1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/loopnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/node.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/regmask.hpp"
  36 #include "opto/type.hpp"
  37 #include "utilities/copy.hpp"
  38 
  39 class RegMask;
  40 // #include "phase.hpp"
  41 class PhaseTransform;
  42 class PhaseGVN;
  43 
  44 // Arena we are currently building Nodes in
  45 const uint Node::NotAMachineReg = 0xffff0000;
  46 
  47 #ifndef PRODUCT
  48 extern int nodes_created;
  49 #endif
  50 
  51 #ifdef ASSERT
  52 
  53 //-------------------------- construct_node------------------------------------
  54 // Set a breakpoint here to identify where a particular node index is built.
  55 void Node::verify_construction() {
  56   _debug_orig = NULL;
  57   int old_debug_idx = Compile::debug_idx();
  58   int new_debug_idx = old_debug_idx+1;
  59   if (new_debug_idx > 0) {
  60     // Arrange that the lowest five decimal digits of _debug_idx
  61     // will repeat those of _idx. In case this is somehow pathological,
  62     // we continue to assign negative numbers (!) consecutively.
  63     const int mod = 100000;
  64     int bump = (int)(_idx - new_debug_idx) % mod;
  65     if (bump < 0)  bump += mod;
  66     assert(bump >= 0 && bump < mod, "");
  67     new_debug_idx += bump;
  68   }
  69   Compile::set_debug_idx(new_debug_idx);
  70   set_debug_idx( new_debug_idx );
  71   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  72   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
  73   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  74     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  75     BREAKPOINT;
  76   }
  77 #if OPTO_DU_ITERATOR_ASSERT
  78   _last_del = NULL;
  79   _del_tick = 0;
  80 #endif
  81   _hash_lock = 0;
  82 }
  83 
  84 
  85 // #ifdef ASSERT ...
  86 
  87 #if OPTO_DU_ITERATOR_ASSERT
  88 void DUIterator_Common::sample(const Node* node) {
  89   _vdui     = VerifyDUIterators;
  90   _node     = node;
  91   _outcnt   = node->_outcnt;
  92   _del_tick = node->_del_tick;
  93   _last     = NULL;
  94 }
  95 
  96 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
  97   assert(_node     == node, "consistent iterator source");
  98   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
  99 }
 100 
 101 void DUIterator_Common::verify_resync() {
 102   // Ensure that the loop body has just deleted the last guy produced.
 103   const Node* node = _node;
 104   // Ensure that at least one copy of the last-seen edge was deleted.
 105   // Note:  It is OK to delete multiple copies of the last-seen edge.
 106   // Unfortunately, we have no way to verify that all the deletions delete
 107   // that same edge.  On this point we must use the Honor System.
 108   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 109   assert(node->_last_del == _last, "must have deleted the edge just produced");
 110   // We liked this deletion, so accept the resulting outcnt and tick.
 111   _outcnt   = node->_outcnt;
 112   _del_tick = node->_del_tick;
 113 }
 114 
 115 void DUIterator_Common::reset(const DUIterator_Common& that) {
 116   if (this == &that)  return;  // ignore assignment to self
 117   if (!_vdui) {
 118     // We need to initialize everything, overwriting garbage values.
 119     _last = that._last;
 120     _vdui = that._vdui;
 121   }
 122   // Note:  It is legal (though odd) for an iterator over some node x
 123   // to be reassigned to iterate over another node y.  Some doubly-nested
 124   // progress loops depend on being able to do this.
 125   const Node* node = that._node;
 126   // Re-initialize everything, except _last.
 127   _node     = node;
 128   _outcnt   = node->_outcnt;
 129   _del_tick = node->_del_tick;
 130 }
 131 
 132 void DUIterator::sample(const Node* node) {
 133   DUIterator_Common::sample(node);      // Initialize the assertion data.
 134   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 135 }
 136 
 137 void DUIterator::verify(const Node* node, bool at_end_ok) {
 138   DUIterator_Common::verify(node, at_end_ok);
 139   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 140 }
 141 
 142 void DUIterator::verify_increment() {
 143   if (_refresh_tick & 1) {
 144     // We have refreshed the index during this loop.
 145     // Fix up _idx to meet asserts.
 146     if (_idx > _outcnt)  _idx = _outcnt;
 147   }
 148   verify(_node, true);
 149 }
 150 
 151 void DUIterator::verify_resync() {
 152   // Note:  We do not assert on _outcnt, because insertions are OK here.
 153   DUIterator_Common::verify_resync();
 154   // Make sure we are still in sync, possibly with no more out-edges:
 155   verify(_node, true);
 156 }
 157 
 158 void DUIterator::reset(const DUIterator& that) {
 159   if (this == &that)  return;  // self assignment is always a no-op
 160   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 161   assert(that._idx          == 0, "assign only the result of Node::outs()");
 162   assert(_idx               == that._idx, "already assigned _idx");
 163   if (!_vdui) {
 164     // We need to initialize everything, overwriting garbage values.
 165     sample(that._node);
 166   } else {
 167     DUIterator_Common::reset(that);
 168     if (_refresh_tick & 1) {
 169       _refresh_tick++;                  // Clear the "was refreshed" flag.
 170     }
 171     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 172   }
 173 }
 174 
 175 void DUIterator::refresh() {
 176   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 177   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 178 }
 179 
 180 void DUIterator::verify_finish() {
 181   // If the loop has killed the node, do not require it to re-run.
 182   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 183   // If this assert triggers, it means that a loop used refresh_out_pos
 184   // to re-synch an iteration index, but the loop did not correctly
 185   // re-run itself, using a "while (progress)" construct.
 186   // This iterator enforces the rule that you must keep trying the loop
 187   // until it "runs clean" without any need for refreshing.
 188   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 189 }
 190 
 191 
 192 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 193   DUIterator_Common::verify(node, at_end_ok);
 194   Node** out    = node->_out;
 195   uint   cnt    = node->_outcnt;
 196   assert(cnt == _outcnt, "no insertions allowed");
 197   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 198   // This last check is carefully designed to work for NO_OUT_ARRAY.
 199 }
 200 
 201 void DUIterator_Fast::verify_limit() {
 202   const Node* node = _node;
 203   verify(node, true);
 204   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 205 }
 206 
 207 void DUIterator_Fast::verify_resync() {
 208   const Node* node = _node;
 209   if (_outp == node->_out + _outcnt) {
 210     // Note that the limit imax, not the pointer i, gets updated with the
 211     // exact count of deletions.  (For the pointer it's always "--i".)
 212     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 213     // This is a limit pointer, with a name like "imax".
 214     // Fudge the _last field so that the common assert will be happy.
 215     _last = (Node*) node->_last_del;
 216     DUIterator_Common::verify_resync();
 217   } else {
 218     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 219     // A normal internal pointer.
 220     DUIterator_Common::verify_resync();
 221     // Make sure we are still in sync, possibly with no more out-edges:
 222     verify(node, true);
 223   }
 224 }
 225 
 226 void DUIterator_Fast::verify_relimit(uint n) {
 227   const Node* node = _node;
 228   assert((int)n > 0, "use imax -= n only with a positive count");
 229   // This must be a limit pointer, with a name like "imax".
 230   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 231   // The reported number of deletions must match what the node saw.
 232   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 233   // Fudge the _last field so that the common assert will be happy.
 234   _last = (Node*) node->_last_del;
 235   DUIterator_Common::verify_resync();
 236 }
 237 
 238 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 239   assert(_outp              == that._outp, "already assigned _outp");
 240   DUIterator_Common::reset(that);
 241 }
 242 
 243 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 244   // at_end_ok means the _outp is allowed to underflow by 1
 245   _outp += at_end_ok;
 246   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 247   _outp -= at_end_ok;
 248   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 249 }
 250 
 251 void DUIterator_Last::verify_limit() {
 252   // Do not require the limit address to be resynched.
 253   //verify(node, true);
 254   assert(_outp == _node->_out, "limit still correct");
 255 }
 256 
 257 void DUIterator_Last::verify_step(uint num_edges) {
 258   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 259   _outcnt   -= num_edges;
 260   _del_tick += num_edges;
 261   // Make sure we are still in sync, possibly with no more out-edges:
 262   const Node* node = _node;
 263   verify(node, true);
 264   assert(node->_last_del == _last, "must have deleted the edge just produced");
 265 }
 266 
 267 #endif //OPTO_DU_ITERATOR_ASSERT
 268 
 269 
 270 #endif //ASSERT
 271 
 272 
 273 // This constant used to initialize _out may be any non-null value.
 274 // The value NULL is reserved for the top node only.
 275 #define NO_OUT_ARRAY ((Node**)-1)
 276 
 277 // This funny expression handshakes with Node::operator new
 278 // to pull Compile::current out of the new node's _out field,
 279 // and then calls a subroutine which manages most field
 280 // initializations.  The only one which is tricky is the
 281 // _idx field, which is const, and so must be initialized
 282 // by a return value, not an assignment.
 283 //
 284 // (Aren't you thankful that Java finals don't require so many tricks?)
 285 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
 286 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
 287 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 288 #endif
 289 
 290 // Out-of-line code from node constructors.
 291 // Executed only when extra debug info. is being passed around.
 292 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 293   C->set_node_notes_at(idx, nn);
 294 }
 295 
 296 // Shared initialization code.
 297 inline int Node::Init(int req, Compile* C) {
 298   assert(Compile::current() == C, "must use operator new(Compile*)");
 299   int idx = C->next_unique();
 300 
 301   // Allocate memory for the necessary number of edges.
 302   if (req > 0) {
 303     // Allocate space for _in array to have double alignment.
 304     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 305 #ifdef ASSERT
 306     _in[req-1] = this; // magic cookie for assertion check
 307 #endif
 308   }
 309   // If there are default notes floating around, capture them:
 310   Node_Notes* nn = C->default_node_notes();
 311   if (nn != NULL)  init_node_notes(C, idx, nn);
 312 
 313   // Note:  At this point, C is dead,
 314   // and we begin to initialize the new Node.
 315 
 316   _cnt = _max = req;
 317   _outcnt = _outmax = 0;
 318   _class_id = Class_Node;
 319   _flags = 0;
 320   _out = NO_OUT_ARRAY;
 321   return idx;
 322 }
 323 
 324 //------------------------------Node-------------------------------------------
 325 // Create a Node, with a given number of required edges.
 326 Node::Node(uint req)
 327   : _idx(IDX_INIT(req))
 328 #ifdef ASSERT
 329   , _parse_idx(_idx)
 330 #endif
 331 {
 332   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 333   debug_only( verify_construction() );
 334   NOT_PRODUCT(nodes_created++);
 335   if (req == 0) {
 336     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 337     _in = NULL;
 338   } else {
 339     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 340     Node** to = _in;
 341     for(uint i = 0; i < req; i++) {
 342       to[i] = NULL;
 343     }
 344   }
 345 }
 346 
 347 //------------------------------Node-------------------------------------------
 348 Node::Node(Node *n0)
 349   : _idx(IDX_INIT(1))
 350 #ifdef ASSERT
 351   , _parse_idx(_idx)
 352 #endif
 353 {
 354   debug_only( verify_construction() );
 355   NOT_PRODUCT(nodes_created++);
 356   // Assert we allocated space for input array already
 357   assert( _in[0] == this, "Must pass arg count to 'new'" );
 358   assert( is_not_dead(n0), "can not use dead node");
 359   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 360 }
 361 
 362 //------------------------------Node-------------------------------------------
 363 Node::Node(Node *n0, Node *n1)
 364   : _idx(IDX_INIT(2))
 365 #ifdef ASSERT
 366   , _parse_idx(_idx)
 367 #endif
 368 {
 369   debug_only( verify_construction() );
 370   NOT_PRODUCT(nodes_created++);
 371   // Assert we allocated space for input array already
 372   assert( _in[1] == this, "Must pass arg count to 'new'" );
 373   assert( is_not_dead(n0), "can not use dead node");
 374   assert( is_not_dead(n1), "can not use dead node");
 375   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 376   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 377 }
 378 
 379 //------------------------------Node-------------------------------------------
 380 Node::Node(Node *n0, Node *n1, Node *n2)
 381   : _idx(IDX_INIT(3))
 382 #ifdef ASSERT
 383   , _parse_idx(_idx)
 384 #endif
 385 {
 386   debug_only( verify_construction() );
 387   NOT_PRODUCT(nodes_created++);
 388   // Assert we allocated space for input array already
 389   assert( _in[2] == this, "Must pass arg count to 'new'" );
 390   assert( is_not_dead(n0), "can not use dead node");
 391   assert( is_not_dead(n1), "can not use dead node");
 392   assert( is_not_dead(n2), "can not use dead node");
 393   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 394   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 395   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 396 }
 397 
 398 //------------------------------Node-------------------------------------------
 399 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 400   : _idx(IDX_INIT(4))
 401 #ifdef ASSERT
 402   , _parse_idx(_idx)
 403 #endif
 404 {
 405   debug_only( verify_construction() );
 406   NOT_PRODUCT(nodes_created++);
 407   // Assert we allocated space for input array already
 408   assert( _in[3] == this, "Must pass arg count to 'new'" );
 409   assert( is_not_dead(n0), "can not use dead node");
 410   assert( is_not_dead(n1), "can not use dead node");
 411   assert( is_not_dead(n2), "can not use dead node");
 412   assert( is_not_dead(n3), "can not use dead node");
 413   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 414   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 415   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 416   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 417 }
 418 
 419 //------------------------------Node-------------------------------------------
 420 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 421   : _idx(IDX_INIT(5))
 422 #ifdef ASSERT
 423   , _parse_idx(_idx)
 424 #endif
 425 {
 426   debug_only( verify_construction() );
 427   NOT_PRODUCT(nodes_created++);
 428   // Assert we allocated space for input array already
 429   assert( _in[4] == this, "Must pass arg count to 'new'" );
 430   assert( is_not_dead(n0), "can not use dead node");
 431   assert( is_not_dead(n1), "can not use dead node");
 432   assert( is_not_dead(n2), "can not use dead node");
 433   assert( is_not_dead(n3), "can not use dead node");
 434   assert( is_not_dead(n4), "can not use dead node");
 435   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 436   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 437   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 438   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 439   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 440 }
 441 
 442 //------------------------------Node-------------------------------------------
 443 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 444                      Node *n4, Node *n5)
 445   : _idx(IDX_INIT(6))
 446 #ifdef ASSERT
 447   , _parse_idx(_idx)
 448 #endif
 449 {
 450   debug_only( verify_construction() );
 451   NOT_PRODUCT(nodes_created++);
 452   // Assert we allocated space for input array already
 453   assert( _in[5] == this, "Must pass arg count to 'new'" );
 454   assert( is_not_dead(n0), "can not use dead node");
 455   assert( is_not_dead(n1), "can not use dead node");
 456   assert( is_not_dead(n2), "can not use dead node");
 457   assert( is_not_dead(n3), "can not use dead node");
 458   assert( is_not_dead(n4), "can not use dead node");
 459   assert( is_not_dead(n5), "can not use dead node");
 460   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 461   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 462   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 463   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 464   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 465   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 466 }
 467 
 468 //------------------------------Node-------------------------------------------
 469 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 470                      Node *n4, Node *n5, Node *n6)
 471   : _idx(IDX_INIT(7))
 472 #ifdef ASSERT
 473   , _parse_idx(_idx)
 474 #endif
 475 {
 476   debug_only( verify_construction() );
 477   NOT_PRODUCT(nodes_created++);
 478   // Assert we allocated space for input array already
 479   assert( _in[6] == this, "Must pass arg count to 'new'" );
 480   assert( is_not_dead(n0), "can not use dead node");
 481   assert( is_not_dead(n1), "can not use dead node");
 482   assert( is_not_dead(n2), "can not use dead node");
 483   assert( is_not_dead(n3), "can not use dead node");
 484   assert( is_not_dead(n4), "can not use dead node");
 485   assert( is_not_dead(n5), "can not use dead node");
 486   assert( is_not_dead(n6), "can not use dead node");
 487   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 488   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 489   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 490   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 491   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 492   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 493   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 494 }
 495 
 496 
 497 //------------------------------clone------------------------------------------
 498 // Clone a Node.
 499 Node *Node::clone() const {
 500   Compile* C = Compile::current();
 501   uint s = size_of();           // Size of inherited Node
 502   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 503   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 504   // Set the new input pointer array
 505   n->_in = (Node**)(((char*)n)+s);
 506   // Cannot share the old output pointer array, so kill it
 507   n->_out = NO_OUT_ARRAY;
 508   // And reset the counters to 0
 509   n->_outcnt = 0;
 510   n->_outmax = 0;
 511   // Unlock this guy, since he is not in any hash table.
 512   debug_only(n->_hash_lock = 0);
 513   // Walk the old node's input list to duplicate its edges
 514   uint i;
 515   for( i = 0; i < len(); i++ ) {
 516     Node *x = in(i);
 517     n->_in[i] = x;
 518     if (x != NULL) x->add_out(n);
 519   }
 520   if (is_macro())
 521     C->add_macro_node(n);
 522   if (is_expensive())
 523     C->add_expensive_node(n);
 524 
 525   if (Opcode() == Op_ShenandoahWriteBarrier) {
 526     C->add_shenandoah_barrier(n->as_ShenandoahBarrier());
 527   }
 528   // If the cloned node is a range check dependent CastII, add it to the list.
 529   CastIINode* cast = n->isa_CastII();
 530   if (cast != NULL && cast->has_range_check()) {
 531     C->add_range_check_cast(cast);
 532   }
 533 
 534   n->set_idx(C->next_unique()); // Get new unique index as well
 535   debug_only( n->verify_construction() );
 536   NOT_PRODUCT(nodes_created++);
 537   // Do not patch over the debug_idx of a clone, because it makes it
 538   // impossible to break on the clone's moment of creation.
 539   //debug_only( n->set_debug_idx( debug_idx() ) );
 540 
 541   C->copy_node_notes_to(n, (Node*) this);
 542 
 543   // MachNode clone
 544   uint nopnds;
 545   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 546     MachNode *mach  = n->as_Mach();
 547     MachNode *mthis = this->as_Mach();
 548     // Get address of _opnd_array.
 549     // It should be the same offset since it is the clone of this node.
 550     MachOper **from = mthis->_opnds;
 551     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 552                     pointer_delta((const void*)from,
 553                                   (const void*)(&mthis->_opnds), 1));
 554     mach->_opnds = to;
 555     for ( uint i = 0; i < nopnds; ++i ) {
 556       to[i] = from[i]->clone(C);
 557     }
 558   }
 559   // cloning CallNode may need to clone JVMState
 560   if (n->is_Call()) {
 561     n->as_Call()->clone_jvms(C);
 562   }
 563   if (n->is_SafePoint()) {
 564     n->as_SafePoint()->clone_replaced_nodes();
 565   }
 566   return n;                     // Return the clone
 567 }
 568 
 569 //---------------------------setup_is_top--------------------------------------
 570 // Call this when changing the top node, to reassert the invariants
 571 // required by Node::is_top.  See Compile::set_cached_top_node.
 572 void Node::setup_is_top() {
 573   if (this == (Node*)Compile::current()->top()) {
 574     // This node has just become top.  Kill its out array.
 575     _outcnt = _outmax = 0;
 576     _out = NULL;                           // marker value for top
 577     assert(is_top(), "must be top");
 578   } else {
 579     if (_out == NULL)  _out = NO_OUT_ARRAY;
 580     assert(!is_top(), "must not be top");
 581   }
 582 }
 583 
 584 
 585 //------------------------------~Node------------------------------------------
 586 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 587 extern int reclaim_idx ;
 588 extern int reclaim_in  ;
 589 extern int reclaim_node;
 590 void Node::destruct() {
 591   // Eagerly reclaim unique Node numberings
 592   Compile* compile = Compile::current();
 593   if ((uint)_idx+1 == compile->unique()) {
 594     compile->set_unique(compile->unique()-1);
 595 #ifdef ASSERT
 596     reclaim_idx++;
 597 #endif
 598   }
 599   // Clear debug info:
 600   Node_Notes* nn = compile->node_notes_at(_idx);
 601   if (nn != NULL)  nn->clear();
 602   // Walk the input array, freeing the corresponding output edges
 603   _cnt = _max;  // forget req/prec distinction
 604   uint i;
 605   for( i = 0; i < _max; i++ ) {
 606     set_req(i, NULL);
 607     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 608   }
 609   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 610   // See if the input array was allocated just prior to the object
 611   int edge_size = _max*sizeof(void*);
 612   int out_edge_size = _outmax*sizeof(void*);
 613   char *edge_end = ((char*)_in) + edge_size;
 614   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 615   char *out_edge_end = out_array + out_edge_size;
 616   int node_size = size_of();
 617 
 618   // Free the output edge array
 619   if (out_edge_size > 0) {
 620 #ifdef ASSERT
 621     if( out_edge_end == compile->node_arena()->hwm() )
 622       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
 623 #endif
 624     compile->node_arena()->Afree(out_array, out_edge_size);
 625   }
 626 
 627   // Free the input edge array and the node itself
 628   if( edge_end == (char*)this ) {
 629 #ifdef ASSERT
 630     if( edge_end+node_size == compile->node_arena()->hwm() ) {
 631       reclaim_in  += edge_size;
 632       reclaim_node+= node_size;
 633     }
 634 #else
 635     // It was; free the input array and object all in one hit
 636     compile->node_arena()->Afree(_in,edge_size+node_size);
 637 #endif
 638   } else {
 639 
 640     // Free just the input array
 641 #ifdef ASSERT
 642     if( edge_end == compile->node_arena()->hwm() )
 643       reclaim_in  += edge_size;
 644 #endif
 645     compile->node_arena()->Afree(_in,edge_size);
 646 
 647     // Free just the object
 648 #ifdef ASSERT
 649     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
 650       reclaim_node+= node_size;
 651 #else
 652     compile->node_arena()->Afree(this,node_size);
 653 #endif
 654   }
 655   if (is_macro()) {
 656     compile->remove_macro_node(this);
 657   }
 658   if (is_expensive()) {
 659     compile->remove_expensive_node(this);
 660   }
 661   if (is_ShenandoahBarrier()) {
 662     compile->remove_shenandoah_barrier(this->as_ShenandoahBarrier());
 663   }
 664   CastIINode* cast = isa_CastII();
 665   if (cast != NULL && cast->has_range_check()) {
 666     compile->remove_range_check_cast(cast);
 667   }
 668 
 669   if (is_SafePoint()) {
 670     as_SafePoint()->delete_replaced_nodes();
 671   }
 672 #ifdef ASSERT
 673   // We will not actually delete the storage, but we'll make the node unusable.
 674   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 675   _in = _out = (Node**) badAddress;
 676   _max = _cnt = _outmax = _outcnt = 0;
 677 #endif
 678 }
 679 
 680 //------------------------------grow-------------------------------------------
 681 // Grow the input array, making space for more edges
 682 void Node::grow( uint len ) {
 683   Arena* arena = Compile::current()->node_arena();
 684   uint new_max = _max;
 685   if( new_max == 0 ) {
 686     _max = 4;
 687     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 688     Node** to = _in;
 689     to[0] = NULL;
 690     to[1] = NULL;
 691     to[2] = NULL;
 692     to[3] = NULL;
 693     return;
 694   }
 695   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 696   // Trimming to limit allows a uint8 to handle up to 255 edges.
 697   // Previously I was using only powers-of-2 which peaked at 128 edges.
 698   //if( new_max >= limit ) new_max = limit-1;
 699   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 700   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 701   _max = new_max;               // Record new max length
 702   // This assertion makes sure that Node::_max is wide enough to
 703   // represent the numerical value of new_max.
 704   assert(_max == new_max && _max > len, "int width of _max is too small");
 705 }
 706 
 707 //-----------------------------out_grow----------------------------------------
 708 // Grow the input array, making space for more edges
 709 void Node::out_grow( uint len ) {
 710   assert(!is_top(), "cannot grow a top node's out array");
 711   Arena* arena = Compile::current()->node_arena();
 712   uint new_max = _outmax;
 713   if( new_max == 0 ) {
 714     _outmax = 4;
 715     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 716     return;
 717   }
 718   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 719   // Trimming to limit allows a uint8 to handle up to 255 edges.
 720   // Previously I was using only powers-of-2 which peaked at 128 edges.
 721   //if( new_max >= limit ) new_max = limit-1;
 722   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 723   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 724   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 725   _outmax = new_max;               // Record new max length
 726   // This assertion makes sure that Node::_max is wide enough to
 727   // represent the numerical value of new_max.
 728   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 729 }
 730 
 731 #ifdef ASSERT
 732 //------------------------------is_dead----------------------------------------
 733 bool Node::is_dead() const {
 734   // Mach and pinch point nodes may look like dead.
 735   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 736     return false;
 737   for( uint i = 0; i < _max; i++ )
 738     if( _in[i] != NULL )
 739       return false;
 740   dump();
 741   return true;
 742 }
 743 #endif
 744 
 745 
 746 //------------------------------is_unreachable---------------------------------
 747 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 748   assert(!is_Mach(), "doesn't work with MachNodes");
 749   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
 750 }
 751 
 752 //------------------------------add_req----------------------------------------
 753 // Add a new required input at the end
 754 void Node::add_req( Node *n ) {
 755   assert( is_not_dead(n), "can not use dead node");
 756 
 757   // Look to see if I can move precedence down one without reallocating
 758   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 759     grow( _max+1 );
 760 
 761   // Find a precedence edge to move
 762   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 763     uint i;
 764     for( i=_cnt; i<_max; i++ )
 765       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 766         break;                  // There must be one, since we grew the array
 767     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 768   }
 769   _in[_cnt++] = n;            // Stuff over old prec edge
 770   if (n != NULL) n->add_out((Node *)this);
 771 }
 772 
 773 //---------------------------add_req_batch-------------------------------------
 774 // Add a new required input at the end
 775 void Node::add_req_batch( Node *n, uint m ) {
 776   assert( is_not_dead(n), "can not use dead node");
 777   // check various edge cases
 778   if ((int)m <= 1) {
 779     assert((int)m >= 0, "oob");
 780     if (m != 0)  add_req(n);
 781     return;
 782   }
 783 
 784   // Look to see if I can move precedence down one without reallocating
 785   if( (_cnt+m) > _max || _in[_max-m] )
 786     grow( _max+m );
 787 
 788   // Find a precedence edge to move
 789   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 790     uint i;
 791     for( i=_cnt; i<_max; i++ )
 792       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 793         break;                  // There must be one, since we grew the array
 794     // Slide all the precs over by m positions (assume #prec << m).
 795     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 796   }
 797 
 798   // Stuff over the old prec edges
 799   for(uint i=0; i<m; i++ ) {
 800     _in[_cnt++] = n;
 801   }
 802 
 803   // Insert multiple out edges on the node.
 804   if (n != NULL && !n->is_top()) {
 805     for(uint i=0; i<m; i++ ) {
 806       n->add_out((Node *)this);
 807     }
 808   }
 809 }
 810 
 811 //------------------------------del_req----------------------------------------
 812 // Delete the required edge and compact the edge array
 813 void Node::del_req( uint idx ) {
 814   assert( idx < _cnt, "oob");
 815   assert( !VerifyHashTableKeys || _hash_lock == 0,
 816           "remove node from hash table before modifying it");
 817   // First remove corresponding def-use edge
 818   Node *n = in(idx);
 819   if (n != NULL) n->del_out((Node *)this);
 820   _in[idx] = in(--_cnt);  // Compact the array
 821   _in[_cnt] = NULL;       // NULL out emptied slot
 822 }
 823 
 824 //------------------------------del_req_ordered--------------------------------
 825 // Delete the required edge and compact the edge array with preserved order
 826 void Node::del_req_ordered( uint idx ) {
 827   assert( idx < _cnt, "oob");
 828   assert( !VerifyHashTableKeys || _hash_lock == 0,
 829           "remove node from hash table before modifying it");
 830   // First remove corresponding def-use edge
 831   Node *n = in(idx);
 832   if (n != NULL) n->del_out((Node *)this);
 833   if (idx < _cnt - 1) { // Not last edge ?
 834     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx-1)*sizeof(Node*)));
 835   }
 836   _in[--_cnt] = NULL;   // NULL out emptied slot
 837 }
 838 
 839 //------------------------------ins_req----------------------------------------
 840 // Insert a new required input at the end
 841 void Node::ins_req( uint idx, Node *n ) {
 842   assert( is_not_dead(n), "can not use dead node");
 843   add_req(NULL);                // Make space
 844   assert( idx < _max, "Must have allocated enough space");
 845   // Slide over
 846   if(_cnt-idx-1 > 0) {
 847     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 848   }
 849   _in[idx] = n;                            // Stuff over old required edge
 850   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 851 }
 852 
 853 //-----------------------------find_edge---------------------------------------
 854 int Node::find_edge(Node* n) {
 855   for (uint i = 0; i < len(); i++) {
 856     if (_in[i] == n)  return i;
 857   }
 858   return -1;
 859 }
 860 
 861 //----------------------------replace_edge-------------------------------------
 862 int Node::replace_edge(Node* old, Node* neww) {
 863   if (old == neww)  return 0;  // nothing to do
 864   uint nrep = 0;
 865   for (uint i = 0; i < len(); i++) {
 866     if (in(i) == old) {
 867       if (i < req())
 868         set_req(i, neww);
 869       else
 870         set_prec(i, neww);
 871       nrep++;
 872     }
 873   }
 874   return nrep;
 875 }
 876 
 877 /**
 878  * Replace input edges in the range pointing to 'old' node.
 879  */
 880 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 881   if (old == neww)  return 0;  // nothing to do
 882   uint nrep = 0;
 883   for (int i = start; i < end; i++) {
 884     if (in(i) == old) {
 885       set_req(i, neww);
 886       nrep++;
 887     }
 888   }
 889   return nrep;
 890 }
 891 
 892 //-------------------------disconnect_inputs-----------------------------------
 893 // NULL out all inputs to eliminate incoming Def-Use edges.
 894 // Return the number of edges between 'n' and 'this'
 895 int Node::disconnect_inputs(Node *n, Compile* C) {
 896   int edges_to_n = 0;
 897 
 898   uint cnt = req();
 899   for( uint i = 0; i < cnt; ++i ) {
 900     if( in(i) == 0 ) continue;
 901     if( in(i) == n ) ++edges_to_n;
 902     set_req(i, NULL);
 903   }
 904   // Remove precedence edges if any exist
 905   // Note: Safepoints may have precedence edges, even during parsing
 906   if( (req() != len()) && (in(req()) != NULL) ) {
 907     uint max = len();
 908     for( uint i = 0; i < max; ++i ) {
 909       if( in(i) == 0 ) continue;
 910       if( in(i) == n ) ++edges_to_n;
 911       set_prec(i, NULL);
 912     }
 913   }
 914 
 915   // Node::destruct requires all out edges be deleted first
 916   // debug_only(destruct();)   // no reuse benefit expected
 917   if (edges_to_n == 0) {
 918     C->record_dead_node(_idx);
 919   }
 920   return edges_to_n;
 921 }
 922 
 923 //-----------------------------uncast---------------------------------------
 924 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 925 // Strip away casting.  (It is depth-limited.)
 926 Node* Node::uncast() const {
 927   // Should be inline:
 928   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 929   if (is_ConstraintCast() || is_CheckCastPP())
 930     return uncast_helper(this);
 931   else
 932     return (Node*) this;
 933 }
 934 
 935 //---------------------------uncast_helper-------------------------------------
 936 Node* Node::uncast_helper(const Node* p) {
 937 #ifdef ASSERT
 938   uint depth_count = 0;
 939   const Node* orig_p = p;
 940 #endif
 941 
 942   while (true) {
 943 #ifdef ASSERT
 944     if (depth_count >= K) {
 945       orig_p->dump(4);
 946       if (p != orig_p)
 947         p->dump(1);
 948     }
 949     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 950 #endif
 951     if (p == NULL || p->req() != 2) {
 952       break;
 953     } else if (p->is_ConstraintCast()) {
 954       p = p->in(1);
 955     } else if (p->is_CheckCastPP()) {
 956       p = p->in(1);
 957     } else {
 958       break;
 959     }
 960   }
 961   return (Node*) p;
 962 }
 963 
 964 // Find out of current node that matches opcode.
 965 Node* Node::find_out_with(int opcode) {
 966   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 967     Node* use = fast_out(i);
 968     if (use->Opcode() == opcode) {
 969       return use;
 970     }
 971   }
 972   return NULL;
 973 }
 974 
 975 // Return true if the current node has an out that matches opcode.
 976 bool Node::has_out_with(int opcode) {
 977   return (find_out_with(opcode) != NULL);
 978 }
 979 
 980 //------------------------------add_prec---------------------------------------
 981 // Add a new precedence input.  Precedence inputs are unordered, with
 982 // duplicates removed and NULLs packed down at the end.
 983 void Node::add_prec( Node *n ) {
 984   assert( is_not_dead(n), "can not use dead node");
 985 
 986   // Check for NULL at end
 987   if( _cnt >= _max || in(_max-1) )
 988     grow( _max+1 );
 989 
 990   // Find a precedence edge to move
 991   uint i = _cnt;
 992   while( in(i) != NULL ) i++;
 993   _in[i] = n;                                // Stuff prec edge over NULL
 994   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 995 }
 996 
 997 //------------------------------rm_prec----------------------------------------
 998 // Remove a precedence input.  Precedence inputs are unordered, with
 999 // duplicates removed and NULLs packed down at the end.
1000 void Node::rm_prec( uint j ) {
1001 
1002   // Find end of precedence list to pack NULLs
1003   uint i;
1004   for( i=j; i<_max; i++ )
1005     if( !_in[i] )               // Find the NULL at end of prec edge list
1006       break;
1007   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
1008   _in[j] = _in[--i];            // Move last element over removed guy
1009   _in[i] = NULL;                // NULL out last element
1010 }
1011 
1012 //------------------------------size_of----------------------------------------
1013 uint Node::size_of() const { return sizeof(*this); }
1014 
1015 //------------------------------ideal_reg--------------------------------------
1016 uint Node::ideal_reg() const { return 0; }
1017 
1018 //------------------------------jvms-------------------------------------------
1019 JVMState* Node::jvms() const { return NULL; }
1020 
1021 #ifdef ASSERT
1022 //------------------------------jvms-------------------------------------------
1023 bool Node::verify_jvms(const JVMState* using_jvms) const {
1024   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1025     if (jvms == using_jvms)  return true;
1026   }
1027   return false;
1028 }
1029 
1030 //------------------------------init_NodeProperty------------------------------
1031 void Node::init_NodeProperty() {
1032   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1033   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1034 }
1035 #endif
1036 
1037 //------------------------------format-----------------------------------------
1038 // Print as assembly
1039 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1040 //------------------------------emit-------------------------------------------
1041 // Emit bytes starting at parameter 'ptr'.
1042 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1043 //------------------------------size-------------------------------------------
1044 // Size of instruction in bytes
1045 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1046 
1047 //------------------------------CFG Construction-------------------------------
1048 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1049 // Goto and Return.
1050 const Node *Node::is_block_proj() const { return 0; }
1051 
1052 // Minimum guaranteed type
1053 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1054 
1055 
1056 //------------------------------raise_bottom_type------------------------------
1057 // Get the worst-case Type output for this Node.
1058 void Node::raise_bottom_type(const Type* new_type) {
1059   if (is_Type()) {
1060     TypeNode *n = this->as_Type();
1061     if (VerifyAliases) {
1062       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1063     }
1064     n->set_type(new_type);
1065   } else if (is_Load()) {
1066     LoadNode *n = this->as_Load();
1067     if (VerifyAliases) {
1068       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1069     }
1070     n->set_type(new_type);
1071   }
1072 }
1073 
1074 //------------------------------Identity---------------------------------------
1075 // Return a node that the given node is equivalent to.
1076 Node *Node::Identity( PhaseTransform * ) {
1077   return this;                  // Default to no identities
1078 }
1079 
1080 //------------------------------Value------------------------------------------
1081 // Compute a new Type for a node using the Type of the inputs.
1082 const Type *Node::Value( PhaseTransform * ) const {
1083   return bottom_type();         // Default to worst-case Type
1084 }
1085 
1086 //------------------------------Ideal------------------------------------------
1087 //
1088 // 'Idealize' the graph rooted at this Node.
1089 //
1090 // In order to be efficient and flexible there are some subtle invariants
1091 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1092 // these invariants, although its too slow to have on by default.  If you are
1093 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1094 //
1095 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1096 // pointer.  If ANY change is made, it must return the root of the reshaped
1097 // graph - even if the root is the same Node.  Example: swapping the inputs
1098 // to an AddINode gives the same answer and same root, but you still have to
1099 // return the 'this' pointer instead of NULL.
1100 //
1101 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1102 // Identity call to return an old Node; basically if Identity can find
1103 // another Node have the Ideal call make no change and return NULL.
1104 // Example: AddINode::Ideal must check for add of zero; in this case it
1105 // returns NULL instead of doing any graph reshaping.
1106 //
1107 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1108 // sharing there may be other users of the old Nodes relying on their current
1109 // semantics.  Modifying them will break the other users.
1110 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1111 // "X+3" unchanged in case it is shared.
1112 //
1113 // If you modify the 'this' pointer's inputs, you should use
1114 // 'set_req'.  If you are making a new Node (either as the new root or
1115 // some new internal piece) you may use 'init_req' to set the initial
1116 // value.  You can make a new Node with either 'new' or 'clone'.  In
1117 // either case, def-use info is correctly maintained.
1118 //
1119 // Example: reshape "(X+3)+4" into "X+7":
1120 //    set_req(1, in(1)->in(1));
1121 //    set_req(2, phase->intcon(7));
1122 //    return this;
1123 // Example: reshape "X*4" into "X<<2"
1124 //    return new (C) LShiftINode(in(1), phase->intcon(2));
1125 //
1126 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1127 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1128 //    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
1129 //    return new (C) AddINode(shift, in(1));
1130 //
1131 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1132 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do
1133 // The Right Thing with def-use info.
1134 //
1135 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1136 // graph uses the 'this' Node it must be the root.  If you want a Node with
1137 // the same Opcode as the 'this' pointer use 'clone'.
1138 //
1139 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1140   return NULL;                  // Default to being Ideal already
1141 }
1142 
1143 // Some nodes have specific Ideal subgraph transformations only if they are
1144 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1145 // for the transformations to happen.
1146 bool Node::has_special_unique_user() const {
1147   assert(outcnt() == 1, "match only for unique out");
1148   Node* n = unique_out();
1149   int op  = Opcode();
1150   if( this->is_Store() ) {
1151     // Condition for back-to-back stores folding.
1152     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1153   } else if (this->is_Load()) {
1154     // Condition for removing an unused LoadNode from the MemBarAcquire precedence input
1155     return n->Opcode() == Op_MemBarAcquire;
1156   } else if( op == Op_AddL ) {
1157     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1158     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1159   } else if( op == Op_SubI || op == Op_SubL ) {
1160     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1161     return n->Opcode() == op && n->in(2) == this;
1162   } else if (op == Op_ShenandoahWriteBarrier) {
1163     return n->Opcode() == Op_ShenandoahWBMemProj;
1164   }
1165   return false;
1166 };
1167 
1168 //--------------------------find_exact_control---------------------------------
1169 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1170 Node* Node::find_exact_control(Node* ctrl) {
1171   if (ctrl == NULL && this->is_Region())
1172     ctrl = this->as_Region()->is_copy();
1173 
1174   if (ctrl != NULL && ctrl->is_CatchProj()) {
1175     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1176       ctrl = ctrl->in(0);
1177     if (ctrl != NULL && !ctrl->is_top())
1178       ctrl = ctrl->in(0);
1179   }
1180 
1181   if (ctrl != NULL && ctrl->is_Proj())
1182     ctrl = ctrl->in(0);
1183 
1184   return ctrl;
1185 }
1186 
1187 //--------------------------dominates------------------------------------------
1188 // Helper function for MemNode::all_controls_dominate().
1189 // Check if 'this' control node dominates or equal to 'sub' control node.
1190 // We already know that if any path back to Root or Start reaches 'this',
1191 // then all paths so, so this is a simple search for one example,
1192 // not an exhaustive search for a counterexample.
1193 bool Node::dominates(Node* sub, Node_List &nlist) {
1194   assert(this->is_CFG(), "expecting control");
1195   assert(sub != NULL && sub->is_CFG(), "expecting control");
1196 
1197   // detect dead cycle without regions
1198   int iterations_without_region_limit = DominatorSearchLimit;
1199 
1200   Node* orig_sub = sub;
1201   Node* dom      = this;
1202   bool  met_dom  = false;
1203   nlist.clear();
1204 
1205   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1206   // After seeing 'dom', continue up to Root or Start.
1207   // If we hit a region (backward split point), it may be a loop head.
1208   // Keep going through one of the region's inputs.  If we reach the
1209   // same region again, go through a different input.  Eventually we
1210   // will either exit through the loop head, or give up.
1211   // (If we get confused, break out and return a conservative 'false'.)
1212   while (sub != NULL) {
1213     if (sub->is_top())  break; // Conservative answer for dead code.
1214     if (sub == dom) {
1215       if (nlist.size() == 0) {
1216         // No Region nodes except loops were visited before and the EntryControl
1217         // path was taken for loops: it did not walk in a cycle.
1218         return true;
1219       } else if (met_dom) {
1220         break;          // already met before: walk in a cycle
1221       } else {
1222         // Region nodes were visited. Continue walk up to Start or Root
1223         // to make sure that it did not walk in a cycle.
1224         met_dom = true; // first time meet
1225         iterations_without_region_limit = DominatorSearchLimit; // Reset
1226      }
1227     }
1228     if (sub->is_Start() || sub->is_Root()) {
1229       // Success if we met 'dom' along a path to Start or Root.
1230       // We assume there are no alternative paths that avoid 'dom'.
1231       // (This assumption is up to the caller to ensure!)
1232       return met_dom;
1233     }
1234     Node* up = sub->in(0);
1235     // Normalize simple pass-through regions and projections:
1236     up = sub->find_exact_control(up);
1237     // If sub == up, we found a self-loop.  Try to push past it.
1238     if (sub == up && sub->is_Loop()) {
1239       // Take loop entry path on the way up to 'dom'.
1240       up = sub->in(1); // in(LoopNode::EntryControl);
1241     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1242       // Always take in(1) path on the way up to 'dom' for clone regions
1243       // (with only one input) or regions which merge > 2 paths
1244       // (usually used to merge fast/slow paths).
1245       up = sub->in(1);
1246     } else if (sub == up && sub->is_Region()) {
1247       // Try both paths for Regions with 2 input paths (it may be a loop head).
1248       // It could give conservative 'false' answer without information
1249       // which region's input is the entry path.
1250       iterations_without_region_limit = DominatorSearchLimit; // Reset
1251 
1252       bool region_was_visited_before = false;
1253       // Was this Region node visited before?
1254       // If so, we have reached it because we accidentally took a
1255       // loop-back edge from 'sub' back into the body of the loop,
1256       // and worked our way up again to the loop header 'sub'.
1257       // So, take the first unexplored path on the way up to 'dom'.
1258       for (int j = nlist.size() - 1; j >= 0; j--) {
1259         intptr_t ni = (intptr_t)nlist.at(j);
1260         Node* visited = (Node*)(ni & ~1);
1261         bool  visited_twice_already = ((ni & 1) != 0);
1262         if (visited == sub) {
1263           if (visited_twice_already) {
1264             // Visited 2 paths, but still stuck in loop body.  Give up.
1265             return false;
1266           }
1267           // The Region node was visited before only once.
1268           // (We will repush with the low bit set, below.)
1269           nlist.remove(j);
1270           // We will find a new edge and re-insert.
1271           region_was_visited_before = true;
1272           break;
1273         }
1274       }
1275 
1276       // Find an incoming edge which has not been seen yet; walk through it.
1277       assert(up == sub, "");
1278       uint skip = region_was_visited_before ? 1 : 0;
1279       for (uint i = 1; i < sub->req(); i++) {
1280         Node* in = sub->in(i);
1281         if (in != NULL && !in->is_top() && in != sub) {
1282           if (skip == 0) {
1283             up = in;
1284             break;
1285           }
1286           --skip;               // skip this nontrivial input
1287         }
1288       }
1289 
1290       // Set 0 bit to indicate that both paths were taken.
1291       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1292     }
1293 
1294     if (up == sub) {
1295       break;    // some kind of tight cycle
1296     }
1297     if (up == orig_sub && met_dom) {
1298       // returned back after visiting 'dom'
1299       break;    // some kind of cycle
1300     }
1301     if (--iterations_without_region_limit < 0) {
1302       break;    // dead cycle
1303     }
1304     sub = up;
1305   }
1306 
1307   // Did not meet Root or Start node in pred. chain.
1308   // Conservative answer for dead code.
1309   return false;
1310 }
1311 
1312 //------------------------------remove_dead_region-----------------------------
1313 // This control node is dead.  Follow the subgraph below it making everything
1314 // using it dead as well.  This will happen normally via the usual IterGVN
1315 // worklist but this call is more efficient.  Do not update use-def info
1316 // inside the dead region, just at the borders.
1317 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1318   // Con's are a popular node to re-hit in the hash table again.
1319   if( dead->is_Con() ) return;
1320 
1321   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1322   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1323   Node_List  nstack(Thread::current()->resource_area());
1324 
1325   Node *top = igvn->C->top();
1326   nstack.push(dead);
1327   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1328 
1329   while (nstack.size() > 0) {
1330     dead = nstack.pop();
1331     if (dead->outcnt() > 0) {
1332       // Keep dead node on stack until all uses are processed.
1333       nstack.push(dead);
1334       // For all Users of the Dead...    ;-)
1335       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1336         Node* use = dead->last_out(k);
1337         igvn->hash_delete(use);       // Yank from hash table prior to mod
1338         if (use->in(0) == dead) {     // Found another dead node
1339           assert (!use->is_Con(), "Control for Con node should be Root node.");
1340           use->set_req(0, top);       // Cut dead edge to prevent processing
1341           nstack.push(use);           // the dead node again.
1342         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1343                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1344                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1345           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1346           use->set_req(0, top);       // Cut self edge
1347           nstack.push(use);
1348         } else {                      // Else found a not-dead user
1349           // Dead if all inputs are top or null
1350           bool dead_use = !use->is_Root(); // Keep empty graph alive
1351           for (uint j = 1; j < use->req(); j++) {
1352             Node* in = use->in(j);
1353             if (in == dead) {         // Turn all dead inputs into TOP
1354               use->set_req(j, top);
1355             } else if (in != NULL && !in->is_top()) {
1356               dead_use = false;
1357             }
1358           }
1359           if (dead_use) {
1360             if (use->is_Region()) {
1361               use->set_req(0, top);   // Cut self edge
1362             }
1363             nstack.push(use);
1364           } else {
1365             igvn->_worklist.push(use);
1366           }
1367         }
1368         // Refresh the iterator, since any number of kills might have happened.
1369         k = dead->last_outs(kmin);
1370       }
1371     } else { // (dead->outcnt() == 0)
1372       // Done with outputs.
1373       igvn->hash_delete(dead);
1374       igvn->_worklist.remove(dead);
1375       igvn->set_type(dead, Type::TOP);
1376       if (dead->is_macro()) {
1377         igvn->C->remove_macro_node(dead);
1378       }
1379       if (dead->is_expensive()) {
1380         igvn->C->remove_expensive_node(dead);
1381       }
1382       if (dead->is_ShenandoahBarrier()) {
1383         igvn->C->remove_shenandoah_barrier(dead->as_ShenandoahBarrier());
1384       }
1385       CastIINode* cast = dead->isa_CastII();
1386       if (cast != NULL && cast->has_range_check()) {
1387         igvn->C->remove_range_check_cast(cast);
1388       }
1389       igvn->C->record_dead_node(dead->_idx);
1390       // Kill all inputs to the dead guy
1391       for (uint i=0; i < dead->req(); i++) {
1392         Node *n = dead->in(i);      // Get input to dead guy
1393         if (n != NULL && !n->is_top()) { // Input is valid?
1394           dead->set_req(i, top);    // Smash input away
1395           if (n->outcnt() == 0) {   // Input also goes dead?
1396             if (!n->is_Con())
1397               nstack.push(n);       // Clear it out as well
1398           } else if (n->outcnt() == 1 &&
1399                      n->has_special_unique_user()) {
1400             igvn->add_users_to_worklist( n );
1401           } else if (n->outcnt() <= 2 && n->is_Store()) {
1402             // Push store's uses on worklist to enable folding optimization for
1403             // store/store and store/load to the same address.
1404             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1405             // and remove_globally_dead_node().
1406             igvn->add_users_to_worklist( n );
1407           } else if (n->Opcode() == Op_AddP && CallLeafNode::has_only_g1_wb_pre_uses(n)) {
1408             igvn->add_users_to_worklist(n);
1409           }
1410         }
1411       }
1412     } // (dead->outcnt() == 0)
1413   }   // while (nstack.size() > 0) for outputs
1414   return;
1415 }
1416 
1417 //------------------------------remove_dead_region-----------------------------
1418 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1419   Node *n = in(0);
1420   if( !n ) return false;
1421   // Lost control into this guy?  I.e., it became unreachable?
1422   // Aggressively kill all unreachable code.
1423   if (can_reshape && n->is_top()) {
1424     kill_dead_code(this, phase->is_IterGVN());
1425     return false; // Node is dead.
1426   }
1427 
1428   if( n->is_Region() && n->as_Region()->is_copy() ) {
1429     Node *m = n->nonnull_req();
1430     set_req(0, m);
1431     return true;
1432   }
1433   return false;
1434 }
1435 
1436 //------------------------------hash-------------------------------------------
1437 // Hash function over Nodes.
1438 uint Node::hash() const {
1439   uint sum = 0;
1440   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1441     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1442   return (sum>>2) + _cnt + Opcode();
1443 }
1444 
1445 //------------------------------cmp--------------------------------------------
1446 // Compare special parts of simple Nodes
1447 uint Node::cmp( const Node &n ) const {
1448   return 1;                     // Must be same
1449 }
1450 
1451 //------------------------------rematerialize-----------------------------------
1452 // Should we clone rather than spill this instruction?
1453 bool Node::rematerialize() const {
1454   if ( is_Mach() )
1455     return this->as_Mach()->rematerialize();
1456   else
1457     return (_flags & Flag_rematerialize) != 0;
1458 }
1459 
1460 //------------------------------needs_anti_dependence_check---------------------
1461 // Nodes which use memory without consuming it, hence need antidependences.
1462 bool Node::needs_anti_dependence_check() const {
1463   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1464     return false;
1465   else
1466     return in(1)->bottom_type()->has_memory();
1467 }
1468 
1469 
1470 // Get an integer constant from a ConNode (or CastIINode).
1471 // Return a default value if there is no apparent constant here.
1472 const TypeInt* Node::find_int_type() const {
1473   if (this->is_Type()) {
1474     return this->as_Type()->type()->isa_int();
1475   } else if (this->is_Con()) {
1476     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1477     return this->bottom_type()->isa_int();
1478   }
1479   return NULL;
1480 }
1481 
1482 // Get a pointer constant from a ConstNode.
1483 // Returns the constant if it is a pointer ConstNode
1484 intptr_t Node::get_ptr() const {
1485   assert( Opcode() == Op_ConP, "" );
1486   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1487 }
1488 
1489 // Get a narrow oop constant from a ConNNode.
1490 intptr_t Node::get_narrowcon() const {
1491   assert( Opcode() == Op_ConN, "" );
1492   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1493 }
1494 
1495 // Get a long constant from a ConNode.
1496 // Return a default value if there is no apparent constant here.
1497 const TypeLong* Node::find_long_type() const {
1498   if (this->is_Type()) {
1499     return this->as_Type()->type()->isa_long();
1500   } else if (this->is_Con()) {
1501     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1502     return this->bottom_type()->isa_long();
1503   }
1504   return NULL;
1505 }
1506 
1507 
1508 /**
1509  * Return a ptr type for nodes which should have it.
1510  */
1511 const TypePtr* Node::get_ptr_type() const {
1512   const TypePtr* tp = this->bottom_type()->make_ptr();
1513 #ifdef ASSERT
1514   if (tp == NULL) {
1515     this->dump(1);
1516     assert((tp != NULL), "unexpected node type");
1517   }
1518 #endif
1519   return tp;
1520 }
1521 
1522 // Get a double constant from a ConstNode.
1523 // Returns the constant if it is a double ConstNode
1524 jdouble Node::getd() const {
1525   assert( Opcode() == Op_ConD, "" );
1526   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1527 }
1528 
1529 // Get a float constant from a ConstNode.
1530 // Returns the constant if it is a float ConstNode
1531 jfloat Node::getf() const {
1532   assert( Opcode() == Op_ConF, "" );
1533   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1534 }
1535 
1536 #ifndef PRODUCT
1537 
1538 //----------------------------NotANode----------------------------------------
1539 // Used in debugging code to avoid walking across dead or uninitialized edges.
1540 static inline bool NotANode(const Node* n) {
1541   if (n == NULL)                   return true;
1542   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1543   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1544   return false;
1545 }
1546 
1547 
1548 //------------------------------find------------------------------------------
1549 // Find a neighbor of this Node with the given _idx
1550 // If idx is negative, find its absolute value, following both _in and _out.
1551 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1552                         VectorSet* old_space, VectorSet* new_space ) {
1553   int node_idx = (idx >= 0) ? idx : -idx;
1554   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1555   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1556   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1557   if( v->test(n->_idx) ) return;
1558   if( (int)n->_idx == node_idx
1559       debug_only(|| n->debug_idx() == node_idx) ) {
1560     if (result != NULL)
1561       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1562                  (uintptr_t)result, (uintptr_t)n, node_idx);
1563     result = n;
1564   }
1565   v->set(n->_idx);
1566   for( uint i=0; i<n->len(); i++ ) {
1567     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1568     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1569   }
1570   // Search along forward edges also:
1571   if (idx < 0 && !only_ctrl) {
1572     for( uint j=0; j<n->outcnt(); j++ ) {
1573       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1574     }
1575   }
1576 #ifdef ASSERT
1577   // Search along debug_orig edges last, checking for cycles
1578   Node* orig = n->debug_orig();
1579   if (orig != NULL) {
1580     do {
1581       if (NotANode(orig))  break;
1582       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1583       orig = orig->debug_orig();
1584     } while (orig != NULL && orig != n->debug_orig());
1585   }
1586 #endif //ASSERT
1587 }
1588 
1589 // call this from debugger:
1590 Node* find_node(Node* n, int idx) {
1591   return n->find(idx);
1592 }
1593 
1594 //------------------------------find-------------------------------------------
1595 Node* Node::find(int idx) const {
1596   ResourceArea *area = Thread::current()->resource_area();
1597   VectorSet old_space(area), new_space(area);
1598   Node* result = NULL;
1599   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1600   return result;
1601 }
1602 
1603 //------------------------------find_ctrl--------------------------------------
1604 // Find an ancestor to this node in the control history with given _idx
1605 Node* Node::find_ctrl(int idx) const {
1606   ResourceArea *area = Thread::current()->resource_area();
1607   VectorSet old_space(area), new_space(area);
1608   Node* result = NULL;
1609   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1610   return result;
1611 }
1612 #endif
1613 
1614 
1615 
1616 #ifndef PRODUCT
1617 
1618 // -----------------------------Name-------------------------------------------
1619 extern const char *NodeClassNames[];
1620 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1621 
1622 static bool is_disconnected(const Node* n) {
1623   for (uint i = 0; i < n->req(); i++) {
1624     if (n->in(i) != NULL)  return false;
1625   }
1626   return true;
1627 }
1628 
1629 #ifdef ASSERT
1630 static void dump_orig(Node* orig, outputStream *st) {
1631   Compile* C = Compile::current();
1632   if (NotANode(orig)) orig = NULL;
1633   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1634   if (orig == NULL) return;
1635   st->print(" !orig=");
1636   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1637   if (NotANode(fast)) fast = NULL;
1638   while (orig != NULL) {
1639     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1640     if (discon) st->print("[");
1641     if (!Compile::current()->node_arena()->contains(orig))
1642       st->print("o");
1643     st->print("%d", orig->_idx);
1644     if (discon) st->print("]");
1645     orig = orig->debug_orig();
1646     if (NotANode(orig)) orig = NULL;
1647     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1648     if (orig != NULL) st->print(",");
1649     if (fast != NULL) {
1650       // Step fast twice for each single step of orig:
1651       fast = fast->debug_orig();
1652       if (NotANode(fast)) fast = NULL;
1653       if (fast != NULL && fast != orig) {
1654         fast = fast->debug_orig();
1655         if (NotANode(fast)) fast = NULL;
1656       }
1657       if (fast == orig) {
1658         st->print("...");
1659         break;
1660       }
1661     }
1662   }
1663 }
1664 
1665 void Node::set_debug_orig(Node* orig) {
1666   _debug_orig = orig;
1667   if (BreakAtNode == 0)  return;
1668   if (NotANode(orig))  orig = NULL;
1669   int trip = 10;
1670   while (orig != NULL) {
1671     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1672       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1673                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1674       BREAKPOINT;
1675     }
1676     orig = orig->debug_orig();
1677     if (NotANode(orig))  orig = NULL;
1678     if (trip-- <= 0)  break;
1679   }
1680 }
1681 #endif //ASSERT
1682 
1683 //------------------------------dump------------------------------------------
1684 // Dump a Node
1685 void Node::dump(const char* suffix, outputStream *st) const {
1686   Compile* C = Compile::current();
1687   bool is_new = C->node_arena()->contains(this);
1688   C->_in_dump_cnt++;
1689   st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
1690 
1691   // Dump the required and precedence inputs
1692   dump_req(st);
1693   dump_prec(st);
1694   // Dump the outputs
1695   dump_out(st);
1696 
1697   if (is_disconnected(this)) {
1698 #ifdef ASSERT
1699     st->print("  [%d]",debug_idx());
1700     dump_orig(debug_orig(), st);
1701 #endif
1702     st->cr();
1703     C->_in_dump_cnt--;
1704     return;                     // don't process dead nodes
1705   }
1706 
1707   // Dump node-specific info
1708   dump_spec(st);
1709 #ifdef ASSERT
1710   // Dump the non-reset _debug_idx
1711   if (Verbose && WizardMode) {
1712     st->print("  [%d]",debug_idx());
1713   }
1714 #endif
1715 
1716   const Type *t = bottom_type();
1717 
1718   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1719     const TypeInstPtr  *toop = t->isa_instptr();
1720     const TypeKlassPtr *tkls = t->isa_klassptr();
1721     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1722     if (klass && klass->is_loaded() && klass->is_interface()) {
1723       st->print("  Interface:");
1724     } else if (toop) {
1725       st->print("  Oop:");
1726     } else if (tkls) {
1727       st->print("  Klass:");
1728     }
1729     t->dump_on(st);
1730   } else if (t == Type::MEMORY) {
1731     st->print("  Memory:");
1732     MemNode::dump_adr_type(this, adr_type(), st);
1733   } else if (Verbose || WizardMode) {
1734     st->print("  Type:");
1735     if (t) {
1736       t->dump_on(st);
1737     } else {
1738       st->print("no type");
1739     }
1740   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1741     // Dump MachSpillcopy vector type.
1742     t->dump_on(st);
1743   }
1744   if (is_new) {
1745     debug_only(dump_orig(debug_orig(), st));
1746     Node_Notes* nn = C->node_notes_at(_idx);
1747     if (nn != NULL && !nn->is_clear()) {
1748       if (nn->jvms() != NULL) {
1749         st->print(" !jvms:");
1750         nn->jvms()->dump_spec(st);
1751       }
1752     }
1753   }
1754   if (suffix) st->print("%s", suffix);
1755   C->_in_dump_cnt--;
1756 }
1757 
1758 //------------------------------dump_req--------------------------------------
1759 void Node::dump_req(outputStream *st) const {
1760   // Dump the required input edges
1761   for (uint i = 0; i < req(); i++) {    // For all required inputs
1762     Node* d = in(i);
1763     if (d == NULL) {
1764       st->print("_ ");
1765     } else if (NotANode(d)) {
1766       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1767     } else {
1768       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1769     }
1770   }
1771 }
1772 
1773 
1774 //------------------------------dump_prec-------------------------------------
1775 void Node::dump_prec(outputStream *st) const {
1776   // Dump the precedence edges
1777   int any_prec = 0;
1778   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1779     Node* p = in(i);
1780     if (p != NULL) {
1781       if (!any_prec++) st->print(" |");
1782       if (NotANode(p)) { st->print("NotANode "); continue; }
1783       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1784     }
1785   }
1786 }
1787 
1788 //------------------------------dump_out--------------------------------------
1789 void Node::dump_out(outputStream *st) const {
1790   // Delimit the output edges
1791   st->print(" [[");
1792   // Dump the output edges
1793   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1794     Node* u = _out[i];
1795     if (u == NULL) {
1796       st->print("_ ");
1797     } else if (NotANode(u)) {
1798       st->print("NotANode ");
1799     } else {
1800       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1801     }
1802   }
1803   st->print("]] ");
1804 }
1805 
1806 //------------------------------dump_nodes-------------------------------------
1807 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1808   Node* s = (Node*)start; // remove const
1809   if (NotANode(s)) return;
1810 
1811   uint depth = (uint)ABS(d);
1812   int direction = d;
1813   Compile* C = Compile::current();
1814   GrowableArray <Node *> nstack(C->live_nodes());
1815 
1816   nstack.append(s);
1817   int begin = 0;
1818   int end = 0;
1819   for(uint i = 0; i < depth; i++) {
1820     end = nstack.length();
1821     for(int j = begin; j < end; j++) {
1822       Node* tp  = nstack.at(j);
1823       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1824       for(uint k = 0; k < limit; k++) {
1825         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1826 
1827         if (NotANode(n))  continue;
1828         // do not recurse through top or the root (would reach unrelated stuff)
1829         if (n->is_Root() || n->is_top())  continue;
1830         if (only_ctrl && !n->is_CFG()) continue;
1831 
1832         bool on_stack = nstack.contains(n);
1833         if (!on_stack) {
1834           nstack.append(n);
1835         }
1836       }
1837     }
1838     begin = end;
1839   }
1840   end = nstack.length();
1841   if (direction > 0) {
1842     for(int j = end-1; j >= 0; j--) {
1843       nstack.at(j)->dump();
1844     }
1845   } else {
1846     for(int j = 0; j < end; j++) {
1847       nstack.at(j)->dump();
1848     }
1849   }
1850 }
1851 
1852 //------------------------------dump-------------------------------------------
1853 void Node::dump(int d) const {
1854   dump_nodes(this, d, false);
1855 }
1856 
1857 //------------------------------dump_ctrl--------------------------------------
1858 // Dump a Node's control history to depth
1859 void Node::dump_ctrl(int d) const {
1860   dump_nodes(this, d, true);
1861 }
1862 
1863 // VERIFICATION CODE
1864 // For each input edge to a node (ie - for each Use-Def edge), verify that
1865 // there is a corresponding Def-Use edge.
1866 //------------------------------verify_edges-----------------------------------
1867 void Node::verify_edges(Unique_Node_List &visited) {
1868   uint i, j, idx;
1869   int  cnt;
1870   Node *n;
1871 
1872   // Recursive termination test
1873   if (visited.member(this))  return;
1874   visited.push(this);
1875 
1876   // Walk over all input edges, checking for correspondence
1877   for( i = 0; i < len(); i++ ) {
1878     n = in(i);
1879     if (n != NULL && !n->is_top()) {
1880       // Count instances of (Node *)this
1881       cnt = 0;
1882       for (idx = 0; idx < n->_outcnt; idx++ ) {
1883         if (n->_out[idx] == (Node *)this)  cnt++;
1884       }
1885       assert( cnt > 0,"Failed to find Def-Use edge." );
1886       // Check for duplicate edges
1887       // walk the input array downcounting the input edges to n
1888       for( j = 0; j < len(); j++ ) {
1889         if( in(j) == n ) cnt--;
1890       }
1891       assert( cnt == 0,"Mismatched edge count.");
1892     } else if (n == NULL) {
1893       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1894     } else {
1895       assert(n->is_top(), "sanity");
1896       // Nothing to check.
1897     }
1898   }
1899   // Recursive walk over all input edges
1900   for( i = 0; i < len(); i++ ) {
1901     n = in(i);
1902     if( n != NULL )
1903       in(i)->verify_edges(visited);
1904   }
1905 }
1906 
1907 //------------------------------verify_recur-----------------------------------
1908 static const Node *unique_top = NULL;
1909 
1910 void Node::verify_recur(const Node *n, int verify_depth,
1911                         VectorSet &old_space, VectorSet &new_space) {
1912   if ( verify_depth == 0 )  return;
1913   if (verify_depth > 0)  --verify_depth;
1914 
1915   Compile* C = Compile::current();
1916 
1917   // Contained in new_space or old_space?
1918   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1919   // Check for visited in the proper space.  Numberings are not unique
1920   // across spaces so we need a separate VectorSet for each space.
1921   if( v->test_set(n->_idx) ) return;
1922 
1923   if (n->is_Con() && n->bottom_type() == Type::TOP) {
1924     if (C->cached_top_node() == NULL)
1925       C->set_cached_top_node((Node*)n);
1926     assert(C->cached_top_node() == n, "TOP node must be unique");
1927   }
1928 
1929   for( uint i = 0; i < n->len(); i++ ) {
1930     Node *x = n->in(i);
1931     if (!x || x->is_top()) continue;
1932 
1933     // Verify my input has a def-use edge to me
1934     if (true /*VerifyDefUse*/) {
1935       // Count use-def edges from n to x
1936       int cnt = 0;
1937       for( uint j = 0; j < n->len(); j++ )
1938         if( n->in(j) == x )
1939           cnt++;
1940       // Count def-use edges from x to n
1941       uint max = x->_outcnt;
1942       for( uint k = 0; k < max; k++ )
1943         if (x->_out[k] == n)
1944           cnt--;
1945       assert( cnt == 0, "mismatched def-use edge counts" );
1946     }
1947 
1948     verify_recur(x, verify_depth, old_space, new_space);
1949   }
1950 
1951 }
1952 
1953 //------------------------------verify-----------------------------------------
1954 // Check Def-Use info for my subgraph
1955 void Node::verify() const {
1956   Compile* C = Compile::current();
1957   Node* old_top = C->cached_top_node();
1958   ResourceMark rm;
1959   ResourceArea *area = Thread::current()->resource_area();
1960   VectorSet old_space(area), new_space(area);
1961   verify_recur(this, -1, old_space, new_space);
1962   C->set_cached_top_node(old_top);
1963 }
1964 #endif
1965 
1966 
1967 //------------------------------walk-------------------------------------------
1968 // Graph walk, with both pre-order and post-order functions
1969 void Node::walk(NFunc pre, NFunc post, void *env) {
1970   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1971   walk_(pre, post, env, visited);
1972 }
1973 
1974 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1975   if( visited.test_set(_idx) ) return;
1976   pre(*this,env);               // Call the pre-order walk function
1977   for( uint i=0; i<_max; i++ )
1978     if( in(i) )                 // Input exists and is not walked?
1979       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1980   post(*this,env);              // Call the post-order walk function
1981 }
1982 
1983 void Node::nop(Node &, void*) {}
1984 
1985 //------------------------------Registers--------------------------------------
1986 // Do we Match on this edge index or not?  Generally false for Control
1987 // and true for everything else.  Weird for calls & returns.
1988 uint Node::match_edge(uint idx) const {
1989   return idx;                   // True for other than index 0 (control)
1990 }
1991 
1992 static RegMask _not_used_at_all;
1993 // Register classes are defined for specific machines
1994 const RegMask &Node::out_RegMask() const {
1995   ShouldNotCallThis();
1996   return _not_used_at_all;
1997 }
1998 
1999 const RegMask &Node::in_RegMask(uint) const {
2000   ShouldNotCallThis();
2001   return _not_used_at_all;
2002 }
2003 
2004 //=============================================================================
2005 //-----------------------------------------------------------------------------
2006 void Node_Array::reset( Arena *new_arena ) {
2007   _a->Afree(_nodes,_max*sizeof(Node*));
2008   _max   = 0;
2009   _nodes = NULL;
2010   _a     = new_arena;
2011 }
2012 
2013 //------------------------------clear------------------------------------------
2014 // Clear all entries in _nodes to NULL but keep storage
2015 void Node_Array::clear() {
2016   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
2017 }
2018 
2019 //-----------------------------------------------------------------------------
2020 void Node_Array::grow( uint i ) {
2021   if( !_max ) {
2022     _max = 1;
2023     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2024     _nodes[0] = NULL;
2025   }
2026   uint old = _max;
2027   while( i >= _max ) _max <<= 1;        // Double to fit
2028   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2029   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2030 }
2031 
2032 //-----------------------------------------------------------------------------
2033 void Node_Array::insert( uint i, Node *n ) {
2034   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2035   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2036   _nodes[i] = n;
2037 }
2038 
2039 //-----------------------------------------------------------------------------
2040 void Node_Array::remove( uint i ) {
2041   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2042   _nodes[_max-1] = NULL;
2043 }
2044 
2045 //-----------------------------------------------------------------------------
2046 void Node_Array::sort( C_sort_func_t func) {
2047   qsort( _nodes, _max, sizeof( Node* ), func );
2048 }
2049 
2050 //-----------------------------------------------------------------------------
2051 void Node_Array::dump() const {
2052 #ifndef PRODUCT
2053   for( uint i = 0; i < _max; i++ ) {
2054     Node *nn = _nodes[i];
2055     if( nn != NULL ) {
2056       tty->print("%5d--> ",i); nn->dump();
2057     }
2058   }
2059 #endif
2060 }
2061 
2062 //--------------------------is_iteratively_computed------------------------------
2063 // Operation appears to be iteratively computed (such as an induction variable)
2064 // It is possible for this operation to return false for a loop-varying
2065 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2066 bool Node::is_iteratively_computed() {
2067   if (ideal_reg()) { // does operation have a result register?
2068     for (uint i = 1; i < req(); i++) {
2069       Node* n = in(i);
2070       if (n != NULL && n->is_Phi()) {
2071         for (uint j = 1; j < n->req(); j++) {
2072           if (n->in(j) == this) {
2073             return true;
2074           }
2075         }
2076       }
2077     }
2078   }
2079   return false;
2080 }
2081 
2082 //--------------------------find_similar------------------------------
2083 // Return a node with opcode "opc" and same inputs as "this" if one can
2084 // be found; Otherwise return NULL;
2085 Node* Node::find_similar(int opc) {
2086   if (req() >= 2) {
2087     Node* def = in(1);
2088     if (def && def->outcnt() >= 2) {
2089       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2090         Node* use = def->fast_out(i);
2091         if (use->Opcode() == opc &&
2092             use->req() == req()) {
2093           uint j;
2094           for (j = 0; j < use->req(); j++) {
2095             if (use->in(j) != in(j)) {
2096               break;
2097             }
2098           }
2099           if (j == use->req()) {
2100             return use;
2101           }
2102         }
2103       }
2104     }
2105   }
2106   return NULL;
2107 }
2108 
2109 
2110 //--------------------------unique_ctrl_out------------------------------
2111 // Return the unique control out if only one. Null if none or more than one.
2112 Node* Node::unique_ctrl_out() {
2113   Node* found = NULL;
2114   for (uint i = 0; i < outcnt(); i++) {
2115     Node* use = raw_out(i);
2116     if (use->is_CFG() && use != this) {
2117       if (found != NULL) return NULL;
2118       found = use;
2119     }
2120   }
2121   return found;
2122 }
2123 
2124 void Node::ensure_control_or_add_prec(Node* c) {
2125   if (in(0) == NULL) {
2126     set_req(0, c);
2127   } else if (in(0) != c) {
2128     add_prec(c);
2129   }
2130 }
2131 
2132 //=============================================================================
2133 //------------------------------yank-------------------------------------------
2134 // Find and remove
2135 void Node_List::yank( Node *n ) {
2136   uint i;
2137   for( i = 0; i < _cnt; i++ )
2138     if( _nodes[i] == n )
2139       break;
2140 
2141   if( i < _cnt )
2142     _nodes[i] = _nodes[--_cnt];
2143 }
2144 
2145 //------------------------------dump-------------------------------------------
2146 void Node_List::dump() const {
2147 #ifndef PRODUCT
2148   for( uint i = 0; i < _cnt; i++ )
2149     if( _nodes[i] ) {
2150       tty->print("%5d--> ",i);
2151       _nodes[i]->dump();
2152     }
2153 #endif
2154 }
2155 
2156 void Node_List::dump_simple() const {
2157 #ifndef PRODUCT
2158   for( uint i = 0; i < _cnt; i++ )
2159     if( _nodes[i] ) {
2160       tty->print(" %d", _nodes[i]->_idx);
2161     } else {
2162       tty->print(" NULL");
2163     }
2164 #endif
2165 }
2166 
2167 //=============================================================================
2168 //------------------------------remove-----------------------------------------
2169 void Unique_Node_List::remove( Node *n ) {
2170   if( _in_worklist[n->_idx] ) {
2171     for( uint i = 0; i < size(); i++ )
2172       if( _nodes[i] == n ) {
2173         map(i,Node_List::pop());
2174         _in_worklist >>= n->_idx;
2175         return;
2176       }
2177     ShouldNotReachHere();
2178   }
2179 }
2180 
2181 //-----------------------remove_useless_nodes----------------------------------
2182 // Remove useless nodes from worklist
2183 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2184 
2185   for( uint i = 0; i < size(); ++i ) {
2186     Node *n = at(i);
2187     assert( n != NULL, "Did not expect null entries in worklist");
2188     if( ! useful.test(n->_idx) ) {
2189       _in_worklist >>= n->_idx;
2190       map(i,Node_List::pop());
2191       // Node *replacement = Node_List::pop();
2192       // if( i != size() ) { // Check if removing last entry
2193       //   _nodes[i] = replacement;
2194       // }
2195       --i;  // Visit popped node
2196       // If it was last entry, loop terminates since size() was also reduced
2197     }
2198   }
2199 }
2200 
2201 //=============================================================================
2202 void Node_Stack::grow() {
2203   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2204   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2205   size_t max = old_max << 1;             // max * 2
2206   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2207   _inode_max = _inodes + max;
2208   _inode_top = _inodes + old_top;        // restore _top
2209 }
2210 
2211 // Node_Stack is used to map nodes.
2212 Node* Node_Stack::find(uint idx) const {
2213   uint sz = size();
2214   for (uint i=0; i < sz; i++) {
2215     if (idx == index_at(i) )
2216       return node_at(i);
2217   }
2218   return NULL;
2219 }
2220 
2221 //=============================================================================
2222 uint TypeNode::size_of() const { return sizeof(*this); }
2223 #ifndef PRODUCT
2224 void TypeNode::dump_spec(outputStream *st) const {
2225   if( !Verbose && !WizardMode ) {
2226     // standard dump does this in Verbose and WizardMode
2227     st->print(" #"); _type->dump_on(st);
2228   }
2229 }
2230 #endif
2231 uint TypeNode::hash() const {
2232   return Node::hash() + _type->hash();
2233 }
2234 uint TypeNode::cmp( const Node &n ) const
2235 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2236 const Type *TypeNode::bottom_type() const { return _type; }
2237 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2238 
2239 //------------------------------ideal_reg--------------------------------------
2240 uint TypeNode::ideal_reg() const {
2241   return _type->ideal_reg();
2242 }