406   address stubAddr = StubRoutines::updateBytesCRC32();
6407   const char *stubName = "updateBytesCRC32";
6408 
6409   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6410                                  stubAddr, stubName, TypePtr::BOTTOM,
6411                                  crc, src_start, length);
6412   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6413   set_result(result);
6414   return true;
6415 }
6416 
6417 //----------------------------inline_reference_get----------------------------
6418 // public T java.lang.ref.Reference.get();
6419 bool LibraryCallKit::inline_reference_get() {
6420   const int referent_offset = java_lang_ref_Reference::referent_offset;
6421   guarantee(referent_offset > 0, "should have already been set");
6422 
6423   // Get the argument:
6424   Node* reference_obj = null_check_receiver();
6425   if (stopped()) return true;
6426 
6427   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
6428 
6429   ciInstanceKlass* klass = env()->Object_klass();
6430   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
6431 
6432   Node* no_ctrl = NULL;
6433   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
6434 
6435   // Use the pre-barrier to record the value in the referent field
6436   pre_barrier(false /* do_load */,
6437               control(),
6438               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
6439               result /* pre_val */,
6440               T_OBJECT);
6441 
6442   // Add memory barrier to prevent commoning reads from this field
6443   // across safepoint since GC can change its value.
6444   insert_mem_bar(Op_MemBarCPUOrder);
6445 
6446   set_result(result);
6447   return true;
6448 }
6449 
6450 
6451 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6452                                               bool is_exact=true, bool is_static=false) {
6453 
6454   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6455   assert(tinst != NULL, "obj is null");
6456   assert(tinst->klass()->is_loaded(), "obj is not loaded");
6457   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6458 
6459   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
6460                                                                           ciSymbol::make(fieldTypeString),
6461                                                                           is_static);
6462   if (field == NULL) return (Node *) NULL;
6463   assert (field != NULL, "undefined field");
6464 
6465   if ((ShenandoahOptimizeStaticFinals   && field->is_static()  && field->is_final()) ||
6466       (ShenandoahOptimizeInstanceFinals && !field->is_static() && field->is_final()) ||
6467       (ShenandoahOptimizeStableFinals   && field->is_stable())) {
6468     // Skip the barrier for special fields
6469   } else {
6470     fromObj = shenandoah_read_barrier(fromObj);
6471   }
6472 
6473   // Next code  copied from Parse::do_get_xxx():
6474 
6475   // Compute address and memory type.
6476   int offset  = field->offset_in_bytes();
6477   bool is_vol = field->is_volatile();
6478   ciType* field_klass = field->type();
6479   assert(field_klass->is_loaded(), "should be loaded");
6480   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6481   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6482   BasicType bt = field->layout_type();
6483 
6484   // Build the resultant type of the load
6485   const Type *type;
6486   if (bt == T_OBJECT) {
6487     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6488   } else {
6489     type = Type::get_const_basic_type(bt);
6490   }
6491 
6492   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6493     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6494   }
6495   // Build the load.
6496   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6497   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
6498   // If reference is volatile, prevent following memory ops from
6499   // floating up past the volatile read.  Also prevents commoning
6500   // another volatile read.
6501   if (is_vol) {
6502     // Memory barrier includes bogus read of value to force load BEFORE membar
6503     insert_mem_bar(Op_MemBarAcquire, loadedField);
6504   }
6505   return loadedField;
6506 }
6507 
6508 
6509 //------------------------------inline_aescrypt_Block-----------------------
6510 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6511   address stubAddr = NULL;
6512   const char *stubName;
6513   assert(UseAES, "need AES instruction support");
6514 
6515   switch(id) {
6516   case vmIntrinsics::_aescrypt_encryptBlock:
6517     stubAddr = StubRoutines::aescrypt_encryptBlock();
6518     stubName = "aescrypt_encryptBlock";
6519     break;
6520   case vmIntrinsics::_aescrypt_decryptBlock:
6521     stubAddr = StubRoutines::aescrypt_decryptBlock();
6522     stubName = "aescrypt_decryptBlock";
6523     break;
6524   }
6525   if (stubAddr == NULL) return false;
6526 
6527   Node* aescrypt_object = argument(0);
6528   Node* src             = argument(1);
6529   Node* src_offset      = argument(2);
6530   Node* dest            = argument(3);
6531   Node* dest_offset     = argument(4);
6532 
6533   // Resolve src and dest arrays for ShenandoahGC.
6534   src = shenandoah_cast_not_null(src);
6535   src = shenandoah_read_barrier(src);
6536   dest = shenandoah_cast_not_null(dest);
6537   dest = shenandoah_write_barrier(dest);
6538 
6539   // (1) src and dest are arrays.
6540   const Type* src_type = src->Value(&_gvn);
6541   const Type* dest_type = dest->Value(&_gvn);
6542   const TypeAryPtr* top_src = src_type->isa_aryptr();
6543   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6544   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6545 
6546   // for the quick and dirty code we will skip all the checks.
6547   // we are just trying to get the call to be generated.
6548   Node* src_start  = src;
6549   Node* dest_start = dest;
6550   if (src_offset != NULL || dest_offset != NULL) {
6551     assert(src_offset != NULL && dest_offset != NULL, "");
6552     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6553     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6554   }
6555 
6556   // now need to get the start of its expanded key array
6557   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6558   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6559   if (k_start == NULL) return false;
6560 
6561   if (Matcher::pass_original_key_for_aes()) {
6562     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6563     // compatibility issues between Java key expansion and SPARC crypto instructions
6564     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6565     if (original_k_start == NULL) return false;
6566 
6567     // Call the stub.
6568     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6569                       stubAddr, stubName, TypePtr::BOTTOM,
6570                       src_start, dest_start, k_start, original_k_start);
6571   } else {
6572     // Call the stub.
6573     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6574                       stubAddr, stubName, TypePtr::BOTTOM,
6575                       src_start, dest_start, k_start);
6576   }
6577 
6578   return true;
6579 }
6580 
6581 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6582 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6583   address stubAddr = NULL;
6584   const char *stubName = NULL;
6585 
6586   assert(UseAES, "need AES instruction support");
6587 
6588   switch(id) {
6589   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6590     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6591     stubName = "cipherBlockChaining_encryptAESCrypt";
6592     break;
6593   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6594     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6595     stubName = "cipherBlockChaining_decryptAESCrypt";
6596     break;
6597   }
6598   if (stubAddr == NULL) return false;
6599 
6600   Node* cipherBlockChaining_object = argument(0);
6601   Node* src                        = argument(1);
6602   Node* src_offset                 = argument(2);
6603   Node* len                        = argument(3);
6604   Node* dest                       = argument(4);
6605   Node* dest_offset                = argument(5);
6606 
6607 
6608   // inline_cipherBlockChaining_AESCrypt_predicate() has its own
6609   // barrier. This one should optimize away.
6610   src = shenandoah_cast_not_null(src);
6611   dest = shenandoah_cast_not_null(dest);
6612   src = shenandoah_read_barrier(src);
6613   dest = shenandoah_write_barrier(dest);
6614 
6615   // (1) src and dest are arrays.
6616   const Type* src_type = src->Value(&_gvn);
6617   const Type* dest_type = dest->Value(&_gvn);
6618   const TypeAryPtr* top_src = src_type->isa_aryptr();
6619   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6620   assert (top_src  != NULL && top_src->klass()  != NULL
6621           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6622 
6623   // checks are the responsibility of the caller
6624   Node* src_start  = src;
6625   Node* dest_start = dest;
6626   if (src_offset != NULL || dest_offset != NULL) {
6627     assert(src_offset != NULL && dest_offset != NULL, "");
6628     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6629     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6630   }
6631 
6632   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6633   // (because of the predicated logic executed earlier).
6634   // so we cast it here safely.
6635   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6636 
6637   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6638   if (embeddedCipherObj == NULL) return false;
6639 
6640   // cast it to what we know it will be at runtime
6641   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6642   assert(tinst != NULL, "CBC obj is null");
6643   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6644   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6645   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6646 
6647   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6648   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6649   const TypeOopPtr* xtype = aklass->as_instance_type();
6650   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
6651   aescrypt_object = _gvn.transform(aescrypt_object);
6652 
6653   // we need to get the start of the aescrypt_object's expanded key array
6654   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6655   if (k_start == NULL) return false;
6656 
6657   // similarly, get the start address of the r vector
6658   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6659 
6660   objRvec = shenandoah_write_barrier(objRvec);
6661 
6662   if (objRvec == NULL) return false;
6663   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6664 
6665   Node* cbcCrypt;
6666   if (Matcher::pass_original_key_for_aes()) {
6667     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6668     // compatibility issues between Java key expansion and SPARC crypto instructions
6669     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6670     if (original_k_start == NULL) return false;
6671 
6672     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6673     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6674                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6675                                  stubAddr, stubName, TypePtr::BOTTOM,
6676                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6677   } else {
6678     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6679     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6680                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6681                                  stubAddr, stubName, TypePtr::BOTTOM,
6682                                  src_start, dest_start, k_start, r_start, len);
6683   }
6684 
6685   // return cipher length (int)
6686   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
6687   set_result(retvalue);
6688   return true;
6689 }
6690 
6691 //------------------------------get_key_start_from_aescrypt_object-----------------------
6692 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6693 #ifdef PPC64
6694   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6695   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6696   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6697   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6698   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6699   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6700   if (objSessionK == NULL) {
6701     return (Node *) NULL;
6702   }
6703   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6704 #else
6705   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6706 #endif // PPC64
6707   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6708   if (objAESCryptKey == NULL) return (Node *) NULL;
6709 
6710   objAESCryptKey = shenandoah_read_barrier(objAESCryptKey);
6711 
6712   // now have the array, need to get the start address of the K array
6713   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6714   return k_start;
6715 }
6716 
6717 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6718 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6719   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6720   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6721   if (objAESCryptKey == NULL) return (Node *) NULL;
6722 
6723   objAESCryptKey = shenandoah_read_barrier(objAESCryptKey);
6724 
6725   // now have the array, need to get the start address of the lastKey array
6726   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6727   return original_k_start;
6728 }
6729 
6730 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6731 // Return node representing slow path of predicate check.
6732 // the pseudo code we want to emulate with this predicate is:
6733 // for encryption:
6734 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6735 // for decryption:
6736 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6737 //    note cipher==plain is more conservative than the original java code but that's OK
6738 //
6739 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6740   // The receiver was checked for NULL already.
6741   Node* objCBC = argument(0);
6742 
6743   Node* src = argument(1);
6744   Node* dest = argument(4);
6745 
6746   // Load embeddedCipher field of CipherBlockChaining object.
6747   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6748 
6749   // get AESCrypt klass for instanceOf check
6750   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6751   // will have same classloader as CipherBlockChaining object
6752   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6753   assert(tinst != NULL, "CBCobj is null");
6754   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6755 
6756   // we want to do an instanceof comparison against the AESCrypt class
6757   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6758   if (!klass_AESCrypt->is_loaded()) {
6759     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6760     Node* ctrl = control();
6761     set_control(top()); // no regular fast path
6762     return ctrl;
6763   }
6764 
6765   // Resolve src and dest arrays for ShenandoahGC.  Here because new
6766   // memory state is not handled by predicate logic in
6767   // inline_cipherBlockChaining_AESCrypt itself
6768   src = shenandoah_cast_not_null(src);
6769   dest = shenandoah_cast_not_null(dest);
6770   src = shenandoah_write_barrier(src);
6771   dest = shenandoah_write_barrier(dest);
6772 
6773   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6774 
6775   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6776   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6777   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6778 
6779   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6780 
6781   // for encryption, we are done
6782   if (!decrypting)
6783     return instof_false;  // even if it is NULL
6784 
6785   // for decryption, we need to add a further check to avoid
6786   // taking the intrinsic path when cipher and plain are the same
6787   // see the original java code for why.
6788   RegionNode* region = new(C) RegionNode(3);
6789   region->init_req(1, instof_false);
6790 
6791   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6792   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6793   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6794   region->init_req(2, src_dest_conjoint);
6795 
6796   record_for_igvn(region);
6797   return _gvn.transform(region);
6798 }
6799 
6800 //------------------------------inline_sha_implCompress-----------------------
6801 //
6802 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6803 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6804 //
6805 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6806 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6807 //
6808 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6809 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6810 //
6811 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6812   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6813 
6814   Node* sha_obj = argument(0);
6815   Node* src     = argument(1); // type oop
6816   Node* ofs     = argument(2); // type int
6817 
6818   const Type* src_type = src->Value(&_gvn);
6819   const TypeAryPtr* top_src = src_type->isa_aryptr();
6820   if (top_src  == NULL || top_src->klass()  == NULL) {
6821     // failed array check
6822     return false;
6823   }
6824   // Figure out the size and type of the elements we will be copying.
6825   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6826   if (src_elem != T_BYTE) {
6827     return false;
6828   }
6829   // 'src_start' points to src array + offset
6830   src = cast_not_null(src, false);
6831   src = shenandoah_read_barrier(src);
6832   Node* src_start = array_element_address(src, ofs, src_elem);
6833   Node* state = NULL;
6834   address stubAddr;
6835   const char *stubName;
6836 
6837   switch(id) {
6838   case vmIntrinsics::_sha_implCompress:
6839     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6840     state = get_state_from_sha_object(sha_obj);
6841     stubAddr = StubRoutines::sha1_implCompress();
6842     stubName = "sha1_implCompress";
6843     break;
6844   case vmIntrinsics::_sha2_implCompress:
6845     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6846     state = get_state_from_sha_object(sha_obj);
6847     stubAddr = StubRoutines::sha256_implCompress();
6848     stubName = "sha256_implCompress";
6849     break;
6850   case vmIntrinsics::_sha5_implCompress:
6851     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6852     state = get_state_from_sha5_object(sha_obj);
6853     stubAddr = StubRoutines::sha512_implCompress();
6854     stubName = "sha512_implCompress";
6855     break;
6856   default:
6857     fatal_unexpected_iid(id);
6858     return false;
6859   }
6860   if (state == NULL) return false;
6861 
6862   // Call the stub.
6863   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6864                                  stubAddr, stubName, TypePtr::BOTTOM,
6865                                  src_start, state);
6866 
6867   return true;
6868 }
6869 
6870 //------------------------------inline_digestBase_implCompressMB-----------------------
6871 //
6872 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6873 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6874 //
6875 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6876   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6877          "need SHA1/SHA256/SHA512 instruction support");
6878   assert((uint)predicate < 3, "sanity");
6879   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6880 
6881   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6882   Node* src            = argument(1); // byte[] array
6883   Node* ofs            = argument(2); // type int
6884   Node* limit          = argument(3); // type int
6885 
6886   const Type* src_type = src->Value(&_gvn);
6887   const TypeAryPtr* top_src = src_type->isa_aryptr();
6888   if (top_src  == NULL || top_src->klass()  == NULL) {
6889     // failed array check
6890     return false;
6891   }
6892   // Figure out the size and type of the elements we will be copying.
6893   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6894   if (src_elem != T_BYTE) {
6895     return false;
6896   }
6897   // 'src_start' points to src array + offset
6898   src = shenandoah_cast_not_null(src);
6899   src = shenandoah_read_barrier(src);
6900   Node* src_start = array_element_address(src, ofs, src_elem);
6901 
6902   const char* klass_SHA_name = NULL;
6903   const char* stub_name = NULL;
6904   address     stub_addr = NULL;
6905   bool        long_state = false;
6906 
6907   switch (predicate) {
6908   case 0:
6909     if (UseSHA1Intrinsics) {
6910       klass_SHA_name = "sun/security/provider/SHA";
6911       stub_name = "sha1_implCompressMB";
6912       stub_addr = StubRoutines::sha1_implCompressMB();
6913     }
6914     break;
6915   case 1:
6916     if (UseSHA256Intrinsics) {
6917       klass_SHA_name = "sun/security/provider/SHA2";
6918       stub_name = "sha256_implCompressMB";
6919       stub_addr = StubRoutines::sha256_implCompressMB();
6920     }
6921     break;
6922   case 2:
6923     if (UseSHA512Intrinsics) {
6924       klass_SHA_name = "sun/security/provider/SHA5";
6925       stub_name = "sha512_implCompressMB";
6926       stub_addr = StubRoutines::sha512_implCompressMB();
6927       long_state = true;
6928     }
6929     break;
6930   default:
6931     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6932   }
6933   if (klass_SHA_name != NULL) {
6934     // get DigestBase klass to lookup for SHA klass
6935     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6936     assert(tinst != NULL, "digestBase_obj is not instance???");
6937     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6938 
6939     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6940     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6941     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6942     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6943   }
6944   return false;
6945 }
6946 //------------------------------inline_sha_implCompressMB-----------------------
6947 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6948                                                bool long_state, address stubAddr, const char *stubName,
6949                                                Node* src_start, Node* ofs, Node* limit) {
6950   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6951   const TypeOopPtr* xtype = aklass->as_instance_type();
6952   Node* sha_obj = new (C) CheckCastPPNode(control(), digestBase_obj, xtype);
6953   sha_obj = _gvn.transform(sha_obj);
6954 
6955   Node* state;
6956   if (long_state) {
6957     state = get_state_from_sha5_object(sha_obj);
6958   } else {
6959     state = get_state_from_sha_object(sha_obj);
6960   }
6961   if (state == NULL) return false;
6962 
6963   // Call the stub.
6964   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6965                                  OptoRuntime::digestBase_implCompressMB_Type(),
6966                                  stubAddr, stubName, TypePtr::BOTTOM,
6967                                  src_start, state, ofs, limit);
6968   // return ofs (int)
6969   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6970   set_result(result);
6971 
6972   return true;
6973 }
6974 
6975 //------------------------------get_state_from_sha_object-----------------------
6976 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6977   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6978   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6979   if (sha_state == NULL) return (Node *) NULL;
6980 
6981   sha_state = shenandoah_write_barrier(sha_state);
6982 
6983   // now have the array, need to get the start address of the state array
6984   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6985   return state;
6986 }
6987 
6988 //------------------------------get_state_from_sha5_object-----------------------
6989 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6990   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6991   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6992   if (sha_state == NULL) return (Node *) NULL;
6993 
6994   sha_state = shenandoah_write_barrier(sha_state);
6995 
6996   // now have the array, need to get the start address of the state array
6997   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6998   return state;
6999 }
7000 
7001 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
7002 // Return node representing slow path of predicate check.
7003 // the pseudo code we want to emulate with this predicate is:
7004 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
7005 //
7006 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
7007   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
7008          "need SHA1/SHA256/SHA512 instruction support");
7009   assert((uint)predicate < 3, "sanity");
7010 
7011   // The receiver was checked for NULL already.
7012   Node* digestBaseObj = argument(0);
7013 
7014   // get DigestBase klass for instanceOf check
7015   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
7016   assert(tinst != NULL, "digestBaseObj is null");
7017   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
7018 
7019   const char* klass_SHA_name = NULL;
7020   switch (predicate) {
7021   case 0:
7022     if (UseSHA1Intrinsics) {
7023       // we want to do an instanceof comparison against the SHA class
7024       klass_SHA_name = "sun/security/provider/SHA";
7025     }
7026     break;
7027   case 1:
7028     if (UseSHA256Intrinsics) {
7029       // we want to do an instanceof comparison against the SHA2 class
7030       klass_SHA_name = "sun/security/provider/SHA2";
7031     }
7032     break;
7033   case 2:
7034     if (UseSHA512Intrinsics) {
7035       // we want to do an instanceof comparison against the SHA5 class
7036       klass_SHA_name = "sun/security/provider/SHA5";
7037     }
7038     break;
7039   default:
7040     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
7041   }
7042 
7043   ciKlass* klass_SHA = NULL;
7044   if (klass_SHA_name != NULL) {
7045     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
7046   }
7047   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
7048     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
7049     Node* ctrl = control();
7050     set_control(top()); // no intrinsic path
7051     return ctrl;
7052   }
7053   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
7054 
7055   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
7056   Node* cmp_instof = _gvn.transform(new (C) CmpINode(instofSHA, intcon(1)));
7057   Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
7058   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
7059 
7060   return instof_false;  // even if it is NULL
7061 }
7062 
7063 bool LibraryCallKit::inline_profileBoolean() {
7064   Node* counts = argument(1);
7065   const TypeAryPtr* ary = NULL;
7066   ciArray* aobj = NULL;
7067   if (counts->is_Con()
7068       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
7069       && (aobj = ary->const_oop()->as_array()) != NULL
7070       && (aobj->length() == 2)) {
7071     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
7072     jint false_cnt = aobj->element_value(0).as_int();
7073     jint  true_cnt = aobj->element_value(1).as_int();
7074 
7075     if (C->log() != NULL) {
7076       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
7077                      false_cnt, true_cnt);
7078     }
7079 
7080     if (false_cnt + true_cnt == 0) {
7081       // According to profile, never executed.
7082       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
7083                           Deoptimization::Action_reinterpret);
7084       return true;
7085     }
7086 
7087     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
7088     // is a number of each value occurrences.
7089     Node* result = argument(0);
7090     if (false_cnt == 0 || true_cnt == 0) {
7091       // According to profile, one value has been never seen.
7092       int expected_val = (false_cnt == 0) ? 1 : 0;
7093 
7094       Node* cmp  = _gvn.transform(new (C) CmpINode(result, intcon(expected_val)));
7095       Node* test = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
7096 
7097       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
7098       Node* fast_path = _gvn.transform(new (C) IfTrueNode(check));
7099       Node* slow_path = _gvn.transform(new (C) IfFalseNode(check));
7100 
7101       { // Slow path: uncommon trap for never seen value and then reexecute
7102         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
7103         // the value has been seen at least once.
7104         PreserveJVMState pjvms(this);
7105         PreserveReexecuteState preexecs(this);
7106         jvms()->set_should_reexecute(true);
7107 
7108         set_control(slow_path);
7109         set_i_o(i_o());
7110 
7111         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
7112                             Deoptimization::Action_reinterpret);
7113       }
7114       // The guard for never seen value enables sharpening of the result and
7115       // returning a constant. It allows to eliminate branches on the same value
7116       // later on.
7117       set_control(fast_path);
7118       result = intcon(expected_val);
7119     }
7120     // Stop profiling.
7121     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
7122     // By replacing method body with profile data (represented as ProfileBooleanNode
7123     // on IR level) we effectively disable profiling.
7124     // It enables full speed execution once optimized code is generated.
7125     Node* profile = _gvn.transform(new (C) ProfileBooleanNode(result, false_cnt, true_cnt));
7126     C->record_for_igvn(profile);
7127     set_result(profile);
7128     return true;
7129   } else {
7130     // Continue profiling.
7131     // Profile data isn't available at the moment. So, execute method's bytecode version.
7132     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
7133     // is compiled and counters aren't available since corresponding MethodHandle
7134     // isn't a compile-time constant.
7135     return false;
7136   }
7137 }