1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/fprofiler.hpp"
  52 #include "runtime/frame.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/jniPeriodicChecker.hpp"
  58 #include "runtime/memprofiler.hpp"
  59 #include "runtime/mutexLocker.hpp"
  60 #include "runtime/objectMonitor.hpp"
  61 #include "runtime/orderAccess.inline.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/statSampler.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/task.hpp"
  68 #include "runtime/thread.inline.hpp"
  69 #include "runtime/threadCritical.hpp"
  70 #include "runtime/threadLocalStorage.hpp"
  71 #include "runtime/vframe.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "runtime/vframe_hp.hpp"
  74 #include "runtime/vmThread.hpp"
  75 #include "runtime/vm_operations.hpp"
  76 #include "services/attachListener.hpp"
  77 #include "services/management.hpp"
  78 #include "services/memTracker.hpp"
  79 #include "services/threadService.hpp"
  80 #include "trace/tracing.hpp"
  81 #include "trace/traceMacros.hpp"
  82 #include "utilities/defaultStream.hpp"
  83 #include "utilities/dtrace.hpp"
  84 #include "utilities/events.hpp"
  85 #include "utilities/preserveException.hpp"
  86 #include "utilities/macros.hpp"
  87 #ifdef TARGET_OS_FAMILY_linux
  88 # include "os_linux.inline.hpp"
  89 #endif
  90 #ifdef TARGET_OS_FAMILY_solaris
  91 # include "os_solaris.inline.hpp"
  92 #endif
  93 #ifdef TARGET_OS_FAMILY_windows
  94 # include "os_windows.inline.hpp"
  95 #endif
  96 #ifdef TARGET_OS_FAMILY_bsd
  97 # include "os_bsd.inline.hpp"
  98 #endif
  99 #if INCLUDE_ALL_GCS
 100 #include "gc_implementation/shenandoah/shenandoahControlThread.hpp"
 101 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 102 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 103 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 104 #endif // INCLUDE_ALL_GCS
 105 #ifdef COMPILER1
 106 #include "c1/c1_Compiler.hpp"
 107 #endif
 108 #ifdef COMPILER2
 109 #include "opto/c2compiler.hpp"
 110 #include "opto/idealGraphPrinter.hpp"
 111 #endif
 112 #if INCLUDE_RTM_OPT
 113 #include "runtime/rtmLocking.hpp"
 114 #endif
 115 
 116 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 117 
 118 #ifdef DTRACE_ENABLED
 119 
 120 // Only bother with this argument setup if dtrace is available
 121 
 122 #ifndef USDT2
 123 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 124 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 125 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 126   intptr_t, intptr_t, bool);
 127 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 128   intptr_t, intptr_t, bool);
 129 
 130 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 131   {                                                                        \
 132     ResourceMark rm(this);                                                 \
 133     int len = 0;                                                           \
 134     const char* name = (javathread)->get_thread_name();                    \
 135     len = strlen(name);                                                    \
 136     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 137       name, len,                                                           \
 138       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 139       (javathread)->osthread()->thread_id(),                               \
 140       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 141   }
 142 
 143 #else /* USDT2 */
 144 
 145 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 149   {                                                                        \
 150     ResourceMark rm(this);                                                 \
 151     int len = 0;                                                           \
 152     const char* name = (javathread)->get_thread_name();                    \
 153     len = strlen(name);                                                    \
 154     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 155       (char *) name, len,                                                           \
 156       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 157       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 158       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 159   }
 160 
 161 #endif /* USDT2 */
 162 
 163 #else //  ndef DTRACE_ENABLED
 164 
 165 #define DTRACE_THREAD_PROBE(probe, javathread)
 166 
 167 #endif // ndef DTRACE_ENABLED
 168 
 169 
 170 // Class hierarchy
 171 // - Thread
 172 //   - VMThread
 173 //   - WatcherThread
 174 //   - ConcurrentMarkSweepThread
 175 //   - JavaThread
 176 //     - CompilerThread
 177 
 178 // ======= Thread ========
 179 // Support for forcing alignment of thread objects for biased locking
 180 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 181   if (UseBiasedLocking) {
 182     const int alignment = markOopDesc::biased_lock_alignment;
 183     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 184     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 185                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 186                                               AllocFailStrategy::RETURN_NULL);
 187     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 188     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 189            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 190            "JavaThread alignment code overflowed allocated storage");
 191     if (TraceBiasedLocking) {
 192       if (aligned_addr != real_malloc_addr)
 193         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 194                       real_malloc_addr, aligned_addr);
 195     }
 196     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 197     return aligned_addr;
 198   } else {
 199     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 200                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 201   }
 202 }
 203 
 204 void Thread::operator delete(void* p) {
 205   if (UseBiasedLocking) {
 206     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 207     FreeHeap(real_malloc_addr, mtThread);
 208   } else {
 209     FreeHeap(p, mtThread);
 210   }
 211 }
 212 
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 
 218 Thread::Thread() {
 219   // stack and get_thread
 220   set_stack_base(NULL);
 221   set_stack_size(0);
 222   set_self_raw_id(0);
 223   set_lgrp_id(-1);
 224 
 225   // allocated data structures
 226   set_osthread(NULL);
 227   set_resource_area(new (mtThread)ResourceArea());
 228   DEBUG_ONLY(_current_resource_mark = NULL;)
 229   set_handle_area(new (mtThread) HandleArea(NULL));
 230   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 231   set_active_handles(NULL);
 232   set_free_handle_block(NULL);
 233   set_last_handle_mark(NULL);
 234 
 235   // This initial value ==> never claimed.
 236   _oops_do_parity = 0;
 237 
 238   _metadata_on_stack_buffer = NULL;
 239 
 240   // the handle mark links itself to last_handle_mark
 241   new HandleMark(this);
 242 
 243   // plain initialization
 244   debug_only(_owned_locks = NULL;)
 245   debug_only(_allow_allocation_count = 0;)
 246   NOT_PRODUCT(_allow_safepoint_count = 0;)
 247   NOT_PRODUCT(_skip_gcalot = false;)
 248   _jvmti_env_iteration_count = 0;
 249   set_allocated_bytes(0);
 250   _vm_operation_started_count = 0;
 251   _vm_operation_completed_count = 0;
 252   _current_pending_monitor = NULL;
 253   _current_pending_monitor_is_from_java = true;
 254   _current_waiting_monitor = NULL;
 255   _num_nested_signal = 0;
 256   omFreeList = NULL ;
 257   omFreeCount = 0 ;
 258   omFreeProvision = 32 ;
 259   omInUseList = NULL ;
 260   omInUseCount = 0 ;
 261 
 262 #ifdef ASSERT
 263   _visited_for_critical_count = false;
 264 #endif
 265 
 266   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 267   _suspend_flags = 0;
 268 
 269   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 270   _hashStateX = os::random() ;
 271   _hashStateY = 842502087 ;
 272   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 273   _hashStateW = 273326509 ;
 274 
 275   _OnTrap   = 0 ;
 276   _schedctl = NULL ;
 277   _Stalled  = 0 ;
 278   _TypeTag  = 0x2BAD ;
 279 
 280   // Many of the following fields are effectively final - immutable
 281   // Note that nascent threads can't use the Native Monitor-Mutex
 282   // construct until the _MutexEvent is initialized ...
 283   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 284   // we might instead use a stack of ParkEvents that we could provision on-demand.
 285   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 286   // and ::Release()
 287   _ParkEvent   = ParkEvent::Allocate (this) ;
 288   _SleepEvent  = ParkEvent::Allocate (this) ;
 289   _MutexEvent  = ParkEvent::Allocate (this) ;
 290   _MuxEvent    = ParkEvent::Allocate (this) ;
 291 
 292 #ifdef CHECK_UNHANDLED_OOPS
 293   if (CheckUnhandledOops) {
 294     _unhandled_oops = new UnhandledOops(this);
 295   }
 296 #endif // CHECK_UNHANDLED_OOPS
 297 #ifdef ASSERT
 298   if (UseBiasedLocking) {
 299     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 300     assert(this == _real_malloc_address ||
 301            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 302            "bug in forced alignment of thread objects");
 303   }
 304 #endif /* ASSERT */
 305 
 306   _oom_during_evac = 0;
 307 }
 308 
 309 void Thread::set_oom_during_evac(bool oom) {
 310   if (oom) {
 311     _oom_during_evac |= 1;
 312   } else {
 313     _oom_during_evac &= ~1;
 314   }
 315 }
 316 
 317 bool Thread::is_oom_during_evac() const {
 318   return (_oom_during_evac & 1) == 1;
 319 }
 320 
 321 #ifdef ASSERT
 322 void Thread::set_evac_allowed(bool evac_allowed) {
 323   if (evac_allowed) {
 324     _oom_during_evac |= 2;
 325   } else {
 326     _oom_during_evac &= ~2;
 327   }
 328 }
 329 
 330 bool Thread::is_evac_allowed() const {
 331   return (_oom_during_evac & 2) == 2;
 332 }
 333 #endif
 334 
 335 void Thread::initialize_thread_local_storage() {
 336   // Note: Make sure this method only calls
 337   // non-blocking operations. Otherwise, it might not work
 338   // with the thread-startup/safepoint interaction.
 339 
 340   // During Java thread startup, safepoint code should allow this
 341   // method to complete because it may need to allocate memory to
 342   // store information for the new thread.
 343 
 344   // initialize structure dependent on thread local storage
 345   ThreadLocalStorage::set_thread(this);
 346 }
 347 
 348 void Thread::record_stack_base_and_size() {
 349   set_stack_base(os::current_stack_base());
 350   set_stack_size(os::current_stack_size());
 351   if (is_Java_thread()) {
 352     ((JavaThread*) this)->set_stack_overflow_limit();
 353   }
 354   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 355   // in initialize_thread(). Without the adjustment, stack size is
 356   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 357   // So far, only Solaris has real implementation of initialize_thread().
 358   //
 359   // set up any platform-specific state.
 360   os::initialize_thread(this);
 361 
 362 #if INCLUDE_NMT
 363   // record thread's native stack, stack grows downward
 364   address stack_low_addr = stack_base() - stack_size();
 365   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 366 #endif // INCLUDE_NMT
 367 }
 368 
 369 
 370 Thread::~Thread() {
 371   EVENT_THREAD_DESTRUCT(this);
 372 
 373   // stack_base can be NULL if the thread is never started or exited before
 374   // record_stack_base_and_size called. Although, we would like to ensure
 375   // that all started threads do call record_stack_base_and_size(), there is
 376   // not proper way to enforce that.
 377 #if INCLUDE_NMT
 378   if (_stack_base != NULL) {
 379     address low_stack_addr = stack_base() - stack_size();
 380     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 381 #ifdef ASSERT
 382     set_stack_base(NULL);
 383 #endif
 384   }
 385 #endif // INCLUDE_NMT
 386 
 387   // deallocate data structures
 388   delete resource_area();
 389   // since the handle marks are using the handle area, we have to deallocated the root
 390   // handle mark before deallocating the thread's handle area,
 391   assert(last_handle_mark() != NULL, "check we have an element");
 392   delete last_handle_mark();
 393   assert(last_handle_mark() == NULL, "check we have reached the end");
 394 
 395   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 396   // We NULL out the fields for good hygiene.
 397   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 398   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 399   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 400   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 401 
 402   delete handle_area();
 403   delete metadata_handles();
 404 
 405   // osthread() can be NULL, if creation of thread failed.
 406   if (osthread() != NULL) os::free_thread(osthread());
 407 
 408   delete _SR_lock;
 409 
 410   // clear thread local storage if the Thread is deleting itself
 411   if (this == Thread::current()) {
 412     ThreadLocalStorage::set_thread(NULL);
 413   } else {
 414     // In the case where we're not the current thread, invalidate all the
 415     // caches in case some code tries to get the current thread or the
 416     // thread that was destroyed, and gets stale information.
 417     ThreadLocalStorage::invalidate_all();
 418   }
 419   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 420 }
 421 
 422 // NOTE: dummy function for assertion purpose.
 423 void Thread::run() {
 424   ShouldNotReachHere();
 425 }
 426 
 427 #ifdef ASSERT
 428 // Private method to check for dangling thread pointer
 429 void check_for_dangling_thread_pointer(Thread *thread) {
 430  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 431          "possibility of dangling Thread pointer");
 432 }
 433 #endif
 434 
 435 
 436 #ifndef PRODUCT
 437 // Tracing method for basic thread operations
 438 void Thread::trace(const char* msg, const Thread* const thread) {
 439   if (!TraceThreadEvents) return;
 440   ResourceMark rm;
 441   ThreadCritical tc;
 442   const char *name = "non-Java thread";
 443   int prio = -1;
 444   if (thread->is_Java_thread()
 445       && !thread->is_Compiler_thread()) {
 446     // The Threads_lock must be held to get information about
 447     // this thread but may not be in some situations when
 448     // tracing  thread events.
 449     bool release_Threads_lock = false;
 450     if (!Threads_lock->owned_by_self()) {
 451       Threads_lock->lock();
 452       release_Threads_lock = true;
 453     }
 454     JavaThread* jt = (JavaThread *)thread;
 455     name = (char *)jt->get_thread_name();
 456     oop thread_oop = jt->threadObj();
 457     if (thread_oop != NULL) {
 458       prio = java_lang_Thread::priority(thread_oop);
 459     }
 460     if (release_Threads_lock) {
 461       Threads_lock->unlock();
 462     }
 463   }
 464   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 465 }
 466 #endif
 467 
 468 
 469 ThreadPriority Thread::get_priority(const Thread* const thread) {
 470   trace("get priority", thread);
 471   ThreadPriority priority;
 472   // Can return an error!
 473   (void)os::get_priority(thread, priority);
 474   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 475   return priority;
 476 }
 477 
 478 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 479   trace("set priority", thread);
 480   debug_only(check_for_dangling_thread_pointer(thread);)
 481   // Can return an error!
 482   (void)os::set_priority(thread, priority);
 483 }
 484 
 485 
 486 void Thread::start(Thread* thread) {
 487   trace("start", thread);
 488   // Start is different from resume in that its safety is guaranteed by context or
 489   // being called from a Java method synchronized on the Thread object.
 490   if (!DisableStartThread) {
 491     if (thread->is_Java_thread()) {
 492       // Initialize the thread state to RUNNABLE before starting this thread.
 493       // Can not set it after the thread started because we do not know the
 494       // exact thread state at that time. It could be in MONITOR_WAIT or
 495       // in SLEEPING or some other state.
 496       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 497                                           java_lang_Thread::RUNNABLE);
 498     }
 499     os::start_thread(thread);
 500   }
 501 }
 502 
 503 // Enqueue a VM_Operation to do the job for us - sometime later
 504 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 505   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 506   VMThread::execute(vm_stop);
 507 }
 508 
 509 
 510 //
 511 // Check if an external suspend request has completed (or has been
 512 // cancelled). Returns true if the thread is externally suspended and
 513 // false otherwise.
 514 //
 515 // The bits parameter returns information about the code path through
 516 // the routine. Useful for debugging:
 517 //
 518 // set in is_ext_suspend_completed():
 519 // 0x00000001 - routine was entered
 520 // 0x00000010 - routine return false at end
 521 // 0x00000100 - thread exited (return false)
 522 // 0x00000200 - suspend request cancelled (return false)
 523 // 0x00000400 - thread suspended (return true)
 524 // 0x00001000 - thread is in a suspend equivalent state (return true)
 525 // 0x00002000 - thread is native and walkable (return true)
 526 // 0x00004000 - thread is native_trans and walkable (needed retry)
 527 //
 528 // set in wait_for_ext_suspend_completion():
 529 // 0x00010000 - routine was entered
 530 // 0x00020000 - suspend request cancelled before loop (return false)
 531 // 0x00040000 - thread suspended before loop (return true)
 532 // 0x00080000 - suspend request cancelled in loop (return false)
 533 // 0x00100000 - thread suspended in loop (return true)
 534 // 0x00200000 - suspend not completed during retry loop (return false)
 535 //
 536 
 537 // Helper class for tracing suspend wait debug bits.
 538 //
 539 // 0x00000100 indicates that the target thread exited before it could
 540 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 541 // 0x00080000 each indicate a cancelled suspend request so they don't
 542 // count as wait failures either.
 543 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 544 
 545 class TraceSuspendDebugBits : public StackObj {
 546  private:
 547   JavaThread * jt;
 548   bool         is_wait;
 549   bool         called_by_wait;  // meaningful when !is_wait
 550   uint32_t *   bits;
 551 
 552  public:
 553   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 554                         uint32_t *_bits) {
 555     jt             = _jt;
 556     is_wait        = _is_wait;
 557     called_by_wait = _called_by_wait;
 558     bits           = _bits;
 559   }
 560 
 561   ~TraceSuspendDebugBits() {
 562     if (!is_wait) {
 563 #if 1
 564       // By default, don't trace bits for is_ext_suspend_completed() calls.
 565       // That trace is very chatty.
 566       return;
 567 #else
 568       if (!called_by_wait) {
 569         // If tracing for is_ext_suspend_completed() is enabled, then only
 570         // trace calls to it from wait_for_ext_suspend_completion()
 571         return;
 572       }
 573 #endif
 574     }
 575 
 576     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 577       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 578         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 579         ResourceMark rm;
 580 
 581         tty->print_cr(
 582             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 583             jt->get_thread_name(), *bits);
 584 
 585         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 586       }
 587     }
 588   }
 589 };
 590 #undef DEBUG_FALSE_BITS
 591 
 592 
 593 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 594   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 595 
 596   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 597   bool do_trans_retry;           // flag to force the retry
 598 
 599   *bits |= 0x00000001;
 600 
 601   do {
 602     do_trans_retry = false;
 603 
 604     if (is_exiting()) {
 605       // Thread is in the process of exiting. This is always checked
 606       // first to reduce the risk of dereferencing a freed JavaThread.
 607       *bits |= 0x00000100;
 608       return false;
 609     }
 610 
 611     if (!is_external_suspend()) {
 612       // Suspend request is cancelled. This is always checked before
 613       // is_ext_suspended() to reduce the risk of a rogue resume
 614       // confusing the thread that made the suspend request.
 615       *bits |= 0x00000200;
 616       return false;
 617     }
 618 
 619     if (is_ext_suspended()) {
 620       // thread is suspended
 621       *bits |= 0x00000400;
 622       return true;
 623     }
 624 
 625     // Now that we no longer do hard suspends of threads running
 626     // native code, the target thread can be changing thread state
 627     // while we are in this routine:
 628     //
 629     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 630     //
 631     // We save a copy of the thread state as observed at this moment
 632     // and make our decision about suspend completeness based on the
 633     // copy. This closes the race where the thread state is seen as
 634     // _thread_in_native_trans in the if-thread_blocked check, but is
 635     // seen as _thread_blocked in if-thread_in_native_trans check.
 636     JavaThreadState save_state = thread_state();
 637 
 638     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 639       // If the thread's state is _thread_blocked and this blocking
 640       // condition is known to be equivalent to a suspend, then we can
 641       // consider the thread to be externally suspended. This means that
 642       // the code that sets _thread_blocked has been modified to do
 643       // self-suspension if the blocking condition releases. We also
 644       // used to check for CONDVAR_WAIT here, but that is now covered by
 645       // the _thread_blocked with self-suspension check.
 646       //
 647       // Return true since we wouldn't be here unless there was still an
 648       // external suspend request.
 649       *bits |= 0x00001000;
 650       return true;
 651     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 652       // Threads running native code will self-suspend on native==>VM/Java
 653       // transitions. If its stack is walkable (should always be the case
 654       // unless this function is called before the actual java_suspend()
 655       // call), then the wait is done.
 656       *bits |= 0x00002000;
 657       return true;
 658     } else if (!called_by_wait && !did_trans_retry &&
 659                save_state == _thread_in_native_trans &&
 660                frame_anchor()->walkable()) {
 661       // The thread is transitioning from thread_in_native to another
 662       // thread state. check_safepoint_and_suspend_for_native_trans()
 663       // will force the thread to self-suspend. If it hasn't gotten
 664       // there yet we may have caught the thread in-between the native
 665       // code check above and the self-suspend. Lucky us. If we were
 666       // called by wait_for_ext_suspend_completion(), then it
 667       // will be doing the retries so we don't have to.
 668       //
 669       // Since we use the saved thread state in the if-statement above,
 670       // there is a chance that the thread has already transitioned to
 671       // _thread_blocked by the time we get here. In that case, we will
 672       // make a single unnecessary pass through the logic below. This
 673       // doesn't hurt anything since we still do the trans retry.
 674 
 675       *bits |= 0x00004000;
 676 
 677       // Once the thread leaves thread_in_native_trans for another
 678       // thread state, we break out of this retry loop. We shouldn't
 679       // need this flag to prevent us from getting back here, but
 680       // sometimes paranoia is good.
 681       did_trans_retry = true;
 682 
 683       // We wait for the thread to transition to a more usable state.
 684       for (int i = 1; i <= SuspendRetryCount; i++) {
 685         // We used to do an "os::yield_all(i)" call here with the intention
 686         // that yielding would increase on each retry. However, the parameter
 687         // is ignored on Linux which means the yield didn't scale up. Waiting
 688         // on the SR_lock below provides a much more predictable scale up for
 689         // the delay. It also provides a simple/direct point to check for any
 690         // safepoint requests from the VMThread
 691 
 692         // temporarily drops SR_lock while doing wait with safepoint check
 693         // (if we're a JavaThread - the WatcherThread can also call this)
 694         // and increase delay with each retry
 695         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 696 
 697         // check the actual thread state instead of what we saved above
 698         if (thread_state() != _thread_in_native_trans) {
 699           // the thread has transitioned to another thread state so
 700           // try all the checks (except this one) one more time.
 701           do_trans_retry = true;
 702           break;
 703         }
 704       } // end retry loop
 705 
 706 
 707     }
 708   } while (do_trans_retry);
 709 
 710   *bits |= 0x00000010;
 711   return false;
 712 }
 713 
 714 //
 715 // Wait for an external suspend request to complete (or be cancelled).
 716 // Returns true if the thread is externally suspended and false otherwise.
 717 //
 718 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 719        uint32_t *bits) {
 720   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 721                              false /* !called_by_wait */, bits);
 722 
 723   // local flag copies to minimize SR_lock hold time
 724   bool is_suspended;
 725   bool pending;
 726   uint32_t reset_bits;
 727 
 728   // set a marker so is_ext_suspend_completed() knows we are the caller
 729   *bits |= 0x00010000;
 730 
 731   // We use reset_bits to reinitialize the bits value at the top of
 732   // each retry loop. This allows the caller to make use of any
 733   // unused bits for their own marking purposes.
 734   reset_bits = *bits;
 735 
 736   {
 737     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 738     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 739                                             delay, bits);
 740     pending = is_external_suspend();
 741   }
 742   // must release SR_lock to allow suspension to complete
 743 
 744   if (!pending) {
 745     // A cancelled suspend request is the only false return from
 746     // is_ext_suspend_completed() that keeps us from entering the
 747     // retry loop.
 748     *bits |= 0x00020000;
 749     return false;
 750   }
 751 
 752   if (is_suspended) {
 753     *bits |= 0x00040000;
 754     return true;
 755   }
 756 
 757   for (int i = 1; i <= retries; i++) {
 758     *bits = reset_bits;  // reinit to only track last retry
 759 
 760     // We used to do an "os::yield_all(i)" call here with the intention
 761     // that yielding would increase on each retry. However, the parameter
 762     // is ignored on Linux which means the yield didn't scale up. Waiting
 763     // on the SR_lock below provides a much more predictable scale up for
 764     // the delay. It also provides a simple/direct point to check for any
 765     // safepoint requests from the VMThread
 766 
 767     {
 768       MutexLocker ml(SR_lock());
 769       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 770       // can also call this)  and increase delay with each retry
 771       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 772 
 773       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 774                                               delay, bits);
 775 
 776       // It is possible for the external suspend request to be cancelled
 777       // (by a resume) before the actual suspend operation is completed.
 778       // Refresh our local copy to see if we still need to wait.
 779       pending = is_external_suspend();
 780     }
 781 
 782     if (!pending) {
 783       // A cancelled suspend request is the only false return from
 784       // is_ext_suspend_completed() that keeps us from staying in the
 785       // retry loop.
 786       *bits |= 0x00080000;
 787       return false;
 788     }
 789 
 790     if (is_suspended) {
 791       *bits |= 0x00100000;
 792       return true;
 793     }
 794   } // end retry loop
 795 
 796   // thread did not suspend after all our retries
 797   *bits |= 0x00200000;
 798   return false;
 799 }
 800 
 801 #ifndef PRODUCT
 802 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 803 
 804   // This should not need to be atomic as the only way for simultaneous
 805   // updates is via interrupts. Even then this should be rare or non-existant
 806   // and we don't care that much anyway.
 807 
 808   int index = _jmp_ring_index;
 809   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 810   _jmp_ring[index]._target = (intptr_t) target;
 811   _jmp_ring[index]._instruction = (intptr_t) instr;
 812   _jmp_ring[index]._file = file;
 813   _jmp_ring[index]._line = line;
 814 }
 815 #endif /* PRODUCT */
 816 
 817 // Called by flat profiler
 818 // Callers have already called wait_for_ext_suspend_completion
 819 // The assertion for that is currently too complex to put here:
 820 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 821   bool gotframe = false;
 822   // self suspension saves needed state.
 823   if (has_last_Java_frame() && _anchor.walkable()) {
 824      *_fr = pd_last_frame();
 825      gotframe = true;
 826   }
 827   return gotframe;
 828 }
 829 
 830 void Thread::interrupt(Thread* thread) {
 831   trace("interrupt", thread);
 832   debug_only(check_for_dangling_thread_pointer(thread);)
 833   os::interrupt(thread);
 834 }
 835 
 836 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 837   trace("is_interrupted", thread);
 838   debug_only(check_for_dangling_thread_pointer(thread);)
 839   // Note:  If clear_interrupted==false, this simply fetches and
 840   // returns the value of the field osthread()->interrupted().
 841   return os::is_interrupted(thread, clear_interrupted);
 842 }
 843 
 844 
 845 // GC Support
 846 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 847   jint thread_parity = _oops_do_parity;
 848   if (thread_parity != strong_roots_parity) {
 849     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 850     if (res == thread_parity) {
 851       return true;
 852     } else {
 853       guarantee(res == strong_roots_parity, "Or else what?");
 854       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 855          "Should only fail when parallel.");
 856       return false;
 857     }
 858   }
 859   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 860          "Should only fail when parallel.");
 861   return false;
 862 }
 863 
 864 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 865   active_handles()->oops_do(f);
 866   // Do oop for ThreadShadow
 867   f->do_oop((oop*)&_pending_exception);
 868   handle_area()->oops_do(f);
 869 #if INCLUDE_ALL_GCS
 870   // TODO: Either need better abstractions or have all GCs use this.
 871   if (UseShenandoahGC && ShenandoahFastSyncRoots && MonitorInUseLists) {
 872     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 873   }
 874 #endif
 875 }
 876 
 877 void Thread::nmethods_do(CodeBlobClosure* cf) {
 878   // no nmethods in a generic thread...
 879 }
 880 
 881 void Thread::metadata_do(void f(Metadata*)) {
 882   if (metadata_handles() != NULL) {
 883     for (int i = 0; i< metadata_handles()->length(); i++) {
 884       f(metadata_handles()->at(i));
 885     }
 886   }
 887 }
 888 
 889 void Thread::print_on(outputStream* st) const {
 890   // get_priority assumes osthread initialized
 891   if (osthread() != NULL) {
 892     int os_prio;
 893     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 894       st->print("os_prio=%d ", os_prio);
 895     }
 896     st->print("tid=" INTPTR_FORMAT " ", this);
 897     ext().print_on(st);
 898     osthread()->print_on(st);
 899   }
 900   debug_only(if (WizardMode) print_owned_locks_on(st);)
 901 }
 902 
 903 // Thread::print_on_error() is called by fatal error handler. Don't use
 904 // any lock or allocate memory.
 905 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 906   if      (is_VM_thread())                  st->print("VMThread");
 907   else if (is_Compiler_thread())            st->print("CompilerThread");
 908   else if (is_Java_thread())                st->print("JavaThread");
 909   else if (is_GC_task_thread())             st->print("GCTaskThread");
 910   else if (is_Watcher_thread())             st->print("WatcherThread");
 911   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 912   else st->print("Thread");
 913 
 914   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 915             _stack_base - _stack_size, _stack_base);
 916 
 917   if (osthread()) {
 918     st->print(" [id=%d]", osthread()->thread_id());
 919   }
 920 }
 921 
 922 #ifdef ASSERT
 923 void Thread::print_owned_locks_on(outputStream* st) const {
 924   Monitor *cur = _owned_locks;
 925   if (cur == NULL) {
 926     st->print(" (no locks) ");
 927   } else {
 928     st->print_cr(" Locks owned:");
 929     while(cur) {
 930       cur->print_on(st);
 931       cur = cur->next();
 932     }
 933   }
 934 }
 935 
 936 static int ref_use_count  = 0;
 937 
 938 bool Thread::owns_locks_but_compiled_lock() const {
 939   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 940     if (cur != Compile_lock) return true;
 941   }
 942   return false;
 943 }
 944 
 945 
 946 #endif
 947 
 948 #ifndef PRODUCT
 949 
 950 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 951 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 952 // no threads which allow_vm_block's are held
 953 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 954     // Check if current thread is allowed to block at a safepoint
 955     if (!(_allow_safepoint_count == 0))
 956       fatal("Possible safepoint reached by thread that does not allow it");
 957     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 958       fatal("LEAF method calling lock?");
 959     }
 960 
 961 #ifdef ASSERT
 962     if (potential_vm_operation && is_Java_thread()
 963         && !Universe::is_bootstrapping()) {
 964       // Make sure we do not hold any locks that the VM thread also uses.
 965       // This could potentially lead to deadlocks
 966       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 967         // Threads_lock is special, since the safepoint synchronization will not start before this is
 968         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 969         // since it is used to transfer control between JavaThreads and the VMThread
 970         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 971         if ( (cur->allow_vm_block() &&
 972               cur != Threads_lock &&
 973               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 974               cur != VMOperationRequest_lock &&
 975               cur != VMOperationQueue_lock) ||
 976               cur->rank() == Mutex::special) {
 977           fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 978         }
 979       }
 980     }
 981 
 982     if (GCALotAtAllSafepoints) {
 983       // We could enter a safepoint here and thus have a gc
 984       InterfaceSupport::check_gc_alot();
 985     }
 986 #endif
 987 }
 988 #endif
 989 
 990 bool Thread::is_in_stack(address adr) const {
 991   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 992   address end = os::current_stack_pointer();
 993   // Allow non Java threads to call this without stack_base
 994   if (_stack_base == NULL) return true;
 995   if (stack_base() >= adr && adr >= end) return true;
 996 
 997   return false;
 998 }
 999 
1000 
1001 bool Thread::is_in_usable_stack(address adr) const {
1002   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
1003   size_t usable_stack_size = _stack_size - stack_guard_size;
1004 
1005   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1006 }
1007 
1008 
1009 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1010 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1011 // used for compilation in the future. If that change is made, the need for these methods
1012 // should be revisited, and they should be removed if possible.
1013 
1014 bool Thread::is_lock_owned(address adr) const {
1015   return on_local_stack(adr);
1016 }
1017 
1018 bool Thread::set_as_starting_thread() {
1019  // NOTE: this must be called inside the main thread.
1020   return os::create_main_thread((JavaThread*)this);
1021 }
1022 
1023 static void initialize_class(Symbol* class_name, TRAPS) {
1024   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1025   InstanceKlass::cast(klass)->initialize(CHECK);
1026 }
1027 
1028 
1029 // Creates the initial ThreadGroup
1030 static Handle create_initial_thread_group(TRAPS) {
1031   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
1032   instanceKlassHandle klass (THREAD, k);
1033 
1034   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
1035   {
1036     JavaValue result(T_VOID);
1037     JavaCalls::call_special(&result,
1038                             system_instance,
1039                             klass,
1040                             vmSymbols::object_initializer_name(),
1041                             vmSymbols::void_method_signature(),
1042                             CHECK_NH);
1043   }
1044   Universe::set_system_thread_group(system_instance());
1045 
1046   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
1047   {
1048     JavaValue result(T_VOID);
1049     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1050     JavaCalls::call_special(&result,
1051                             main_instance,
1052                             klass,
1053                             vmSymbols::object_initializer_name(),
1054                             vmSymbols::threadgroup_string_void_signature(),
1055                             system_instance,
1056                             string,
1057                             CHECK_NH);
1058   }
1059   return main_instance;
1060 }
1061 
1062 // Creates the initial Thread
1063 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1064   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1065   instanceKlassHandle klass (THREAD, k);
1066   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1067 
1068   java_lang_Thread::set_thread(thread_oop(), thread);
1069   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1070   thread->set_threadObj(thread_oop());
1071 
1072   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1073 
1074   JavaValue result(T_VOID);
1075   JavaCalls::call_special(&result, thread_oop,
1076                                    klass,
1077                                    vmSymbols::object_initializer_name(),
1078                                    vmSymbols::threadgroup_string_void_signature(),
1079                                    thread_group,
1080                                    string,
1081                                    CHECK_NULL);
1082   return thread_oop();
1083 }
1084 
1085 static void call_initializeSystemClass(TRAPS) {
1086   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1087   instanceKlassHandle klass (THREAD, k);
1088 
1089   JavaValue result(T_VOID);
1090   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1091                                          vmSymbols::void_method_signature(), CHECK);
1092 }
1093 
1094 char java_runtime_name[128] = "";
1095 char java_runtime_version[128] = "";
1096 
1097 // extract the JRE name from sun.misc.Version.java_runtime_name
1098 static const char* get_java_runtime_name(TRAPS) {
1099   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1100                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1101   fieldDescriptor fd;
1102   bool found = k != NULL &&
1103                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1104                                                         vmSymbols::string_signature(), &fd);
1105   if (found) {
1106     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1107     if (name_oop == NULL)
1108       return NULL;
1109     const char* name = java_lang_String::as_utf8_string(name_oop,
1110                                                         java_runtime_name,
1111                                                         sizeof(java_runtime_name));
1112     return name;
1113   } else {
1114     return NULL;
1115   }
1116 }
1117 
1118 // extract the JRE version from sun.misc.Version.java_runtime_version
1119 static const char* get_java_runtime_version(TRAPS) {
1120   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1121                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1122   fieldDescriptor fd;
1123   bool found = k != NULL &&
1124                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1125                                                         vmSymbols::string_signature(), &fd);
1126   if (found) {
1127     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1128     if (name_oop == NULL)
1129       return NULL;
1130     const char* name = java_lang_String::as_utf8_string(name_oop,
1131                                                         java_runtime_version,
1132                                                         sizeof(java_runtime_version));
1133     return name;
1134   } else {
1135     return NULL;
1136   }
1137 }
1138 
1139 // General purpose hook into Java code, run once when the VM is initialized.
1140 // The Java library method itself may be changed independently from the VM.
1141 static void call_postVMInitHook(TRAPS) {
1142   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1143   instanceKlassHandle klass (THREAD, k);
1144   if (klass.not_null()) {
1145     JavaValue result(T_VOID);
1146     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1147                                            vmSymbols::void_method_signature(),
1148                                            CHECK);
1149   }
1150 }
1151 
1152 static void reset_vm_info_property(TRAPS) {
1153   // the vm info string
1154   ResourceMark rm(THREAD);
1155   const char *vm_info = VM_Version::vm_info_string();
1156 
1157   // java.lang.System class
1158   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1159   instanceKlassHandle klass (THREAD, k);
1160 
1161   // setProperty arguments
1162   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1163   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1164 
1165   // return value
1166   JavaValue r(T_OBJECT);
1167 
1168   // public static String setProperty(String key, String value);
1169   JavaCalls::call_static(&r,
1170                          klass,
1171                          vmSymbols::setProperty_name(),
1172                          vmSymbols::string_string_string_signature(),
1173                          key_str,
1174                          value_str,
1175                          CHECK);
1176 }
1177 
1178 
1179 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1180   assert(thread_group.not_null(), "thread group should be specified");
1181   assert(threadObj() == NULL, "should only create Java thread object once");
1182 
1183   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1184   instanceKlassHandle klass (THREAD, k);
1185   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1186 
1187   java_lang_Thread::set_thread(thread_oop(), this);
1188   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1189   set_threadObj(thread_oop());
1190 
1191   JavaValue result(T_VOID);
1192   if (thread_name != NULL) {
1193     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1194     // Thread gets assigned specified name and null target
1195     JavaCalls::call_special(&result,
1196                             thread_oop,
1197                             klass,
1198                             vmSymbols::object_initializer_name(),
1199                             vmSymbols::threadgroup_string_void_signature(),
1200                             thread_group, // Argument 1
1201                             name,         // Argument 2
1202                             THREAD);
1203   } else {
1204     // Thread gets assigned name "Thread-nnn" and null target
1205     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1206     JavaCalls::call_special(&result,
1207                             thread_oop,
1208                             klass,
1209                             vmSymbols::object_initializer_name(),
1210                             vmSymbols::threadgroup_runnable_void_signature(),
1211                             thread_group, // Argument 1
1212                             Handle(),     // Argument 2
1213                             THREAD);
1214   }
1215 
1216 
1217   if (daemon) {
1218       java_lang_Thread::set_daemon(thread_oop());
1219   }
1220 
1221   if (HAS_PENDING_EXCEPTION) {
1222     return;
1223   }
1224 
1225   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1226   Handle threadObj(this, this->threadObj());
1227 
1228   JavaCalls::call_special(&result,
1229                          thread_group,
1230                          group,
1231                          vmSymbols::add_method_name(),
1232                          vmSymbols::thread_void_signature(),
1233                          threadObj,          // Arg 1
1234                          THREAD);
1235 
1236 
1237 }
1238 
1239 // NamedThread --  non-JavaThread subclasses with multiple
1240 // uniquely named instances should derive from this.
1241 NamedThread::NamedThread() : Thread() {
1242   _name = NULL;
1243   _processed_thread = NULL;
1244 }
1245 
1246 NamedThread::~NamedThread() {
1247   if (_name != NULL) {
1248     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1249     _name = NULL;
1250   }
1251 }
1252 
1253 void NamedThread::set_name(const char* format, ...) {
1254   guarantee(_name == NULL, "Only get to set name once.");
1255   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1256   guarantee(_name != NULL, "alloc failure");
1257   va_list ap;
1258   va_start(ap, format);
1259   jio_vsnprintf(_name, max_name_len, format, ap);
1260   va_end(ap);
1261 }
1262 
1263 // ======= WatcherThread ========
1264 
1265 // The watcher thread exists to simulate timer interrupts.  It should
1266 // be replaced by an abstraction over whatever native support for
1267 // timer interrupts exists on the platform.
1268 
1269 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1270 bool WatcherThread::_startable = false;
1271 volatile bool  WatcherThread::_should_terminate = false;
1272 
1273 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1274   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1275   if (os::create_thread(this, os::watcher_thread)) {
1276     _watcher_thread = this;
1277 
1278     // Set the watcher thread to the highest OS priority which should not be
1279     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1280     // is created. The only normal thread using this priority is the reference
1281     // handler thread, which runs for very short intervals only.
1282     // If the VMThread's priority is not lower than the WatcherThread profiling
1283     // will be inaccurate.
1284     os::set_priority(this, MaxPriority);
1285     if (!DisableStartThread) {
1286       os::start_thread(this);
1287     }
1288   }
1289 }
1290 
1291 int WatcherThread::sleep() const {
1292   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1293 
1294   // remaining will be zero if there are no tasks,
1295   // causing the WatcherThread to sleep until a task is
1296   // enrolled
1297   int remaining = PeriodicTask::time_to_wait();
1298   int time_slept = 0;
1299 
1300   // we expect this to timeout - we only ever get unparked when
1301   // we should terminate or when a new task has been enrolled
1302   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1303 
1304   jlong time_before_loop = os::javaTimeNanos();
1305 
1306   for (;;) {
1307     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1308     jlong now = os::javaTimeNanos();
1309 
1310     if (remaining == 0) {
1311         // if we didn't have any tasks we could have waited for a long time
1312         // consider the time_slept zero and reset time_before_loop
1313         time_slept = 0;
1314         time_before_loop = now;
1315     } else {
1316         // need to recalulate since we might have new tasks in _tasks
1317         time_slept = (int) ((now - time_before_loop) / 1000000);
1318     }
1319 
1320     // Change to task list or spurious wakeup of some kind
1321     if (timedout || _should_terminate) {
1322         break;
1323     }
1324 
1325     remaining = PeriodicTask::time_to_wait();
1326     if (remaining == 0) {
1327         // Last task was just disenrolled so loop around and wait until
1328         // another task gets enrolled
1329         continue;
1330     }
1331 
1332     remaining -= time_slept;
1333     if (remaining <= 0)
1334       break;
1335   }
1336 
1337   return time_slept;
1338 }
1339 
1340 void WatcherThread::run() {
1341   assert(this == watcher_thread(), "just checking");
1342 
1343   this->record_stack_base_and_size();
1344   this->initialize_thread_local_storage();
1345   this->set_active_handles(JNIHandleBlock::allocate_block());
1346   while(!_should_terminate) {
1347     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1348     assert(watcher_thread() == this,  "thread consistency check");
1349 
1350     // Calculate how long it'll be until the next PeriodicTask work
1351     // should be done, and sleep that amount of time.
1352     int time_waited = sleep();
1353 
1354     if (is_error_reported()) {
1355       // A fatal error has happened, the error handler(VMError::report_and_die)
1356       // should abort JVM after creating an error log file. However in some
1357       // rare cases, the error handler itself might deadlock. Here we try to
1358       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1359       //
1360       // This code is in WatcherThread because WatcherThread wakes up
1361       // periodically so the fatal error handler doesn't need to do anything;
1362       // also because the WatcherThread is less likely to crash than other
1363       // threads.
1364 
1365       for (;;) {
1366         if (!ShowMessageBoxOnError
1367          && (OnError == NULL || OnError[0] == '\0')
1368          && Arguments::abort_hook() == NULL) {
1369              os::sleep(this, 2 * 60 * 1000, false);
1370              fdStream err(defaultStream::output_fd());
1371              err.print_raw_cr("# [ timer expired, abort... ]");
1372              // skip atexit/vm_exit/vm_abort hooks
1373              os::die();
1374         }
1375 
1376         // Wake up 5 seconds later, the fatal handler may reset OnError or
1377         // ShowMessageBoxOnError when it is ready to abort.
1378         os::sleep(this, 5 * 1000, false);
1379       }
1380     }
1381 
1382     PeriodicTask::real_time_tick(time_waited);
1383   }
1384 
1385   // Signal that it is terminated
1386   {
1387     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1388     _watcher_thread = NULL;
1389     Terminator_lock->notify();
1390   }
1391 
1392   // Thread destructor usually does this..
1393   ThreadLocalStorage::set_thread(NULL);
1394 }
1395 
1396 void WatcherThread::start() {
1397   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1398 
1399   if (watcher_thread() == NULL && _startable) {
1400     _should_terminate = false;
1401     // Create the single instance of WatcherThread
1402     new WatcherThread();
1403   }
1404 }
1405 
1406 void WatcherThread::make_startable() {
1407   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1408   _startable = true;
1409 }
1410 
1411 void WatcherThread::stop() {
1412   {
1413     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1414     _should_terminate = true;
1415     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1416 
1417     WatcherThread* watcher = watcher_thread();
1418     if (watcher != NULL)
1419       watcher->unpark();
1420   }
1421 
1422   // it is ok to take late safepoints here, if needed
1423   MutexLocker mu(Terminator_lock);
1424 
1425   while(watcher_thread() != NULL) {
1426     // This wait should make safepoint checks, wait without a timeout,
1427     // and wait as a suspend-equivalent condition.
1428     //
1429     // Note: If the FlatProfiler is running, then this thread is waiting
1430     // for the WatcherThread to terminate and the WatcherThread, via the
1431     // FlatProfiler task, is waiting for the external suspend request on
1432     // this thread to complete. wait_for_ext_suspend_completion() will
1433     // eventually timeout, but that takes time. Making this wait a
1434     // suspend-equivalent condition solves that timeout problem.
1435     //
1436     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1437                           Mutex::_as_suspend_equivalent_flag);
1438   }
1439 }
1440 
1441 void WatcherThread::unpark() {
1442   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1443   PeriodicTask_lock->notify();
1444 }
1445 
1446 void WatcherThread::print_on(outputStream* st) const {
1447   st->print("\"%s\" ", name());
1448   Thread::print_on(st);
1449   st->cr();
1450 }
1451 
1452 // ======= JavaThread ========
1453 
1454 // A JavaThread is a normal Java thread
1455 
1456 void JavaThread::initialize() {
1457   // Initialize fields
1458 
1459   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1460   set_claimed_par_id(UINT_MAX);
1461 
1462   set_saved_exception_pc(NULL);
1463   set_threadObj(NULL);
1464   _anchor.clear();
1465   set_entry_point(NULL);
1466   set_jni_functions(jni_functions());
1467   set_callee_target(NULL);
1468   set_vm_result(NULL);
1469   set_vm_result_2(NULL);
1470   set_vframe_array_head(NULL);
1471   set_vframe_array_last(NULL);
1472   set_deferred_locals(NULL);
1473   set_deopt_mark(NULL);
1474   set_deopt_nmethod(NULL);
1475   clear_must_deopt_id();
1476   set_monitor_chunks(NULL);
1477   set_next(NULL);
1478   set_thread_state(_thread_new);
1479   _terminated = _not_terminated;
1480   _privileged_stack_top = NULL;
1481   _array_for_gc = NULL;
1482   _suspend_equivalent = false;
1483   _in_deopt_handler = 0;
1484   _doing_unsafe_access = false;
1485   _stack_guard_state = stack_guard_unused;
1486   (void)const_cast<oop&>(_exception_oop = NULL);
1487   _exception_pc  = 0;
1488   _exception_handler_pc = 0;
1489   _is_method_handle_return = 0;
1490   _jvmti_thread_state= NULL;
1491   _should_post_on_exceptions_flag = JNI_FALSE;
1492   _jvmti_get_loaded_classes_closure = NULL;
1493   _interp_only_mode    = 0;
1494   _special_runtime_exit_condition = _no_async_condition;
1495   _pending_async_exception = NULL;
1496   _thread_stat = NULL;
1497   _thread_stat = new ThreadStatistics();
1498   _blocked_on_compilation = false;
1499   _jni_active_critical = 0;
1500   _pending_jni_exception_check_fn = NULL;
1501   _do_not_unlock_if_synchronized = false;
1502   _cached_monitor_info = NULL;
1503   _parker = Parker::Allocate(this) ;
1504 
1505 #ifndef PRODUCT
1506   _jmp_ring_index = 0;
1507   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1508     record_jump(NULL, NULL, NULL, 0);
1509   }
1510 #endif /* PRODUCT */
1511 
1512   set_thread_profiler(NULL);
1513   if (FlatProfiler::is_active()) {
1514     // This is where we would decide to either give each thread it's own profiler
1515     // or use one global one from FlatProfiler,
1516     // or up to some count of the number of profiled threads, etc.
1517     ThreadProfiler* pp = new ThreadProfiler();
1518     pp->engage();
1519     set_thread_profiler(pp);
1520   }
1521 
1522   // Setup safepoint state info for this thread
1523   ThreadSafepointState::create(this);
1524 
1525   debug_only(_java_call_counter = 0);
1526 
1527   // JVMTI PopFrame support
1528   _popframe_condition = popframe_inactive;
1529   _popframe_preserved_args = NULL;
1530   _popframe_preserved_args_size = 0;
1531   _frames_to_pop_failed_realloc = 0;
1532 
1533   pd_initialize();
1534 }
1535 
1536 #if INCLUDE_ALL_GCS
1537 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1538 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1539 char JavaThread::_gc_state_global = 0;
1540 #endif // INCLUDE_ALL_GCS
1541 
1542 JavaThread::JavaThread(bool is_attaching_via_jni) :
1543   Thread()
1544 #if INCLUDE_ALL_GCS
1545   , _satb_mark_queue(&_satb_mark_queue_set),
1546     _dirty_card_queue(&_dirty_card_queue_set),
1547     _gc_state(_gc_state_global)
1548 #endif // INCLUDE_ALL_GCS
1549 {
1550   initialize();
1551   if (is_attaching_via_jni) {
1552     _jni_attach_state = _attaching_via_jni;
1553   } else {
1554     _jni_attach_state = _not_attaching_via_jni;
1555   }
1556   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1557 }
1558 
1559 bool JavaThread::reguard_stack(address cur_sp) {
1560   if (_stack_guard_state != stack_guard_yellow_disabled) {
1561     return true; // Stack already guarded or guard pages not needed.
1562   }
1563 
1564   if (register_stack_overflow()) {
1565     // For those architectures which have separate register and
1566     // memory stacks, we must check the register stack to see if
1567     // it has overflowed.
1568     return false;
1569   }
1570 
1571   // Java code never executes within the yellow zone: the latter is only
1572   // there to provoke an exception during stack banging.  If java code
1573   // is executing there, either StackShadowPages should be larger, or
1574   // some exception code in c1, c2 or the interpreter isn't unwinding
1575   // when it should.
1576   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1577 
1578   enable_stack_yellow_zone();
1579   return true;
1580 }
1581 
1582 bool JavaThread::reguard_stack(void) {
1583   return reguard_stack(os::current_stack_pointer());
1584 }
1585 
1586 
1587 void JavaThread::block_if_vm_exited() {
1588   if (_terminated == _vm_exited) {
1589     // _vm_exited is set at safepoint, and Threads_lock is never released
1590     // we will block here forever
1591     Threads_lock->lock_without_safepoint_check();
1592     ShouldNotReachHere();
1593   }
1594 }
1595 
1596 
1597 // Remove this ifdef when C1 is ported to the compiler interface.
1598 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1599 
1600 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1601   Thread()
1602 #if INCLUDE_ALL_GCS
1603   , _satb_mark_queue(&_satb_mark_queue_set),
1604     _dirty_card_queue(&_dirty_card_queue_set),
1605     _gc_state(_gc_state_global)
1606 #endif // INCLUDE_ALL_GCS
1607 {
1608   if (TraceThreadEvents) {
1609     tty->print_cr("creating thread %p", this);
1610   }
1611   initialize();
1612   _jni_attach_state = _not_attaching_via_jni;
1613   set_entry_point(entry_point);
1614   // Create the native thread itself.
1615   // %note runtime_23
1616   os::ThreadType thr_type = os::java_thread;
1617   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1618                                                      os::java_thread;
1619   os::create_thread(this, thr_type, stack_sz);
1620   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1621   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1622   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1623   // the exception consists of creating the exception object & initializing it, initialization
1624   // will leave the VM via a JavaCall and then all locks must be unlocked).
1625   //
1626   // The thread is still suspended when we reach here. Thread must be explicit started
1627   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1628   // by calling Threads:add. The reason why this is not done here, is because the thread
1629   // object must be fully initialized (take a look at JVM_Start)
1630 }
1631 
1632 JavaThread::~JavaThread() {
1633   if (TraceThreadEvents) {
1634       tty->print_cr("terminate thread %p", this);
1635   }
1636 
1637   // JSR166 -- return the parker to the free list
1638   Parker::Release(_parker);
1639   _parker = NULL ;
1640 
1641   // Free any remaining  previous UnrollBlock
1642   vframeArray* old_array = vframe_array_last();
1643 
1644   if (old_array != NULL) {
1645     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1646     old_array->set_unroll_block(NULL);
1647     delete old_info;
1648     delete old_array;
1649   }
1650 
1651   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1652   if (deferred != NULL) {
1653     // This can only happen if thread is destroyed before deoptimization occurs.
1654     assert(deferred->length() != 0, "empty array!");
1655     do {
1656       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1657       deferred->remove_at(0);
1658       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1659       delete dlv;
1660     } while (deferred->length() != 0);
1661     delete deferred;
1662   }
1663 
1664   // All Java related clean up happens in exit
1665   ThreadSafepointState::destroy(this);
1666   if (_thread_profiler != NULL) delete _thread_profiler;
1667   if (_thread_stat != NULL) delete _thread_stat;
1668 }
1669 
1670 
1671 // The first routine called by a new Java thread
1672 void JavaThread::run() {
1673   // initialize thread-local alloc buffer related fields
1674   this->initialize_tlab();
1675 
1676   // used to test validitity of stack trace backs
1677   this->record_base_of_stack_pointer();
1678 
1679   // Record real stack base and size.
1680   this->record_stack_base_and_size();
1681 
1682   // Initialize thread local storage; set before calling MutexLocker
1683   this->initialize_thread_local_storage();
1684 
1685   this->create_stack_guard_pages();
1686 
1687   this->cache_global_variables();
1688 
1689   // Thread is now sufficient initialized to be handled by the safepoint code as being
1690   // in the VM. Change thread state from _thread_new to _thread_in_vm
1691   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1692 
1693   assert(JavaThread::current() == this, "sanity check");
1694   assert(!Thread::current()->owns_locks(), "sanity check");
1695 
1696   DTRACE_THREAD_PROBE(start, this);
1697 
1698   // This operation might block. We call that after all safepoint checks for a new thread has
1699   // been completed.
1700   this->set_active_handles(JNIHandleBlock::allocate_block());
1701 
1702   if (JvmtiExport::should_post_thread_life()) {
1703     JvmtiExport::post_thread_start(this);
1704   }
1705 
1706   EventThreadStart event;
1707   if (event.should_commit()) {
1708      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1709      event.commit();
1710   }
1711 
1712   // We call another function to do the rest so we are sure that the stack addresses used
1713   // from there will be lower than the stack base just computed
1714   thread_main_inner();
1715 
1716   // Note, thread is no longer valid at this point!
1717 }
1718 
1719 
1720 void JavaThread::thread_main_inner() {
1721   assert(JavaThread::current() == this, "sanity check");
1722   assert(this->threadObj() != NULL, "just checking");
1723 
1724   // Execute thread entry point unless this thread has a pending exception
1725   // or has been stopped before starting.
1726   // Note: Due to JVM_StopThread we can have pending exceptions already!
1727   if (!this->has_pending_exception() &&
1728       !java_lang_Thread::is_stillborn(this->threadObj())) {
1729     {
1730       ResourceMark rm(this);
1731       this->set_native_thread_name(this->get_thread_name());
1732     }
1733     HandleMark hm(this);
1734     this->entry_point()(this, this);
1735   }
1736 
1737   DTRACE_THREAD_PROBE(stop, this);
1738 
1739   this->exit(false);
1740   delete this;
1741 }
1742 
1743 
1744 static void ensure_join(JavaThread* thread) {
1745   // We do not need to grap the Threads_lock, since we are operating on ourself.
1746   Handle threadObj(thread, thread->threadObj());
1747   assert(threadObj.not_null(), "java thread object must exist");
1748   ObjectLocker lock(threadObj, thread);
1749   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1750   thread->clear_pending_exception();
1751   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1752   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1753   // Clear the native thread instance - this makes isAlive return false and allows the join()
1754   // to complete once we've done the notify_all below
1755   java_lang_Thread::set_thread(threadObj(), NULL);
1756   lock.notify_all(thread);
1757   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1758   thread->clear_pending_exception();
1759 }
1760 
1761 
1762 // For any new cleanup additions, please check to see if they need to be applied to
1763 // cleanup_failed_attach_current_thread as well.
1764 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1765   assert(this == JavaThread::current(),  "thread consistency check");
1766 
1767   HandleMark hm(this);
1768   Handle uncaught_exception(this, this->pending_exception());
1769   this->clear_pending_exception();
1770   Handle threadObj(this, this->threadObj());
1771   assert(threadObj.not_null(), "Java thread object should be created");
1772 
1773   if (get_thread_profiler() != NULL) {
1774     get_thread_profiler()->disengage();
1775     ResourceMark rm;
1776     get_thread_profiler()->print(get_thread_name());
1777   }
1778 
1779 
1780   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1781   {
1782     EXCEPTION_MARK;
1783 
1784     CLEAR_PENDING_EXCEPTION;
1785   }
1786   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1787   // has to be fixed by a runtime query method
1788   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1789     // JSR-166: change call from from ThreadGroup.uncaughtException to
1790     // java.lang.Thread.dispatchUncaughtException
1791     if (uncaught_exception.not_null()) {
1792       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1793       {
1794         EXCEPTION_MARK;
1795         // Check if the method Thread.dispatchUncaughtException() exists. If so
1796         // call it.  Otherwise we have an older library without the JSR-166 changes,
1797         // so call ThreadGroup.uncaughtException()
1798         KlassHandle recvrKlass(THREAD, threadObj->klass());
1799         CallInfo callinfo;
1800         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1801         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1802                                            vmSymbols::dispatchUncaughtException_name(),
1803                                            vmSymbols::throwable_void_signature(),
1804                                            KlassHandle(), false, false, THREAD);
1805         CLEAR_PENDING_EXCEPTION;
1806         methodHandle method = callinfo.selected_method();
1807         if (method.not_null()) {
1808           JavaValue result(T_VOID);
1809           JavaCalls::call_virtual(&result,
1810                                   threadObj, thread_klass,
1811                                   vmSymbols::dispatchUncaughtException_name(),
1812                                   vmSymbols::throwable_void_signature(),
1813                                   uncaught_exception,
1814                                   THREAD);
1815         } else {
1816           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1817           JavaValue result(T_VOID);
1818           JavaCalls::call_virtual(&result,
1819                                   group, thread_group,
1820                                   vmSymbols::uncaughtException_name(),
1821                                   vmSymbols::thread_throwable_void_signature(),
1822                                   threadObj,           // Arg 1
1823                                   uncaught_exception,  // Arg 2
1824                                   THREAD);
1825         }
1826         if (HAS_PENDING_EXCEPTION) {
1827           ResourceMark rm(this);
1828           jio_fprintf(defaultStream::error_stream(),
1829                 "\nException: %s thrown from the UncaughtExceptionHandler"
1830                 " in thread \"%s\"\n",
1831                 pending_exception()->klass()->external_name(),
1832                 get_thread_name());
1833           CLEAR_PENDING_EXCEPTION;
1834         }
1835       }
1836     }
1837 
1838     // Called before the java thread exit since we want to read info
1839     // from java_lang_Thread object
1840     EventThreadEnd event;
1841     if (event.should_commit()) {
1842         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1843         event.commit();
1844     }
1845 
1846     // Call after last event on thread
1847     EVENT_THREAD_EXIT(this);
1848 
1849     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1850     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1851     // is deprecated anyhow.
1852     if (!is_Compiler_thread()) {
1853       int count = 3;
1854       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1855         EXCEPTION_MARK;
1856         JavaValue result(T_VOID);
1857         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1858         JavaCalls::call_virtual(&result,
1859                               threadObj, thread_klass,
1860                               vmSymbols::exit_method_name(),
1861                               vmSymbols::void_method_signature(),
1862                               THREAD);
1863         CLEAR_PENDING_EXCEPTION;
1864       }
1865     }
1866     // notify JVMTI
1867     if (JvmtiExport::should_post_thread_life()) {
1868       JvmtiExport::post_thread_end(this);
1869     }
1870 
1871     // We have notified the agents that we are exiting, before we go on,
1872     // we must check for a pending external suspend request and honor it
1873     // in order to not surprise the thread that made the suspend request.
1874     while (true) {
1875       {
1876         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1877         if (!is_external_suspend()) {
1878           set_terminated(_thread_exiting);
1879           ThreadService::current_thread_exiting(this);
1880           break;
1881         }
1882         // Implied else:
1883         // Things get a little tricky here. We have a pending external
1884         // suspend request, but we are holding the SR_lock so we
1885         // can't just self-suspend. So we temporarily drop the lock
1886         // and then self-suspend.
1887       }
1888 
1889       ThreadBlockInVM tbivm(this);
1890       java_suspend_self();
1891 
1892       // We're done with this suspend request, but we have to loop around
1893       // and check again. Eventually we will get SR_lock without a pending
1894       // external suspend request and will be able to mark ourselves as
1895       // exiting.
1896     }
1897     // no more external suspends are allowed at this point
1898   } else {
1899     // before_exit() has already posted JVMTI THREAD_END events
1900   }
1901 
1902   // Notify waiters on thread object. This has to be done after exit() is called
1903   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1904   // group should have the destroyed bit set before waiters are notified).
1905   ensure_join(this);
1906   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1907 
1908   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1909   // held by this thread must be released.  A detach operation must only
1910   // get here if there are no Java frames on the stack.  Therefore, any
1911   // owned monitors at this point MUST be JNI-acquired monitors which are
1912   // pre-inflated and in the monitor cache.
1913   //
1914   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1915   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1916     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1917     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1918     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1919   }
1920 
1921   // These things needs to be done while we are still a Java Thread. Make sure that thread
1922   // is in a consistent state, in case GC happens
1923   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1924 
1925   if (active_handles() != NULL) {
1926     JNIHandleBlock* block = active_handles();
1927     set_active_handles(NULL);
1928     JNIHandleBlock::release_block(block);
1929   }
1930 
1931   if (free_handle_block() != NULL) {
1932     JNIHandleBlock* block = free_handle_block();
1933     set_free_handle_block(NULL);
1934     JNIHandleBlock::release_block(block);
1935   }
1936 
1937   // These have to be removed while this is still a valid thread.
1938   remove_stack_guard_pages();
1939 
1940   if (UseTLAB) {
1941     tlab().make_parsable(true);  // retire TLAB
1942   }
1943 
1944   if (JvmtiEnv::environments_might_exist()) {
1945     JvmtiExport::cleanup_thread(this);
1946   }
1947 
1948   // We must flush any deferred card marks before removing a thread from
1949   // the list of active threads.
1950   Universe::heap()->flush_deferred_store_barrier(this);
1951   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1952 
1953 #if INCLUDE_ALL_GCS
1954   // We must flush the G1-related buffers before removing a thread
1955   // from the list of active threads. We must do this after any deferred
1956   // card marks have been flushed (above) so that any entries that are
1957   // added to the thread's dirty card queue as a result are not lost.
1958   if (UseG1GC || (UseShenandoahGC && ShenandoahSATBBarrier)) {
1959     flush_barrier_queues();
1960   }
1961   if (UseShenandoahGC && UseTLAB && gclab().is_initialized()) {
1962     gclab().make_parsable(true);
1963   }
1964 #endif // INCLUDE_ALL_GCS
1965 
1966   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1967   Threads::remove(this);
1968 }
1969 
1970 #if INCLUDE_ALL_GCS
1971 // Flush G1-related queues.
1972 void JavaThread::flush_barrier_queues() {
1973   satb_mark_queue().flush();
1974   dirty_card_queue().flush();
1975 }
1976 
1977 void JavaThread::initialize_queues() {
1978   assert(!SafepointSynchronize::is_at_safepoint(),
1979          "we should not be at a safepoint");
1980 
1981   ObjPtrQueue& satb_queue = satb_mark_queue();
1982   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1983   // The SATB queue should have been constructed with its active
1984   // field set to false.
1985   assert(!satb_queue.is_active(), "SATB queue should not be active");
1986   assert(satb_queue.is_empty(), "SATB queue should be empty");
1987   // If we are creating the thread during a marking cycle, we should
1988   // set the active field of the SATB queue to true.
1989   if (satb_queue_set.is_active()) {
1990     satb_queue.set_active(true);
1991   }
1992 
1993   DirtyCardQueue& dirty_queue = dirty_card_queue();
1994   // The dirty card queue should have been constructed with its
1995   // active field set to true.
1996   assert(dirty_queue.is_active(), "dirty card queue should be active");
1997 
1998   _gc_state = _gc_state_global;
1999 }
2000 
2001 void JavaThread::set_gc_state(char in_prog) {
2002   _gc_state = in_prog;
2003 }
2004 
2005 void JavaThread::set_gc_state_all_threads(char in_prog) {
2006   assert_locked_or_safepoint(Threads_lock);
2007   _gc_state_global = in_prog;
2008   for (JavaThread* t = Threads::first(); t != NULL; t = t->next()) {
2009     t->set_gc_state(in_prog);
2010   }
2011 }
2012 #endif // INCLUDE_ALL_GCS
2013 
2014 void JavaThread::cleanup_failed_attach_current_thread() {
2015   if (get_thread_profiler() != NULL) {
2016     get_thread_profiler()->disengage();
2017     ResourceMark rm;
2018     get_thread_profiler()->print(get_thread_name());
2019   }
2020 
2021   if (active_handles() != NULL) {
2022     JNIHandleBlock* block = active_handles();
2023     set_active_handles(NULL);
2024     JNIHandleBlock::release_block(block);
2025   }
2026 
2027   if (free_handle_block() != NULL) {
2028     JNIHandleBlock* block = free_handle_block();
2029     set_free_handle_block(NULL);
2030     JNIHandleBlock::release_block(block);
2031   }
2032 
2033   // These have to be removed while this is still a valid thread.
2034   remove_stack_guard_pages();
2035 
2036   if (UseTLAB) {
2037     tlab().make_parsable(true);  // retire TLAB, if any
2038   }
2039 
2040 #if INCLUDE_ALL_GCS
2041   if (UseG1GC || (UseShenandoahGC && ShenandoahSATBBarrier)) {
2042     flush_barrier_queues();
2043   }
2044   if (UseShenandoahGC && UseTLAB && gclab().is_initialized()) {
2045     gclab().make_parsable(true);
2046   }
2047 #endif // INCLUDE_ALL_GCS
2048 
2049   Threads::remove(this);
2050   delete this;
2051 }
2052 
2053 
2054 
2055 
2056 JavaThread* JavaThread::active() {
2057   Thread* thread = ThreadLocalStorage::thread();
2058   assert(thread != NULL, "just checking");
2059   if (thread->is_Java_thread()) {
2060     return (JavaThread*) thread;
2061   } else {
2062     assert(thread->is_VM_thread(), "this must be a vm thread");
2063     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2064     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2065     assert(ret->is_Java_thread(), "must be a Java thread");
2066     return ret;
2067   }
2068 }
2069 
2070 bool JavaThread::is_lock_owned(address adr) const {
2071   if (Thread::is_lock_owned(adr)) return true;
2072 
2073   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2074     if (chunk->contains(adr)) return true;
2075   }
2076 
2077   return false;
2078 }
2079 
2080 
2081 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2082   chunk->set_next(monitor_chunks());
2083   set_monitor_chunks(chunk);
2084 }
2085 
2086 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2087   guarantee(monitor_chunks() != NULL, "must be non empty");
2088   if (monitor_chunks() == chunk) {
2089     set_monitor_chunks(chunk->next());
2090   } else {
2091     MonitorChunk* prev = monitor_chunks();
2092     while (prev->next() != chunk) prev = prev->next();
2093     prev->set_next(chunk->next());
2094   }
2095 }
2096 
2097 // JVM support.
2098 
2099 // Note: this function shouldn't block if it's called in
2100 // _thread_in_native_trans state (such as from
2101 // check_special_condition_for_native_trans()).
2102 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2103 
2104   if (has_last_Java_frame() && has_async_condition()) {
2105     // If we are at a polling page safepoint (not a poll return)
2106     // then we must defer async exception because live registers
2107     // will be clobbered by the exception path. Poll return is
2108     // ok because the call we a returning from already collides
2109     // with exception handling registers and so there is no issue.
2110     // (The exception handling path kills call result registers but
2111     //  this is ok since the exception kills the result anyway).
2112 
2113     if (is_at_poll_safepoint()) {
2114       // if the code we are returning to has deoptimized we must defer
2115       // the exception otherwise live registers get clobbered on the
2116       // exception path before deoptimization is able to retrieve them.
2117       //
2118       RegisterMap map(this, false);
2119       frame caller_fr = last_frame().sender(&map);
2120       assert(caller_fr.is_compiled_frame(), "what?");
2121       if (caller_fr.is_deoptimized_frame()) {
2122         if (TraceExceptions) {
2123           ResourceMark rm;
2124           tty->print_cr("deferred async exception at compiled safepoint");
2125         }
2126         return;
2127       }
2128     }
2129   }
2130 
2131   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2132   if (condition == _no_async_condition) {
2133     // Conditions have changed since has_special_runtime_exit_condition()
2134     // was called:
2135     // - if we were here only because of an external suspend request,
2136     //   then that was taken care of above (or cancelled) so we are done
2137     // - if we were here because of another async request, then it has
2138     //   been cleared between the has_special_runtime_exit_condition()
2139     //   and now so again we are done
2140     return;
2141   }
2142 
2143   // Check for pending async. exception
2144   if (_pending_async_exception != NULL) {
2145     // Only overwrite an already pending exception, if it is not a threadDeath.
2146     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2147 
2148       // We cannot call Exceptions::_throw(...) here because we cannot block
2149       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2150 
2151       if (TraceExceptions) {
2152         ResourceMark rm;
2153         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2154         if (has_last_Java_frame() ) {
2155           frame f = last_frame();
2156           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2157         }
2158         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2159       }
2160       _pending_async_exception = NULL;
2161       clear_has_async_exception();
2162     }
2163   }
2164 
2165   if (check_unsafe_error &&
2166       condition == _async_unsafe_access_error && !has_pending_exception()) {
2167     condition = _no_async_condition;  // done
2168     switch (thread_state()) {
2169     case _thread_in_vm:
2170       {
2171         JavaThread* THREAD = this;
2172         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2173       }
2174     case _thread_in_native:
2175       {
2176         ThreadInVMfromNative tiv(this);
2177         JavaThread* THREAD = this;
2178         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2179       }
2180     case _thread_in_Java:
2181       {
2182         ThreadInVMfromJava tiv(this);
2183         JavaThread* THREAD = this;
2184         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2185       }
2186     default:
2187       ShouldNotReachHere();
2188     }
2189   }
2190 
2191   assert(condition == _no_async_condition || has_pending_exception() ||
2192          (!check_unsafe_error && condition == _async_unsafe_access_error),
2193          "must have handled the async condition, if no exception");
2194 }
2195 
2196 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2197   //
2198   // Check for pending external suspend. Internal suspend requests do
2199   // not use handle_special_runtime_exit_condition().
2200   // If JNIEnv proxies are allowed, don't self-suspend if the target
2201   // thread is not the current thread. In older versions of jdbx, jdbx
2202   // threads could call into the VM with another thread's JNIEnv so we
2203   // can be here operating on behalf of a suspended thread (4432884).
2204   bool do_self_suspend = is_external_suspend_with_lock();
2205   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2206     //
2207     // Because thread is external suspended the safepoint code will count
2208     // thread as at a safepoint. This can be odd because we can be here
2209     // as _thread_in_Java which would normally transition to _thread_blocked
2210     // at a safepoint. We would like to mark the thread as _thread_blocked
2211     // before calling java_suspend_self like all other callers of it but
2212     // we must then observe proper safepoint protocol. (We can't leave
2213     // _thread_blocked with a safepoint in progress). However we can be
2214     // here as _thread_in_native_trans so we can't use a normal transition
2215     // constructor/destructor pair because they assert on that type of
2216     // transition. We could do something like:
2217     //
2218     // JavaThreadState state = thread_state();
2219     // set_thread_state(_thread_in_vm);
2220     // {
2221     //   ThreadBlockInVM tbivm(this);
2222     //   java_suspend_self()
2223     // }
2224     // set_thread_state(_thread_in_vm_trans);
2225     // if (safepoint) block;
2226     // set_thread_state(state);
2227     //
2228     // but that is pretty messy. Instead we just go with the way the
2229     // code has worked before and note that this is the only path to
2230     // java_suspend_self that doesn't put the thread in _thread_blocked
2231     // mode.
2232 
2233     frame_anchor()->make_walkable(this);
2234     java_suspend_self();
2235 
2236     // We might be here for reasons in addition to the self-suspend request
2237     // so check for other async requests.
2238   }
2239 
2240   if (check_asyncs) {
2241     check_and_handle_async_exceptions();
2242   }
2243 }
2244 
2245 void JavaThread::send_thread_stop(oop java_throwable)  {
2246   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2247   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2248   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2249 
2250   // Do not throw asynchronous exceptions against the compiler thread
2251   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2252   if (is_Compiler_thread()) return;
2253 
2254   {
2255     // Actually throw the Throwable against the target Thread - however
2256     // only if there is no thread death exception installed already.
2257     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2258       // If the topmost frame is a runtime stub, then we are calling into
2259       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2260       // must deoptimize the caller before continuing, as the compiled  exception handler table
2261       // may not be valid
2262       if (has_last_Java_frame()) {
2263         frame f = last_frame();
2264         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2265           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2266           RegisterMap reg_map(this, UseBiasedLocking);
2267           frame compiled_frame = f.sender(&reg_map);
2268           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2269             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2270           }
2271         }
2272       }
2273 
2274       // Set async. pending exception in thread.
2275       set_pending_async_exception(java_throwable);
2276 
2277       if (TraceExceptions) {
2278        ResourceMark rm;
2279        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2280       }
2281       // for AbortVMOnException flag
2282       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2283     }
2284   }
2285 
2286 
2287   // Interrupt thread so it will wake up from a potential wait()
2288   Thread::interrupt(this);
2289 }
2290 
2291 // External suspension mechanism.
2292 //
2293 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2294 // to any VM_locks and it is at a transition
2295 // Self-suspension will happen on the transition out of the vm.
2296 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2297 //
2298 // Guarantees on return:
2299 //   + Target thread will not execute any new bytecode (that's why we need to
2300 //     force a safepoint)
2301 //   + Target thread will not enter any new monitors
2302 //
2303 void JavaThread::java_suspend() {
2304   { MutexLocker mu(Threads_lock);
2305     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2306        return;
2307     }
2308   }
2309 
2310   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2311     if (!is_external_suspend()) {
2312       // a racing resume has cancelled us; bail out now
2313       return;
2314     }
2315 
2316     // suspend is done
2317     uint32_t debug_bits = 0;
2318     // Warning: is_ext_suspend_completed() may temporarily drop the
2319     // SR_lock to allow the thread to reach a stable thread state if
2320     // it is currently in a transient thread state.
2321     if (is_ext_suspend_completed(false /* !called_by_wait */,
2322                                  SuspendRetryDelay, &debug_bits) ) {
2323       return;
2324     }
2325   }
2326 
2327   VM_ForceSafepoint vm_suspend;
2328   VMThread::execute(&vm_suspend);
2329 }
2330 
2331 // Part II of external suspension.
2332 // A JavaThread self suspends when it detects a pending external suspend
2333 // request. This is usually on transitions. It is also done in places
2334 // where continuing to the next transition would surprise the caller,
2335 // e.g., monitor entry.
2336 //
2337 // Returns the number of times that the thread self-suspended.
2338 //
2339 // Note: DO NOT call java_suspend_self() when you just want to block current
2340 //       thread. java_suspend_self() is the second stage of cooperative
2341 //       suspension for external suspend requests and should only be used
2342 //       to complete an external suspend request.
2343 //
2344 int JavaThread::java_suspend_self() {
2345   int ret = 0;
2346 
2347   // we are in the process of exiting so don't suspend
2348   if (is_exiting()) {
2349      clear_external_suspend();
2350      return ret;
2351   }
2352 
2353   assert(_anchor.walkable() ||
2354     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2355     "must have walkable stack");
2356 
2357   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2358 
2359   assert(!this->is_ext_suspended(),
2360     "a thread trying to self-suspend should not already be suspended");
2361 
2362   if (this->is_suspend_equivalent()) {
2363     // If we are self-suspending as a result of the lifting of a
2364     // suspend equivalent condition, then the suspend_equivalent
2365     // flag is not cleared until we set the ext_suspended flag so
2366     // that wait_for_ext_suspend_completion() returns consistent
2367     // results.
2368     this->clear_suspend_equivalent();
2369   }
2370 
2371   // A racing resume may have cancelled us before we grabbed SR_lock
2372   // above. Or another external suspend request could be waiting for us
2373   // by the time we return from SR_lock()->wait(). The thread
2374   // that requested the suspension may already be trying to walk our
2375   // stack and if we return now, we can change the stack out from under
2376   // it. This would be a "bad thing (TM)" and cause the stack walker
2377   // to crash. We stay self-suspended until there are no more pending
2378   // external suspend requests.
2379   while (is_external_suspend()) {
2380     ret++;
2381     this->set_ext_suspended();
2382 
2383     // _ext_suspended flag is cleared by java_resume()
2384     while (is_ext_suspended()) {
2385       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2386     }
2387   }
2388 
2389   return ret;
2390 }
2391 
2392 #ifdef ASSERT
2393 // verify the JavaThread has not yet been published in the Threads::list, and
2394 // hence doesn't need protection from concurrent access at this stage
2395 void JavaThread::verify_not_published() {
2396   if (!Threads_lock->owned_by_self()) {
2397    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2398    assert( !Threads::includes(this),
2399            "java thread shouldn't have been published yet!");
2400   }
2401   else {
2402    assert( !Threads::includes(this),
2403            "java thread shouldn't have been published yet!");
2404   }
2405 }
2406 #endif
2407 
2408 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2409 // progress or when _suspend_flags is non-zero.
2410 // Current thread needs to self-suspend if there is a suspend request and/or
2411 // block if a safepoint is in progress.
2412 // Async exception ISN'T checked.
2413 // Note only the ThreadInVMfromNative transition can call this function
2414 // directly and when thread state is _thread_in_native_trans
2415 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2416   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2417 
2418   JavaThread *curJT = JavaThread::current();
2419   bool do_self_suspend = thread->is_external_suspend();
2420 
2421   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2422 
2423   // If JNIEnv proxies are allowed, don't self-suspend if the target
2424   // thread is not the current thread. In older versions of jdbx, jdbx
2425   // threads could call into the VM with another thread's JNIEnv so we
2426   // can be here operating on behalf of a suspended thread (4432884).
2427   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2428     JavaThreadState state = thread->thread_state();
2429 
2430     // We mark this thread_blocked state as a suspend-equivalent so
2431     // that a caller to is_ext_suspend_completed() won't be confused.
2432     // The suspend-equivalent state is cleared by java_suspend_self().
2433     thread->set_suspend_equivalent();
2434 
2435     // If the safepoint code sees the _thread_in_native_trans state, it will
2436     // wait until the thread changes to other thread state. There is no
2437     // guarantee on how soon we can obtain the SR_lock and complete the
2438     // self-suspend request. It would be a bad idea to let safepoint wait for
2439     // too long. Temporarily change the state to _thread_blocked to
2440     // let the VM thread know that this thread is ready for GC. The problem
2441     // of changing thread state is that safepoint could happen just after
2442     // java_suspend_self() returns after being resumed, and VM thread will
2443     // see the _thread_blocked state. We must check for safepoint
2444     // after restoring the state and make sure we won't leave while a safepoint
2445     // is in progress.
2446     thread->set_thread_state(_thread_blocked);
2447     thread->java_suspend_self();
2448     thread->set_thread_state(state);
2449     // Make sure new state is seen by VM thread
2450     if (os::is_MP()) {
2451       if (UseMembar) {
2452         // Force a fence between the write above and read below
2453         OrderAccess::fence();
2454       } else {
2455         // Must use this rather than serialization page in particular on Windows
2456         InterfaceSupport::serialize_memory(thread);
2457       }
2458     }
2459   }
2460 
2461   if (SafepointSynchronize::do_call_back()) {
2462     // If we are safepointing, then block the caller which may not be
2463     // the same as the target thread (see above).
2464     SafepointSynchronize::block(curJT);
2465   }
2466 
2467   if (thread->is_deopt_suspend()) {
2468     thread->clear_deopt_suspend();
2469     RegisterMap map(thread, false);
2470     frame f = thread->last_frame();
2471     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2472       f = f.sender(&map);
2473     }
2474     if (f.id() == thread->must_deopt_id()) {
2475       thread->clear_must_deopt_id();
2476       f.deoptimize(thread);
2477     } else {
2478       fatal("missed deoptimization!");
2479     }
2480   }
2481 }
2482 
2483 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2484 // progress or when _suspend_flags is non-zero.
2485 // Current thread needs to self-suspend if there is a suspend request and/or
2486 // block if a safepoint is in progress.
2487 // Also check for pending async exception (not including unsafe access error).
2488 // Note only the native==>VM/Java barriers can call this function and when
2489 // thread state is _thread_in_native_trans.
2490 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2491   check_safepoint_and_suspend_for_native_trans(thread);
2492 
2493   if (thread->has_async_exception()) {
2494     // We are in _thread_in_native_trans state, don't handle unsafe
2495     // access error since that may block.
2496     thread->check_and_handle_async_exceptions(false);
2497   }
2498 }
2499 
2500 // This is a variant of the normal
2501 // check_special_condition_for_native_trans with slightly different
2502 // semantics for use by critical native wrappers.  It does all the
2503 // normal checks but also performs the transition back into
2504 // thread_in_Java state.  This is required so that critical natives
2505 // can potentially block and perform a GC if they are the last thread
2506 // exiting the GC_locker.
2507 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2508   check_special_condition_for_native_trans(thread);
2509 
2510   // Finish the transition
2511   thread->set_thread_state(_thread_in_Java);
2512 
2513   if (thread->do_critical_native_unlock()) {
2514     ThreadInVMfromJavaNoAsyncException tiv(thread);
2515     GC_locker::unlock_critical(thread);
2516     thread->clear_critical_native_unlock();
2517   }
2518 }
2519 
2520 // We need to guarantee the Threads_lock here, since resumes are not
2521 // allowed during safepoint synchronization
2522 // Can only resume from an external suspension
2523 void JavaThread::java_resume() {
2524   assert_locked_or_safepoint(Threads_lock);
2525 
2526   // Sanity check: thread is gone, has started exiting or the thread
2527   // was not externally suspended.
2528   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2529     return;
2530   }
2531 
2532   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2533 
2534   clear_external_suspend();
2535 
2536   if (is_ext_suspended()) {
2537     clear_ext_suspended();
2538     SR_lock()->notify_all();
2539   }
2540 }
2541 
2542 void JavaThread::create_stack_guard_pages() {
2543   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2544   address low_addr = stack_base() - stack_size();
2545   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2546 
2547   int allocate = os::allocate_stack_guard_pages();
2548   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2549 
2550   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2551     warning("Attempt to allocate stack guard pages failed.");
2552     return;
2553   }
2554 
2555   if (os::guard_memory((char *) low_addr, len)) {
2556     _stack_guard_state = stack_guard_enabled;
2557   } else {
2558     warning("Attempt to protect stack guard pages failed.");
2559     if (os::uncommit_memory((char *) low_addr, len)) {
2560       warning("Attempt to deallocate stack guard pages failed.");
2561     }
2562   }
2563 }
2564 
2565 void JavaThread::remove_stack_guard_pages() {
2566   assert(Thread::current() == this, "from different thread");
2567   if (_stack_guard_state == stack_guard_unused) return;
2568   address low_addr = stack_base() - stack_size();
2569   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2570 
2571   if (os::allocate_stack_guard_pages()) {
2572     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2573       _stack_guard_state = stack_guard_unused;
2574     } else {
2575       warning("Attempt to deallocate stack guard pages failed.");
2576     }
2577   } else {
2578     if (_stack_guard_state == stack_guard_unused) return;
2579     if (os::unguard_memory((char *) low_addr, len)) {
2580       _stack_guard_state = stack_guard_unused;
2581     } else {
2582         warning("Attempt to unprotect stack guard pages failed.");
2583     }
2584   }
2585 }
2586 
2587 void JavaThread::enable_stack_yellow_zone() {
2588   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2589   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2590 
2591   // The base notation is from the stacks point of view, growing downward.
2592   // We need to adjust it to work correctly with guard_memory()
2593   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2594 
2595   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2596   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2597 
2598   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2599     _stack_guard_state = stack_guard_enabled;
2600   } else {
2601     warning("Attempt to guard stack yellow zone failed.");
2602   }
2603   enable_register_stack_guard();
2604 }
2605 
2606 void JavaThread::disable_stack_yellow_zone() {
2607   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2608   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2609 
2610   // Simply return if called for a thread that does not use guard pages.
2611   if (_stack_guard_state == stack_guard_unused) return;
2612 
2613   // The base notation is from the stacks point of view, growing downward.
2614   // We need to adjust it to work correctly with guard_memory()
2615   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2616 
2617   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2618     _stack_guard_state = stack_guard_yellow_disabled;
2619   } else {
2620     warning("Attempt to unguard stack yellow zone failed.");
2621   }
2622   disable_register_stack_guard();
2623 }
2624 
2625 void JavaThread::enable_stack_red_zone() {
2626   // The base notation is from the stacks point of view, growing downward.
2627   // We need to adjust it to work correctly with guard_memory()
2628   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2629   address base = stack_red_zone_base() - stack_red_zone_size();
2630 
2631   guarantee(base < stack_base(),"Error calculating stack red zone");
2632   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2633 
2634   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2635     warning("Attempt to guard stack red zone failed.");
2636   }
2637 }
2638 
2639 void JavaThread::disable_stack_red_zone() {
2640   // The base notation is from the stacks point of view, growing downward.
2641   // We need to adjust it to work correctly with guard_memory()
2642   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2643   address base = stack_red_zone_base() - stack_red_zone_size();
2644   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2645     warning("Attempt to unguard stack red zone failed.");
2646   }
2647 }
2648 
2649 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2650   // ignore is there is no stack
2651   if (!has_last_Java_frame()) return;
2652   // traverse the stack frames. Starts from top frame.
2653   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2654     frame* fr = fst.current();
2655     f(fr, fst.register_map());
2656   }
2657 }
2658 
2659 
2660 #ifndef PRODUCT
2661 // Deoptimization
2662 // Function for testing deoptimization
2663 void JavaThread::deoptimize() {
2664   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2665   StackFrameStream fst(this, UseBiasedLocking);
2666   bool deopt = false;           // Dump stack only if a deopt actually happens.
2667   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2668   // Iterate over all frames in the thread and deoptimize
2669   for(; !fst.is_done(); fst.next()) {
2670     if(fst.current()->can_be_deoptimized()) {
2671 
2672       if (only_at) {
2673         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2674         // consists of comma or carriage return separated numbers so
2675         // search for the current bci in that string.
2676         address pc = fst.current()->pc();
2677         nmethod* nm =  (nmethod*) fst.current()->cb();
2678         ScopeDesc* sd = nm->scope_desc_at( pc);
2679         char buffer[8];
2680         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2681         size_t len = strlen(buffer);
2682         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2683         while (found != NULL) {
2684           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2685               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2686             // Check that the bci found is bracketed by terminators.
2687             break;
2688           }
2689           found = strstr(found + 1, buffer);
2690         }
2691         if (!found) {
2692           continue;
2693         }
2694       }
2695 
2696       if (DebugDeoptimization && !deopt) {
2697         deopt = true; // One-time only print before deopt
2698         tty->print_cr("[BEFORE Deoptimization]");
2699         trace_frames();
2700         trace_stack();
2701       }
2702       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2703     }
2704   }
2705 
2706   if (DebugDeoptimization && deopt) {
2707     tty->print_cr("[AFTER Deoptimization]");
2708     trace_frames();
2709   }
2710 }
2711 
2712 
2713 // Make zombies
2714 void JavaThread::make_zombies() {
2715   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2716     if (fst.current()->can_be_deoptimized()) {
2717       // it is a Java nmethod
2718       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2719       nm->make_not_entrant();
2720     }
2721   }
2722 }
2723 #endif // PRODUCT
2724 
2725 
2726 void JavaThread::deoptimized_wrt_marked_nmethods() {
2727   if (!has_last_Java_frame()) return;
2728   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2729   StackFrameStream fst(this, UseBiasedLocking);
2730   for(; !fst.is_done(); fst.next()) {
2731     if (fst.current()->should_be_deoptimized()) {
2732       if (LogCompilation && xtty != NULL) {
2733         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2734         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2735                    this->name(), nm != NULL ? nm->compile_id() : -1);
2736       }
2737 
2738       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2739     }
2740   }
2741 }
2742 
2743 
2744 // GC support
2745 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2746 
2747 void JavaThread::gc_epilogue() {
2748   frames_do(frame_gc_epilogue);
2749 }
2750 
2751 
2752 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2753 
2754 void JavaThread::gc_prologue() {
2755   frames_do(frame_gc_prologue);
2756 }
2757 
2758 // If the caller is a NamedThread, then remember, in the current scope,
2759 // the given JavaThread in its _processed_thread field.
2760 class RememberProcessedThread: public StackObj {
2761   NamedThread* _cur_thr;
2762 public:
2763   RememberProcessedThread(JavaThread* jthr) {
2764     Thread* thread = Thread::current();
2765     if (thread->is_Named_thread()) {
2766       _cur_thr = (NamedThread *)thread;
2767       _cur_thr->set_processed_thread(jthr);
2768     } else {
2769       _cur_thr = NULL;
2770     }
2771   }
2772 
2773   ~RememberProcessedThread() {
2774     if (_cur_thr) {
2775       _cur_thr->set_processed_thread(NULL);
2776     }
2777   }
2778 };
2779 
2780 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2781   // Verify that the deferred card marks have been flushed.
2782   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2783 
2784   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2785   // since there may be more than one thread using each ThreadProfiler.
2786 
2787   // Traverse the GCHandles
2788   Thread::oops_do(f, cld_f, cf);
2789 
2790   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2791           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2792 
2793   if (has_last_Java_frame()) {
2794     // Record JavaThread to GC thread
2795     RememberProcessedThread rpt(this);
2796 
2797     // Traverse the privileged stack
2798     if (_privileged_stack_top != NULL) {
2799       _privileged_stack_top->oops_do(f);
2800     }
2801 
2802     // traverse the registered growable array
2803     if (_array_for_gc != NULL) {
2804       for (int index = 0; index < _array_for_gc->length(); index++) {
2805         f->do_oop(_array_for_gc->adr_at(index));
2806       }
2807     }
2808 
2809     // Traverse the monitor chunks
2810     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2811       chunk->oops_do(f);
2812     }
2813 
2814     // Traverse the execution stack
2815     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2816       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2817     }
2818   }
2819 
2820   // callee_target is never live across a gc point so NULL it here should
2821   // it still contain a methdOop.
2822 
2823   set_callee_target(NULL);
2824 
2825   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2826   // If we have deferred set_locals there might be oops waiting to be
2827   // written
2828   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2829   if (list != NULL) {
2830     for (int i = 0; i < list->length(); i++) {
2831       list->at(i)->oops_do(f);
2832     }
2833   }
2834 
2835   // Traverse instance variables at the end since the GC may be moving things
2836   // around using this function
2837   f->do_oop((oop*) &_threadObj);
2838   f->do_oop((oop*) &_vm_result);
2839   f->do_oop((oop*) &_exception_oop);
2840   f->do_oop((oop*) &_pending_async_exception);
2841 
2842   if (jvmti_thread_state() != NULL) {
2843     jvmti_thread_state()->oops_do(f);
2844   }
2845 }
2846 
2847 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2848   Thread::nmethods_do(cf);  // (super method is a no-op)
2849 
2850   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2851           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2852 
2853   if (has_last_Java_frame()) {
2854     // Traverse the execution stack
2855     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2856       fst.current()->nmethods_do(cf);
2857     }
2858   }
2859 }
2860 
2861 void JavaThread::metadata_do(void f(Metadata*)) {
2862   Thread::metadata_do(f);
2863   if (has_last_Java_frame()) {
2864     // Traverse the execution stack to call f() on the methods in the stack
2865     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2866       fst.current()->metadata_do(f);
2867     }
2868   } else if (is_Compiler_thread()) {
2869     // need to walk ciMetadata in current compile tasks to keep alive.
2870     CompilerThread* ct = (CompilerThread*)this;
2871     if (ct->env() != NULL) {
2872       ct->env()->metadata_do(f);
2873     }
2874   }
2875 }
2876 
2877 // Printing
2878 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2879   switch (_thread_state) {
2880   case _thread_uninitialized:     return "_thread_uninitialized";
2881   case _thread_new:               return "_thread_new";
2882   case _thread_new_trans:         return "_thread_new_trans";
2883   case _thread_in_native:         return "_thread_in_native";
2884   case _thread_in_native_trans:   return "_thread_in_native_trans";
2885   case _thread_in_vm:             return "_thread_in_vm";
2886   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2887   case _thread_in_Java:           return "_thread_in_Java";
2888   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2889   case _thread_blocked:           return "_thread_blocked";
2890   case _thread_blocked_trans:     return "_thread_blocked_trans";
2891   default:                        return "unknown thread state";
2892   }
2893 }
2894 
2895 #ifndef PRODUCT
2896 void JavaThread::print_thread_state_on(outputStream *st) const {
2897   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2898 };
2899 void JavaThread::print_thread_state() const {
2900   print_thread_state_on(tty);
2901 };
2902 #endif // PRODUCT
2903 
2904 // Called by Threads::print() for VM_PrintThreads operation
2905 void JavaThread::print_on(outputStream *st) const {
2906   st->print("\"%s\" ", get_thread_name());
2907   oop thread_oop = threadObj();
2908   if (thread_oop != NULL) {
2909     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2910     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2911     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2912   }
2913   Thread::print_on(st);
2914   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2915   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2916   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2917     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2918   }
2919 #ifndef PRODUCT
2920   print_thread_state_on(st);
2921   _safepoint_state->print_on(st);
2922 #endif // PRODUCT
2923 }
2924 
2925 // Called by fatal error handler. The difference between this and
2926 // JavaThread::print() is that we can't grab lock or allocate memory.
2927 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2928   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2929   oop thread_obj = threadObj();
2930   if (thread_obj != NULL) {
2931      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2932   }
2933   st->print(" [");
2934   st->print("%s", _get_thread_state_name(_thread_state));
2935   if (osthread()) {
2936     st->print(", id=%d", osthread()->thread_id());
2937   }
2938   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2939             _stack_base - _stack_size, _stack_base);
2940   st->print("]");
2941   return;
2942 }
2943 
2944 // Verification
2945 
2946 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2947 
2948 void JavaThread::verify() {
2949   // Verify oops in the thread.
2950   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2951 
2952   // Verify the stack frames.
2953   frames_do(frame_verify);
2954 }
2955 
2956 // CR 6300358 (sub-CR 2137150)
2957 // Most callers of this method assume that it can't return NULL but a
2958 // thread may not have a name whilst it is in the process of attaching to
2959 // the VM - see CR 6412693, and there are places where a JavaThread can be
2960 // seen prior to having it's threadObj set (eg JNI attaching threads and
2961 // if vm exit occurs during initialization). These cases can all be accounted
2962 // for such that this method never returns NULL.
2963 const char* JavaThread::get_thread_name() const {
2964 #ifdef ASSERT
2965   // early safepoints can hit while current thread does not yet have TLS
2966   if (!SafepointSynchronize::is_at_safepoint()) {
2967     Thread *cur = Thread::current();
2968     if (!(cur->is_Java_thread() && cur == this)) {
2969       // Current JavaThreads are allowed to get their own name without
2970       // the Threads_lock.
2971       assert_locked_or_safepoint(Threads_lock);
2972     }
2973   }
2974 #endif // ASSERT
2975     return get_thread_name_string();
2976 }
2977 
2978 // Returns a non-NULL representation of this thread's name, or a suitable
2979 // descriptive string if there is no set name
2980 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2981   const char* name_str;
2982   oop thread_obj = threadObj();
2983   if (thread_obj != NULL) {
2984     oop name = java_lang_Thread::name(thread_obj);
2985     if (name != NULL) {
2986       if (buf == NULL) {
2987         name_str = java_lang_String::as_utf8_string(name);
2988       }
2989       else {
2990         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2991       }
2992     }
2993     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2994       name_str = "<no-name - thread is attaching>";
2995     }
2996     else {
2997       name_str = Thread::name();
2998     }
2999   }
3000   else {
3001     name_str = Thread::name();
3002   }
3003   assert(name_str != NULL, "unexpected NULL thread name");
3004   return name_str;
3005 }
3006 
3007 
3008 const char* JavaThread::get_threadgroup_name() const {
3009   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3010   oop thread_obj = threadObj();
3011   if (thread_obj != NULL) {
3012     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3013     if (thread_group != NULL) {
3014       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
3015       name = typeArrayOop(oopDesc::bs()->read_barrier(name));
3016       // ThreadGroup.name can be null
3017       if (name != NULL) {
3018         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
3019         return str;
3020       }
3021     }
3022   }
3023   return NULL;
3024 }
3025 
3026 const char* JavaThread::get_parent_name() const {
3027   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3028   oop thread_obj = threadObj();
3029   if (thread_obj != NULL) {
3030     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3031     if (thread_group != NULL) {
3032       oop parent = java_lang_ThreadGroup::parent(thread_group);
3033       if (parent != NULL) {
3034         typeArrayOop name = java_lang_ThreadGroup::name(parent);
3035         name = typeArrayOop(oopDesc::bs()->read_barrier(name));
3036         // ThreadGroup.name can be null
3037         if (name != NULL) {
3038           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
3039           return str;
3040         }
3041       }
3042     }
3043   }
3044   return NULL;
3045 }
3046 
3047 ThreadPriority JavaThread::java_priority() const {
3048   oop thr_oop = threadObj();
3049   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3050   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3051   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3052   return priority;
3053 }
3054 
3055 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3056 
3057   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3058   // Link Java Thread object <-> C++ Thread
3059 
3060   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3061   // and put it into a new Handle.  The Handle "thread_oop" can then
3062   // be used to pass the C++ thread object to other methods.
3063 
3064   // Set the Java level thread object (jthread) field of the
3065   // new thread (a JavaThread *) to C++ thread object using the
3066   // "thread_oop" handle.
3067 
3068   // Set the thread field (a JavaThread *) of the
3069   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3070 
3071   Handle thread_oop(Thread::current(),
3072                     JNIHandles::resolve_non_null(jni_thread));
3073   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3074     "must be initialized");
3075   set_threadObj(thread_oop());
3076   java_lang_Thread::set_thread(thread_oop(), this);
3077 
3078   if (prio == NoPriority) {
3079     prio = java_lang_Thread::priority(thread_oop());
3080     assert(prio != NoPriority, "A valid priority should be present");
3081   }
3082 
3083   // Push the Java priority down to the native thread; needs Threads_lock
3084   Thread::set_priority(this, prio);
3085 
3086   prepare_ext();
3087 
3088   // Add the new thread to the Threads list and set it in motion.
3089   // We must have threads lock in order to call Threads::add.
3090   // It is crucial that we do not block before the thread is
3091   // added to the Threads list for if a GC happens, then the java_thread oop
3092   // will not be visited by GC.
3093   Threads::add(this);
3094 }
3095 
3096 oop JavaThread::current_park_blocker() {
3097   // Support for JSR-166 locks
3098   oop thread_oop = threadObj();
3099   if (thread_oop != NULL &&
3100       JDK_Version::current().supports_thread_park_blocker()) {
3101     return java_lang_Thread::park_blocker(thread_oop);
3102   }
3103   return NULL;
3104 }
3105 
3106 
3107 void JavaThread::print_stack_on(outputStream* st) {
3108   if (!has_last_Java_frame()) return;
3109   ResourceMark rm;
3110   HandleMark   hm;
3111 
3112   RegisterMap reg_map(this);
3113   vframe* start_vf = last_java_vframe(&reg_map);
3114   int count = 0;
3115   for (vframe* f = start_vf; f; f = f->sender() ) {
3116     if (f->is_java_frame()) {
3117       javaVFrame* jvf = javaVFrame::cast(f);
3118       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3119 
3120       // Print out lock information
3121       if (JavaMonitorsInStackTrace) {
3122         jvf->print_lock_info_on(st, count);
3123       }
3124     } else {
3125       // Ignore non-Java frames
3126     }
3127 
3128     // Bail-out case for too deep stacks
3129     count++;
3130     if (MaxJavaStackTraceDepth == count) return;
3131   }
3132 }
3133 
3134 
3135 // JVMTI PopFrame support
3136 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3137   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3138   if (in_bytes(size_in_bytes) != 0) {
3139     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3140     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3141     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3142   }
3143 }
3144 
3145 void* JavaThread::popframe_preserved_args() {
3146   return _popframe_preserved_args;
3147 }
3148 
3149 ByteSize JavaThread::popframe_preserved_args_size() {
3150   return in_ByteSize(_popframe_preserved_args_size);
3151 }
3152 
3153 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3154   int sz = in_bytes(popframe_preserved_args_size());
3155   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3156   return in_WordSize(sz / wordSize);
3157 }
3158 
3159 void JavaThread::popframe_free_preserved_args() {
3160   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3161   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3162   _popframe_preserved_args = NULL;
3163   _popframe_preserved_args_size = 0;
3164 }
3165 
3166 #ifndef PRODUCT
3167 
3168 void JavaThread::trace_frames() {
3169   tty->print_cr("[Describe stack]");
3170   int frame_no = 1;
3171   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3172     tty->print("  %d. ", frame_no++);
3173     fst.current()->print_value_on(tty,this);
3174     tty->cr();
3175   }
3176 }
3177 
3178 class PrintAndVerifyOopClosure: public OopClosure {
3179  protected:
3180   template <class T> inline void do_oop_work(T* p) {
3181     oop obj = oopDesc::load_decode_heap_oop(p);
3182     if (obj == NULL) return;
3183     tty->print(INTPTR_FORMAT ": ", p);
3184     if (obj->is_oop_or_null()) {
3185       if (obj->is_objArray()) {
3186         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3187       } else {
3188         obj->print();
3189       }
3190     } else {
3191       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3192     }
3193     tty->cr();
3194   }
3195  public:
3196   virtual void do_oop(oop* p) { do_oop_work(p); }
3197   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3198 };
3199 
3200 
3201 static void oops_print(frame* f, const RegisterMap *map) {
3202   PrintAndVerifyOopClosure print;
3203   f->print_value();
3204   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3205 }
3206 
3207 // Print our all the locations that contain oops and whether they are
3208 // valid or not.  This useful when trying to find the oldest frame
3209 // where an oop has gone bad since the frame walk is from youngest to
3210 // oldest.
3211 void JavaThread::trace_oops() {
3212   tty->print_cr("[Trace oops]");
3213   frames_do(oops_print);
3214 }
3215 
3216 
3217 #ifdef ASSERT
3218 // Print or validate the layout of stack frames
3219 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3220   ResourceMark rm;
3221   PRESERVE_EXCEPTION_MARK;
3222   FrameValues values;
3223   int frame_no = 0;
3224   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3225     fst.current()->describe(values, ++frame_no);
3226     if (depth == frame_no) break;
3227   }
3228   if (validate_only) {
3229     values.validate();
3230   } else {
3231     tty->print_cr("[Describe stack layout]");
3232     values.print(this);
3233   }
3234 }
3235 #endif
3236 
3237 void JavaThread::trace_stack_from(vframe* start_vf) {
3238   ResourceMark rm;
3239   int vframe_no = 1;
3240   for (vframe* f = start_vf; f; f = f->sender() ) {
3241     if (f->is_java_frame()) {
3242       javaVFrame::cast(f)->print_activation(vframe_no++);
3243     } else {
3244       f->print();
3245     }
3246     if (vframe_no > StackPrintLimit) {
3247       tty->print_cr("...<more frames>...");
3248       return;
3249     }
3250   }
3251 }
3252 
3253 
3254 void JavaThread::trace_stack() {
3255   if (!has_last_Java_frame()) return;
3256   ResourceMark rm;
3257   HandleMark   hm;
3258   RegisterMap reg_map(this);
3259   trace_stack_from(last_java_vframe(&reg_map));
3260 }
3261 
3262 
3263 #endif // PRODUCT
3264 
3265 
3266 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3267   assert(reg_map != NULL, "a map must be given");
3268   frame f = last_frame();
3269   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3270     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3271   }
3272   return NULL;
3273 }
3274 
3275 
3276 Klass* JavaThread::security_get_caller_class(int depth) {
3277   vframeStream vfst(this);
3278   vfst.security_get_caller_frame(depth);
3279   if (!vfst.at_end()) {
3280     return vfst.method()->method_holder();
3281   }
3282   return NULL;
3283 }
3284 
3285 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3286   assert(thread->is_Compiler_thread(), "must be compiler thread");
3287   CompileBroker::compiler_thread_loop();
3288 }
3289 
3290 // Create a CompilerThread
3291 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3292 : JavaThread(&compiler_thread_entry) {
3293   _env   = NULL;
3294   _log   = NULL;
3295   _task  = NULL;
3296   _queue = queue;
3297   _counters = counters;
3298   _buffer_blob = NULL;
3299   _scanned_nmethod = NULL;
3300   _compiler = NULL;
3301 
3302   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3303   resource_area()->bias_to(mtCompiler);
3304 
3305 #ifndef PRODUCT
3306   _ideal_graph_printer = NULL;
3307 #endif
3308 }
3309 
3310 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3311   JavaThread::oops_do(f, cld_f, cf);
3312   if (_scanned_nmethod != NULL && cf != NULL) {
3313     // Safepoints can occur when the sweeper is scanning an nmethod so
3314     // process it here to make sure it isn't unloaded in the middle of
3315     // a scan.
3316     cf->do_code_blob(_scanned_nmethod);
3317   }
3318 }
3319 
3320 
3321 // ======= Threads ========
3322 
3323 // The Threads class links together all active threads, and provides
3324 // operations over all threads.  It is protected by its own Mutex
3325 // lock, which is also used in other contexts to protect thread
3326 // operations from having the thread being operated on from exiting
3327 // and going away unexpectedly (e.g., safepoint synchronization)
3328 
3329 JavaThread* Threads::_thread_list = NULL;
3330 int         Threads::_number_of_threads = 0;
3331 int         Threads::_number_of_non_daemon_threads = 0;
3332 int         Threads::_return_code = 0;
3333 size_t      JavaThread::_stack_size_at_create = 0;
3334 #ifdef ASSERT
3335 bool        Threads::_vm_complete = false;
3336 #endif
3337 
3338 // All JavaThreads
3339 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3340 
3341 void Threads::java_threads_do(ThreadClosure* tc) {
3342   assert_locked_or_safepoint(Threads_lock);
3343   ALL_JAVA_THREADS(p) {
3344     tc->do_thread(p);
3345   }
3346 }
3347 
3348 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3349 void Threads::threads_do(ThreadClosure* tc) {
3350   assert_locked_or_safepoint(Threads_lock);
3351   // ALL_JAVA_THREADS iterates through all JavaThreads
3352   ALL_JAVA_THREADS(p) {
3353     tc->do_thread(p);
3354   }
3355   // Someday we could have a table or list of all non-JavaThreads.
3356   // For now, just manually iterate through them.
3357   tc->do_thread(VMThread::vm_thread());
3358   Universe::heap()->gc_threads_do(tc);
3359   WatcherThread *wt = WatcherThread::watcher_thread();
3360   // Strictly speaking, the following NULL check isn't sufficient to make sure
3361   // the data for WatcherThread is still valid upon being examined. However,
3362   // considering that WatchThread terminates when the VM is on the way to
3363   // exit at safepoint, the chance of the above is extremely small. The right
3364   // way to prevent termination of WatcherThread would be to acquire
3365   // Terminator_lock, but we can't do that without violating the lock rank
3366   // checking in some cases.
3367   if (wt != NULL)
3368     tc->do_thread(wt);
3369 
3370   // If CompilerThreads ever become non-JavaThreads, add them here
3371 }
3372 
3373 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3374 
3375   extern void JDK_Version_init();
3376 
3377   // Preinitialize version info.
3378   VM_Version::early_initialize();
3379 
3380   // Check version
3381   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3382 
3383   // Initialize the output stream module
3384   ostream_init();
3385 
3386   // Process java launcher properties.
3387   Arguments::process_sun_java_launcher_properties(args);
3388 
3389   // Initialize the os module before using TLS
3390   os::init();
3391 
3392   // Initialize system properties.
3393   Arguments::init_system_properties();
3394 
3395   // So that JDK version can be used as a discrimintor when parsing arguments
3396   JDK_Version_init();
3397 
3398   // Update/Initialize System properties after JDK version number is known
3399   Arguments::init_version_specific_system_properties();
3400 
3401   // Parse arguments
3402   jint parse_result = Arguments::parse(args);
3403   if (parse_result != JNI_OK) return parse_result;
3404 
3405   os::init_before_ergo();
3406 
3407   jint ergo_result = Arguments::apply_ergo();
3408   if (ergo_result != JNI_OK) return ergo_result;
3409 
3410   if (PauseAtStartup) {
3411     os::pause();
3412   }
3413 
3414 #ifndef USDT2
3415   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3416 #else /* USDT2 */
3417   HOTSPOT_VM_INIT_BEGIN();
3418 #endif /* USDT2 */
3419 
3420   // Record VM creation timing statistics
3421   TraceVmCreationTime create_vm_timer;
3422   create_vm_timer.start();
3423 
3424   // Timing (must come after argument parsing)
3425   TraceTime timer("Create VM", TraceStartupTime);
3426 
3427   // Initialize the os module after parsing the args
3428   jint os_init_2_result = os::init_2();
3429   if (os_init_2_result != JNI_OK) return os_init_2_result;
3430 
3431   jint adjust_after_os_result = Arguments::adjust_after_os();
3432   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3433 
3434   // intialize TLS
3435   ThreadLocalStorage::init();
3436 
3437   // Initialize output stream logging
3438   ostream_init_log();
3439 
3440   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3441   // Must be before create_vm_init_agents()
3442   if (Arguments::init_libraries_at_startup()) {
3443     convert_vm_init_libraries_to_agents();
3444   }
3445 
3446   // Launch -agentlib/-agentpath and converted -Xrun agents
3447   if (Arguments::init_agents_at_startup()) {
3448     create_vm_init_agents();
3449   }
3450 
3451   // Initialize Threads state
3452   _thread_list = NULL;
3453   _number_of_threads = 0;
3454   _number_of_non_daemon_threads = 0;
3455 
3456   // Initialize global data structures and create system classes in heap
3457   vm_init_globals();
3458 
3459   // Attach the main thread to this os thread
3460   JavaThread* main_thread = new JavaThread();
3461   main_thread->set_thread_state(_thread_in_vm);
3462   // must do this before set_active_handles and initialize_thread_local_storage
3463   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3464   // change the stack size recorded here to one based on the java thread
3465   // stacksize. This adjusted size is what is used to figure the placement
3466   // of the guard pages.
3467   main_thread->record_stack_base_and_size();
3468   main_thread->initialize_thread_local_storage();
3469 
3470   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3471 
3472   if (!main_thread->set_as_starting_thread()) {
3473     vm_shutdown_during_initialization(
3474       "Failed necessary internal allocation. Out of swap space");
3475     delete main_thread;
3476     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3477     return JNI_ENOMEM;
3478   }
3479 
3480   // Enable guard page *after* os::create_main_thread(), otherwise it would
3481   // crash Linux VM, see notes in os_linux.cpp.
3482   main_thread->create_stack_guard_pages();
3483 
3484   // Initialize Java-Level synchronization subsystem
3485   ObjectMonitor::Initialize() ;
3486 
3487   // Initialize global modules
3488   jint status = init_globals();
3489   if (status != JNI_OK) {
3490     delete main_thread;
3491     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3492     return status;
3493   }
3494 
3495   // Should be done after the heap is fully created
3496   main_thread->cache_global_variables();
3497 
3498   HandleMark hm;
3499 
3500   { MutexLocker mu(Threads_lock);
3501     Threads::add(main_thread);
3502   }
3503 
3504   // Any JVMTI raw monitors entered in onload will transition into
3505   // real raw monitor. VM is setup enough here for raw monitor enter.
3506   JvmtiExport::transition_pending_onload_raw_monitors();
3507 
3508   // Create the VMThread
3509   { TraceTime timer("Start VMThread", TraceStartupTime);
3510     VMThread::create();
3511     Thread* vmthread = VMThread::vm_thread();
3512 
3513     if (!os::create_thread(vmthread, os::vm_thread))
3514       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3515 
3516     // Wait for the VM thread to become ready, and VMThread::run to initialize
3517     // Monitors can have spurious returns, must always check another state flag
3518     {
3519       MutexLocker ml(Notify_lock);
3520       os::start_thread(vmthread);
3521       while (vmthread->active_handles() == NULL) {
3522         Notify_lock->wait();
3523       }
3524     }
3525   }
3526 
3527   assert (Universe::is_fully_initialized(), "not initialized");
3528   if (VerifyDuringStartup) {
3529     // Make sure we're starting with a clean slate.
3530     VM_Verify verify_op;
3531     VMThread::execute(&verify_op);
3532   }
3533 
3534   EXCEPTION_MARK;
3535 
3536   // At this point, the Universe is initialized, but we have not executed
3537   // any byte code.  Now is a good time (the only time) to dump out the
3538   // internal state of the JVM for sharing.
3539   if (DumpSharedSpaces) {
3540     MetaspaceShared::preload_and_dump(CHECK_0);
3541     ShouldNotReachHere();
3542   }
3543 
3544   // Always call even when there are not JVMTI environments yet, since environments
3545   // may be attached late and JVMTI must track phases of VM execution
3546   JvmtiExport::enter_start_phase();
3547 
3548   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3549   JvmtiExport::post_vm_start();
3550 
3551   {
3552     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3553 
3554     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3555       create_vm_init_libraries();
3556     }
3557 
3558     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3559 
3560     // Initialize java_lang.System (needed before creating the thread)
3561     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3562     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3563     Handle thread_group = create_initial_thread_group(CHECK_0);
3564     Universe::set_main_thread_group(thread_group());
3565     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3566     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3567     main_thread->set_threadObj(thread_object);
3568     // Set thread status to running since main thread has
3569     // been started and running.
3570     java_lang_Thread::set_thread_status(thread_object,
3571                                         java_lang_Thread::RUNNABLE);
3572 
3573     // The VM creates & returns objects of this class. Make sure it's initialized.
3574     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3575 
3576     // The VM preresolves methods to these classes. Make sure that they get initialized
3577     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3578     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3579     call_initializeSystemClass(CHECK_0);
3580 
3581     // get the Java runtime name after java.lang.System is initialized
3582     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3583     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3584 
3585     // an instance of OutOfMemory exception has been allocated earlier
3586     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3587     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3588     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3589     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3590     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3591     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3592     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3593     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3594   }
3595 
3596   // See        : bugid 4211085.
3597   // Background : the static initializer of java.lang.Compiler tries to read
3598   //              property"java.compiler" and read & write property "java.vm.info".
3599   //              When a security manager is installed through the command line
3600   //              option "-Djava.security.manager", the above properties are not
3601   //              readable and the static initializer for java.lang.Compiler fails
3602   //              resulting in a NoClassDefFoundError.  This can happen in any
3603   //              user code which calls methods in java.lang.Compiler.
3604   // Hack :       the hack is to pre-load and initialize this class, so that only
3605   //              system domains are on the stack when the properties are read.
3606   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3607   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3608   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3609   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3610   //              Once that is done, we should remove this hack.
3611   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3612 
3613   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3614   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3615   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3616   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3617   // This should also be taken out as soon as 4211383 gets fixed.
3618   reset_vm_info_property(CHECK_0);
3619 
3620   quicken_jni_functions();
3621 
3622   // Must be run after init_ft which initializes ft_enabled
3623   if (TRACE_INITIALIZE() != JNI_OK) {
3624     vm_exit_during_initialization("Failed to initialize tracing backend");
3625   }
3626 
3627   // Set flag that basic initialization has completed. Used by exceptions and various
3628   // debug stuff, that does not work until all basic classes have been initialized.
3629   set_init_completed();
3630 
3631   Metaspace::post_initialize();
3632 
3633 #ifndef USDT2
3634   HS_DTRACE_PROBE(hotspot, vm__init__end);
3635 #else /* USDT2 */
3636   HOTSPOT_VM_INIT_END();
3637 #endif /* USDT2 */
3638 
3639   // record VM initialization completion time
3640 #if INCLUDE_MANAGEMENT
3641   Management::record_vm_init_completed();
3642 #endif // INCLUDE_MANAGEMENT
3643 
3644   // Compute system loader. Note that this has to occur after set_init_completed, since
3645   // valid exceptions may be thrown in the process.
3646   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3647   // set_init_completed has just been called, causing exceptions not to be shortcut
3648   // anymore. We call vm_exit_during_initialization directly instead.
3649   SystemDictionary::compute_java_system_loader(THREAD);
3650   if (HAS_PENDING_EXCEPTION) {
3651     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3652   }
3653 
3654 #if INCLUDE_ALL_GCS
3655   // Support for ConcurrentMarkSweep. This should be cleaned up
3656   // and better encapsulated. The ugly nested if test would go away
3657   // once things are properly refactored. XXX YSR
3658   if (UseConcMarkSweepGC || UseG1GC || UseShenandoahGC) {
3659     if (UseConcMarkSweepGC) {
3660       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3661     } else if (UseShenandoahGC) {
3662       ShenandoahControlThread::makeSurrogateLockerThread(THREAD);
3663     } else {
3664       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3665     }
3666     if (HAS_PENDING_EXCEPTION) {
3667       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3668     }
3669   }
3670 #endif // INCLUDE_ALL_GCS
3671 
3672   // Always call even when there are not JVMTI environments yet, since environments
3673   // may be attached late and JVMTI must track phases of VM execution
3674   JvmtiExport::enter_live_phase();
3675 
3676   // Signal Dispatcher needs to be started before VMInit event is posted
3677   os::signal_init();
3678 
3679   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3680   if (!DisableAttachMechanism) {
3681     AttachListener::vm_start();
3682     if (StartAttachListener || AttachListener::init_at_startup()) {
3683       AttachListener::init();
3684     }
3685   }
3686 
3687   // Launch -Xrun agents
3688   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3689   // back-end can launch with -Xdebug -Xrunjdwp.
3690   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3691     create_vm_init_libraries();
3692   }
3693 
3694   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3695   JvmtiExport::post_vm_initialized();
3696 
3697   if (TRACE_START() != JNI_OK) {
3698     vm_exit_during_initialization("Failed to start tracing backend.");
3699   }
3700 
3701   if (CleanChunkPoolAsync) {
3702     Chunk::start_chunk_pool_cleaner_task();
3703   }
3704 
3705   // initialize compiler(s)
3706 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3707   CompileBroker::compilation_init();
3708 #endif
3709 
3710   if (EnableInvokeDynamic) {
3711     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3712     // It is done after compilers are initialized, because otherwise compilations of
3713     // signature polymorphic MH intrinsics can be missed
3714     // (see SystemDictionary::find_method_handle_intrinsic).
3715     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
3716     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
3717     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
3718   }
3719 
3720 #if INCLUDE_MANAGEMENT
3721   Management::initialize(THREAD);
3722 #endif // INCLUDE_MANAGEMENT
3723 
3724   if (HAS_PENDING_EXCEPTION) {
3725     // management agent fails to start possibly due to
3726     // configuration problem and is responsible for printing
3727     // stack trace if appropriate. Simply exit VM.
3728     vm_exit(1);
3729   }
3730 
3731   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3732   if (MemProfiling)                   MemProfiler::engage();
3733   StatSampler::engage();
3734   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3735 
3736   BiasedLocking::init();
3737 
3738 #if INCLUDE_RTM_OPT
3739   RTMLockingCounters::init();
3740 #endif
3741 
3742   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3743     call_postVMInitHook(THREAD);
3744     // The Java side of PostVMInitHook.run must deal with all
3745     // exceptions and provide means of diagnosis.
3746     if (HAS_PENDING_EXCEPTION) {
3747       CLEAR_PENDING_EXCEPTION;
3748     }
3749   }
3750 
3751   {
3752       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3753       // Make sure the watcher thread can be started by WatcherThread::start()
3754       // or by dynamic enrollment.
3755       WatcherThread::make_startable();
3756       // Start up the WatcherThread if there are any periodic tasks
3757       // NOTE:  All PeriodicTasks should be registered by now. If they
3758       //   aren't, late joiners might appear to start slowly (we might
3759       //   take a while to process their first tick).
3760       if (PeriodicTask::num_tasks() > 0) {
3761           WatcherThread::start();
3762       }
3763   }
3764 
3765   create_vm_timer.end();
3766 #ifdef ASSERT
3767   _vm_complete = true;
3768 #endif
3769   return JNI_OK;
3770 }
3771 
3772 // type for the Agent_OnLoad and JVM_OnLoad entry points
3773 extern "C" {
3774   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3775 }
3776 // Find a command line agent library and return its entry point for
3777 //         -agentlib:  -agentpath:   -Xrun
3778 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3779 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3780   OnLoadEntry_t on_load_entry = NULL;
3781   void *library = NULL;
3782 
3783   if (!agent->valid()) {
3784     char buffer[JVM_MAXPATHLEN];
3785     char ebuf[1024];
3786     const char *name = agent->name();
3787     const char *msg = "Could not find agent library ";
3788 
3789     // First check to see if agent is statically linked into executable
3790     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3791       library = agent->os_lib();
3792     } else if (agent->is_absolute_path()) {
3793       library = os::dll_load(name, ebuf, sizeof ebuf);
3794       if (library == NULL) {
3795         const char *sub_msg = " in absolute path, with error: ";
3796         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3797         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3798         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3799         // If we can't find the agent, exit.
3800         vm_exit_during_initialization(buf, NULL);
3801         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3802       }
3803     } else {
3804       // Try to load the agent from the standard dll directory
3805       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3806                              name)) {
3807         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3808       }
3809       if (library == NULL) { // Try the local directory
3810         char ns[1] = {0};
3811         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3812           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3813         }
3814         if (library == NULL) {
3815           const char *sub_msg = " on the library path, with error: ";
3816           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3817           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3818           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3819           // If we can't find the agent, exit.
3820           vm_exit_during_initialization(buf, NULL);
3821           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3822         }
3823       }
3824     }
3825     agent->set_os_lib(library);
3826     agent->set_valid();
3827   }
3828 
3829   // Find the OnLoad function.
3830   on_load_entry =
3831     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3832                                                           false,
3833                                                           on_load_symbols,
3834                                                           num_symbol_entries));
3835   return on_load_entry;
3836 }
3837 
3838 // Find the JVM_OnLoad entry point
3839 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3840   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3841   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3842 }
3843 
3844 // Find the Agent_OnLoad entry point
3845 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3846   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3847   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3848 }
3849 
3850 // For backwards compatibility with -Xrun
3851 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3852 // treated like -agentpath:
3853 // Must be called before agent libraries are created
3854 void Threads::convert_vm_init_libraries_to_agents() {
3855   AgentLibrary* agent;
3856   AgentLibrary* next;
3857 
3858   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3859     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3860     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3861 
3862     // If there is an JVM_OnLoad function it will get called later,
3863     // otherwise see if there is an Agent_OnLoad
3864     if (on_load_entry == NULL) {
3865       on_load_entry = lookup_agent_on_load(agent);
3866       if (on_load_entry != NULL) {
3867         // switch it to the agent list -- so that Agent_OnLoad will be called,
3868         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3869         Arguments::convert_library_to_agent(agent);
3870       } else {
3871         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3872       }
3873     }
3874   }
3875 }
3876 
3877 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3878 // Invokes Agent_OnLoad
3879 // Called very early -- before JavaThreads exist
3880 void Threads::create_vm_init_agents() {
3881   extern struct JavaVM_ main_vm;
3882   AgentLibrary* agent;
3883 
3884   JvmtiExport::enter_onload_phase();
3885 
3886   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3887     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3888 
3889     if (on_load_entry != NULL) {
3890       // Invoke the Agent_OnLoad function
3891       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3892       if (err != JNI_OK) {
3893         vm_exit_during_initialization("agent library failed to init", agent->name());
3894       }
3895     } else {
3896       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3897     }
3898   }
3899   JvmtiExport::enter_primordial_phase();
3900 }
3901 
3902 extern "C" {
3903   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3904 }
3905 
3906 void Threads::shutdown_vm_agents() {
3907   // Send any Agent_OnUnload notifications
3908   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3909   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3910   extern struct JavaVM_ main_vm;
3911   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3912 
3913     // Find the Agent_OnUnload function.
3914     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3915       os::find_agent_function(agent,
3916       false,
3917       on_unload_symbols,
3918       num_symbol_entries));
3919 
3920     // Invoke the Agent_OnUnload function
3921     if (unload_entry != NULL) {
3922       JavaThread* thread = JavaThread::current();
3923       ThreadToNativeFromVM ttn(thread);
3924       HandleMark hm(thread);
3925       (*unload_entry)(&main_vm);
3926     }
3927   }
3928 }
3929 
3930 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3931 // Invokes JVM_OnLoad
3932 void Threads::create_vm_init_libraries() {
3933   extern struct JavaVM_ main_vm;
3934   AgentLibrary* agent;
3935 
3936   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3937     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3938 
3939     if (on_load_entry != NULL) {
3940       // Invoke the JVM_OnLoad function
3941       JavaThread* thread = JavaThread::current();
3942       ThreadToNativeFromVM ttn(thread);
3943       HandleMark hm(thread);
3944       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3945       if (err != JNI_OK) {
3946         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3947       }
3948     } else {
3949       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3950     }
3951   }
3952 }
3953 
3954 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3955   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3956 
3957   JavaThread* java_thread = NULL;
3958   // Sequential search for now.  Need to do better optimization later.
3959   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3960     oop tobj = thread->threadObj();
3961     if (!thread->is_exiting() &&
3962         tobj != NULL &&
3963         java_tid == java_lang_Thread::thread_id(tobj)) {
3964       java_thread = thread;
3965       break;
3966     }
3967   }
3968   return java_thread;
3969 }
3970 
3971 
3972 // Last thread running calls java.lang.Shutdown.shutdown()
3973 void JavaThread::invoke_shutdown_hooks() {
3974   HandleMark hm(this);
3975 
3976   // We could get here with a pending exception, if so clear it now.
3977   if (this->has_pending_exception()) {
3978     this->clear_pending_exception();
3979   }
3980 
3981   EXCEPTION_MARK;
3982   Klass* k =
3983     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3984                                       THREAD);
3985   if (k != NULL) {
3986     // SystemDictionary::resolve_or_null will return null if there was
3987     // an exception.  If we cannot load the Shutdown class, just don't
3988     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3989     // and finalizers (if runFinalizersOnExit is set) won't be run.
3990     // Note that if a shutdown hook was registered or runFinalizersOnExit
3991     // was called, the Shutdown class would have already been loaded
3992     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3993     instanceKlassHandle shutdown_klass (THREAD, k);
3994     JavaValue result(T_VOID);
3995     JavaCalls::call_static(&result,
3996                            shutdown_klass,
3997                            vmSymbols::shutdown_method_name(),
3998                            vmSymbols::void_method_signature(),
3999                            THREAD);
4000   }
4001   CLEAR_PENDING_EXCEPTION;
4002 }
4003 
4004 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4005 // the program falls off the end of main(). Another VM exit path is through
4006 // vm_exit() when the program calls System.exit() to return a value or when
4007 // there is a serious error in VM. The two shutdown paths are not exactly
4008 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4009 // and VM_Exit op at VM level.
4010 //
4011 // Shutdown sequence:
4012 //   + Shutdown native memory tracking if it is on
4013 //   + Wait until we are the last non-daemon thread to execute
4014 //     <-- every thing is still working at this moment -->
4015 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4016 //        shutdown hooks, run finalizers if finalization-on-exit
4017 //   + Call before_exit(), prepare for VM exit
4018 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4019 //        currently the only user of this mechanism is File.deleteOnExit())
4020 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4021 //        post thread end and vm death events to JVMTI,
4022 //        stop signal thread
4023 //   + Call JavaThread::exit(), it will:
4024 //      > release JNI handle blocks, remove stack guard pages
4025 //      > remove this thread from Threads list
4026 //     <-- no more Java code from this thread after this point -->
4027 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4028 //     the compiler threads at safepoint
4029 //     <-- do not use anything that could get blocked by Safepoint -->
4030 //   + Disable tracing at JNI/JVM barriers
4031 //   + Set _vm_exited flag for threads that are still running native code
4032 //   + Delete this thread
4033 //   + Call exit_globals()
4034 //      > deletes tty
4035 //      > deletes PerfMemory resources
4036 //   + Return to caller
4037 
4038 bool Threads::destroy_vm() {
4039   JavaThread* thread = JavaThread::current();
4040 
4041 #ifdef ASSERT
4042   _vm_complete = false;
4043 #endif
4044   // Wait until we are the last non-daemon thread to execute
4045   { MutexLocker nu(Threads_lock);
4046     while (Threads::number_of_non_daemon_threads() > 1 )
4047       // This wait should make safepoint checks, wait without a timeout,
4048       // and wait as a suspend-equivalent condition.
4049       //
4050       // Note: If the FlatProfiler is running and this thread is waiting
4051       // for another non-daemon thread to finish, then the FlatProfiler
4052       // is waiting for the external suspend request on this thread to
4053       // complete. wait_for_ext_suspend_completion() will eventually
4054       // timeout, but that takes time. Making this wait a suspend-
4055       // equivalent condition solves that timeout problem.
4056       //
4057       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4058                          Mutex::_as_suspend_equivalent_flag);
4059   }
4060 
4061   // Hang forever on exit if we are reporting an error.
4062   if (ShowMessageBoxOnError && is_error_reported()) {
4063     os::infinite_sleep();
4064   }
4065   os::wait_for_keypress_at_exit();
4066 
4067   if (JDK_Version::is_jdk12x_version()) {
4068     // We are the last thread running, so check if finalizers should be run.
4069     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
4070     HandleMark rm(thread);
4071     Universe::run_finalizers_on_exit();
4072   } else {
4073     // run Java level shutdown hooks
4074     thread->invoke_shutdown_hooks();
4075   }
4076 
4077   before_exit(thread);
4078 
4079   thread->exit(true);
4080 
4081   // Stop VM thread.
4082   {
4083     // 4945125 The vm thread comes to a safepoint during exit.
4084     // GC vm_operations can get caught at the safepoint, and the
4085     // heap is unparseable if they are caught. Grab the Heap_lock
4086     // to prevent this. The GC vm_operations will not be able to
4087     // queue until after the vm thread is dead. After this point,
4088     // we'll never emerge out of the safepoint before the VM exits.
4089 
4090     MutexLocker ml(Heap_lock);
4091 
4092     VMThread::wait_for_vm_thread_exit();
4093     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4094     VMThread::destroy();
4095   }
4096 
4097   // clean up ideal graph printers
4098 #if defined(COMPILER2) && !defined(PRODUCT)
4099   IdealGraphPrinter::clean_up();
4100 #endif
4101 
4102   // Now, all Java threads are gone except daemon threads. Daemon threads
4103   // running Java code or in VM are stopped by the Safepoint. However,
4104   // daemon threads executing native code are still running.  But they
4105   // will be stopped at native=>Java/VM barriers. Note that we can't
4106   // simply kill or suspend them, as it is inherently deadlock-prone.
4107 
4108 #ifndef PRODUCT
4109   // disable function tracing at JNI/JVM barriers
4110   TraceJNICalls = false;
4111   TraceJVMCalls = false;
4112   TraceRuntimeCalls = false;
4113 #endif
4114 
4115   VM_Exit::set_vm_exited();
4116 
4117   notify_vm_shutdown();
4118 
4119   delete thread;
4120 
4121   // exit_globals() will delete tty
4122   exit_globals();
4123 
4124   return true;
4125 }
4126 
4127 
4128 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4129   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4130   return is_supported_jni_version(version);
4131 }
4132 
4133 
4134 jboolean Threads::is_supported_jni_version(jint version) {
4135   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4136   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4137   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4138   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4139   return JNI_FALSE;
4140 }
4141 
4142 
4143 void Threads::add(JavaThread* p, bool force_daemon) {
4144   // The threads lock must be owned at this point
4145   assert_locked_or_safepoint(Threads_lock);
4146 
4147   // See the comment for this method in thread.hpp for its purpose and
4148   // why it is called here.
4149   p->initialize_queues();
4150   p->set_next(_thread_list);
4151   _thread_list = p;
4152   _number_of_threads++;
4153   oop threadObj = p->threadObj();
4154   bool daemon = true;
4155   // Bootstrapping problem: threadObj can be null for initial
4156   // JavaThread (or for threads attached via JNI)
4157   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4158     _number_of_non_daemon_threads++;
4159     daemon = false;
4160   }
4161 
4162   ThreadService::add_thread(p, daemon);
4163 
4164   // Possible GC point.
4165   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4166 }
4167 
4168 void Threads::remove(JavaThread* p) {
4169 
4170   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4171   ObjectSynchronizer::omFlush(p);
4172 
4173   // Extra scope needed for Thread_lock, so we can check
4174   // that we do not remove thread without safepoint code notice
4175   { MutexLocker ml(Threads_lock);
4176 
4177     assert(includes(p), "p must be present");
4178 
4179     JavaThread* current = _thread_list;
4180     JavaThread* prev    = NULL;
4181 
4182     while (current != p) {
4183       prev    = current;
4184       current = current->next();
4185     }
4186 
4187     if (prev) {
4188       prev->set_next(current->next());
4189     } else {
4190       _thread_list = p->next();
4191     }
4192     _number_of_threads--;
4193     oop threadObj = p->threadObj();
4194     bool daemon = true;
4195     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4196       _number_of_non_daemon_threads--;
4197       daemon = false;
4198 
4199       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4200       // on destroy_vm will wake up.
4201       if (number_of_non_daemon_threads() == 1)
4202         Threads_lock->notify_all();
4203     }
4204     ThreadService::remove_thread(p, daemon);
4205 
4206     // Make sure that safepoint code disregard this thread. This is needed since
4207     // the thread might mess around with locks after this point. This can cause it
4208     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4209     // of this thread since it is removed from the queue.
4210     p->set_terminated_value();
4211   } // unlock Threads_lock
4212 
4213   // Since Events::log uses a lock, we grab it outside the Threads_lock
4214   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4215 }
4216 
4217 // Threads_lock must be held when this is called (or must be called during a safepoint)
4218 bool Threads::includes(JavaThread* p) {
4219   assert(Threads_lock->is_locked(), "sanity check");
4220   ALL_JAVA_THREADS(q) {
4221     if (q == p ) {
4222       return true;
4223     }
4224   }
4225   return false;
4226 }
4227 
4228 // Operations on the Threads list for GC.  These are not explicitly locked,
4229 // but the garbage collector must provide a safe context for them to run.
4230 // In particular, these things should never be called when the Threads_lock
4231 // is held by some other thread. (Note: the Safepoint abstraction also
4232 // uses the Threads_lock to gurantee this property. It also makes sure that
4233 // all threads gets blocked when exiting or starting).
4234 
4235 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4236   ALL_JAVA_THREADS(p) {
4237     p->oops_do(f, cld_f, cf);
4238   }
4239   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4240 }
4241 
4242 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4243   // Introduce a mechanism allowing parallel threads to claim threads as
4244   // root groups.  Overhead should be small enough to use all the time,
4245   // even in sequential code.
4246   SharedHeap* sh = SharedHeap::heap();
4247   // Cannot yet substitute active_workers for n_par_threads
4248   // because of G1CollectedHeap::verify() use of
4249   // SharedHeap::process_roots().  n_par_threads == 0 will
4250   // turn off parallelism in process_roots while active_workers
4251   // is being used for parallelism elsewhere.
4252   bool is_par = sh->n_par_threads() > 0;
4253   assert(!is_par ||
4254          (SharedHeap::heap()->n_par_threads() ==
4255           SharedHeap::heap()->workers()->active_workers()
4256           || UseShenandoahGC), "Mismatch");
4257   int cp = SharedHeap::heap()->strong_roots_parity();
4258   ALL_JAVA_THREADS(p) {
4259     if (p->claim_oops_do(is_par, cp)) {
4260       p->oops_do(f, cld_f, cf);
4261     }
4262   }
4263   VMThread* vmt = VMThread::vm_thread();
4264   if (vmt->claim_oops_do(is_par, cp)) {
4265     vmt->oops_do(f, cld_f, cf);
4266   }
4267 }
4268 
4269 #if INCLUDE_ALL_GCS
4270 // Used by ParallelScavenge
4271 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4272   ALL_JAVA_THREADS(p) {
4273     q->enqueue(new ThreadRootsTask(p));
4274   }
4275   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4276 }
4277 
4278 // Used by Parallel Old
4279 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4280   ALL_JAVA_THREADS(p) {
4281     q->enqueue(new ThreadRootsMarkingTask(p));
4282   }
4283   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4284 }
4285 #endif // INCLUDE_ALL_GCS
4286 
4287 void Threads::nmethods_do(CodeBlobClosure* cf) {
4288   ALL_JAVA_THREADS(p) {
4289     p->nmethods_do(cf);
4290   }
4291   VMThread::vm_thread()->nmethods_do(cf);
4292 }
4293 
4294 void Threads::metadata_do(void f(Metadata*)) {
4295   ALL_JAVA_THREADS(p) {
4296     p->metadata_do(f);
4297   }
4298 }
4299 
4300 void Threads::gc_epilogue() {
4301   ALL_JAVA_THREADS(p) {
4302     p->gc_epilogue();
4303   }
4304 }
4305 
4306 void Threads::gc_prologue() {
4307   ALL_JAVA_THREADS(p) {
4308     p->gc_prologue();
4309   }
4310 }
4311 
4312 void Threads::deoptimized_wrt_marked_nmethods() {
4313   ALL_JAVA_THREADS(p) {
4314     p->deoptimized_wrt_marked_nmethods();
4315   }
4316 }
4317 
4318 
4319 // Get count Java threads that are waiting to enter the specified monitor.
4320 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4321   address monitor, bool doLock) {
4322   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4323     "must grab Threads_lock or be at safepoint");
4324   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4325 
4326   int i = 0;
4327   {
4328     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4329     ALL_JAVA_THREADS(p) {
4330       if (p->is_Compiler_thread()) continue;
4331 
4332       address pending = (address)p->current_pending_monitor();
4333       if (pending == monitor) {             // found a match
4334         if (i < count) result->append(p);   // save the first count matches
4335         i++;
4336       }
4337     }
4338   }
4339   return result;
4340 }
4341 
4342 
4343 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4344   assert(doLock ||
4345          Threads_lock->owned_by_self() ||
4346          SafepointSynchronize::is_at_safepoint(),
4347          "must grab Threads_lock or be at safepoint");
4348 
4349   // NULL owner means not locked so we can skip the search
4350   if (owner == NULL) return NULL;
4351 
4352   {
4353     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4354     ALL_JAVA_THREADS(p) {
4355       // first, see if owner is the address of a Java thread
4356       if (owner == (address)p) return p;
4357     }
4358   }
4359   // Cannot assert on lack of success here since this function may be
4360   // used by code that is trying to report useful problem information
4361   // like deadlock detection.
4362   if (UseHeavyMonitors) return NULL;
4363 
4364   //
4365   // If we didn't find a matching Java thread and we didn't force use of
4366   // heavyweight monitors, then the owner is the stack address of the
4367   // Lock Word in the owning Java thread's stack.
4368   //
4369   JavaThread* the_owner = NULL;
4370   {
4371     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4372     ALL_JAVA_THREADS(q) {
4373       if (q->is_lock_owned(owner)) {
4374         the_owner = q;
4375         break;
4376       }
4377     }
4378   }
4379   // cannot assert on lack of success here; see above comment
4380   return the_owner;
4381 }
4382 
4383 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4384 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4385   char buf[32];
4386   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4387 
4388   st->print_cr("Full thread dump %s (%s %s):",
4389                 Abstract_VM_Version::vm_name(),
4390                 Abstract_VM_Version::vm_release(),
4391                 Abstract_VM_Version::vm_info_string()
4392                );
4393   st->cr();
4394 
4395 #if INCLUDE_ALL_GCS
4396   // Dump concurrent locks
4397   ConcurrentLocksDump concurrent_locks;
4398   if (print_concurrent_locks) {
4399     concurrent_locks.dump_at_safepoint();
4400   }
4401 #endif // INCLUDE_ALL_GCS
4402 
4403   ALL_JAVA_THREADS(p) {
4404     ResourceMark rm;
4405     p->print_on(st);
4406     if (print_stacks) {
4407       if (internal_format) {
4408         p->trace_stack();
4409       } else {
4410         p->print_stack_on(st);
4411       }
4412     }
4413     st->cr();
4414 #if INCLUDE_ALL_GCS
4415     if (print_concurrent_locks) {
4416       concurrent_locks.print_locks_on(p, st);
4417     }
4418 #endif // INCLUDE_ALL_GCS
4419   }
4420 
4421   VMThread::vm_thread()->print_on(st);
4422   st->cr();
4423   Universe::heap()->print_gc_threads_on(st);
4424   WatcherThread* wt = WatcherThread::watcher_thread();
4425   if (wt != NULL) {
4426     wt->print_on(st);
4427     st->cr();
4428   }
4429   CompileBroker::print_compiler_threads_on(st);
4430   st->flush();
4431 }
4432 
4433 // Threads::print_on_error() is called by fatal error handler. It's possible
4434 // that VM is not at safepoint and/or current thread is inside signal handler.
4435 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4436 // memory (even in resource area), it might deadlock the error handler.
4437 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4438   bool found_current = false;
4439   st->print_cr("Java Threads: ( => current thread )");
4440   ALL_JAVA_THREADS(thread) {
4441     bool is_current = (current == thread);
4442     found_current = found_current || is_current;
4443 
4444     st->print("%s", is_current ? "=>" : "  ");
4445 
4446     st->print(PTR_FORMAT, thread);
4447     st->print(" ");
4448     thread->print_on_error(st, buf, buflen);
4449     st->cr();
4450   }
4451   st->cr();
4452 
4453   st->print_cr("Other Threads:");
4454   if (VMThread::vm_thread()) {
4455     bool is_current = (current == VMThread::vm_thread());
4456     found_current = found_current || is_current;
4457     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4458 
4459     st->print(PTR_FORMAT, VMThread::vm_thread());
4460     st->print(" ");
4461     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4462     st->cr();
4463   }
4464   WatcherThread* wt = WatcherThread::watcher_thread();
4465   if (wt != NULL) {
4466     bool is_current = (current == wt);
4467     found_current = found_current || is_current;
4468     st->print("%s", is_current ? "=>" : "  ");
4469 
4470     st->print(PTR_FORMAT, wt);
4471     st->print(" ");
4472     wt->print_on_error(st, buf, buflen);
4473     st->cr();
4474   }
4475   if (!found_current) {
4476     st->cr();
4477     st->print("=>" PTR_FORMAT " (exited) ", current);
4478     current->print_on_error(st, buf, buflen);
4479     st->cr();
4480   }
4481 }
4482 
4483 // Internal SpinLock and Mutex
4484 // Based on ParkEvent
4485 
4486 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4487 //
4488 // We employ SpinLocks _only for low-contention, fixed-length
4489 // short-duration critical sections where we're concerned
4490 // about native mutex_t or HotSpot Mutex:: latency.
4491 // The mux construct provides a spin-then-block mutual exclusion
4492 // mechanism.
4493 //
4494 // Testing has shown that contention on the ListLock guarding gFreeList
4495 // is common.  If we implement ListLock as a simple SpinLock it's common
4496 // for the JVM to devolve to yielding with little progress.  This is true
4497 // despite the fact that the critical sections protected by ListLock are
4498 // extremely short.
4499 //
4500 // TODO-FIXME: ListLock should be of type SpinLock.
4501 // We should make this a 1st-class type, integrated into the lock
4502 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4503 // should have sufficient padding to avoid false-sharing and excessive
4504 // cache-coherency traffic.
4505 
4506 
4507 typedef volatile int SpinLockT ;
4508 
4509 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4510   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4511      return ;   // normal fast-path return
4512   }
4513 
4514   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4515   TEVENT (SpinAcquire - ctx) ;
4516   int ctr = 0 ;
4517   int Yields = 0 ;
4518   for (;;) {
4519      while (*adr != 0) {
4520         ++ctr ;
4521         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4522            if (Yields > 5) {
4523              os::naked_short_sleep(1);
4524            } else {
4525              os::NakedYield() ;
4526              ++Yields ;
4527            }
4528         } else {
4529            SpinPause() ;
4530         }
4531      }
4532      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4533   }
4534 }
4535 
4536 void Thread::SpinRelease (volatile int * adr) {
4537   assert (*adr != 0, "invariant") ;
4538   OrderAccess::fence() ;      // guarantee at least release consistency.
4539   // Roach-motel semantics.
4540   // It's safe if subsequent LDs and STs float "up" into the critical section,
4541   // but prior LDs and STs within the critical section can't be allowed
4542   // to reorder or float past the ST that releases the lock.
4543   *adr = 0 ;
4544 }
4545 
4546 // muxAcquire and muxRelease:
4547 //
4548 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4549 //    The LSB of the word is set IFF the lock is held.
4550 //    The remainder of the word points to the head of a singly-linked list
4551 //    of threads blocked on the lock.
4552 //
4553 // *  The current implementation of muxAcquire-muxRelease uses its own
4554 //    dedicated Thread._MuxEvent instance.  If we're interested in
4555 //    minimizing the peak number of extant ParkEvent instances then
4556 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4557 //    as certain invariants were satisfied.  Specifically, care would need
4558 //    to be taken with regards to consuming unpark() "permits".
4559 //    A safe rule of thumb is that a thread would never call muxAcquire()
4560 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4561 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4562 //    consume an unpark() permit intended for monitorenter, for instance.
4563 //    One way around this would be to widen the restricted-range semaphore
4564 //    implemented in park().  Another alternative would be to provide
4565 //    multiple instances of the PlatformEvent() for each thread.  One
4566 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4567 //
4568 // *  Usage:
4569 //    -- Only as leaf locks
4570 //    -- for short-term locking only as muxAcquire does not perform
4571 //       thread state transitions.
4572 //
4573 // Alternatives:
4574 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4575 //    but with parking or spin-then-park instead of pure spinning.
4576 // *  Use Taura-Oyama-Yonenzawa locks.
4577 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4578 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4579 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4580 //    acquiring threads use timers (ParkTimed) to detect and recover from
4581 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4582 //    boundaries by using placement-new.
4583 // *  Augment MCS with advisory back-link fields maintained with CAS().
4584 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4585 //    The validity of the backlinks must be ratified before we trust the value.
4586 //    If the backlinks are invalid the exiting thread must back-track through the
4587 //    the forward links, which are always trustworthy.
4588 // *  Add a successor indication.  The LockWord is currently encoded as
4589 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4590 //    to provide the usual futile-wakeup optimization.
4591 //    See RTStt for details.
4592 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4593 //
4594 
4595 
4596 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4597 enum MuxBits { LOCKBIT = 1 } ;
4598 
4599 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4600   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4601   if (w == 0) return ;
4602   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4603      return ;
4604   }
4605 
4606   TEVENT (muxAcquire - Contention) ;
4607   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4608   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4609   for (;;) {
4610      int its = (os::is_MP() ? 100 : 0) + 1 ;
4611 
4612      // Optional spin phase: spin-then-park strategy
4613      while (--its >= 0) {
4614        w = *Lock ;
4615        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4616           return ;
4617        }
4618      }
4619 
4620      Self->reset() ;
4621      Self->OnList = intptr_t(Lock) ;
4622      // The following fence() isn't _strictly necessary as the subsequent
4623      // CAS() both serializes execution and ratifies the fetched *Lock value.
4624      OrderAccess::fence();
4625      for (;;) {
4626         w = *Lock ;
4627         if ((w & LOCKBIT) == 0) {
4628             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4629                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4630                 return ;
4631             }
4632             continue ;      // Interference -- *Lock changed -- Just retry
4633         }
4634         assert (w & LOCKBIT, "invariant") ;
4635         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4636         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4637      }
4638 
4639      while (Self->OnList != 0) {
4640         Self->park() ;
4641      }
4642   }
4643 }
4644 
4645 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4646   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4647   if (w == 0) return ;
4648   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4649     return ;
4650   }
4651 
4652   TEVENT (muxAcquire - Contention) ;
4653   ParkEvent * ReleaseAfter = NULL ;
4654   if (ev == NULL) {
4655     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4656   }
4657   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4658   for (;;) {
4659     guarantee (ev->OnList == 0, "invariant") ;
4660     int its = (os::is_MP() ? 100 : 0) + 1 ;
4661 
4662     // Optional spin phase: spin-then-park strategy
4663     while (--its >= 0) {
4664       w = *Lock ;
4665       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4666         if (ReleaseAfter != NULL) {
4667           ParkEvent::Release (ReleaseAfter) ;
4668         }
4669         return ;
4670       }
4671     }
4672 
4673     ev->reset() ;
4674     ev->OnList = intptr_t(Lock) ;
4675     // The following fence() isn't _strictly necessary as the subsequent
4676     // CAS() both serializes execution and ratifies the fetched *Lock value.
4677     OrderAccess::fence();
4678     for (;;) {
4679       w = *Lock ;
4680       if ((w & LOCKBIT) == 0) {
4681         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4682           ev->OnList = 0 ;
4683           // We call ::Release while holding the outer lock, thus
4684           // artificially lengthening the critical section.
4685           // Consider deferring the ::Release() until the subsequent unlock(),
4686           // after we've dropped the outer lock.
4687           if (ReleaseAfter != NULL) {
4688             ParkEvent::Release (ReleaseAfter) ;
4689           }
4690           return ;
4691         }
4692         continue ;      // Interference -- *Lock changed -- Just retry
4693       }
4694       assert (w & LOCKBIT, "invariant") ;
4695       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4696       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4697     }
4698 
4699     while (ev->OnList != 0) {
4700       ev->park() ;
4701     }
4702   }
4703 }
4704 
4705 // Release() must extract a successor from the list and then wake that thread.
4706 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4707 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4708 // Release() would :
4709 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4710 // (B) Extract a successor from the private list "in-hand"
4711 // (C) attempt to CAS() the residual back into *Lock over null.
4712 //     If there were any newly arrived threads and the CAS() would fail.
4713 //     In that case Release() would detach the RATs, re-merge the list in-hand
4714 //     with the RATs and repeat as needed.  Alternately, Release() might
4715 //     detach and extract a successor, but then pass the residual list to the wakee.
4716 //     The wakee would be responsible for reattaching and remerging before it
4717 //     competed for the lock.
4718 //
4719 // Both "pop" and DMR are immune from ABA corruption -- there can be
4720 // multiple concurrent pushers, but only one popper or detacher.
4721 // This implementation pops from the head of the list.  This is unfair,
4722 // but tends to provide excellent throughput as hot threads remain hot.
4723 // (We wake recently run threads first).
4724 
4725 void Thread::muxRelease (volatile intptr_t * Lock)  {
4726   for (;;) {
4727     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4728     assert (w & LOCKBIT, "invariant") ;
4729     if (w == LOCKBIT) return ;
4730     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4731     assert (List != NULL, "invariant") ;
4732     assert (List->OnList == intptr_t(Lock), "invariant") ;
4733     ParkEvent * nxt = List->ListNext ;
4734 
4735     // The following CAS() releases the lock and pops the head element.
4736     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4737       continue ;
4738     }
4739     List->OnList = 0 ;
4740     OrderAccess::fence() ;
4741     List->unpark () ;
4742     return ;
4743   }
4744 }
4745 
4746 
4747 void Threads::verify() {
4748   ALL_JAVA_THREADS(p) {
4749     p->verify();
4750   }
4751   VMThread* thread = VMThread::vm_thread();
4752   if (thread != NULL) thread->verify();
4753 }