1 /*
   2  * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/connode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/idealGraphPrinter.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/superword.hpp"
  39 
  40 //=============================================================================
  41 //------------------------------is_loop_iv-------------------------------------
  42 // Determine if a node is Counted loop induction variable.
  43 // The method is declared in node.hpp.
  44 const Node* Node::is_loop_iv() const {
  45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
  46       this->as_Phi()->region()->is_CountedLoop() &&
  47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
  48     return this;
  49   } else {
  50     return NULL;
  51   }
  52 }
  53 
  54 //=============================================================================
  55 //------------------------------dump_spec--------------------------------------
  56 // Dump special per-node info
  57 #ifndef PRODUCT
  58 void LoopNode::dump_spec(outputStream *st) const {
  59   if (is_inner_loop()) st->print( "inner " );
  60   if (is_partial_peel_loop()) st->print( "partial_peel " );
  61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  62 }
  63 #endif
  64 
  65 //------------------------------is_valid_counted_loop-------------------------
  66 bool LoopNode::is_valid_counted_loop() const {
  67   if (is_CountedLoop()) {
  68     CountedLoopNode*    l  = as_CountedLoop();
  69     CountedLoopEndNode* le = l->loopexit();
  70     if (le != NULL &&
  71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
  72       Node* phi  = l->phi();
  73       Node* exit = le->proj_out(0 /* false */);
  74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
  75           phi != NULL && phi->is_Phi() &&
  76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  77           le->loopnode() == l && le->stride_is_con()) {
  78         return true;
  79       }
  80     }
  81   }
  82   return false;
  83 }
  84 
  85 //------------------------------get_early_ctrl---------------------------------
  86 // Compute earliest legal control
  87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  89   uint i;
  90   Node *early;
  91   if (n->in(0) && !n->is_expensive()) {
  92     early = n->in(0);
  93     if (!early->is_CFG()) // Might be a non-CFG multi-def
  94       early = get_ctrl(early);        // So treat input as a straight data input
  95     i = 1;
  96   } else {
  97     early = get_ctrl(n->in(1));
  98     i = 2;
  99   }
 100   uint e_d = dom_depth(early);
 101   assert( early, "" );
 102   for (; i < n->req(); i++) {
 103     Node *cin = get_ctrl(n->in(i));
 104     assert( cin, "" );
 105     // Keep deepest dominator depth
 106     uint c_d = dom_depth(cin);
 107     if (c_d > e_d) {           // Deeper guy?
 108       early = cin;              // Keep deepest found so far
 109       e_d = c_d;
 110     } else if (c_d == e_d &&    // Same depth?
 111                early != cin) { // If not equal, must use slower algorithm
 112       // If same depth but not equal, one _must_ dominate the other
 113       // and we want the deeper (i.e., dominated) guy.
 114       Node *n1 = early;
 115       Node *n2 = cin;
 116       while (1) {
 117         n1 = idom(n1);          // Walk up until break cycle
 118         n2 = idom(n2);
 119         if (n1 == cin ||        // Walked early up to cin
 120             dom_depth(n2) < c_d)
 121           break;                // early is deeper; keep him
 122         if (n2 == early ||      // Walked cin up to early
 123             dom_depth(n1) < c_d) {
 124           early = cin;          // cin is deeper; keep him
 125           break;
 126         }
 127       }
 128       e_d = dom_depth(early);   // Reset depth register cache
 129     }
 130   }
 131 
 132   // Return earliest legal location
 133   assert(early == find_non_split_ctrl(early), "unexpected early control");
 134 
 135   if (n->is_expensive()) {
 136     assert(n->in(0), "should have control input");
 137     early = get_early_ctrl_for_expensive(n, early);
 138   }
 139 
 140   return early;
 141 }
 142 
 143 //------------------------------get_early_ctrl_for_expensive---------------------------------
 144 // Move node up the dominator tree as high as legal while still beneficial
 145 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
 146   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
 147   assert(OptimizeExpensiveOps, "optimization off?");
 148 
 149   Node* ctl = n->in(0);
 150   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
 151   uint min_dom_depth = dom_depth(earliest);
 152 #ifdef ASSERT
 153   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
 154     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
 155     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
 156   }
 157 #endif
 158   if (dom_depth(ctl) < min_dom_depth) {
 159     return earliest;
 160   }
 161 
 162   while (1) {
 163     Node *next = ctl;
 164     // Moving the node out of a loop on the projection of a If
 165     // confuses loop predication. So once we hit a Loop in a If branch
 166     // that doesn't branch to an UNC, we stop. The code that process
 167     // expensive nodes will notice the loop and skip over it to try to
 168     // move the node further up.
 169     if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
 170       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
 171         break;
 172       }
 173       next = idom(ctl->in(1)->in(0));
 174     } else if (ctl->is_Proj()) {
 175       // We only move it up along a projection if the projection is
 176       // the single control projection for its parent: same code path,
 177       // if it's a If with UNC or fallthrough of a call.
 178       Node* parent_ctl = ctl->in(0);
 179       if (parent_ctl == NULL) {
 180         break;
 181       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
 182         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
 183       } else if (parent_ctl->is_If()) {
 184         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
 185           break;
 186         }
 187         assert(idom(ctl) == parent_ctl, "strange");
 188         next = idom(parent_ctl);
 189       } else if (ctl->is_CatchProj()) {
 190         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
 191           break;
 192         }
 193         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
 194         next = parent_ctl->in(0)->in(0)->in(0);
 195       } else {
 196         // Check if parent control has a single projection (this
 197         // control is the only possible successor of the parent
 198         // control). If so, we can try to move the node above the
 199         // parent control.
 200         int nb_ctl_proj = 0;
 201         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
 202           Node *p = parent_ctl->fast_out(i);
 203           if (p->is_Proj() && p->is_CFG()) {
 204             nb_ctl_proj++;
 205             if (nb_ctl_proj > 1) {
 206               break;
 207             }
 208           }
 209         }
 210 
 211         if (nb_ctl_proj > 1) {
 212           break;
 213         }
 214         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call(), "unexpected node");
 215         assert(idom(ctl) == parent_ctl, "strange");
 216         next = idom(parent_ctl);
 217       }
 218     } else {
 219       next = idom(ctl);
 220     }
 221     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
 222       break;
 223     }
 224     ctl = next;
 225   }
 226 
 227   if (ctl != n->in(0)) {
 228     _igvn.hash_delete(n);
 229     n->set_req(0, ctl);
 230     _igvn.hash_insert(n);
 231   }
 232 
 233   return ctl;
 234 }
 235 
 236 
 237 //------------------------------set_early_ctrl---------------------------------
 238 // Set earliest legal control
 239 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
 240   Node *early = get_early_ctrl(n);
 241 
 242   // Record earliest legal location
 243   set_ctrl(n, early);
 244 }
 245 
 246 //------------------------------set_subtree_ctrl-------------------------------
 247 // set missing _ctrl entries on new nodes
 248 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
 249   // Already set?  Get out.
 250   if( _nodes[n->_idx] ) return;
 251   // Recursively set _nodes array to indicate where the Node goes
 252   uint i;
 253   for( i = 0; i < n->req(); ++i ) {
 254     Node *m = n->in(i);
 255     if( m && m != C->root() )
 256       set_subtree_ctrl( m );
 257   }
 258 
 259   // Fixup self
 260   set_early_ctrl( n );
 261 }
 262 
 263 //------------------------------is_counted_loop--------------------------------
 264 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
 265   PhaseGVN *gvn = &_igvn;
 266 
 267   // Counted loop head must be a good RegionNode with only 3 not NULL
 268   // control input edges: Self, Entry, LoopBack.
 269   if (x->in(LoopNode::Self) == NULL || x->req() != 3 || loop->_irreducible) {
 270     return false;
 271   }
 272   Node *init_control = x->in(LoopNode::EntryControl);
 273   Node *back_control = x->in(LoopNode::LoopBackControl);
 274   if (init_control == NULL || back_control == NULL)    // Partially dead
 275     return false;
 276   // Must also check for TOP when looking for a dead loop
 277   if (init_control->is_top() || back_control->is_top())
 278     return false;
 279 
 280   // Allow funny placement of Safepoint
 281   if (back_control->Opcode() == Op_SafePoint) {
 282     if (UseCountedLoopSafepoints) {
 283       // Leaving the safepoint on the backedge and creating a
 284       // CountedLoop will confuse optimizations. We can't move the
 285       // safepoint around because its jvm state wouldn't match a new
 286       // location. Give up on that loop.
 287       return false;
 288     }
 289     back_control = back_control->in(TypeFunc::Control);
 290   }
 291 
 292   // Controlling test for loop
 293   Node *iftrue = back_control;
 294   uint iftrue_op = iftrue->Opcode();
 295   if (iftrue_op != Op_IfTrue &&
 296       iftrue_op != Op_IfFalse)
 297     // I have a weird back-control.  Probably the loop-exit test is in
 298     // the middle of the loop and I am looking at some trailing control-flow
 299     // merge point.  To fix this I would have to partially peel the loop.
 300     return false; // Obscure back-control
 301 
 302   // Get boolean guarding loop-back test
 303   Node *iff = iftrue->in(0);
 304   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
 305     return false;
 306   BoolNode *test = iff->in(1)->as_Bool();
 307   BoolTest::mask bt = test->_test._test;
 308   float cl_prob = iff->as_If()->_prob;
 309   if (iftrue_op == Op_IfFalse) {
 310     bt = BoolTest(bt).negate();
 311     cl_prob = 1.0 - cl_prob;
 312   }
 313   // Get backedge compare
 314   Node *cmp = test->in(1);
 315   int cmp_op = cmp->Opcode();
 316   if (cmp_op != Op_CmpI)
 317     return false;                // Avoid pointer & float compares
 318 
 319   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 320   Node *incr  = cmp->in(1);
 321   Node *limit = cmp->in(2);
 322 
 323   // ---------
 324   // need 'loop()' test to tell if limit is loop invariant
 325   // ---------
 326 
 327   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
 328     Node *tmp = incr;            // Then reverse order into the CmpI
 329     incr = limit;
 330     limit = tmp;
 331     bt = BoolTest(bt).commute(); // And commute the exit test
 332   }
 333   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
 334     return false;
 335   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 336     return false;
 337 
 338   Node* phi_incr = NULL;
 339   // Trip-counter increment must be commutative & associative.
 340   if (incr->is_Phi()) {
 341     if (incr->as_Phi()->region() != x || incr->req() != 3)
 342       return false; // Not simple trip counter expression
 343     phi_incr = incr;
 344     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 345     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 346       return false;
 347   }
 348 
 349   Node* trunc1 = NULL;
 350   Node* trunc2 = NULL;
 351   const TypeInt* iv_trunc_t = NULL;
 352   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
 353     return false; // Funny increment opcode
 354   }
 355   assert(incr->Opcode() == Op_AddI, "wrong increment code");
 356 
 357   // Get merge point
 358   Node *xphi = incr->in(1);
 359   Node *stride = incr->in(2);
 360   if (!stride->is_Con()) {     // Oops, swap these
 361     if (!xphi->is_Con())       // Is the other guy a constant?
 362       return false;             // Nope, unknown stride, bail out
 363     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
 364     xphi = stride;
 365     stride = tmp;
 366   }
 367   // Stride must be constant
 368   int stride_con = stride->get_int();
 369   if (stride_con == 0)
 370     return false; // missed some peephole opt
 371 
 372   if (!xphi->is_Phi())
 373     return false; // Too much math on the trip counter
 374   if (phi_incr != NULL && phi_incr != xphi)
 375     return false;
 376   PhiNode *phi = xphi->as_Phi();
 377 
 378   // Phi must be of loop header; backedge must wrap to increment
 379   if (phi->region() != x)
 380     return false;
 381   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
 382       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
 383     return false;
 384   }
 385   Node *init_trip = phi->in(LoopNode::EntryControl);
 386 
 387   // If iv trunc type is smaller than int, check for possible wrap.
 388   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
 389     assert(trunc1 != NULL, "must have found some truncation");
 390 
 391     // Get a better type for the phi (filtered thru if's)
 392     const TypeInt* phi_ft = filtered_type(phi);
 393 
 394     // Can iv take on a value that will wrap?
 395     //
 396     // Ensure iv's limit is not within "stride" of the wrap value.
 397     //
 398     // Example for "short" type
 399     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
 400     //    If the stride is +10, then the last value of the induction
 401     //    variable before the increment (phi_ft->_hi) must be
 402     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
 403     //    ensure no truncation occurs after the increment.
 404 
 405     if (stride_con > 0) {
 406       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
 407           iv_trunc_t->_lo > phi_ft->_lo) {
 408         return false;  // truncation may occur
 409       }
 410     } else if (stride_con < 0) {
 411       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
 412           iv_trunc_t->_hi < phi_ft->_hi) {
 413         return false;  // truncation may occur
 414       }
 415     }
 416     // No possibility of wrap so truncation can be discarded
 417     // Promote iv type to Int
 418   } else {
 419     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
 420   }
 421 
 422   // If the condition is inverted and we will be rolling
 423   // through MININT to MAXINT, then bail out.
 424   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 425       // Odd stride
 426       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
 427       // Count down loop rolls through MAXINT
 428       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
 429       // Count up loop rolls through MININT
 430       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
 431     return false; // Bail out
 432   }
 433 
 434   const TypeInt* init_t = gvn->type(init_trip)->is_int();
 435   const TypeInt* limit_t = gvn->type(limit)->is_int();
 436 
 437   if (stride_con > 0) {
 438     jlong init_p = (jlong)init_t->_lo + stride_con;
 439     if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
 440       return false; // cyclic loop or this loop trips only once
 441   } else {
 442     jlong init_p = (jlong)init_t->_hi + stride_con;
 443     if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
 444       return false; // cyclic loop or this loop trips only once
 445   }
 446 
 447   if (phi_incr != NULL) {
 448     // check if there is a possiblity of IV overflowing after the first increment
 449     if (stride_con > 0) {
 450       if (init_t->_hi > max_jint - stride_con) {
 451         return false;
 452       }
 453     } else {
 454       if (init_t->_lo < min_jint - stride_con) {
 455         return false;
 456       }
 457     }
 458   }
 459 
 460   // =================================================
 461   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
 462   //
 463   assert(x->Opcode() == Op_Loop, "regular loops only");
 464   C->print_method(PHASE_BEFORE_CLOOPS, 3);
 465 
 466   Node *hook = new (C) Node(6);
 467 
 468   if (LoopLimitCheck) {
 469 
 470   // ===================================================
 471   // Generate loop limit check to avoid integer overflow
 472   // in cases like next (cyclic loops):
 473   //
 474   // for (i=0; i <= max_jint; i++) {}
 475   // for (i=0; i <  max_jint; i+=2) {}
 476   //
 477   //
 478   // Limit check predicate depends on the loop test:
 479   //
 480   // for(;i != limit; i++)       --> limit <= (max_jint)
 481   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
 482   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
 483   //
 484 
 485   // Check if limit is excluded to do more precise int overflow check.
 486   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
 487   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
 488 
 489   // If compare points directly to the phi we need to adjust
 490   // the compare so that it points to the incr. Limit have
 491   // to be adjusted to keep trip count the same and the
 492   // adjusted limit should be checked for int overflow.
 493   if (phi_incr != NULL) {
 494     stride_m  += stride_con;
 495   }
 496 
 497   if (limit->is_Con()) {
 498     int limit_con = limit->get_int();
 499     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
 500         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
 501       // Bailout: it could be integer overflow.
 502       return false;
 503     }
 504   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
 505              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
 506       // Limit's type may satisfy the condition, for example,
 507       // when it is an array length.
 508   } else {
 509     // Generate loop's limit check.
 510     // Loop limit check predicate should be near the loop.
 511     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
 512     if (!limit_check_proj) {
 513       // The limit check predicate is not generated if this method trapped here before.
 514 #ifdef ASSERT
 515       if (TraceLoopLimitCheck) {
 516         tty->print("missing loop limit check:");
 517         loop->dump_head();
 518         x->dump(1);
 519       }
 520 #endif
 521       return false;
 522     }
 523 
 524     IfNode* check_iff = limit_check_proj->in(0)->as_If();
 525     Node* cmp_limit;
 526     Node* bol;
 527 
 528     if (stride_con > 0) {
 529       cmp_limit = new (C) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
 530       bol = new (C) BoolNode(cmp_limit, BoolTest::le);
 531     } else {
 532       cmp_limit = new (C) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
 533       bol = new (C) BoolNode(cmp_limit, BoolTest::ge);
 534     }
 535     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 536     bol = _igvn.register_new_node_with_optimizer(bol);
 537     set_subtree_ctrl(bol);
 538 
 539     // Replace condition in original predicate but preserve Opaque node
 540     // so that previous predicates could be found.
 541     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
 542            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
 543     Node* opq = check_iff->in(1)->in(1);
 544     _igvn.hash_delete(opq);
 545     opq->set_req(1, bol);
 546     // Update ctrl.
 547     set_ctrl(opq, check_iff->in(0));
 548     set_ctrl(check_iff->in(1), check_iff->in(0));
 549 
 550 #ifndef PRODUCT
 551     // report that the loop predication has been actually performed
 552     // for this loop
 553     if (TraceLoopLimitCheck) {
 554       tty->print_cr("Counted Loop Limit Check generated:");
 555       debug_only( bol->dump(2); )
 556     }
 557 #endif
 558   }
 559 
 560   if (phi_incr != NULL) {
 561     // If compare points directly to the phi we need to adjust
 562     // the compare so that it points to the incr. Limit have
 563     // to be adjusted to keep trip count the same and we
 564     // should avoid int overflow.
 565     //
 566     //   i = init; do {} while(i++ < limit);
 567     // is converted to
 568     //   i = init; do {} while(++i < limit+1);
 569     //
 570     limit = gvn->transform(new (C) AddINode(limit, stride));
 571   }
 572 
 573   // Now we need to canonicalize loop condition.
 574   if (bt == BoolTest::ne) {
 575     assert(stride_con == 1 || stride_con == -1, "simple increment only");
 576     // 'ne' can be replaced with 'lt' only when init < limit.
 577     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
 578       bt = BoolTest::lt;
 579     // 'ne' can be replaced with 'gt' only when init > limit.
 580     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
 581       bt = BoolTest::gt;
 582   }
 583 
 584   if (incl_limit) {
 585     // The limit check guaranties that 'limit <= (max_jint - stride)' so
 586     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
 587     //
 588     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
 589     limit = gvn->transform(new (C) AddINode(limit, one));
 590     if (bt == BoolTest::le)
 591       bt = BoolTest::lt;
 592     else if (bt == BoolTest::ge)
 593       bt = BoolTest::gt;
 594     else
 595       ShouldNotReachHere();
 596   }
 597   set_subtree_ctrl( limit );
 598 
 599   } else { // LoopLimitCheck
 600 
 601   // If compare points to incr, we are ok.  Otherwise the compare
 602   // can directly point to the phi; in this case adjust the compare so that
 603   // it points to the incr by adjusting the limit.
 604   if (cmp->in(1) == phi || cmp->in(2) == phi)
 605     limit = gvn->transform(new (C) AddINode(limit,stride));
 606 
 607   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
 608   // Final value for iterator should be: trip_count * stride + init_trip.
 609   Node *one_p = gvn->intcon( 1);
 610   Node *one_m = gvn->intcon(-1);
 611 
 612   Node *trip_count = NULL;
 613   switch( bt ) {
 614   case BoolTest::eq:
 615     ShouldNotReachHere();
 616   case BoolTest::ne:            // Ahh, the case we desire
 617     if (stride_con == 1)
 618       trip_count = gvn->transform(new (C) SubINode(limit,init_trip));
 619     else if (stride_con == -1)
 620       trip_count = gvn->transform(new (C) SubINode(init_trip,limit));
 621     else
 622       ShouldNotReachHere();
 623     set_subtree_ctrl(trip_count);
 624     //_loop.map(trip_count->_idx,loop(limit));
 625     break;
 626   case BoolTest::le:            // Maybe convert to '<' case
 627     limit = gvn->transform(new (C) AddINode(limit,one_p));
 628     set_subtree_ctrl( limit );
 629     hook->init_req(4, limit);
 630 
 631     bt = BoolTest::lt;
 632     // Make the new limit be in the same loop nest as the old limit
 633     //_loop.map(limit->_idx,limit_loop);
 634     // Fall into next case
 635   case BoolTest::lt: {          // Maybe convert to '!=' case
 636     if (stride_con < 0) // Count down loop rolls through MAXINT
 637       ShouldNotReachHere();
 638     Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
 639     set_subtree_ctrl( range );
 640     hook->init_req(0, range);
 641 
 642     Node *bias  = gvn->transform(new (C) AddINode(range,stride));
 643     set_subtree_ctrl( bias );
 644     hook->init_req(1, bias);
 645 
 646     Node *bias1 = gvn->transform(new (C) AddINode(bias,one_m));
 647     set_subtree_ctrl( bias1 );
 648     hook->init_req(2, bias1);
 649 
 650     trip_count  = gvn->transform(new (C) DivINode(0,bias1,stride));
 651     set_subtree_ctrl( trip_count );
 652     hook->init_req(3, trip_count);
 653     break;
 654   }
 655 
 656   case BoolTest::ge:            // Maybe convert to '>' case
 657     limit = gvn->transform(new (C) AddINode(limit,one_m));
 658     set_subtree_ctrl( limit );
 659     hook->init_req(4 ,limit);
 660 
 661     bt = BoolTest::gt;
 662     // Make the new limit be in the same loop nest as the old limit
 663     //_loop.map(limit->_idx,limit_loop);
 664     // Fall into next case
 665   case BoolTest::gt: {          // Maybe convert to '!=' case
 666     if (stride_con > 0) // count up loop rolls through MININT
 667       ShouldNotReachHere();
 668     Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
 669     set_subtree_ctrl( range );
 670     hook->init_req(0, range);
 671 
 672     Node *bias  = gvn->transform(new (C) AddINode(range,stride));
 673     set_subtree_ctrl( bias );
 674     hook->init_req(1, bias);
 675 
 676     Node *bias1 = gvn->transform(new (C) AddINode(bias,one_p));
 677     set_subtree_ctrl( bias1 );
 678     hook->init_req(2, bias1);
 679 
 680     trip_count  = gvn->transform(new (C) DivINode(0,bias1,stride));
 681     set_subtree_ctrl( trip_count );
 682     hook->init_req(3, trip_count);
 683     break;
 684   }
 685   } // switch( bt )
 686 
 687   Node *span = gvn->transform(new (C) MulINode(trip_count,stride));
 688   set_subtree_ctrl( span );
 689   hook->init_req(5, span);
 690 
 691   limit = gvn->transform(new (C) AddINode(span,init_trip));
 692   set_subtree_ctrl( limit );
 693 
 694   } // LoopLimitCheck
 695 
 696   if (!UseCountedLoopSafepoints) {
 697     // Check for SafePoint on backedge and remove
 698     Node *sfpt = x->in(LoopNode::LoopBackControl);
 699     if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
 700       lazy_replace( sfpt, iftrue );
 701       if (loop->_safepts != NULL) {
 702         loop->_safepts->yank(sfpt);
 703       }
 704       loop->_tail = iftrue;
 705     }
 706   }
 707 
 708   // Build a canonical trip test.
 709   // Clone code, as old values may be in use.
 710   incr = incr->clone();
 711   incr->set_req(1,phi);
 712   incr->set_req(2,stride);
 713   incr = _igvn.register_new_node_with_optimizer(incr);
 714   set_early_ctrl( incr );
 715   _igvn.hash_delete(phi);
 716   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
 717 
 718   // If phi type is more restrictive than Int, raise to
 719   // Int to prevent (almost) infinite recursion in igvn
 720   // which can only handle integer types for constants or minint..maxint.
 721   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
 722     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
 723     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
 724     nphi = _igvn.register_new_node_with_optimizer(nphi);
 725     set_ctrl(nphi, get_ctrl(phi));
 726     _igvn.replace_node(phi, nphi);
 727     phi = nphi->as_Phi();
 728   }
 729   cmp = cmp->clone();
 730   cmp->set_req(1,incr);
 731   cmp->set_req(2,limit);
 732   cmp = _igvn.register_new_node_with_optimizer(cmp);
 733   set_ctrl(cmp, iff->in(0));
 734 
 735   test = test->clone()->as_Bool();
 736   (*(BoolTest*)&test->_test)._test = bt;
 737   test->set_req(1,cmp);
 738   _igvn.register_new_node_with_optimizer(test);
 739   set_ctrl(test, iff->in(0));
 740 
 741   // Replace the old IfNode with a new LoopEndNode
 742   Node *lex = _igvn.register_new_node_with_optimizer(new (C) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
 743   IfNode *le = lex->as_If();
 744   uint dd = dom_depth(iff);
 745   set_idom(le, le->in(0), dd); // Update dominance for loop exit
 746   set_loop(le, loop);
 747 
 748   // Get the loop-exit control
 749   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
 750 
 751   // Need to swap loop-exit and loop-back control?
 752   if (iftrue_op == Op_IfFalse) {
 753     Node *ift2=_igvn.register_new_node_with_optimizer(new (C) IfTrueNode (le));
 754     Node *iff2=_igvn.register_new_node_with_optimizer(new (C) IfFalseNode(le));
 755 
 756     loop->_tail = back_control = ift2;
 757     set_loop(ift2, loop);
 758     set_loop(iff2, get_loop(iffalse));
 759 
 760     // Lazy update of 'get_ctrl' mechanism.
 761     lazy_replace(iffalse, iff2);
 762     lazy_replace(iftrue,  ift2);
 763 
 764     // Swap names
 765     iffalse = iff2;
 766     iftrue  = ift2;
 767   } else {
 768     _igvn.hash_delete(iffalse);
 769     _igvn.hash_delete(iftrue);
 770     iffalse->set_req_X( 0, le, &_igvn );
 771     iftrue ->set_req_X( 0, le, &_igvn );
 772   }
 773 
 774   set_idom(iftrue,  le, dd+1);
 775   set_idom(iffalse, le, dd+1);
 776   assert(iff->outcnt() == 0, "should be dead now");
 777   lazy_replace( iff, le ); // fix 'get_ctrl'
 778 
 779   // Now setup a new CountedLoopNode to replace the existing LoopNode
 780   CountedLoopNode *l = new (C) CountedLoopNode(init_control, back_control);
 781   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
 782   // The following assert is approximately true, and defines the intention
 783   // of can_be_counted_loop.  It fails, however, because phase->type
 784   // is not yet initialized for this loop and its parts.
 785   //assert(l->can_be_counted_loop(this), "sanity");
 786   _igvn.register_new_node_with_optimizer(l);
 787   set_loop(l, loop);
 788   loop->_head = l;
 789   // Fix all data nodes placed at the old loop head.
 790   // Uses the lazy-update mechanism of 'get_ctrl'.
 791   lazy_replace( x, l );
 792   set_idom(l, init_control, dom_depth(x));
 793 
 794   if (!UseCountedLoopSafepoints) {
 795     // Check for immediately preceding SafePoint and remove
 796     Node *sfpt2 = le->in(0);
 797     if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2)) {
 798       lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
 799       if (loop->_safepts != NULL) {
 800         loop->_safepts->yank(sfpt2);
 801       }
 802     }
 803   }
 804 
 805   // Free up intermediate goo
 806   _igvn.remove_dead_node(hook);
 807 
 808 #ifdef ASSERT
 809   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
 810   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
 811 #endif
 812 #ifndef PRODUCT
 813   if (TraceLoopOpts) {
 814     tty->print("Counted      ");
 815     loop->dump_head();
 816   }
 817 #endif
 818 
 819   C->print_method(PHASE_AFTER_CLOOPS, 3);
 820 
 821   return true;
 822 }
 823 
 824 //----------------------exact_limit-------------------------------------------
 825 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
 826   assert(loop->_head->is_CountedLoop(), "");
 827   CountedLoopNode *cl = loop->_head->as_CountedLoop();
 828   assert(cl->is_valid_counted_loop(), "");
 829 
 830   if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
 831       cl->limit()->Opcode() == Op_LoopLimit) {
 832     // Old code has exact limit (it could be incorrect in case of int overflow).
 833     // Loop limit is exact with stride == 1. And loop may already have exact limit.
 834     return cl->limit();
 835   }
 836   Node *limit = NULL;
 837 #ifdef ASSERT
 838   BoolTest::mask bt = cl->loopexit()->test_trip();
 839   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
 840 #endif
 841   if (cl->has_exact_trip_count()) {
 842     // Simple case: loop has constant boundaries.
 843     // Use jlongs to avoid integer overflow.
 844     int stride_con = cl->stride_con();
 845     jlong  init_con = cl->init_trip()->get_int();
 846     jlong limit_con = cl->limit()->get_int();
 847     julong trip_cnt = cl->trip_count();
 848     jlong final_con = init_con + trip_cnt*stride_con;
 849     int final_int = (int)final_con;
 850     // The final value should be in integer range since the loop
 851     // is counted and the limit was checked for overflow.
 852     assert(final_con == (jlong)final_int, "final value should be integer");
 853     limit = _igvn.intcon(final_int);
 854   } else {
 855     // Create new LoopLimit node to get exact limit (final iv value).
 856     limit = new (C) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
 857     register_new_node(limit, cl->in(LoopNode::EntryControl));
 858   }
 859   assert(limit != NULL, "sanity");
 860   return limit;
 861 }
 862 
 863 //------------------------------Ideal------------------------------------------
 864 // Return a node which is more "ideal" than the current node.
 865 // Attempt to convert into a counted-loop.
 866 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 867   if (!can_be_counted_loop(phase)) {
 868     phase->C->set_major_progress();
 869   }
 870   return RegionNode::Ideal(phase, can_reshape);
 871 }
 872 
 873 
 874 //=============================================================================
 875 //------------------------------Ideal------------------------------------------
 876 // Return a node which is more "ideal" than the current node.
 877 // Attempt to convert into a counted-loop.
 878 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 879   return RegionNode::Ideal(phase, can_reshape);
 880 }
 881 
 882 //------------------------------dump_spec--------------------------------------
 883 // Dump special per-node info
 884 #ifndef PRODUCT
 885 void CountedLoopNode::dump_spec(outputStream *st) const {
 886   LoopNode::dump_spec(st);
 887   if (stride_is_con()) {
 888     st->print("stride: %d ",stride_con());
 889   }
 890   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
 891   if (is_main_loop()) st->print("main of N%d", _idx);
 892   if (is_post_loop()) st->print("post of N%d", _main_idx);
 893 }
 894 #endif
 895 
 896 //=============================================================================
 897 int CountedLoopEndNode::stride_con() const {
 898   return stride()->bottom_type()->is_int()->get_con();
 899 }
 900 
 901 //=============================================================================
 902 //------------------------------Value-----------------------------------------
 903 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
 904   const Type* init_t   = phase->type(in(Init));
 905   const Type* limit_t  = phase->type(in(Limit));
 906   const Type* stride_t = phase->type(in(Stride));
 907   // Either input is TOP ==> the result is TOP
 908   if (init_t   == Type::TOP) return Type::TOP;
 909   if (limit_t  == Type::TOP) return Type::TOP;
 910   if (stride_t == Type::TOP) return Type::TOP;
 911 
 912   int stride_con = stride_t->is_int()->get_con();
 913   if (stride_con == 1)
 914     return NULL;  // Identity
 915 
 916   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
 917     // Use jlongs to avoid integer overflow.
 918     jlong init_con   =  init_t->is_int()->get_con();
 919     jlong limit_con  = limit_t->is_int()->get_con();
 920     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
 921     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
 922     jlong final_con  = init_con + stride_con*trip_count;
 923     int final_int = (int)final_con;
 924     // The final value should be in integer range since the loop
 925     // is counted and the limit was checked for overflow.
 926     assert(final_con == (jlong)final_int, "final value should be integer");
 927     return TypeInt::make(final_int);
 928   }
 929 
 930   return bottom_type(); // TypeInt::INT
 931 }
 932 
 933 //------------------------------Ideal------------------------------------------
 934 // Return a node which is more "ideal" than the current node.
 935 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 936   if (phase->type(in(Init))   == Type::TOP ||
 937       phase->type(in(Limit))  == Type::TOP ||
 938       phase->type(in(Stride)) == Type::TOP)
 939     return NULL;  // Dead
 940 
 941   int stride_con = phase->type(in(Stride))->is_int()->get_con();
 942   if (stride_con == 1)
 943     return NULL;  // Identity
 944 
 945   if (in(Init)->is_Con() && in(Limit)->is_Con())
 946     return NULL;  // Value
 947 
 948   // Delay following optimizations until all loop optimizations
 949   // done to keep Ideal graph simple.
 950   if (!can_reshape || phase->C->major_progress())
 951     return NULL;
 952 
 953   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
 954   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
 955   int stride_p;
 956   jlong lim, ini;
 957   julong max;
 958   if (stride_con > 0) {
 959     stride_p = stride_con;
 960     lim = limit_t->_hi;
 961     ini = init_t->_lo;
 962     max = (julong)max_jint;
 963   } else {
 964     stride_p = -stride_con;
 965     lim = init_t->_hi;
 966     ini = limit_t->_lo;
 967     max = (julong)min_jint;
 968   }
 969   julong range = lim - ini + stride_p;
 970   if (range <= max) {
 971     // Convert to integer expression if it is not overflow.
 972     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
 973     Node *range = phase->transform(new (phase->C) SubINode(in(Limit), in(Init)));
 974     Node *bias  = phase->transform(new (phase->C) AddINode(range, stride_m));
 975     Node *trip  = phase->transform(new (phase->C) DivINode(0, bias, in(Stride)));
 976     Node *span  = phase->transform(new (phase->C) MulINode(trip, in(Stride)));
 977     return new (phase->C) AddINode(span, in(Init)); // exact limit
 978   }
 979 
 980   if (is_power_of_2(stride_p) ||                // divisor is 2^n
 981       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
 982     // Convert to long expression to avoid integer overflow
 983     // and let igvn optimizer convert this division.
 984     //
 985     Node*   init   = phase->transform( new (phase->C) ConvI2LNode(in(Init)));
 986     Node*  limit   = phase->transform( new (phase->C) ConvI2LNode(in(Limit)));
 987     Node* stride   = phase->longcon(stride_con);
 988     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
 989 
 990     Node *range = phase->transform(new (phase->C) SubLNode(limit, init));
 991     Node *bias  = phase->transform(new (phase->C) AddLNode(range, stride_m));
 992     Node *span;
 993     if (stride_con > 0 && is_power_of_2(stride_p)) {
 994       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
 995       // and avoid generating rounding for division. Zero trip guard should
 996       // guarantee that init < limit but sometimes the guard is missing and
 997       // we can get situation when init > limit. Note, for the empty loop
 998       // optimization zero trip guard is generated explicitly which leaves
 999       // only RCE predicate where exact limit is used and the predicate
1000       // will simply fail forcing recompilation.
1001       Node* neg_stride   = phase->longcon(-stride_con);
1002       span = phase->transform(new (phase->C) AndLNode(bias, neg_stride));
1003     } else {
1004       Node *trip  = phase->transform(new (phase->C) DivLNode(0, bias, stride));
1005       span = phase->transform(new (phase->C) MulLNode(trip, stride));
1006     }
1007     // Convert back to int
1008     Node *span_int = phase->transform(new (phase->C) ConvL2INode(span));
1009     return new (phase->C) AddINode(span_int, in(Init)); // exact limit
1010   }
1011 
1012   return NULL;    // No progress
1013 }
1014 
1015 //------------------------------Identity---------------------------------------
1016 // If stride == 1 return limit node.
1017 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
1018   int stride_con = phase->type(in(Stride))->is_int()->get_con();
1019   if (stride_con == 1 || stride_con == -1)
1020     return in(Limit);
1021   return this;
1022 }
1023 
1024 //=============================================================================
1025 //----------------------match_incr_with_optional_truncation--------------------
1026 // Match increment with optional truncation:
1027 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
1028 // Return NULL for failure. Success returns the increment node.
1029 Node* CountedLoopNode::match_incr_with_optional_truncation(
1030                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
1031   // Quick cutouts:
1032   if (expr == NULL || expr->req() != 3)  return NULL;
1033 
1034   Node *t1 = NULL;
1035   Node *t2 = NULL;
1036   const TypeInt* trunc_t = TypeInt::INT;
1037   Node* n1 = expr;
1038   int   n1op = n1->Opcode();
1039 
1040   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
1041   if (n1op == Op_AndI &&
1042       n1->in(2)->is_Con() &&
1043       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
1044     // %%% This check should match any mask of 2**K-1.
1045     t1 = n1;
1046     n1 = t1->in(1);
1047     n1op = n1->Opcode();
1048     trunc_t = TypeInt::CHAR;
1049   } else if (n1op == Op_RShiftI &&
1050              n1->in(1) != NULL &&
1051              n1->in(1)->Opcode() == Op_LShiftI &&
1052              n1->in(2) == n1->in(1)->in(2) &&
1053              n1->in(2)->is_Con()) {
1054     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
1055     // %%% This check should match any shift in [1..31].
1056     if (shift == 16 || shift == 8) {
1057       t1 = n1;
1058       t2 = t1->in(1);
1059       n1 = t2->in(1);
1060       n1op = n1->Opcode();
1061       if (shift == 16) {
1062         trunc_t = TypeInt::SHORT;
1063       } else if (shift == 8) {
1064         trunc_t = TypeInt::BYTE;
1065       }
1066     }
1067   }
1068 
1069   // If (maybe after stripping) it is an AddI, we won:
1070   if (n1op == Op_AddI) {
1071     *trunc1 = t1;
1072     *trunc2 = t2;
1073     *trunc_type = trunc_t;
1074     return n1;
1075   }
1076 
1077   // failed
1078   return NULL;
1079 }
1080 
1081 
1082 //------------------------------filtered_type--------------------------------
1083 // Return a type based on condition control flow
1084 // A successful return will be a type that is restricted due
1085 // to a series of dominating if-tests, such as:
1086 //    if (i < 10) {
1087 //       if (i > 0) {
1088 //          here: "i" type is [1..10)
1089 //       }
1090 //    }
1091 // or a control flow merge
1092 //    if (i < 10) {
1093 //       do {
1094 //          phi( , ) -- at top of loop type is [min_int..10)
1095 //         i = ?
1096 //       } while ( i < 10)
1097 //
1098 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
1099   assert(n && n->bottom_type()->is_int(), "must be int");
1100   const TypeInt* filtered_t = NULL;
1101   if (!n->is_Phi()) {
1102     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
1103     filtered_t = filtered_type_from_dominators(n, n_ctrl);
1104 
1105   } else {
1106     Node* phi    = n->as_Phi();
1107     Node* region = phi->in(0);
1108     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
1109     if (region && region != C->top()) {
1110       for (uint i = 1; i < phi->req(); i++) {
1111         Node* val   = phi->in(i);
1112         Node* use_c = region->in(i);
1113         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
1114         if (val_t != NULL) {
1115           if (filtered_t == NULL) {
1116             filtered_t = val_t;
1117           } else {
1118             filtered_t = filtered_t->meet(val_t)->is_int();
1119           }
1120         }
1121       }
1122     }
1123   }
1124   const TypeInt* n_t = _igvn.type(n)->is_int();
1125   if (filtered_t != NULL) {
1126     n_t = n_t->join(filtered_t)->is_int();
1127   }
1128   return n_t;
1129 }
1130 
1131 
1132 //------------------------------filtered_type_from_dominators--------------------------------
1133 // Return a possibly more restrictive type for val based on condition control flow of dominators
1134 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
1135   if (val->is_Con()) {
1136      return val->bottom_type()->is_int();
1137   }
1138   uint if_limit = 10; // Max number of dominating if's visited
1139   const TypeInt* rtn_t = NULL;
1140 
1141   if (use_ctrl && use_ctrl != C->top()) {
1142     Node* val_ctrl = get_ctrl(val);
1143     uint val_dom_depth = dom_depth(val_ctrl);
1144     Node* pred = use_ctrl;
1145     uint if_cnt = 0;
1146     while (if_cnt < if_limit) {
1147       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
1148         if_cnt++;
1149         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
1150         if (if_t != NULL) {
1151           if (rtn_t == NULL) {
1152             rtn_t = if_t;
1153           } else {
1154             rtn_t = rtn_t->join(if_t)->is_int();
1155           }
1156         }
1157       }
1158       pred = idom(pred);
1159       if (pred == NULL || pred == C->top()) {
1160         break;
1161       }
1162       // Stop if going beyond definition block of val
1163       if (dom_depth(pred) < val_dom_depth) {
1164         break;
1165       }
1166     }
1167   }
1168   return rtn_t;
1169 }
1170 
1171 
1172 //------------------------------dump_spec--------------------------------------
1173 // Dump special per-node info
1174 #ifndef PRODUCT
1175 void CountedLoopEndNode::dump_spec(outputStream *st) const {
1176   if( in(TestValue)->is_Bool() ) {
1177     BoolTest bt( test_trip()); // Added this for g++.
1178 
1179     st->print("[");
1180     bt.dump_on(st);
1181     st->print("]");
1182   }
1183   st->print(" ");
1184   IfNode::dump_spec(st);
1185 }
1186 #endif
1187 
1188 //=============================================================================
1189 //------------------------------is_member--------------------------------------
1190 // Is 'l' a member of 'this'?
1191 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
1192   while( l->_nest > _nest ) l = l->_parent;
1193   return l == this;
1194 }
1195 
1196 //------------------------------set_nest---------------------------------------
1197 // Set loop tree nesting depth.  Accumulate _has_call bits.
1198 int IdealLoopTree::set_nest( uint depth ) {
1199   _nest = depth;
1200   int bits = _has_call;
1201   if( _child ) bits |= _child->set_nest(depth+1);
1202   if( bits ) _has_call = 1;
1203   if( _next  ) bits |= _next ->set_nest(depth  );
1204   return bits;
1205 }
1206 
1207 //------------------------------split_fall_in----------------------------------
1208 // Split out multiple fall-in edges from the loop header.  Move them to a
1209 // private RegionNode before the loop.  This becomes the loop landing pad.
1210 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
1211   PhaseIterGVN &igvn = phase->_igvn;
1212   uint i;
1213 
1214   // Make a new RegionNode to be the landing pad.
1215   Node *landing_pad = new (phase->C) RegionNode( fall_in_cnt+1 );
1216   phase->set_loop(landing_pad,_parent);
1217   // Gather all the fall-in control paths into the landing pad
1218   uint icnt = fall_in_cnt;
1219   uint oreq = _head->req();
1220   for( i = oreq-1; i>0; i-- )
1221     if( !phase->is_member( this, _head->in(i) ) )
1222       landing_pad->set_req(icnt--,_head->in(i));
1223 
1224   // Peel off PhiNode edges as well
1225   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1226     Node *oj = _head->fast_out(j);
1227     if( oj->is_Phi() ) {
1228       PhiNode* old_phi = oj->as_Phi();
1229       assert( old_phi->region() == _head, "" );
1230       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
1231       Node *p = PhiNode::make_blank(landing_pad, old_phi);
1232       uint icnt = fall_in_cnt;
1233       for( i = oreq-1; i>0; i-- ) {
1234         if( !phase->is_member( this, _head->in(i) ) ) {
1235           p->init_req(icnt--, old_phi->in(i));
1236           // Go ahead and clean out old edges from old phi
1237           old_phi->del_req(i);
1238         }
1239       }
1240       // Search for CSE's here, because ZKM.jar does a lot of
1241       // loop hackery and we need to be a little incremental
1242       // with the CSE to avoid O(N^2) node blow-up.
1243       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
1244       if( p2 ) {                // Found CSE
1245         p->destruct();          // Recover useless new node
1246         p = p2;                 // Use old node
1247       } else {
1248         igvn.register_new_node_with_optimizer(p, old_phi);
1249       }
1250       // Make old Phi refer to new Phi.
1251       old_phi->add_req(p);
1252       // Check for the special case of making the old phi useless and
1253       // disappear it.  In JavaGrande I have a case where this useless
1254       // Phi is the loop limit and prevents recognizing a CountedLoop
1255       // which in turn prevents removing an empty loop.
1256       Node *id_old_phi = old_phi->Identity( &igvn );
1257       if( id_old_phi != old_phi ) { // Found a simple identity?
1258         // Note that I cannot call 'replace_node' here, because
1259         // that will yank the edge from old_phi to the Region and
1260         // I'm mid-iteration over the Region's uses.
1261         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
1262           Node* use = old_phi->last_out(i);
1263           igvn.rehash_node_delayed(use);
1264           uint uses_found = 0;
1265           for (uint j = 0; j < use->len(); j++) {
1266             if (use->in(j) == old_phi) {
1267               if (j < use->req()) use->set_req (j, id_old_phi);
1268               else                use->set_prec(j, id_old_phi);
1269               uses_found++;
1270             }
1271           }
1272           i -= uses_found;    // we deleted 1 or more copies of this edge
1273         }
1274       }
1275       igvn._worklist.push(old_phi);
1276     }
1277   }
1278   // Finally clean out the fall-in edges from the RegionNode
1279   for( i = oreq-1; i>0; i-- ) {
1280     if( !phase->is_member( this, _head->in(i) ) ) {
1281       _head->del_req(i);
1282     }
1283   }
1284   // Transform landing pad
1285   igvn.register_new_node_with_optimizer(landing_pad, _head);
1286   // Insert landing pad into the header
1287   _head->add_req(landing_pad);
1288 }
1289 
1290 //------------------------------split_outer_loop-------------------------------
1291 // Split out the outermost loop from this shared header.
1292 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
1293   PhaseIterGVN &igvn = phase->_igvn;
1294 
1295   // Find index of outermost loop; it should also be my tail.
1296   uint outer_idx = 1;
1297   while( _head->in(outer_idx) != _tail ) outer_idx++;
1298 
1299   // Make a LoopNode for the outermost loop.
1300   Node *ctl = _head->in(LoopNode::EntryControl);
1301   Node *outer = new (phase->C) LoopNode( ctl, _head->in(outer_idx) );
1302   outer = igvn.register_new_node_with_optimizer(outer, _head);
1303   phase->set_created_loop_node();
1304 
1305   // Outermost loop falls into '_head' loop
1306   _head->set_req(LoopNode::EntryControl, outer);
1307   _head->del_req(outer_idx);
1308   // Split all the Phis up between '_head' loop and 'outer' loop.
1309   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1310     Node *out = _head->fast_out(j);
1311     if( out->is_Phi() ) {
1312       PhiNode *old_phi = out->as_Phi();
1313       assert( old_phi->region() == _head, "" );
1314       Node *phi = PhiNode::make_blank(outer, old_phi);
1315       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
1316       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
1317       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
1318       // Make old Phi point to new Phi on the fall-in path
1319       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
1320       old_phi->del_req(outer_idx);
1321     }
1322   }
1323 
1324   // Use the new loop head instead of the old shared one
1325   _head = outer;
1326   phase->set_loop(_head, this);
1327 }
1328 
1329 //------------------------------fix_parent-------------------------------------
1330 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
1331   loop->_parent = parent;
1332   if( loop->_child ) fix_parent( loop->_child, loop   );
1333   if( loop->_next  ) fix_parent( loop->_next , parent );
1334 }
1335 
1336 //------------------------------estimate_path_freq-----------------------------
1337 static float estimate_path_freq( Node *n ) {
1338   // Try to extract some path frequency info
1339   IfNode *iff;
1340   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
1341     uint nop = n->Opcode();
1342     if( nop == Op_SafePoint ) {   // Skip any safepoint
1343       n = n->in(0);
1344       continue;
1345     }
1346     if( nop == Op_CatchProj ) {   // Get count from a prior call
1347       // Assume call does not always throw exceptions: means the call-site
1348       // count is also the frequency of the fall-through path.
1349       assert( n->is_CatchProj(), "" );
1350       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
1351         return 0.0f;            // Assume call exception path is rare
1352       Node *call = n->in(0)->in(0)->in(0);
1353       assert( call->is_Call(), "expect a call here" );
1354       const JVMState *jvms = ((CallNode*)call)->jvms();
1355       ciMethodData* methodData = jvms->method()->method_data();
1356       if (!methodData->is_mature())  return 0.0f; // No call-site data
1357       ciProfileData* data = methodData->bci_to_data(jvms->bci());
1358       if ((data == NULL) || !data->is_CounterData()) {
1359         // no call profile available, try call's control input
1360         n = n->in(0);
1361         continue;
1362       }
1363       return data->as_CounterData()->count()/FreqCountInvocations;
1364     }
1365     // See if there's a gating IF test
1366     Node *n_c = n->in(0);
1367     if( !n_c->is_If() ) break;       // No estimate available
1368     iff = n_c->as_If();
1369     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
1370       // Compute how much count comes on this path
1371       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
1372     // Have no count info.  Skip dull uncommon-trap like branches.
1373     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
1374         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
1375       break;
1376     // Skip through never-taken branch; look for a real loop exit.
1377     n = iff->in(0);
1378   }
1379   return 0.0f;                  // No estimate available
1380 }
1381 
1382 //------------------------------merge_many_backedges---------------------------
1383 // Merge all the backedges from the shared header into a private Region.
1384 // Feed that region as the one backedge to this loop.
1385 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
1386   uint i;
1387 
1388   // Scan for the top 2 hottest backedges
1389   float hotcnt = 0.0f;
1390   float warmcnt = 0.0f;
1391   uint hot_idx = 0;
1392   // Loop starts at 2 because slot 1 is the fall-in path
1393   for( i = 2; i < _head->req(); i++ ) {
1394     float cnt = estimate_path_freq(_head->in(i));
1395     if( cnt > hotcnt ) {       // Grab hottest path
1396       warmcnt = hotcnt;
1397       hotcnt = cnt;
1398       hot_idx = i;
1399     } else if( cnt > warmcnt ) { // And 2nd hottest path
1400       warmcnt = cnt;
1401     }
1402   }
1403 
1404   // See if the hottest backedge is worthy of being an inner loop
1405   // by being much hotter than the next hottest backedge.
1406   if( hotcnt <= 0.0001 ||
1407       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
1408 
1409   // Peel out the backedges into a private merge point; peel
1410   // them all except optionally hot_idx.
1411   PhaseIterGVN &igvn = phase->_igvn;
1412 
1413   Node *hot_tail = NULL;
1414   // Make a Region for the merge point
1415   Node *r = new (phase->C) RegionNode(1);
1416   for( i = 2; i < _head->req(); i++ ) {
1417     if( i != hot_idx )
1418       r->add_req( _head->in(i) );
1419     else hot_tail = _head->in(i);
1420   }
1421   igvn.register_new_node_with_optimizer(r, _head);
1422   // Plug region into end of loop _head, followed by hot_tail
1423   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
1424   _head->set_req(2, r);
1425   if( hot_idx ) _head->add_req(hot_tail);
1426 
1427   // Split all the Phis up between '_head' loop and the Region 'r'
1428   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1429     Node *out = _head->fast_out(j);
1430     if( out->is_Phi() ) {
1431       PhiNode* n = out->as_Phi();
1432       igvn.hash_delete(n);      // Delete from hash before hacking edges
1433       Node *hot_phi = NULL;
1434       Node *phi = new (phase->C) PhiNode(r, n->type(), n->adr_type());
1435       // Check all inputs for the ones to peel out
1436       uint j = 1;
1437       for( uint i = 2; i < n->req(); i++ ) {
1438         if( i != hot_idx )
1439           phi->set_req( j++, n->in(i) );
1440         else hot_phi = n->in(i);
1441       }
1442       // Register the phi but do not transform until whole place transforms
1443       igvn.register_new_node_with_optimizer(phi, n);
1444       // Add the merge phi to the old Phi
1445       while( n->req() > 3 ) n->del_req( n->req()-1 );
1446       n->set_req(2, phi);
1447       if( hot_idx ) n->add_req(hot_phi);
1448     }
1449   }
1450 
1451 
1452   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
1453   // of self loop tree.  Turn self into a loop headed by _head and with
1454   // tail being the new merge point.
1455   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
1456   phase->set_loop(_tail,ilt);   // Adjust tail
1457   _tail = r;                    // Self's tail is new merge point
1458   phase->set_loop(r,this);
1459   ilt->_child = _child;         // New guy has my children
1460   _child = ilt;                 // Self has new guy as only child
1461   ilt->_parent = this;          // new guy has self for parent
1462   ilt->_nest = _nest;           // Same nesting depth (for now)
1463 
1464   // Starting with 'ilt', look for child loop trees using the same shared
1465   // header.  Flatten these out; they will no longer be loops in the end.
1466   IdealLoopTree **pilt = &_child;
1467   while( ilt ) {
1468     if( ilt->_head == _head ) {
1469       uint i;
1470       for( i = 2; i < _head->req(); i++ )
1471         if( _head->in(i) == ilt->_tail )
1472           break;                // Still a loop
1473       if( i == _head->req() ) { // No longer a loop
1474         // Flatten ilt.  Hang ilt's "_next" list from the end of
1475         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
1476         IdealLoopTree **cp = &ilt->_child;
1477         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
1478         *cp = ilt->_next;       // Hang next list at end of child list
1479         *pilt = ilt->_child;    // Move child up to replace ilt
1480         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
1481         ilt = ilt->_child;      // Repeat using new ilt
1482         continue;               // do not advance over ilt->_child
1483       }
1484       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
1485       phase->set_loop(_head,ilt);
1486     }
1487     pilt = &ilt->_child;        // Advance to next
1488     ilt = *pilt;
1489   }
1490 
1491   if( _child ) fix_parent( _child, this );
1492 }
1493 
1494 //------------------------------beautify_loops---------------------------------
1495 // Split shared headers and insert loop landing pads.
1496 // Insert a LoopNode to replace the RegionNode.
1497 // Return TRUE if loop tree is structurally changed.
1498 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
1499   bool result = false;
1500   // Cache parts in locals for easy
1501   PhaseIterGVN &igvn = phase->_igvn;
1502 
1503   igvn.hash_delete(_head);      // Yank from hash before hacking edges
1504 
1505   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
1506   int fall_in_cnt = 0;
1507   for( uint i = 1; i < _head->req(); i++ )
1508     if( !phase->is_member( this, _head->in(i) ) )
1509       fall_in_cnt++;
1510   assert( fall_in_cnt, "at least 1 fall-in path" );
1511   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
1512     split_fall_in( phase, fall_in_cnt );
1513 
1514   // Swap inputs to the _head and all Phis to move the fall-in edge to
1515   // the left.
1516   fall_in_cnt = 1;
1517   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
1518     fall_in_cnt++;
1519   if( fall_in_cnt > 1 ) {
1520     // Since I am just swapping inputs I do not need to update def-use info
1521     Node *tmp = _head->in(1);
1522     _head->set_req( 1, _head->in(fall_in_cnt) );
1523     _head->set_req( fall_in_cnt, tmp );
1524     // Swap also all Phis
1525     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
1526       Node* phi = _head->fast_out(i);
1527       if( phi->is_Phi() ) {
1528         igvn.hash_delete(phi); // Yank from hash before hacking edges
1529         tmp = phi->in(1);
1530         phi->set_req( 1, phi->in(fall_in_cnt) );
1531         phi->set_req( fall_in_cnt, tmp );
1532       }
1533     }
1534   }
1535   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
1536   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
1537 
1538   // If I am a shared header (multiple backedges), peel off the many
1539   // backedges into a private merge point and use the merge point as
1540   // the one true backedge.
1541   if( _head->req() > 3 ) {
1542     // Merge the many backedges into a single backedge but leave
1543     // the hottest backedge as separate edge for the following peel.
1544     merge_many_backedges( phase );
1545     result = true;
1546   }
1547 
1548   // If I have one hot backedge, peel off myself loop.
1549   // I better be the outermost loop.
1550   if (_head->req() > 3 && !_irreducible) {
1551     split_outer_loop( phase );
1552     result = true;
1553 
1554   } else if (!_head->is_Loop() && !_irreducible) {
1555     // Make a new LoopNode to replace the old loop head
1556     Node *l = new (phase->C) LoopNode( _head->in(1), _head->in(2) );
1557     l = igvn.register_new_node_with_optimizer(l, _head);
1558     phase->set_created_loop_node();
1559     // Go ahead and replace _head
1560     phase->_igvn.replace_node( _head, l );
1561     _head = l;
1562     phase->set_loop(_head, this);
1563   }
1564 
1565   // Now recursively beautify nested loops
1566   if( _child ) result |= _child->beautify_loops( phase );
1567   if( _next  ) result |= _next ->beautify_loops( phase );
1568   return result;
1569 }
1570 
1571 //------------------------------allpaths_check_safepts----------------------------
1572 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
1573 // encountered.  Helper for check_safepts.
1574 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
1575   assert(stack.size() == 0, "empty stack");
1576   stack.push(_tail);
1577   visited.Clear();
1578   visited.set(_tail->_idx);
1579   while (stack.size() > 0) {
1580     Node* n = stack.pop();
1581     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1582       // Terminate this path
1583     } else if (n->Opcode() == Op_SafePoint) {
1584       if (_phase->get_loop(n) != this) {
1585         if (_required_safept == NULL) _required_safept = new Node_List();
1586         _required_safept->push(n);  // save the one closest to the tail
1587       }
1588       // Terminate this path
1589     } else {
1590       uint start = n->is_Region() ? 1 : 0;
1591       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
1592       for (uint i = start; i < end; i++) {
1593         Node* in = n->in(i);
1594         assert(in->is_CFG(), "must be");
1595         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
1596           stack.push(in);
1597         }
1598       }
1599     }
1600   }
1601 }
1602 
1603 //------------------------------check_safepts----------------------------
1604 // Given dominators, try to find loops with calls that must always be
1605 // executed (call dominates loop tail).  These loops do not need non-call
1606 // safepoints (ncsfpt).
1607 //
1608 // A complication is that a safepoint in a inner loop may be needed
1609 // by an outer loop. In the following, the inner loop sees it has a
1610 // call (block 3) on every path from the head (block 2) to the
1611 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
1612 // in block 2, _but_ this leaves the outer loop without a safepoint.
1613 //
1614 //          entry  0
1615 //                 |
1616 //                 v
1617 // outer 1,2    +->1
1618 //              |  |
1619 //              |  v
1620 //              |  2<---+  ncsfpt in 2
1621 //              |_/|\   |
1622 //                 | v  |
1623 // inner 2,3      /  3  |  call in 3
1624 //               /   |  |
1625 //              v    +--+
1626 //        exit  4
1627 //
1628 //
1629 // This method creates a list (_required_safept) of ncsfpt nodes that must
1630 // be protected is created for each loop. When a ncsfpt maybe deleted, it
1631 // is first looked for in the lists for the outer loops of the current loop.
1632 //
1633 // The insights into the problem:
1634 //  A) counted loops are okay
1635 //  B) innermost loops are okay (only an inner loop can delete
1636 //     a ncsfpt needed by an outer loop)
1637 //  C) a loop is immune from an inner loop deleting a safepoint
1638 //     if the loop has a call on the idom-path
1639 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
1640 //     idom-path that is not in a nested loop
1641 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
1642 //     loop needs to be prevented from deletion by an inner loop
1643 //
1644 // There are two analyses:
1645 //  1) The first, and cheaper one, scans the loop body from
1646 //     tail to head following the idom (immediate dominator)
1647 //     chain, looking for the cases (C,D,E) above.
1648 //     Since inner loops are scanned before outer loops, there is summary
1649 //     information about inner loops.  Inner loops can be skipped over
1650 //     when the tail of an inner loop is encountered.
1651 //
1652 //  2) The second, invoked if the first fails to find a call or ncsfpt on
1653 //     the idom path (which is rare), scans all predecessor control paths
1654 //     from the tail to the head, terminating a path when a call or sfpt
1655 //     is encountered, to find the ncsfpt's that are closest to the tail.
1656 //
1657 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
1658   // Bottom up traversal
1659   IdealLoopTree* ch = _child;
1660   if (_child) _child->check_safepts(visited, stack);
1661   if (_next)  _next ->check_safepts(visited, stack);
1662 
1663   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
1664     bool  has_call         = false; // call on dom-path
1665     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
1666     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
1667     // Scan the dom-path nodes from tail to head
1668     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
1669       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1670         has_call = true;
1671         _has_sfpt = 1;          // Then no need for a safept!
1672         break;
1673       } else if (n->Opcode() == Op_SafePoint) {
1674         if (_phase->get_loop(n) == this) {
1675           has_local_ncsfpt = true;
1676           break;
1677         }
1678         if (nonlocal_ncsfpt == NULL) {
1679           nonlocal_ncsfpt = n; // save the one closest to the tail
1680         }
1681       } else {
1682         IdealLoopTree* nlpt = _phase->get_loop(n);
1683         if (this != nlpt) {
1684           // If at an inner loop tail, see if the inner loop has already
1685           // recorded seeing a call on the dom-path (and stop.)  If not,
1686           // jump to the head of the inner loop.
1687           assert(is_member(nlpt), "nested loop");
1688           Node* tail = nlpt->_tail;
1689           if (tail->in(0)->is_If()) tail = tail->in(0);
1690           if (n == tail) {
1691             // If inner loop has call on dom-path, so does outer loop
1692             if (nlpt->_has_sfpt) {
1693               has_call = true;
1694               _has_sfpt = 1;
1695               break;
1696             }
1697             // Skip to head of inner loop
1698             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
1699             n = nlpt->_head;
1700           }
1701         }
1702       }
1703     }
1704     // Record safept's that this loop needs preserved when an
1705     // inner loop attempts to delete it's safepoints.
1706     if (_child != NULL && !has_call && !has_local_ncsfpt) {
1707       if (nonlocal_ncsfpt != NULL) {
1708         if (_required_safept == NULL) _required_safept = new Node_List();
1709         _required_safept->push(nonlocal_ncsfpt);
1710       } else {
1711         // Failed to find a suitable safept on the dom-path.  Now use
1712         // an all paths walk from tail to head, looking for safepoints to preserve.
1713         allpaths_check_safepts(visited, stack);
1714       }
1715     }
1716   }
1717 }
1718 
1719 //---------------------------is_deleteable_safept----------------------------
1720 // Is safept not required by an outer loop?
1721 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
1722   assert(sfpt->Opcode() == Op_SafePoint, "");
1723   IdealLoopTree* lp = get_loop(sfpt)->_parent;
1724   while (lp != NULL) {
1725     Node_List* sfpts = lp->_required_safept;
1726     if (sfpts != NULL) {
1727       for (uint i = 0; i < sfpts->size(); i++) {
1728         if (sfpt == sfpts->at(i))
1729           return false;
1730       }
1731     }
1732     lp = lp->_parent;
1733   }
1734   return true;
1735 }
1736 
1737 //---------------------------replace_parallel_iv-------------------------------
1738 // Replace parallel induction variable (parallel to trip counter)
1739 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
1740   assert(loop->_head->is_CountedLoop(), "");
1741   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1742   if (!cl->is_valid_counted_loop())
1743     return;         // skip malformed counted loop
1744   Node *incr = cl->incr();
1745   if (incr == NULL)
1746     return;         // Dead loop?
1747   Node *init = cl->init_trip();
1748   Node *phi  = cl->phi();
1749   int stride_con = cl->stride_con();
1750 
1751   // Visit all children, looking for Phis
1752   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
1753     Node *out = cl->out(i);
1754     // Look for other phis (secondary IVs). Skip dead ones
1755     if (!out->is_Phi() || out == phi || !has_node(out))
1756       continue;
1757     PhiNode* phi2 = out->as_Phi();
1758     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
1759     // Look for induction variables of the form:  X += constant
1760     if (phi2->region() != loop->_head ||
1761         incr2->req() != 3 ||
1762         incr2->in(1) != phi2 ||
1763         incr2 == incr ||
1764         incr2->Opcode() != Op_AddI ||
1765         !incr2->in(2)->is_Con())
1766       continue;
1767 
1768     // Check for parallel induction variable (parallel to trip counter)
1769     // via an affine function.  In particular, count-down loops with
1770     // count-up array indices are common. We only RCE references off
1771     // the trip-counter, so we need to convert all these to trip-counter
1772     // expressions.
1773     Node *init2 = phi2->in( LoopNode::EntryControl );
1774     int stride_con2 = incr2->in(2)->get_int();
1775 
1776     // The ratio of the two strides cannot be represented as an int
1777     // if stride_con2 is min_int and stride_con is -1.
1778     if (stride_con2 == min_jint && stride_con == -1) {
1779       continue;
1780     }
1781 
1782     // The general case here gets a little tricky.  We want to find the
1783     // GCD of all possible parallel IV's and make a new IV using this
1784     // GCD for the loop.  Then all possible IVs are simple multiples of
1785     // the GCD.  In practice, this will cover very few extra loops.
1786     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
1787     // where +/-1 is the common case, but other integer multiples are
1788     // also easy to handle.
1789     int ratio_con = stride_con2/stride_con;
1790 
1791     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
1792 #ifndef PRODUCT
1793       if (TraceLoopOpts) {
1794         tty->print("Parallel IV: %d ", phi2->_idx);
1795         loop->dump_head();
1796       }
1797 #endif
1798       // Convert to using the trip counter.  The parallel induction
1799       // variable differs from the trip counter by a loop-invariant
1800       // amount, the difference between their respective initial values.
1801       // It is scaled by the 'ratio_con'.
1802       Node* ratio = _igvn.intcon(ratio_con);
1803       set_ctrl(ratio, C->root());
1804       Node* ratio_init = new (C) MulINode(init, ratio);
1805       _igvn.register_new_node_with_optimizer(ratio_init, init);
1806       set_early_ctrl(ratio_init);
1807       Node* diff = new (C) SubINode(init2, ratio_init);
1808       _igvn.register_new_node_with_optimizer(diff, init2);
1809       set_early_ctrl(diff);
1810       Node* ratio_idx = new (C) MulINode(phi, ratio);
1811       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
1812       set_ctrl(ratio_idx, cl);
1813       Node* add = new (C) AddINode(ratio_idx, diff);
1814       _igvn.register_new_node_with_optimizer(add);
1815       set_ctrl(add, cl);
1816       _igvn.replace_node( phi2, add );
1817       // Sometimes an induction variable is unused
1818       if (add->outcnt() == 0) {
1819         _igvn.remove_dead_node(add);
1820       }
1821       --i; // deleted this phi; rescan starting with next position
1822       continue;
1823     }
1824   }
1825 }
1826 
1827 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
1828   Node* keep = NULL;
1829   if (keep_one) {
1830     // Look for a safepoint on the idom-path.
1831     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
1832       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
1833         keep = i;
1834         break; // Found one
1835       }
1836     }
1837   }
1838 
1839   // Don't remove any safepoints if it is requested to keep a single safepoint and
1840   // no safepoint was found on idom-path. It is not safe to remove any safepoint
1841   // in this case since there's no safepoint dominating all paths in the loop body.
1842   bool prune = !keep_one || keep != NULL;
1843 
1844   // Delete other safepoints in this loop.
1845   Node_List* sfpts = _safepts;
1846   if (prune && sfpts != NULL) {
1847     assert(keep == NULL || keep->Opcode() == Op_SafePoint, "not safepoint");
1848     for (uint i = 0; i < sfpts->size(); i++) {
1849       Node* n = sfpts->at(i);
1850       assert(phase->get_loop(n) == this, "");
1851       if (n != keep && phase->is_deleteable_safept(n)) {
1852         phase->lazy_replace(n, n->in(TypeFunc::Control));
1853       }
1854     }
1855   }
1856 }
1857 
1858 //------------------------------counted_loop-----------------------------------
1859 // Convert to counted loops where possible
1860 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
1861 
1862   // For grins, set the inner-loop flag here
1863   if (!_child) {
1864     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
1865   }
1866 
1867   if (_head->is_CountedLoop() ||
1868       phase->is_counted_loop(_head, this)) {
1869 
1870     if (!UseCountedLoopSafepoints) {
1871       // Indicate we do not need a safepoint here
1872       _has_sfpt = 1;
1873     }
1874 
1875     // Remove safepoints
1876     bool keep_one_sfpt = !(_has_call || _has_sfpt);
1877     remove_safepoints(phase, keep_one_sfpt);
1878 
1879     // Look for induction variables
1880     phase->replace_parallel_iv(this);
1881 
1882   } else if (_parent != NULL && !_irreducible) {
1883     // Not a counted loop. Keep one safepoint.
1884     bool keep_one_sfpt = true;
1885     remove_safepoints(phase, keep_one_sfpt);
1886   }
1887 
1888   // Recursively
1889   if (_child) _child->counted_loop( phase );
1890   if (_next)  _next ->counted_loop( phase );
1891 }
1892 
1893 #ifndef PRODUCT
1894 //------------------------------dump_head--------------------------------------
1895 // Dump 1 liner for loop header info
1896 void IdealLoopTree::dump_head( ) const {
1897   for (uint i=0; i<_nest; i++)
1898     tty->print("  ");
1899   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
1900   if (_irreducible) tty->print(" IRREDUCIBLE");
1901   Node* entry = _head->in(LoopNode::EntryControl);
1902   if (LoopLimitCheck) {
1903     Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
1904     if (predicate != NULL ) {
1905       tty->print(" limit_check");
1906       entry = entry->in(0)->in(0);
1907     }
1908   }
1909   if (UseLoopPredicate) {
1910     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
1911     if (entry != NULL) {
1912       tty->print(" predicated");
1913     }
1914   }
1915   if (_head->is_CountedLoop()) {
1916     CountedLoopNode *cl = _head->as_CountedLoop();
1917     tty->print(" counted");
1918 
1919     Node* init_n = cl->init_trip();
1920     if (init_n  != NULL &&  init_n->is_Con())
1921       tty->print(" [%d,", cl->init_trip()->get_int());
1922     else
1923       tty->print(" [int,");
1924     Node* limit_n = cl->limit();
1925     if (limit_n  != NULL &&  limit_n->is_Con())
1926       tty->print("%d),", cl->limit()->get_int());
1927     else
1928       tty->print("int),");
1929     int stride_con  = cl->stride_con();
1930     if (stride_con > 0) tty->print("+");
1931     tty->print("%d", stride_con);
1932 
1933     tty->print(" (%d iters) ", (int)cl->profile_trip_cnt());
1934 
1935     if (cl->is_pre_loop ()) tty->print(" pre" );
1936     if (cl->is_main_loop()) tty->print(" main");
1937     if (cl->is_post_loop()) tty->print(" post");
1938   }
1939   if (_has_call) tty->print(" has_call");
1940   if (_has_sfpt) tty->print(" has_sfpt");
1941   if (_rce_candidate) tty->print(" rce");
1942   if (_safepts != NULL && _safepts->size() > 0) {
1943     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
1944   }
1945   if (_required_safept != NULL && _required_safept->size() > 0) {
1946     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
1947   }
1948   tty->cr();
1949 }
1950 
1951 //------------------------------dump-------------------------------------------
1952 // Dump loops by loop tree
1953 void IdealLoopTree::dump( ) const {
1954   dump_head();
1955   if (_child) _child->dump();
1956   if (_next)  _next ->dump();
1957 }
1958 
1959 #endif
1960 
1961 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
1962   if (loop == root) {
1963     if (loop->_child != NULL) {
1964       log->begin_head("loop_tree");
1965       log->end_head();
1966       if( loop->_child ) log_loop_tree(root, loop->_child, log);
1967       log->tail("loop_tree");
1968       assert(loop->_next == NULL, "what?");
1969     }
1970   } else {
1971     Node* head = loop->_head;
1972     log->begin_head("loop");
1973     log->print(" idx='%d' ", head->_idx);
1974     if (loop->_irreducible) log->print("irreducible='1' ");
1975     if (head->is_Loop()) {
1976       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
1977       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
1978     }
1979     if (head->is_CountedLoop()) {
1980       CountedLoopNode* cl = head->as_CountedLoop();
1981       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
1982       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
1983       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
1984     }
1985     log->end_head();
1986     if( loop->_child ) log_loop_tree(root, loop->_child, log);
1987     log->tail("loop");
1988     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
1989   }
1990 }
1991 
1992 //---------------------collect_potentially_useful_predicates-----------------------
1993 // Helper function to collect potentially useful predicates to prevent them from
1994 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
1995 void PhaseIdealLoop::collect_potentially_useful_predicates(
1996                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
1997   if (loop->_child) { // child
1998     collect_potentially_useful_predicates(loop->_child, useful_predicates);
1999   }
2000 
2001   // self (only loops that we can apply loop predication may use their predicates)
2002   if (loop->_head->is_Loop() &&
2003       !loop->_irreducible    &&
2004       !loop->tail()->is_top()) {
2005     LoopNode* lpn = loop->_head->as_Loop();
2006     Node* entry = lpn->in(LoopNode::EntryControl);
2007     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
2008     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
2009       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
2010       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2011       entry = entry->in(0)->in(0);
2012     }
2013     predicate_proj = find_predicate(entry); // Predicate
2014     if (predicate_proj != NULL ) {
2015       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2016     }
2017   }
2018 
2019   if (loop->_next) { // sibling
2020     collect_potentially_useful_predicates(loop->_next, useful_predicates);
2021   }
2022 }
2023 
2024 //------------------------eliminate_useless_predicates-----------------------------
2025 // Eliminate all inserted predicates if they could not be used by loop predication.
2026 // Note: it will also eliminates loop limits check predicate since it also uses
2027 // Opaque1 node (see Parse::add_predicate()).
2028 void PhaseIdealLoop::eliminate_useless_predicates() {
2029   if (C->predicate_count() == 0)
2030     return; // no predicate left
2031 
2032   Unique_Node_List useful_predicates; // to store useful predicates
2033   if (C->has_loops()) {
2034     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
2035   }
2036 
2037   for (int i = C->predicate_count(); i > 0; i--) {
2038      Node * n = C->predicate_opaque1_node(i-1);
2039      assert(n->Opcode() == Op_Opaque1, "must be");
2040      if (!useful_predicates.member(n)) { // not in the useful list
2041        _igvn.replace_node(n, n->in(1));
2042      }
2043   }
2044 }
2045 
2046 //------------------------process_expensive_nodes-----------------------------
2047 // Expensive nodes have their control input set to prevent the GVN
2048 // from commoning them and as a result forcing the resulting node to
2049 // be in a more frequent path. Use CFG information here, to change the
2050 // control inputs so that some expensive nodes can be commoned while
2051 // not executed more frequently.
2052 bool PhaseIdealLoop::process_expensive_nodes() {
2053   assert(OptimizeExpensiveOps, "optimization off?");
2054 
2055   // Sort nodes to bring similar nodes together
2056   C->sort_expensive_nodes();
2057 
2058   bool progress = false;
2059 
2060   for (int i = 0; i < C->expensive_count(); ) {
2061     Node* n = C->expensive_node(i);
2062     int start = i;
2063     // Find nodes similar to n
2064     i++;
2065     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
2066     int end = i;
2067     // And compare them two by two
2068     for (int j = start; j < end; j++) {
2069       Node* n1 = C->expensive_node(j);
2070       if (is_node_unreachable(n1)) {
2071         continue;
2072       }
2073       for (int k = j+1; k < end; k++) {
2074         Node* n2 = C->expensive_node(k);
2075         if (is_node_unreachable(n2)) {
2076           continue;
2077         }
2078 
2079         assert(n1 != n2, "should be pair of nodes");
2080 
2081         Node* c1 = n1->in(0);
2082         Node* c2 = n2->in(0);
2083 
2084         Node* parent_c1 = c1;
2085         Node* parent_c2 = c2;
2086 
2087         // The call to get_early_ctrl_for_expensive() moves the
2088         // expensive nodes up but stops at loops that are in a if
2089         // branch. See whether we can exit the loop and move above the
2090         // If.
2091         if (c1->is_Loop()) {
2092           parent_c1 = c1->in(1);
2093         }
2094         if (c2->is_Loop()) {
2095           parent_c2 = c2->in(1);
2096         }
2097 
2098         if (parent_c1 == parent_c2) {
2099           _igvn._worklist.push(n1);
2100           _igvn._worklist.push(n2);
2101           continue;
2102         }
2103 
2104         // Look for identical expensive node up the dominator chain.
2105         if (is_dominator(c1, c2)) {
2106           c2 = c1;
2107         } else if (is_dominator(c2, c1)) {
2108           c1 = c2;
2109         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
2110                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
2111           // Both branches have the same expensive node so move it up
2112           // before the if.
2113           c1 = c2 = idom(parent_c1->in(0));
2114         }
2115         // Do the actual moves
2116         if (n1->in(0) != c1) {
2117           _igvn.hash_delete(n1);
2118           n1->set_req(0, c1);
2119           _igvn.hash_insert(n1);
2120           _igvn._worklist.push(n1);
2121           progress = true;
2122         }
2123         if (n2->in(0) != c2) {
2124           _igvn.hash_delete(n2);
2125           n2->set_req(0, c2);
2126           _igvn.hash_insert(n2);
2127           _igvn._worklist.push(n2);
2128           progress = true;
2129         }
2130       }
2131     }
2132   }
2133 
2134   return progress;
2135 }
2136 
2137 
2138 //=============================================================================
2139 //----------------------------build_and_optimize-------------------------------
2140 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
2141 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
2142 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
2143   ResourceMark rm;
2144 
2145   int old_progress = C->major_progress();
2146   uint orig_worklist_size = _igvn._worklist.size();
2147 
2148   // Reset major-progress flag for the driver's heuristics
2149   C->clear_major_progress();
2150 
2151 #ifndef PRODUCT
2152   // Capture for later assert
2153   uint unique = C->unique();
2154   _loop_invokes++;
2155   _loop_work += unique;
2156 #endif
2157 
2158   // True if the method has at least 1 irreducible loop
2159   _has_irreducible_loops = false;
2160 
2161   _created_loop_node = false;
2162 
2163   Arena *a = Thread::current()->resource_area();
2164   VectorSet visited(a);
2165   // Pre-grow the mapping from Nodes to IdealLoopTrees.
2166   _nodes.map(C->unique(), NULL);
2167   memset(_nodes.adr(), 0, wordSize * C->unique());
2168 
2169   // Pre-build the top-level outermost loop tree entry
2170   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
2171   // Do not need a safepoint at the top level
2172   _ltree_root->_has_sfpt = 1;
2173 
2174   // Initialize Dominators.
2175   // Checked in clone_loop_predicate() during beautify_loops().
2176   _idom_size = 0;
2177   _idom      = NULL;
2178   _dom_depth = NULL;
2179   _dom_stk   = NULL;
2180 
2181   // Empty pre-order array
2182   allocate_preorders();
2183 
2184   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
2185   // IdealLoopTree entries.  Data nodes are NOT walked.
2186   build_loop_tree();
2187   // Check for bailout, and return
2188   if (C->failing()) {
2189     return;
2190   }
2191 
2192   // No loops after all
2193   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
2194 
2195   // There should always be an outer loop containing the Root and Return nodes.
2196   // If not, we have a degenerate empty program.  Bail out in this case.
2197   if (!has_node(C->root())) {
2198     if (!_verify_only) {
2199       C->clear_major_progress();
2200       C->record_method_not_compilable("empty program detected during loop optimization");
2201     }
2202     return;
2203   }
2204 
2205   // Nothing to do, so get out
2206   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only;
2207   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
2208   if (stop_early && !do_expensive_nodes) {
2209     _igvn.optimize();           // Cleanup NeverBranches
2210     return;
2211   }
2212 
2213   // Set loop nesting depth
2214   _ltree_root->set_nest( 0 );
2215 
2216   // Split shared headers and insert loop landing pads.
2217   // Do not bother doing this on the Root loop of course.
2218   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
2219     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
2220     if( _ltree_root->_child->beautify_loops( this ) ) {
2221       // Re-build loop tree!
2222       _ltree_root->_child = NULL;
2223       _nodes.clear();
2224       reallocate_preorders();
2225       build_loop_tree();
2226       // Check for bailout, and return
2227       if (C->failing()) {
2228         return;
2229       }
2230       // Reset loop nesting depth
2231       _ltree_root->set_nest( 0 );
2232 
2233       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
2234     }
2235   }
2236 
2237   // Build Dominators for elision of NULL checks & loop finding.
2238   // Since nodes do not have a slot for immediate dominator, make
2239   // a persistent side array for that info indexed on node->_idx.
2240   _idom_size = C->unique();
2241   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
2242   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
2243   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
2244   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
2245 
2246   Dominators();
2247 
2248   if (!_verify_only) {
2249     // As a side effect, Dominators removed any unreachable CFG paths
2250     // into RegionNodes.  It doesn't do this test against Root, so
2251     // we do it here.
2252     for( uint i = 1; i < C->root()->req(); i++ ) {
2253       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
2254         _igvn.delete_input_of(C->root(), i);
2255         i--;                      // Rerun same iteration on compressed edges
2256       }
2257     }
2258 
2259     // Given dominators, try to find inner loops with calls that must
2260     // always be executed (call dominates loop tail).  These loops do
2261     // not need a separate safepoint.
2262     Node_List cisstack(a);
2263     _ltree_root->check_safepts(visited, cisstack);
2264   }
2265 
2266   // Walk the DATA nodes and place into loops.  Find earliest control
2267   // node.  For CFG nodes, the _nodes array starts out and remains
2268   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
2269   // _nodes array holds the earliest legal controlling CFG node.
2270 
2271   // Allocate stack with enough space to avoid frequent realloc
2272   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
2273   Node_Stack nstack( a, stack_size );
2274 
2275   visited.Clear();
2276   Node_List worklist(a);
2277   // Don't need C->root() on worklist since
2278   // it will be processed among C->top() inputs
2279   worklist.push( C->top() );
2280   visited.set( C->top()->_idx ); // Set C->top() as visited now
2281   build_loop_early( visited, worklist, nstack );
2282 
2283   // Given early legal placement, try finding counted loops.  This placement
2284   // is good enough to discover most loop invariants.
2285   if( !_verify_me && !_verify_only )
2286     _ltree_root->counted_loop( this );
2287 
2288   // Find latest loop placement.  Find ideal loop placement.
2289   visited.Clear();
2290   init_dom_lca_tags();
2291   // Need C->root() on worklist when processing outs
2292   worklist.push( C->root() );
2293   NOT_PRODUCT( C->verify_graph_edges(); )
2294   worklist.push( C->top() );
2295   build_loop_late( visited, worklist, nstack );
2296 
2297   if (_verify_only) {
2298     // restore major progress flag
2299     for (int i = 0; i < old_progress; i++)
2300       C->set_major_progress();
2301     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
2302     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
2303     return;
2304   }
2305 
2306   // clear out the dead code after build_loop_late
2307   while (_deadlist.size()) {
2308     _igvn.remove_globally_dead_node(_deadlist.pop());
2309   }
2310 
2311   if (stop_early) {
2312     assert(do_expensive_nodes, "why are we here?");
2313     if (process_expensive_nodes()) {
2314       // If we made some progress when processing expensive nodes then
2315       // the IGVN may modify the graph in a way that will allow us to
2316       // make some more progress: we need to try processing expensive
2317       // nodes again.
2318       C->set_major_progress();
2319     }
2320     _igvn.optimize();
2321     return;
2322   }
2323 
2324   // Some parser-inserted loop predicates could never be used by loop
2325   // predication or they were moved away from loop during some optimizations.
2326   // For example, peeling. Eliminate them before next loop optimizations.
2327   if (UseLoopPredicate || LoopLimitCheck) {
2328     eliminate_useless_predicates();
2329   }
2330 
2331 #ifndef PRODUCT
2332   C->verify_graph_edges();
2333   if (_verify_me) {             // Nested verify pass?
2334     // Check to see if the verify mode is broken
2335     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
2336     return;
2337   }
2338   if(VerifyLoopOptimizations) verify();
2339   if(TraceLoopOpts && C->has_loops()) {
2340     _ltree_root->dump();
2341   }
2342 #endif
2343 
2344   if (skip_loop_opts) {
2345     // restore major progress flag
2346     for (int i = 0; i < old_progress; i++) {
2347       C->set_major_progress();
2348     }
2349 
2350     if (UseShenandoahGC && !C->major_progress()) {
2351       shenandoah_pin_and_expand_barriers();
2352     }
2353 
2354     // Cleanup any modified bits
2355     _igvn.optimize();
2356 
2357     if (C->log() != NULL) {
2358       log_loop_tree(_ltree_root, _ltree_root, C->log());
2359     }
2360     return;
2361   }
2362 
2363   if (ReassociateInvariants) {
2364     // Reassociate invariants and prep for split_thru_phi
2365     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2366       IdealLoopTree* lpt = iter.current();
2367       if (!lpt->is_counted() || !lpt->is_inner()) continue;
2368 
2369       lpt->reassociate_invariants(this);
2370 
2371       // Because RCE opportunities can be masked by split_thru_phi,
2372       // look for RCE candidates and inhibit split_thru_phi
2373       // on just their loop-phi's for this pass of loop opts
2374       if (SplitIfBlocks && do_split_ifs) {
2375         if (lpt->policy_range_check(this)) {
2376           lpt->_rce_candidate = 1; // = true
2377         }
2378       }
2379     }
2380   }
2381 
2382   // Check for aggressive application of split-if and other transforms
2383   // that require basic-block info (like cloning through Phi's)
2384   if( SplitIfBlocks && do_split_ifs ) {
2385     visited.Clear();
2386     split_if_with_blocks( visited, nstack );
2387     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
2388   }
2389 
2390   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
2391     C->set_major_progress();
2392   }
2393 
2394   // Perform loop predication before iteration splitting
2395   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
2396     _ltree_root->_child->loop_predication(this);
2397   }
2398 
2399   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
2400     if (do_intrinsify_fill()) {
2401       C->set_major_progress();
2402     }
2403   }
2404 
2405   // Perform iteration-splitting on inner loops.  Split iterations to avoid
2406   // range checks or one-shot null checks.
2407 
2408   // If split-if's didn't hack the graph too bad (no CFG changes)
2409   // then do loop opts.
2410   if (C->has_loops() && !C->major_progress()) {
2411     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
2412     _ltree_root->_child->iteration_split( this, worklist );
2413     // No verify after peeling!  GCM has hoisted code out of the loop.
2414     // After peeling, the hoisted code could sink inside the peeled area.
2415     // The peeling code does not try to recompute the best location for
2416     // all the code before the peeled area, so the verify pass will always
2417     // complain about it.
2418   }
2419   // Do verify graph edges in any case
2420   NOT_PRODUCT( C->verify_graph_edges(); );
2421 
2422   if (!do_split_ifs) {
2423     // We saw major progress in Split-If to get here.  We forced a
2424     // pass with unrolling and not split-if, however more split-if's
2425     // might make progress.  If the unrolling didn't make progress
2426     // then the major-progress flag got cleared and we won't try
2427     // another round of Split-If.  In particular the ever-common
2428     // instance-of/check-cast pattern requires at least 2 rounds of
2429     // Split-If to clear out.
2430     C->set_major_progress();
2431   }
2432 
2433   // Repeat loop optimizations if new loops were seen
2434   if (created_loop_node()) {
2435     C->set_major_progress();
2436   }
2437 
2438   // Keep loop predicates and perform optimizations with them
2439   // until no more loop optimizations could be done.
2440   // After that switch predicates off and do more loop optimizations.
2441   if (!C->major_progress() && (C->predicate_count() > 0)) {
2442      C->cleanup_loop_predicates(_igvn);
2443 #ifndef PRODUCT
2444      if (TraceLoopOpts) {
2445        tty->print_cr("PredicatesOff");
2446      }
2447 #endif
2448      C->set_major_progress();
2449   }
2450 
2451   // Convert scalar to superword operations at the end of all loop opts.
2452   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
2453     // SuperWord transform
2454     SuperWord sw(this);
2455     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2456       IdealLoopTree* lpt = iter.current();
2457       if (lpt->is_counted()) {
2458         sw.transform_loop(lpt);
2459       }
2460     }
2461   }
2462 
2463   // Cleanup any modified bits
2464   _igvn.optimize();
2465 
2466   // disable assert until issue with split_flow_path is resolved (6742111)
2467   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
2468   //        "shouldn't introduce irreducible loops");
2469 
2470   if (C->log() != NULL) {
2471     log_loop_tree(_ltree_root, _ltree_root, C->log());
2472   }
2473 }
2474 
2475 #ifndef PRODUCT
2476 //------------------------------print_statistics-------------------------------
2477 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
2478 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
2479 void PhaseIdealLoop::print_statistics() {
2480   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
2481 }
2482 
2483 //------------------------------verify-----------------------------------------
2484 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
2485 static int fail;                // debug only, so its multi-thread dont care
2486 void PhaseIdealLoop::verify() const {
2487   int old_progress = C->major_progress();
2488   ResourceMark rm;
2489   PhaseIdealLoop loop_verify( _igvn, this );
2490   VectorSet visited(Thread::current()->resource_area());
2491 
2492   fail = 0;
2493   verify_compare( C->root(), &loop_verify, visited );
2494   assert( fail == 0, "verify loops failed" );
2495   // Verify loop structure is the same
2496   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
2497   // Reset major-progress.  It was cleared by creating a verify version of
2498   // PhaseIdealLoop.
2499   for( int i=0; i<old_progress; i++ )
2500     C->set_major_progress();
2501 }
2502 
2503 //------------------------------verify_compare---------------------------------
2504 // Make sure me and the given PhaseIdealLoop agree on key data structures
2505 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
2506   if( !n ) return;
2507   if( visited.test_set( n->_idx ) ) return;
2508   if( !_nodes[n->_idx] ) {      // Unreachable
2509     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
2510     return;
2511   }
2512 
2513   uint i;
2514   for( i = 0; i < n->req(); i++ )
2515     verify_compare( n->in(i), loop_verify, visited );
2516 
2517   // Check the '_nodes' block/loop structure
2518   i = n->_idx;
2519   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
2520     if( _nodes[i] != loop_verify->_nodes[i] &&
2521         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
2522       tty->print("Mismatched control setting for: ");
2523       n->dump();
2524       if( fail++ > 10 ) return;
2525       Node *c = get_ctrl_no_update(n);
2526       tty->print("We have it as: ");
2527       if( c->in(0) ) c->dump();
2528         else tty->print_cr("N%d",c->_idx);
2529       tty->print("Verify thinks: ");
2530       if( loop_verify->has_ctrl(n) )
2531         loop_verify->get_ctrl_no_update(n)->dump();
2532       else
2533         loop_verify->get_loop_idx(n)->dump();
2534       tty->cr();
2535     }
2536   } else {                    // We have a loop
2537     IdealLoopTree *us = get_loop_idx(n);
2538     if( loop_verify->has_ctrl(n) ) {
2539       tty->print("Mismatched loop setting for: ");
2540       n->dump();
2541       if( fail++ > 10 ) return;
2542       tty->print("We have it as: ");
2543       us->dump();
2544       tty->print("Verify thinks: ");
2545       loop_verify->get_ctrl_no_update(n)->dump();
2546       tty->cr();
2547     } else if (!C->major_progress()) {
2548       // Loop selection can be messed up if we did a major progress
2549       // operation, like split-if.  Do not verify in that case.
2550       IdealLoopTree *them = loop_verify->get_loop_idx(n);
2551       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
2552         tty->print("Unequals loops for: ");
2553         n->dump();
2554         if( fail++ > 10 ) return;
2555         tty->print("We have it as: ");
2556         us->dump();
2557         tty->print("Verify thinks: ");
2558         them->dump();
2559         tty->cr();
2560       }
2561     }
2562   }
2563 
2564   // Check for immediate dominators being equal
2565   if( i >= _idom_size ) {
2566     if( !n->is_CFG() ) return;
2567     tty->print("CFG Node with no idom: ");
2568     n->dump();
2569     return;
2570   }
2571   if( !n->is_CFG() ) return;
2572   if( n == C->root() ) return; // No IDOM here
2573 
2574   assert(n->_idx == i, "sanity");
2575   Node *id = idom_no_update(n);
2576   if( id != loop_verify->idom_no_update(n) ) {
2577     tty->print("Unequals idoms for: ");
2578     n->dump();
2579     if( fail++ > 10 ) return;
2580     tty->print("We have it as: ");
2581     id->dump();
2582     tty->print("Verify thinks: ");
2583     loop_verify->idom_no_update(n)->dump();
2584     tty->cr();
2585   }
2586 
2587 }
2588 
2589 //------------------------------verify_tree------------------------------------
2590 // Verify that tree structures match.  Because the CFG can change, siblings
2591 // within the loop tree can be reordered.  We attempt to deal with that by
2592 // reordering the verify's loop tree if possible.
2593 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
2594   assert( _parent == parent, "Badly formed loop tree" );
2595 
2596   // Siblings not in same order?  Attempt to re-order.
2597   if( _head != loop->_head ) {
2598     // Find _next pointer to update
2599     IdealLoopTree **pp = &loop->_parent->_child;
2600     while( *pp != loop )
2601       pp = &((*pp)->_next);
2602     // Find proper sibling to be next
2603     IdealLoopTree **nn = &loop->_next;
2604     while( (*nn) && (*nn)->_head != _head )
2605       nn = &((*nn)->_next);
2606 
2607     // Check for no match.
2608     if( !(*nn) ) {
2609       // Annoyingly, irreducible loops can pick different headers
2610       // after a major_progress operation, so the rest of the loop
2611       // tree cannot be matched.
2612       if (_irreducible && Compile::current()->major_progress())  return;
2613       assert( 0, "failed to match loop tree" );
2614     }
2615 
2616     // Move (*nn) to (*pp)
2617     IdealLoopTree *hit = *nn;
2618     *nn = hit->_next;
2619     hit->_next = loop;
2620     *pp = loop;
2621     loop = hit;
2622     // Now try again to verify
2623   }
2624 
2625   assert( _head  == loop->_head , "mismatched loop head" );
2626   Node *tail = _tail;           // Inline a non-updating version of
2627   while( !tail->in(0) )         // the 'tail()' call.
2628     tail = tail->in(1);
2629   assert( tail == loop->_tail, "mismatched loop tail" );
2630 
2631   // Counted loops that are guarded should be able to find their guards
2632   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
2633     CountedLoopNode *cl = _head->as_CountedLoop();
2634     Node *init = cl->init_trip();
2635     Node *ctrl = cl->in(LoopNode::EntryControl);
2636     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
2637     Node *iff  = ctrl->in(0);
2638     assert( iff->Opcode() == Op_If, "" );
2639     Node *bol  = iff->in(1);
2640     assert( bol->Opcode() == Op_Bool, "" );
2641     Node *cmp  = bol->in(1);
2642     assert( cmp->Opcode() == Op_CmpI, "" );
2643     Node *add  = cmp->in(1);
2644     Node *opaq;
2645     if( add->Opcode() == Op_Opaque1 ) {
2646       opaq = add;
2647     } else {
2648       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
2649       assert( add == init, "" );
2650       opaq = cmp->in(2);
2651     }
2652     assert( opaq->Opcode() == Op_Opaque1, "" );
2653 
2654   }
2655 
2656   if (_child != NULL)  _child->verify_tree(loop->_child, this);
2657   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
2658   // Innermost loops need to verify loop bodies,
2659   // but only if no 'major_progress'
2660   int fail = 0;
2661   if (!Compile::current()->major_progress() && _child == NULL) {
2662     for( uint i = 0; i < _body.size(); i++ ) {
2663       Node *n = _body.at(i);
2664       if (n->outcnt() == 0)  continue; // Ignore dead
2665       uint j;
2666       for( j = 0; j < loop->_body.size(); j++ )
2667         if( loop->_body.at(j) == n )
2668           break;
2669       if( j == loop->_body.size() ) { // Not found in loop body
2670         // Last ditch effort to avoid assertion: Its possible that we
2671         // have some users (so outcnt not zero) but are still dead.
2672         // Try to find from root.
2673         if (Compile::current()->root()->find(n->_idx)) {
2674           fail++;
2675           tty->print("We have that verify does not: ");
2676           n->dump();
2677         }
2678       }
2679     }
2680     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
2681       Node *n = loop->_body.at(i2);
2682       if (n->outcnt() == 0)  continue; // Ignore dead
2683       uint j;
2684       for( j = 0; j < _body.size(); j++ )
2685         if( _body.at(j) == n )
2686           break;
2687       if( j == _body.size() ) { // Not found in loop body
2688         // Last ditch effort to avoid assertion: Its possible that we
2689         // have some users (so outcnt not zero) but are still dead.
2690         // Try to find from root.
2691         if (Compile::current()->root()->find(n->_idx)) {
2692           fail++;
2693           tty->print("Verify has that we do not: ");
2694           n->dump();
2695         }
2696       }
2697     }
2698     assert( !fail, "loop body mismatch" );
2699   }
2700 }
2701 
2702 #endif
2703 
2704 //------------------------------set_idom---------------------------------------
2705 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
2706   uint idx = d->_idx;
2707   if (idx >= _idom_size) {
2708     uint newsize = _idom_size<<1;
2709     while( idx >= newsize ) {
2710       newsize <<= 1;
2711     }
2712     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
2713     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
2714     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
2715     _idom_size = newsize;
2716   }
2717   _idom[idx] = n;
2718   _dom_depth[idx] = dom_depth;
2719 }
2720 
2721 //------------------------------recompute_dom_depth---------------------------------------
2722 // The dominator tree is constructed with only parent pointers.
2723 // This recomputes the depth in the tree by first tagging all
2724 // nodes as "no depth yet" marker.  The next pass then runs up
2725 // the dom tree from each node marked "no depth yet", and computes
2726 // the depth on the way back down.
2727 void PhaseIdealLoop::recompute_dom_depth() {
2728   uint no_depth_marker = C->unique();
2729   uint i;
2730   // Initialize depth to "no depth yet"
2731   for (i = 0; i < _idom_size; i++) {
2732     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
2733      _dom_depth[i] = no_depth_marker;
2734     }
2735   }
2736   if (_dom_stk == NULL) {
2737     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
2738     if (init_size < 10) init_size = 10;
2739     _dom_stk = new GrowableArray<uint>(init_size);
2740   }
2741   // Compute new depth for each node.
2742   for (i = 0; i < _idom_size; i++) {
2743     uint j = i;
2744     // Run up the dom tree to find a node with a depth
2745     while (_dom_depth[j] == no_depth_marker) {
2746       _dom_stk->push(j);
2747       j = _idom[j]->_idx;
2748     }
2749     // Compute the depth on the way back down this tree branch
2750     uint dd = _dom_depth[j] + 1;
2751     while (_dom_stk->length() > 0) {
2752       uint j = _dom_stk->pop();
2753       _dom_depth[j] = dd;
2754       dd++;
2755     }
2756   }
2757 }
2758 
2759 //------------------------------sort-------------------------------------------
2760 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
2761 // loop tree, not the root.
2762 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
2763   if( !innermost ) return loop; // New innermost loop
2764 
2765   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
2766   assert( loop_preorder, "not yet post-walked loop" );
2767   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
2768   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
2769 
2770   // Insert at start of list
2771   while( l ) {                  // Insertion sort based on pre-order
2772     if( l == loop ) return innermost; // Already on list!
2773     int l_preorder = get_preorder(l->_head); // Cache pre-order number
2774     assert( l_preorder, "not yet post-walked l" );
2775     // Check header pre-order number to figure proper nesting
2776     if( loop_preorder > l_preorder )
2777       break;                    // End of insertion
2778     // If headers tie (e.g., shared headers) check tail pre-order numbers.
2779     // Since I split shared headers, you'd think this could not happen.
2780     // BUT: I must first do the preorder numbering before I can discover I
2781     // have shared headers, so the split headers all get the same preorder
2782     // number as the RegionNode they split from.
2783     if( loop_preorder == l_preorder &&
2784         get_preorder(loop->_tail) < get_preorder(l->_tail) )
2785       break;                    // Also check for shared headers (same pre#)
2786     pp = &l->_parent;           // Chain up list
2787     l = *pp;
2788   }
2789   // Link into list
2790   // Point predecessor to me
2791   *pp = loop;
2792   // Point me to successor
2793   IdealLoopTree *p = loop->_parent;
2794   loop->_parent = l;            // Point me to successor
2795   if( p ) sort( p, innermost ); // Insert my parents into list as well
2796   return innermost;
2797 }
2798 
2799 //------------------------------build_loop_tree--------------------------------
2800 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
2801 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
2802 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
2803 // tightest enclosing IdealLoopTree for post-walked.
2804 //
2805 // During my forward walk I do a short 1-layer lookahead to see if I can find
2806 // a loop backedge with that doesn't have any work on the backedge.  This
2807 // helps me construct nested loops with shared headers better.
2808 //
2809 // Once I've done the forward recursion, I do the post-work.  For each child
2810 // I check to see if there is a backedge.  Backedges define a loop!  I
2811 // insert an IdealLoopTree at the target of the backedge.
2812 //
2813 // During the post-work I also check to see if I have several children
2814 // belonging to different loops.  If so, then this Node is a decision point
2815 // where control flow can choose to change loop nests.  It is at this
2816 // decision point where I can figure out how loops are nested.  At this
2817 // time I can properly order the different loop nests from my children.
2818 // Note that there may not be any backedges at the decision point!
2819 //
2820 // Since the decision point can be far removed from the backedges, I can't
2821 // order my loops at the time I discover them.  Thus at the decision point
2822 // I need to inspect loop header pre-order numbers to properly nest my
2823 // loops.  This means I need to sort my childrens' loops by pre-order.
2824 // The sort is of size number-of-control-children, which generally limits
2825 // it to size 2 (i.e., I just choose between my 2 target loops).
2826 void PhaseIdealLoop::build_loop_tree() {
2827   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
2828   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
2829   Node *n = C->root();
2830   bltstack.push(n);
2831   int pre_order = 1;
2832   int stack_size;
2833 
2834   while ( ( stack_size = bltstack.length() ) != 0 ) {
2835     n = bltstack.top(); // Leave node on stack
2836     if ( !is_visited(n) ) {
2837       // ---- Pre-pass Work ----
2838       // Pre-walked but not post-walked nodes need a pre_order number.
2839 
2840       set_preorder_visited( n, pre_order ); // set as visited
2841 
2842       // ---- Scan over children ----
2843       // Scan first over control projections that lead to loop headers.
2844       // This helps us find inner-to-outer loops with shared headers better.
2845 
2846       // Scan children's children for loop headers.
2847       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
2848         Node* m = n->raw_out(i);       // Child
2849         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
2850           // Scan over children's children to find loop
2851           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2852             Node* l = m->fast_out(j);
2853             if( is_visited(l) &&       // Been visited?
2854                 !is_postvisited(l) &&  // But not post-visited
2855                 get_preorder(l) < pre_order ) { // And smaller pre-order
2856               // Found!  Scan the DFS down this path before doing other paths
2857               bltstack.push(m);
2858               break;
2859             }
2860           }
2861         }
2862       }
2863       pre_order++;
2864     }
2865     else if ( !is_postvisited(n) ) {
2866       // Note: build_loop_tree_impl() adds out edges on rare occasions,
2867       // such as com.sun.rsasign.am::a.
2868       // For non-recursive version, first, process current children.
2869       // On next iteration, check if additional children were added.
2870       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
2871         Node* u = n->raw_out(k);
2872         if ( u->is_CFG() && !is_visited(u) ) {
2873           bltstack.push(u);
2874         }
2875       }
2876       if ( bltstack.length() == stack_size ) {
2877         // There were no additional children, post visit node now
2878         (void)bltstack.pop(); // Remove node from stack
2879         pre_order = build_loop_tree_impl( n, pre_order );
2880         // Check for bailout
2881         if (C->failing()) {
2882           return;
2883         }
2884         // Check to grow _preorders[] array for the case when
2885         // build_loop_tree_impl() adds new nodes.
2886         check_grow_preorders();
2887       }
2888     }
2889     else {
2890       (void)bltstack.pop(); // Remove post-visited node from stack
2891     }
2892   }
2893 }
2894 
2895 //------------------------------build_loop_tree_impl---------------------------
2896 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
2897   // ---- Post-pass Work ----
2898   // Pre-walked but not post-walked nodes need a pre_order number.
2899 
2900   // Tightest enclosing loop for this Node
2901   IdealLoopTree *innermost = NULL;
2902 
2903   // For all children, see if any edge is a backedge.  If so, make a loop
2904   // for it.  Then find the tightest enclosing loop for the self Node.
2905   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2906     Node* m = n->fast_out(i);   // Child
2907     if( n == m ) continue;      // Ignore control self-cycles
2908     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
2909 
2910     IdealLoopTree *l;           // Child's loop
2911     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
2912       // Found a backedge
2913       assert( get_preorder(m) < pre_order, "should be backedge" );
2914       // Check for the RootNode, which is already a LoopNode and is allowed
2915       // to have multiple "backedges".
2916       if( m == C->root()) {     // Found the root?
2917         l = _ltree_root;        // Root is the outermost LoopNode
2918       } else {                  // Else found a nested loop
2919         // Insert a LoopNode to mark this loop.
2920         l = new IdealLoopTree(this, m, n);
2921       } // End of Else found a nested loop
2922       if( !has_loop(m) )        // If 'm' does not already have a loop set
2923         set_loop(m, l);         // Set loop header to loop now
2924 
2925     } else {                    // Else not a nested loop
2926       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
2927       l = get_loop(m);          // Get previously determined loop
2928       // If successor is header of a loop (nest), move up-loop till it
2929       // is a member of some outer enclosing loop.  Since there are no
2930       // shared headers (I've split them already) I only need to go up
2931       // at most 1 level.
2932       while( l && l->_head == m ) // Successor heads loop?
2933         l = l->_parent;         // Move up 1 for me
2934       // If this loop is not properly parented, then this loop
2935       // has no exit path out, i.e. its an infinite loop.
2936       if( !l ) {
2937         // Make loop "reachable" from root so the CFG is reachable.  Basically
2938         // insert a bogus loop exit that is never taken.  'm', the loop head,
2939         // points to 'n', one (of possibly many) fall-in paths.  There may be
2940         // many backedges as well.
2941 
2942         // Here I set the loop to be the root loop.  I could have, after
2943         // inserting a bogus loop exit, restarted the recursion and found my
2944         // new loop exit.  This would make the infinite loop a first-class
2945         // loop and it would then get properly optimized.  What's the use of
2946         // optimizing an infinite loop?
2947         l = _ltree_root;        // Oops, found infinite loop
2948 
2949         if (!_verify_only) {
2950           // Insert the NeverBranch between 'm' and it's control user.
2951           NeverBranchNode *iff = new (C) NeverBranchNode( m );
2952           _igvn.register_new_node_with_optimizer(iff);
2953           set_loop(iff, l);
2954           Node *if_t = new (C) CProjNode( iff, 0 );
2955           _igvn.register_new_node_with_optimizer(if_t);
2956           set_loop(if_t, l);
2957 
2958           Node* cfg = NULL;       // Find the One True Control User of m
2959           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2960             Node* x = m->fast_out(j);
2961             if (x->is_CFG() && x != m && x != iff)
2962               { cfg = x; break; }
2963           }
2964           assert(cfg != NULL, "must find the control user of m");
2965           uint k = 0;             // Probably cfg->in(0)
2966           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
2967           cfg->set_req( k, if_t ); // Now point to NeverBranch
2968 
2969           // Now create the never-taken loop exit
2970           Node *if_f = new (C) CProjNode( iff, 1 );
2971           _igvn.register_new_node_with_optimizer(if_f);
2972           set_loop(if_f, l);
2973           // Find frame ptr for Halt.  Relies on the optimizer
2974           // V-N'ing.  Easier and quicker than searching through
2975           // the program structure.
2976           Node *frame = new (C) ParmNode( C->start(), TypeFunc::FramePtr );
2977           _igvn.register_new_node_with_optimizer(frame);
2978           // Halt & Catch Fire
2979           Node *halt = new (C) HaltNode( if_f, frame );
2980           _igvn.register_new_node_with_optimizer(halt);
2981           set_loop(halt, l);
2982           C->root()->add_req(halt);
2983         }
2984         set_loop(C->root(), _ltree_root);
2985       }
2986     }
2987     // Weeny check for irreducible.  This child was already visited (this
2988     // IS the post-work phase).  Is this child's loop header post-visited
2989     // as well?  If so, then I found another entry into the loop.
2990     if (!_verify_only) {
2991       while( is_postvisited(l->_head) ) {
2992         // found irreducible
2993         l->_irreducible = 1; // = true
2994         l = l->_parent;
2995         _has_irreducible_loops = true;
2996         // Check for bad CFG here to prevent crash, and bailout of compile
2997         if (l == NULL) {
2998           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
2999           return pre_order;
3000         }
3001       }
3002       C->set_has_irreducible_loop(_has_irreducible_loops);
3003     }
3004 
3005     // This Node might be a decision point for loops.  It is only if
3006     // it's children belong to several different loops.  The sort call
3007     // does a trivial amount of work if there is only 1 child or all
3008     // children belong to the same loop.  If however, the children
3009     // belong to different loops, the sort call will properly set the
3010     // _parent pointers to show how the loops nest.
3011     //
3012     // In any case, it returns the tightest enclosing loop.
3013     innermost = sort( l, innermost );
3014   }
3015 
3016   // Def-use info will have some dead stuff; dead stuff will have no
3017   // loop decided on.
3018 
3019   // Am I a loop header?  If so fix up my parent's child and next ptrs.
3020   if( innermost && innermost->_head == n ) {
3021     assert( get_loop(n) == innermost, "" );
3022     IdealLoopTree *p = innermost->_parent;
3023     IdealLoopTree *l = innermost;
3024     while( p && l->_head == n ) {
3025       l->_next = p->_child;     // Put self on parents 'next child'
3026       p->_child = l;            // Make self as first child of parent
3027       l = p;                    // Now walk up the parent chain
3028       p = l->_parent;
3029     }
3030   } else {
3031     // Note that it is possible for a LoopNode to reach here, if the
3032     // backedge has been made unreachable (hence the LoopNode no longer
3033     // denotes a Loop, and will eventually be removed).
3034 
3035     // Record tightest enclosing loop for self.  Mark as post-visited.
3036     set_loop(n, innermost);
3037     // Also record has_call flag early on
3038     if( innermost ) {
3039       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
3040         // Do not count uncommon calls
3041         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
3042           Node *iff = n->in(0)->in(0);
3043           // No any calls for vectorized loops.
3044           if( UseSuperWord || !iff->is_If() ||
3045               (n->in(0)->Opcode() == Op_IfFalse &&
3046                (1.0 - iff->as_If()->_prob) >= 0.01) ||
3047               (iff->as_If()->_prob >= 0.01) )
3048             innermost->_has_call = 1;
3049         }
3050       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
3051         // Disable loop optimizations if the loop has a scalar replaceable
3052         // allocation. This disabling may cause a potential performance lost
3053         // if the allocation is not eliminated for some reason.
3054         innermost->_allow_optimizations = false;
3055         innermost->_has_call = 1; // = true
3056       } else if (n->Opcode() == Op_SafePoint) {
3057         // Record all safepoints in this loop.
3058         if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
3059         innermost->_safepts->push(n);
3060       }
3061     }
3062   }
3063 
3064   // Flag as post-visited now
3065   set_postvisited(n);
3066   return pre_order;
3067 }
3068 
3069 
3070 //------------------------------build_loop_early-------------------------------
3071 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3072 // First pass computes the earliest controlling node possible.  This is the
3073 // controlling input with the deepest dominating depth.
3074 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3075   while (worklist.size() != 0) {
3076     // Use local variables nstack_top_n & nstack_top_i to cache values
3077     // on nstack's top.
3078     Node *nstack_top_n = worklist.pop();
3079     uint  nstack_top_i = 0;
3080 //while_nstack_nonempty:
3081     while (true) {
3082       // Get parent node and next input's index from stack's top.
3083       Node  *n = nstack_top_n;
3084       uint   i = nstack_top_i;
3085       uint cnt = n->req(); // Count of inputs
3086       if (i == 0) {        // Pre-process the node.
3087         if( has_node(n) &&            // Have either loop or control already?
3088             !has_ctrl(n) ) {          // Have loop picked out already?
3089           // During "merge_many_backedges" we fold up several nested loops
3090           // into a single loop.  This makes the members of the original
3091           // loop bodies pointing to dead loops; they need to move up
3092           // to the new UNION'd larger loop.  I set the _head field of these
3093           // dead loops to NULL and the _parent field points to the owning
3094           // loop.  Shades of UNION-FIND algorithm.
3095           IdealLoopTree *ilt;
3096           while( !(ilt = get_loop(n))->_head ) {
3097             // Normally I would use a set_loop here.  But in this one special
3098             // case, it is legal (and expected) to change what loop a Node
3099             // belongs to.
3100             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
3101           }
3102           // Remove safepoints ONLY if I've already seen I don't need one.
3103           // (the old code here would yank a 2nd safepoint after seeing a
3104           // first one, even though the 1st did not dominate in the loop body
3105           // and thus could be avoided indefinitely)
3106           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
3107               is_deleteable_safept(n)) {
3108             Node *in = n->in(TypeFunc::Control);
3109             lazy_replace(n,in);       // Pull safepoint now
3110             if (ilt->_safepts != NULL) {
3111               ilt->_safepts->yank(n);
3112             }
3113             // Carry on with the recursion "as if" we are walking
3114             // only the control input
3115             if( !visited.test_set( in->_idx ) ) {
3116               worklist.push(in);      // Visit this guy later, using worklist
3117             }
3118             // Get next node from nstack:
3119             // - skip n's inputs processing by setting i > cnt;
3120             // - we also will not call set_early_ctrl(n) since
3121             //   has_node(n) == true (see the condition above).
3122             i = cnt + 1;
3123           }
3124         }
3125       } // if (i == 0)
3126 
3127       // Visit all inputs
3128       bool done = true;       // Assume all n's inputs will be processed
3129       while (i < cnt) {
3130         Node *in = n->in(i);
3131         ++i;
3132         if (in == NULL) continue;
3133         if (in->pinned() && !in->is_CFG())
3134           set_ctrl(in, in->in(0));
3135         int is_visited = visited.test_set( in->_idx );
3136         if (!has_node(in)) {  // No controlling input yet?
3137           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
3138           assert( !is_visited, "visit only once" );
3139           nstack.push(n, i);  // Save parent node and next input's index.
3140           nstack_top_n = in;  // Process current input now.
3141           nstack_top_i = 0;
3142           done = false;       // Not all n's inputs processed.
3143           break; // continue while_nstack_nonempty;
3144         } else if (!is_visited) {
3145           // This guy has a location picked out for him, but has not yet
3146           // been visited.  Happens to all CFG nodes, for instance.
3147           // Visit him using the worklist instead of recursion, to break
3148           // cycles.  Since he has a location already we do not need to
3149           // find his location before proceeding with the current Node.
3150           worklist.push(in);  // Visit this guy later, using worklist
3151         }
3152       }
3153       if (done) {
3154         // All of n's inputs have been processed, complete post-processing.
3155 
3156         // Compute earliest point this Node can go.
3157         // CFG, Phi, pinned nodes already know their controlling input.
3158         if (!has_node(n)) {
3159           // Record earliest legal location
3160           set_early_ctrl( n );
3161         }
3162         if (nstack.is_empty()) {
3163           // Finished all nodes on stack.
3164           // Process next node on the worklist.
3165           break;
3166         }
3167         // Get saved parent node and next input's index.
3168         nstack_top_n = nstack.node();
3169         nstack_top_i = nstack.index();
3170         nstack.pop();
3171       }
3172     } // while (true)
3173   }
3174 }
3175 
3176 //------------------------------dom_lca_internal--------------------------------
3177 // Pair-wise LCA
3178 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
3179   if( !n1 ) return n2;          // Handle NULL original LCA
3180   assert( n1->is_CFG(), "" );
3181   assert( n2->is_CFG(), "" );
3182   // find LCA of all uses
3183   uint d1 = dom_depth(n1);
3184   uint d2 = dom_depth(n2);
3185   while (n1 != n2) {
3186     if (d1 > d2) {
3187       n1 =      idom(n1);
3188       d1 = dom_depth(n1);
3189     } else if (d1 < d2) {
3190       n2 =      idom(n2);
3191       d2 = dom_depth(n2);
3192     } else {
3193       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3194       // of the tree might have the same depth.  These sections have
3195       // to be searched more carefully.
3196 
3197       // Scan up all the n1's with equal depth, looking for n2.
3198       Node *t1 = idom(n1);
3199       while (dom_depth(t1) == d1) {
3200         if (t1 == n2)  return n2;
3201         t1 = idom(t1);
3202       }
3203       // Scan up all the n2's with equal depth, looking for n1.
3204       Node *t2 = idom(n2);
3205       while (dom_depth(t2) == d2) {
3206         if (t2 == n1)  return n1;
3207         t2 = idom(t2);
3208       }
3209       // Move up to a new dominator-depth value as well as up the dom-tree.
3210       n1 = t1;
3211       n2 = t2;
3212       d1 = dom_depth(n1);
3213       d2 = dom_depth(n2);
3214     }
3215   }
3216   return n1;
3217 }
3218 
3219 //------------------------------compute_idom-----------------------------------
3220 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
3221 // IDOMs are correct.
3222 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
3223   assert( region->is_Region(), "" );
3224   Node *LCA = NULL;
3225   for( uint i = 1; i < region->req(); i++ ) {
3226     if( region->in(i) != C->top() )
3227       LCA = dom_lca( LCA, region->in(i) );
3228   }
3229   return LCA;
3230 }
3231 
3232 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
3233   bool had_error = false;
3234 #ifdef ASSERT
3235   if (early != C->root()) {
3236     // Make sure that there's a dominance path from LCA to early
3237     Node* d = LCA;
3238     while (d != early) {
3239       if (d == C->root()) {
3240         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
3241         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
3242         had_error = true;
3243         break;
3244       }
3245       d = idom(d);
3246     }
3247   }
3248 #endif
3249   return had_error;
3250 }
3251 
3252 
3253 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
3254   // Compute LCA over list of uses
3255   bool had_error = false;
3256   Node *LCA = NULL;
3257   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
3258     Node* c = n->fast_out(i);
3259     if (_nodes[c->_idx] == NULL)
3260       continue;                 // Skip the occasional dead node
3261     if( c->is_Phi() ) {         // For Phis, we must land above on the path
3262       for( uint j=1; j<c->req(); j++ ) {// For all inputs
3263         if( c->in(j) == n ) {   // Found matching input?
3264           Node *use = c->in(0)->in(j);
3265           if (_verify_only && use->is_top()) continue;
3266           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3267           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3268         }
3269       }
3270     } else {
3271       // For CFG data-users, use is in the block just prior
3272       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
3273       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3274       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3275     }
3276   }
3277   assert(!had_error, "bad dominance");
3278   return LCA;
3279 }
3280 
3281 //------------------------------get_late_ctrl----------------------------------
3282 // Compute latest legal control.
3283 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
3284   assert(early != NULL, "early control should not be NULL");
3285 
3286   Node* LCA = compute_lca_of_uses(n, early);
3287 #ifdef ASSERT
3288   if (LCA == C->root() && LCA != early) {
3289     // def doesn't dominate uses so print some useful debugging output
3290     compute_lca_of_uses(n, early, true);
3291   }
3292 #endif
3293 
3294   // if this is a load, check for anti-dependent stores
3295   // We use a conservative algorithm to identify potential interfering
3296   // instructions and for rescheduling the load.  The users of the memory
3297   // input of this load are examined.  Any use which is not a load and is
3298   // dominated by early is considered a potentially interfering store.
3299   // This can produce false positives.
3300   if (n->is_Load() && LCA != early) {
3301     Node_List worklist;
3302 
3303     Node *mem = n->in(MemNode::Memory);
3304     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
3305       Node* s = mem->fast_out(i);
3306       worklist.push(s);
3307     }
3308     while(worklist.size() != 0 && LCA != early) {
3309       Node* s = worklist.pop();
3310       if (s->is_Load() ||
3311           (UseShenandoahGC &&
3312            (s->is_ShenandoahBarrier() || s->Opcode() == Op_SafePoint ||
3313             (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0)))) {
3314         continue;
3315       } else if (s->is_MergeMem()) {
3316         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
3317           Node* s1 = s->fast_out(i);
3318           worklist.push(s1);
3319         }
3320       } else {
3321         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
3322         assert(sctrl != NULL || s->outcnt() == 0 || s->is_ShenandoahBarrier(), "must have control");
3323         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
3324           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
3325         }
3326       }
3327     }
3328   }
3329 
3330   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
3331   return LCA;
3332 }
3333 
3334 // true if CFG node d dominates CFG node n
3335 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
3336   if (d == n)
3337     return true;
3338   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
3339   uint dd = dom_depth(d);
3340   while (dom_depth(n) >= dd) {
3341     if (n == d)
3342       return true;
3343     n = idom(n);
3344   }
3345   return false;
3346 }
3347 
3348 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
3349 // Pair-wise LCA with tags.
3350 // Tag each index with the node 'tag' currently being processed
3351 // before advancing up the dominator chain using idom().
3352 // Later calls that find a match to 'tag' know that this path has already
3353 // been considered in the current LCA (which is input 'n1' by convention).
3354 // Since get_late_ctrl() is only called once for each node, the tag array
3355 // does not need to be cleared between calls to get_late_ctrl().
3356 // Algorithm trades a larger constant factor for better asymptotic behavior
3357 //
3358 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
3359   uint d1 = dom_depth(n1);
3360   uint d2 = dom_depth(n2);
3361 
3362   do {
3363     if (d1 > d2) {
3364       // current lca is deeper than n2
3365       _dom_lca_tags.map(n1->_idx, tag);
3366       n1 =      idom(n1);
3367       d1 = dom_depth(n1);
3368     } else if (d1 < d2) {
3369       // n2 is deeper than current lca
3370       Node *memo = _dom_lca_tags[n2->_idx];
3371       if( memo == tag ) {
3372         return n1;    // Return the current LCA
3373       }
3374       _dom_lca_tags.map(n2->_idx, tag);
3375       n2 =      idom(n2);
3376       d2 = dom_depth(n2);
3377     } else {
3378       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3379       // of the tree might have the same depth.  These sections have
3380       // to be searched more carefully.
3381 
3382       // Scan up all the n1's with equal depth, looking for n2.
3383       _dom_lca_tags.map(n1->_idx, tag);
3384       Node *t1 = idom(n1);
3385       while (dom_depth(t1) == d1) {
3386         if (t1 == n2)  return n2;
3387         _dom_lca_tags.map(t1->_idx, tag);
3388         t1 = idom(t1);
3389       }
3390       // Scan up all the n2's with equal depth, looking for n1.
3391       _dom_lca_tags.map(n2->_idx, tag);
3392       Node *t2 = idom(n2);
3393       while (dom_depth(t2) == d2) {
3394         if (t2 == n1)  return n1;
3395         _dom_lca_tags.map(t2->_idx, tag);
3396         t2 = idom(t2);
3397       }
3398       // Move up to a new dominator-depth value as well as up the dom-tree.
3399       n1 = t1;
3400       n2 = t2;
3401       d1 = dom_depth(n1);
3402       d2 = dom_depth(n2);
3403     }
3404   } while (n1 != n2);
3405   return n1;
3406 }
3407 
3408 //------------------------------init_dom_lca_tags------------------------------
3409 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3410 // Intended use does not involve any growth for the array, so it could
3411 // be of fixed size.
3412 void PhaseIdealLoop::init_dom_lca_tags() {
3413   uint limit = C->unique() + 1;
3414   _dom_lca_tags.map( limit, NULL );
3415 #ifdef ASSERT
3416   for( uint i = 0; i < limit; ++i ) {
3417     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3418   }
3419 #endif // ASSERT
3420 }
3421 
3422 //------------------------------clear_dom_lca_tags------------------------------
3423 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3424 // Intended use does not involve any growth for the array, so it could
3425 // be of fixed size.
3426 void PhaseIdealLoop::clear_dom_lca_tags() {
3427   uint limit = C->unique() + 1;
3428   _dom_lca_tags.map( limit, NULL );
3429   _dom_lca_tags.clear();
3430 #ifdef ASSERT
3431   for( uint i = 0; i < limit; ++i ) {
3432     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3433   }
3434 #endif // ASSERT
3435 }
3436 
3437 //------------------------------build_loop_late--------------------------------
3438 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3439 // Second pass finds latest legal placement, and ideal loop placement.
3440 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3441   while (worklist.size() != 0) {
3442     Node *n = worklist.pop();
3443     // Only visit once
3444     if (visited.test_set(n->_idx)) continue;
3445     uint cnt = n->outcnt();
3446     uint   i = 0;
3447     while (true) {
3448       assert( _nodes[n->_idx], "no dead nodes" );
3449       // Visit all children
3450       if (i < cnt) {
3451         Node* use = n->raw_out(i);
3452         ++i;
3453         // Check for dead uses.  Aggressively prune such junk.  It might be
3454         // dead in the global sense, but still have local uses so I cannot
3455         // easily call 'remove_dead_node'.
3456         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
3457           // Due to cycles, we might not hit the same fixed point in the verify
3458           // pass as we do in the regular pass.  Instead, visit such phis as
3459           // simple uses of the loop head.
3460           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
3461             if( !visited.test(use->_idx) )
3462               worklist.push(use);
3463           } else if( !visited.test_set(use->_idx) ) {
3464             nstack.push(n, i); // Save parent and next use's index.
3465             n   = use;         // Process all children of current use.
3466             cnt = use->outcnt();
3467             i   = 0;
3468           }
3469         } else {
3470           // Do not visit around the backedge of loops via data edges.
3471           // push dead code onto a worklist
3472           _deadlist.push(use);
3473         }
3474       } else {
3475         // All of n's children have been processed, complete post-processing.
3476         build_loop_late_post(n);
3477         if (nstack.is_empty()) {
3478           // Finished all nodes on stack.
3479           // Process next node on the worklist.
3480           break;
3481         }
3482         // Get saved parent node and next use's index. Visit the rest of uses.
3483         n   = nstack.node();
3484         cnt = n->outcnt();
3485         i   = nstack.index();
3486         nstack.pop();
3487       }
3488     }
3489   }
3490 }
3491 
3492 //------------------------------build_loop_late_post---------------------------
3493 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3494 // Second pass finds latest legal placement, and ideal loop placement.
3495 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
3496 
3497   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
3498     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
3499   }
3500 
3501 #ifdef ASSERT
3502   if (_verify_only && !n->is_CFG()) {
3503     // Check def-use domination.
3504     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
3505   }
3506 #endif
3507 
3508   // CFG and pinned nodes already handled
3509   if( n->in(0) ) {
3510     if( n->in(0)->is_top() ) return; // Dead?
3511 
3512     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
3513     // _must_ be pinned (they have to observe their control edge of course).
3514     // Unlike Stores (which modify an unallocable resource, the memory
3515     // state), Mods/Loads can float around.  So free them up.
3516     bool pinned = true;
3517     switch( n->Opcode() ) {
3518     case Op_DivI:
3519     case Op_DivF:
3520     case Op_DivD:
3521     case Op_ModI:
3522     case Op_ModF:
3523     case Op_ModD:
3524     case Op_LoadB:              // Same with Loads; they can sink
3525     case Op_LoadUB:             // during loop optimizations.
3526     case Op_LoadUS:
3527     case Op_LoadD:
3528     case Op_LoadF:
3529     case Op_LoadI:
3530     case Op_LoadKlass:
3531     case Op_LoadNKlass:
3532     case Op_LoadL:
3533     case Op_LoadS:
3534     case Op_LoadP:
3535     case Op_LoadN:
3536     case Op_LoadRange:
3537     case Op_LoadD_unaligned:
3538     case Op_LoadL_unaligned:
3539     case Op_StrComp:            // Does a bunch of load-like effects
3540     case Op_StrEquals:
3541     case Op_StrIndexOf:
3542     case Op_AryEq:
3543     case Op_ShenandoahReadBarrier:
3544     case Op_ShenandoahWriteBarrier:
3545     case Op_ShenandoahWBMemProj:
3546       pinned = false;
3547     }
3548     if( pinned ) {
3549       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
3550       if( !chosen_loop->_child )       // Inner loop?
3551         chosen_loop->_body.push(n); // Collect inner loops
3552       return;
3553     }
3554   } else {                      // No slot zero
3555     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
3556       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
3557       return;
3558     }
3559     assert(!n->is_CFG() || n->outcnt() == 0, "");
3560   }
3561 
3562   // Do I have a "safe range" I can select over?
3563   Node *early = get_ctrl(n);// Early location already computed
3564 
3565   // Compute latest point this Node can go
3566   Node *LCA = get_late_ctrl( n, early );
3567   // LCA is NULL due to uses being dead
3568   if( LCA == NULL ) {
3569 #ifdef ASSERT
3570     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
3571       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
3572     }
3573 #endif
3574     _nodes.map(n->_idx, 0);     // This node is useless
3575     _deadlist.push(n);
3576     return;
3577   }
3578   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
3579 
3580   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
3581   Node *least = legal;          // Best legal position so far
3582   while( early != legal ) {     // While not at earliest legal
3583 #ifdef ASSERT
3584     if (legal->is_Start() && !early->is_Root()) {
3585       // Bad graph. Print idom path and fail.
3586       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
3587       assert(false, "Bad graph detected in build_loop_late");
3588     }
3589 #endif
3590     // Find least loop nesting depth
3591     legal = idom(legal);        // Bump up the IDOM tree
3592     // Check for lower nesting depth
3593     if( get_loop(legal)->_nest < get_loop(least)->_nest )
3594       least = legal;
3595   }
3596   assert(early == legal || legal != C->root(), "bad dominance of inputs");
3597 
3598   // Try not to place code on a loop entry projection
3599   // which can inhibit range check elimination.
3600   if (least != early) {
3601     Node* ctrl_out = least->unique_ctrl_out();
3602     if (UseShenandoahGC &&
3603         ctrl_out && ctrl_out->is_Loop() &&
3604         least == ctrl_out->in(LoopNode::EntryControl)) {
3605       Node* new_ctrl = least;
3606       if (find_predicate_insertion_point(new_ctrl, Deoptimization::Reason_loop_limit_check) != NULL) {
3607         new_ctrl = new_ctrl->in(0)->in(0);
3608         assert(is_dominator(early, new_ctrl), "least != early so we can move up the dominator tree");
3609       }
3610       if (find_predicate_insertion_point(new_ctrl, Deoptimization::Reason_predicate) != NULL) {
3611         Node* c = new_ctrl->in(0)->in(0);
3612         assert(is_dominator(early, c), "least != early so we can move up the dominator tree");
3613         new_ctrl = c;
3614       }
3615       if (new_ctrl != least) {
3616         least = new_ctrl;
3617       } else if (ctrl_out->is_CountedLoop()) {
3618         Node* least_dom = idom(least);
3619         if (get_loop(least_dom)->is_member(get_loop(least))) {
3620           least = least_dom;
3621         }
3622       }
3623     } else if (ctrl_out && ctrl_out->is_CountedLoop() &&
3624                least == ctrl_out->in(LoopNode::EntryControl)) {
3625       Node* least_dom = idom(least);
3626       if (get_loop(least_dom)->is_member(get_loop(least))) {
3627         least = least_dom;
3628       }
3629     }
3630   }
3631 
3632 #ifdef ASSERT
3633   // If verifying, verify that 'verify_me' has a legal location
3634   // and choose it as our location.
3635   if( _verify_me ) {
3636     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
3637     Node *legal = LCA;
3638     while( early != legal ) {   // While not at earliest legal
3639       if( legal == v_ctrl ) break;  // Check for prior good location
3640       legal = idom(legal)      ;// Bump up the IDOM tree
3641     }
3642     // Check for prior good location
3643     if( legal == v_ctrl ) least = legal; // Keep prior if found
3644   }
3645 #endif
3646 
3647   // Assign discovered "here or above" point
3648   least = find_non_split_ctrl(least);
3649   set_ctrl(n, least);
3650 
3651   // Collect inner loop bodies
3652   IdealLoopTree *chosen_loop = get_loop(least);
3653   if( !chosen_loop->_child )   // Inner loop?
3654     chosen_loop->_body.push(n);// Collect inner loops
3655 
3656   if (n->Opcode() == Op_ShenandoahWriteBarrier) {
3657     // The write barrier and its memory proj must have the same
3658     // control otherwise some loop opts could put nodes (Phis) between
3659     // them
3660     Node* proj = n->find_out_with(Op_ShenandoahWBMemProj);
3661     if (proj != NULL) {
3662       set_ctrl_and_loop(proj, least);
3663     }
3664   }
3665 }
3666 
3667 #ifdef ASSERT
3668 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
3669   tty->print_cr("%s", msg);
3670   tty->print("n: "); n->dump();
3671   tty->print("early(n): "); early->dump();
3672   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
3673       n->in(0) != early && !n->in(0)->is_Root()) {
3674     tty->print("n->in(0): "); n->in(0)->dump();
3675   }
3676   for (uint i = 1; i < n->req(); i++) {
3677     Node* in1 = n->in(i);
3678     if (in1 != NULL && in1 != n && !in1->is_top()) {
3679       tty->print("n->in(%d): ", i); in1->dump();
3680       Node* in1_early = get_ctrl(in1);
3681       tty->print("early(n->in(%d)): ", i); in1_early->dump();
3682       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
3683           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
3684         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
3685       }
3686       for (uint j = 1; j < in1->req(); j++) {
3687         Node* in2 = in1->in(j);
3688         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
3689           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
3690           Node* in2_early = get_ctrl(in2);
3691           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
3692           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
3693               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
3694             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
3695           }
3696         }
3697       }
3698     }
3699   }
3700   tty->cr();
3701   tty->print("LCA(n): "); LCA->dump();
3702   for (uint i = 0; i < n->outcnt(); i++) {
3703     Node* u1 = n->raw_out(i);
3704     if (u1 == n)
3705       continue;
3706     tty->print("n->out(%d): ", i); u1->dump();
3707     if (u1->is_CFG()) {
3708       for (uint j = 0; j < u1->outcnt(); j++) {
3709         Node* u2 = u1->raw_out(j);
3710         if (u2 != u1 && u2 != n && u2->is_CFG()) {
3711           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
3712         }
3713       }
3714     } else {
3715       Node* u1_later = get_ctrl(u1);
3716       tty->print("later(n->out(%d)): ", i); u1_later->dump();
3717       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
3718           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
3719         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
3720       }
3721       for (uint j = 0; j < u1->outcnt(); j++) {
3722         Node* u2 = u1->raw_out(j);
3723         if (u2 == n || u2 == u1)
3724           continue;
3725         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
3726         if (!u2->is_CFG()) {
3727           Node* u2_later = get_ctrl(u2);
3728           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
3729           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
3730               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
3731             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
3732           }
3733         }
3734       }
3735     }
3736   }
3737   tty->cr();
3738   int ct = 0;
3739   Node *dbg_legal = LCA;
3740   while(!dbg_legal->is_Start() && ct < 100) {
3741     tty->print("idom[%d] ",ct); dbg_legal->dump();
3742     ct++;
3743     dbg_legal = idom(dbg_legal);
3744   }
3745   tty->cr();
3746 }
3747 #endif
3748 
3749 #ifndef PRODUCT
3750 //------------------------------dump-------------------------------------------
3751 void PhaseIdealLoop::dump( ) const {
3752   ResourceMark rm;
3753   Arena* arena = Thread::current()->resource_area();
3754   Node_Stack stack(arena, C->live_nodes() >> 2);
3755   Node_List rpo_list;
3756   VectorSet visited(arena);
3757   visited.set(C->top()->_idx);
3758   rpo( C->root(), stack, visited, rpo_list );
3759   // Dump root loop indexed by last element in PO order
3760   dump( _ltree_root, rpo_list.size(), rpo_list );
3761 }
3762 
3763 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
3764   loop->dump_head();
3765 
3766   // Now scan for CFG nodes in the same loop
3767   for( uint j=idx; j > 0;  j-- ) {
3768     Node *n = rpo_list[j-1];
3769     if( !_nodes[n->_idx] )      // Skip dead nodes
3770       continue;
3771     if( get_loop(n) != loop ) { // Wrong loop nest
3772       if( get_loop(n)->_head == n &&    // Found nested loop?
3773           get_loop(n)->_parent == loop )
3774         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
3775       continue;
3776     }
3777 
3778     // Dump controlling node
3779     for( uint x = 0; x < loop->_nest; x++ )
3780       tty->print("  ");
3781     tty->print("C");
3782     if( n == C->root() ) {
3783       n->dump();
3784     } else {
3785       Node* cached_idom   = idom_no_update(n);
3786       Node *computed_idom = n->in(0);
3787       if( n->is_Region() ) {
3788         computed_idom = compute_idom(n);
3789         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
3790         // any MultiBranch ctrl node), so apply a similar transform to
3791         // the cached idom returned from idom_no_update.
3792         cached_idom = find_non_split_ctrl(cached_idom);
3793       }
3794       tty->print(" ID:%d",computed_idom->_idx);
3795       n->dump();
3796       if( cached_idom != computed_idom ) {
3797         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
3798                       computed_idom->_idx, cached_idom->_idx);
3799       }
3800     }
3801     // Dump nodes it controls
3802     for( uint k = 0; k < _nodes.Size(); k++ ) {
3803       // (k < C->unique() && get_ctrl(find(k)) == n)
3804       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
3805         Node *m = C->root()->find(k);
3806         if( m && m->outcnt() > 0 ) {
3807           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
3808             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
3809                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
3810           }
3811           for( uint j = 0; j < loop->_nest; j++ )
3812             tty->print("  ");
3813           tty->print(" ");
3814           m->dump();
3815         }
3816       }
3817     }
3818   }
3819 }
3820 #endif
3821 
3822 // Collect a R-P-O for the whole CFG.
3823 // Result list is in post-order (scan backwards for RPO)
3824 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
3825   stk.push(start, 0);
3826   visited.set(start->_idx);
3827 
3828   while (stk.is_nonempty()) {
3829     Node* m   = stk.node();
3830     uint  idx = stk.index();
3831     if (idx < m->outcnt()) {
3832       stk.set_index(idx + 1);
3833       Node* n = m->raw_out(idx);
3834       if (n->is_CFG() && !visited.test_set(n->_idx)) {
3835         stk.push(n, 0);
3836       }
3837     } else {
3838       rpo_list.push(m);
3839       stk.pop();
3840     }
3841   }
3842 }
3843 
3844 
3845 //=============================================================================
3846 //------------------------------LoopTreeIterator-----------------------------------
3847 
3848 // Advance to next loop tree using a preorder, left-to-right traversal.
3849 void LoopTreeIterator::next() {
3850   assert(!done(), "must not be done.");
3851   if (_curnt->_child != NULL) {
3852     _curnt = _curnt->_child;
3853   } else if (_curnt->_next != NULL) {
3854     _curnt = _curnt->_next;
3855   } else {
3856     while (_curnt != _root && _curnt->_next == NULL) {
3857       _curnt = _curnt->_parent;
3858     }
3859     if (_curnt == _root) {
3860       _curnt = NULL;
3861       assert(done(), "must be done.");
3862     } else {
3863       assert(_curnt->_next != NULL, "must be more to do");
3864       _curnt = _curnt->_next;
3865     }
3866   }
3867 }