1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "memory/universe.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "oops/symbol.hpp"
  39 #include "runtime/compilationPolicy.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/interfaceSupport.hpp"
  43 #include "runtime/mutexLocker.hpp"
  44 #include "runtime/orderAccess.inline.hpp"
  45 #include "runtime/osThread.hpp"
  46 #include "runtime/safepoint.hpp"
  47 #include "runtime/signature.hpp"
  48 #include "runtime/stubCodeGenerator.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/sweeper.hpp"
  51 #include "runtime/synchronizer.hpp"
  52 #include "runtime/thread.inline.hpp"
  53 #include "services/runtimeService.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/macros.hpp"
  56 #ifdef TARGET_ARCH_x86
  57 # include "nativeInst_x86.hpp"
  58 # include "vmreg_x86.inline.hpp"
  59 #endif
  60 #ifdef TARGET_ARCH_aarch64
  61 # include "nativeInst_aarch64.hpp"
  62 # include "vmreg_aarch64.inline.hpp"
  63 #endif
  64 #ifdef TARGET_ARCH_sparc
  65 # include "nativeInst_sparc.hpp"
  66 # include "vmreg_sparc.inline.hpp"
  67 #endif
  68 #ifdef TARGET_ARCH_zero
  69 # include "nativeInst_zero.hpp"
  70 # include "vmreg_zero.inline.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_arm
  73 # include "nativeInst_arm.hpp"
  74 # include "vmreg_arm.inline.hpp"
  75 #endif
  76 #ifdef TARGET_ARCH_ppc
  77 # include "nativeInst_ppc.hpp"
  78 # include "vmreg_ppc.inline.hpp"
  79 #endif
  80 #if INCLUDE_ALL_GCS
  81 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  82 #include "gc_implementation/shared/suspendibleThreadSet.hpp"
  83 #endif // INCLUDE_ALL_GCS
  84 #ifdef COMPILER1
  85 #include "c1/c1_globals.hpp"
  86 #endif
  87 
  88 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  89 
  90 // --------------------------------------------------------------------------------------------------
  91 // Implementation of Safepoint begin/end
  92 
  93 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  94 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  95 volatile int SafepointSynchronize::_safepoint_counter = 0;
  96 int SafepointSynchronize::_current_jni_active_count = 0;
  97 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  98 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  99 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
 100 static bool timeout_error_printed = false;
 101 
 102 // Roll all threads forward to a safepoint and suspend them all
 103 void SafepointSynchronize::begin() {
 104 
 105   Thread* myThread = Thread::current();
 106   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
 107 
 108   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 109     _safepoint_begin_time = os::javaTimeNanos();
 110     _ts_of_current_safepoint = tty->time_stamp().seconds();
 111   }
 112 
 113 #if INCLUDE_ALL_GCS
 114   if (UseConcMarkSweepGC) {
 115     // In the future we should investigate whether CMS can use the
 116     // more-general mechanism below.  DLD (01/05).
 117     ConcurrentMarkSweepThread::synchronize(false);
 118   } else if (UseG1GC) {
 119     SuspendibleThreadSet::synchronize();
 120   }
 121 #endif // INCLUDE_ALL_GCS
 122 
 123   // By getting the Threads_lock, we assure that no threads are about to start or
 124   // exit. It is released again in SafepointSynchronize::end().
 125   Threads_lock->lock();
 126 
 127   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 128 
 129   int nof_threads = Threads::number_of_threads();
 130 
 131   if (TraceSafepoint) {
 132     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
 133   }
 134 
 135   RuntimeService::record_safepoint_begin();
 136 
 137   MutexLocker mu(Safepoint_lock);
 138 
 139   // Reset the count of active JNI critical threads
 140   _current_jni_active_count = 0;
 141 
 142   // Set number of threads to wait for, before we initiate the callbacks
 143   _waiting_to_block = nof_threads;
 144   TryingToBlock     = 0 ;
 145   int still_running = nof_threads;
 146 
 147   // Save the starting time, so that it can be compared to see if this has taken
 148   // too long to complete.
 149   jlong safepoint_limit_time = 0;
 150   timeout_error_printed = false;
 151 
 152   // PrintSafepointStatisticsTimeout can be specified separately. When
 153   // specified, PrintSafepointStatistics will be set to true in
 154   // deferred_initialize_stat method. The initialization has to be done
 155   // early enough to avoid any races. See bug 6880029 for details.
 156   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 157     deferred_initialize_stat();
 158   }
 159 
 160   // Begin the process of bringing the system to a safepoint.
 161   // Java threads can be in several different states and are
 162   // stopped by different mechanisms:
 163   //
 164   //  1. Running interpreted
 165   //     The interpeter dispatch table is changed to force it to
 166   //     check for a safepoint condition between bytecodes.
 167   //  2. Running in native code
 168   //     When returning from the native code, a Java thread must check
 169   //     the safepoint _state to see if we must block.  If the
 170   //     VM thread sees a Java thread in native, it does
 171   //     not wait for this thread to block.  The order of the memory
 172   //     writes and reads of both the safepoint state and the Java
 173   //     threads state is critical.  In order to guarantee that the
 174   //     memory writes are serialized with respect to each other,
 175   //     the VM thread issues a memory barrier instruction
 176   //     (on MP systems).  In order to avoid the overhead of issuing
 177   //     a memory barrier for each Java thread making native calls, each Java
 178   //     thread performs a write to a single memory page after changing
 179   //     the thread state.  The VM thread performs a sequence of
 180   //     mprotect OS calls which forces all previous writes from all
 181   //     Java threads to be serialized.  This is done in the
 182   //     os::serialize_thread_states() call.  This has proven to be
 183   //     much more efficient than executing a membar instruction
 184   //     on every call to native code.
 185   //  3. Running compiled Code
 186   //     Compiled code reads a global (Safepoint Polling) page that
 187   //     is set to fault if we are trying to get to a safepoint.
 188   //  4. Blocked
 189   //     A thread which is blocked will not be allowed to return from the
 190   //     block condition until the safepoint operation is complete.
 191   //  5. In VM or Transitioning between states
 192   //     If a Java thread is currently running in the VM or transitioning
 193   //     between states, the safepointing code will wait for the thread to
 194   //     block itself when it attempts transitions to a new state.
 195   //
 196   _state            = _synchronizing;
 197   OrderAccess::fence();
 198 
 199   // Flush all thread states to memory
 200   if (!UseMembar) {
 201     os::serialize_thread_states();
 202   }
 203 
 204   // Make interpreter safepoint aware
 205   Interpreter::notice_safepoints();
 206 
 207   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
 208     // Make polling safepoint aware
 209     guarantee (PageArmed == 0, "invariant") ;
 210     PageArmed = 1 ;
 211     os::make_polling_page_unreadable();
 212   }
 213 
 214   // Consider using active_processor_count() ... but that call is expensive.
 215   int ncpus = os::processor_count() ;
 216 
 217 #ifdef ASSERT
 218   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 219     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 220     // Clear the visited flag to ensure that the critical counts are collected properly.
 221     cur->set_visited_for_critical_count(false);
 222   }
 223 #endif // ASSERT
 224 
 225   if (SafepointTimeout)
 226     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 227 
 228   // Iterate through all threads until it have been determined how to stop them all at a safepoint
 229   unsigned int iterations = 0;
 230   int steps = 0 ;
 231   while(still_running > 0) {
 232     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 233       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 234       ThreadSafepointState *cur_state = cur->safepoint_state();
 235       if (cur_state->is_running()) {
 236         cur_state->examine_state_of_thread();
 237         if (!cur_state->is_running()) {
 238            still_running--;
 239            // consider adjusting steps downward:
 240            //   steps = 0
 241            //   steps -= NNN
 242            //   steps >>= 1
 243            //   steps = MIN(steps, 2000-100)
 244            //   if (iterations != 0) steps -= NNN
 245         }
 246         if (TraceSafepoint && Verbose) cur_state->print();
 247       }
 248     }
 249 
 250     if (PrintSafepointStatistics && iterations == 0) {
 251       begin_statistics(nof_threads, still_running);
 252     }
 253 
 254     if (still_running > 0) {
 255       // Check for if it takes to long
 256       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 257         print_safepoint_timeout(_spinning_timeout);
 258       }
 259 
 260       // Spin to avoid context switching.
 261       // There's a tension between allowing the mutators to run (and rendezvous)
 262       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 263       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 264       // spinning by the VM thread on a saturated system can increase rendezvous latency.
 265       // Blocking or yielding incur their own penalties in the form of context switching
 266       // and the resultant loss of $ residency.
 267       //
 268       // Further complicating matters is that yield() does not work as naively expected
 269       // on many platforms -- yield() does not guarantee that any other ready threads
 270       // will run.   As such we revert yield_all() after some number of iterations.
 271       // Yield_all() is implemented as a short unconditional sleep on some platforms.
 272       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 273       // can actually increase the time it takes the VM thread to detect that a system-wide
 274       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 275       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 276       // In that case the mutators will be stalled waiting for the safepoint to complete and the
 277       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 278       // will eventually wake up and detect that all mutators are safe, at which point
 279       // we'll again make progress.
 280       //
 281       // Beware too that that the VMThread typically runs at elevated priority.
 282       // Its default priority is higher than the default mutator priority.
 283       // Obviously, this complicates spinning.
 284       //
 285       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 286       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 287       //
 288       // See the comments in synchronizer.cpp for additional remarks on spinning.
 289       //
 290       // In the future we might:
 291       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
 292       //    This is tricky as the path used by a thread exiting the JVM (say on
 293       //    on JNI call-out) simply stores into its state field.  The burden
 294       //    is placed on the VM thread, which must poll (spin).
 295       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 296       //    we might aggressively scan the stacks of threads that are already safe.
 297       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 298       //    If all the mutators are ONPROC there's no reason to sleep or yield.
 299       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 300       // 5. Check system saturation.  If the system is not fully saturated then
 301       //    simply spin and avoid sleep/yield.
 302       // 6. As still-running mutators rendezvous they could unpark the sleeping
 303       //    VMthread.  This works well for still-running mutators that become
 304       //    safe.  The VMthread must still poll for mutators that call-out.
 305       // 7. Drive the policy on time-since-begin instead of iterations.
 306       // 8. Consider making the spin duration a function of the # of CPUs:
 307       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 308       //    Alternately, instead of counting iterations of the outer loop
 309       //    we could count the # of threads visited in the inner loop, above.
 310       // 9. On windows consider using the return value from SwitchThreadTo()
 311       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 312 
 313       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
 314          guarantee (PageArmed == 0, "invariant") ;
 315          PageArmed = 1 ;
 316          os::make_polling_page_unreadable();
 317       }
 318 
 319       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 320       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 321       ++steps ;
 322       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 323         SpinPause() ;     // MP-Polite spin
 324       } else
 325       if (steps < DeferThrSuspendLoopCount) {
 326         os::NakedYield() ;
 327       } else {
 328         os::yield_all(steps) ;
 329         // Alternately, the VM thread could transiently depress its scheduling priority or
 330         // transiently increase the priority of the tardy mutator(s).
 331       }
 332 
 333       iterations ++ ;
 334     }
 335     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 336   }
 337   assert(still_running == 0, "sanity check");
 338 
 339   if (PrintSafepointStatistics) {
 340     update_statistics_on_spin_end();
 341   }
 342 
 343   // wait until all threads are stopped
 344   while (_waiting_to_block > 0) {
 345     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
 346     if (!SafepointTimeout || timeout_error_printed) {
 347       Safepoint_lock->wait(true);  // true, means with no safepoint checks
 348     } else {
 349       // Compute remaining time
 350       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 351 
 352       // If there is no remaining time, then there is an error
 353       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 354         print_safepoint_timeout(_blocking_timeout);
 355       }
 356     }
 357   }
 358   assert(_waiting_to_block == 0, "sanity check");
 359 
 360 #ifndef PRODUCT
 361   if (SafepointTimeout) {
 362     jlong current_time = os::javaTimeNanos();
 363     if (safepoint_limit_time < current_time) {
 364       tty->print_cr("# SafepointSynchronize: Finished after "
 365                     INT64_FORMAT_W(6) " ms",
 366                     ((current_time - safepoint_limit_time) / MICROUNITS +
 367                      SafepointTimeoutDelay));
 368     }
 369   }
 370 #endif
 371 
 372   assert((_safepoint_counter & 0x1) == 0, "must be even");
 373   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 374   _safepoint_counter ++;
 375 
 376   // Record state
 377   _state = _synchronized;
 378 
 379   OrderAccess::fence();
 380 
 381 #ifdef ASSERT
 382   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 383     // make sure all the threads were visited
 384     assert(cur->was_visited_for_critical_count(), "missed a thread");
 385   }
 386 #endif // ASSERT
 387 
 388   // Update the count of active JNI critical regions
 389   GC_locker::set_jni_lock_count(_current_jni_active_count);
 390 
 391   if (TraceSafepoint) {
 392     VM_Operation *op = VMThread::vm_operation();
 393     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
 394   }
 395 
 396   RuntimeService::record_safepoint_synchronized();
 397   if (PrintSafepointStatistics) {
 398     update_statistics_on_sync_end(os::javaTimeNanos());
 399   }
 400 
 401   // Call stuff that needs to be run when a safepoint is just about to be completed
 402   do_cleanup_tasks();
 403 
 404   if (PrintSafepointStatistics) {
 405     // Record how much time spend on the above cleanup tasks
 406     update_statistics_on_cleanup_end(os::javaTimeNanos());
 407   }
 408 }
 409 
 410 // Wake up all threads, so they are ready to resume execution after the safepoint
 411 // operation has been carried out
 412 void SafepointSynchronize::end() {
 413 
 414   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 415   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 416   _safepoint_counter ++;
 417   // memory fence isn't required here since an odd _safepoint_counter
 418   // value can do no harm and a fence is issued below anyway.
 419 
 420   DEBUG_ONLY(Thread* myThread = Thread::current();)
 421   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 422 
 423   if (PrintSafepointStatistics) {
 424     end_statistics(os::javaTimeNanos());
 425   }
 426 
 427 #ifdef ASSERT
 428   // A pending_exception cannot be installed during a safepoint.  The threads
 429   // may install an async exception after they come back from a safepoint into
 430   // pending_exception after they unblock.  But that should happen later.
 431   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 432     assert (!(cur->has_pending_exception() &&
 433               cur->safepoint_state()->is_at_poll_safepoint()),
 434             "safepoint installed a pending exception");
 435   }
 436 #endif // ASSERT
 437 
 438   if (PageArmed) {
 439     // Make polling safepoint aware
 440     os::make_polling_page_readable();
 441     PageArmed = 0 ;
 442   }
 443 
 444   // Remove safepoint check from interpreter
 445   Interpreter::ignore_safepoints();
 446 
 447   {
 448     MutexLocker mu(Safepoint_lock);
 449 
 450     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 451 
 452     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 453     // when they get restarted.
 454     _state = _not_synchronized;
 455     OrderAccess::fence();
 456 
 457     if (TraceSafepoint) {
 458        tty->print_cr("Leaving safepoint region");
 459     }
 460 
 461     // Start suspended threads
 462     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 463       // A problem occurring on Solaris is when attempting to restart threads
 464       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 465       // to the next one (since it has been running the longest).  We then have
 466       // to wait for a cpu to become available before we can continue restarting
 467       // threads.
 468       // FIXME: This causes the performance of the VM to degrade when active and with
 469       // large numbers of threads.  Apparently this is due to the synchronous nature
 470       // of suspending threads.
 471       //
 472       // TODO-FIXME: the comments above are vestigial and no longer apply.
 473       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 474       if (VMThreadHintNoPreempt) {
 475         os::hint_no_preempt();
 476       }
 477       ThreadSafepointState* cur_state = current->safepoint_state();
 478       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 479       cur_state->restart();
 480       assert(cur_state->is_running(), "safepoint state has not been reset");
 481     }
 482 
 483     RuntimeService::record_safepoint_end();
 484 
 485     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 486     // blocked in signal_thread_blocked
 487     Threads_lock->unlock();
 488 
 489   }
 490 #if INCLUDE_ALL_GCS
 491   // If there are any concurrent GC threads resume them.
 492   if (UseConcMarkSweepGC) {
 493     ConcurrentMarkSweepThread::desynchronize(false);
 494   } else if (UseG1GC) {
 495     SuspendibleThreadSet::desynchronize();
 496   }
 497 #endif // INCLUDE_ALL_GCS
 498   // record this time so VMThread can keep track how much time has elasped
 499   // since last safepoint.
 500   _end_of_last_safepoint = os::javaTimeMillis();
 501 }
 502 
 503 bool SafepointSynchronize::is_cleanup_needed() {
 504   // Need a safepoint if some inline cache buffers is non-empty
 505   if (!InlineCacheBuffer::is_empty()) return true;
 506   return false;
 507 }
 508 
 509 
 510 
 511 // Various cleaning tasks that should be done periodically at safepoints
 512 void SafepointSynchronize::do_cleanup_tasks() {
 513   {
 514     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
 515     ObjectSynchronizer::deflate_idle_monitors();
 516   }
 517 
 518   {
 519     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
 520     InlineCacheBuffer::update_inline_caches();
 521   }
 522   {
 523     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
 524     CompilationPolicy::policy()->do_safepoint_work();
 525   }
 526 
 527   {
 528     TraceTime t4("mark nmethods", TraceSafepointCleanupTime);
 529     NMethodSweeper::mark_active_nmethods();
 530   }
 531 
 532   if (SymbolTable::needs_rehashing()) {
 533     TraceTime t5("rehashing symbol table", TraceSafepointCleanupTime);
 534     SymbolTable::rehash_table();
 535   }
 536 
 537   if (StringTable::needs_rehashing()) {
 538     TraceTime t6("rehashing string table", TraceSafepointCleanupTime);
 539     StringTable::rehash_table();
 540   }
 541 
 542   // rotate log files?
 543   if (UseGCLogFileRotation) {
 544     gclog_or_tty->rotate_log(false);
 545   }
 546 
 547   {
 548     // CMS delays purging the CLDG until the beginning of the next safepoint and to
 549     // make sure concurrent sweep is done
 550     TraceTime t7("purging class loader data graph", TraceSafepointCleanupTime);
 551     ClassLoaderDataGraph::purge_if_needed();
 552   }
 553 }
 554 
 555 
 556 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 557   switch(state) {
 558   case _thread_in_native:
 559     // native threads are safe if they have no java stack or have walkable stack
 560     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 561 
 562    // blocked threads should have already have walkable stack
 563   case _thread_blocked:
 564     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 565     return true;
 566 
 567   default:
 568     return false;
 569   }
 570 }
 571 
 572 
 573 // See if the thread is running inside a lazy critical native and
 574 // update the thread critical count if so.  Also set a suspend flag to
 575 // cause the native wrapper to return into the JVM to do the unlock
 576 // once the native finishes.
 577 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 578   if (state == _thread_in_native &&
 579       thread->has_last_Java_frame() &&
 580       thread->frame_anchor()->walkable()) {
 581     // This thread might be in a critical native nmethod so look at
 582     // the top of the stack and increment the critical count if it
 583     // is.
 584     frame wrapper_frame = thread->last_frame();
 585     CodeBlob* stub_cb = wrapper_frame.cb();
 586     if (stub_cb != NULL &&
 587         stub_cb->is_nmethod() &&
 588         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 589       // A thread could potentially be in a critical native across
 590       // more than one safepoint, so only update the critical state on
 591       // the first one.  When it returns it will perform the unlock.
 592       if (!thread->do_critical_native_unlock()) {
 593 #ifdef ASSERT
 594         if (!thread->in_critical()) {
 595           GC_locker::increment_debug_jni_lock_count();
 596         }
 597 #endif
 598         thread->enter_critical();
 599         // Make sure the native wrapper calls back on return to
 600         // perform the needed critical unlock.
 601         thread->set_critical_native_unlock();
 602       }
 603     }
 604   }
 605 }
 606 
 607 
 608 
 609 // -------------------------------------------------------------------------------------------------------
 610 // Implementation of Safepoint callback point
 611 
 612 void SafepointSynchronize::block(JavaThread *thread) {
 613   assert(thread != NULL, "thread must be set");
 614   assert(thread->is_Java_thread(), "not a Java thread");
 615 
 616   // Threads shouldn't block if they are in the middle of printing, but...
 617   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 618 
 619   // Only bail from the block() call if the thread is gone from the
 620   // thread list; starting to exit should still block.
 621   if (thread->is_terminated()) {
 622      // block current thread if we come here from native code when VM is gone
 623      thread->block_if_vm_exited();
 624 
 625      // otherwise do nothing
 626      return;
 627   }
 628 
 629   JavaThreadState state = thread->thread_state();
 630   thread->frame_anchor()->make_walkable(thread);
 631 
 632   // Check that we have a valid thread_state at this point
 633   switch(state) {
 634     case _thread_in_vm_trans:
 635     case _thread_in_Java:        // From compiled code
 636 
 637       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 638       // we pretend we are still in the VM.
 639       thread->set_thread_state(_thread_in_vm);
 640 
 641       if (is_synchronizing()) {
 642          Atomic::inc (&TryingToBlock) ;
 643       }
 644 
 645       // We will always be holding the Safepoint_lock when we are examine the state
 646       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 647       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 648       Safepoint_lock->lock_without_safepoint_check();
 649       if (is_synchronizing()) {
 650         // Decrement the number of threads to wait for and signal vm thread
 651         assert(_waiting_to_block > 0, "sanity check");
 652         _waiting_to_block--;
 653         thread->safepoint_state()->set_has_called_back(true);
 654 
 655         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 656         if (thread->in_critical()) {
 657           // Notice that this thread is in a critical section
 658           increment_jni_active_count();
 659         }
 660 
 661         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 662         if (_waiting_to_block == 0) {
 663           Safepoint_lock->notify_all();
 664         }
 665       }
 666 
 667       // We transition the thread to state _thread_blocked here, but
 668       // we can't do our usual check for external suspension and then
 669       // self-suspend after the lock_without_safepoint_check() call
 670       // below because we are often called during transitions while
 671       // we hold different locks. That would leave us suspended while
 672       // holding a resource which results in deadlocks.
 673       thread->set_thread_state(_thread_blocked);
 674       Safepoint_lock->unlock();
 675 
 676       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 677       // the entire safepoint, the threads will all line up here during the safepoint.
 678       Threads_lock->lock_without_safepoint_check();
 679       // restore original state. This is important if the thread comes from compiled code, so it
 680       // will continue to execute with the _thread_in_Java state.
 681       thread->set_thread_state(state);
 682       Threads_lock->unlock();
 683       break;
 684 
 685     case _thread_in_native_trans:
 686     case _thread_blocked_trans:
 687     case _thread_new_trans:
 688       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 689         thread->print_thread_state();
 690         fatal("Deadlock in safepoint code.  "
 691               "Should have called back to the VM before blocking.");
 692       }
 693 
 694       // We transition the thread to state _thread_blocked here, but
 695       // we can't do our usual check for external suspension and then
 696       // self-suspend after the lock_without_safepoint_check() call
 697       // below because we are often called during transitions while
 698       // we hold different locks. That would leave us suspended while
 699       // holding a resource which results in deadlocks.
 700       thread->set_thread_state(_thread_blocked);
 701 
 702       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 703       // the safepoint code might still be waiting for it to block. We need to change the state here,
 704       // so it can see that it is at a safepoint.
 705 
 706       // Block until the safepoint operation is completed.
 707       Threads_lock->lock_without_safepoint_check();
 708 
 709       // Restore state
 710       thread->set_thread_state(state);
 711 
 712       Threads_lock->unlock();
 713       break;
 714 
 715     default:
 716      fatal(err_msg("Illegal threadstate encountered: %d", state));
 717   }
 718 
 719   // Check for pending. async. exceptions or suspends - except if the
 720   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 721   // is called last since it grabs a lock and we only want to do that when
 722   // we must.
 723   //
 724   // Note: we never deliver an async exception at a polling point as the
 725   // compiler may not have an exception handler for it. The polling
 726   // code will notice the async and deoptimize and the exception will
 727   // be delivered. (Polling at a return point is ok though). Sure is
 728   // a lot of bother for a deprecated feature...
 729   //
 730   // We don't deliver an async exception if the thread state is
 731   // _thread_in_native_trans so JNI functions won't be called with
 732   // a surprising pending exception. If the thread state is going back to java,
 733   // async exception is checked in check_special_condition_for_native_trans().
 734 
 735   if (state != _thread_blocked_trans &&
 736       state != _thread_in_vm_trans &&
 737       thread->has_special_runtime_exit_condition()) {
 738     thread->handle_special_runtime_exit_condition(
 739       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 740   }
 741 }
 742 
 743 // ------------------------------------------------------------------------------------------------------
 744 // Exception handlers
 745 
 746 
 747 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 748   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 749   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 750   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 751 
 752   if (ShowSafepointMsgs) {
 753     tty->print("handle_polling_page_exception: ");
 754   }
 755 
 756   if (PrintSafepointStatistics) {
 757     inc_page_trap_count();
 758   }
 759 
 760   ThreadSafepointState* state = thread->safepoint_state();
 761 
 762   state->handle_polling_page_exception();
 763 }
 764 
 765 
 766 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 767   if (!timeout_error_printed) {
 768     timeout_error_printed = true;
 769     // Print out the thread infor which didn't reach the safepoint for debugging
 770     // purposes (useful when there are lots of threads in the debugger).
 771     tty->cr();
 772     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 773     if (reason ==  _spinning_timeout) {
 774       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 775     } else if (reason == _blocking_timeout) {
 776       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 777     }
 778 
 779     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 780     ThreadSafepointState *cur_state;
 781     ResourceMark rm;
 782     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 783         cur_thread = cur_thread->next()) {
 784       cur_state = cur_thread->safepoint_state();
 785 
 786       if (cur_thread->thread_state() != _thread_blocked &&
 787           ((reason == _spinning_timeout && cur_state->is_running()) ||
 788            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 789         tty->print("# ");
 790         cur_thread->print();
 791         tty->cr();
 792       }
 793     }
 794     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 795   }
 796 
 797   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 798   // ShowMessageBoxOnError.
 799   if (DieOnSafepointTimeout) {
 800     char msg[1024];
 801     VM_Operation *op = VMThread::vm_operation();
 802     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 803             SafepointTimeoutDelay,
 804             op != NULL ? op->name() : "no vm operation");
 805     fatal(msg);
 806   }
 807 }
 808 
 809 
 810 // -------------------------------------------------------------------------------------------------------
 811 // Implementation of ThreadSafepointState
 812 
 813 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 814   _thread = thread;
 815   _type   = _running;
 816   _has_called_back = false;
 817   _at_poll_safepoint = false;
 818 }
 819 
 820 void ThreadSafepointState::create(JavaThread *thread) {
 821   ThreadSafepointState *state = new ThreadSafepointState(thread);
 822   thread->set_safepoint_state(state);
 823 }
 824 
 825 void ThreadSafepointState::destroy(JavaThread *thread) {
 826   if (thread->safepoint_state()) {
 827     delete(thread->safepoint_state());
 828     thread->set_safepoint_state(NULL);
 829   }
 830 }
 831 
 832 void ThreadSafepointState::examine_state_of_thread() {
 833   assert(is_running(), "better be running or just have hit safepoint poll");
 834 
 835   JavaThreadState state = _thread->thread_state();
 836 
 837   // Save the state at the start of safepoint processing.
 838   _orig_thread_state = state;
 839 
 840   // Check for a thread that is suspended. Note that thread resume tries
 841   // to grab the Threads_lock which we own here, so a thread cannot be
 842   // resumed during safepoint synchronization.
 843 
 844   // We check to see if this thread is suspended without locking to
 845   // avoid deadlocking with a third thread that is waiting for this
 846   // thread to be suspended. The third thread can notice the safepoint
 847   // that we're trying to start at the beginning of its SR_lock->wait()
 848   // call. If that happens, then the third thread will block on the
 849   // safepoint while still holding the underlying SR_lock. We won't be
 850   // able to get the SR_lock and we'll deadlock.
 851   //
 852   // We don't need to grab the SR_lock here for two reasons:
 853   // 1) The suspend flags are both volatile and are set with an
 854   //    Atomic::cmpxchg() call so we should see the suspended
 855   //    state right away.
 856   // 2) We're being called from the safepoint polling loop; if
 857   //    we don't see the suspended state on this iteration, then
 858   //    we'll come around again.
 859   //
 860   bool is_suspended = _thread->is_ext_suspended();
 861   if (is_suspended) {
 862     roll_forward(_at_safepoint);
 863     return;
 864   }
 865 
 866   // Some JavaThread states have an initial safepoint state of
 867   // running, but are actually at a safepoint. We will happily
 868   // agree and update the safepoint state here.
 869   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 870     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
 871     roll_forward(_at_safepoint);
 872     return;
 873   }
 874 
 875   if (state == _thread_in_vm) {
 876     roll_forward(_call_back);
 877     return;
 878   }
 879 
 880   // All other thread states will continue to run until they
 881   // transition and self-block in state _blocked
 882   // Safepoint polling in compiled code causes the Java threads to do the same.
 883   // Note: new threads may require a malloc so they must be allowed to finish
 884 
 885   assert(is_running(), "examine_state_of_thread on non-running thread");
 886   return;
 887 }
 888 
 889 // Returns true is thread could not be rolled forward at present position.
 890 void ThreadSafepointState::roll_forward(suspend_type type) {
 891   _type = type;
 892 
 893   switch(_type) {
 894     case _at_safepoint:
 895       SafepointSynchronize::signal_thread_at_safepoint();
 896       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
 897       if (_thread->in_critical()) {
 898         // Notice that this thread is in a critical section
 899         SafepointSynchronize::increment_jni_active_count();
 900       }
 901       break;
 902 
 903     case _call_back:
 904       set_has_called_back(false);
 905       break;
 906 
 907     case _running:
 908     default:
 909       ShouldNotReachHere();
 910   }
 911 }
 912 
 913 void ThreadSafepointState::restart() {
 914   switch(type()) {
 915     case _at_safepoint:
 916     case _call_back:
 917       break;
 918 
 919     case _running:
 920     default:
 921        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
 922                       _thread, _type);
 923        _thread->print();
 924       ShouldNotReachHere();
 925   }
 926   _type = _running;
 927   set_has_called_back(false);
 928 }
 929 
 930 
 931 void ThreadSafepointState::print_on(outputStream *st) const {
 932   const char *s = NULL;
 933 
 934   switch(_type) {
 935     case _running                : s = "_running";              break;
 936     case _at_safepoint           : s = "_at_safepoint";         break;
 937     case _call_back              : s = "_call_back";            break;
 938     default:
 939       ShouldNotReachHere();
 940   }
 941 
 942   st->print_cr("Thread: " INTPTR_FORMAT
 943               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
 944                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
 945                _at_poll_safepoint);
 946 
 947   _thread->print_thread_state_on(st);
 948 }
 949 
 950 
 951 // ---------------------------------------------------------------------------------------------------------------------
 952 
 953 // Block the thread at the safepoint poll or poll return.
 954 void ThreadSafepointState::handle_polling_page_exception() {
 955 
 956   // Check state.  block() will set thread state to thread_in_vm which will
 957   // cause the safepoint state _type to become _call_back.
 958   assert(type() == ThreadSafepointState::_running,
 959          "polling page exception on thread not running state");
 960 
 961   // Step 1: Find the nmethod from the return address
 962   if (ShowSafepointMsgs && Verbose) {
 963     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
 964   }
 965   address real_return_addr = thread()->saved_exception_pc();
 966 
 967   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
 968   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
 969   nmethod* nm = (nmethod*)cb;
 970 
 971   // Find frame of caller
 972   frame stub_fr = thread()->last_frame();
 973   CodeBlob* stub_cb = stub_fr.cb();
 974   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
 975   RegisterMap map(thread(), true);
 976   frame caller_fr = stub_fr.sender(&map);
 977 
 978   // Should only be poll_return or poll
 979   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
 980 
 981   // This is a poll immediately before a return. The exception handling code
 982   // has already had the effect of causing the return to occur, so the execution
 983   // will continue immediately after the call. In addition, the oopmap at the
 984   // return point does not mark the return value as an oop (if it is), so
 985   // it needs a handle here to be updated.
 986   if( nm->is_at_poll_return(real_return_addr) ) {
 987     // See if return type is an oop.
 988     bool return_oop = nm->method()->is_returning_oop();
 989     Handle return_value;
 990     if (return_oop) {
 991       // The oop result has been saved on the stack together with all
 992       // the other registers. In order to preserve it over GCs we need
 993       // to keep it in a handle.
 994       oop result = caller_fr.saved_oop_result(&map);
 995       assert(result == NULL || result->is_oop(), "must be oop");
 996       return_value = Handle(thread(), result);
 997       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 998     }
 999 
1000     // Block the thread
1001     SafepointSynchronize::block(thread());
1002 
1003     // restore oop result, if any
1004     if (return_oop) {
1005       caller_fr.set_saved_oop_result(&map, return_value());
1006     }
1007   }
1008 
1009   // This is a safepoint poll. Verify the return address and block.
1010   else {
1011     set_at_poll_safepoint(true);
1012 
1013     // verify the blob built the "return address" correctly
1014     assert(real_return_addr == caller_fr.pc(), "must match");
1015 
1016     // Block the thread
1017     SafepointSynchronize::block(thread());
1018     set_at_poll_safepoint(false);
1019 
1020     // If we have a pending async exception deoptimize the frame
1021     // as otherwise we may never deliver it.
1022     if (thread()->has_async_condition()) {
1023       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1024       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1025     }
1026 
1027     // If an exception has been installed we must check for a pending deoptimization
1028     // Deoptimize frame if exception has been thrown.
1029 
1030     if (thread()->has_pending_exception() ) {
1031       RegisterMap map(thread(), true);
1032       frame caller_fr = stub_fr.sender(&map);
1033       if (caller_fr.is_deoptimized_frame()) {
1034         // The exception patch will destroy registers that are still
1035         // live and will be needed during deoptimization. Defer the
1036         // Async exception should have defered the exception until the
1037         // next safepoint which will be detected when we get into
1038         // the interpreter so if we have an exception now things
1039         // are messed up.
1040 
1041         fatal("Exception installed and deoptimization is pending");
1042       }
1043     }
1044   }
1045 }
1046 
1047 
1048 //
1049 //                     Statistics & Instrumentations
1050 //
1051 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1052 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1053 int    SafepointSynchronize::_cur_stat_index = 0;
1054 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1055 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1056 jlong  SafepointSynchronize::_max_sync_time = 0;
1057 jlong  SafepointSynchronize::_max_vmop_time = 0;
1058 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1059 
1060 static jlong  cleanup_end_time = 0;
1061 static bool   need_to_track_page_armed_status = false;
1062 static bool   init_done = false;
1063 
1064 // Helper method to print the header.
1065 static void print_header() {
1066   tty->print("         vmop                    "
1067              "[threads: total initially_running wait_to_block]    ");
1068   tty->print("[time: spin block sync cleanup vmop] ");
1069 
1070   // no page armed status printed out if it is always armed.
1071   if (need_to_track_page_armed_status) {
1072     tty->print("page_armed ");
1073   }
1074 
1075   tty->print_cr("page_trap_count");
1076 }
1077 
1078 void SafepointSynchronize::deferred_initialize_stat() {
1079   if (init_done) return;
1080 
1081   if (PrintSafepointStatisticsCount <= 0) {
1082     fatal("Wrong PrintSafepointStatisticsCount");
1083   }
1084 
1085   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1086   // be printed right away, in which case, _safepoint_stats will regress to
1087   // a single element array. Otherwise, it is a circular ring buffer with default
1088   // size of PrintSafepointStatisticsCount.
1089   int stats_array_size;
1090   if (PrintSafepointStatisticsTimeout > 0) {
1091     stats_array_size = 1;
1092     PrintSafepointStatistics = true;
1093   } else {
1094     stats_array_size = PrintSafepointStatisticsCount;
1095   }
1096   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1097                                                  * sizeof(SafepointStats), mtInternal);
1098   guarantee(_safepoint_stats != NULL,
1099             "not enough memory for safepoint instrumentation data");
1100 
1101   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1102     need_to_track_page_armed_status = true;
1103   }
1104   init_done = true;
1105 }
1106 
1107 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1108   assert(init_done, "safepoint statistics array hasn't been initialized");
1109   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1110 
1111   spstat->_time_stamp = _ts_of_current_safepoint;
1112 
1113   VM_Operation *op = VMThread::vm_operation();
1114   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1115   if (op != NULL) {
1116     _safepoint_reasons[spstat->_vmop_type]++;
1117   }
1118 
1119   spstat->_nof_total_threads = nof_threads;
1120   spstat->_nof_initial_running_threads = nof_running;
1121   spstat->_nof_threads_hit_page_trap = 0;
1122 
1123   // Records the start time of spinning. The real time spent on spinning
1124   // will be adjusted when spin is done. Same trick is applied for time
1125   // spent on waiting for threads to block.
1126   if (nof_running != 0) {
1127     spstat->_time_to_spin = os::javaTimeNanos();
1128   }  else {
1129     spstat->_time_to_spin = 0;
1130   }
1131 }
1132 
1133 void SafepointSynchronize::update_statistics_on_spin_end() {
1134   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1135 
1136   jlong cur_time = os::javaTimeNanos();
1137 
1138   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1139   if (spstat->_nof_initial_running_threads != 0) {
1140     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1141   }
1142 
1143   if (need_to_track_page_armed_status) {
1144     spstat->_page_armed = (PageArmed == 1);
1145   }
1146 
1147   // Records the start time of waiting for to block. Updated when block is done.
1148   if (_waiting_to_block != 0) {
1149     spstat->_time_to_wait_to_block = cur_time;
1150   } else {
1151     spstat->_time_to_wait_to_block = 0;
1152   }
1153 }
1154 
1155 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1156   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1157 
1158   if (spstat->_nof_threads_wait_to_block != 0) {
1159     spstat->_time_to_wait_to_block = end_time -
1160       spstat->_time_to_wait_to_block;
1161   }
1162 
1163   // Records the end time of sync which will be used to calculate the total
1164   // vm operation time. Again, the real time spending in syncing will be deducted
1165   // from the start of the sync time later when end_statistics is called.
1166   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1167   if (spstat->_time_to_sync > _max_sync_time) {
1168     _max_sync_time = spstat->_time_to_sync;
1169   }
1170 
1171   spstat->_time_to_do_cleanups = end_time;
1172 }
1173 
1174 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1175   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1176 
1177   // Record how long spent in cleanup tasks.
1178   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1179 
1180   cleanup_end_time = end_time;
1181 }
1182 
1183 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1184   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1185 
1186   // Update the vm operation time.
1187   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1188   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1189     _max_vmop_time = spstat->_time_to_exec_vmop;
1190   }
1191   // Only the sync time longer than the specified
1192   // PrintSafepointStatisticsTimeout will be printed out right away.
1193   // By default, it is -1 meaning all samples will be put into the list.
1194   if ( PrintSafepointStatisticsTimeout > 0) {
1195     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1196       print_statistics();
1197     }
1198   } else {
1199     // The safepoint statistics will be printed out when the _safepoin_stats
1200     // array fills up.
1201     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1202       print_statistics();
1203       _cur_stat_index = 0;
1204     } else {
1205       _cur_stat_index++;
1206     }
1207   }
1208 }
1209 
1210 void SafepointSynchronize::print_statistics() {
1211   SafepointStats* sstats = _safepoint_stats;
1212 
1213   for (int index = 0; index <= _cur_stat_index; index++) {
1214     if (index % 30 == 0) {
1215       print_header();
1216     }
1217     sstats = &_safepoint_stats[index];
1218     tty->print("%.3f: ", sstats->_time_stamp);
1219     tty->print("%-26s       ["
1220                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1221                "    ]    ",
1222                sstats->_vmop_type == -1 ? "no vm operation" :
1223                VM_Operation::name(sstats->_vmop_type),
1224                sstats->_nof_total_threads,
1225                sstats->_nof_initial_running_threads,
1226                sstats->_nof_threads_wait_to_block);
1227     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1228     tty->print("  ["
1229                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1230                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1231                INT64_FORMAT_W(6)"    ]  ",
1232                sstats->_time_to_spin / MICROUNITS,
1233                sstats->_time_to_wait_to_block / MICROUNITS,
1234                sstats->_time_to_sync / MICROUNITS,
1235                sstats->_time_to_do_cleanups / MICROUNITS,
1236                sstats->_time_to_exec_vmop / MICROUNITS);
1237 
1238     if (need_to_track_page_armed_status) {
1239       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1240     }
1241     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1242   }
1243 }
1244 
1245 // This method will be called when VM exits. It will first call
1246 // print_statistics to print out the rest of the sampling.  Then
1247 // it tries to summarize the sampling.
1248 void SafepointSynchronize::print_stat_on_exit() {
1249   if (_safepoint_stats == NULL) return;
1250 
1251   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1252 
1253   // During VM exit, end_statistics may not get called and in that
1254   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1255   // don't print it out.
1256   // Approximate the vm op time.
1257   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1258     os::javaTimeNanos() - cleanup_end_time;
1259 
1260   if ( PrintSafepointStatisticsTimeout < 0 ||
1261        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1262     print_statistics();
1263   }
1264   tty->cr();
1265 
1266   // Print out polling page sampling status.
1267   if (!need_to_track_page_armed_status) {
1268     if (UseCompilerSafepoints) {
1269       tty->print_cr("Polling page always armed");
1270     }
1271   } else {
1272     tty->print_cr("Defer polling page loop count = %d\n",
1273                  DeferPollingPageLoopCount);
1274   }
1275 
1276   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1277     if (_safepoint_reasons[index] != 0) {
1278       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1279                     _safepoint_reasons[index]);
1280     }
1281   }
1282 
1283   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1284                 _coalesced_vmop_count);
1285   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1286                 _max_sync_time / MICROUNITS);
1287   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1288                 INT64_FORMAT_W(5)" ms",
1289                 _max_vmop_time / MICROUNITS);
1290 }
1291 
1292 // ------------------------------------------------------------------------------------------------
1293 // Non-product code
1294 
1295 #ifndef PRODUCT
1296 
1297 void SafepointSynchronize::print_state() {
1298   if (_state == _not_synchronized) {
1299     tty->print_cr("not synchronized");
1300   } else if (_state == _synchronizing || _state == _synchronized) {
1301     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1302                   "synchronized");
1303 
1304     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1305        cur->safepoint_state()->print();
1306     }
1307   }
1308 }
1309 
1310 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1311   if (ShowSafepointMsgs) {
1312     va_list ap;
1313     va_start(ap, format);
1314     tty->vprint_cr(format, ap);
1315     va_end(ap);
1316   }
1317 }
1318 
1319 #endif // !PRODUCT