1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // Stores
 297   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 298   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 299 
 300   void resolve_jobject(Register value, Register thread, Register tmp);
 301   void clear_jweak_tag(Register possibly_jweak);
 302 
 303 #if INCLUDE_ALL_GCS
 304 
 305   void g1_write_barrier_pre(Register obj,
 306                             Register pre_val,
 307                             Register thread,
 308                             Register tmp,
 309                             bool tosca_live,
 310                             bool expand_call);
 311 
 312   void g1_write_barrier_post(Register store_addr,
 313                              Register new_val,
 314                              Register thread,
 315                              Register tmp,
 316                              Register tmp2);
 317 
 318   void keep_alive_barrier(Register val,
 319                           Register thread,
 320                           Register tmp);
 321 
 322   void shenandoah_write_barrier_post(Register store_addr,
 323                                      Register new_val,
 324                                      Register thread,
 325                                      Register tmp,
 326                                      Register tmp2);
 327 
 328   void shenandoah_write_barrier(Register dst);
 329 
 330 #endif // INCLUDE_ALL_GCS
 331 
 332   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 333   void c2bool(Register x);
 334 
 335   // C++ bool manipulation
 336 
 337   void movbool(Register dst, Address src);
 338   void movbool(Address dst, bool boolconst);
 339   void movbool(Address dst, Register src);
 340   void testbool(Register dst);
 341 
 342   void load_mirror(Register mirror, Register method);
 343 
 344   // oop manipulations
 345   void load_klass(Register dst, Register src);
 346   void store_klass(Register dst, Register src);
 347 
 348   void load_heap_oop(Register dst, Address src);
 349   void load_heap_oop_not_null(Register dst, Address src);
 350   void store_heap_oop(Address dst, Register src);
 351   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 352 
 353   // Used for storing NULL. All other oop constants should be
 354   // stored using routines that take a jobject.
 355   void store_heap_oop_null(Address dst);
 356 
 357   void load_prototype_header(Register dst, Register src);
 358 
 359 #ifdef _LP64
 360   void store_klass_gap(Register dst, Register src);
 361 
 362   // This dummy is to prevent a call to store_heap_oop from
 363   // converting a zero (like NULL) into a Register by giving
 364   // the compiler two choices it can't resolve
 365 
 366   void store_heap_oop(Address dst, void* dummy);
 367 
 368   void encode_heap_oop(Register r);
 369   void decode_heap_oop(Register r);
 370   void encode_heap_oop_not_null(Register r);
 371   void decode_heap_oop_not_null(Register r);
 372   void encode_heap_oop_not_null(Register dst, Register src);
 373   void decode_heap_oop_not_null(Register dst, Register src);
 374 
 375   void set_narrow_oop(Register dst, jobject obj);
 376   void set_narrow_oop(Address dst, jobject obj);
 377   void cmp_narrow_oop(Register dst, jobject obj);
 378   void cmp_narrow_oop(Address dst, jobject obj);
 379 
 380   void encode_klass_not_null(Register r);
 381   void decode_klass_not_null(Register r);
 382   void encode_klass_not_null(Register dst, Register src);
 383   void decode_klass_not_null(Register dst, Register src);
 384   void set_narrow_klass(Register dst, Klass* k);
 385   void set_narrow_klass(Address dst, Klass* k);
 386   void cmp_narrow_klass(Register dst, Klass* k);
 387   void cmp_narrow_klass(Address dst, Klass* k);
 388 
 389   // Returns the byte size of the instructions generated by decode_klass_not_null()
 390   // when compressed klass pointers are being used.
 391   static int instr_size_for_decode_klass_not_null();
 392 
 393   // if heap base register is used - reinit it with the correct value
 394   void reinit_heapbase();
 395 
 396   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 397 
 398 #endif // _LP64
 399 
 400   // Int division/remainder for Java
 401   // (as idivl, but checks for special case as described in JVM spec.)
 402   // returns idivl instruction offset for implicit exception handling
 403   int corrected_idivl(Register reg);
 404 
 405   // Long division/remainder for Java
 406   // (as idivq, but checks for special case as described in JVM spec.)
 407   // returns idivq instruction offset for implicit exception handling
 408   int corrected_idivq(Register reg);
 409 
 410   void int3();
 411 
 412   // Long operation macros for a 32bit cpu
 413   // Long negation for Java
 414   void lneg(Register hi, Register lo);
 415 
 416   // Long multiplication for Java
 417   // (destroys contents of eax, ebx, ecx and edx)
 418   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 419 
 420   // Long shifts for Java
 421   // (semantics as described in JVM spec.)
 422   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 423   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 424 
 425   // Long compare for Java
 426   // (semantics as described in JVM spec.)
 427   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 428 
 429 
 430   // misc
 431 
 432   // Sign extension
 433   void sign_extend_short(Register reg);
 434   void sign_extend_byte(Register reg);
 435 
 436   // Division by power of 2, rounding towards 0
 437   void division_with_shift(Register reg, int shift_value);
 438 
 439   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 440   //
 441   // CF (corresponds to C0) if x < y
 442   // PF (corresponds to C2) if unordered
 443   // ZF (corresponds to C3) if x = y
 444   //
 445   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 446   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 447   void fcmp(Register tmp);
 448   // Variant of the above which allows y to be further down the stack
 449   // and which only pops x and y if specified. If pop_right is
 450   // specified then pop_left must also be specified.
 451   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 452 
 453   // Floating-point comparison for Java
 454   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 455   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 456   // (semantics as described in JVM spec.)
 457   void fcmp2int(Register dst, bool unordered_is_less);
 458   // Variant of the above which allows y to be further down the stack
 459   // and which only pops x and y if specified. If pop_right is
 460   // specified then pop_left must also be specified.
 461   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 462 
 463   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 464   // tmp is a temporary register, if none is available use noreg
 465   void fremr(Register tmp);
 466 
 467   // dst = c = a * b + c
 468   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 469   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 470 
 471   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 472   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 473   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 474   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 475 
 476 
 477   // same as fcmp2int, but using SSE2
 478   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 479   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 480 
 481   // branch to L if FPU flag C2 is set/not set
 482   // tmp is a temporary register, if none is available use noreg
 483   void jC2 (Register tmp, Label& L);
 484   void jnC2(Register tmp, Label& L);
 485 
 486   // Pop ST (ffree & fincstp combined)
 487   void fpop();
 488 
 489   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 490   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 491   void load_float(Address src);
 492 
 493   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 494   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 495   void store_float(Address dst);
 496 
 497   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 498   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 499   void load_double(Address src);
 500 
 501   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 502   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 503   void store_double(Address dst);
 504 
 505   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 506   void push_fTOS();
 507 
 508   // pops double TOS element from CPU stack and pushes on FPU stack
 509   void pop_fTOS();
 510 
 511   void empty_FPU_stack();
 512 
 513   void push_IU_state();
 514   void pop_IU_state();
 515 
 516   void push_FPU_state();
 517   void pop_FPU_state();
 518 
 519   void push_CPU_state();
 520   void pop_CPU_state();
 521 
 522   // Round up to a power of two
 523   void round_to(Register reg, int modulus);
 524 
 525   // Callee saved registers handling
 526   void push_callee_saved_registers();
 527   void pop_callee_saved_registers();
 528 
 529   // allocation
 530   void eden_allocate(
 531     Register obj,                      // result: pointer to object after successful allocation
 532     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 533     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 534     Register t1,                       // temp register
 535     Label&   slow_case                 // continuation point if fast allocation fails
 536   );
 537   void tlab_allocate(
 538     Register obj,                      // result: pointer to object after successful allocation
 539     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 540     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 541     Register t1,                       // temp register
 542     Register t2,                       // temp register
 543     Label&   slow_case                 // continuation point if fast allocation fails
 544   );
 545   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 546   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 547 
 548   void incr_allocated_bytes(Register thread,
 549                             Register var_size_in_bytes, int con_size_in_bytes,
 550                             Register t1 = noreg);
 551 
 552   // interface method calling
 553   void lookup_interface_method(Register recv_klass,
 554                                Register intf_klass,
 555                                RegisterOrConstant itable_index,
 556                                Register method_result,
 557                                Register scan_temp,
 558                                Label& no_such_interface);
 559 
 560   // virtual method calling
 561   void lookup_virtual_method(Register recv_klass,
 562                              RegisterOrConstant vtable_index,
 563                              Register method_result);
 564 
 565   // Test sub_klass against super_klass, with fast and slow paths.
 566 
 567   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 568   // One of the three labels can be NULL, meaning take the fall-through.
 569   // If super_check_offset is -1, the value is loaded up from super_klass.
 570   // No registers are killed, except temp_reg.
 571   void check_klass_subtype_fast_path(Register sub_klass,
 572                                      Register super_klass,
 573                                      Register temp_reg,
 574                                      Label* L_success,
 575                                      Label* L_failure,
 576                                      Label* L_slow_path,
 577                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 578 
 579   // The rest of the type check; must be wired to a corresponding fast path.
 580   // It does not repeat the fast path logic, so don't use it standalone.
 581   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 582   // Updates the sub's secondary super cache as necessary.
 583   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 584   void check_klass_subtype_slow_path(Register sub_klass,
 585                                      Register super_klass,
 586                                      Register temp_reg,
 587                                      Register temp2_reg,
 588                                      Label* L_success,
 589                                      Label* L_failure,
 590                                      bool set_cond_codes = false);
 591 
 592   // Simplified, combined version, good for typical uses.
 593   // Falls through on failure.
 594   void check_klass_subtype(Register sub_klass,
 595                            Register super_klass,
 596                            Register temp_reg,
 597                            Label& L_success);
 598 
 599   // method handles (JSR 292)
 600   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 601 
 602   //----
 603   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 604 
 605   // Debugging
 606 
 607   // only if +VerifyOops
 608   // TODO: Make these macros with file and line like sparc version!
 609   void verify_oop(Register reg, const char* s = "broken oop");
 610   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 611 
 612   void shenandoah_in_heap_check(Register dst, Register tmp, Label& done);
 613   void shenandoah_cset_check(Register dst, Register tmp, Label& done);
 614 
 615   void shenandoah_store_addr_check(Register dst);
 616   void shenandoah_store_addr_check(Address dst);
 617 
 618   void shenandoah_store_val_check(Register dst, Register value);
 619   void shenandoah_store_val_check(Address dst, Register value);
 620 
 621   void shenandoah_lock_check(Register dst);
 622 
 623   // TODO: verify method and klass metadata (compare against vptr?)
 624   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 625   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 626 
 627 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 628 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 629 
 630   // only if +VerifyFPU
 631   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 632 
 633   // Verify or restore cpu control state after JNI call
 634   void restore_cpu_control_state_after_jni();
 635 
 636   // prints msg, dumps registers and stops execution
 637   void stop(const char* msg);
 638 
 639   // prints msg and continues
 640   void warn(const char* msg);
 641 
 642   // dumps registers and other state
 643   void print_state();
 644 
 645   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 646   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 647   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 648   static void print_state64(int64_t pc, int64_t regs[]);
 649 
 650   void os_breakpoint();
 651 
 652   void untested()                                { stop("untested"); }
 653 
 654   void unimplemented(const char* what = "");
 655 
 656   void should_not_reach_here()                   { stop("should not reach here"); }
 657 
 658   void print_CPU_state();
 659 
 660   // Stack overflow checking
 661   void bang_stack_with_offset(int offset) {
 662     // stack grows down, caller passes positive offset
 663     assert(offset > 0, "must bang with negative offset");
 664     movl(Address(rsp, (-offset)), rax);
 665   }
 666 
 667   // Writes to stack successive pages until offset reached to check for
 668   // stack overflow + shadow pages.  Also, clobbers tmp
 669   void bang_stack_size(Register size, Register tmp);
 670 
 671   // Check for reserved stack access in method being exited (for JIT)
 672   void reserved_stack_check();
 673 
 674   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 675                                                 Register tmp,
 676                                                 int offset);
 677 
 678   // Support for serializing memory accesses between threads
 679   void serialize_memory(Register thread, Register tmp);
 680 
 681   void verify_tlab();
 682 
 683   // Biased locking support
 684   // lock_reg and obj_reg must be loaded up with the appropriate values.
 685   // swap_reg must be rax, and is killed.
 686   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 687   // be killed; if not supplied, push/pop will be used internally to
 688   // allocate a temporary (inefficient, avoid if possible).
 689   // Optional slow case is for implementations (interpreter and C1) which branch to
 690   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 691   // Returns offset of first potentially-faulting instruction for null
 692   // check info (currently consumed only by C1). If
 693   // swap_reg_contains_mark is true then returns -1 as it is assumed
 694   // the calling code has already passed any potential faults.
 695   int biased_locking_enter(Register lock_reg, Register obj_reg,
 696                            Register swap_reg, Register tmp_reg,
 697                            bool swap_reg_contains_mark,
 698                            Label& done, Label* slow_case = NULL,
 699                            BiasedLockingCounters* counters = NULL);
 700   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 701 #ifdef COMPILER2
 702   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 703   // See full desription in macroAssembler_x86.cpp.
 704   void fast_lock(Register obj, Register box, Register tmp,
 705                  Register scr, Register cx1, Register cx2,
 706                  BiasedLockingCounters* counters,
 707                  RTMLockingCounters* rtm_counters,
 708                  RTMLockingCounters* stack_rtm_counters,
 709                  Metadata* method_data,
 710                  bool use_rtm, bool profile_rtm);
 711   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 712 #if INCLUDE_RTM_OPT
 713   void rtm_counters_update(Register abort_status, Register rtm_counters);
 714   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 715   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 716                                    RTMLockingCounters* rtm_counters,
 717                                    Metadata* method_data);
 718   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 719                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 720   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 721   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 722   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 723                          Register retry_on_abort_count,
 724                          RTMLockingCounters* stack_rtm_counters,
 725                          Metadata* method_data, bool profile_rtm,
 726                          Label& DONE_LABEL, Label& IsInflated);
 727   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 728                             Register scr, Register retry_on_busy_count,
 729                             Register retry_on_abort_count,
 730                             RTMLockingCounters* rtm_counters,
 731                             Metadata* method_data, bool profile_rtm,
 732                             Label& DONE_LABEL);
 733 #endif
 734 #endif
 735 
 736   Condition negate_condition(Condition cond);
 737 
 738   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 739   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 740   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 741   // here in MacroAssembler. The major exception to this rule is call
 742 
 743   // Arithmetics
 744 
 745 
 746   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 747   void addptr(Address dst, Register src);
 748 
 749   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 750   void addptr(Register dst, int32_t src);
 751   void addptr(Register dst, Register src);
 752   void addptr(Register dst, RegisterOrConstant src) {
 753     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 754     else                   addptr(dst,       src.as_register());
 755   }
 756 
 757   void andptr(Register dst, int32_t src);
 758   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 759 
 760   void cmp8(AddressLiteral src1, int imm);
 761 
 762   // renamed to drag out the casting of address to int32_t/intptr_t
 763   void cmp32(Register src1, int32_t imm);
 764 
 765   void cmp32(AddressLiteral src1, int32_t imm);
 766   // compare reg - mem, or reg - &mem
 767   void cmp32(Register src1, AddressLiteral src2);
 768 
 769   void cmp32(Register src1, Address src2);
 770 
 771 #ifndef _LP64
 772   void cmpklass(Address dst, Metadata* obj);
 773   void cmpklass(Register dst, Metadata* obj);
 774   void cmpoop(Address dst, jobject obj);
 775   void cmpoop(Register dst, jobject obj);
 776 #endif // _LP64
 777 
 778   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 779   void cmpptr(Address src1, AddressLiteral src2);
 780 
 781   void cmpptr(Register src1, AddressLiteral src2);
 782 
 783   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 784   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 785   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 786 
 787   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 788   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 789 
 790   // cmp64 to avoild hiding cmpq
 791   void cmp64(Register src1, AddressLiteral src);
 792 
 793   // Special cmp for heap objects, possibly inserting required barriers.
 794   void cmpoops(Register src1, Register src2);
 795   void cmpoops(Register src1, Address src2);
 796 
 797   void cmpxchgptr(Register reg, Address adr);
 798 
 799   // Special Shenandoah CAS implementation that handles false negatives
 800   // due to concurrent evacuation.
 801   void cmpxchg_oop_shenandoah(Register res, Address addr, Register oldval, Register newval,
 802                               bool exchange,
 803                               Register tmp1, Register tmp2);
 804 
 805   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 806 
 807 
 808   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 809   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 810 
 811 
 812   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 813 
 814   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 815 
 816   void shlptr(Register dst, int32_t shift);
 817   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 818 
 819   void shrptr(Register dst, int32_t shift);
 820   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 821 
 822   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 823   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 824 
 825   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 826 
 827   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 828   void subptr(Register dst, int32_t src);
 829   // Force generation of a 4 byte immediate value even if it fits into 8bit
 830   void subptr_imm32(Register dst, int32_t src);
 831   void subptr(Register dst, Register src);
 832   void subptr(Register dst, RegisterOrConstant src) {
 833     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 834     else                   subptr(dst,       src.as_register());
 835   }
 836 
 837   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 838   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 839 
 840   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 841   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 842 
 843   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 844 
 845 
 846 
 847   // Helper functions for statistics gathering.
 848   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 849   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 850   // Unconditional atomic increment.
 851   void atomic_incl(Address counter_addr);
 852   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 853 #ifdef _LP64
 854   void atomic_incq(Address counter_addr);
 855   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 856 #endif
 857   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 858   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 859 
 860   void lea(Register dst, AddressLiteral adr);
 861   void lea(Address dst, AddressLiteral adr);
 862   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 863 
 864   void leal32(Register dst, Address src) { leal(dst, src); }
 865 
 866   // Import other testl() methods from the parent class or else
 867   // they will be hidden by the following overriding declaration.
 868   using Assembler::testl;
 869   void testl(Register dst, AddressLiteral src);
 870 
 871   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 872   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 873   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 874   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 875 
 876   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 877   void testptr(Register src1, Register src2);
 878 
 879   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 880   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 881 
 882   // Calls
 883 
 884   void call(Label& L, relocInfo::relocType rtype);
 885   void call(Register entry);
 886 
 887   // NOTE: this call transfers to the effective address of entry NOT
 888   // the address contained by entry. This is because this is more natural
 889   // for jumps/calls.
 890   void call(AddressLiteral entry);
 891 
 892   // Emit the CompiledIC call idiom
 893   void ic_call(address entry, jint method_index = 0);
 894 
 895   // Jumps
 896 
 897   // NOTE: these jumps tranfer to the effective address of dst NOT
 898   // the address contained by dst. This is because this is more natural
 899   // for jumps/calls.
 900   void jump(AddressLiteral dst);
 901   void jump_cc(Condition cc, AddressLiteral dst);
 902 
 903   // 32bit can do a case table jump in one instruction but we no longer allow the base
 904   // to be installed in the Address class. This jump will tranfers to the address
 905   // contained in the location described by entry (not the address of entry)
 906   void jump(ArrayAddress entry);
 907 
 908   // Floating
 909 
 910   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 911   void andpd(XMMRegister dst, AddressLiteral src);
 912   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 913 
 914   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 915   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 916   void andps(XMMRegister dst, AddressLiteral src);
 917 
 918   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 919   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 920   void comiss(XMMRegister dst, AddressLiteral src);
 921 
 922   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 923   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 924   void comisd(XMMRegister dst, AddressLiteral src);
 925 
 926   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 927   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 928 
 929   void fldcw(Address src) { Assembler::fldcw(src); }
 930   void fldcw(AddressLiteral src);
 931 
 932   void fld_s(int index)   { Assembler::fld_s(index); }
 933   void fld_s(Address src) { Assembler::fld_s(src); }
 934   void fld_s(AddressLiteral src);
 935 
 936   void fld_d(Address src) { Assembler::fld_d(src); }
 937   void fld_d(AddressLiteral src);
 938 
 939   void fld_x(Address src) { Assembler::fld_x(src); }
 940   void fld_x(AddressLiteral src);
 941 
 942   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 943   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 944 
 945   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 946   void ldmxcsr(AddressLiteral src);
 947 
 948 #ifdef _LP64
 949  private:
 950   void sha256_AVX2_one_round_compute(
 951     Register  reg_old_h,
 952     Register  reg_a,
 953     Register  reg_b,
 954     Register  reg_c,
 955     Register  reg_d,
 956     Register  reg_e,
 957     Register  reg_f,
 958     Register  reg_g,
 959     Register  reg_h,
 960     int iter);
 961   void sha256_AVX2_four_rounds_compute_first(int start);
 962   void sha256_AVX2_four_rounds_compute_last(int start);
 963   void sha256_AVX2_one_round_and_sched(
 964         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 965         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 966         XMMRegister xmm_2,     /* ymm6 */
 967         XMMRegister xmm_3,     /* ymm7 */
 968         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 969         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 970         Register    reg_c,      /* edi */
 971         Register    reg_d,      /* esi */
 972         Register    reg_e,      /* r8d */
 973         Register    reg_f,      /* r9d */
 974         Register    reg_g,      /* r10d */
 975         Register    reg_h,      /* r11d */
 976         int iter);
 977 
 978   void addm(int disp, Register r1, Register r2);
 979 
 980  public:
 981   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 982                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 983                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 984                    bool multi_block, XMMRegister shuf_mask);
 985 #endif
 986 
 987 #ifdef _LP64
 988  private:
 989   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 990                                      Register e, Register f, Register g, Register h, int iteration);
 991 
 992   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 993                                           Register a, Register b, Register c, Register d, Register e, Register f,
 994                                           Register g, Register h, int iteration);
 995 
 996   void addmq(int disp, Register r1, Register r2);
 997  public:
 998   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 999                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1000                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1001                    XMMRegister shuf_mask);
1002 #endif
1003 
1004   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1005                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1006                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1007                  bool multi_block);
1008 
1009 #ifdef _LP64
1010   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1011                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1012                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1013                    bool multi_block, XMMRegister shuf_mask);
1014 #else
1015   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1016                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1017                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1018                    bool multi_block);
1019 #endif
1020 
1021   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1022                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1023                 Register rax, Register rcx, Register rdx, Register tmp);
1024 
1025 #ifdef _LP64
1026   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1027                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1028                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1029 
1030   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1031                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1032                   Register rax, Register rcx, Register rdx, Register r11);
1033 
1034   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1035                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1036                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1037 
1038   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1039                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1040                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1041                 Register tmp3, Register tmp4);
1042 
1043   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1044                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1045                 Register rax, Register rcx, Register rdx, Register tmp1,
1046                 Register tmp2, Register tmp3, Register tmp4);
1047   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1048                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1049                 Register rax, Register rcx, Register rdx, Register tmp1,
1050                 Register tmp2, Register tmp3, Register tmp4);
1051 #else
1052   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1053                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1054                 Register rax, Register rcx, Register rdx, Register tmp1);
1055 
1056   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1057                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1058                 Register rax, Register rcx, Register rdx, Register tmp);
1059 
1060   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1061                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1062                 Register rdx, Register tmp);
1063 
1064   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1065                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1066                 Register rax, Register rbx, Register rdx);
1067 
1068   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1069                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1070                 Register rax, Register rcx, Register rdx, Register tmp);
1071 
1072   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1073                         Register edx, Register ebx, Register esi, Register edi,
1074                         Register ebp, Register esp);
1075 
1076   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1077                          Register esi, Register edi, Register ebp, Register esp);
1078 
1079   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1080                         Register edx, Register ebx, Register esi, Register edi,
1081                         Register ebp, Register esp);
1082 
1083   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1084                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1085                 Register rax, Register rcx, Register rdx, Register tmp);
1086 #endif
1087 
1088   void increase_precision();
1089   void restore_precision();
1090 
1091 private:
1092 
1093   // these are private because users should be doing movflt/movdbl
1094 
1095   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1096   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1097   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1098   void movss(XMMRegister dst, AddressLiteral src);
1099 
1100   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1101   void movlpd(XMMRegister dst, AddressLiteral src);
1102 
1103 public:
1104 
1105   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1106   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1107   void addsd(XMMRegister dst, AddressLiteral src);
1108 
1109   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1110   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1111   void addss(XMMRegister dst, AddressLiteral src);
1112 
1113   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1114   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1115   void addpd(XMMRegister dst, AddressLiteral src);
1116 
1117   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1118   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1119   void divsd(XMMRegister dst, AddressLiteral src);
1120 
1121   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1122   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1123   void divss(XMMRegister dst, AddressLiteral src);
1124 
1125   // Move Unaligned Double Quadword
1126   void movdqu(Address     dst, XMMRegister src);
1127   void movdqu(XMMRegister dst, Address src);
1128   void movdqu(XMMRegister dst, XMMRegister src);
1129   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1130   // AVX Unaligned forms
1131   void vmovdqu(Address     dst, XMMRegister src);
1132   void vmovdqu(XMMRegister dst, Address src);
1133   void vmovdqu(XMMRegister dst, XMMRegister src);
1134   void vmovdqu(XMMRegister dst, AddressLiteral src);
1135 
1136   // Move Aligned Double Quadword
1137   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1138   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1139   void movdqa(XMMRegister dst, AddressLiteral src);
1140 
1141   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1142   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1143   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1144   void movsd(XMMRegister dst, AddressLiteral src);
1145 
1146   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1147   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1148   void mulpd(XMMRegister dst, AddressLiteral src);
1149 
1150   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1151   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1152   void mulsd(XMMRegister dst, AddressLiteral src);
1153 
1154   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1155   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1156   void mulss(XMMRegister dst, AddressLiteral src);
1157 
1158   // Carry-Less Multiplication Quadword
1159   void pclmulldq(XMMRegister dst, XMMRegister src) {
1160     // 0x00 - multiply lower 64 bits [0:63]
1161     Assembler::pclmulqdq(dst, src, 0x00);
1162   }
1163   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1164     // 0x11 - multiply upper 64 bits [64:127]
1165     Assembler::pclmulqdq(dst, src, 0x11);
1166   }
1167 
1168   void pcmpeqb(XMMRegister dst, XMMRegister src);
1169   void pcmpeqw(XMMRegister dst, XMMRegister src);
1170 
1171   void pcmpestri(XMMRegister dst, Address src, int imm8);
1172   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1173 
1174   void pmovzxbw(XMMRegister dst, XMMRegister src);
1175   void pmovzxbw(XMMRegister dst, Address src);
1176 
1177   void pmovmskb(Register dst, XMMRegister src);
1178 
1179   void ptest(XMMRegister dst, XMMRegister src);
1180 
1181   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1182   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1183   void sqrtsd(XMMRegister dst, AddressLiteral src);
1184 
1185   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1186   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1187   void sqrtss(XMMRegister dst, AddressLiteral src);
1188 
1189   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1190   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1191   void subsd(XMMRegister dst, AddressLiteral src);
1192 
1193   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1194   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1195   void subss(XMMRegister dst, AddressLiteral src);
1196 
1197   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1198   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1199   void ucomiss(XMMRegister dst, AddressLiteral src);
1200 
1201   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1202   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1203   void ucomisd(XMMRegister dst, AddressLiteral src);
1204 
1205   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1206   void xorpd(XMMRegister dst, XMMRegister src);
1207   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1208   void xorpd(XMMRegister dst, AddressLiteral src);
1209 
1210   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1211   void xorps(XMMRegister dst, XMMRegister src);
1212   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1213   void xorps(XMMRegister dst, AddressLiteral src);
1214 
1215   // Shuffle Bytes
1216   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1217   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1218   void pshufb(XMMRegister dst, AddressLiteral src);
1219   // AVX 3-operands instructions
1220 
1221   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1222   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1223   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1224 
1225   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1226   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1227   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1228 
1229   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1230   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1231 
1232   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1233   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1234 
1235   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1236   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1237 
1238   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1239   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1240   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1241 
1242   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1243 
1244   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1245   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1246 
1247   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1248   void vpmovmskb(Register dst, XMMRegister src);
1249 
1250   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1251   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1252 
1253   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1254   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1255 
1256   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1257   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1258 
1259   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1260   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1261 
1262   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1263   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1264 
1265   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1266   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1267 
1268   void vptest(XMMRegister dst, XMMRegister src);
1269 
1270   void punpcklbw(XMMRegister dst, XMMRegister src);
1271   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1272 
1273   void pshufd(XMMRegister dst, Address src, int mode);
1274   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1275 
1276   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1277   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1278 
1279   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1280   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1281   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1282 
1283   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1284   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1285   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1286 
1287   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1288   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1289   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1290 
1291   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1292   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1293   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1294 
1295   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1296   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1297   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1298 
1299   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1300   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1301   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1302 
1303   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1304   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1305   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1306 
1307   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1308   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1309   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1310 
1311   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1312   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1313 
1314   // AVX Vector instructions
1315 
1316   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1317   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1318   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1319 
1320   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1321   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1322   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1323 
1324   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1325     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1326       Assembler::vpxor(dst, nds, src, vector_len);
1327     else
1328       Assembler::vxorpd(dst, nds, src, vector_len);
1329   }
1330   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1331     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1332       Assembler::vpxor(dst, nds, src, vector_len);
1333     else
1334       Assembler::vxorpd(dst, nds, src, vector_len);
1335   }
1336 
1337   // Simple version for AVX2 256bit vectors
1338   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1339   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1340 
1341   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1342     if (UseAVX > 2) {
1343       Assembler::vinserti32x4(dst, dst, src, imm8);
1344     } else if (UseAVX > 1) {
1345       // vinserti128 is available only in AVX2
1346       Assembler::vinserti128(dst, nds, src, imm8);
1347     } else {
1348       Assembler::vinsertf128(dst, nds, src, imm8);
1349     }
1350   }
1351 
1352   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1353     if (UseAVX > 2) {
1354       Assembler::vinserti32x4(dst, dst, src, imm8);
1355     } else if (UseAVX > 1) {
1356       // vinserti128 is available only in AVX2
1357       Assembler::vinserti128(dst, nds, src, imm8);
1358     } else {
1359       Assembler::vinsertf128(dst, nds, src, imm8);
1360     }
1361   }
1362 
1363   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1364     if (UseAVX > 2) {
1365       Assembler::vextracti32x4(dst, src, imm8);
1366     } else if (UseAVX > 1) {
1367       // vextracti128 is available only in AVX2
1368       Assembler::vextracti128(dst, src, imm8);
1369     } else {
1370       Assembler::vextractf128(dst, src, imm8);
1371     }
1372   }
1373 
1374   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1375     if (UseAVX > 2) {
1376       Assembler::vextracti32x4(dst, src, imm8);
1377     } else if (UseAVX > 1) {
1378       // vextracti128 is available only in AVX2
1379       Assembler::vextracti128(dst, src, imm8);
1380     } else {
1381       Assembler::vextractf128(dst, src, imm8);
1382     }
1383   }
1384 
1385   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1386   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1387     vinserti128(dst, dst, src, 1);
1388   }
1389   void vinserti128_high(XMMRegister dst, Address src) {
1390     vinserti128(dst, dst, src, 1);
1391   }
1392   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1393     vextracti128(dst, src, 1);
1394   }
1395   void vextracti128_high(Address dst, XMMRegister src) {
1396     vextracti128(dst, src, 1);
1397   }
1398 
1399   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1400     if (UseAVX > 2) {
1401       Assembler::vinsertf32x4(dst, dst, src, 1);
1402     } else {
1403       Assembler::vinsertf128(dst, dst, src, 1);
1404     }
1405   }
1406 
1407   void vinsertf128_high(XMMRegister dst, Address src) {
1408     if (UseAVX > 2) {
1409       Assembler::vinsertf32x4(dst, dst, src, 1);
1410     } else {
1411       Assembler::vinsertf128(dst, dst, src, 1);
1412     }
1413   }
1414 
1415   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1416     if (UseAVX > 2) {
1417       Assembler::vextractf32x4(dst, src, 1);
1418     } else {
1419       Assembler::vextractf128(dst, src, 1);
1420     }
1421   }
1422 
1423   void vextractf128_high(Address dst, XMMRegister src) {
1424     if (UseAVX > 2) {
1425       Assembler::vextractf32x4(dst, src, 1);
1426     } else {
1427       Assembler::vextractf128(dst, src, 1);
1428     }
1429   }
1430 
1431   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1432   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1433     Assembler::vinserti64x4(dst, dst, src, 1);
1434   }
1435   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1436     Assembler::vinsertf64x4(dst, dst, src, 1);
1437   }
1438   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1439     Assembler::vextracti64x4(dst, src, 1);
1440   }
1441   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1442     Assembler::vextractf64x4(dst, src, 1);
1443   }
1444   void vextractf64x4_high(Address dst, XMMRegister src) {
1445     Assembler::vextractf64x4(dst, src, 1);
1446   }
1447   void vinsertf64x4_high(XMMRegister dst, Address src) {
1448     Assembler::vinsertf64x4(dst, dst, src, 1);
1449   }
1450 
1451   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1452   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1453     vinserti128(dst, dst, src, 0);
1454   }
1455   void vinserti128_low(XMMRegister dst, Address src) {
1456     vinserti128(dst, dst, src, 0);
1457   }
1458   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1459     vextracti128(dst, src, 0);
1460   }
1461   void vextracti128_low(Address dst, XMMRegister src) {
1462     vextracti128(dst, src, 0);
1463   }
1464 
1465   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1466     if (UseAVX > 2) {
1467       Assembler::vinsertf32x4(dst, dst, src, 0);
1468     } else {
1469       Assembler::vinsertf128(dst, dst, src, 0);
1470     }
1471   }
1472 
1473   void vinsertf128_low(XMMRegister dst, Address src) {
1474     if (UseAVX > 2) {
1475       Assembler::vinsertf32x4(dst, dst, src, 0);
1476     } else {
1477       Assembler::vinsertf128(dst, dst, src, 0);
1478     }
1479   }
1480 
1481   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1482     if (UseAVX > 2) {
1483       Assembler::vextractf32x4(dst, src, 0);
1484     } else {
1485       Assembler::vextractf128(dst, src, 0);
1486     }
1487   }
1488 
1489   void vextractf128_low(Address dst, XMMRegister src) {
1490     if (UseAVX > 2) {
1491       Assembler::vextractf32x4(dst, src, 0);
1492     } else {
1493       Assembler::vextractf128(dst, src, 0);
1494     }
1495   }
1496 
1497   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1498   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1499     Assembler::vinserti64x4(dst, dst, src, 0);
1500   }
1501   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1502     Assembler::vinsertf64x4(dst, dst, src, 0);
1503   }
1504   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1505     Assembler::vextracti64x4(dst, src, 0);
1506   }
1507   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1508     Assembler::vextractf64x4(dst, src, 0);
1509   }
1510   void vextractf64x4_low(Address dst, XMMRegister src) {
1511     Assembler::vextractf64x4(dst, src, 0);
1512   }
1513   void vinsertf64x4_low(XMMRegister dst, Address src) {
1514     Assembler::vinsertf64x4(dst, dst, src, 0);
1515   }
1516 
1517   // Carry-Less Multiplication Quadword
1518   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1519     // 0x00 - multiply lower 64 bits [0:63]
1520     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1521   }
1522   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1523     // 0x11 - multiply upper 64 bits [64:127]
1524     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1525   }
1526 
1527   // Data
1528 
1529   void cmov32( Condition cc, Register dst, Address  src);
1530   void cmov32( Condition cc, Register dst, Register src);
1531 
1532   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1533 
1534   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1535   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1536 
1537   void movoop(Register dst, jobject obj);
1538   void movoop(Address dst, jobject obj);
1539 
1540   void mov_metadata(Register dst, Metadata* obj);
1541   void mov_metadata(Address dst, Metadata* obj);
1542 
1543   void movptr(ArrayAddress dst, Register src);
1544   // can this do an lea?
1545   void movptr(Register dst, ArrayAddress src);
1546 
1547   void movptr(Register dst, Address src);
1548 
1549 #ifdef _LP64
1550   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1551 #else
1552   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1553 #endif
1554 
1555   void movptr(Register dst, intptr_t src);
1556   void movptr(Register dst, Register src);
1557   void movptr(Address dst, intptr_t src);
1558 
1559   void movptr(Address dst, Register src);
1560 
1561   void movptr(Register dst, RegisterOrConstant src) {
1562     if (src.is_constant()) movptr(dst, src.as_constant());
1563     else                   movptr(dst, src.as_register());
1564   }
1565 
1566 #ifdef _LP64
1567   // Generally the next two are only used for moving NULL
1568   // Although there are situations in initializing the mark word where
1569   // they could be used. They are dangerous.
1570 
1571   // They only exist on LP64 so that int32_t and intptr_t are not the same
1572   // and we have ambiguous declarations.
1573 
1574   void movptr(Address dst, int32_t imm32);
1575   void movptr(Register dst, int32_t imm32);
1576 #endif // _LP64
1577 
1578   // to avoid hiding movl
1579   void mov32(AddressLiteral dst, Register src);
1580   void mov32(Register dst, AddressLiteral src);
1581 
1582   // to avoid hiding movb
1583   void movbyte(ArrayAddress dst, int src);
1584 
1585   // Import other mov() methods from the parent class or else
1586   // they will be hidden by the following overriding declaration.
1587   using Assembler::movdl;
1588   using Assembler::movq;
1589   void movdl(XMMRegister dst, AddressLiteral src);
1590   void movq(XMMRegister dst, AddressLiteral src);
1591 
1592   // Can push value or effective address
1593   void pushptr(AddressLiteral src);
1594 
1595   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1596   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1597 
1598   void pushoop(jobject obj);
1599   void pushklass(Metadata* obj);
1600 
1601   // sign extend as need a l to ptr sized element
1602   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1603   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1604 
1605   // C2 compiled method's prolog code.
1606   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1607 
1608   // clear memory of size 'cnt' qwords, starting at 'base';
1609   // if 'is_large' is set, do not try to produce short loop
1610   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1611 
1612 #ifdef COMPILER2
1613   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1614                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1615 
1616   // IndexOf strings.
1617   // Small strings are loaded through stack if they cross page boundary.
1618   void string_indexof(Register str1, Register str2,
1619                       Register cnt1, Register cnt2,
1620                       int int_cnt2,  Register result,
1621                       XMMRegister vec, Register tmp,
1622                       int ae);
1623 
1624   // IndexOf for constant substrings with size >= 8 elements
1625   // which don't need to be loaded through stack.
1626   void string_indexofC8(Register str1, Register str2,
1627                       Register cnt1, Register cnt2,
1628                       int int_cnt2,  Register result,
1629                       XMMRegister vec, Register tmp,
1630                       int ae);
1631 
1632     // Smallest code: we don't need to load through stack,
1633     // check string tail.
1634 
1635   // helper function for string_compare
1636   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1637                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1638                           Address::ScaleFactor scale2, Register index, int ae);
1639   // Compare strings.
1640   void string_compare(Register str1, Register str2,
1641                       Register cnt1, Register cnt2, Register result,
1642                       XMMRegister vec1, int ae);
1643 
1644   // Search for Non-ASCII character (Negative byte value) in a byte array,
1645   // return true if it has any and false otherwise.
1646   void has_negatives(Register ary1, Register len,
1647                      Register result, Register tmp1,
1648                      XMMRegister vec1, XMMRegister vec2);
1649 
1650   // Compare char[] or byte[] arrays.
1651   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1652                      Register limit, Register result, Register chr,
1653                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1654 
1655 #endif
1656 
1657   // Fill primitive arrays
1658   void generate_fill(BasicType t, bool aligned,
1659                      Register to, Register value, Register count,
1660                      Register rtmp, XMMRegister xtmp);
1661 
1662   void encode_iso_array(Register src, Register dst, Register len,
1663                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1664                         XMMRegister tmp4, Register tmp5, Register result);
1665 
1666 #ifdef _LP64
1667   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1668   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1669                              Register y, Register y_idx, Register z,
1670                              Register carry, Register product,
1671                              Register idx, Register kdx);
1672   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1673                               Register yz_idx, Register idx,
1674                               Register carry, Register product, int offset);
1675   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1676                                     Register carry, Register carry2,
1677                                     Register idx, Register jdx,
1678                                     Register yz_idx1, Register yz_idx2,
1679                                     Register tmp, Register tmp3, Register tmp4);
1680   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1681                                Register yz_idx, Register idx, Register jdx,
1682                                Register carry, Register product,
1683                                Register carry2);
1684   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1685                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1686   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1687                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1688   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1689                             Register tmp2);
1690   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1691                        Register rdxReg, Register raxReg);
1692   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1693   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1694                        Register tmp3, Register tmp4);
1695   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1696                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1697 
1698   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1699                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1700                Register raxReg);
1701   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1702                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1703                Register raxReg);
1704   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1705                            Register result, Register tmp1, Register tmp2,
1706                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1707 #endif
1708 
1709   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1710   void update_byte_crc32(Register crc, Register val, Register table);
1711   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1712   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1713   // Note on a naming convention:
1714   // Prefix w = register only used on a Westmere+ architecture
1715   // Prefix n = register only used on a Nehalem architecture
1716 #ifdef _LP64
1717   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1718                        Register tmp1, Register tmp2, Register tmp3);
1719 #else
1720   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1721                        Register tmp1, Register tmp2, Register tmp3,
1722                        XMMRegister xtmp1, XMMRegister xtmp2);
1723 #endif
1724   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1725                         Register in_out,
1726                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1727                         XMMRegister w_xtmp2,
1728                         Register tmp1,
1729                         Register n_tmp2, Register n_tmp3);
1730   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1731                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1732                        Register tmp1, Register tmp2,
1733                        Register n_tmp3);
1734   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1735                          Register in_out1, Register in_out2, Register in_out3,
1736                          Register tmp1, Register tmp2, Register tmp3,
1737                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1738                          Register tmp4, Register tmp5,
1739                          Register n_tmp6);
1740   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1741                             Register tmp1, Register tmp2, Register tmp3,
1742                             Register tmp4, Register tmp5, Register tmp6,
1743                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1744                             bool is_pclmulqdq_supported);
1745   // Fold 128-bit data chunk
1746   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1747   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1748   // Fold 8-bit data
1749   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1750   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1751 
1752   // Compress char[] array to byte[].
1753   void char_array_compress(Register src, Register dst, Register len,
1754                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1755                            XMMRegister tmp4, Register tmp5, Register result);
1756 
1757   // Inflate byte[] array to char[].
1758   void byte_array_inflate(Register src, Register dst, Register len,
1759                           XMMRegister tmp1, Register tmp2);
1760 
1761 
1762   void save_vector_registers();
1763   void restore_vector_registers();
1764 };
1765 
1766 /**
1767  * class SkipIfEqual:
1768  *
1769  * Instantiating this class will result in assembly code being output that will
1770  * jump around any code emitted between the creation of the instance and it's
1771  * automatic destruction at the end of a scope block, depending on the value of
1772  * the flag passed to the constructor, which will be checked at run-time.
1773  */
1774 class SkipIfEqual {
1775  private:
1776   MacroAssembler* _masm;
1777   Label _label;
1778 
1779  public:
1780    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1781    ~SkipIfEqual();
1782 };
1783 
1784 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP