1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc_implementation/shenandoah/brooksPointer.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/compile.hpp"
  35 #include "opto/escape.hpp"
  36 #include "opto/phaseX.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/shenandoahSupport.hpp"
  39 
  40 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  41   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  42   _in_worklist(C->comp_arena()),
  43   _next_pidx(0),
  44   _collecting(true),
  45   _verify(false),
  46   _compile(C),
  47   _igvn(igvn),
  48   _node_map(C->comp_arena()) {
  49   // Add unknown java object.
  50   add_java_object(C->top(), PointsToNode::GlobalEscape);
  51   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  52   // Add ConP(#NULL) and ConN(#NULL) nodes.
  53   Node* oop_null = igvn->zerocon(T_OBJECT);
  54   assert(oop_null->_idx < nodes_size(), "should be created already");
  55   add_java_object(oop_null, PointsToNode::NoEscape);
  56   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  57   if (UseCompressedOops) {
  58     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  59     assert(noop_null->_idx < nodes_size(), "should be created already");
  60     map_ideal_node(noop_null, null_obj);
  61   }
  62   _pcmp_neq = NULL; // Should be initialized
  63   _pcmp_eq  = NULL;
  64 }
  65 
  66 bool ConnectionGraph::has_candidates(Compile *C) {
  67   // EA brings benefits only when the code has allocations and/or locks which
  68   // are represented by ideal Macro nodes.
  69   int cnt = C->macro_count();
  70   for (int i = 0; i < cnt; i++) {
  71     Node *n = C->macro_node(i);
  72     if (n->is_Allocate())
  73       return true;
  74     if (n->is_Lock()) {
  75       Node* obj = n->as_Lock()->obj_node()->uncast();
  76       if (!(obj->is_Parm() || obj->is_Con()))
  77         return true;
  78     }
  79     if (n->is_CallStaticJava() &&
  80         n->as_CallStaticJava()->is_boxing_method()) {
  81       return true;
  82     }
  83   }
  84   return false;
  85 }
  86 
  87 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  88   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
  89   ResourceMark rm;
  90 
  91   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  92   // to create space for them in ConnectionGraph::_nodes[].
  93   Node* oop_null = igvn->zerocon(T_OBJECT);
  94   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  95   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  96   // Perform escape analysis
  97   if (congraph->compute_escape()) {
  98     // There are non escaping objects.
  99     C->set_congraph(congraph);
 100   }
 101   // Cleanup.
 102   if (oop_null->outcnt() == 0)
 103     igvn->hash_delete(oop_null);
 104   if (noop_null->outcnt() == 0)
 105     igvn->hash_delete(noop_null);
 106 }
 107 
 108 bool ConnectionGraph::compute_escape() {
 109   Compile* C = _compile;
 110   PhaseGVN* igvn = _igvn;
 111 
 112   // Worklists used by EA.
 113   Unique_Node_List delayed_worklist;
 114   GrowableArray<Node*> alloc_worklist;
 115   GrowableArray<Node*> ptr_cmp_worklist;
 116   GrowableArray<Node*> storestore_worklist;
 117   GrowableArray<PointsToNode*>   ptnodes_worklist;
 118   GrowableArray<JavaObjectNode*> java_objects_worklist;
 119   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 120   GrowableArray<FieldNode*>      oop_fields_worklist;
 121   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 122 
 123   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
 124 
 125   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 126   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 127   // Initialize worklist
 128   if (C->root() != NULL) {
 129     ideal_nodes.push(C->root());
 130   }
 131   // Processed ideal nodes are unique on ideal_nodes list
 132   // but several ideal nodes are mapped to the phantom_obj.
 133   // To avoid duplicated entries on the following worklists
 134   // add the phantom_obj only once to them.
 135   ptnodes_worklist.append(phantom_obj);
 136   java_objects_worklist.append(phantom_obj);
 137   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 138     Node* n = ideal_nodes.at(next);
 139     // Create PointsTo nodes and add them to Connection Graph. Called
 140     // only once per ideal node since ideal_nodes is Unique_Node list.
 141     add_node_to_connection_graph(n, &delayed_worklist);
 142     PointsToNode* ptn = ptnode_adr(n->_idx);
 143     if (ptn != NULL && ptn != phantom_obj) {
 144       ptnodes_worklist.append(ptn);
 145       if (ptn->is_JavaObject()) {
 146         java_objects_worklist.append(ptn->as_JavaObject());
 147         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 148             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 149           // Only allocations and java static calls results are interesting.
 150           non_escaped_worklist.append(ptn->as_JavaObject());
 151         }
 152       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 153         oop_fields_worklist.append(ptn->as_Field());
 154       }
 155     }
 156     if (n->is_MergeMem()) {
 157       // Collect all MergeMem nodes to add memory slices for
 158       // scalar replaceable objects in split_unique_types().
 159       _mergemem_worklist.append(n->as_MergeMem());
 160     } else if (OptimizePtrCompare && n->is_Cmp() &&
 161                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 162       // Collect compare pointers nodes.
 163       ptr_cmp_worklist.append(n);
 164     } else if (n->is_MemBarStoreStore()) {
 165       // Collect all MemBarStoreStore nodes so that depending on the
 166       // escape status of the associated Allocate node some of them
 167       // may be eliminated.
 168       storestore_worklist.append(n);
 169     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 170                (n->req() > MemBarNode::Precedent)) {
 171       record_for_optimizer(n);
 172 #ifdef ASSERT
 173     } else if (n->is_AddP()) {
 174       // Collect address nodes for graph verification.
 175       addp_worklist.append(n);
 176 #endif
 177     }
 178     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 179       Node* m = n->fast_out(i);   // Get user
 180       ideal_nodes.push(m);
 181     }
 182   }
 183   if (non_escaped_worklist.length() == 0) {
 184     _collecting = false;
 185     return false; // Nothing to do.
 186   }
 187   // Add final simple edges to graph.
 188   while(delayed_worklist.size() > 0) {
 189     Node* n = delayed_worklist.pop();
 190     add_final_edges(n);
 191   }
 192   int ptnodes_length = ptnodes_worklist.length();
 193 
 194 #ifdef ASSERT
 195   if (VerifyConnectionGraph) {
 196     // Verify that no new simple edges could be created and all
 197     // local vars has edges.
 198     _verify = true;
 199     for (int next = 0; next < ptnodes_length; ++next) {
 200       PointsToNode* ptn = ptnodes_worklist.at(next);
 201       add_final_edges(ptn->ideal_node());
 202       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 203         ptn->dump();
 204         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 205       }
 206     }
 207     _verify = false;
 208   }
 209 #endif
 210   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 211   // processing, calls to CI to resolve symbols (types, fields, methods)
 212   // referenced in bytecode. During symbol resolution VM may throw
 213   // an exception which CI cleans and converts to compilation failure.
 214   if (C->failing())  return false;
 215 
 216   // 2. Finish Graph construction by propagating references to all
 217   //    java objects through graph.
 218   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 219                                  java_objects_worklist, oop_fields_worklist)) {
 220     // All objects escaped or hit time or iterations limits.
 221     _collecting = false;
 222     return false;
 223   }
 224 
 225   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 226   //    scalar replaceable allocations on alloc_worklist for processing
 227   //    in split_unique_types().
 228   int non_escaped_length = non_escaped_worklist.length();
 229   for (int next = 0; next < non_escaped_length; next++) {
 230     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 231     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 232     Node* n = ptn->ideal_node();
 233     if (n->is_Allocate()) {
 234       n->as_Allocate()->_is_non_escaping = noescape;
 235     }
 236     if (n->is_CallStaticJava()) {
 237       n->as_CallStaticJava()->_is_non_escaping = noescape;
 238     }
 239     if (noescape && ptn->scalar_replaceable()) {
 240       adjust_scalar_replaceable_state(ptn);
 241       if (ptn->scalar_replaceable()) {
 242         alloc_worklist.append(ptn->ideal_node());
 243       }
 244     }
 245   }
 246 
 247 #ifdef ASSERT
 248   if (VerifyConnectionGraph) {
 249     // Verify that graph is complete - no new edges could be added or needed.
 250     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 251                             java_objects_worklist, addp_worklist);
 252   }
 253   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 254   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 255          null_obj->edge_count() == 0 &&
 256          !null_obj->arraycopy_src() &&
 257          !null_obj->arraycopy_dst(), "sanity");
 258 #endif
 259 
 260   _collecting = false;
 261 
 262   } // TracePhase t3("connectionGraph")
 263 
 264   // 4. Optimize ideal graph based on EA information.
 265   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 266   if (has_non_escaping_obj) {
 267     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 268   }
 269 
 270 #ifndef PRODUCT
 271   if (PrintEscapeAnalysis) {
 272     dump(ptnodes_worklist); // Dump ConnectionGraph
 273   }
 274 #endif
 275 
 276   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 277 #ifdef ASSERT
 278   if (VerifyConnectionGraph) {
 279     int alloc_length = alloc_worklist.length();
 280     for (int next = 0; next < alloc_length; ++next) {
 281       Node* n = alloc_worklist.at(next);
 282       PointsToNode* ptn = ptnode_adr(n->_idx);
 283       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 284     }
 285   }
 286 #endif
 287 
 288   // 5. Separate memory graph for scalar replaceable allcations.
 289   if (has_scalar_replaceable_candidates &&
 290       C->AliasLevel() >= 3 && EliminateAllocations) {
 291     // Now use the escape information to create unique types for
 292     // scalar replaceable objects.
 293     split_unique_types(alloc_worklist);
 294     if (C->failing())  return false;
 295     C->print_method(PHASE_AFTER_EA, 2);
 296 
 297 #ifdef ASSERT
 298   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 299     tty->print("=== No allocations eliminated for ");
 300     C->method()->print_short_name();
 301     if(!EliminateAllocations) {
 302       tty->print(" since EliminateAllocations is off ===");
 303     } else if(!has_scalar_replaceable_candidates) {
 304       tty->print(" since there are no scalar replaceable candidates ===");
 305     } else if(C->AliasLevel() < 3) {
 306       tty->print(" since AliasLevel < 3 ===");
 307     }
 308     tty->cr();
 309 #endif
 310   }
 311   return has_non_escaping_obj;
 312 }
 313 
 314 // Utility function for nodes that load an object
 315 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 316   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 317   // ThreadLocal has RawPtr type.
 318   const Type* t = _igvn->type(n);
 319   if (t->make_ptr() != NULL) {
 320     Node* adr = n->in(MemNode::Address);
 321 #ifdef ASSERT
 322     if (!adr->is_AddP()) {
 323       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 324     } else {
 325       assert((ptnode_adr(adr->_idx) == NULL ||
 326               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 327     }
 328 #endif
 329     add_local_var_and_edge(n, PointsToNode::NoEscape,
 330                            adr, delayed_worklist);
 331   }
 332 }
 333 
 334 // Populate Connection Graph with PointsTo nodes and create simple
 335 // connection graph edges.
 336 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 337   assert(!_verify, "this method sould not be called for verification");
 338   PhaseGVN* igvn = _igvn;
 339   uint n_idx = n->_idx;
 340   PointsToNode* n_ptn = ptnode_adr(n_idx);
 341   if (n_ptn != NULL)
 342     return; // No need to redefine PointsTo node during first iteration.
 343 
 344   if (n->is_Call()) {
 345     // Arguments to allocation and locking don't escape.
 346     if (n->is_AbstractLock()) {
 347       // Put Lock and Unlock nodes on IGVN worklist to process them during
 348       // first IGVN optimization when escape information is still available.
 349       record_for_optimizer(n);
 350     } else if (n->is_Allocate()) {
 351       add_call_node(n->as_Call());
 352       record_for_optimizer(n);
 353     } else {
 354       if (n->is_CallStaticJava()) {
 355         const char* name = n->as_CallStaticJava()->_name;
 356         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 357           return; // Skip uncommon traps
 358       }
 359       // Don't mark as processed since call's arguments have to be processed.
 360       delayed_worklist->push(n);
 361       // Check if a call returns an object.
 362       if ((n->as_Call()->returns_pointer() &&
 363            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
 364           (n->is_CallStaticJava() &&
 365            n->as_CallStaticJava()->is_boxing_method())) {
 366         add_call_node(n->as_Call());
 367       }
 368     }
 369     return;
 370   }
 371   // Put this check here to process call arguments since some call nodes
 372   // point to phantom_obj.
 373   if (n_ptn == phantom_obj || n_ptn == null_obj)
 374     return; // Skip predefined nodes.
 375 
 376   int opcode = n->Opcode();
 377   switch (opcode) {
 378     case Op_AddP: {
 379       Node* base = get_addp_base(n);
 380       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 381       // Field nodes are created for all field types. They are used in
 382       // adjust_scalar_replaceable_state() and split_unique_types().
 383       // Note, non-oop fields will have only base edges in Connection
 384       // Graph because such fields are not used for oop loads and stores.
 385       int offset = address_offset(n, igvn);
 386       add_field(n, PointsToNode::NoEscape, offset);
 387       if (ptn_base == NULL) {
 388         delayed_worklist->push(n); // Process it later.
 389       } else {
 390         n_ptn = ptnode_adr(n_idx);
 391         add_base(n_ptn->as_Field(), ptn_base);
 392       }
 393       break;
 394     }
 395     case Op_CastX2P: {
 396       map_ideal_node(n, phantom_obj);
 397       break;
 398     }
 399     case Op_CastPP:
 400     case Op_CheckCastPP:
 401     case Op_EncodeP:
 402     case Op_DecodeN:
 403     case Op_EncodePKlass:
 404     case Op_DecodeNKlass: {
 405       add_local_var_and_edge(n, PointsToNode::NoEscape,
 406                              n->in(1), delayed_worklist);
 407       break;
 408     }
 409     case Op_CMoveP: {
 410       add_local_var(n, PointsToNode::NoEscape);
 411       // Do not add edges during first iteration because some could be
 412       // not defined yet.
 413       delayed_worklist->push(n);
 414       break;
 415     }
 416     case Op_ConP:
 417     case Op_ConN:
 418     case Op_ConNKlass: {
 419       // assume all oop constants globally escape except for null
 420       PointsToNode::EscapeState es;
 421       const Type* t = igvn->type(n);
 422       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 423         es = PointsToNode::NoEscape;
 424       } else {
 425         es = PointsToNode::GlobalEscape;
 426       }
 427       add_java_object(n, es);
 428       break;
 429     }
 430     case Op_CreateEx: {
 431       // assume that all exception objects globally escape
 432       map_ideal_node(n, phantom_obj);
 433       break;
 434     }
 435     case Op_LoadKlass:
 436     case Op_LoadNKlass: {
 437       // Unknown class is loaded
 438       map_ideal_node(n, phantom_obj);
 439       break;
 440     }
 441     case Op_LoadP:
 442     case Op_LoadN:
 443     case Op_LoadPLocked: {
 444       add_objload_to_connection_graph(n, delayed_worklist);
 445       break;
 446     }
 447     case Op_Parm: {
 448       map_ideal_node(n, phantom_obj);
 449       break;
 450     }
 451     case Op_PartialSubtypeCheck: {
 452       // Produces Null or notNull and is used in only in CmpP so
 453       // phantom_obj could be used.
 454       map_ideal_node(n, phantom_obj); // Result is unknown
 455       break;
 456     }
 457     case Op_Phi: {
 458       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 459       // ThreadLocal has RawPtr type.
 460       const Type* t = n->as_Phi()->type();
 461       if (t->make_ptr() != NULL) {
 462         add_local_var(n, PointsToNode::NoEscape);
 463         // Do not add edges during first iteration because some could be
 464         // not defined yet.
 465         delayed_worklist->push(n);
 466       }
 467       break;
 468     }
 469     case Op_Proj: {
 470       // we are only interested in the oop result projection from a call
 471       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 472           n->in(0)->as_Call()->returns_pointer()) {
 473         add_local_var_and_edge(n, PointsToNode::NoEscape,
 474                                n->in(0), delayed_worklist);
 475       }
 476       break;
 477     }
 478     case Op_Rethrow: // Exception object escapes
 479     case Op_Return: {
 480       if (n->req() > TypeFunc::Parms &&
 481           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 482         // Treat Return value as LocalVar with GlobalEscape escape state.
 483         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 484                                n->in(TypeFunc::Parms), delayed_worklist);
 485       }
 486       break;
 487     }
 488     case Op_GetAndSetP:
 489     case Op_GetAndSetN: {
 490       add_objload_to_connection_graph(n, delayed_worklist);
 491       // fallthrough
 492     }
 493     case Op_StoreP:
 494     case Op_StoreN:
 495     case Op_StoreNKlass:
 496     case Op_StorePConditional:
 497     case Op_CompareAndSwapP:
 498     case Op_CompareAndSwapN: {
 499       Node* adr = n->in(MemNode::Address);
 500       const Type *adr_type = igvn->type(adr);
 501       adr_type = adr_type->make_ptr();
 502       if (adr_type == NULL) {
 503         break; // skip dead nodes
 504       }
 505       if (adr_type->isa_oopptr() ||
 506           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 507                         (adr_type == TypeRawPtr::NOTNULL &&
 508                          adr->in(AddPNode::Address)->is_Proj() &&
 509                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 510         delayed_worklist->push(n); // Process it later.
 511 #ifdef ASSERT
 512         assert(adr->is_AddP(), "expecting an AddP");
 513         if (adr_type == TypeRawPtr::NOTNULL) {
 514           // Verify a raw address for a store captured by Initialize node.
 515           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 516           assert(offs != Type::OffsetBot, "offset must be a constant");
 517         }
 518 #endif
 519       } else {
 520         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 521         if (adr->is_BoxLock())
 522           break;
 523         // Stored value escapes in unsafe access.
 524         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 525           // Pointer stores in G1 barriers looks like unsafe access.
 526           // Ignore such stores to be able scalar replace non-escaping
 527           // allocations.
 528           if ((UseG1GC || UseShenandoahGC) && adr->is_AddP()) {
 529             Node* base = get_addp_base(adr);
 530             if (base->Opcode() == Op_LoadP &&
 531                 base->in(MemNode::Address)->is_AddP()) {
 532               adr = base->in(MemNode::Address);
 533               Node* tls = get_addp_base(adr);
 534               if (tls->Opcode() == Op_ThreadLocal) {
 535                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 536                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 537                                      PtrQueue::byte_offset_of_buf())) {
 538                   break; // G1 pre barier previous oop value store.
 539                 }
 540                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 541                                      PtrQueue::byte_offset_of_buf())) {
 542                   break; // G1 post barier card address store.
 543                 }
 544               }
 545             }
 546           }
 547           delayed_worklist->push(n); // Process unsafe access later.
 548           break;
 549         }
 550 #ifdef ASSERT
 551         n->dump(1);
 552         assert(false, "not unsafe or G1 barrier raw StoreP");
 553 #endif
 554       }
 555       break;
 556     }
 557     case Op_AryEq:
 558     case Op_StrComp:
 559     case Op_StrEquals:
 560     case Op_StrIndexOf:
 561     case Op_EncodeISOArray: {
 562       add_local_var(n, PointsToNode::ArgEscape);
 563       delayed_worklist->push(n); // Process it later.
 564       break;
 565     }
 566     case Op_ThreadLocal: {
 567       add_java_object(n, PointsToNode::ArgEscape);
 568       break;
 569     }
 570     case Op_ShenandoahReadBarrier:
 571     case Op_ShenandoahWriteBarrier:
 572       // Barriers 'pass through' its arguments. I.e. what goes in, comes out.
 573       // It doesn't escape.
 574       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahBarrierNode::ValueIn), delayed_worklist);
 575       break;
 576     default:
 577       ; // Do nothing for nodes not related to EA.
 578   }
 579   return;
 580 }
 581 
 582 #ifdef ASSERT
 583 #define ELSE_FAIL(name)                               \
 584       /* Should not be called for not pointer type. */  \
 585       n->dump(1);                                       \
 586       assert(false, name);                              \
 587       break;
 588 #else
 589 #define ELSE_FAIL(name) \
 590       break;
 591 #endif
 592 
 593 // Add final simple edges to graph.
 594 void ConnectionGraph::add_final_edges(Node *n) {
 595   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 596 #ifdef ASSERT
 597   if (_verify && n_ptn->is_JavaObject())
 598     return; // This method does not change graph for JavaObject.
 599 #endif
 600 
 601   if (n->is_Call()) {
 602     process_call_arguments(n->as_Call());
 603     return;
 604   }
 605   assert(n->is_Store() || n->is_LoadStore() ||
 606          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 607          "node should be registered already");
 608   int opcode = n->Opcode();
 609   switch (opcode) {
 610     case Op_AddP: {
 611       Node* base = get_addp_base(n);
 612       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 613       assert(ptn_base != NULL, "field's base should be registered");
 614       add_base(n_ptn->as_Field(), ptn_base);
 615       break;
 616     }
 617     case Op_CastPP:
 618     case Op_CheckCastPP:
 619     case Op_EncodeP:
 620     case Op_DecodeN:
 621     case Op_EncodePKlass:
 622     case Op_DecodeNKlass: {
 623       add_local_var_and_edge(n, PointsToNode::NoEscape,
 624                              n->in(1), NULL);
 625       break;
 626     }
 627     case Op_CMoveP: {
 628       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 629         Node* in = n->in(i);
 630         if (in == NULL)
 631           continue;  // ignore NULL
 632         Node* uncast_in = in->uncast();
 633         if (uncast_in->is_top() || uncast_in == n)
 634           continue;  // ignore top or inputs which go back this node
 635         PointsToNode* ptn = ptnode_adr(in->_idx);
 636         assert(ptn != NULL, "node should be registered");
 637         add_edge(n_ptn, ptn);
 638       }
 639       break;
 640     }
 641     case Op_LoadP:
 642     case Op_LoadN:
 643     case Op_LoadPLocked: {
 644       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 645       // ThreadLocal has RawPtr type.
 646       const Type* t = _igvn->type(n);
 647       if (t->make_ptr() != NULL) {
 648         Node* adr = n->in(MemNode::Address);
 649         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 650         break;
 651       }
 652       ELSE_FAIL("Op_LoadP");
 653     }
 654     case Op_Phi: {
 655       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 656       // ThreadLocal has RawPtr type.
 657       const Type* t = n->as_Phi()->type();
 658       if (t->make_ptr() != NULL) {
 659         for (uint i = 1; i < n->req(); i++) {
 660           Node* in = n->in(i);
 661           if (in == NULL)
 662             continue;  // ignore NULL
 663           Node* uncast_in = in->uncast();
 664           if (uncast_in->is_top() || uncast_in == n)
 665             continue;  // ignore top or inputs which go back this node
 666           PointsToNode* ptn = ptnode_adr(in->_idx);
 667           assert(ptn != NULL, "node should be registered");
 668           add_edge(n_ptn, ptn);
 669         }
 670         break;
 671       }
 672       ELSE_FAIL("Op_Phi");
 673     }
 674     case Op_Proj: {
 675       // we are only interested in the oop result projection from a call
 676       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 677           n->in(0)->as_Call()->returns_pointer()) {
 678         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 679         break;
 680       }
 681       ELSE_FAIL("Op_Proj");
 682     }
 683     case Op_Rethrow: // Exception object escapes
 684     case Op_Return: {
 685       if (n->req() > TypeFunc::Parms &&
 686           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 687         // Treat Return value as LocalVar with GlobalEscape escape state.
 688         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 689                                n->in(TypeFunc::Parms), NULL);
 690         break;
 691       }
 692       ELSE_FAIL("Op_Return");
 693     }
 694     case Op_StoreP:
 695     case Op_StoreN:
 696     case Op_StoreNKlass:
 697     case Op_StorePConditional:
 698     case Op_CompareAndSwapP:
 699     case Op_CompareAndSwapN:
 700     case Op_GetAndSetP:
 701     case Op_GetAndSetN: {
 702       Node* adr = n->in(MemNode::Address);
 703       const Type *adr_type = _igvn->type(adr);
 704       adr_type = adr_type->make_ptr();
 705 #ifdef ASSERT
 706       if (adr_type == NULL) {
 707         n->dump(1);
 708         assert(adr_type != NULL, "dead node should not be on list");
 709         break;
 710       }
 711 #endif
 712       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 713         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 714       }
 715       if (adr_type->isa_oopptr() ||
 716           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 717                         (adr_type == TypeRawPtr::NOTNULL &&
 718                          adr->in(AddPNode::Address)->is_Proj() &&
 719                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 720         // Point Address to Value
 721         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 722         assert(adr_ptn != NULL &&
 723                adr_ptn->as_Field()->is_oop(), "node should be registered");
 724         Node *val = n->in(MemNode::ValueIn);
 725         PointsToNode* ptn = ptnode_adr(val->_idx);
 726         assert(ptn != NULL, "node should be registered");
 727         add_edge(adr_ptn, ptn);
 728         break;
 729       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 730         // Stored value escapes in unsafe access.
 731         Node *val = n->in(MemNode::ValueIn);
 732         PointsToNode* ptn = ptnode_adr(val->_idx);
 733         assert(ptn != NULL, "node should be registered");
 734         set_escape_state(ptn, PointsToNode::GlobalEscape);
 735         // Add edge to object for unsafe access with offset.
 736         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 737         assert(adr_ptn != NULL, "node should be registered");
 738         if (adr_ptn->is_Field()) {
 739           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 740           add_edge(adr_ptn, ptn);
 741         }
 742         break;
 743       }
 744       ELSE_FAIL("Op_StoreP");
 745     }
 746     case Op_AryEq:
 747     case Op_StrComp:
 748     case Op_StrEquals:
 749     case Op_StrIndexOf:
 750     case Op_EncodeISOArray: {
 751       // char[] arrays passed to string intrinsic do not escape but
 752       // they are not scalar replaceable. Adjust escape state for them.
 753       // Start from in(2) edge since in(1) is memory edge.
 754       for (uint i = 2; i < n->req(); i++) {
 755         Node* adr = n->in(i);
 756         const Type* at = _igvn->type(adr);
 757         if (!adr->is_top() && at->isa_ptr()) {
 758           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 759                  at->isa_ptr() != NULL, "expecting a pointer");
 760           if (adr->is_AddP()) {
 761             adr = get_addp_base(adr);
 762           }
 763           PointsToNode* ptn = ptnode_adr(adr->_idx);
 764           assert(ptn != NULL, "node should be registered");
 765           add_edge(n_ptn, ptn);
 766         }
 767       }
 768       break;
 769     }
 770     case Op_ShenandoahReadBarrier:
 771     case Op_ShenandoahWriteBarrier:
 772       // Barriers 'pass through' its arguments. I.e. what goes in, comes out.
 773       // It doesn't escape.
 774       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahBarrierNode::ValueIn), NULL);
 775       break;
 776     default: {
 777       // This method should be called only for EA specific nodes which may
 778       // miss some edges when they were created.
 779 #ifdef ASSERT
 780       n->dump(1);
 781 #endif
 782       guarantee(false, "unknown node");
 783     }
 784   }
 785   return;
 786 }
 787 
 788 void ConnectionGraph::add_call_node(CallNode* call) {
 789   assert(call->returns_pointer(), "only for call which returns pointer");
 790   uint call_idx = call->_idx;
 791   if (call->is_Allocate()) {
 792     Node* k = call->in(AllocateNode::KlassNode);
 793     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 794     assert(kt != NULL, "TypeKlassPtr  required.");
 795     ciKlass* cik = kt->klass();
 796     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 797     bool scalar_replaceable = true;
 798     if (call->is_AllocateArray()) {
 799       if (!cik->is_array_klass()) { // StressReflectiveCode
 800         es = PointsToNode::GlobalEscape;
 801       } else {
 802         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 803         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 804           // Not scalar replaceable if the length is not constant or too big.
 805           scalar_replaceable = false;
 806         }
 807       }
 808     } else {  // Allocate instance
 809       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 810           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 811          !cik->is_instance_klass() || // StressReflectiveCode
 812           cik->as_instance_klass()->has_finalizer()) {
 813         es = PointsToNode::GlobalEscape;
 814       }
 815     }
 816     add_java_object(call, es);
 817     PointsToNode* ptn = ptnode_adr(call_idx);
 818     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 819       ptn->set_scalar_replaceable(false);
 820     }
 821   } else if (call->is_CallStaticJava()) {
 822     // Call nodes could be different types:
 823     //
 824     // 1. CallDynamicJavaNode (what happened during call is unknown):
 825     //
 826     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 827     //
 828     //    - all oop arguments are escaping globally;
 829     //
 830     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 831     //
 832     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 833     //
 834     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 835     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 836     //      during call is returned;
 837     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 838     //      which are returned and does not escape during call;
 839     //
 840     //    - oop arguments escaping status is defined by bytecode analysis;
 841     //
 842     // For a static call, we know exactly what method is being called.
 843     // Use bytecode estimator to record whether the call's return value escapes.
 844     ciMethod* meth = call->as_CallJava()->method();
 845     if (meth == NULL) {
 846       const char* name = call->as_CallStaticJava()->_name;
 847       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 848       // Returns a newly allocated unescaped object.
 849       add_java_object(call, PointsToNode::NoEscape);
 850       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 851     } else if (meth->is_boxing_method()) {
 852       // Returns boxing object
 853       PointsToNode::EscapeState es;
 854       vmIntrinsics::ID intr = meth->intrinsic_id();
 855       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 856         // It does not escape if object is always allocated.
 857         es = PointsToNode::NoEscape;
 858       } else {
 859         // It escapes globally if object could be loaded from cache.
 860         es = PointsToNode::GlobalEscape;
 861       }
 862       add_java_object(call, es);
 863     } else {
 864       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 865       call_analyzer->copy_dependencies(_compile->dependencies());
 866       if (call_analyzer->is_return_allocated()) {
 867         // Returns a newly allocated unescaped object, simply
 868         // update dependency information.
 869         // Mark it as NoEscape so that objects referenced by
 870         // it's fields will be marked as NoEscape at least.
 871         add_java_object(call, PointsToNode::NoEscape);
 872         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 873       } else {
 874         // Determine whether any arguments are returned.
 875         const TypeTuple* d = call->tf()->domain();
 876         bool ret_arg = false;
 877         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 878           if (d->field_at(i)->isa_ptr() != NULL &&
 879               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 880             ret_arg = true;
 881             break;
 882           }
 883         }
 884         if (ret_arg) {
 885           add_local_var(call, PointsToNode::ArgEscape);
 886         } else {
 887           // Returns unknown object.
 888           map_ideal_node(call, phantom_obj);
 889         }
 890       }
 891     }
 892   } else {
 893     // An other type of call, assume the worst case:
 894     // returned value is unknown and globally escapes.
 895     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 896     map_ideal_node(call, phantom_obj);
 897   }
 898 }
 899 
 900 void ConnectionGraph::process_call_arguments(CallNode *call) {
 901     bool is_arraycopy = false;
 902     switch (call->Opcode()) {
 903 #ifdef ASSERT
 904     case Op_Allocate:
 905     case Op_AllocateArray:
 906     case Op_Lock:
 907     case Op_Unlock:
 908       assert(false, "should be done already");
 909       break;
 910 #endif
 911     case Op_CallLeafNoFP:
 912       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
 913                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
 914       // fall through
 915     case Op_CallLeaf: {
 916       // Stub calls, objects do not escape but they are not scale replaceable.
 917       // Adjust escape state for outgoing arguments.
 918       const TypeTuple * d = call->tf()->domain();
 919       bool src_has_oops = false;
 920       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 921         const Type* at = d->field_at(i);
 922         Node *arg = call->in(i);
 923         const Type *aat = _igvn->type(arg);
 924         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 925           continue;
 926         if (arg->is_AddP()) {
 927           //
 928           // The inline_native_clone() case when the arraycopy stub is called
 929           // after the allocation before Initialize and CheckCastPP nodes.
 930           // Or normal arraycopy for object arrays case.
 931           //
 932           // Set AddP's base (Allocate) as not scalar replaceable since
 933           // pointer to the base (with offset) is passed as argument.
 934           //
 935           arg = get_addp_base(arg);
 936         }
 937         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 938         assert(arg_ptn != NULL, "should be registered");
 939         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 940         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 941           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 942                  aat->isa_ptr() != NULL, "expecting an Ptr");
 943           bool arg_has_oops = aat->isa_oopptr() &&
 944                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 945                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 946           if (i == TypeFunc::Parms) {
 947             src_has_oops = arg_has_oops;
 948           }
 949           //
 950           // src or dst could be j.l.Object when other is basic type array:
 951           //
 952           //   arraycopy(char[],0,Object*,0,size);
 953           //   arraycopy(Object*,0,char[],0,size);
 954           //
 955           // Don't add edges in such cases.
 956           //
 957           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 958                                        arg_has_oops && (i > TypeFunc::Parms);
 959 #ifdef ASSERT
 960           if (!(is_arraycopy ||
 961                 (call->as_CallLeaf()->_name != NULL &&
 962                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 963                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 964                   strcmp(call->as_CallLeaf()->_name, "shenandoah_clone_barrier")  == 0 ||
 965                   strcmp(call->as_CallLeaf()->_name, "shenandoah_cas_obj")  == 0 ||
 966                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 967                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 968                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 969                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 970                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 971                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 972                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
 973                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
 974                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
 975                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
 976                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
 977                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
 978                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
 979                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
 980                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
 981                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0)
 982                  ))) {
 983             call->dump();
 984             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
 985           }
 986 #endif
 987           // Always process arraycopy's destination object since
 988           // we need to add all possible edges to references in
 989           // source object.
 990           if (arg_esc >= PointsToNode::ArgEscape &&
 991               !arg_is_arraycopy_dest) {
 992             continue;
 993           }
 994           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 995           if (arg_is_arraycopy_dest) {
 996             Node* src = call->in(TypeFunc::Parms);
 997             if (src->is_AddP()) {
 998               src = get_addp_base(src);
 999             }
1000             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1001             assert(src_ptn != NULL, "should be registered");
1002             if (arg_ptn != src_ptn) {
1003               // Special arraycopy edge:
1004               // A destination object's field can't have the source object
1005               // as base since objects escape states are not related.
1006               // Only escape state of destination object's fields affects
1007               // escape state of fields in source object.
1008               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
1009             }
1010           }
1011         }
1012       }
1013       break;
1014     }
1015     case Op_CallStaticJava: {
1016       // For a static call, we know exactly what method is being called.
1017       // Use bytecode estimator to record the call's escape affects
1018 #ifdef ASSERT
1019       const char* name = call->as_CallStaticJava()->_name;
1020       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1021 #endif
1022       ciMethod* meth = call->as_CallJava()->method();
1023       if ((meth != NULL) && meth->is_boxing_method()) {
1024         break; // Boxing methods do not modify any oops.
1025       }
1026       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1027       // fall-through if not a Java method or no analyzer information
1028       if (call_analyzer != NULL) {
1029         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1030         const TypeTuple* d = call->tf()->domain();
1031         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1032           const Type* at = d->field_at(i);
1033           int k = i - TypeFunc::Parms;
1034           Node* arg = call->in(i);
1035           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1036           if (at->isa_ptr() != NULL &&
1037               call_analyzer->is_arg_returned(k)) {
1038             // The call returns arguments.
1039             if (call_ptn != NULL) { // Is call's result used?
1040               assert(call_ptn->is_LocalVar(), "node should be registered");
1041               assert(arg_ptn != NULL, "node should be registered");
1042               add_edge(call_ptn, arg_ptn);
1043             }
1044           }
1045           if (at->isa_oopptr() != NULL &&
1046               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1047             if (!call_analyzer->is_arg_stack(k)) {
1048               // The argument global escapes
1049               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1050             } else {
1051               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1052               if (!call_analyzer->is_arg_local(k)) {
1053                 // The argument itself doesn't escape, but any fields might
1054                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1055               }
1056             }
1057           }
1058         }
1059         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1060           // The call returns arguments.
1061           assert(call_ptn->edge_count() > 0, "sanity");
1062           if (!call_analyzer->is_return_local()) {
1063             // Returns also unknown object.
1064             add_edge(call_ptn, phantom_obj);
1065           }
1066         }
1067         break;
1068       }
1069     }
1070     default: {
1071       // Fall-through here if not a Java method or no analyzer information
1072       // or some other type of call, assume the worst case: all arguments
1073       // globally escape.
1074       const TypeTuple* d = call->tf()->domain();
1075       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1076         const Type* at = d->field_at(i);
1077         if (at->isa_oopptr() != NULL) {
1078           Node* arg = call->in(i);
1079           if (arg->is_AddP()) {
1080             arg = get_addp_base(arg);
1081           }
1082           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1083           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1084         }
1085       }
1086     }
1087   }
1088 }
1089 
1090 
1091 // Finish Graph construction.
1092 bool ConnectionGraph::complete_connection_graph(
1093                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1094                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1095                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1096                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1097   // Normally only 1-3 passes needed to build Connection Graph depending
1098   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1099   // Set limit to 20 to catch situation when something did go wrong and
1100   // bailout Escape Analysis.
1101   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1102 #define CG_BUILD_ITER_LIMIT 20
1103 
1104   // Propagate GlobalEscape and ArgEscape escape states and check that
1105   // we still have non-escaping objects. The method pushs on _worklist
1106   // Field nodes which reference phantom_object.
1107   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1108     return false; // Nothing to do.
1109   }
1110   // Now propagate references to all JavaObject nodes.
1111   int java_objects_length = java_objects_worklist.length();
1112   elapsedTimer time;
1113   bool timeout = false;
1114   int new_edges = 1;
1115   int iterations = 0;
1116   do {
1117     while ((new_edges > 0) &&
1118            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1119       double start_time = time.seconds();
1120       time.start();
1121       new_edges = 0;
1122       // Propagate references to phantom_object for nodes pushed on _worklist
1123       // by find_non_escaped_objects() and find_field_value().
1124       new_edges += add_java_object_edges(phantom_obj, false);
1125       for (int next = 0; next < java_objects_length; ++next) {
1126         JavaObjectNode* ptn = java_objects_worklist.at(next);
1127         new_edges += add_java_object_edges(ptn, true);
1128 
1129 #define SAMPLE_SIZE 4
1130         if ((next % SAMPLE_SIZE) == 0) {
1131           // Each 4 iterations calculate how much time it will take
1132           // to complete graph construction.
1133           time.stop();
1134           // Poll for requests from shutdown mechanism to quiesce compiler
1135           // because Connection graph construction may take long time.
1136           CompileBroker::maybe_block();
1137           double stop_time = time.seconds();
1138           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1139           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1140           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1141             timeout = true;
1142             break; // Timeout
1143           }
1144           start_time = stop_time;
1145           time.start();
1146         }
1147 #undef SAMPLE_SIZE
1148 
1149       }
1150       if (timeout) break;
1151       if (new_edges > 0) {
1152         // Update escape states on each iteration if graph was updated.
1153         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1154           return false; // Nothing to do.
1155         }
1156       }
1157       time.stop();
1158       if (time.seconds() >= EscapeAnalysisTimeout) {
1159         timeout = true;
1160         break;
1161       }
1162     }
1163     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1164       time.start();
1165       // Find fields which have unknown value.
1166       int fields_length = oop_fields_worklist.length();
1167       for (int next = 0; next < fields_length; next++) {
1168         FieldNode* field = oop_fields_worklist.at(next);
1169         if (field->edge_count() == 0) {
1170           new_edges += find_field_value(field);
1171           // This code may added new edges to phantom_object.
1172           // Need an other cycle to propagate references to phantom_object.
1173         }
1174       }
1175       time.stop();
1176       if (time.seconds() >= EscapeAnalysisTimeout) {
1177         timeout = true;
1178         break;
1179       }
1180     } else {
1181       new_edges = 0; // Bailout
1182     }
1183   } while (new_edges > 0);
1184 
1185   // Bailout if passed limits.
1186   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1187     Compile* C = _compile;
1188     if (C->log() != NULL) {
1189       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1190       C->log()->text("%s", timeout ? "time" : "iterations");
1191       C->log()->end_elem(" limit'");
1192     }
1193     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1194            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1195     // Possible infinite build_connection_graph loop,
1196     // bailout (no changes to ideal graph were made).
1197     return false;
1198   }
1199 #ifdef ASSERT
1200   if (Verbose && PrintEscapeAnalysis) {
1201     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1202                   iterations, nodes_size(), ptnodes_worklist.length());
1203   }
1204 #endif
1205 
1206 #undef CG_BUILD_ITER_LIMIT
1207 
1208   // Find fields initialized by NULL for non-escaping Allocations.
1209   int non_escaped_length = non_escaped_worklist.length();
1210   for (int next = 0; next < non_escaped_length; next++) {
1211     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1212     PointsToNode::EscapeState es = ptn->escape_state();
1213     assert(es <= PointsToNode::ArgEscape, "sanity");
1214     if (es == PointsToNode::NoEscape) {
1215       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1216         // Adding references to NULL object does not change escape states
1217         // since it does not escape. Also no fields are added to NULL object.
1218         add_java_object_edges(null_obj, false);
1219       }
1220     }
1221     Node* n = ptn->ideal_node();
1222     if (n->is_Allocate()) {
1223       // The object allocated by this Allocate node will never be
1224       // seen by an other thread. Mark it so that when it is
1225       // expanded no MemBarStoreStore is added.
1226       InitializeNode* ini = n->as_Allocate()->initialization();
1227       if (ini != NULL)
1228         ini->set_does_not_escape();
1229     }
1230   }
1231   return true; // Finished graph construction.
1232 }
1233 
1234 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1235 // and check that we still have non-escaping java objects.
1236 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1237                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1238   GrowableArray<PointsToNode*> escape_worklist;
1239   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1240   int ptnodes_length = ptnodes_worklist.length();
1241   for (int next = 0; next < ptnodes_length; ++next) {
1242     PointsToNode* ptn = ptnodes_worklist.at(next);
1243     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1244         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1245       escape_worklist.push(ptn);
1246     }
1247   }
1248   // Set escape states to referenced nodes (edges list).
1249   while (escape_worklist.length() > 0) {
1250     PointsToNode* ptn = escape_worklist.pop();
1251     PointsToNode::EscapeState es  = ptn->escape_state();
1252     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1253     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1254         es >= PointsToNode::ArgEscape) {
1255       // GlobalEscape or ArgEscape state of field means it has unknown value.
1256       if (add_edge(ptn, phantom_obj)) {
1257         // New edge was added
1258         add_field_uses_to_worklist(ptn->as_Field());
1259       }
1260     }
1261     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1262       PointsToNode* e = i.get();
1263       if (e->is_Arraycopy()) {
1264         assert(ptn->arraycopy_dst(), "sanity");
1265         // Propagate only fields escape state through arraycopy edge.
1266         if (e->fields_escape_state() < field_es) {
1267           set_fields_escape_state(e, field_es);
1268           escape_worklist.push(e);
1269         }
1270       } else if (es >= field_es) {
1271         // fields_escape_state is also set to 'es' if it is less than 'es'.
1272         if (e->escape_state() < es) {
1273           set_escape_state(e, es);
1274           escape_worklist.push(e);
1275         }
1276       } else {
1277         // Propagate field escape state.
1278         bool es_changed = false;
1279         if (e->fields_escape_state() < field_es) {
1280           set_fields_escape_state(e, field_es);
1281           es_changed = true;
1282         }
1283         if ((e->escape_state() < field_es) &&
1284             e->is_Field() && ptn->is_JavaObject() &&
1285             e->as_Field()->is_oop()) {
1286           // Change escape state of referenced fileds.
1287           set_escape_state(e, field_es);
1288           es_changed = true;;
1289         } else if (e->escape_state() < es) {
1290           set_escape_state(e, es);
1291           es_changed = true;;
1292         }
1293         if (es_changed) {
1294           escape_worklist.push(e);
1295         }
1296       }
1297     }
1298   }
1299   // Remove escaped objects from non_escaped list.
1300   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1301     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1302     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1303       non_escaped_worklist.delete_at(next);
1304     }
1305     if (ptn->escape_state() == PointsToNode::NoEscape) {
1306       // Find fields in non-escaped allocations which have unknown value.
1307       find_init_values(ptn, phantom_obj, NULL);
1308     }
1309   }
1310   return (non_escaped_worklist.length() > 0);
1311 }
1312 
1313 // Add all references to JavaObject node by walking over all uses.
1314 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1315   int new_edges = 0;
1316   if (populate_worklist) {
1317     // Populate _worklist by uses of jobj's uses.
1318     for (UseIterator i(jobj); i.has_next(); i.next()) {
1319       PointsToNode* use = i.get();
1320       if (use->is_Arraycopy())
1321         continue;
1322       add_uses_to_worklist(use);
1323       if (use->is_Field() && use->as_Field()->is_oop()) {
1324         // Put on worklist all field's uses (loads) and
1325         // related field nodes (same base and offset).
1326         add_field_uses_to_worklist(use->as_Field());
1327       }
1328     }
1329   }
1330   for (int l = 0; l < _worklist.length(); l++) {
1331     PointsToNode* use = _worklist.at(l);
1332     if (PointsToNode::is_base_use(use)) {
1333       // Add reference from jobj to field and from field to jobj (field's base).
1334       use = PointsToNode::get_use_node(use)->as_Field();
1335       if (add_base(use->as_Field(), jobj)) {
1336         new_edges++;
1337       }
1338       continue;
1339     }
1340     assert(!use->is_JavaObject(), "sanity");
1341     if (use->is_Arraycopy()) {
1342       if (jobj == null_obj) // NULL object does not have field edges
1343         continue;
1344       // Added edge from Arraycopy node to arraycopy's source java object
1345       if (add_edge(use, jobj)) {
1346         jobj->set_arraycopy_src();
1347         new_edges++;
1348       }
1349       // and stop here.
1350       continue;
1351     }
1352     if (!add_edge(use, jobj))
1353       continue; // No new edge added, there was such edge already.
1354     new_edges++;
1355     if (use->is_LocalVar()) {
1356       add_uses_to_worklist(use);
1357       if (use->arraycopy_dst()) {
1358         for (EdgeIterator i(use); i.has_next(); i.next()) {
1359           PointsToNode* e = i.get();
1360           if (e->is_Arraycopy()) {
1361             if (jobj == null_obj) // NULL object does not have field edges
1362               continue;
1363             // Add edge from arraycopy's destination java object to Arraycopy node.
1364             if (add_edge(jobj, e)) {
1365               new_edges++;
1366               jobj->set_arraycopy_dst();
1367             }
1368           }
1369         }
1370       }
1371     } else {
1372       // Added new edge to stored in field values.
1373       // Put on worklist all field's uses (loads) and
1374       // related field nodes (same base and offset).
1375       add_field_uses_to_worklist(use->as_Field());
1376     }
1377   }
1378   _worklist.clear();
1379   _in_worklist.Reset();
1380   return new_edges;
1381 }
1382 
1383 // Put on worklist all related field nodes.
1384 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1385   assert(field->is_oop(), "sanity");
1386   int offset = field->offset();
1387   add_uses_to_worklist(field);
1388   // Loop over all bases of this field and push on worklist Field nodes
1389   // with the same offset and base (since they may reference the same field).
1390   for (BaseIterator i(field); i.has_next(); i.next()) {
1391     PointsToNode* base = i.get();
1392     add_fields_to_worklist(field, base);
1393     // Check if the base was source object of arraycopy and go over arraycopy's
1394     // destination objects since values stored to a field of source object are
1395     // accessable by uses (loads) of fields of destination objects.
1396     if (base->arraycopy_src()) {
1397       for (UseIterator j(base); j.has_next(); j.next()) {
1398         PointsToNode* arycp = j.get();
1399         if (arycp->is_Arraycopy()) {
1400           for (UseIterator k(arycp); k.has_next(); k.next()) {
1401             PointsToNode* abase = k.get();
1402             if (abase->arraycopy_dst() && abase != base) {
1403               // Look for the same arracopy reference.
1404               add_fields_to_worklist(field, abase);
1405             }
1406           }
1407         }
1408       }
1409     }
1410   }
1411 }
1412 
1413 // Put on worklist all related field nodes.
1414 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1415   int offset = field->offset();
1416   if (base->is_LocalVar()) {
1417     for (UseIterator j(base); j.has_next(); j.next()) {
1418       PointsToNode* f = j.get();
1419       if (PointsToNode::is_base_use(f)) { // Field
1420         f = PointsToNode::get_use_node(f);
1421         if (f == field || !f->as_Field()->is_oop())
1422           continue;
1423         int offs = f->as_Field()->offset();
1424         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1425           add_to_worklist(f);
1426         }
1427       }
1428     }
1429   } else {
1430     assert(base->is_JavaObject(), "sanity");
1431     if (// Skip phantom_object since it is only used to indicate that
1432         // this field's content globally escapes.
1433         (base != phantom_obj) &&
1434         // NULL object node does not have fields.
1435         (base != null_obj)) {
1436       for (EdgeIterator i(base); i.has_next(); i.next()) {
1437         PointsToNode* f = i.get();
1438         // Skip arraycopy edge since store to destination object field
1439         // does not update value in source object field.
1440         if (f->is_Arraycopy()) {
1441           assert(base->arraycopy_dst(), "sanity");
1442           continue;
1443         }
1444         if (f == field || !f->as_Field()->is_oop())
1445           continue;
1446         int offs = f->as_Field()->offset();
1447         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1448           add_to_worklist(f);
1449         }
1450       }
1451     }
1452   }
1453 }
1454 
1455 // Find fields which have unknown value.
1456 int ConnectionGraph::find_field_value(FieldNode* field) {
1457   // Escaped fields should have init value already.
1458   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1459   int new_edges = 0;
1460   for (BaseIterator i(field); i.has_next(); i.next()) {
1461     PointsToNode* base = i.get();
1462     if (base->is_JavaObject()) {
1463       // Skip Allocate's fields which will be processed later.
1464       if (base->ideal_node()->is_Allocate())
1465         return 0;
1466       assert(base == null_obj, "only NULL ptr base expected here");
1467     }
1468   }
1469   if (add_edge(field, phantom_obj)) {
1470     // New edge was added
1471     new_edges++;
1472     add_field_uses_to_worklist(field);
1473   }
1474   return new_edges;
1475 }
1476 
1477 // Find fields initializing values for allocations.
1478 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1479   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1480   int new_edges = 0;
1481   Node* alloc = pta->ideal_node();
1482   if (init_val == phantom_obj) {
1483     // Do nothing for Allocate nodes since its fields values are "known".
1484     if (alloc->is_Allocate())
1485       return 0;
1486     assert(alloc->as_CallStaticJava(), "sanity");
1487 #ifdef ASSERT
1488     if (alloc->as_CallStaticJava()->method() == NULL) {
1489       const char* name = alloc->as_CallStaticJava()->_name;
1490       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1491     }
1492 #endif
1493     // Non-escaped allocation returned from Java or runtime call have
1494     // unknown values in fields.
1495     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1496       PointsToNode* field = i.get();
1497       if (field->is_Field() && field->as_Field()->is_oop()) {
1498         if (add_edge(field, phantom_obj)) {
1499           // New edge was added
1500           new_edges++;
1501           add_field_uses_to_worklist(field->as_Field());
1502         }
1503       }
1504     }
1505     return new_edges;
1506   }
1507   assert(init_val == null_obj, "sanity");
1508   // Do nothing for Call nodes since its fields values are unknown.
1509   if (!alloc->is_Allocate())
1510     return 0;
1511 
1512   InitializeNode* ini = alloc->as_Allocate()->initialization();
1513   Compile* C = _compile;
1514   bool visited_bottom_offset = false;
1515   GrowableArray<int> offsets_worklist;
1516 
1517   // Check if an oop field's initializing value is recorded and add
1518   // a corresponding NULL if field's value if it is not recorded.
1519   // Connection Graph does not record a default initialization by NULL
1520   // captured by Initialize node.
1521   //
1522   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1523     PointsToNode* field = i.get(); // Field (AddP)
1524     if (!field->is_Field() || !field->as_Field()->is_oop())
1525       continue; // Not oop field
1526     int offset = field->as_Field()->offset();
1527     if (offset == Type::OffsetBot) {
1528       if (!visited_bottom_offset) {
1529         // OffsetBot is used to reference array's element,
1530         // always add reference to NULL to all Field nodes since we don't
1531         // known which element is referenced.
1532         if (add_edge(field, null_obj)) {
1533           // New edge was added
1534           new_edges++;
1535           add_field_uses_to_worklist(field->as_Field());
1536           visited_bottom_offset = true;
1537         }
1538       }
1539     } else {
1540       // Check only oop fields.
1541       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1542       if (adr_type->isa_rawptr()) {
1543 #ifdef ASSERT
1544         // Raw pointers are used for initializing stores so skip it
1545         // since it should be recorded already
1546         Node* base = get_addp_base(field->ideal_node());
1547         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1548                (base->in(0) == alloc),"unexpected pointer type");
1549 #endif
1550         continue;
1551       }
1552       if (!offsets_worklist.contains(offset)) {
1553         offsets_worklist.append(offset);
1554         Node* value = NULL;
1555         if (ini != NULL) {
1556           // StoreP::memory_type() == T_ADDRESS
1557           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1558           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1559           // Make sure initializing store has the same type as this AddP.
1560           // This AddP may reference non existing field because it is on a
1561           // dead branch of bimorphic call which is not eliminated yet.
1562           if (store != NULL && store->is_Store() &&
1563               store->as_Store()->memory_type() == ft) {
1564             value = store->in(MemNode::ValueIn);
1565 #ifdef ASSERT
1566             if (VerifyConnectionGraph) {
1567               // Verify that AddP already points to all objects the value points to.
1568               PointsToNode* val = ptnode_adr(value->_idx);
1569               assert((val != NULL), "should be processed already");
1570               PointsToNode* missed_obj = NULL;
1571               if (val->is_JavaObject()) {
1572                 if (!field->points_to(val->as_JavaObject())) {
1573                   missed_obj = val;
1574                 }
1575               } else {
1576                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1577                   tty->print_cr("----------init store has invalid value -----");
1578                   store->dump();
1579                   val->dump();
1580                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1581                 }
1582                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1583                   PointsToNode* obj = j.get();
1584                   if (obj->is_JavaObject()) {
1585                     if (!field->points_to(obj->as_JavaObject())) {
1586                       missed_obj = obj;
1587                       break;
1588                     }
1589                   }
1590                 }
1591               }
1592               if (missed_obj != NULL) {
1593                 tty->print_cr("----------field---------------------------------");
1594                 field->dump();
1595                 tty->print_cr("----------missed referernce to object-----------");
1596                 missed_obj->dump();
1597                 tty->print_cr("----------object referernced by init store -----");
1598                 store->dump();
1599                 val->dump();
1600                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1601               }
1602             }
1603 #endif
1604           } else {
1605             // There could be initializing stores which follow allocation.
1606             // For example, a volatile field store is not collected
1607             // by Initialize node.
1608             //
1609             // Need to check for dependent loads to separate such stores from
1610             // stores which follow loads. For now, add initial value NULL so
1611             // that compare pointers optimization works correctly.
1612           }
1613         }
1614         if (value == NULL) {
1615           // A field's initializing value was not recorded. Add NULL.
1616           if (add_edge(field, null_obj)) {
1617             // New edge was added
1618             new_edges++;
1619             add_field_uses_to_worklist(field->as_Field());
1620           }
1621         }
1622       }
1623     }
1624   }
1625   return new_edges;
1626 }
1627 
1628 // Adjust scalar_replaceable state after Connection Graph is built.
1629 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1630   // Search for non-escaping objects which are not scalar replaceable
1631   // and mark them to propagate the state to referenced objects.
1632 
1633   // 1. An object is not scalar replaceable if the field into which it is
1634   // stored has unknown offset (stored into unknown element of an array).
1635   //
1636   for (UseIterator i(jobj); i.has_next(); i.next()) {
1637     PointsToNode* use = i.get();
1638     assert(!use->is_Arraycopy(), "sanity");
1639     if (use->is_Field()) {
1640       FieldNode* field = use->as_Field();
1641       assert(field->is_oop() && field->scalar_replaceable() &&
1642              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
1643       if (field->offset() == Type::OffsetBot) {
1644         jobj->set_scalar_replaceable(false);
1645         return;
1646       }
1647       // 2. An object is not scalar replaceable if the field into which it is
1648       // stored has multiple bases one of which is null.
1649       if (field->base_count() > 1) {
1650         for (BaseIterator i(field); i.has_next(); i.next()) {
1651           PointsToNode* base = i.get();
1652           if (base == null_obj) {
1653             jobj->set_scalar_replaceable(false);
1654             return;
1655           }
1656         }
1657       }
1658     }
1659     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1660     // 3. An object is not scalar replaceable if it is merged with other objects.
1661     for (EdgeIterator j(use); j.has_next(); j.next()) {
1662       PointsToNode* ptn = j.get();
1663       if (ptn->is_JavaObject() && ptn != jobj) {
1664         // Mark all objects.
1665         jobj->set_scalar_replaceable(false);
1666          ptn->set_scalar_replaceable(false);
1667       }
1668     }
1669     if (!jobj->scalar_replaceable()) {
1670       return;
1671     }
1672   }
1673 
1674   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1675     // Non-escaping object node should point only to field nodes.
1676     FieldNode* field = j.get()->as_Field();
1677     int offset = field->as_Field()->offset();
1678 
1679     // 4. An object is not scalar replaceable if it has a field with unknown
1680     // offset (array's element is accessed in loop).
1681     if (offset == Type::OffsetBot) {
1682       jobj->set_scalar_replaceable(false);
1683       return;
1684     }
1685     // 5. Currently an object is not scalar replaceable if a LoadStore node
1686     // access its field since the field value is unknown after it.
1687     //
1688     Node* n = field->ideal_node();
1689     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1690       if (n->fast_out(i)->is_LoadStore()) {
1691         jobj->set_scalar_replaceable(false);
1692         return;
1693       }
1694     }
1695 
1696     // 6. Or the address may point to more then one object. This may produce
1697     // the false positive result (set not scalar replaceable)
1698     // since the flow-insensitive escape analysis can't separate
1699     // the case when stores overwrite the field's value from the case
1700     // when stores happened on different control branches.
1701     //
1702     // Note: it will disable scalar replacement in some cases:
1703     //
1704     //    Point p[] = new Point[1];
1705     //    p[0] = new Point(); // Will be not scalar replaced
1706     //
1707     // but it will save us from incorrect optimizations in next cases:
1708     //
1709     //    Point p[] = new Point[1];
1710     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1711     //
1712     if (field->base_count() > 1) {
1713       for (BaseIterator i(field); i.has_next(); i.next()) {
1714         PointsToNode* base = i.get();
1715         // Don't take into account LocalVar nodes which
1716         // may point to only one object which should be also
1717         // this field's base by now.
1718         if (base->is_JavaObject() && base != jobj) {
1719           // Mark all bases.
1720           jobj->set_scalar_replaceable(false);
1721           base->set_scalar_replaceable(false);
1722         }
1723       }
1724     }
1725   }
1726 }
1727 
1728 #ifdef ASSERT
1729 void ConnectionGraph::verify_connection_graph(
1730                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1731                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1732                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1733                          GrowableArray<Node*>& addp_worklist) {
1734   // Verify that graph is complete - no new edges could be added.
1735   int java_objects_length = java_objects_worklist.length();
1736   int non_escaped_length  = non_escaped_worklist.length();
1737   int new_edges = 0;
1738   for (int next = 0; next < java_objects_length; ++next) {
1739     JavaObjectNode* ptn = java_objects_worklist.at(next);
1740     new_edges += add_java_object_edges(ptn, true);
1741   }
1742   assert(new_edges == 0, "graph was not complete");
1743   // Verify that escape state is final.
1744   int length = non_escaped_worklist.length();
1745   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1746   assert((non_escaped_length == non_escaped_worklist.length()) &&
1747          (non_escaped_length == length) &&
1748          (_worklist.length() == 0), "escape state was not final");
1749 
1750   // Verify fields information.
1751   int addp_length = addp_worklist.length();
1752   for (int next = 0; next < addp_length; ++next ) {
1753     Node* n = addp_worklist.at(next);
1754     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1755     if (field->is_oop()) {
1756       // Verify that field has all bases
1757       Node* base = get_addp_base(n);
1758       PointsToNode* ptn = ptnode_adr(base->_idx);
1759       if (ptn->is_JavaObject()) {
1760         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1761       } else {
1762         assert(ptn->is_LocalVar(), "sanity");
1763         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1764           PointsToNode* e = i.get();
1765           if (e->is_JavaObject()) {
1766             assert(field->has_base(e->as_JavaObject()), "sanity");
1767           }
1768         }
1769       }
1770       // Verify that all fields have initializing values.
1771       if (field->edge_count() == 0) {
1772         tty->print_cr("----------field does not have references----------");
1773         field->dump();
1774         for (BaseIterator i(field); i.has_next(); i.next()) {
1775           PointsToNode* base = i.get();
1776           tty->print_cr("----------field has next base---------------------");
1777           base->dump();
1778           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1779             tty->print_cr("----------base has fields-------------------------");
1780             for (EdgeIterator j(base); j.has_next(); j.next()) {
1781               j.get()->dump();
1782             }
1783             tty->print_cr("----------base has references---------------------");
1784             for (UseIterator j(base); j.has_next(); j.next()) {
1785               j.get()->dump();
1786             }
1787           }
1788         }
1789         for (UseIterator i(field); i.has_next(); i.next()) {
1790           i.get()->dump();
1791         }
1792         assert(field->edge_count() > 0, "sanity");
1793       }
1794     }
1795   }
1796 }
1797 #endif
1798 
1799 // Optimize ideal graph.
1800 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1801                                            GrowableArray<Node*>& storestore_worklist) {
1802   Compile* C = _compile;
1803   PhaseIterGVN* igvn = _igvn;
1804   if (EliminateLocks) {
1805     // Mark locks before changing ideal graph.
1806     int cnt = C->macro_count();
1807     for( int i=0; i < cnt; i++ ) {
1808       Node *n = C->macro_node(i);
1809       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1810         AbstractLockNode* alock = n->as_AbstractLock();
1811         if (!alock->is_non_esc_obj()) {
1812           if (not_global_escape(alock->obj_node())) {
1813             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1814             // The lock could be marked eliminated by lock coarsening
1815             // code during first IGVN before EA. Replace coarsened flag
1816             // to eliminate all associated locks/unlocks.
1817 #ifdef ASSERT
1818             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1819 #endif
1820             alock->set_non_esc_obj();
1821           }
1822         }
1823       }
1824     }
1825   }
1826 
1827   if (OptimizePtrCompare) {
1828     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1829     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1830     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1831     // Optimize objects compare.
1832     while (ptr_cmp_worklist.length() != 0) {
1833       Node *n = ptr_cmp_worklist.pop();
1834       Node *res = optimize_ptr_compare(n);
1835       if (res != NULL) {
1836 #ifndef PRODUCT
1837         if (PrintOptimizePtrCompare) {
1838           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1839           if (Verbose) {
1840             n->dump(1);
1841           }
1842         }
1843 #endif
1844         igvn->replace_node(n, res);
1845       }
1846     }
1847     // cleanup
1848     if (_pcmp_neq->outcnt() == 0)
1849       igvn->hash_delete(_pcmp_neq);
1850     if (_pcmp_eq->outcnt()  == 0)
1851       igvn->hash_delete(_pcmp_eq);
1852   }
1853 
1854   // For MemBarStoreStore nodes added in library_call.cpp, check
1855   // escape status of associated AllocateNode and optimize out
1856   // MemBarStoreStore node if the allocated object never escapes.
1857   while (storestore_worklist.length() != 0) {
1858     Node *n = storestore_worklist.pop();
1859     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1860     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1861     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1862     if (not_global_escape(alloc)) {
1863       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1864       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1865       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1866       igvn->register_new_node_with_optimizer(mb);
1867       igvn->replace_node(storestore, mb);
1868     }
1869   }
1870 }
1871 
1872 // Optimize objects compare.
1873 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1874   assert(OptimizePtrCompare, "sanity");
1875   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1876   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1877   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1878   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1879   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1880   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1881 
1882   // Check simple cases first.
1883   if (jobj1 != NULL) {
1884     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1885       if (jobj1 == jobj2) {
1886         // Comparing the same not escaping object.
1887         return _pcmp_eq;
1888       }
1889       Node* obj = jobj1->ideal_node();
1890       // Comparing not escaping allocation.
1891       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1892           !ptn2->points_to(jobj1)) {
1893         return _pcmp_neq; // This includes nullness check.
1894       }
1895     }
1896   }
1897   if (jobj2 != NULL) {
1898     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1899       Node* obj = jobj2->ideal_node();
1900       // Comparing not escaping allocation.
1901       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1902           !ptn1->points_to(jobj2)) {
1903         return _pcmp_neq; // This includes nullness check.
1904       }
1905     }
1906   }
1907   if (jobj1 != NULL && jobj1 != phantom_obj &&
1908       jobj2 != NULL && jobj2 != phantom_obj &&
1909       jobj1->ideal_node()->is_Con() &&
1910       jobj2->ideal_node()->is_Con()) {
1911     // Klass or String constants compare. Need to be careful with
1912     // compressed pointers - compare types of ConN and ConP instead of nodes.
1913     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1914     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1915     if (t1->make_ptr() == t2->make_ptr()) {
1916       return _pcmp_eq;
1917     } else {
1918       return _pcmp_neq;
1919     }
1920   }
1921   if (ptn1->meet(ptn2)) {
1922     return NULL; // Sets are not disjoint
1923   }
1924 
1925   // Sets are disjoint.
1926   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1927   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1928   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1929   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1930   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1931       set2_has_unknown_ptr && set1_has_null_ptr) {
1932     // Check nullness of unknown object.
1933     return NULL;
1934   }
1935 
1936   // Disjointness by itself is not sufficient since
1937   // alias analysis is not complete for escaped objects.
1938   // Disjoint sets are definitely unrelated only when
1939   // at least one set has only not escaping allocations.
1940   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1941     if (ptn1->non_escaping_allocation()) {
1942       return _pcmp_neq;
1943     }
1944   }
1945   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1946     if (ptn2->non_escaping_allocation()) {
1947       return _pcmp_neq;
1948     }
1949   }
1950   return NULL;
1951 }
1952 
1953 // Connection Graph constuction functions.
1954 
1955 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1956   PointsToNode* ptadr = _nodes.at(n->_idx);
1957   if (ptadr != NULL) {
1958     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1959     return;
1960   }
1961   Compile* C = _compile;
1962   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
1963   _nodes.at_put(n->_idx, ptadr);
1964 }
1965 
1966 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1967   PointsToNode* ptadr = _nodes.at(n->_idx);
1968   if (ptadr != NULL) {
1969     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1970     return;
1971   }
1972   Compile* C = _compile;
1973   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
1974   _nodes.at_put(n->_idx, ptadr);
1975 }
1976 
1977 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1978   PointsToNode* ptadr = _nodes.at(n->_idx);
1979   if (ptadr != NULL) {
1980     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1981     return;
1982   }
1983   bool unsafe = false;
1984   bool is_oop = is_oop_field(n, offset, &unsafe);
1985   if (unsafe) {
1986     es = PointsToNode::GlobalEscape;
1987   }
1988   Compile* C = _compile;
1989   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
1990   _nodes.at_put(n->_idx, field);
1991 }
1992 
1993 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
1994                                     PointsToNode* src, PointsToNode* dst) {
1995   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
1996   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
1997   PointsToNode* ptadr = _nodes.at(n->_idx);
1998   if (ptadr != NULL) {
1999     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2000     return;
2001   }
2002   Compile* C = _compile;
2003   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2004   _nodes.at_put(n->_idx, ptadr);
2005   // Add edge from arraycopy node to source object.
2006   (void)add_edge(ptadr, src);
2007   src->set_arraycopy_src();
2008   // Add edge from destination object to arraycopy node.
2009   (void)add_edge(dst, ptadr);
2010   dst->set_arraycopy_dst();
2011 }
2012 
2013 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2014   const Type* adr_type = n->as_AddP()->bottom_type();
2015   BasicType bt = T_INT;
2016   if (offset == Type::OffsetBot) {
2017     // Check only oop fields.
2018     if (!adr_type->isa_aryptr() ||
2019         (adr_type->isa_aryptr()->klass() == NULL) ||
2020          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2021       // OffsetBot is used to reference array's element. Ignore first AddP.
2022       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2023         bt = T_OBJECT;
2024       }
2025     }
2026   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2027     if (adr_type->isa_instptr()) {
2028       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2029       if (field != NULL) {
2030         bt = field->layout_type();
2031       } else {
2032         // Check for unsafe oop field access
2033         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2034           int opcode = n->fast_out(i)->Opcode();
2035           if (opcode == Op_StoreP || opcode == Op_LoadP ||
2036               opcode == Op_StoreN || opcode == Op_LoadN) {
2037             bt = T_OBJECT;
2038             (*unsafe) = true;
2039             break;
2040           }
2041         }
2042       }
2043     } else if (adr_type->isa_aryptr()) {
2044       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2045         // Ignore array length load.
2046       } else if (UseShenandoahGC && ShenandoahReadBarrier && offset == BrooksPointer::byte_offset()) {
2047         // Shenandoah read barrier.
2048         bt = T_ARRAY;
2049       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2050         // Ignore first AddP.
2051       } else {
2052         const Type* elemtype = adr_type->isa_aryptr()->elem();
2053         bt = elemtype->array_element_basic_type();
2054       }
2055     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2056       // Allocation initialization, ThreadLocal field access, unsafe access
2057       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2058         int opcode = n->fast_out(i)->Opcode();
2059         if (opcode == Op_StoreP || opcode == Op_LoadP ||
2060             opcode == Op_StoreN || opcode == Op_LoadN) {
2061           bt = T_OBJECT;
2062           break;
2063         }
2064       }
2065     }
2066   }
2067   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2068 }
2069 
2070 // Returns unique pointed java object or NULL.
2071 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2072   assert(!_collecting, "should not call when contructed graph");
2073   // If the node was created after the escape computation we can't answer.
2074   uint idx = n->_idx;
2075   if (idx >= nodes_size()) {
2076     return NULL;
2077   }
2078   PointsToNode* ptn = ptnode_adr(idx);
2079   if (ptn->is_JavaObject()) {
2080     return ptn->as_JavaObject();
2081   }
2082   assert(ptn->is_LocalVar(), "sanity");
2083   // Check all java objects it points to.
2084   JavaObjectNode* jobj = NULL;
2085   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2086     PointsToNode* e = i.get();
2087     if (e->is_JavaObject()) {
2088       if (jobj == NULL) {
2089         jobj = e->as_JavaObject();
2090       } else if (jobj != e) {
2091         return NULL;
2092       }
2093     }
2094   }
2095   return jobj;
2096 }
2097 
2098 // Return true if this node points only to non-escaping allocations.
2099 bool PointsToNode::non_escaping_allocation() {
2100   if (is_JavaObject()) {
2101     Node* n = ideal_node();
2102     if (n->is_Allocate() || n->is_CallStaticJava()) {
2103       return (escape_state() == PointsToNode::NoEscape);
2104     } else {
2105       return false;
2106     }
2107   }
2108   assert(is_LocalVar(), "sanity");
2109   // Check all java objects it points to.
2110   for (EdgeIterator i(this); i.has_next(); i.next()) {
2111     PointsToNode* e = i.get();
2112     if (e->is_JavaObject()) {
2113       Node* n = e->ideal_node();
2114       if ((e->escape_state() != PointsToNode::NoEscape) ||
2115           !(n->is_Allocate() || n->is_CallStaticJava())) {
2116         return false;
2117       }
2118     }
2119   }
2120   return true;
2121 }
2122 
2123 // Return true if we know the node does not escape globally.
2124 bool ConnectionGraph::not_global_escape(Node *n) {
2125   assert(!_collecting, "should not call during graph construction");
2126   // If the node was created after the escape computation we can't answer.
2127   uint idx = n->_idx;
2128   if (idx >= nodes_size()) {
2129     return false;
2130   }
2131   PointsToNode* ptn = ptnode_adr(idx);
2132   PointsToNode::EscapeState es = ptn->escape_state();
2133   // If we have already computed a value, return it.
2134   if (es >= PointsToNode::GlobalEscape)
2135     return false;
2136   if (ptn->is_JavaObject()) {
2137     return true; // (es < PointsToNode::GlobalEscape);
2138   }
2139   assert(ptn->is_LocalVar(), "sanity");
2140   // Check all java objects it points to.
2141   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2142     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2143       return false;
2144   }
2145   return true;
2146 }
2147 
2148 
2149 // Helper functions
2150 
2151 // Return true if this node points to specified node or nodes it points to.
2152 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2153   if (is_JavaObject()) {
2154     return (this == ptn);
2155   }
2156   assert(is_LocalVar() || is_Field(), "sanity");
2157   for (EdgeIterator i(this); i.has_next(); i.next()) {
2158     if (i.get() == ptn)
2159       return true;
2160   }
2161   return false;
2162 }
2163 
2164 // Return true if one node points to an other.
2165 bool PointsToNode::meet(PointsToNode* ptn) {
2166   if (this == ptn) {
2167     return true;
2168   } else if (ptn->is_JavaObject()) {
2169     return this->points_to(ptn->as_JavaObject());
2170   } else if (this->is_JavaObject()) {
2171     return ptn->points_to(this->as_JavaObject());
2172   }
2173   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2174   int ptn_count =  ptn->edge_count();
2175   for (EdgeIterator i(this); i.has_next(); i.next()) {
2176     PointsToNode* this_e = i.get();
2177     for (int j = 0; j < ptn_count; j++) {
2178       if (this_e == ptn->edge(j))
2179         return true;
2180     }
2181   }
2182   return false;
2183 }
2184 
2185 #ifdef ASSERT
2186 // Return true if bases point to this java object.
2187 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2188   for (BaseIterator i(this); i.has_next(); i.next()) {
2189     if (i.get() == jobj)
2190       return true;
2191   }
2192   return false;
2193 }
2194 #endif
2195 
2196 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2197   const Type *adr_type = phase->type(adr);
2198   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2199       adr->in(AddPNode::Address)->is_Proj() &&
2200       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2201     // We are computing a raw address for a store captured by an Initialize
2202     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2203     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2204     assert(offs != Type::OffsetBot ||
2205            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2206            "offset must be a constant or it is initialization of array");
2207     return offs;
2208   }
2209   const TypePtr *t_ptr = adr_type->isa_ptr();
2210   assert(t_ptr != NULL, "must be a pointer type");
2211   return t_ptr->offset();
2212 }
2213 
2214 Node* ConnectionGraph::get_addp_base(Node *addp) {
2215   assert(addp->is_AddP(), "must be AddP");
2216   //
2217   // AddP cases for Base and Address inputs:
2218   // case #1. Direct object's field reference:
2219   //     Allocate
2220   //       |
2221   //     Proj #5 ( oop result )
2222   //       |
2223   //     CheckCastPP (cast to instance type)
2224   //      | |
2225   //     AddP  ( base == address )
2226   //
2227   // case #2. Indirect object's field reference:
2228   //      Phi
2229   //       |
2230   //     CastPP (cast to instance type)
2231   //      | |
2232   //     AddP  ( base == address )
2233   //
2234   // case #3. Raw object's field reference for Initialize node:
2235   //      Allocate
2236   //        |
2237   //      Proj #5 ( oop result )
2238   //  top   |
2239   //     \  |
2240   //     AddP  ( base == top )
2241   //
2242   // case #4. Array's element reference:
2243   //   {CheckCastPP | CastPP}
2244   //     |  | |
2245   //     |  AddP ( array's element offset )
2246   //     |  |
2247   //     AddP ( array's offset )
2248   //
2249   // case #5. Raw object's field reference for arraycopy stub call:
2250   //          The inline_native_clone() case when the arraycopy stub is called
2251   //          after the allocation before Initialize and CheckCastPP nodes.
2252   //      Allocate
2253   //        |
2254   //      Proj #5 ( oop result )
2255   //       | |
2256   //       AddP  ( base == address )
2257   //
2258   // case #6. Constant Pool, ThreadLocal, CastX2P or
2259   //          Raw object's field reference:
2260   //      {ConP, ThreadLocal, CastX2P, raw Load}
2261   //  top   |
2262   //     \  |
2263   //     AddP  ( base == top )
2264   //
2265   // case #7. Klass's field reference.
2266   //      LoadKlass
2267   //       | |
2268   //       AddP  ( base == address )
2269   //
2270   // case #8. narrow Klass's field reference.
2271   //      LoadNKlass
2272   //       |
2273   //      DecodeN
2274   //       | |
2275   //       AddP  ( base == address )
2276   //
2277   Node *base = addp->in(AddPNode::Base);
2278   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2279     base = addp->in(AddPNode::Address);
2280     while (base->is_AddP()) {
2281       // Case #6 (unsafe access) may have several chained AddP nodes.
2282       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2283       base = base->in(AddPNode::Address);
2284     }
2285     Node* uncast_base = base->uncast();
2286     int opcode = uncast_base->Opcode();
2287     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2288            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2289            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2290            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()) ||
2291            (uncast_base->is_Phi() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2292            uncast_base->is_ShenandoahBarrier(), "sanity");
2293   }
2294   return base;
2295 }
2296 
2297 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2298   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2299   Node* addp2 = addp->raw_out(0);
2300   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2301       addp2->in(AddPNode::Base) == n &&
2302       addp2->in(AddPNode::Address) == addp) {
2303     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2304     //
2305     // Find array's offset to push it on worklist first and
2306     // as result process an array's element offset first (pushed second)
2307     // to avoid CastPP for the array's offset.
2308     // Otherwise the inserted CastPP (LocalVar) will point to what
2309     // the AddP (Field) points to. Which would be wrong since
2310     // the algorithm expects the CastPP has the same point as
2311     // as AddP's base CheckCastPP (LocalVar).
2312     //
2313     //    ArrayAllocation
2314     //     |
2315     //    CheckCastPP
2316     //     |
2317     //    memProj (from ArrayAllocation CheckCastPP)
2318     //     |  ||
2319     //     |  ||   Int (element index)
2320     //     |  ||    |   ConI (log(element size))
2321     //     |  ||    |   /
2322     //     |  ||   LShift
2323     //     |  ||  /
2324     //     |  AddP (array's element offset)
2325     //     |  |
2326     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2327     //     | / /
2328     //     AddP (array's offset)
2329     //      |
2330     //     Load/Store (memory operation on array's element)
2331     //
2332     return addp2;
2333   }
2334   return NULL;
2335 }
2336 
2337 //
2338 // Adjust the type and inputs of an AddP which computes the
2339 // address of a field of an instance
2340 //
2341 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2342   PhaseGVN* igvn = _igvn;
2343   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2344   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2345   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2346   if (t == NULL) {
2347     // We are computing a raw address for a store captured by an Initialize
2348     // compute an appropriate address type (cases #3 and #5).
2349     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2350     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2351     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2352     assert(offs != Type::OffsetBot, "offset must be a constant");
2353     t = base_t->add_offset(offs)->is_oopptr();
2354   }
2355   int inst_id =  base_t->instance_id();
2356   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2357                              "old type must be non-instance or match new type");
2358 
2359   // The type 't' could be subclass of 'base_t'.
2360   // As result t->offset() could be large then base_t's size and it will
2361   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2362   // constructor verifies correctness of the offset.
2363   //
2364   // It could happened on subclass's branch (from the type profiling
2365   // inlining) which was not eliminated during parsing since the exactness
2366   // of the allocation type was not propagated to the subclass type check.
2367   //
2368   // Or the type 't' could be not related to 'base_t' at all.
2369   // It could happened when CHA type is different from MDO type on a dead path
2370   // (for example, from instanceof check) which is not collapsed during parsing.
2371   //
2372   // Do nothing for such AddP node and don't process its users since
2373   // this code branch will go away.
2374   //
2375   if (!t->is_known_instance() &&
2376       !base_t->klass()->is_subtype_of(t->klass())) {
2377      return false; // bail out
2378   }
2379   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2380   // Do NOT remove the next line: ensure a new alias index is allocated
2381   // for the instance type. Note: C++ will not remove it since the call
2382   // has side effect.
2383   int alias_idx = _compile->get_alias_index(tinst);
2384   igvn->set_type(addp, tinst);
2385   // record the allocation in the node map
2386   set_map(addp, get_map(base->_idx));
2387   // Set addp's Base and Address to 'base'.
2388   Node *abase = addp->in(AddPNode::Base);
2389   Node *adr   = addp->in(AddPNode::Address);
2390   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2391       adr->in(0)->_idx == (uint)inst_id) {
2392     // Skip AddP cases #3 and #5.
2393   } else {
2394     assert(!abase->is_top(), "sanity"); // AddP case #3
2395     if (abase != base) {
2396       igvn->hash_delete(addp);
2397       addp->set_req(AddPNode::Base, base);
2398       if (abase == adr) {
2399         addp->set_req(AddPNode::Address, base);
2400       } else {
2401         // AddP case #4 (adr is array's element offset AddP node)
2402 #ifdef ASSERT
2403         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2404         assert(adr->is_AddP() && atype != NULL &&
2405                atype->instance_id() == inst_id, "array's element offset should be processed first");
2406 #endif
2407       }
2408       igvn->hash_insert(addp);
2409     }
2410   }
2411   // Put on IGVN worklist since at least addp's type was changed above.
2412   record_for_optimizer(addp);
2413   return true;
2414 }
2415 
2416 //
2417 // Create a new version of orig_phi if necessary. Returns either the newly
2418 // created phi or an existing phi.  Sets create_new to indicate whether a new
2419 // phi was created.  Cache the last newly created phi in the node map.
2420 //
2421 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2422   Compile *C = _compile;
2423   PhaseGVN* igvn = _igvn;
2424   new_created = false;
2425   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2426   // nothing to do if orig_phi is bottom memory or matches alias_idx
2427   if (phi_alias_idx == alias_idx) {
2428     return orig_phi;
2429   }
2430   // Have we recently created a Phi for this alias index?
2431   PhiNode *result = get_map_phi(orig_phi->_idx);
2432   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2433     return result;
2434   }
2435   // Previous check may fail when the same wide memory Phi was split into Phis
2436   // for different memory slices. Search all Phis for this region.
2437   if (result != NULL) {
2438     Node* region = orig_phi->in(0);
2439     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2440       Node* phi = region->fast_out(i);
2441       if (phi->is_Phi() &&
2442           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2443         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2444         return phi->as_Phi();
2445       }
2446     }
2447   }
2448   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2449     if (C->do_escape_analysis() == true && !C->failing()) {
2450       // Retry compilation without escape analysis.
2451       // If this is the first failure, the sentinel string will "stick"
2452       // to the Compile object, and the C2Compiler will see it and retry.
2453       C->record_failure(C2Compiler::retry_no_escape_analysis());
2454     }
2455     return NULL;
2456   }
2457   orig_phi_worklist.append_if_missing(orig_phi);
2458   const TypePtr *atype = C->get_adr_type(alias_idx);
2459   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2460   C->copy_node_notes_to(result, orig_phi);
2461   igvn->set_type(result, result->bottom_type());
2462   record_for_optimizer(result);
2463   set_map(orig_phi, result);
2464   new_created = true;
2465   return result;
2466 }
2467 
2468 //
2469 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2470 // specified alias index.
2471 //
2472 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2473   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2474   Compile *C = _compile;
2475   PhaseGVN* igvn = _igvn;
2476   bool new_phi_created;
2477   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2478   if (!new_phi_created) {
2479     return result;
2480   }
2481   GrowableArray<PhiNode *>  phi_list;
2482   GrowableArray<uint>  cur_input;
2483   PhiNode *phi = orig_phi;
2484   uint idx = 1;
2485   bool finished = false;
2486   while(!finished) {
2487     while (idx < phi->req()) {
2488       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2489       if (mem != NULL && mem->is_Phi()) {
2490         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2491         if (new_phi_created) {
2492           // found an phi for which we created a new split, push current one on worklist and begin
2493           // processing new one
2494           phi_list.push(phi);
2495           cur_input.push(idx);
2496           phi = mem->as_Phi();
2497           result = newphi;
2498           idx = 1;
2499           continue;
2500         } else {
2501           mem = newphi;
2502         }
2503       }
2504       if (C->failing()) {
2505         return NULL;
2506       }
2507       result->set_req(idx++, mem);
2508     }
2509 #ifdef ASSERT
2510     // verify that the new Phi has an input for each input of the original
2511     assert( phi->req() == result->req(), "must have same number of inputs.");
2512     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2513 #endif
2514     // Check if all new phi's inputs have specified alias index.
2515     // Otherwise use old phi.
2516     for (uint i = 1; i < phi->req(); i++) {
2517       Node* in = result->in(i);
2518       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2519     }
2520     // we have finished processing a Phi, see if there are any more to do
2521     finished = (phi_list.length() == 0 );
2522     if (!finished) {
2523       phi = phi_list.pop();
2524       idx = cur_input.pop();
2525       PhiNode *prev_result = get_map_phi(phi->_idx);
2526       prev_result->set_req(idx++, result);
2527       result = prev_result;
2528     }
2529   }
2530   return result;
2531 }
2532 
2533 //
2534 // The next methods are derived from methods in MemNode.
2535 //
2536 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2537   Node *mem = mmem;
2538   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2539   // means an array I have not precisely typed yet.  Do not do any
2540   // alias stuff with it any time soon.
2541   if (toop->base() != Type::AnyPtr &&
2542       !(toop->klass() != NULL &&
2543         toop->klass()->is_java_lang_Object() &&
2544         toop->offset() == Type::OffsetBot)) {
2545     mem = mmem->memory_at(alias_idx);
2546     // Update input if it is progress over what we have now
2547   }
2548   return mem;
2549 }
2550 
2551 //
2552 // Move memory users to their memory slices.
2553 //
2554 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2555   Compile* C = _compile;
2556   PhaseGVN* igvn = _igvn;
2557   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2558   assert(tp != NULL, "ptr type");
2559   int alias_idx = C->get_alias_index(tp);
2560   int general_idx = C->get_general_index(alias_idx);
2561 
2562   // Move users first
2563   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2564     Node* use = n->fast_out(i);
2565     if (use->is_MergeMem()) {
2566       MergeMemNode* mmem = use->as_MergeMem();
2567       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2568       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2569         continue; // Nothing to do
2570       }
2571       // Replace previous general reference to mem node.
2572       uint orig_uniq = C->unique();
2573       Node* m = find_inst_mem(n, general_idx, orig_phis);
2574       assert(orig_uniq == C->unique(), "no new nodes");
2575       mmem->set_memory_at(general_idx, m);
2576       --imax;
2577       --i;
2578     } else if (use->is_MemBar()) {
2579       assert(!use->is_Initialize(), "initializing stores should not be moved");
2580       if (use->req() > MemBarNode::Precedent &&
2581           use->in(MemBarNode::Precedent) == n) {
2582         // Don't move related membars.
2583         record_for_optimizer(use);
2584         continue;
2585       }
2586       tp = use->as_MemBar()->adr_type()->isa_ptr();
2587       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2588           alias_idx == general_idx) {
2589         continue; // Nothing to do
2590       }
2591       // Move to general memory slice.
2592       uint orig_uniq = C->unique();
2593       Node* m = find_inst_mem(n, general_idx, orig_phis);
2594       assert(orig_uniq == C->unique(), "no new nodes");
2595       igvn->hash_delete(use);
2596       imax -= use->replace_edge(n, m);
2597       igvn->hash_insert(use);
2598       record_for_optimizer(use);
2599       --i;
2600 #ifdef ASSERT
2601     } else if (use->is_Mem()) {
2602       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2603         // Don't move related cardmark.
2604         continue;
2605       }
2606       // Memory nodes should have new memory input.
2607       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2608       assert(tp != NULL, "ptr type");
2609       int idx = C->get_alias_index(tp);
2610       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2611              "Following memory nodes should have new memory input or be on the same memory slice");
2612     } else if (use->is_Phi()) {
2613       // Phi nodes should be split and moved already.
2614       tp = use->as_Phi()->adr_type()->isa_ptr();
2615       assert(tp != NULL, "ptr type");
2616       int idx = C->get_alias_index(tp);
2617       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2618     } else {
2619       use->dump();
2620       assert(false, "should not be here");
2621 #endif
2622     }
2623   }
2624 }
2625 
2626 //
2627 // Search memory chain of "mem" to find a MemNode whose address
2628 // is the specified alias index.
2629 //
2630 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2631   if (orig_mem == NULL)
2632     return orig_mem;
2633   Compile* C = _compile;
2634   PhaseGVN* igvn = _igvn;
2635   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2636   bool is_instance = (toop != NULL) && toop->is_known_instance();
2637   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2638   Node *prev = NULL;
2639   Node *result = orig_mem;
2640   while (prev != result) {
2641     prev = result;
2642     if (result == start_mem)
2643       break;  // hit one of our sentinels
2644     if (result->is_Mem()) {
2645       const Type *at = igvn->type(result->in(MemNode::Address));
2646       if (at == Type::TOP)
2647         break; // Dead
2648       assert (at->isa_ptr() != NULL, "pointer type required.");
2649       int idx = C->get_alias_index(at->is_ptr());
2650       if (idx == alias_idx)
2651         break; // Found
2652       if (!is_instance && (at->isa_oopptr() == NULL ||
2653                            !at->is_oopptr()->is_known_instance())) {
2654         break; // Do not skip store to general memory slice.
2655       }
2656       result = result->in(MemNode::Memory);
2657     }
2658     if (!is_instance)
2659       continue;  // don't search further for non-instance types
2660     // skip over a call which does not affect this memory slice
2661     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2662       Node *proj_in = result->in(0);
2663       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2664         break;  // hit one of our sentinels
2665       } else if (proj_in->is_Call()) {
2666         CallNode *call = proj_in->as_Call();
2667         if (!call->may_modify(toop, igvn)) {
2668           result = call->in(TypeFunc::Memory);
2669         }
2670       } else if (proj_in->is_Initialize()) {
2671         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2672         // Stop if this is the initialization for the object instance which
2673         // which contains this memory slice, otherwise skip over it.
2674         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2675           result = proj_in->in(TypeFunc::Memory);
2676         }
2677       } else if (proj_in->is_MemBar()) {
2678         result = proj_in->in(TypeFunc::Memory);
2679       }
2680     } else if (result->is_MergeMem()) {
2681       MergeMemNode *mmem = result->as_MergeMem();
2682       result = step_through_mergemem(mmem, alias_idx, toop);
2683       if (result == mmem->base_memory()) {
2684         // Didn't find instance memory, search through general slice recursively.
2685         result = mmem->memory_at(C->get_general_index(alias_idx));
2686         result = find_inst_mem(result, alias_idx, orig_phis);
2687         if (C->failing()) {
2688           return NULL;
2689         }
2690         mmem->set_memory_at(alias_idx, result);
2691       }
2692     } else if (result->is_Phi() &&
2693                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2694       Node *un = result->as_Phi()->unique_input(igvn);
2695       if (un != NULL) {
2696         orig_phis.append_if_missing(result->as_Phi());
2697         result = un;
2698       } else {
2699         break;
2700       }
2701     } else if (result->is_ClearArray()) {
2702       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2703         // Can not bypass initialization of the instance
2704         // we are looking for.
2705         break;
2706       }
2707       // Otherwise skip it (the call updated 'result' value).
2708     } else if (result->Opcode() == Op_SCMemProj) {
2709       Node* mem = result->in(0);
2710       Node* adr = NULL;
2711       if (mem->is_LoadStore()) {
2712         adr = mem->in(MemNode::Address);
2713       } else {
2714         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
2715         adr = mem->in(3); // Memory edge corresponds to destination array
2716       }
2717       const Type *at = igvn->type(adr);
2718       if (at != Type::TOP) {
2719         assert (at->isa_ptr() != NULL, "pointer type required.");
2720         int idx = C->get_alias_index(at->is_ptr());
2721         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2722         break;
2723       }
2724       result = mem->in(MemNode::Memory);
2725     }
2726   }
2727   if (result->is_Phi()) {
2728     PhiNode *mphi = result->as_Phi();
2729     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2730     const TypePtr *t = mphi->adr_type();
2731     if (!is_instance) {
2732       // Push all non-instance Phis on the orig_phis worklist to update inputs
2733       // during Phase 4 if needed.
2734       orig_phis.append_if_missing(mphi);
2735     } else if (C->get_alias_index(t) != alias_idx) {
2736       // Create a new Phi with the specified alias index type.
2737       result = split_memory_phi(mphi, alias_idx, orig_phis);
2738     }
2739   }
2740   // the result is either MemNode, PhiNode, InitializeNode.
2741   return result;
2742 }
2743 
2744 //
2745 //  Convert the types of unescaped object to instance types where possible,
2746 //  propagate the new type information through the graph, and update memory
2747 //  edges and MergeMem inputs to reflect the new type.
2748 //
2749 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2750 //  The processing is done in 4 phases:
2751 //
2752 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2753 //            types for the CheckCastPP for allocations where possible.
2754 //            Propagate the the new types through users as follows:
2755 //               casts and Phi:  push users on alloc_worklist
2756 //               AddP:  cast Base and Address inputs to the instance type
2757 //                      push any AddP users on alloc_worklist and push any memnode
2758 //                      users onto memnode_worklist.
2759 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2760 //            search the Memory chain for a store with the appropriate type
2761 //            address type.  If a Phi is found, create a new version with
2762 //            the appropriate memory slices from each of the Phi inputs.
2763 //            For stores, process the users as follows:
2764 //               MemNode:  push on memnode_worklist
2765 //               MergeMem: push on mergemem_worklist
2766 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2767 //            moving the first node encountered of each  instance type to the
2768 //            the input corresponding to its alias index.
2769 //            appropriate memory slice.
2770 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2771 //
2772 // In the following example, the CheckCastPP nodes are the cast of allocation
2773 // results and the allocation of node 29 is unescaped and eligible to be an
2774 // instance type.
2775 //
2776 // We start with:
2777 //
2778 //     7 Parm #memory
2779 //    10  ConI  "12"
2780 //    19  CheckCastPP   "Foo"
2781 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2782 //    29  CheckCastPP   "Foo"
2783 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2784 //
2785 //    40  StoreP  25   7  20   ... alias_index=4
2786 //    50  StoreP  35  40  30   ... alias_index=4
2787 //    60  StoreP  45  50  20   ... alias_index=4
2788 //    70  LoadP    _  60  30   ... alias_index=4
2789 //    80  Phi     75  50  60   Memory alias_index=4
2790 //    90  LoadP    _  80  30   ... alias_index=4
2791 //   100  LoadP    _  80  20   ... alias_index=4
2792 //
2793 //
2794 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2795 // and creating a new alias index for node 30.  This gives:
2796 //
2797 //     7 Parm #memory
2798 //    10  ConI  "12"
2799 //    19  CheckCastPP   "Foo"
2800 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2801 //    29  CheckCastPP   "Foo"  iid=24
2802 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2803 //
2804 //    40  StoreP  25   7  20   ... alias_index=4
2805 //    50  StoreP  35  40  30   ... alias_index=6
2806 //    60  StoreP  45  50  20   ... alias_index=4
2807 //    70  LoadP    _  60  30   ... alias_index=6
2808 //    80  Phi     75  50  60   Memory alias_index=4
2809 //    90  LoadP    _  80  30   ... alias_index=6
2810 //   100  LoadP    _  80  20   ... alias_index=4
2811 //
2812 // In phase 2, new memory inputs are computed for the loads and stores,
2813 // And a new version of the phi is created.  In phase 4, the inputs to
2814 // node 80 are updated and then the memory nodes are updated with the
2815 // values computed in phase 2.  This results in:
2816 //
2817 //     7 Parm #memory
2818 //    10  ConI  "12"
2819 //    19  CheckCastPP   "Foo"
2820 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2821 //    29  CheckCastPP   "Foo"  iid=24
2822 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2823 //
2824 //    40  StoreP  25  7   20   ... alias_index=4
2825 //    50  StoreP  35  7   30   ... alias_index=6
2826 //    60  StoreP  45  40  20   ... alias_index=4
2827 //    70  LoadP    _  50  30   ... alias_index=6
2828 //    80  Phi     75  40  60   Memory alias_index=4
2829 //   120  Phi     75  50  50   Memory alias_index=6
2830 //    90  LoadP    _ 120  30   ... alias_index=6
2831 //   100  LoadP    _  80  20   ... alias_index=4
2832 //
2833 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
2834   GrowableArray<Node *>  memnode_worklist;
2835   GrowableArray<PhiNode *>  orig_phis;
2836   PhaseIterGVN  *igvn = _igvn;
2837   uint new_index_start = (uint) _compile->num_alias_types();
2838   Arena* arena = Thread::current()->resource_area();
2839   VectorSet visited(arena);
2840   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2841   uint unique_old = _compile->unique();
2842 
2843   //  Phase 1:  Process possible allocations from alloc_worklist.
2844   //  Create instance types for the CheckCastPP for allocations where possible.
2845   //
2846   // (Note: don't forget to change the order of the second AddP node on
2847   //  the alloc_worklist if the order of the worklist processing is changed,
2848   //  see the comment in find_second_addp().)
2849   //
2850   while (alloc_worklist.length() != 0) {
2851     Node *n = alloc_worklist.pop();
2852     uint ni = n->_idx;
2853     if (n->is_Call()) {
2854       CallNode *alloc = n->as_Call();
2855       // copy escape information to call node
2856       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2857       PointsToNode::EscapeState es = ptn->escape_state();
2858       // We have an allocation or call which returns a Java object,
2859       // see if it is unescaped.
2860       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2861         continue;
2862       // Find CheckCastPP for the allocate or for the return value of a call
2863       n = alloc->result_cast();
2864       if (n == NULL) {            // No uses except Initialize node
2865         if (alloc->is_Allocate()) {
2866           // Set the scalar_replaceable flag for allocation
2867           // so it could be eliminated if it has no uses.
2868           alloc->as_Allocate()->_is_scalar_replaceable = true;
2869         }
2870         if (alloc->is_CallStaticJava()) {
2871           // Set the scalar_replaceable flag for boxing method
2872           // so it could be eliminated if it has no uses.
2873           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2874         }
2875         continue;
2876       }
2877       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2878         assert(!alloc->is_Allocate(), "allocation should have unique type");
2879         continue;
2880       }
2881 
2882       // The inline code for Object.clone() casts the allocation result to
2883       // java.lang.Object and then to the actual type of the allocated
2884       // object. Detect this case and use the second cast.
2885       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2886       // the allocation result is cast to java.lang.Object and then
2887       // to the actual Array type.
2888       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2889           && (alloc->is_AllocateArray() ||
2890               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2891         Node *cast2 = NULL;
2892         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2893           Node *use = n->fast_out(i);
2894           if (use->is_CheckCastPP()) {
2895             cast2 = use;
2896             break;
2897           }
2898         }
2899         if (cast2 != NULL) {
2900           n = cast2;
2901         } else {
2902           // Non-scalar replaceable if the allocation type is unknown statically
2903           // (reflection allocation), the object can't be restored during
2904           // deoptimization without precise type.
2905           continue;
2906         }
2907       }
2908 
2909       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2910       if (t == NULL)
2911         continue;  // not a TypeOopPtr
2912       if (!t->klass_is_exact())
2913         continue; // not an unique type
2914 
2915       if (alloc->is_Allocate()) {
2916         // Set the scalar_replaceable flag for allocation
2917         // so it could be eliminated.
2918         alloc->as_Allocate()->_is_scalar_replaceable = true;
2919       }
2920       if (alloc->is_CallStaticJava()) {
2921         // Set the scalar_replaceable flag for boxing method
2922         // so it could be eliminated.
2923         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2924       }
2925       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2926       // in order for an object to be scalar-replaceable, it must be:
2927       //   - a direct allocation (not a call returning an object)
2928       //   - non-escaping
2929       //   - eligible to be a unique type
2930       //   - not determined to be ineligible by escape analysis
2931       set_map(alloc, n);
2932       set_map(n, alloc);
2933       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
2934       igvn->hash_delete(n);
2935       igvn->set_type(n,  tinst);
2936       n->raise_bottom_type(tinst);
2937       igvn->hash_insert(n);
2938       record_for_optimizer(n);
2939       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2940 
2941         // First, put on the worklist all Field edges from Connection Graph
2942         // which is more accurate then putting immediate users from Ideal Graph.
2943         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2944           PointsToNode* tgt = e.get();
2945           Node* use = tgt->ideal_node();
2946           assert(tgt->is_Field() && use->is_AddP(),
2947                  "only AddP nodes are Field edges in CG");
2948           if (use->outcnt() > 0) { // Don't process dead nodes
2949             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2950             if (addp2 != NULL) {
2951               assert(alloc->is_AllocateArray(),"array allocation was expected");
2952               alloc_worklist.append_if_missing(addp2);
2953             }
2954             alloc_worklist.append_if_missing(use);
2955           }
2956         }
2957 
2958         // An allocation may have an Initialize which has raw stores. Scan
2959         // the users of the raw allocation result and push AddP users
2960         // on alloc_worklist.
2961         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2962         assert (raw_result != NULL, "must have an allocation result");
2963         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2964           Node *use = raw_result->fast_out(i);
2965           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2966             Node* addp2 = find_second_addp(use, raw_result);
2967             if (addp2 != NULL) {
2968               assert(alloc->is_AllocateArray(),"array allocation was expected");
2969               alloc_worklist.append_if_missing(addp2);
2970             }
2971             alloc_worklist.append_if_missing(use);
2972           } else if (use->is_MemBar()) {
2973             memnode_worklist.append_if_missing(use);
2974           }
2975         }
2976       }
2977     } else if (n->is_AddP()) {
2978       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2979       if (jobj == NULL || jobj == phantom_obj) {
2980 #ifdef ASSERT
2981         ptnode_adr(get_addp_base(n)->_idx)->dump();
2982         ptnode_adr(n->_idx)->dump();
2983         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2984 #endif
2985         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2986         return;
2987       }
2988       Node *base = get_map(jobj->idx());  // CheckCastPP node
2989       if (!split_AddP(n, base)) continue; // wrong type from dead path
2990     } else if (n->is_Phi() ||
2991                n->is_CheckCastPP() ||
2992                n->is_EncodeP() ||
2993                n->is_DecodeN() ||
2994                n->is_ShenandoahBarrier() ||
2995                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
2996       if (visited.test_set(n->_idx)) {
2997         assert(n->is_Phi(), "loops only through Phi's");
2998         continue;  // already processed
2999       }
3000       JavaObjectNode* jobj = unique_java_object(n);
3001       if (jobj == NULL || jobj == phantom_obj) {
3002 #ifdef ASSERT
3003         ptnode_adr(n->_idx)->dump();
3004         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3005 #endif
3006         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3007         return;
3008       } else {
3009         Node *val = get_map(jobj->idx());   // CheckCastPP node
3010         TypeNode *tn = n->as_Type();
3011         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3012         assert(tinst != NULL && tinst->is_known_instance() &&
3013                tinst->instance_id() == jobj->idx() , "instance type expected.");
3014 
3015         const Type *tn_type = igvn->type(tn);
3016         const TypeOopPtr *tn_t;
3017         if (tn_type->isa_narrowoop()) {
3018           tn_t = tn_type->make_ptr()->isa_oopptr();
3019         } else {
3020           tn_t = tn_type->isa_oopptr();
3021         }
3022         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3023           if (tn_type->isa_narrowoop()) {
3024             tn_type = tinst->make_narrowoop();
3025           } else {
3026             tn_type = tinst;
3027           }
3028           igvn->hash_delete(tn);
3029           igvn->set_type(tn, tn_type);
3030           tn->set_type(tn_type);
3031           igvn->hash_insert(tn);
3032           record_for_optimizer(n);
3033         } else {
3034           assert(tn_type == TypePtr::NULL_PTR ||
3035                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3036                  "unexpected type");
3037           continue; // Skip dead path with different type
3038         }
3039       }
3040     } else {
3041       debug_only(n->dump();)
3042       assert(false, "EA: unexpected node");
3043       continue;
3044     }
3045     // push allocation's users on appropriate worklist
3046     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3047       Node *use = n->fast_out(i);
3048       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3049         // Load/store to instance's field
3050         memnode_worklist.append_if_missing(use);
3051       } else if (use->is_MemBar()) {
3052         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3053           memnode_worklist.append_if_missing(use);
3054         }
3055       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3056         Node* addp2 = find_second_addp(use, n);
3057         if (addp2 != NULL) {
3058           alloc_worklist.append_if_missing(addp2);
3059         }
3060         alloc_worklist.append_if_missing(use);
3061       } else if (use->is_Phi() ||
3062                  use->is_CheckCastPP() ||
3063                  use->is_EncodeNarrowPtr() ||
3064                  use->is_DecodeNarrowPtr() ||
3065                  use->is_ShenandoahBarrier() ||
3066                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3067         alloc_worklist.append_if_missing(use);
3068 #ifdef ASSERT
3069       } else if (use->is_Mem()) {
3070         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3071       } else if (use->is_MergeMem()) {
3072         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3073       } else if (use->is_SafePoint()) {
3074         // Look for MergeMem nodes for calls which reference unique allocation
3075         // (through CheckCastPP nodes) even for debug info.
3076         Node* m = use->in(TypeFunc::Memory);
3077         if (m->is_MergeMem()) {
3078           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3079         }
3080       } else if (use->Opcode() == Op_EncodeISOArray) {
3081         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3082           // EncodeISOArray overwrites destination array
3083           memnode_worklist.append_if_missing(use);
3084         }
3085       } else {
3086         uint op = use->Opcode();
3087         if (!(op == Op_CmpP || op == Op_Conv2B ||
3088               op == Op_CastP2X || op == Op_StoreCM ||
3089               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
3090               op == Op_StrEquals || op == Op_StrIndexOf ||
3091               op == Op_ShenandoahWBMemProj)) {
3092           n->dump();
3093           use->dump();
3094           assert(false, "EA: missing allocation reference path");
3095         }
3096 #endif
3097       }
3098     }
3099 
3100   }
3101   // New alias types were created in split_AddP().
3102   uint new_index_end = (uint) _compile->num_alias_types();
3103   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3104 
3105   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3106   //            compute new values for Memory inputs  (the Memory inputs are not
3107   //            actually updated until phase 4.)
3108   if (memnode_worklist.length() == 0)
3109     return;  // nothing to do
3110   while (memnode_worklist.length() != 0) {
3111     Node *n = memnode_worklist.pop();
3112     if (visited.test_set(n->_idx))
3113       continue;
3114     if (n->is_Phi() || n->is_ClearArray()) {
3115       // we don't need to do anything, but the users must be pushed
3116     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3117       // we don't need to do anything, but the users must be pushed
3118       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3119       if (n == NULL)
3120         continue;
3121     } else if (n->Opcode() == Op_EncodeISOArray) {
3122       // get the memory projection
3123       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3124         Node *use = n->fast_out(i);
3125         if (use->Opcode() == Op_SCMemProj) {
3126           n = use;
3127           break;
3128         }
3129       }
3130       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3131     } else {
3132       assert(n->is_Mem(), "memory node required.");
3133       Node *addr = n->in(MemNode::Address);
3134       const Type *addr_t = igvn->type(addr);
3135       if (addr_t == Type::TOP)
3136         continue;
3137       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3138       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3139       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3140       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3141       if (_compile->failing()) {
3142         return;
3143       }
3144       if (mem != n->in(MemNode::Memory)) {
3145         // We delay the memory edge update since we need old one in
3146         // MergeMem code below when instances memory slices are separated.
3147         set_map(n, mem);
3148       }
3149       if (n->is_Load()) {
3150         continue;  // don't push users
3151       } else if (n->is_LoadStore()) {
3152         // get the memory projection
3153         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3154           Node *use = n->fast_out(i);
3155           if (use->Opcode() == Op_SCMemProj) {
3156             n = use;
3157             break;
3158           }
3159         }
3160         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3161       }
3162     }
3163     // push user on appropriate worklist
3164     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3165       Node *use = n->fast_out(i);
3166       if (use->is_Phi() || use->is_ClearArray()) {
3167         memnode_worklist.append_if_missing(use);
3168       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3169         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3170           continue;
3171         memnode_worklist.append_if_missing(use);
3172       } else if (use->is_MemBar()) {
3173         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3174           memnode_worklist.append_if_missing(use);
3175         }
3176 #ifdef ASSERT
3177       } else if(use->is_Mem()) {
3178         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3179       } else if (use->is_MergeMem()) {
3180         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3181       } else if (use->Opcode() == Op_EncodeISOArray) {
3182         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3183           // EncodeISOArray overwrites destination array
3184           memnode_worklist.append_if_missing(use);
3185         }
3186       } else {
3187         uint op = use->Opcode();
3188         if (!(op == Op_StoreCM ||
3189               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3190                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3191               op == Op_AryEq || op == Op_StrComp ||
3192               op == Op_StrEquals || op == Op_StrIndexOf)) {
3193           n->dump();
3194           use->dump();
3195           assert(false, "EA: missing memory path");
3196         }
3197 #endif
3198       }
3199     }
3200   }
3201 
3202   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3203   //            Walk each memory slice moving the first node encountered of each
3204   //            instance type to the the input corresponding to its alias index.
3205   uint length = _mergemem_worklist.length();
3206   for( uint next = 0; next < length; ++next ) {
3207     MergeMemNode* nmm = _mergemem_worklist.at(next);
3208     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3209     // Note: we don't want to use MergeMemStream here because we only want to
3210     // scan inputs which exist at the start, not ones we add during processing.
3211     // Note 2: MergeMem may already contains instance memory slices added
3212     // during find_inst_mem() call when memory nodes were processed above.
3213     igvn->hash_delete(nmm);
3214     uint nslices = MIN2(nmm->req(), new_index_start);
3215     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3216       Node* mem = nmm->in(i);
3217       Node* cur = NULL;
3218       if (mem == NULL || mem->is_top())
3219         continue;
3220       // First, update mergemem by moving memory nodes to corresponding slices
3221       // if their type became more precise since this mergemem was created.
3222       while (mem->is_Mem()) {
3223         const Type *at = igvn->type(mem->in(MemNode::Address));
3224         if (at != Type::TOP) {
3225           assert (at->isa_ptr() != NULL, "pointer type required.");
3226           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3227           if (idx == i) {
3228             if (cur == NULL)
3229               cur = mem;
3230           } else {
3231             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3232               nmm->set_memory_at(idx, mem);
3233             }
3234           }
3235         }
3236         mem = mem->in(MemNode::Memory);
3237       }
3238       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3239       // Find any instance of the current type if we haven't encountered
3240       // already a memory slice of the instance along the memory chain.
3241       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3242         if((uint)_compile->get_general_index(ni) == i) {
3243           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3244           if (nmm->is_empty_memory(m)) {
3245             Node* result = find_inst_mem(mem, ni, orig_phis);
3246             if (_compile->failing()) {
3247               return;
3248             }
3249             nmm->set_memory_at(ni, result);
3250           }
3251         }
3252       }
3253     }
3254     // Find the rest of instances values
3255     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3256       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3257       Node* result = step_through_mergemem(nmm, ni, tinst);
3258       if (result == nmm->base_memory()) {
3259         // Didn't find instance memory, search through general slice recursively.
3260         result = nmm->memory_at(_compile->get_general_index(ni));
3261         result = find_inst_mem(result, ni, orig_phis);
3262         if (_compile->failing()) {
3263           return;
3264         }
3265         nmm->set_memory_at(ni, result);
3266       }
3267     }
3268     igvn->hash_insert(nmm);
3269     record_for_optimizer(nmm);
3270   }
3271 
3272   //  Phase 4:  Update the inputs of non-instance memory Phis and
3273   //            the Memory input of memnodes
3274   // First update the inputs of any non-instance Phi's from
3275   // which we split out an instance Phi.  Note we don't have
3276   // to recursively process Phi's encounted on the input memory
3277   // chains as is done in split_memory_phi() since they  will
3278   // also be processed here.
3279   for (int j = 0; j < orig_phis.length(); j++) {
3280     PhiNode *phi = orig_phis.at(j);
3281     int alias_idx = _compile->get_alias_index(phi->adr_type());
3282     igvn->hash_delete(phi);
3283     for (uint i = 1; i < phi->req(); i++) {
3284       Node *mem = phi->in(i);
3285       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3286       if (_compile->failing()) {
3287         return;
3288       }
3289       if (mem != new_mem) {
3290         phi->set_req(i, new_mem);
3291       }
3292     }
3293     igvn->hash_insert(phi);
3294     record_for_optimizer(phi);
3295   }
3296 
3297   // Update the memory inputs of MemNodes with the value we computed
3298   // in Phase 2 and move stores memory users to corresponding memory slices.
3299   // Disable memory split verification code until the fix for 6984348.
3300   // Currently it produces false negative results since it does not cover all cases.
3301 #if 0 // ifdef ASSERT
3302   visited.Reset();
3303   Node_Stack old_mems(arena, _compile->unique() >> 2);
3304 #endif
3305   for (uint i = 0; i < ideal_nodes.size(); i++) {
3306     Node*    n = ideal_nodes.at(i);
3307     Node* nmem = get_map(n->_idx);
3308     assert(nmem != NULL, "sanity");
3309     if (n->is_Mem()) {
3310 #if 0 // ifdef ASSERT
3311       Node* old_mem = n->in(MemNode::Memory);
3312       if (!visited.test_set(old_mem->_idx)) {
3313         old_mems.push(old_mem, old_mem->outcnt());
3314       }
3315 #endif
3316       assert(n->in(MemNode::Memory) != nmem, "sanity");
3317       if (!n->is_Load()) {
3318         // Move memory users of a store first.
3319         move_inst_mem(n, orig_phis);
3320       }
3321       // Now update memory input
3322       igvn->hash_delete(n);
3323       n->set_req(MemNode::Memory, nmem);
3324       igvn->hash_insert(n);
3325       record_for_optimizer(n);
3326     } else {
3327       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3328              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3329     }
3330   }
3331 #if 0 // ifdef ASSERT
3332   // Verify that memory was split correctly
3333   while (old_mems.is_nonempty()) {
3334     Node* old_mem = old_mems.node();
3335     uint  old_cnt = old_mems.index();
3336     old_mems.pop();
3337     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3338   }
3339 #endif
3340 }
3341 
3342 #ifndef PRODUCT
3343 static const char *node_type_names[] = {
3344   "UnknownType",
3345   "JavaObject",
3346   "LocalVar",
3347   "Field",
3348   "Arraycopy"
3349 };
3350 
3351 static const char *esc_names[] = {
3352   "UnknownEscape",
3353   "NoEscape",
3354   "ArgEscape",
3355   "GlobalEscape"
3356 };
3357 
3358 void PointsToNode::dump(bool print_state) const {
3359   NodeType nt = node_type();
3360   tty->print("%s ", node_type_names[(int) nt]);
3361   if (print_state) {
3362     EscapeState es = escape_state();
3363     EscapeState fields_es = fields_escape_state();
3364     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3365     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3366       tty->print("NSR ");
3367   }
3368   if (is_Field()) {
3369     FieldNode* f = (FieldNode*)this;
3370     if (f->is_oop())
3371       tty->print("oop ");
3372     if (f->offset() > 0)
3373       tty->print("+%d ", f->offset());
3374     tty->print("(");
3375     for (BaseIterator i(f); i.has_next(); i.next()) {
3376       PointsToNode* b = i.get();
3377       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3378     }
3379     tty->print(" )");
3380   }
3381   tty->print("[");
3382   for (EdgeIterator i(this); i.has_next(); i.next()) {
3383     PointsToNode* e = i.get();
3384     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3385   }
3386   tty->print(" [");
3387   for (UseIterator i(this); i.has_next(); i.next()) {
3388     PointsToNode* u = i.get();
3389     bool is_base = false;
3390     if (PointsToNode::is_base_use(u)) {
3391       is_base = true;
3392       u = PointsToNode::get_use_node(u)->as_Field();
3393     }
3394     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3395   }
3396   tty->print(" ]]  ");
3397   if (_node == NULL)
3398     tty->print_cr("<null>");
3399   else
3400     _node->dump();
3401 }
3402 
3403 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3404   bool first = true;
3405   int ptnodes_length = ptnodes_worklist.length();
3406   for (int i = 0; i < ptnodes_length; i++) {
3407     PointsToNode *ptn = ptnodes_worklist.at(i);
3408     if (ptn == NULL || !ptn->is_JavaObject())
3409       continue;
3410     PointsToNode::EscapeState es = ptn->escape_state();
3411     if ((es != PointsToNode::NoEscape) && !Verbose) {
3412       continue;
3413     }
3414     Node* n = ptn->ideal_node();
3415     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3416                              n->as_CallStaticJava()->is_boxing_method())) {
3417       if (first) {
3418         tty->cr();
3419         tty->print("======== Connection graph for ");
3420         _compile->method()->print_short_name();
3421         tty->cr();
3422         first = false;
3423       }
3424       ptn->dump();
3425       // Print all locals and fields which reference this allocation
3426       for (UseIterator j(ptn); j.has_next(); j.next()) {
3427         PointsToNode* use = j.get();
3428         if (use->is_LocalVar()) {
3429           use->dump(Verbose);
3430         } else if (Verbose) {
3431           use->dump();
3432         }
3433       }
3434       tty->cr();
3435     }
3436   }
3437 }
3438 #endif