1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
  27 
  28 #include "gc_interface/gcCause.hpp"
  29 #include "gc_implementation/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/barrierSet.hpp"
  32 #include "runtime/handles.hpp"
  33 #include "runtime/perfData.hpp"
  34 #include "runtime/safepoint.hpp"
  35 #include "utilities/events.hpp"
  36 
  37 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  38 // is an abstract class: there may be many different kinds of heaps.  This
  39 // class defines the functions that a heap must implement, and contains
  40 // infrastructure common to all heaps.
  41 
  42 class AdaptiveSizePolicy;
  43 class BarrierSet;
  44 class CollectorPolicy;
  45 class GCHeapSummary;
  46 class GCTimer;
  47 class GCTracer;
  48 class MetaspaceSummary;
  49 class Thread;
  50 class ThreadClosure;
  51 class VirtualSpaceSummary;
  52 class nmethod;
  53 
  54 class GCMessage : public FormatBuffer<1024> {
  55  public:
  56   bool is_before;
  57 
  58  public:
  59   GCMessage() {}
  60 };
  61 
  62 class GCHeapLog : public EventLogBase<GCMessage> {
  63  private:
  64   void log_heap(bool before);
  65 
  66  public:
  67   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  68 
  69   void log_heap_before() {
  70     log_heap(true);
  71   }
  72   void log_heap_after() {
  73     log_heap(false);
  74   }
  75 };
  76 
  77 //
  78 // CollectedHeap
  79 //   SharedHeap
  80 //     GenCollectedHeap
  81 //     G1CollectedHeap
  82 //   ParallelScavengeHeap
  83 //   ShenandoahHeap
  84 //
  85 class CollectedHeap : public CHeapObj<mtInternal> {
  86   friend class VMStructs;
  87   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  88 
  89 #ifdef ASSERT
  90   static int       _fire_out_of_memory_count;
  91 #endif
  92 
  93   // Used for filler objects (static, but initialized in ctor).
  94   static size_t _filler_array_max_size;
  95 
  96   GCHeapLog* _gc_heap_log;
  97 
  98   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
  99   bool _defer_initial_card_mark;
 100 
 101  protected:
 102   MemRegion _reserved;
 103   BarrierSet* _barrier_set;
 104   bool _is_gc_active;
 105   uint _n_par_threads;
 106 
 107   unsigned int _total_collections;          // ... started
 108   unsigned int _total_full_collections;     // ... started
 109   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 110   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 111 
 112   // Reason for current garbage collection.  Should be set to
 113   // a value reflecting no collection between collections.
 114   GCCause::Cause _gc_cause;
 115   GCCause::Cause _gc_lastcause;
 116   PerfStringVariable* _perf_gc_cause;
 117   PerfStringVariable* _perf_gc_lastcause;
 118 
 119   // Constructor
 120   CollectedHeap();
 121 
 122   // Do common initializations that must follow instance construction,
 123   // for example, those needing virtual calls.
 124   // This code could perhaps be moved into initialize() but would
 125   // be slightly more awkward because we want the latter to be a
 126   // pure virtual.
 127   void pre_initialize();
 128 
 129   // Create a new tlab. All TLAB allocations must go through this.
 130   virtual HeapWord* allocate_new_tlab(size_t size);
 131 
 132   // Accumulate statistics on all tlabs.
 133   virtual void accumulate_statistics_all_tlabs();
 134 
 135   // Reinitialize tlabs before resuming mutators.
 136   virtual void resize_all_tlabs();
 137 
 138   // Allocate from the current thread's TLAB, with broken-out slow path.
 139   inline static HeapWord* allocate_from_tlab(KlassHandle klass, Thread* thread, size_t size);
 140   static HeapWord* allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size);
 141 
 142   // Allocate an uninitialized block of the given size, or returns NULL if
 143   // this is impossible.
 144   inline static HeapWord* common_mem_allocate_noinit(KlassHandle klass, size_t size, TRAPS);
 145 
 146   // Like allocate_init, but the block returned by a successful allocation
 147   // is guaranteed initialized to zeros.
 148   inline static HeapWord* common_mem_allocate_init(KlassHandle klass, size_t size, TRAPS);
 149 
 150   // Helper functions for (VM) allocation.
 151   inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
 152   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
 153                                                             HeapWord* objPtr);
 154 
 155   inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj, int size);
 156 
 157   inline static void post_allocation_setup_array(KlassHandle klass,
 158                                                  HeapWord* obj, int length);
 159 
 160   // Clears an allocated object.
 161   inline static void init_obj(HeapWord* obj, size_t size);
 162 
 163   // Filler object utilities.
 164   static inline size_t filler_array_hdr_size();
 165   static inline size_t filler_array_min_size();
 166 
 167   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 168   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 169 
 170   // Fill with a single array; caller must ensure filler_array_min_size() <=
 171   // words <= filler_array_max_size().
 172   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 173 
 174   // Fill with a single object (either an int array or a java.lang.Object).
 175   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 176 
 177   virtual void trace_heap(GCWhen::Type when, GCTracer* tracer);
 178 
 179   // Verification functions
 180   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 181     PRODUCT_RETURN;
 182   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 183     PRODUCT_RETURN;
 184   debug_only(static void check_for_valid_allocation_state();)
 185 
 186  public:
 187   enum Name {
 188     Abstract,
 189     SharedHeap,
 190     GenCollectedHeap,
 191     ParallelScavengeHeap,
 192     G1CollectedHeap,
 193     ShenandoahHeap
 194   };
 195 
 196   static inline size_t filler_array_max_size() {
 197     return _filler_array_max_size;
 198   }
 199 
 200   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
 201 
 202   virtual HeapWord* tlab_post_allocation_setup(HeapWord* obj);
 203 
 204   /**
 205    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 206    * and JNI_OK on success.
 207    */
 208   virtual jint initialize() = 0;
 209 
 210   // In many heaps, there will be a need to perform some initialization activities
 211   // after the Universe is fully formed, but before general heap allocation is allowed.
 212   // This is the correct place to place such initialization methods.
 213   virtual void post_initialize() = 0;
 214 
 215   // Stop any onging concurrent work and prepare for exit.
 216   virtual void stop() {}
 217 
 218   MemRegion reserved_region() const { return _reserved; }
 219   address base() const { return (address)reserved_region().start(); }
 220 
 221   virtual size_t capacity() const = 0;
 222   virtual size_t used() const = 0;
 223 
 224   // Return "true" if the part of the heap that allocates Java
 225   // objects has reached the maximal committed limit that it can
 226   // reach, without a garbage collection.
 227   virtual bool is_maximal_no_gc() const = 0;
 228 
 229   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 230   // memory that the vm could make available for storing 'normal' java objects.
 231   // This is based on the reserved address space, but should not include space
 232   // that the vm uses internally for bookkeeping or temporary storage
 233   // (e.g., in the case of the young gen, one of the survivor
 234   // spaces).
 235   virtual size_t max_capacity() const = 0;
 236 
 237   // Returns "TRUE" if "p" points into the reserved area of the heap.
 238   bool is_in_reserved(const void* p) const {
 239     return _reserved.contains(p);
 240   }
 241 
 242   bool is_in_reserved_or_null(const void* p) const {
 243     return p == NULL || is_in_reserved(p);
 244   }
 245 
 246   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 247   // Since this method can be expensive in general, we restrict its
 248   // use to assertion checking only.
 249   virtual bool is_in(const void* p) const = 0;
 250 
 251   bool is_in_or_null(const void* p) const {
 252     return p == NULL || is_in(p);
 253   }
 254 
 255   bool is_in_place(Metadata** p) {
 256     return !Universe::heap()->is_in(p);
 257   }
 258   bool is_in_place(oop* p) { return Universe::heap()->is_in(p); }
 259   bool is_in_place(narrowOop* p) {
 260     oop o = oopDesc::load_decode_heap_oop_not_null(p);
 261     return Universe::heap()->is_in((const void*)o);
 262   }
 263 
 264   // Let's define some terms: a "closed" subset of a heap is one that
 265   //
 266   // 1) contains all currently-allocated objects, and
 267   //
 268   // 2) is closed under reference: no object in the closed subset
 269   //    references one outside the closed subset.
 270   //
 271   // Membership in a heap's closed subset is useful for assertions.
 272   // Clearly, the entire heap is a closed subset, so the default
 273   // implementation is to use "is_in_reserved".  But this may not be too
 274   // liberal to perform useful checking.  Also, the "is_in" predicate
 275   // defines a closed subset, but may be too expensive, since "is_in"
 276   // verifies that its argument points to an object head.  The
 277   // "closed_subset" method allows a heap to define an intermediate
 278   // predicate, allowing more precise checking than "is_in_reserved" at
 279   // lower cost than "is_in."
 280 
 281   // One important case is a heap composed of disjoint contiguous spaces,
 282   // such as the Garbage-First collector.  Such heaps have a convenient
 283   // closed subset consisting of the allocated portions of those
 284   // contiguous spaces.
 285 
 286   // Return "TRUE" iff the given pointer points into the heap's defined
 287   // closed subset (which defaults to the entire heap).
 288   virtual bool is_in_closed_subset(const void* p) const {
 289     return is_in_reserved(p);
 290   }
 291 
 292   bool is_in_closed_subset_or_null(const void* p) const {
 293     return p == NULL || is_in_closed_subset(p);
 294   }
 295 
 296 #ifdef ASSERT
 297   // Returns true if "p" is in the part of the
 298   // heap being collected.
 299   virtual bool is_in_partial_collection(const void *p) = 0;
 300 #endif
 301 
 302   // An object is scavengable if its location may move during a scavenge.
 303   // (A scavenge is a GC which is not a full GC.)
 304   virtual bool is_scavengable(const void *p) = 0;
 305 
 306   void set_gc_cause(GCCause::Cause v) {
 307      if (UsePerfData) {
 308        _gc_lastcause = _gc_cause;
 309        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 310        _perf_gc_cause->set_value(GCCause::to_string(v));
 311      }
 312     _gc_cause = v;
 313   }
 314   GCCause::Cause gc_cause() { return _gc_cause; }
 315 
 316   // Number of threads currently working on GC tasks.
 317   uint n_par_threads() { return _n_par_threads; }
 318 
 319   // May be overridden to set additional parallelism.
 320   virtual void set_par_threads(uint t) { _n_par_threads = t; };
 321 
 322   // General obj/array allocation facilities.
 323   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
 324   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
 325   inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
 326 
 327   inline static void post_allocation_install_obj_klass(KlassHandle klass,
 328                                                        oop obj);
 329 
 330   virtual uint oop_extra_words();
 331 
 332 #ifndef CC_INTERP
 333   virtual void compile_prepare_oop(MacroAssembler* masm, Register obj);
 334 #endif
 335 
 336   // Raw memory allocation facilities
 337   // The obj and array allocate methods are covers for these methods.
 338   // mem_allocate() should never be
 339   // called to allocate TLABs, only individual objects.
 340   virtual HeapWord* mem_allocate(size_t size,
 341                                  bool* gc_overhead_limit_was_exceeded) = 0;
 342 
 343   // Utilities for turning raw memory into filler objects.
 344   //
 345   // min_fill_size() is the smallest region that can be filled.
 346   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 347   // multiple objects.  fill_with_object() is for regions known to be smaller
 348   // than the largest array of integers; it uses a single object to fill the
 349   // region and has slightly less overhead.
 350   static size_t min_fill_size() {
 351     return size_t(align_object_size(oopDesc::header_size()));
 352   }
 353 
 354   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 355 
 356   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 357   static void fill_with_object(MemRegion region, bool zap = true) {
 358     fill_with_object(region.start(), region.word_size(), zap);
 359   }
 360   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 361     fill_with_object(start, pointer_delta(end, start), zap);
 362   }
 363 
 364   // Return the address "addr" aligned by "alignment_in_bytes" if such
 365   // an address is below "end".  Return NULL otherwise.
 366   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 367                                                    HeapWord* end,
 368                                                    unsigned short alignment_in_bytes);
 369 
 370   // Some heaps may offer a contiguous region for shared non-blocking
 371   // allocation, via inlined code (by exporting the address of the top and
 372   // end fields defining the extent of the contiguous allocation region.)
 373 
 374   // This function returns "true" iff the heap supports this kind of
 375   // allocation.  (Default is "no".)
 376   virtual bool supports_inline_contig_alloc() const {
 377     return false;
 378   }
 379   // These functions return the addresses of the fields that define the
 380   // boundaries of the contiguous allocation area.  (These fields should be
 381   // physically near to one another.)
 382   virtual HeapWord** top_addr() const {
 383     guarantee(false, "inline contiguous allocation not supported");
 384     return NULL;
 385   }
 386   virtual HeapWord** end_addr() const {
 387     guarantee(false, "inline contiguous allocation not supported");
 388     return NULL;
 389   }
 390 
 391   // Some heaps may be in an unparseable state at certain times between
 392   // collections. This may be necessary for efficient implementation of
 393   // certain allocation-related activities. Calling this function before
 394   // attempting to parse a heap ensures that the heap is in a parsable
 395   // state (provided other concurrent activity does not introduce
 396   // unparsability). It is normally expected, therefore, that this
 397   // method is invoked with the world stopped.
 398   // NOTE: if you override this method, make sure you call
 399   // super::ensure_parsability so that the non-generational
 400   // part of the work gets done. See implementation of
 401   // CollectedHeap::ensure_parsability and, for instance,
 402   // that of GenCollectedHeap::ensure_parsability().
 403   // The argument "retire_tlabs" controls whether existing TLABs
 404   // are merely filled or also retired, thus preventing further
 405   // allocation from them and necessitating allocation of new TLABs.
 406   virtual void ensure_parsability(bool retire_tlabs);
 407 
 408   // Section on thread-local allocation buffers (TLABs)
 409   // If the heap supports thread-local allocation buffers, it should override
 410   // the following methods:
 411   // Returns "true" iff the heap supports thread-local allocation buffers.
 412   // The default is "no".
 413   virtual bool supports_tlab_allocation() const = 0;
 414 
 415   // The amount of space available for thread-local allocation buffers.
 416   virtual size_t tlab_capacity(Thread *thr) const = 0;
 417 
 418   // The amount of used space for thread-local allocation buffers for the given thread.
 419   virtual size_t tlab_used(Thread *thr) const = 0;
 420 
 421   virtual size_t max_tlab_size() const;
 422 
 423   // An estimate of the maximum allocation that could be performed
 424   // for thread-local allocation buffers without triggering any
 425   // collection or expansion activity.
 426   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 427     guarantee(false, "thread-local allocation buffers not supported");
 428     return 0;
 429   }
 430 
 431   // Can a compiler initialize a new object without store barriers?
 432   // This permission only extends from the creation of a new object
 433   // via a TLAB up to the first subsequent safepoint. If such permission
 434   // is granted for this heap type, the compiler promises to call
 435   // defer_store_barrier() below on any slow path allocation of
 436   // a new object for which such initializing store barriers will
 437   // have been elided.
 438   virtual bool can_elide_tlab_store_barriers() const = 0;
 439 
 440   // If a compiler is eliding store barriers for TLAB-allocated objects,
 441   // there is probably a corresponding slow path which can produce
 442   // an object allocated anywhere.  The compiler's runtime support
 443   // promises to call this function on such a slow-path-allocated
 444   // object before performing initializations that have elided
 445   // store barriers. Returns new_obj, or maybe a safer copy thereof.
 446   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
 447 
 448   // Answers whether an initializing store to a new object currently
 449   // allocated at the given address doesn't need a store
 450   // barrier. Returns "true" if it doesn't need an initializing
 451   // store barrier; answers "false" if it does.
 452   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
 453 
 454   // If a compiler is eliding store barriers for TLAB-allocated objects,
 455   // we will be informed of a slow-path allocation by a call
 456   // to new_store_pre_barrier() above. Such a call precedes the
 457   // initialization of the object itself, and no post-store-barriers will
 458   // be issued. Some heap types require that the barrier strictly follows
 459   // the initializing stores. (This is currently implemented by deferring the
 460   // barrier until the next slow-path allocation or gc-related safepoint.)
 461   // This interface answers whether a particular heap type needs the card
 462   // mark to be thus strictly sequenced after the stores.
 463   virtual bool card_mark_must_follow_store() const = 0;
 464 
 465   // If the CollectedHeap was asked to defer a store barrier above,
 466   // this informs it to flush such a deferred store barrier to the
 467   // remembered set.
 468   virtual void flush_deferred_store_barrier(JavaThread* thread);
 469 
 470   // Does this heap support heap inspection (+PrintClassHistogram?)
 471   virtual bool supports_heap_inspection() const = 0;
 472 
 473   // Perform a collection of the heap; intended for use in implementing
 474   // "System.gc".  This probably implies as full a collection as the
 475   // "CollectedHeap" supports.
 476   virtual void collect(GCCause::Cause cause) = 0;
 477 
 478   // Perform a full collection
 479   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 480 
 481   // This interface assumes that it's being called by the
 482   // vm thread. It collects the heap assuming that the
 483   // heap lock is already held and that we are executing in
 484   // the context of the vm thread.
 485   virtual void collect_as_vm_thread(GCCause::Cause cause);
 486 
 487   // Returns the barrier set for this heap
 488   BarrierSet* barrier_set() { return _barrier_set; }
 489 
 490   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 491   // that it should answer "false" for the concurrent part of a concurrent
 492   // collector -- dld).
 493   bool is_gc_active() const { return _is_gc_active; }
 494 
 495   // Total number of GC collections (started)
 496   unsigned int total_collections() const { return _total_collections; }
 497   unsigned int total_full_collections() const { return _total_full_collections;}
 498 
 499   // Increment total number of GC collections (started)
 500   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 501   void increment_total_collections(bool full = false) {
 502     _total_collections++;
 503     if (full) {
 504       increment_total_full_collections();
 505     }
 506   }
 507 
 508   void increment_total_full_collections() { _total_full_collections++; }
 509 
 510   // Return the AdaptiveSizePolicy for the heap.
 511   virtual AdaptiveSizePolicy* size_policy() = 0;
 512 
 513   // Return the CollectorPolicy for the heap
 514   virtual CollectorPolicy* collector_policy() const = 0;
 515 
 516   void oop_iterate_no_header(OopClosure* cl);
 517 
 518   // Iterate over all the ref-containing fields of all objects, calling
 519   // "cl.do_oop" on each.
 520   virtual void oop_iterate(ExtendedOopClosure* cl) = 0;
 521 
 522   // Iterate over all objects, calling "cl.do_object" on each.
 523   virtual void object_iterate(ObjectClosure* cl) = 0;
 524 
 525   // Similar to object_iterate() except iterates only
 526   // over live objects.
 527   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 528 
 529   // NOTE! There is no requirement that a collector implement these
 530   // functions.
 531   //
 532   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 533   // each address in the (reserved) heap is a member of exactly
 534   // one block.  The defining characteristic of a block is that it is
 535   // possible to find its size, and thus to progress forward to the next
 536   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 537   // represent Java objects, or they might be free blocks in a
 538   // free-list-based heap (or subheap), as long as the two kinds are
 539   // distinguishable and the size of each is determinable.
 540 
 541   // Returns the address of the start of the "block" that contains the
 542   // address "addr".  We say "blocks" instead of "object" since some heaps
 543   // may not pack objects densely; a chunk may either be an object or a
 544   // non-object.
 545   virtual HeapWord* block_start(const void* addr) const = 0;
 546 
 547   // Requires "addr" to be the start of a chunk, and returns its size.
 548   // "addr + size" is required to be the start of a new chunk, or the end
 549   // of the active area of the heap.
 550   virtual size_t block_size(const HeapWord* addr) const = 0;
 551 
 552   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 553   // the block is an object.
 554   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 555 
 556   // Returns the longest time (in ms) that has elapsed since the last
 557   // time that any part of the heap was examined by a garbage collection.
 558   virtual jlong millis_since_last_gc() = 0;
 559 
 560   // Perform any cleanup actions necessary before allowing a verification.
 561   virtual void prepare_for_verify() = 0;
 562 
 563   // Generate any dumps preceding or following a full gc
 564   void pre_full_gc_dump(GCTimer* timer);
 565   void post_full_gc_dump(GCTimer* timer);
 566 
 567   VirtualSpaceSummary create_heap_space_summary();
 568   GCHeapSummary create_heap_summary();
 569 
 570   MetaspaceSummary create_metaspace_summary();
 571 
 572   // Print heap information on the given outputStream.
 573   virtual void print_on(outputStream* st) const = 0;
 574   // The default behavior is to call print_on() on tty.
 575   virtual void print() const {
 576     print_on(tty);
 577   }
 578   // Print more detailed heap information on the given
 579   // outputStream. The default behavior is to call print_on(). It is
 580   // up to each subclass to override it and add any additional output
 581   // it needs.
 582   virtual void print_extended_on(outputStream* st) const {
 583     print_on(st);
 584   }
 585 
 586   virtual void print_on_error(outputStream* st) const {
 587     st->print_cr("Heap:");
 588     print_extended_on(st);
 589     st->cr();
 590 
 591     _barrier_set->print_on(st);
 592   }
 593 
 594   // Print all GC threads (other than the VM thread)
 595   // used by this heap.
 596   virtual void print_gc_threads_on(outputStream* st) const = 0;
 597   // The default behavior is to call print_gc_threads_on() on tty.
 598   void print_gc_threads() {
 599     print_gc_threads_on(tty);
 600   }
 601   // Iterator for all GC threads (other than VM thread)
 602   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 603 
 604   // Print any relevant tracing info that flags imply.
 605   // Default implementation does nothing.
 606   virtual void print_tracing_info() const = 0;
 607 
 608   void print_heap_before_gc();
 609   void print_heap_after_gc();
 610 
 611   // Registering and unregistering an nmethod (compiled code) with the heap.
 612   // Override with specific mechanism for each specialized heap type.
 613   virtual void register_nmethod(nmethod* nm);
 614   virtual void unregister_nmethod(nmethod* nm);
 615 
 616   void trace_heap_before_gc(GCTracer* gc_tracer);
 617   void trace_heap_after_gc(GCTracer* gc_tracer);
 618 
 619   // Heap verification
 620   virtual void verify(bool silent, VerifyOption option) = 0;
 621 
 622   // Shut down all GC workers and other GC related threads.
 623   virtual void shutdown();
 624 
 625   // Accumulate additional statistics from GCLABs.
 626   virtual void accumulate_statistics_all_gclabs();
 627 
 628   // Support for object pinning. This is used by JNI Get*Critical()
 629   // and Release*Critical() family of functions. If supported, the GC
 630   // must guarantee that pinned objects never move.
 631   virtual bool supports_object_pinning() const;
 632   virtual oop pin_object(JavaThread* thread, oop obj);
 633   virtual void unpin_object(JavaThread* thread, oop obj);
 634 
 635   // Non product verification and debugging.
 636 #ifndef PRODUCT
 637   // Support for PromotionFailureALot.  Return true if it's time to cause a
 638   // promotion failure.  The no-argument version uses
 639   // this->_promotion_failure_alot_count as the counter.
 640   inline bool promotion_should_fail(volatile size_t* count);
 641   inline bool promotion_should_fail();
 642 
 643   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 644   // GC in which promotion failure occurred.
 645   inline void reset_promotion_should_fail(volatile size_t* count);
 646   inline void reset_promotion_should_fail();
 647 #endif  // #ifndef PRODUCT
 648 
 649 #ifdef ASSERT
 650   static int fired_fake_oom() {
 651     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 652   }
 653 #endif
 654 
 655  public:
 656   // This is a convenience method that is used in cases where
 657   // the actual number of GC worker threads is not pertinent but
 658   // only whether there more than 0.  Use of this method helps
 659   // reduce the occurrence of ParallelGCThreads to uses where the
 660   // actual number may be germane.
 661   static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
 662 
 663   // Copy the current allocation context statistics for the specified contexts.
 664   // For each context in contexts, set the corresponding entries in the totals
 665   // and accuracy arrays to the current values held by the statistics.  Each
 666   // array should be of length len.
 667   // Returns true if there are more stats available.
 668   virtual bool copy_allocation_context_stats(const jint* contexts,
 669                                              jlong* totals,
 670                                              jbyte* accuracy,
 671                                              jint len) {
 672     return false;
 673   }
 674 
 675   /////////////// Unit tests ///////////////
 676 
 677   NOT_PRODUCT(static void test_is_in();)
 678 };
 679 
 680 // Class to set and reset the GC cause for a CollectedHeap.
 681 
 682 class GCCauseSetter : StackObj {
 683   CollectedHeap* _heap;
 684   GCCause::Cause _previous_cause;
 685  public:
 686   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 687     assert(SafepointSynchronize::is_at_safepoint(),
 688            "This method manipulates heap state without locking");
 689     _heap = heap;
 690     _previous_cause = _heap->gc_cause();
 691     _heap->set_gc_cause(cause);
 692   }
 693 
 694   ~GCCauseSetter() {
 695     assert(SafepointSynchronize::is_at_safepoint(),
 696           "This method manipulates heap state without locking");
 697     _heap->set_gc_cause(_previous_cause);
 698   }
 699 };
 700 
 701 #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP