1 /*
   2  * Copyright (c) 2013, Red Hat Inc.
   3  * Copyright (c) 1997, 2012, Oracle and/or its affiliates.
   4  * All rights reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  28 #define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  29 
  30 #include "asm/assembler.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39 
  40  public:
  41   using Assembler::mov;
  42   using Assembler::movi;
  43 
  44  protected:
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 #ifdef CC_INTERP
  52   // c++ interpreter never wants to use interp_masm version of call_VM
  53   #define VIRTUAL
  54 #else
  55   #define VIRTUAL virtual
  56 #endif
  57 
  58   VIRTUAL void call_VM_leaf_base(
  59     address entry_point,               // the entry point
  60     int     number_of_arguments,        // the number of arguments to pop after the call
  61     Label *retaddr = NULL
  62   );
  63 
  64   VIRTUAL void call_VM_leaf_base(
  65     address entry_point,               // the entry point
  66     int     number_of_arguments,        // the number of arguments to pop after the call
  67     Label &retaddr) {
  68     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  69   }
  70 
  71   // This is the base routine called by the different versions of call_VM. The interpreter
  72   // may customize this version by overriding it for its purposes (e.g., to save/restore
  73   // additional registers when doing a VM call).
  74   //
  75   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  76   // returns the register which contains the thread upon return. If a thread register has been
  77   // specified, the return value will correspond to that register. If no last_java_sp is specified
  78   // (noreg) than rsp will be used instead.
  79   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  80     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  81     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  82     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  83     address  entry_point,              // the entry point
  84     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  85     bool     check_exceptions          // whether to check for pending exceptions after return
  86   );
  87 
  88   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  89   // The implementation is only non-empty for the InterpreterMacroAssembler,
  90   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  91   virtual void check_and_handle_popframe(Register java_thread);
  92   virtual void check_and_handle_earlyret(Register java_thread);
  93 
  94   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  95 
  96   // Maximum size of class area in Metaspace when compressed
  97   uint64_t use_XOR_for_compressed_class_base;
  98 
  99  public:
 100   MacroAssembler(CodeBuffer* code) : Assembler(code) {
 101     use_XOR_for_compressed_class_base
 102       = (operand_valid_for_logical_immediate(false /*is32*/,
 103                                              (uint64_t)Universe::narrow_klass_base())
 104          && ((uint64_t)Universe::narrow_klass_base()
 105              > (1u << log2_intptr(CompressedClassSpaceSize))));
 106   }
 107 
 108   // Biased locking support
 109   // lock_reg and obj_reg must be loaded up with the appropriate values.
 110   // swap_reg is killed.
 111   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 112   // Optional slow case is for implementations (interpreter and C1) which branch to
 113   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 114   // Returns offset of first potentially-faulting instruction for null
 115   // check info (currently consumed only by C1). If
 116   // swap_reg_contains_mark is true then returns -1 as it is assumed
 117   // the calling code has already passed any potential faults.
 118   int biased_locking_enter(Register lock_reg, Register obj_reg,
 119                            Register swap_reg, Register tmp_reg,
 120                            bool swap_reg_contains_mark,
 121                            Label& done, Label* slow_case = NULL,
 122                            BiasedLockingCounters* counters = NULL);
 123   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 124 
 125 
 126   // Helper functions for statistics gathering.
 127   // Unconditional atomic increment.
 128   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 129   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 130     lea(tmp1, counter_addr);
 131     atomic_incw(tmp1, tmp2, tmp3);
 132   }
 133   // Load Effective Address
 134   void lea(Register r, const Address &a) {
 135     InstructionMark im(this);
 136     code_section()->relocate(inst_mark(), a.rspec());
 137     a.lea(this, r);
 138   }
 139 
 140   void addmw(Address a, Register incr, Register scratch) {
 141     ldrw(scratch, a);
 142     addw(scratch, scratch, incr);
 143     strw(scratch, a);
 144   }
 145 
 146   // Add constant to memory word
 147   void addmw(Address a, int imm, Register scratch) {
 148     ldrw(scratch, a);
 149     if (imm > 0)
 150       addw(scratch, scratch, (unsigned)imm);
 151     else
 152       subw(scratch, scratch, (unsigned)-imm);
 153     strw(scratch, a);
 154   }
 155 
 156   // Frame creation and destruction shared between JITs.
 157   void build_frame(int framesize);
 158   void remove_frame(int framesize);
 159 
 160   virtual void _call_Unimplemented(address call_site) {
 161     mov(rscratch2, call_site);
 162     haltsim();
 163   }
 164 
 165 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 166 
 167   virtual void notify(int type);
 168 
 169   // aliases defined in AARCH64 spec
 170 
 171   template<class T>
 172   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 173   inline void cmp(Register Rd, unsigned imm)  { subs(zr, Rd, imm); }
 174 
 175   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 176   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 177 
 178   void cset(Register Rd, Assembler::Condition cond) {
 179     csinc(Rd, zr, zr, ~cond);
 180   }
 181   void csetw(Register Rd, Assembler::Condition cond) {
 182     csincw(Rd, zr, zr, ~cond);
 183   }
 184 
 185   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 186     csneg(Rd, Rn, Rn, ~cond);
 187   }
 188   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 189     csnegw(Rd, Rn, Rn, ~cond);
 190   }
 191 
 192   inline void movw(Register Rd, Register Rn) {
 193     if (Rd == sp || Rn == sp) {
 194       addw(Rd, Rn, 0U);
 195     } else {
 196       orrw(Rd, zr, Rn);
 197     }
 198   }
 199   inline void mov(Register Rd, Register Rn) {
 200     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 201     if (Rd == Rn) {
 202     } else if (Rd == sp || Rn == sp) {
 203       add(Rd, Rn, 0U);
 204     } else {
 205       orr(Rd, zr, Rn);
 206     }
 207   }
 208 
 209   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 210   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 211 
 212   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 213   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 214 
 215   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 216   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 217 
 218   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 219     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 220   }
 221   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 222     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 223   }
 224 
 225   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 226     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 227   }
 228   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 229     bfm(Rd, Rn, lsb , (lsb + width - 1));
 230   }
 231 
 232   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 233     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 234   }
 235   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 236     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 237   }
 238 
 239   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 240     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 241   }
 242   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 243     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 244   }
 245 
 246   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 247     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 248   }
 249   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 250     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 251   }
 252 
 253   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 254     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 255   }
 256   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 257     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 258   }
 259 
 260   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 261     sbfmw(Rd, Rn, imm, 31);
 262   }
 263 
 264   inline void asr(Register Rd, Register Rn, unsigned imm) {
 265     sbfm(Rd, Rn, imm, 63);
 266   }
 267 
 268   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 269     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 270   }
 271 
 272   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 273     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 274   }
 275 
 276   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 277     ubfmw(Rd, Rn, imm, 31);
 278   }
 279 
 280   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 281     ubfm(Rd, Rn, imm, 63);
 282   }
 283 
 284   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 285     extrw(Rd, Rn, Rn, imm);
 286   }
 287 
 288   inline void ror(Register Rd, Register Rn, unsigned imm) {
 289     extr(Rd, Rn, Rn, imm);
 290   }
 291 
 292   inline void sxtbw(Register Rd, Register Rn) {
 293     sbfmw(Rd, Rn, 0, 7);
 294   }
 295   inline void sxthw(Register Rd, Register Rn) {
 296     sbfmw(Rd, Rn, 0, 15);
 297   }
 298   inline void sxtb(Register Rd, Register Rn) {
 299     sbfm(Rd, Rn, 0, 7);
 300   }
 301   inline void sxth(Register Rd, Register Rn) {
 302     sbfm(Rd, Rn, 0, 15);
 303   }
 304   inline void sxtw(Register Rd, Register Rn) {
 305     sbfm(Rd, Rn, 0, 31);
 306   }
 307 
 308   inline void uxtbw(Register Rd, Register Rn) {
 309     ubfmw(Rd, Rn, 0, 7);
 310   }
 311   inline void uxthw(Register Rd, Register Rn) {
 312     ubfmw(Rd, Rn, 0, 15);
 313   }
 314   inline void uxtb(Register Rd, Register Rn) {
 315     ubfm(Rd, Rn, 0, 7);
 316   }
 317   inline void uxth(Register Rd, Register Rn) {
 318     ubfm(Rd, Rn, 0, 15);
 319   }
 320   inline void uxtw(Register Rd, Register Rn) {
 321     ubfm(Rd, Rn, 0, 31);
 322   }
 323 
 324   inline void cmnw(Register Rn, Register Rm) {
 325     addsw(zr, Rn, Rm);
 326   }
 327   inline void cmn(Register Rn, Register Rm) {
 328     adds(zr, Rn, Rm);
 329   }
 330 
 331   inline void cmpw(Register Rn, Register Rm) {
 332     subsw(zr, Rn, Rm);
 333   }
 334   inline void cmp(Register Rn, Register Rm) {
 335     subs(zr, Rn, Rm);
 336   }
 337 
 338   inline void negw(Register Rd, Register Rn) {
 339     subw(Rd, zr, Rn);
 340   }
 341 
 342   inline void neg(Register Rd, Register Rn) {
 343     sub(Rd, zr, Rn);
 344   }
 345 
 346   inline void negsw(Register Rd, Register Rn) {
 347     subsw(Rd, zr, Rn);
 348   }
 349 
 350   inline void negs(Register Rd, Register Rn) {
 351     subs(Rd, zr, Rn);
 352   }
 353 
 354   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 355     addsw(zr, Rn, Rm, kind, shift);
 356   }
 357   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 358     adds(zr, Rn, Rm, kind, shift);
 359   }
 360 
 361   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 362     subsw(zr, Rn, Rm, kind, shift);
 363   }
 364   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 365     subs(zr, Rn, Rm, kind, shift);
 366   }
 367 
 368   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 369     subw(Rd, zr, Rn, kind, shift);
 370   }
 371 
 372   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 373     sub(Rd, zr, Rn, kind, shift);
 374   }
 375 
 376   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 377     subsw(Rd, zr, Rn, kind, shift);
 378   }
 379 
 380   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 381     subs(Rd, zr, Rn, kind, shift);
 382   }
 383 
 384   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 385     msubw(Rd, Rn, Rm, zr);
 386   }
 387   inline void mneg(Register Rd, Register Rn, Register Rm) {
 388     msub(Rd, Rn, Rm, zr);
 389   }
 390 
 391   inline void mulw(Register Rd, Register Rn, Register Rm) {
 392     maddw(Rd, Rn, Rm, zr);
 393   }
 394   inline void mul(Register Rd, Register Rn, Register Rm) {
 395     madd(Rd, Rn, Rm, zr);
 396   }
 397 
 398   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 399     smsubl(Rd, Rn, Rm, zr);
 400   }
 401   inline void smull(Register Rd, Register Rn, Register Rm) {
 402     smaddl(Rd, Rn, Rm, zr);
 403   }
 404 
 405   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 406     umsubl(Rd, Rn, Rm, zr);
 407   }
 408   inline void umull(Register Rd, Register Rn, Register Rm) {
 409     umaddl(Rd, Rn, Rm, zr);
 410   }
 411 
 412 #define WRAP(INSN)                                                            \
 413   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 414     if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_A53MAC) && Ra != zr) \
 415       nop();                                                                  \
 416     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 417   }
 418 
 419   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 420   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 421 #undef WRAP
 422 
 423   // macro assembly operations needed for aarch64
 424 
 425   // first two private routines for loading 32 bit or 64 bit constants
 426 private:
 427 
 428   void mov_immediate64(Register dst, u_int64_t imm64);
 429   void mov_immediate32(Register dst, u_int32_t imm32);
 430 
 431   int push(unsigned int bitset, Register stack);
 432   int pop(unsigned int bitset, Register stack);
 433 
 434   void mov(Register dst, Address a);
 435 
 436 public:
 437   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 438   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 439 
 440   // Push and pop everything that might be clobbered by a native
 441   // runtime call except rscratch1 and rscratch2.  (They are always
 442   // scratch, so we don't have to protect them.)  Only save the lower
 443   // 64 bits of each vector register.
 444   void push_call_clobbered_registers();
 445   void pop_call_clobbered_registers();
 446   void push_call_clobbered_fp_registers();
 447   void pop_call_clobbered_fp_registers();
 448 
 449   // now mov instructions for loading absolute addresses and 32 or
 450   // 64 bit integers
 451 
 452   void mov(Register dst, address addr);
 453 
 454   inline void mov(Register dst, u_int64_t imm64)
 455   {
 456     mov_immediate64(dst, imm64);
 457   }
 458 
 459   inline void movw(Register dst, u_int32_t imm32)
 460   {
 461     mov_immediate32(dst, imm32);
 462   }
 463 
 464   inline void mov(Register dst, long l)
 465   {
 466     mov(dst, (u_int64_t)l);
 467   }
 468 
 469   inline void mov(Register dst, int i)
 470   {
 471     mov(dst, (long)i);
 472   }
 473 
 474   void mov(Register dst, RegisterOrConstant src) {
 475     if (src.is_register())
 476       mov(dst, src.as_register());
 477     else
 478       mov(dst, src.as_constant());
 479   }
 480 
 481   void movptr(Register r, uintptr_t imm64);
 482 
 483   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 484 
 485   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 486     orr(Vd, T, Vn, Vn);
 487   }
 488 
 489 public:
 490 
 491   // Generalized Test Bit And Branch, including a "far" variety which
 492   // spans more than 32KiB.
 493   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
 494     assert(cond == EQ || cond == NE, "must be");
 495 
 496     if (far)
 497       cond = ~cond;
 498 
 499     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 500     if (cond == Assembler::EQ)
 501       branch = &Assembler::tbz;
 502     else
 503       branch = &Assembler::tbnz;
 504 
 505     if (far) {
 506       Label L;
 507       (this->*branch)(Rt, bitpos, L);
 508       b(dest);
 509       bind(L);
 510     } else {
 511       (this->*branch)(Rt, bitpos, dest);
 512     }
 513   }
 514 
 515   // macro instructions for accessing and updating floating point
 516   // status register
 517   //
 518   // FPSR : op1 == 011
 519   //        CRn == 0100
 520   //        CRm == 0100
 521   //        op2 == 001
 522 
 523   inline void get_fpsr(Register reg)
 524   {
 525     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 526   }
 527 
 528   inline void set_fpsr(Register reg)
 529   {
 530     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 531   }
 532 
 533   inline void clear_fpsr()
 534   {
 535     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 536   }
 537 
 538   // Macro instructions for accessing and updating the condition flags
 539   inline void get_nzcv(Register reg)
 540   {
 541     mrs(0b011, 0b0100, 0b0010, 0b000, reg);
 542   }
 543 
 544   inline void set_nzcv(Register reg)
 545   {
 546     msr(0b011, 0b0100, 0b0010, 0b000, reg);
 547   }
 548 
 549   // DCZID_EL0: op1 == 011
 550   //            CRn == 0000
 551   //            CRm == 0000
 552   //            op2 == 111
 553   inline void get_dczid_el0(Register reg)
 554   {
 555     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 556   }
 557 
 558   // CTR_EL0:   op1 == 011
 559   //            CRn == 0000
 560   //            CRm == 0000
 561   //            op2 == 001
 562   inline void get_ctr_el0(Register reg)
 563   {
 564     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 565   }
 566 
 567   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 568   int corrected_idivl(Register result, Register ra, Register rb,
 569                       bool want_remainder, Register tmp = rscratch1);
 570   int corrected_idivq(Register result, Register ra, Register rb,
 571                       bool want_remainder, Register tmp = rscratch1);
 572 
 573   // Support for NULL-checks
 574   //
 575   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 576   // If the accessed location is M[reg + offset] and the offset is known, provide the
 577   // offset. No explicit code generation is needed if the offset is within a certain
 578   // range (0 <= offset <= page_size).
 579 
 580   virtual void null_check(Register reg, int offset = -1);
 581   static bool needs_explicit_null_check(intptr_t offset);
 582 
 583   static address target_addr_for_insn(address insn_addr, unsigned insn);
 584   static address target_addr_for_insn(address insn_addr) {
 585     unsigned insn = *(unsigned*)insn_addr;
 586     return target_addr_for_insn(insn_addr, insn);
 587   }
 588   
 589   // Required platform-specific helpers for Label::patch_instructions.
 590   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 591   static int pd_patch_instruction_size(address branch, address target);
 592   static void pd_patch_instruction(address branch, address target) {
 593     pd_patch_instruction_size(branch, target);
 594   }
 595   static address pd_call_destination(address branch) {
 596     return target_addr_for_insn(branch);
 597   }
 598 #ifndef PRODUCT
 599   static void pd_print_patched_instruction(address branch);
 600 #endif
 601 
 602   static int patch_oop(address insn_addr, address o);
 603 
 604   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 605 
 606   // The following 4 methods return the offset of the appropriate move instruction
 607 
 608   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 609   int load_unsigned_byte(Register dst, Address src);
 610   int load_unsigned_short(Register dst, Address src);
 611 
 612   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 613   int load_signed_byte(Register dst, Address src);
 614   int load_signed_short(Register dst, Address src);
 615 
 616   int load_signed_byte32(Register dst, Address src);
 617   int load_signed_short32(Register dst, Address src);
 618 
 619   // Support for sign-extension (hi:lo = extend_sign(lo))
 620   void extend_sign(Register hi, Register lo);
 621 
 622   // Load and store values by size and signed-ness
 623   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 624   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 625 
 626   // Support for inc/dec with optimal instruction selection depending on value
 627 
 628   // x86_64 aliases an unqualified register/address increment and
 629   // decrement to call incrementq and decrementq but also supports
 630   // explicitly sized calls to incrementq/decrementq or
 631   // incrementl/decrementl
 632 
 633   // for aarch64 the proper convention would be to use
 634   // increment/decrement for 64 bit operatons and
 635   // incrementw/decrementw for 32 bit operations. so when porting
 636   // x86_64 code we can leave calls to increment/decrement as is,
 637   // replace incrementq/decrementq with increment/decrement and
 638   // replace incrementl/decrementl with incrementw/decrementw.
 639 
 640   // n.b. increment/decrement calls with an Address destination will
 641   // need to use a scratch register to load the value to be
 642   // incremented. increment/decrement calls which add or subtract a
 643   // constant value greater than 2^12 will need to use a 2nd scratch
 644   // register to hold the constant. so, a register increment/decrement
 645   // may trash rscratch2 and an address increment/decrement trash
 646   // rscratch and rscratch2
 647 
 648   void decrementw(Address dst, int value = 1);
 649   void decrementw(Register reg, int value = 1);
 650 
 651   void decrement(Register reg, int value = 1);
 652   void decrement(Address dst, int value = 1);
 653 
 654   void incrementw(Address dst, int value = 1);
 655   void incrementw(Register reg, int value = 1);
 656 
 657   void increment(Register reg, int value = 1);
 658   void increment(Address dst, int value = 1);
 659 
 660 
 661   // Alignment
 662   void align(int modulus);
 663 
 664   // Stack frame creation/removal
 665   void enter()
 666   {
 667     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 668     mov(rfp, sp);
 669   }
 670   void leave()
 671   {
 672     mov(sp, rfp);
 673     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 674   }
 675 
 676   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 677   // The pointer will be loaded into the thread register.
 678   void get_thread(Register thread);
 679 
 680 
 681   // Support for VM calls
 682   //
 683   // It is imperative that all calls into the VM are handled via the call_VM macros.
 684   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 685   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 686 
 687 
 688   void call_VM(Register oop_result,
 689                address entry_point,
 690                bool check_exceptions = true);
 691   void call_VM(Register oop_result,
 692                address entry_point,
 693                Register arg_1,
 694                bool check_exceptions = true);
 695   void call_VM(Register oop_result,
 696                address entry_point,
 697                Register arg_1, Register arg_2,
 698                bool check_exceptions = true);
 699   void call_VM(Register oop_result,
 700                address entry_point,
 701                Register arg_1, Register arg_2, Register arg_3,
 702                bool check_exceptions = true);
 703 
 704   // Overloadings with last_Java_sp
 705   void call_VM(Register oop_result,
 706                Register last_java_sp,
 707                address entry_point,
 708                int number_of_arguments = 0,
 709                bool check_exceptions = true);
 710   void call_VM(Register oop_result,
 711                Register last_java_sp,
 712                address entry_point,
 713                Register arg_1, bool
 714                check_exceptions = true);
 715   void call_VM(Register oop_result,
 716                Register last_java_sp,
 717                address entry_point,
 718                Register arg_1, Register arg_2,
 719                bool check_exceptions = true);
 720   void call_VM(Register oop_result,
 721                Register last_java_sp,
 722                address entry_point,
 723                Register arg_1, Register arg_2, Register arg_3,
 724                bool check_exceptions = true);
 725 
 726   void get_vm_result  (Register oop_result, Register thread);
 727   void get_vm_result_2(Register metadata_result, Register thread);
 728 
 729   // These always tightly bind to MacroAssembler::call_VM_base
 730   // bypassing the virtual implementation
 731   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 732   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 733   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 734   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 735   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 736 
 737   void call_VM_leaf(address entry_point,
 738                     int number_of_arguments = 0);
 739   void call_VM_leaf(address entry_point,
 740                     Register arg_1);
 741   void call_VM_leaf(address entry_point,
 742                     Register arg_1, Register arg_2);
 743   void call_VM_leaf(address entry_point,
 744                     Register arg_1, Register arg_2, Register arg_3);
 745 
 746   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 747   // bypassing the virtual implementation
 748   void super_call_VM_leaf(address entry_point);
 749   void super_call_VM_leaf(address entry_point, Register arg_1);
 750   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 751   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 752   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 753 
 754   // last Java Frame (fills frame anchor)
 755   void set_last_Java_frame(Register last_java_sp,
 756                            Register last_java_fp,
 757                            address last_java_pc,
 758                            Register scratch);
 759 
 760   void set_last_Java_frame(Register last_java_sp,
 761                            Register last_java_fp,
 762                            Label &last_java_pc,
 763                            Register scratch);
 764 
 765   void set_last_Java_frame(Register last_java_sp,
 766                            Register last_java_fp,
 767                            Register last_java_pc,
 768                            Register scratch);
 769 
 770   void reset_last_Java_frame(Register thread);
 771 
 772   // thread in the default location (rthread)
 773   void reset_last_Java_frame(bool clear_fp);
 774 
 775   // Stores
 776   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 777   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 778 
 779 #if INCLUDE_ALL_GCS
 780 
 781   void g1_write_barrier_pre(Register obj,
 782                             Register pre_val,
 783                             Register thread,
 784                             Register tmp,
 785                             bool tosca_live,
 786                             bool expand_call);
 787 
 788   void g1_write_barrier_post(Register store_addr,
 789                              Register new_val,
 790                              Register thread,
 791                              Register tmp,
 792                              Register tmp2);
 793 
 794   void shenandoah_write_barrier(Register dst);
 795 
 796 #endif // INCLUDE_ALL_GCS
 797 
 798   // split store_check(Register obj) to enhance instruction interleaving
 799   void store_check_part_1(Register obj);
 800   void store_check_part_2(Register obj);
 801 
 802   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 803   void c2bool(Register x);
 804 
 805   // oop manipulations
 806   void load_klass(Register dst, Register src);
 807   void store_klass(Register dst, Register src);
 808   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 809 
 810   void load_heap_oop(Register dst, Address src);
 811 
 812   void load_heap_oop_not_null(Register dst, Address src);
 813   void store_heap_oop(Address dst, Register src);
 814 
 815   // currently unimplemented
 816   // Used for storing NULL. All other oop constants should be
 817   // stored using routines that take a jobject.
 818   void store_heap_oop_null(Address dst);
 819 
 820   void load_prototype_header(Register dst, Register src);
 821 
 822   void store_klass_gap(Register dst, Register src);
 823 
 824   // This dummy is to prevent a call to store_heap_oop from
 825   // converting a zero (like NULL) into a Register by giving
 826   // the compiler two choices it can't resolve
 827 
 828   void store_heap_oop(Address dst, void* dummy);
 829 
 830   void encode_heap_oop(Register d, Register s);
 831   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 832   void decode_heap_oop(Register d, Register s);
 833   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 834   void encode_heap_oop_not_null(Register r);
 835   void decode_heap_oop_not_null(Register r);
 836   void encode_heap_oop_not_null(Register dst, Register src);
 837   void decode_heap_oop_not_null(Register dst, Register src);
 838 
 839   void set_narrow_oop(Register dst, jobject obj);
 840 
 841   void encode_klass_not_null(Register r);
 842   void decode_klass_not_null(Register r);
 843   void encode_klass_not_null(Register dst, Register src);
 844   void decode_klass_not_null(Register dst, Register src);
 845 
 846   void set_narrow_klass(Register dst, Klass* k);
 847 
 848   // if heap base register is used - reinit it with the correct value
 849   void reinit_heapbase();
 850 
 851   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 852 
 853   void push_CPU_state(bool save_vectors = false);
 854   void pop_CPU_state(bool restore_vectors = false) ;
 855 
 856   // Round up to a power of two
 857   void round_to(Register reg, int modulus);
 858 
 859   // allocation
 860   void eden_allocate(
 861     Register obj,                      // result: pointer to object after successful allocation
 862     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 863     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 864     Register t1,                       // temp register
 865     Label&   slow_case                 // continuation point if fast allocation fails
 866   );
 867   void tlab_allocate(
 868     Register obj,                      // result: pointer to object after successful allocation
 869     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 870     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 871     Register t1,                       // temp register
 872     Register t2,                       // temp register
 873     Label&   slow_case                 // continuation point if fast allocation fails
 874   );
 875   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 876   void verify_tlab();
 877 
 878   void incr_allocated_bytes(Register thread,
 879                             Register var_size_in_bytes, int con_size_in_bytes,
 880                             Register t1 = noreg);
 881 
 882   // interface method calling
 883   void lookup_interface_method(Register recv_klass,
 884                                Register intf_klass,
 885                                RegisterOrConstant itable_index,
 886                                Register method_result,
 887                                Register scan_temp,
 888                                Label& no_such_interface,
 889                                bool return_method = true);
 890 
 891   // virtual method calling
 892   // n.b. x86 allows RegisterOrConstant for vtable_index
 893   void lookup_virtual_method(Register recv_klass,
 894                              RegisterOrConstant vtable_index,
 895                              Register method_result);
 896 
 897   // Test sub_klass against super_klass, with fast and slow paths.
 898 
 899   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 900   // One of the three labels can be NULL, meaning take the fall-through.
 901   // If super_check_offset is -1, the value is loaded up from super_klass.
 902   // No registers are killed, except temp_reg.
 903   void check_klass_subtype_fast_path(Register sub_klass,
 904                                      Register super_klass,
 905                                      Register temp_reg,
 906                                      Label* L_success,
 907                                      Label* L_failure,
 908                                      Label* L_slow_path,
 909                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 910 
 911   // The rest of the type check; must be wired to a corresponding fast path.
 912   // It does not repeat the fast path logic, so don't use it standalone.
 913   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 914   // Updates the sub's secondary super cache as necessary.
 915   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 916   void check_klass_subtype_slow_path(Register sub_klass,
 917                                      Register super_klass,
 918                                      Register temp_reg,
 919                                      Register temp2_reg,
 920                                      Label* L_success,
 921                                      Label* L_failure,
 922                                      bool set_cond_codes = false);
 923 
 924   // Simplified, combined version, good for typical uses.
 925   // Falls through on failure.
 926   void check_klass_subtype(Register sub_klass,
 927                            Register super_klass,
 928                            Register temp_reg,
 929                            Label& L_success);
 930 
 931   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 932 
 933 
 934   // Debugging
 935 
 936   // only if +VerifyOops
 937   void verify_oop(Register reg, const char* s = "broken oop");
 938   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 939 
 940 // TODO: verify method and klass metadata (compare against vptr?)
 941   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 942   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 943 
 944 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 945 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 946 
 947   // only if +VerifyFPU
 948   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 949 
 950   // prints msg, dumps registers and stops execution
 951   void stop(const char* msg, Label *l = NULL);
 952 
 953   // prints msg and continues
 954   void warn(const char* msg);
 955 
 956   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 957 
 958   void untested()                                { stop("untested"); }
 959 
 960   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 961 
 962   void should_not_reach_here()                   { stop("should not reach here"); }
 963 
 964   // Stack overflow checking
 965   void bang_stack_with_offset(int offset) {
 966     // stack grows down, caller passes positive offset
 967     assert(offset > 0, "must bang with negative offset");
 968     mov(rscratch2, -offset);
 969     str(zr, Address(sp, rscratch2));
 970   }
 971 
 972   // Writes to stack successive pages until offset reached to check for
 973   // stack overflow + shadow pages.  Also, clobbers tmp
 974   void bang_stack_size(Register size, Register tmp);
 975 
 976   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 977                                                 Register tmp,
 978                                                 int offset);
 979 
 980   // Support for serializing memory accesses between threads
 981   void serialize_memory(Register thread, Register tmp);
 982 
 983   // Arithmetics
 984 
 985   void addptr(const Address &dst, int32_t src);
 986   void cmpptr(Register src1, Address src2);
 987 
 988   void cmpoops(Register src1, Register src2);
 989 
 990   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
 991                   Label &suceed, Label *fail);
 992 
 993   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
 994                   Label &suceed, Label *fail);
 995 
 996   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
 997   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
 998 
 999   void atomic_xchg(Register prev, Register newv, Register addr);
1000   void atomic_xchgw(Register prev, Register newv, Register addr);
1001 
1002   void orptr(Address adr, RegisterOrConstant src) {
1003     ldr(rscratch2, adr);
1004     if (src.is_register())
1005       orr(rscratch2, rscratch2, src.as_register());
1006     else
1007       orr(rscratch2, rscratch2, src.as_constant());
1008     str(rscratch2, adr);
1009   }
1010 
1011   // A generic CAS; success or failure is in the EQ flag.
1012   void cmpxchg(Register addr, Register expected, Register new_val,
1013                enum operand_size size,
1014                bool acquire, bool release,
1015                Register tmp = rscratch1);
1016 
1017   void cmpxchg_oop_shenandoah(Register addr, Register expected, Register new_val,
1018                               enum operand_size size,
1019                               bool acquire, bool release, bool weak,
1020                               Register result = noreg, Register tmp2 = rscratch2);
1021   // Calls
1022 
1023   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
1024 
1025   static bool far_branches() {
1026     return ReservedCodeCacheSize > branch_range;
1027   }
1028 
1029   // Jumps that can reach anywhere in the code cache.
1030   // Trashes tmp.
1031   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1032   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1033 
1034   static int far_branch_size() {
1035     if (far_branches()) {
1036       return 3 * 4;  // adrp, add, br
1037     } else {
1038       return 4;
1039     }
1040   }
1041 
1042   // Emit the CompiledIC call idiom
1043   address ic_call(address entry);
1044 
1045 public:
1046 
1047   // Data
1048 
1049   void mov_metadata(Register dst, Metadata* obj);
1050   Address allocate_metadata_address(Metadata* obj);
1051   Address constant_oop_address(jobject obj);
1052 
1053   void movoop(Register dst, jobject obj, bool immediate = false);
1054 
1055   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1056   void kernel_crc32(Register crc, Register buf, Register len,
1057         Register table0, Register table1, Register table2, Register table3,
1058         Register tmp, Register tmp2, Register tmp3);
1059 
1060 #undef VIRTUAL
1061 
1062   // Stack push and pop individual 64 bit registers
1063   void push(Register src);
1064   void pop(Register dst);
1065 
1066   // push all registers onto the stack
1067   void pusha();
1068   void popa();
1069 
1070   void repne_scan(Register addr, Register value, Register count,
1071                   Register scratch);
1072   void repne_scanw(Register addr, Register value, Register count,
1073                    Register scratch);
1074 
1075   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1076   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1077 
1078   // If a constant does not fit in an immediate field, generate some
1079   // number of MOV instructions and then perform the operation
1080   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1081                              add_sub_imm_insn insn1,
1082                              add_sub_reg_insn insn2);
1083   // Seperate vsn which sets the flags
1084   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1085                              add_sub_imm_insn insn1,
1086                              add_sub_reg_insn insn2);
1087 
1088 #define WRAP(INSN)                                                      \
1089   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1090     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1091   }                                                                     \
1092                                                                         \
1093   void INSN(Register Rd, Register Rn, Register Rm,                      \
1094              enum shift_kind kind, unsigned shift = 0) {                \
1095     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1096   }                                                                     \
1097                                                                         \
1098   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1099     Assembler::INSN(Rd, Rn, Rm);                                        \
1100   }                                                                     \
1101                                                                         \
1102   void INSN(Register Rd, Register Rn, Register Rm,                      \
1103            ext::operation option, int amount = 0) {                     \
1104     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1105   }
1106 
1107   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1108 
1109 #undef WRAP
1110 #define WRAP(INSN)                                                      \
1111   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1112     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1113   }                                                                     \
1114                                                                         \
1115   void INSN(Register Rd, Register Rn, Register Rm,                      \
1116              enum shift_kind kind, unsigned shift = 0) {                \
1117     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1118   }                                                                     \
1119                                                                         \
1120   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1121     Assembler::INSN(Rd, Rn, Rm);                                        \
1122   }                                                                     \
1123                                                                         \
1124   void INSN(Register Rd, Register Rn, Register Rm,                      \
1125            ext::operation option, int amount = 0) {                     \
1126     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1127   }
1128 
1129   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1130 
1131   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1132   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1133   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1134   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1135 
1136   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1137 
1138   void tableswitch(Register index, jint lowbound, jint highbound,
1139                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1140     adr(rscratch1, jumptable);
1141     subsw(rscratch2, index, lowbound);
1142     subsw(zr, rscratch2, highbound - lowbound);
1143     br(Assembler::HS, jumptable_end);
1144     add(rscratch1, rscratch1, rscratch2,
1145         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1146     br(rscratch1);
1147   }
1148 
1149   // Form an address from base + offset in Rd.  Rd may or may not
1150   // actually be used: you must use the Address that is returned.  It
1151   // is up to you to ensure that the shift provided matches the size
1152   // of your data.
1153   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1154 
1155   // Return true iff an address is within the 48-bit AArch64 address
1156   // space.
1157   bool is_valid_AArch64_address(address a) {
1158     return ((uint64_t)a >> 48) == 0;
1159   }
1160 
1161   // Load the base of the cardtable byte map into reg.
1162   void load_byte_map_base(Register reg);
1163 
1164   // Prolog generator routines to support switch between x86 code and
1165   // generated ARM code
1166 
1167   // routine to generate an x86 prolog for a stub function which
1168   // bootstraps into the generated ARM code which directly follows the
1169   // stub
1170   //
1171 
1172   public:
1173   // enum used for aarch64--x86 linkage to define return type of x86 function
1174   enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1175 
1176 #ifdef BUILTIN_SIM
1177   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1178 #else
1179   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1180 #endif
1181 
1182   // special version of call_VM_leaf_base needed for aarch64 simulator
1183   // where we need to specify both the gp and fp arg counts and the
1184   // return type so that the linkage routine from aarch64 to x86 and
1185   // back knows which aarch64 registers to copy to x86 registers and
1186   // which x86 result register to copy back to an aarch64 register
1187 
1188   void call_VM_leaf_base1(
1189     address  entry_point,             // the entry point
1190     int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1191     int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1192     ret_type type,                    // the return type for the call
1193     Label*   retaddr = NULL
1194   );
1195 
1196   void ldr_constant(Register dest, const Address &const_addr) {
1197     if (NearCpool) {
1198       ldr(dest, const_addr);
1199     } else {
1200       unsigned long offset;
1201       adrp(dest, InternalAddress(const_addr.target()), offset);
1202       ldr(dest, Address(dest, offset));
1203     }
1204   }
1205 
1206   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1207   address read_polling_page(Register r, relocInfo::relocType rtype);
1208 
1209   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1210   void update_byte_crc32(Register crc, Register val, Register table);
1211   void update_word_crc32(Register crc, Register v, Register tmp,
1212         Register table0, Register table1, Register table2, Register table3,
1213         bool upper = false);
1214 
1215   void string_compare(Register str1, Register str2,
1216                       Register cnt1, Register cnt2, Register result,
1217                       Register tmp1);
1218   void string_equals(Register str1, Register str2,
1219                      Register cnt, Register result,
1220                      Register tmp1);
1221   void char_arrays_equals(Register ary1, Register ary2,
1222                           Register result, Register tmp1);
1223   void fill_words(Register base, Register cnt, Register value);
1224   void zero_words(Register base, u_int64_t cnt);
1225   void zero_words(Register base, Register cnt);
1226   void block_zero(Register base, Register cnt, bool is_large = false);
1227 
1228   void encode_iso_array(Register src, Register dst,
1229                         Register len, Register result,
1230                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1231                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1232   void string_indexof(Register str1, Register str2,
1233                       Register cnt1, Register cnt2,
1234                       Register tmp1, Register tmp2,
1235                       Register tmp3, Register tmp4,
1236                       int int_cnt1, Register result);
1237 private:
1238   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1239                        Register src1, Register src2);
1240   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1241     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1242   }
1243   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1244                              Register y, Register y_idx, Register z,
1245                              Register carry, Register product,
1246                              Register idx, Register kdx);
1247   void multiply_128_x_128_loop(Register y, Register z,
1248                                Register carry, Register carry2,
1249                                Register idx, Register jdx,
1250                                Register yz_idx1, Register yz_idx2,
1251                                Register tmp, Register tmp3, Register tmp4,
1252                                Register tmp7, Register product_hi);
1253 public:
1254   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1255                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1256                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1257   // ISB may be needed because of a safepoint
1258   void maybe_isb() { isb(); }
1259 
1260 private:
1261   // Return the effective address r + (r1 << ext) + offset.
1262   // Uses rscratch2.
1263   Address offsetted_address(Register r, Register r1, Address::extend ext,
1264                             int offset, int size);
1265 
1266 private:
1267   // Returns an address on the stack which is reachable with a ldr/str of size
1268   // Uses rscratch2 if the address is not directly reachable
1269   Address spill_address(int size, int offset, Register tmp=rscratch2);
1270 
1271 public:
1272   void spill(Register Rx, bool is64, int offset) {
1273     if (is64) {
1274       str(Rx, spill_address(8, offset));
1275     } else {
1276       strw(Rx, spill_address(4, offset));
1277     }
1278   }
1279   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1280     str(Vx, T, spill_address(1 << (int)T, offset));
1281   }
1282   void unspill(Register Rx, bool is64, int offset) {
1283     if (is64) {
1284       ldr(Rx, spill_address(8, offset));
1285     } else {
1286       ldrw(Rx, spill_address(4, offset));
1287     }
1288   }
1289   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1290     ldr(Vx, T, spill_address(1 << (int)T, offset));
1291   }
1292   void spill_copy128(int src_offset, int dst_offset,
1293                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1294     if (src_offset < 512 && (src_offset & 7) == 0 &&
1295         dst_offset < 512 && (dst_offset & 7) == 0) {
1296       ldp(tmp1, tmp2, Address(sp, src_offset));
1297       stp(tmp1, tmp2, Address(sp, dst_offset));
1298     } else {
1299       unspill(tmp1, true, src_offset);
1300       spill(tmp1, true, dst_offset);
1301       unspill(tmp1, true, src_offset+8);
1302       spill(tmp1, true, dst_offset+8);
1303     }
1304   }
1305 };
1306 
1307 #ifdef ASSERT
1308 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1309 #endif
1310 
1311 /**
1312  * class SkipIfEqual:
1313  *
1314  * Instantiating this class will result in assembly code being output that will
1315  * jump around any code emitted between the creation of the instance and it's
1316  * automatic destruction at the end of a scope block, depending on the value of
1317  * the flag passed to the constructor, which will be checked at run-time.
1318  */
1319 class SkipIfEqual {
1320  private:
1321   MacroAssembler* _masm;
1322   Label _label;
1323 
1324  public:
1325    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1326    ~SkipIfEqual();
1327 };
1328 
1329 struct tableswitch {
1330   Register _reg;
1331   int _insn_index; jint _first_key; jint _last_key;
1332   Label _after;
1333   Label _branches;
1334 };
1335 
1336 #endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP