1 /*
   2  * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "gc/shenandoah/brooksPointer.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "runtime/vm_version.hpp"
  42 #include "utilities/bitMap.inline.hpp"
  43 #include "utilities/macros.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/heapRegion.hpp"
  46 #include "gc/shenandoah/shenandoahConnectionMatrix.hpp"
  47 #include "gc/shenandoah/shenandoahHeap.hpp"
  48 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
  49 #endif // INCLUDE_ALL_GCS
  50 #ifdef TRACE_HAVE_INTRINSICS
  51 #include "trace/traceMacros.hpp"
  52 #endif
  53 
  54 #ifdef ASSERT
  55 #define __ gen()->lir(__FILE__, __LINE__)->
  56 #else
  57 #define __ gen()->lir()->
  58 #endif
  59 
  60 #ifndef PATCHED_ADDR
  61 #define PATCHED_ADDR  (max_jint)
  62 #endif
  63 
  64 void PhiResolverState::reset(int max_vregs) {
  65   // Initialize array sizes
  66   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  67   _virtual_operands.trunc_to(0);
  68   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  69   _other_operands.trunc_to(0);
  70   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  71   _vreg_table.trunc_to(0);
  72 }
  73 
  74 
  75 
  76 //--------------------------------------------------------------
  77 // PhiResolver
  78 
  79 // Resolves cycles:
  80 //
  81 //  r1 := r2  becomes  temp := r1
  82 //  r2 := r1           r1 := r2
  83 //                     r2 := temp
  84 // and orders moves:
  85 //
  86 //  r2 := r3  becomes  r1 := r2
  87 //  r1 := r2           r2 := r3
  88 
  89 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  90  : _gen(gen)
  91  , _state(gen->resolver_state())
  92  , _temp(LIR_OprFact::illegalOpr)
  93 {
  94   // reinitialize the shared state arrays
  95   _state.reset(max_vregs);
  96 }
  97 
  98 
  99 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
 100   assert(src->is_valid(), "");
 101   assert(dest->is_valid(), "");
 102   __ move(src, dest);
 103 }
 104 
 105 
 106 void PhiResolver::move_temp_to(LIR_Opr dest) {
 107   assert(_temp->is_valid(), "");
 108   emit_move(_temp, dest);
 109   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 110 }
 111 
 112 
 113 void PhiResolver::move_to_temp(LIR_Opr src) {
 114   assert(_temp->is_illegal(), "");
 115   _temp = _gen->new_register(src->type());
 116   emit_move(src, _temp);
 117 }
 118 
 119 
 120 // Traverse assignment graph in depth first order and generate moves in post order
 121 // ie. two assignments: b := c, a := b start with node c:
 122 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 123 // Generates moves in this order: move b to a and move c to b
 124 // ie. cycle a := b, b := a start with node a
 125 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 126 // Generates moves in this order: move b to temp, move a to b, move temp to a
 127 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 128   if (!dest->visited()) {
 129     dest->set_visited();
 130     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 131       move(dest, dest->destination_at(i));
 132     }
 133   } else if (!dest->start_node()) {
 134     // cylce in graph detected
 135     assert(_loop == NULL, "only one loop valid!");
 136     _loop = dest;
 137     move_to_temp(src->operand());
 138     return;
 139   } // else dest is a start node
 140 
 141   if (!dest->assigned()) {
 142     if (_loop == dest) {
 143       move_temp_to(dest->operand());
 144       dest->set_assigned();
 145     } else if (src != NULL) {
 146       emit_move(src->operand(), dest->operand());
 147       dest->set_assigned();
 148     }
 149   }
 150 }
 151 
 152 
 153 PhiResolver::~PhiResolver() {
 154   int i;
 155   // resolve any cycles in moves from and to virtual registers
 156   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 157     ResolveNode* node = virtual_operands().at(i);
 158     if (!node->visited()) {
 159       _loop = NULL;
 160       move(NULL, node);
 161       node->set_start_node();
 162       assert(_temp->is_illegal(), "move_temp_to() call missing");
 163     }
 164   }
 165 
 166   // generate move for move from non virtual register to abitrary destination
 167   for (i = other_operands().length() - 1; i >= 0; i --) {
 168     ResolveNode* node = other_operands().at(i);
 169     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 170       emit_move(node->operand(), node->destination_at(j)->operand());
 171     }
 172   }
 173 }
 174 
 175 
 176 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 177   ResolveNode* node;
 178   if (opr->is_virtual()) {
 179     int vreg_num = opr->vreg_number();
 180     node = vreg_table().at_grow(vreg_num, NULL);
 181     assert(node == NULL || node->operand() == opr, "");
 182     if (node == NULL) {
 183       node = new ResolveNode(opr);
 184       vreg_table().at_put(vreg_num, node);
 185     }
 186     // Make sure that all virtual operands show up in the list when
 187     // they are used as the source of a move.
 188     if (source && !virtual_operands().contains(node)) {
 189       virtual_operands().append(node);
 190     }
 191   } else {
 192     assert(source, "");
 193     node = new ResolveNode(opr);
 194     other_operands().append(node);
 195   }
 196   return node;
 197 }
 198 
 199 
 200 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 201   assert(dest->is_virtual(), "");
 202   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 203   assert(src->is_valid(), "");
 204   assert(dest->is_valid(), "");
 205   ResolveNode* source = source_node(src);
 206   source->append(destination_node(dest));
 207 }
 208 
 209 
 210 //--------------------------------------------------------------
 211 // LIRItem
 212 
 213 void LIRItem::set_result(LIR_Opr opr) {
 214   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 215   value()->set_operand(opr);
 216 
 217   if (opr->is_virtual()) {
 218     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 219   }
 220 
 221   _result = opr;
 222 }
 223 
 224 void LIRItem::load_item() {
 225   if (result()->is_illegal()) {
 226     // update the items result
 227     _result = value()->operand();
 228   }
 229   if (!result()->is_register()) {
 230     LIR_Opr reg = _gen->new_register(value()->type());
 231     __ move(result(), reg);
 232     if (result()->is_constant()) {
 233       _result = reg;
 234     } else {
 235       set_result(reg);
 236     }
 237   }
 238 }
 239 
 240 
 241 void LIRItem::load_for_store(BasicType type) {
 242   if (_gen->can_store_as_constant(value(), type)) {
 243     _result = value()->operand();
 244     if (!_result->is_constant()) {
 245       _result = LIR_OprFact::value_type(value()->type());
 246     }
 247   } else if (type == T_BYTE || type == T_BOOLEAN) {
 248     load_byte_item();
 249   } else {
 250     load_item();
 251   }
 252 }
 253 
 254 void LIRItem::load_item_force(LIR_Opr reg) {
 255   LIR_Opr r = result();
 256   if (r != reg) {
 257     _result = _gen->force_opr_to(r, reg);
 258   }
 259 }
 260 
 261 LIR_Opr LIRGenerator::force_opr_to(LIR_Opr op, LIR_Opr reg) {
 262   if (op != reg) {
 263 #if !defined(ARM) && !defined(E500V2)
 264     if (op->type() != reg->type()) {
 265       // moves between different types need an intervening spill slot
 266       op = force_to_spill(op, reg->type());
 267     }
 268 #endif
 269     __ move(op, reg);
 270     return reg;
 271   } else {
 272     return op;
 273   }
 274 }
 275 
 276 ciObject* LIRItem::get_jobject_constant() const {
 277   ObjectType* oc = type()->as_ObjectType();
 278   if (oc) {
 279     return oc->constant_value();
 280   }
 281   return NULL;
 282 }
 283 
 284 
 285 jint LIRItem::get_jint_constant() const {
 286   assert(is_constant() && value() != NULL, "");
 287   assert(type()->as_IntConstant() != NULL, "type check");
 288   return type()->as_IntConstant()->value();
 289 }
 290 
 291 
 292 jint LIRItem::get_address_constant() const {
 293   assert(is_constant() && value() != NULL, "");
 294   assert(type()->as_AddressConstant() != NULL, "type check");
 295   return type()->as_AddressConstant()->value();
 296 }
 297 
 298 
 299 jfloat LIRItem::get_jfloat_constant() const {
 300   assert(is_constant() && value() != NULL, "");
 301   assert(type()->as_FloatConstant() != NULL, "type check");
 302   return type()->as_FloatConstant()->value();
 303 }
 304 
 305 
 306 jdouble LIRItem::get_jdouble_constant() const {
 307   assert(is_constant() && value() != NULL, "");
 308   assert(type()->as_DoubleConstant() != NULL, "type check");
 309   return type()->as_DoubleConstant()->value();
 310 }
 311 
 312 
 313 jlong LIRItem::get_jlong_constant() const {
 314   assert(is_constant() && value() != NULL, "");
 315   assert(type()->as_LongConstant() != NULL, "type check");
 316   return type()->as_LongConstant()->value();
 317 }
 318 
 319 
 320 
 321 //--------------------------------------------------------------
 322 
 323 
 324 void LIRGenerator::init() {
 325   _bs = Universe::heap()->barrier_set();
 326 }
 327 
 328 
 329 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 330 #ifndef PRODUCT
 331   if (PrintIRWithLIR) {
 332     block->print();
 333   }
 334 #endif
 335 
 336   // set up the list of LIR instructions
 337   assert(block->lir() == NULL, "LIR list already computed for this block");
 338   _lir = new LIR_List(compilation(), block);
 339   block->set_lir(_lir);
 340 
 341   __ branch_destination(block->label());
 342 
 343   if (LIRTraceExecution &&
 344       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 345       !block->is_set(BlockBegin::exception_entry_flag)) {
 346     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 347     trace_block_entry(block);
 348   }
 349 }
 350 
 351 
 352 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 353 #ifndef PRODUCT
 354   if (PrintIRWithLIR) {
 355     tty->cr();
 356   }
 357 #endif
 358 
 359   // LIR_Opr for unpinned constants shouldn't be referenced by other
 360   // blocks so clear them out after processing the block.
 361   for (int i = 0; i < _unpinned_constants.length(); i++) {
 362     _unpinned_constants.at(i)->clear_operand();
 363   }
 364   _unpinned_constants.trunc_to(0);
 365 
 366   // clear our any registers for other local constants
 367   _constants.trunc_to(0);
 368   _reg_for_constants.trunc_to(0);
 369 }
 370 
 371 
 372 void LIRGenerator::block_do(BlockBegin* block) {
 373   CHECK_BAILOUT();
 374 
 375   block_do_prolog(block);
 376   set_block(block);
 377 
 378   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 379     if (instr->is_pinned()) do_root(instr);
 380   }
 381 
 382   set_block(NULL);
 383   block_do_epilog(block);
 384 }
 385 
 386 
 387 //-------------------------LIRGenerator-----------------------------
 388 
 389 // This is where the tree-walk starts; instr must be root;
 390 void LIRGenerator::do_root(Value instr) {
 391   CHECK_BAILOUT();
 392 
 393   InstructionMark im(compilation(), instr);
 394 
 395   assert(instr->is_pinned(), "use only with roots");
 396   assert(instr->subst() == instr, "shouldn't have missed substitution");
 397 
 398   instr->visit(this);
 399 
 400   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 401          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 402 }
 403 
 404 
 405 // This is called for each node in tree; the walk stops if a root is reached
 406 void LIRGenerator::walk(Value instr) {
 407   InstructionMark im(compilation(), instr);
 408   //stop walk when encounter a root
 409   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 410     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 411   } else {
 412     assert(instr->subst() == instr, "shouldn't have missed substitution");
 413     instr->visit(this);
 414     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 415   }
 416 }
 417 
 418 
 419 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 420   assert(state != NULL, "state must be defined");
 421 
 422 #ifndef PRODUCT
 423   state->verify();
 424 #endif
 425 
 426   ValueStack* s = state;
 427   for_each_state(s) {
 428     if (s->kind() == ValueStack::EmptyExceptionState) {
 429       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 430       continue;
 431     }
 432 
 433     int index;
 434     Value value;
 435     for_each_stack_value(s, index, value) {
 436       assert(value->subst() == value, "missed substitution");
 437       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 438         walk(value);
 439         assert(value->operand()->is_valid(), "must be evaluated now");
 440       }
 441     }
 442 
 443     int bci = s->bci();
 444     IRScope* scope = s->scope();
 445     ciMethod* method = scope->method();
 446 
 447     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 448     if (bci == SynchronizationEntryBCI) {
 449       if (x->as_ExceptionObject() || x->as_Throw()) {
 450         // all locals are dead on exit from the synthetic unlocker
 451         liveness.clear();
 452       } else {
 453         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 454       }
 455     }
 456     if (!liveness.is_valid()) {
 457       // Degenerate or breakpointed method.
 458       bailout("Degenerate or breakpointed method");
 459     } else {
 460       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 461       for_each_local_value(s, index, value) {
 462         assert(value->subst() == value, "missed substition");
 463         if (liveness.at(index) && !value->type()->is_illegal()) {
 464           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 465             walk(value);
 466             assert(value->operand()->is_valid(), "must be evaluated now");
 467           }
 468         } else {
 469           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 470           s->invalidate_local(index);
 471         }
 472       }
 473     }
 474   }
 475 
 476   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 477 }
 478 
 479 
 480 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 481   return state_for(x, x->exception_state());
 482 }
 483 
 484 
 485 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 486   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 487    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 488    * the class. */
 489   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 490     assert(info != NULL, "info must be set if class is not loaded");
 491     __ klass2reg_patch(NULL, r, info);
 492   } else {
 493     // no patching needed
 494     __ metadata2reg(obj->constant_encoding(), r);
 495   }
 496 }
 497 
 498 
 499 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 500                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 501   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 502   if (index->is_constant()) {
 503     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 504                 index->as_jint(), null_check_info);
 505     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 506   } else {
 507     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 508                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 509     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 510   }
 511 }
 512 
 513 
 514 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 515   CodeStub* stub = new RangeCheckStub(info, index, true);
 516   if (index->is_constant()) {
 517     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 518     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 519   } else {
 520     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 521                 java_nio_Buffer::limit_offset(), T_INT, info);
 522     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 523   }
 524   __ move(index, result);
 525 }
 526 
 527 
 528 
 529 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 530   LIR_Opr result_op = result;
 531   LIR_Opr left_op   = left;
 532   LIR_Opr right_op  = right;
 533 
 534   if (TwoOperandLIRForm && left_op != result_op) {
 535     assert(right_op != result_op, "malformed");
 536     __ move(left_op, result_op);
 537     left_op = result_op;
 538   }
 539 
 540   switch(code) {
 541     case Bytecodes::_dadd:
 542     case Bytecodes::_fadd:
 543     case Bytecodes::_ladd:
 544     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 545     case Bytecodes::_fmul:
 546     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 547 
 548     case Bytecodes::_dmul:
 549       {
 550         if (is_strictfp) {
 551           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 552         } else {
 553           __ mul(left_op, right_op, result_op); break;
 554         }
 555       }
 556       break;
 557 
 558     case Bytecodes::_imul:
 559       {
 560         bool did_strength_reduce = false;
 561 
 562         if (right->is_constant()) {
 563           jint c = right->as_jint();
 564           if (c > 0 && is_power_of_2(c)) {
 565             // do not need tmp here
 566             __ shift_left(left_op, exact_log2(c), result_op);
 567             did_strength_reduce = true;
 568           } else {
 569             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 570           }
 571         }
 572         // we couldn't strength reduce so just emit the multiply
 573         if (!did_strength_reduce) {
 574           __ mul(left_op, right_op, result_op);
 575         }
 576       }
 577       break;
 578 
 579     case Bytecodes::_dsub:
 580     case Bytecodes::_fsub:
 581     case Bytecodes::_lsub:
 582     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 583 
 584     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 585     // ldiv and lrem are implemented with a direct runtime call
 586 
 587     case Bytecodes::_ddiv:
 588       {
 589         if (is_strictfp) {
 590           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 591         } else {
 592           __ div (left_op, right_op, result_op); break;
 593         }
 594       }
 595       break;
 596 
 597     case Bytecodes::_drem:
 598     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 599 
 600     default: ShouldNotReachHere();
 601   }
 602 }
 603 
 604 
 605 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 606   arithmetic_op(code, result, left, right, false, tmp);
 607 }
 608 
 609 
 610 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 611   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 612 }
 613 
 614 
 615 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 616   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 617 }
 618 
 619 
 620 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 621 
 622   if (TwoOperandLIRForm && value != result_op
 623       // Only 32bit right shifts require two operand form on S390.
 624       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 625     assert(count != result_op, "malformed");
 626     __ move(value, result_op);
 627     value = result_op;
 628   }
 629 
 630   assert(count->is_constant() || count->is_register(), "must be");
 631   switch(code) {
 632   case Bytecodes::_ishl:
 633   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 634   case Bytecodes::_ishr:
 635   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 636   case Bytecodes::_iushr:
 637   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 638   default: ShouldNotReachHere();
 639   }
 640 }
 641 
 642 
 643 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 644   if (TwoOperandLIRForm && left_op != result_op) {
 645     assert(right_op != result_op, "malformed");
 646     __ move(left_op, result_op);
 647     left_op = result_op;
 648   }
 649 
 650   switch(code) {
 651     case Bytecodes::_iand:
 652     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 653 
 654     case Bytecodes::_ior:
 655     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 656 
 657     case Bytecodes::_ixor:
 658     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 659 
 660     default: ShouldNotReachHere();
 661   }
 662 }
 663 
 664 
 665 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 666   if (!GenerateSynchronizationCode) return;
 667   // for slow path, use debug info for state after successful locking
 668   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 669   __ load_stack_address_monitor(monitor_no, lock);
 670   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 671   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 672 }
 673 
 674 
 675 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 676   if (!GenerateSynchronizationCode) return;
 677   // setup registers
 678   LIR_Opr hdr = lock;
 679   lock = new_hdr;
 680   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 681   __ load_stack_address_monitor(monitor_no, lock);
 682   __ unlock_object(hdr, object, lock, scratch, slow_path);
 683 }
 684 
 685 #ifndef PRODUCT
 686 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 687   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 688     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 689   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 690     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 691   }
 692 }
 693 #endif
 694 
 695 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 696   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 697   // If klass is not loaded we do not know if the klass has finalizers:
 698   if (UseFastNewInstance && klass->is_loaded()
 699       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 700 
 701     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 702 
 703     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 704 
 705     assert(klass->is_loaded(), "must be loaded");
 706     // allocate space for instance
 707     assert(klass->size_helper() >= 0, "illegal instance size");
 708     const int instance_size = align_object_size(klass->size_helper());
 709     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 710                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 711   } else {
 712     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 713     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 714     __ branch_destination(slow_path->continuation());
 715   }
 716 }
 717 
 718 
 719 static bool is_constant_zero(Instruction* inst) {
 720   IntConstant* c = inst->type()->as_IntConstant();
 721   if (c) {
 722     return (c->value() == 0);
 723   }
 724   return false;
 725 }
 726 
 727 
 728 static bool positive_constant(Instruction* inst) {
 729   IntConstant* c = inst->type()->as_IntConstant();
 730   if (c) {
 731     return (c->value() >= 0);
 732   }
 733   return false;
 734 }
 735 
 736 
 737 static ciArrayKlass* as_array_klass(ciType* type) {
 738   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 739     return (ciArrayKlass*)type;
 740   } else {
 741     return NULL;
 742   }
 743 }
 744 
 745 static ciType* phi_declared_type(Phi* phi) {
 746   ciType* t = phi->operand_at(0)->declared_type();
 747   if (t == NULL) {
 748     return NULL;
 749   }
 750   for(int i = 1; i < phi->operand_count(); i++) {
 751     if (t != phi->operand_at(i)->declared_type()) {
 752       return NULL;
 753     }
 754   }
 755   return t;
 756 }
 757 
 758 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 759   Instruction* src     = x->argument_at(0);
 760   Instruction* src_pos = x->argument_at(1);
 761   Instruction* dst     = x->argument_at(2);
 762   Instruction* dst_pos = x->argument_at(3);
 763   Instruction* length  = x->argument_at(4);
 764 
 765   // first try to identify the likely type of the arrays involved
 766   ciArrayKlass* expected_type = NULL;
 767   bool is_exact = false, src_objarray = false, dst_objarray = false;
 768   {
 769     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 770     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 771     Phi* phi;
 772     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 773       src_declared_type = as_array_klass(phi_declared_type(phi));
 774     }
 775     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 776     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 777     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 778       dst_declared_type = as_array_klass(phi_declared_type(phi));
 779     }
 780 
 781     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 782       // the types exactly match so the type is fully known
 783       is_exact = true;
 784       expected_type = src_exact_type;
 785     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 786       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 787       ciArrayKlass* src_type = NULL;
 788       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 789         src_type = (ciArrayKlass*) src_exact_type;
 790       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 791         src_type = (ciArrayKlass*) src_declared_type;
 792       }
 793       if (src_type != NULL) {
 794         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 795           is_exact = true;
 796           expected_type = dst_type;
 797         }
 798       }
 799     }
 800     // at least pass along a good guess
 801     if (expected_type == NULL) expected_type = dst_exact_type;
 802     if (expected_type == NULL) expected_type = src_declared_type;
 803     if (expected_type == NULL) expected_type = dst_declared_type;
 804 
 805     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 806     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 807   }
 808 
 809   // if a probable array type has been identified, figure out if any
 810   // of the required checks for a fast case can be elided.
 811   int flags = LIR_OpArrayCopy::all_flags;
 812 
 813   if (!src_objarray)
 814     flags &= ~LIR_OpArrayCopy::src_objarray;
 815   if (!dst_objarray)
 816     flags &= ~LIR_OpArrayCopy::dst_objarray;
 817 
 818   if (!x->arg_needs_null_check(0))
 819     flags &= ~LIR_OpArrayCopy::src_null_check;
 820   if (!x->arg_needs_null_check(2))
 821     flags &= ~LIR_OpArrayCopy::dst_null_check;
 822 
 823 
 824   if (expected_type != NULL) {
 825     Value length_limit = NULL;
 826 
 827     IfOp* ifop = length->as_IfOp();
 828     if (ifop != NULL) {
 829       // look for expressions like min(v, a.length) which ends up as
 830       //   x > y ? y : x  or  x >= y ? y : x
 831       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 832           ifop->x() == ifop->fval() &&
 833           ifop->y() == ifop->tval()) {
 834         length_limit = ifop->y();
 835       }
 836     }
 837 
 838     // try to skip null checks and range checks
 839     NewArray* src_array = src->as_NewArray();
 840     if (src_array != NULL) {
 841       flags &= ~LIR_OpArrayCopy::src_null_check;
 842       if (length_limit != NULL &&
 843           src_array->length() == length_limit &&
 844           is_constant_zero(src_pos)) {
 845         flags &= ~LIR_OpArrayCopy::src_range_check;
 846       }
 847     }
 848 
 849     NewArray* dst_array = dst->as_NewArray();
 850     if (dst_array != NULL) {
 851       flags &= ~LIR_OpArrayCopy::dst_null_check;
 852       if (length_limit != NULL &&
 853           dst_array->length() == length_limit &&
 854           is_constant_zero(dst_pos)) {
 855         flags &= ~LIR_OpArrayCopy::dst_range_check;
 856       }
 857     }
 858 
 859     // check from incoming constant values
 860     if (positive_constant(src_pos))
 861       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 862     if (positive_constant(dst_pos))
 863       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 864     if (positive_constant(length))
 865       flags &= ~LIR_OpArrayCopy::length_positive_check;
 866 
 867     // see if the range check can be elided, which might also imply
 868     // that src or dst is non-null.
 869     ArrayLength* al = length->as_ArrayLength();
 870     if (al != NULL) {
 871       if (al->array() == src) {
 872         // it's the length of the source array
 873         flags &= ~LIR_OpArrayCopy::length_positive_check;
 874         flags &= ~LIR_OpArrayCopy::src_null_check;
 875         if (is_constant_zero(src_pos))
 876           flags &= ~LIR_OpArrayCopy::src_range_check;
 877       }
 878       if (al->array() == dst) {
 879         // it's the length of the destination array
 880         flags &= ~LIR_OpArrayCopy::length_positive_check;
 881         flags &= ~LIR_OpArrayCopy::dst_null_check;
 882         if (is_constant_zero(dst_pos))
 883           flags &= ~LIR_OpArrayCopy::dst_range_check;
 884       }
 885     }
 886     if (is_exact) {
 887       flags &= ~LIR_OpArrayCopy::type_check;
 888     }
 889   }
 890 
 891   IntConstant* src_int = src_pos->type()->as_IntConstant();
 892   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 893   if (src_int && dst_int) {
 894     int s_offs = src_int->value();
 895     int d_offs = dst_int->value();
 896     if (src_int->value() >= dst_int->value()) {
 897       flags &= ~LIR_OpArrayCopy::overlapping;
 898     }
 899     if (expected_type != NULL) {
 900       BasicType t = expected_type->element_type()->basic_type();
 901       int element_size = type2aelembytes(t);
 902       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 903           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 904         flags &= ~LIR_OpArrayCopy::unaligned;
 905       }
 906     }
 907   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 908     // src and dest positions are the same, or dst is zero so assume
 909     // nonoverlapping copy.
 910     flags &= ~LIR_OpArrayCopy::overlapping;
 911   }
 912 
 913   if (src == dst) {
 914     // moving within a single array so no type checks are needed
 915     if (flags & LIR_OpArrayCopy::type_check) {
 916       flags &= ~LIR_OpArrayCopy::type_check;
 917     }
 918   }
 919   *flagsp = flags;
 920   *expected_typep = (ciArrayKlass*)expected_type;
 921 }
 922 
 923 
 924 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 925   assert(opr->is_register(), "why spill if item is not register?");
 926 
 927   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 928     LIR_Opr result = new_register(T_FLOAT);
 929     set_vreg_flag(result, must_start_in_memory);
 930     assert(opr->is_register(), "only a register can be spilled");
 931     assert(opr->value_type()->is_float(), "rounding only for floats available");
 932     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 933     return result;
 934   }
 935   return opr;
 936 }
 937 
 938 
 939 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 940   assert(type2size[t] == type2size[value->type()],
 941          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 942   if (!value->is_register()) {
 943     // force into a register
 944     LIR_Opr r = new_register(value->type());
 945     __ move(value, r);
 946     value = r;
 947   }
 948 
 949   // create a spill location
 950   LIR_Opr tmp = new_register(t);
 951   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 952 
 953   // move from register to spill
 954   __ move(value, tmp);
 955   return tmp;
 956 }
 957 
 958 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 959   if (if_instr->should_profile()) {
 960     ciMethod* method = if_instr->profiled_method();
 961     assert(method != NULL, "method should be set if branch is profiled");
 962     ciMethodData* md = method->method_data_or_null();
 963     assert(md != NULL, "Sanity");
 964     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 965     assert(data != NULL, "must have profiling data");
 966     assert(data->is_BranchData(), "need BranchData for two-way branches");
 967     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 968     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 969     if (if_instr->is_swapped()) {
 970       int t = taken_count_offset;
 971       taken_count_offset = not_taken_count_offset;
 972       not_taken_count_offset = t;
 973     }
 974 
 975     LIR_Opr md_reg = new_register(T_METADATA);
 976     __ metadata2reg(md->constant_encoding(), md_reg);
 977 
 978     LIR_Opr data_offset_reg = new_pointer_register();
 979     __ cmove(lir_cond(cond),
 980              LIR_OprFact::intptrConst(taken_count_offset),
 981              LIR_OprFact::intptrConst(not_taken_count_offset),
 982              data_offset_reg, as_BasicType(if_instr->x()->type()));
 983 
 984     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 985     LIR_Opr data_reg = new_pointer_register();
 986     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 987     __ move(data_addr, data_reg);
 988     // Use leal instead of add to avoid destroying condition codes on x86
 989     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 990     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 991     __ move(data_reg, data_addr);
 992   }
 993 }
 994 
 995 // Phi technique:
 996 // This is about passing live values from one basic block to the other.
 997 // In code generated with Java it is rather rare that more than one
 998 // value is on the stack from one basic block to the other.
 999 // We optimize our technique for efficient passing of one value
1000 // (of type long, int, double..) but it can be extended.
1001 // When entering or leaving a basic block, all registers and all spill
1002 // slots are release and empty. We use the released registers
1003 // and spill slots to pass the live values from one block
1004 // to the other. The topmost value, i.e., the value on TOS of expression
1005 // stack is passed in registers. All other values are stored in spilling
1006 // area. Every Phi has an index which designates its spill slot
1007 // At exit of a basic block, we fill the register(s) and spill slots.
1008 // At entry of a basic block, the block_prolog sets up the content of phi nodes
1009 // and locks necessary registers and spilling slots.
1010 
1011 
1012 // move current value to referenced phi function
1013 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1014   Phi* phi = sux_val->as_Phi();
1015   // cur_val can be null without phi being null in conjunction with inlining
1016   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1017     Phi* cur_phi = cur_val->as_Phi();
1018     if (cur_phi != NULL && cur_phi->is_illegal()) {
1019       // Phi and local would need to get invalidated
1020       // (which is unexpected for Linear Scan).
1021       // But this case is very rare so we simply bail out.
1022       bailout("propagation of illegal phi");
1023       return;
1024     }
1025     LIR_Opr operand = cur_val->operand();
1026     if (operand->is_illegal()) {
1027       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1028              "these can be produced lazily");
1029       operand = operand_for_instruction(cur_val);
1030     }
1031     resolver->move(operand, operand_for_instruction(phi));
1032   }
1033 }
1034 
1035 
1036 // Moves all stack values into their PHI position
1037 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1038   BlockBegin* bb = block();
1039   if (bb->number_of_sux() == 1) {
1040     BlockBegin* sux = bb->sux_at(0);
1041     assert(sux->number_of_preds() > 0, "invalid CFG");
1042 
1043     // a block with only one predecessor never has phi functions
1044     if (sux->number_of_preds() > 1) {
1045       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1046       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1047 
1048       ValueStack* sux_state = sux->state();
1049       Value sux_value;
1050       int index;
1051 
1052       assert(cur_state->scope() == sux_state->scope(), "not matching");
1053       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1054       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1055 
1056       for_each_stack_value(sux_state, index, sux_value) {
1057         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1058       }
1059 
1060       for_each_local_value(sux_state, index, sux_value) {
1061         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1062       }
1063 
1064       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1065     }
1066   }
1067 }
1068 
1069 
1070 LIR_Opr LIRGenerator::new_register(BasicType type) {
1071   int vreg = _virtual_register_number;
1072   // add a little fudge factor for the bailout, since the bailout is
1073   // only checked periodically.  This gives a few extra registers to
1074   // hand out before we really run out, which helps us keep from
1075   // tripping over assertions.
1076   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1077     bailout("out of virtual registers");
1078     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1079       // wrap it around
1080       _virtual_register_number = LIR_OprDesc::vreg_base;
1081     }
1082   }
1083   _virtual_register_number += 1;
1084   return LIR_OprFact::virtual_register(vreg, type);
1085 }
1086 
1087 
1088 // Try to lock using register in hint
1089 LIR_Opr LIRGenerator::rlock(Value instr) {
1090   return new_register(instr->type());
1091 }
1092 
1093 
1094 // does an rlock and sets result
1095 LIR_Opr LIRGenerator::rlock_result(Value x) {
1096   LIR_Opr reg = rlock(x);
1097   set_result(x, reg);
1098   return reg;
1099 }
1100 
1101 
1102 // does an rlock and sets result
1103 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1104   LIR_Opr reg;
1105   switch (type) {
1106   case T_BYTE:
1107   case T_BOOLEAN:
1108     reg = rlock_byte(type);
1109     break;
1110   default:
1111     reg = rlock(x);
1112     break;
1113   }
1114 
1115   set_result(x, reg);
1116   return reg;
1117 }
1118 
1119 
1120 //---------------------------------------------------------------------
1121 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1122   ObjectType* oc = value->type()->as_ObjectType();
1123   if (oc) {
1124     return oc->constant_value();
1125   }
1126   return NULL;
1127 }
1128 
1129 
1130 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1131   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1132   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1133 
1134   // no moves are created for phi functions at the begin of exception
1135   // handlers, so assign operands manually here
1136   for_each_phi_fun(block(), phi,
1137                    operand_for_instruction(phi));
1138 
1139   LIR_Opr thread_reg = getThreadPointer();
1140   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1141                exceptionOopOpr());
1142   __ move_wide(LIR_OprFact::oopConst(NULL),
1143                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1144   __ move_wide(LIR_OprFact::oopConst(NULL),
1145                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1146 
1147   LIR_Opr result = new_register(T_OBJECT);
1148   __ move(exceptionOopOpr(), result);
1149   set_result(x, result);
1150 }
1151 
1152 
1153 //----------------------------------------------------------------------
1154 //----------------------------------------------------------------------
1155 //----------------------------------------------------------------------
1156 //----------------------------------------------------------------------
1157 //                        visitor functions
1158 //----------------------------------------------------------------------
1159 //----------------------------------------------------------------------
1160 //----------------------------------------------------------------------
1161 //----------------------------------------------------------------------
1162 
1163 void LIRGenerator::do_Phi(Phi* x) {
1164   // phi functions are never visited directly
1165   ShouldNotReachHere();
1166 }
1167 
1168 
1169 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1170 void LIRGenerator::do_Constant(Constant* x) {
1171   if (x->state_before() != NULL) {
1172     // Any constant with a ValueStack requires patching so emit the patch here
1173     LIR_Opr reg = rlock_result(x);
1174     CodeEmitInfo* info = state_for(x, x->state_before());
1175     __ oop2reg_patch(NULL, reg, info);
1176   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1177     if (!x->is_pinned()) {
1178       // unpinned constants are handled specially so that they can be
1179       // put into registers when they are used multiple times within a
1180       // block.  After the block completes their operand will be
1181       // cleared so that other blocks can't refer to that register.
1182       set_result(x, load_constant(x));
1183     } else {
1184       LIR_Opr res = x->operand();
1185       if (!res->is_valid()) {
1186         res = LIR_OprFact::value_type(x->type());
1187       }
1188       if (res->is_constant()) {
1189         LIR_Opr reg = rlock_result(x);
1190         __ move(res, reg);
1191       } else {
1192         set_result(x, res);
1193       }
1194     }
1195   } else {
1196     set_result(x, LIR_OprFact::value_type(x->type()));
1197   }
1198 }
1199 
1200 
1201 void LIRGenerator::do_Local(Local* x) {
1202   // operand_for_instruction has the side effect of setting the result
1203   // so there's no need to do it here.
1204   operand_for_instruction(x);
1205 }
1206 
1207 
1208 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1209   Unimplemented();
1210 }
1211 
1212 
1213 void LIRGenerator::do_Return(Return* x) {
1214   if (compilation()->env()->dtrace_method_probes()) {
1215     BasicTypeList signature;
1216     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1217     signature.append(T_METADATA); // Method*
1218     LIR_OprList* args = new LIR_OprList();
1219     args->append(getThreadPointer());
1220     LIR_Opr meth = new_register(T_METADATA);
1221     __ metadata2reg(method()->constant_encoding(), meth);
1222     args->append(meth);
1223     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1224   }
1225 
1226   if (x->type()->is_void()) {
1227     __ return_op(LIR_OprFact::illegalOpr);
1228   } else {
1229     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1230     LIRItem result(x->result(), this);
1231 
1232     result.load_item_force(reg);
1233     __ return_op(result.result());
1234   }
1235   set_no_result(x);
1236 }
1237 
1238 // Examble: ref.get()
1239 // Combination of LoadField and g1 pre-write barrier
1240 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1241 
1242   const int referent_offset = java_lang_ref_Reference::referent_offset;
1243   guarantee(referent_offset > 0, "referent offset not initialized");
1244 
1245   assert(x->number_of_arguments() == 1, "wrong type");
1246 
1247   LIRItem reference(x->argument_at(0), this);
1248   reference.load_item();
1249 
1250   // need to perform the null check on the reference objecy
1251   CodeEmitInfo* info = NULL;
1252   if (x->needs_null_check()) {
1253     info = state_for(x);
1254   }
1255 
1256   LIR_Address* referent_field_adr =
1257     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1258 
1259   LIR_Opr result = rlock_result(x);
1260 
1261   __ load(referent_field_adr, result, info);
1262 
1263   // Register the value in the referent field with the pre-barrier
1264   keep_alive_barrier(result);
1265 }
1266 
1267 // Example: clazz.isInstance(object)
1268 void LIRGenerator::do_isInstance(Intrinsic* x) {
1269   assert(x->number_of_arguments() == 2, "wrong type");
1270 
1271   // TODO could try to substitute this node with an equivalent InstanceOf
1272   // if clazz is known to be a constant Class. This will pick up newly found
1273   // constants after HIR construction. I'll leave this to a future change.
1274 
1275   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1276   // could follow the aastore example in a future change.
1277 
1278   LIRItem clazz(x->argument_at(0), this);
1279   LIRItem object(x->argument_at(1), this);
1280   clazz.load_item();
1281   object.load_item();
1282   LIR_Opr result = rlock_result(x);
1283 
1284   // need to perform null check on clazz
1285   if (x->needs_null_check()) {
1286     CodeEmitInfo* info = state_for(x);
1287     __ null_check(clazz.result(), info);
1288   }
1289 
1290   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1291                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1292                                      x->type(),
1293                                      NULL); // NULL CodeEmitInfo results in a leaf call
1294   __ move(call_result, result);
1295 }
1296 
1297 // Example: object.getClass ()
1298 void LIRGenerator::do_getClass(Intrinsic* x) {
1299   assert(x->number_of_arguments() == 1, "wrong type");
1300 
1301   LIRItem rcvr(x->argument_at(0), this);
1302   rcvr.load_item();
1303   LIR_Opr temp = new_register(T_METADATA);
1304   LIR_Opr result = rlock_result(x);
1305 
1306   // need to perform the null check on the rcvr
1307   CodeEmitInfo* info = NULL;
1308   if (x->needs_null_check()) {
1309     info = state_for(x);
1310   }
1311 
1312   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1313   // meaning of these two is mixed up (see JDK-8026837).
1314   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1315   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1316 }
1317 
1318 // java.lang.Class::isPrimitive()
1319 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1320   assert(x->number_of_arguments() == 1, "wrong type");
1321 
1322   LIRItem rcvr(x->argument_at(0), this);
1323   rcvr.load_item();
1324   LIR_Opr temp = new_register(T_METADATA);
1325   LIR_Opr result = rlock_result(x);
1326 
1327   CodeEmitInfo* info = NULL;
1328   if (x->needs_null_check()) {
1329     info = state_for(x);
1330   }
1331 
1332   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1333   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1334   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1335 }
1336 
1337 
1338 // Example: Thread.currentThread()
1339 void LIRGenerator::do_currentThread(Intrinsic* x) {
1340   assert(x->number_of_arguments() == 0, "wrong type");
1341   LIR_Opr reg = rlock_result(x);
1342   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1343 }
1344 
1345 
1346 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1347   assert(x->number_of_arguments() == 1, "wrong type");
1348   LIRItem receiver(x->argument_at(0), this);
1349 
1350   receiver.load_item();
1351   BasicTypeList signature;
1352   signature.append(T_OBJECT); // receiver
1353   LIR_OprList* args = new LIR_OprList();
1354   args->append(receiver.result());
1355   CodeEmitInfo* info = state_for(x, x->state());
1356   call_runtime(&signature, args,
1357                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1358                voidType, info);
1359 
1360   set_no_result(x);
1361 }
1362 
1363 
1364 //------------------------local access--------------------------------------
1365 
1366 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1367   if (x->operand()->is_illegal()) {
1368     Constant* c = x->as_Constant();
1369     if (c != NULL) {
1370       x->set_operand(LIR_OprFact::value_type(c->type()));
1371     } else {
1372       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1373       // allocate a virtual register for this local or phi
1374       x->set_operand(rlock(x));
1375       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1376     }
1377   }
1378   return x->operand();
1379 }
1380 
1381 
1382 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1383   if (opr->is_virtual()) {
1384     return instruction_for_vreg(opr->vreg_number());
1385   }
1386   return NULL;
1387 }
1388 
1389 
1390 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1391   if (reg_num < _instruction_for_operand.length()) {
1392     return _instruction_for_operand.at(reg_num);
1393   }
1394   return NULL;
1395 }
1396 
1397 
1398 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1399   if (_vreg_flags.size_in_bits() == 0) {
1400     BitMap2D temp(100, num_vreg_flags);
1401     _vreg_flags = temp;
1402   }
1403   _vreg_flags.at_put_grow(vreg_num, f, true);
1404 }
1405 
1406 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1407   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1408     return false;
1409   }
1410   return _vreg_flags.at(vreg_num, f);
1411 }
1412 
1413 
1414 // Block local constant handling.  This code is useful for keeping
1415 // unpinned constants and constants which aren't exposed in the IR in
1416 // registers.  Unpinned Constant instructions have their operands
1417 // cleared when the block is finished so that other blocks can't end
1418 // up referring to their registers.
1419 
1420 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1421   assert(!x->is_pinned(), "only for unpinned constants");
1422   _unpinned_constants.append(x);
1423   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1424 }
1425 
1426 
1427 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1428   BasicType t = c->type();
1429   for (int i = 0; i < _constants.length(); i++) {
1430     LIR_Const* other = _constants.at(i);
1431     if (t == other->type()) {
1432       switch (t) {
1433       case T_INT:
1434       case T_FLOAT:
1435         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1436         break;
1437       case T_LONG:
1438       case T_DOUBLE:
1439         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1440         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1441         break;
1442       case T_OBJECT:
1443         if (c->as_jobject() != other->as_jobject()) continue;
1444         break;
1445       default:
1446         break;
1447       }
1448       return _reg_for_constants.at(i);
1449     }
1450   }
1451 
1452   LIR_Opr result = new_register(t);
1453   __ move((LIR_Opr)c, result);
1454   _constants.append(c);
1455   _reg_for_constants.append(result);
1456   return result;
1457 }
1458 
1459 // Various barriers
1460 
1461 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1462                                bool do_load, bool patch, CodeEmitInfo* info) {
1463   // Do the pre-write barrier, if any.
1464   switch (_bs->kind()) {
1465 #if INCLUDE_ALL_GCS
1466     case BarrierSet::G1SATBCTLogging:
1467       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1468       break;
1469     case BarrierSet::ShenandoahBarrierSet:
1470       if (ShenandoahSATBBarrier) {
1471         G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1472       }
1473       break;
1474 #endif // INCLUDE_ALL_GCS
1475     case BarrierSet::CardTableForRS:
1476     case BarrierSet::CardTableExtension:
1477       // No pre barriers
1478       break;
1479     case BarrierSet::ModRef:
1480       // No pre barriers
1481       break;
1482     default      :
1483       ShouldNotReachHere();
1484 
1485   }
1486 }
1487 
1488 void LIRGenerator::keep_alive_barrier(LIR_Opr val) {
1489   switch (_bs->kind()) {
1490 #if INCLUDE_ALL_GCS
1491     case BarrierSet::G1SATBCTLogging:
1492       pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1493                   val /* pre_val */,
1494                   false  /* do_load */,
1495                   false  /* patch */,
1496                   NULL   /* info */);
1497       break;
1498     case BarrierSet::ShenandoahBarrierSet:
1499       if (ShenandoahKeepAliveBarrier) {
1500         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1501                     val /* pre_val */,
1502                     false  /* do_load */,
1503                     false  /* patch */,
1504                     NULL   /* info */);
1505       }
1506       break;
1507 #endif // INCLUDE_ALL_GCS
1508     case BarrierSet::CardTableForRS:
1509     case BarrierSet::CardTableExtension:
1510       break;
1511     case BarrierSet::ModRef:
1512       break;
1513     default      :
1514       ShouldNotReachHere();
1515   }
1516 }
1517 
1518 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1519   switch (_bs->kind()) {
1520 #if INCLUDE_ALL_GCS
1521     case BarrierSet::G1SATBCTLogging:
1522       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1523       break;
1524     case BarrierSet::ShenandoahBarrierSet:
1525       Shenandoah_post_barrier(addr,  new_val);
1526       break;
1527 #endif // INCLUDE_ALL_GCS
1528     case BarrierSet::CardTableForRS:
1529     case BarrierSet::CardTableExtension:
1530       CardTableModRef_post_barrier(addr,  new_val);
1531       break;
1532     case BarrierSet::ModRef:
1533       // No post barriers
1534       break;
1535     default      :
1536       ShouldNotReachHere();
1537     }
1538 }
1539 
1540 ////////////////////////////////////////////////////////////////////////
1541 #if INCLUDE_ALL_GCS
1542 
1543 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1544                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1545   // First we test whether marking is in progress.
1546   BasicType flag_type;
1547   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1548     flag_type = T_INT;
1549   } else {
1550     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1551               "Assumption");
1552     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1553     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1554     flag_type = T_BOOLEAN;
1555   }
1556   LIR_Opr thrd = getThreadPointer();
1557   LIR_Address* mark_active_flag_addr =
1558     new LIR_Address(thrd,
1559                     in_bytes(JavaThread::satb_mark_queue_offset() +
1560                              SATBMarkQueue::byte_offset_of_active()),
1561                     flag_type);
1562   // Read the marking-in-progress flag.
1563   LIR_Opr flag_val = new_register(T_INT);
1564   __ load(mark_active_flag_addr, flag_val);
1565   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1566 
1567   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1568 
1569   CodeStub* slow;
1570 
1571   if (do_load) {
1572     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1573     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1574 
1575     if (patch)
1576       pre_val_patch_code = lir_patch_normal;
1577 
1578     pre_val = new_register(T_OBJECT);
1579 
1580     if (!addr_opr->is_address()) {
1581       assert(addr_opr->is_register(), "must be");
1582       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1583     }
1584     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1585   } else {
1586     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1587     assert(pre_val->is_register(), "must be");
1588     assert(pre_val->type() == T_OBJECT, "must be an object");
1589     assert(info == NULL, "sanity");
1590 
1591     slow = new G1PreBarrierStub(pre_val);
1592   }
1593 
1594   __ branch(lir_cond_notEqual, T_INT, slow);
1595   __ branch_destination(slow->continuation());
1596 }
1597 
1598 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1599   // If the "new_val" is a constant NULL, no barrier is necessary.
1600   if (new_val->is_constant() &&
1601       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1602 
1603   if (!new_val->is_register()) {
1604     LIR_Opr new_val_reg = new_register(T_OBJECT);
1605     if (new_val->is_constant()) {
1606       __ move(new_val, new_val_reg);
1607     } else {
1608       __ leal(new_val, new_val_reg);
1609     }
1610     new_val = new_val_reg;
1611   }
1612   assert(new_val->is_register(), "must be a register at this point");
1613 
1614   if (addr->is_address()) {
1615     LIR_Address* address = addr->as_address_ptr();
1616     LIR_Opr ptr = new_pointer_register();
1617     if (!address->index()->is_valid() && address->disp() == 0) {
1618       __ move(address->base(), ptr);
1619     } else {
1620       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1621       __ leal(addr, ptr);
1622     }
1623     addr = ptr;
1624   }
1625   assert(addr->is_register(), "must be a register at this point");
1626 
1627   LIR_Opr xor_res = new_pointer_register();
1628   LIR_Opr xor_shift_res = new_pointer_register();
1629   if (TwoOperandLIRForm ) {
1630     __ move(addr, xor_res);
1631     __ logical_xor(xor_res, new_val, xor_res);
1632     __ move(xor_res, xor_shift_res);
1633     __ unsigned_shift_right(xor_shift_res,
1634                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1635                             xor_shift_res,
1636                             LIR_OprDesc::illegalOpr());
1637   } else {
1638     __ logical_xor(addr, new_val, xor_res);
1639     __ unsigned_shift_right(xor_res,
1640                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1641                             xor_shift_res,
1642                             LIR_OprDesc::illegalOpr());
1643   }
1644 
1645   if (!new_val->is_register()) {
1646     LIR_Opr new_val_reg = new_register(T_OBJECT);
1647     __ leal(new_val, new_val_reg);
1648     new_val = new_val_reg;
1649   }
1650   assert(new_val->is_register(), "must be a register at this point");
1651 
1652   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1653 
1654   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1655   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1656   __ branch_destination(slow->continuation());
1657 }
1658 
1659 void LIRGenerator::Shenandoah_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1660   if (! UseShenandoahMatrix) {
1661     // No need for that barrier if not using matrix.
1662     return;
1663   }
1664 
1665   // If the "new_val" is a constant NULL, no barrier is necessary.
1666   if (new_val->is_constant() &&
1667       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1668 
1669   if (!new_val->is_register()) {
1670     LIR_Opr new_val_reg = new_register(T_OBJECT);
1671     if (new_val->is_constant()) {
1672       __ move(new_val, new_val_reg);
1673     } else {
1674       __ leal(new_val, new_val_reg);
1675     }
1676     new_val = new_val_reg;
1677   }
1678   assert(new_val->is_register(), "must be a register at this point");
1679 
1680   if (addr->is_address()) {
1681     LIR_Address* address = addr->as_address_ptr();
1682     LIR_Opr ptr = new_pointer_register();
1683     if (!address->index()->is_valid() && address->disp() == 0) {
1684       __ move(address->base(), ptr);
1685     } else {
1686       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1687       __ leal(addr, ptr);
1688     }
1689     addr = ptr;
1690   }
1691   assert(addr->is_register(), "must be a register at this point");
1692 
1693   LabelObj* L_done = new LabelObj();
1694   __ cmp(lir_cond_equal, new_val, LIR_OprFact::oopConst(NULL_WORD));
1695   __ branch(lir_cond_equal, T_OBJECT, L_done->label());
1696 
1697   ShenandoahConnectionMatrix* matrix = ShenandoahHeap::heap()->connection_matrix();
1698 
1699   LIR_Opr heap_base = new_pointer_register();
1700   __ move(LIR_OprFact::intptrConst(ShenandoahHeap::heap()->base()), heap_base);
1701 
1702   LIR_Opr tmp1 = new_pointer_register();
1703   __ move(new_val, tmp1);
1704   __ sub(tmp1, heap_base, tmp1);
1705   __ unsigned_shift_right(tmp1, LIR_OprFact::intConst(ShenandoahHeapRegion::region_size_bytes_shift_jint()), tmp1, LIR_OprDesc::illegalOpr());
1706 
1707   LIR_Opr tmp2 = new_pointer_register();
1708   __ move(addr, tmp2);
1709   __ sub(tmp2, heap_base, tmp2);
1710   __ unsigned_shift_right(tmp2, LIR_OprFact::intConst(ShenandoahHeapRegion::region_size_bytes_shift_jint()), tmp2, LIR_OprDesc::illegalOpr());
1711 
1712   LIR_Opr tmp3 = new_pointer_register();
1713   __ move(LIR_OprFact::longConst(matrix->stride_jint()), tmp3);
1714   __ mul(tmp1, tmp3, tmp1);
1715   __ add(tmp1, tmp2, tmp1);
1716 
1717   LIR_Opr tmp4 = new_pointer_register();
1718   __ move(LIR_OprFact::intptrConst((intptr_t) matrix->matrix_addr()), tmp4);
1719   LIR_Address* matrix_elem_addr = new LIR_Address(tmp4, tmp1, T_BYTE);
1720 
1721   LIR_Opr tmp5 = new_register(T_INT);
1722   __ move(matrix_elem_addr, tmp5);
1723   __ cmp(lir_cond_notEqual, tmp5, LIR_OprFact::intConst(0));
1724   __ branch(lir_cond_notEqual, T_BYTE, L_done->label());
1725 
1726   // Aarch64 cannot move constant 1. Load it into a register.
1727   LIR_Opr one = new_register(T_INT);
1728   __ move(LIR_OprFact::intConst(1), one);
1729   __ move(one, matrix_elem_addr);
1730 
1731   __ branch_destination(L_done->label());
1732 }
1733 
1734 #endif // INCLUDE_ALL_GCS
1735 ////////////////////////////////////////////////////////////////////////
1736 
1737 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1738   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
1739   assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
1740   LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
1741   if (addr->is_address()) {
1742     LIR_Address* address = addr->as_address_ptr();
1743     // ptr cannot be an object because we use this barrier for array card marks
1744     // and addr can point in the middle of an array.
1745     LIR_Opr ptr = new_pointer_register();
1746     if (!address->index()->is_valid() && address->disp() == 0) {
1747       __ move(address->base(), ptr);
1748     } else {
1749       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1750       __ leal(addr, ptr);
1751     }
1752     addr = ptr;
1753   }
1754   assert(addr->is_register(), "must be a register at this point");
1755 
1756 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1757   CardTableModRef_post_barrier_helper(addr, card_table_base);
1758 #else
1759   LIR_Opr tmp = new_pointer_register();
1760   if (TwoOperandLIRForm) {
1761     __ move(addr, tmp);
1762     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1763   } else {
1764     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1765   }
1766 
1767   LIR_Address* card_addr;
1768   if (can_inline_as_constant(card_table_base)) {
1769     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1770   } else {
1771     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1772   }
1773 
1774   LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
1775   if (UseCondCardMark) {
1776     LIR_Opr cur_value = new_register(T_INT);
1777     if (UseConcMarkSweepGC) {
1778       __ membar_storeload();
1779     }
1780     __ move(card_addr, cur_value);
1781 
1782     LabelObj* L_already_dirty = new LabelObj();
1783     __ cmp(lir_cond_equal, cur_value, dirty);
1784     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1785     __ move(dirty, card_addr);
1786     __ branch_destination(L_already_dirty->label());
1787   } else {
1788     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1789       __ membar_storestore();
1790     }
1791     __ move(dirty, card_addr);
1792   }
1793 #endif
1794 }
1795 
1796 
1797 //------------------------field access--------------------------------------
1798 
1799 // Comment copied form templateTable_i486.cpp
1800 // ----------------------------------------------------------------------------
1801 // Volatile variables demand their effects be made known to all CPU's in
1802 // order.  Store buffers on most chips allow reads & writes to reorder; the
1803 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1804 // memory barrier (i.e., it's not sufficient that the interpreter does not
1805 // reorder volatile references, the hardware also must not reorder them).
1806 //
1807 // According to the new Java Memory Model (JMM):
1808 // (1) All volatiles are serialized wrt to each other.
1809 // ALSO reads & writes act as aquire & release, so:
1810 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1811 // the read float up to before the read.  It's OK for non-volatile memory refs
1812 // that happen before the volatile read to float down below it.
1813 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1814 // that happen BEFORE the write float down to after the write.  It's OK for
1815 // non-volatile memory refs that happen after the volatile write to float up
1816 // before it.
1817 //
1818 // We only put in barriers around volatile refs (they are expensive), not
1819 // _between_ memory refs (that would require us to track the flavor of the
1820 // previous memory refs).  Requirements (2) and (3) require some barriers
1821 // before volatile stores and after volatile loads.  These nearly cover
1822 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1823 // case is placed after volatile-stores although it could just as well go
1824 // before volatile-loads.
1825 
1826 
1827 void LIRGenerator::do_StoreField(StoreField* x) {
1828   bool needs_patching = x->needs_patching();
1829   bool is_volatile = x->field()->is_volatile();
1830   BasicType field_type = x->field_type();
1831   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1832 
1833   CodeEmitInfo* info = NULL;
1834   if (needs_patching) {
1835     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1836     info = state_for(x, x->state_before());
1837   } else if (x->needs_null_check()) {
1838     NullCheck* nc = x->explicit_null_check();
1839     if (nc == NULL) {
1840       info = state_for(x);
1841     } else {
1842       info = state_for(nc);
1843     }
1844   }
1845 
1846 
1847   LIRItem object(x->obj(), this);
1848   LIRItem value(x->value(),  this);
1849 
1850   object.load_item();
1851 
1852   if (is_volatile || needs_patching) {
1853     // load item if field is volatile (fewer special cases for volatiles)
1854     // load item if field not initialized
1855     // load item if field not constant
1856     // because of code patching we cannot inline constants
1857     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1858       value.load_byte_item();
1859     } else  {
1860       value.load_item();
1861     }
1862   } else {
1863     value.load_for_store(field_type);
1864   }
1865 
1866   set_no_result(x);
1867 
1868 #ifndef PRODUCT
1869   if (PrintNotLoaded && needs_patching) {
1870     tty->print_cr("   ###class not loaded at store_%s bci %d",
1871                   x->is_static() ?  "static" : "field", x->printable_bci());
1872   }
1873 #endif
1874 
1875   LIR_Opr obj = object.result();
1876 
1877   if (x->needs_null_check() &&
1878       (needs_patching ||
1879        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1880     // Emit an explicit null check because the offset is too large.
1881     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1882     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1883     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1884   }
1885 
1886   obj = shenandoah_write_barrier(obj, info, x->needs_null_check());
1887   LIR_Opr val = value.result();
1888   if (is_oop && UseShenandoahGC) {
1889     val = shenandoah_storeval_barrier(val, NULL, true);
1890   }
1891 
1892   LIR_Address* address;
1893   if (needs_patching) {
1894     // we need to patch the offset in the instruction so don't allow
1895     // generate_address to try to be smart about emitting the -1.
1896     // Otherwise the patching code won't know how to find the
1897     // instruction to patch.
1898     address = new LIR_Address(obj, PATCHED_ADDR, field_type);
1899   } else {
1900     address = generate_address(obj, x->offset(), field_type);
1901   }
1902 
1903   if (is_volatile && os::is_MP()) {
1904     __ membar_release();
1905   }
1906 
1907   if (is_oop) {
1908     // Do the pre-write barrier, if any.
1909     pre_barrier(LIR_OprFact::address(address),
1910                 LIR_OprFact::illegalOpr /* pre_val */,
1911                 true /* do_load*/,
1912                 needs_patching,
1913                 (info ? new CodeEmitInfo(info) : NULL));
1914   }
1915 
1916   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1917   if (needs_atomic_access && !needs_patching) {
1918     volatile_field_store(val, address, info);
1919   } else {
1920     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1921     __ store(val, address, info, patch_code);
1922   }
1923 
1924   if (is_oop) {
1925     // Store to object so mark the card of the header
1926     post_barrier(obj, val);
1927   }
1928 
1929   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1930     __ membar();
1931   }
1932 }
1933 
1934 
1935 void LIRGenerator::do_LoadField(LoadField* x) {
1936   bool needs_patching = x->needs_patching();
1937   bool is_volatile = x->field()->is_volatile();
1938   BasicType field_type = x->field_type();
1939 
1940   CodeEmitInfo* info = NULL;
1941   if (needs_patching) {
1942     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1943     info = state_for(x, x->state_before());
1944   } else if (x->needs_null_check()) {
1945     NullCheck* nc = x->explicit_null_check();
1946     if (nc == NULL) {
1947       info = state_for(x);
1948     } else {
1949       info = state_for(nc);
1950     }
1951   }
1952 
1953   LIRItem object(x->obj(), this);
1954 
1955   object.load_item();
1956 
1957 #ifndef PRODUCT
1958   if (PrintNotLoaded && needs_patching) {
1959     tty->print_cr("   ###class not loaded at load_%s bci %d",
1960                   x->is_static() ?  "static" : "field", x->printable_bci());
1961   }
1962 #endif
1963 
1964   LIR_Opr obj = object.result();
1965   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1966   if (x->needs_null_check() &&
1967       (needs_patching ||
1968        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1969        stress_deopt)) {
1970     if (stress_deopt) {
1971       obj = new_register(T_OBJECT);
1972       __ move(LIR_OprFact::oopConst(NULL), obj);
1973     }
1974     // Emit an explicit null check because the offset is too large.
1975     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1976     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1977     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1978   }
1979 
1980   obj = shenandoah_read_barrier(obj, info, x->needs_null_check() && x->explicit_null_check() != NULL);
1981   LIR_Opr reg = rlock_result(x, field_type);
1982   LIR_Address* address;
1983   if (needs_patching) {
1984     // we need to patch the offset in the instruction so don't allow
1985     // generate_address to try to be smart about emitting the -1.
1986     // Otherwise the patching code won't know how to find the
1987     // instruction to patch.
1988     address = new LIR_Address(obj, PATCHED_ADDR, field_type);
1989   } else {
1990     address = generate_address(obj, x->offset(), field_type);
1991   }
1992 
1993   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1994     __ membar();
1995   }
1996 
1997   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1998   if (needs_atomic_access && !needs_patching) {
1999     volatile_field_load(address, reg, info);
2000   } else {
2001     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
2002     __ load(address, reg, info, patch_code);
2003   }
2004 
2005   if (is_volatile && os::is_MP()) {
2006     __ membar_acquire();
2007   }
2008 }
2009 
2010 LIR_Opr LIRGenerator::shenandoah_read_barrier(LIR_Opr obj, CodeEmitInfo* info, bool need_null_check) {
2011   if (UseShenandoahGC && ShenandoahReadBarrier) {
2012     return shenandoah_read_barrier_impl(obj, info, need_null_check);
2013   } else {
2014     return obj;
2015   }
2016 }
2017 
2018 LIR_Opr LIRGenerator::shenandoah_read_barrier_impl(LIR_Opr obj, CodeEmitInfo* info, bool need_null_check) {
2019   LabelObj* done = new LabelObj();
2020   LIR_Opr result = new_register(T_OBJECT);
2021   __ move(obj, result);
2022   if (need_null_check) {
2023     __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
2024     __ branch(lir_cond_equal, T_LONG, done->label());
2025   }
2026   LIR_Address* brooks_ptr_address = generate_address(result, BrooksPointer::byte_offset(), T_ADDRESS);
2027   __ load(brooks_ptr_address, result, info ? new CodeEmitInfo(info) : NULL, lir_patch_none);
2028 
2029   __ branch_destination(done->label());
2030   return result;
2031 }
2032 
2033 LIR_Opr LIRGenerator::shenandoah_write_barrier(LIR_Opr obj, CodeEmitInfo* info, bool need_null_check) {
2034   if (UseShenandoahGC && ShenandoahWriteBarrier) {
2035 
2036     LIR_Opr result = new_register(T_OBJECT);
2037     __ shenandoah_wb(obj, result, info ? new CodeEmitInfo(info) : NULL, need_null_check);
2038     return result;
2039 
2040   } else {
2041     return obj;
2042   }
2043 }
2044 
2045 LIR_Opr LIRGenerator::shenandoah_storeval_barrier(LIR_Opr obj, CodeEmitInfo* info, bool need_null_check) {
2046   if (UseShenandoahGC && ShenandoahStoreValBarrier) {
2047     return shenandoah_read_barrier_impl(obj, info, need_null_check);
2048   } else {
2049     return obj;
2050   }
2051 }
2052 //------------------------java.nio.Buffer.checkIndex------------------------
2053 
2054 // int java.nio.Buffer.checkIndex(int)
2055 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
2056   // NOTE: by the time we are in checkIndex() we are guaranteed that
2057   // the buffer is non-null (because checkIndex is package-private and
2058   // only called from within other methods in the buffer).
2059   assert(x->number_of_arguments() == 2, "wrong type");
2060   LIRItem buf  (x->argument_at(0), this);
2061   LIRItem index(x->argument_at(1), this);
2062   buf.load_item();
2063   index.load_item();
2064 
2065   LIR_Opr result = rlock_result(x);
2066   if (GenerateRangeChecks) {
2067     CodeEmitInfo* info = state_for(x);
2068     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
2069     if (index.result()->is_constant()) {
2070       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
2071       __ branch(lir_cond_belowEqual, T_INT, stub);
2072     } else {
2073       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
2074                   java_nio_Buffer::limit_offset(), T_INT, info);
2075       __ branch(lir_cond_aboveEqual, T_INT, stub);
2076     }
2077     __ move(index.result(), result);
2078   } else {
2079     // Just load the index into the result register
2080     __ move(index.result(), result);
2081   }
2082 }
2083 
2084 
2085 //------------------------array access--------------------------------------
2086 
2087 
2088 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
2089   LIRItem array(x->array(), this);
2090   array.load_item();
2091   LIR_Opr reg = rlock_result(x);
2092 
2093   CodeEmitInfo* info = NULL;
2094   if (x->needs_null_check()) {
2095     NullCheck* nc = x->explicit_null_check();
2096     if (nc == NULL) {
2097       info = state_for(x);
2098     } else {
2099       info = state_for(nc);
2100     }
2101     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
2102       LIR_Opr obj = new_register(T_OBJECT);
2103       __ move(LIR_OprFact::oopConst(NULL), obj);
2104       __ null_check(obj, new CodeEmitInfo(info));
2105     }
2106   }
2107   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
2108 }
2109 
2110 
2111 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
2112   bool use_length = x->length() != NULL;
2113   LIRItem array(x->array(), this);
2114   LIRItem index(x->index(), this);
2115   LIRItem length(this);
2116   bool needs_range_check = x->compute_needs_range_check();
2117 
2118   if (use_length && needs_range_check) {
2119     length.set_instruction(x->length());
2120     length.load_item();
2121   }
2122 
2123   array.load_item();
2124   if (index.is_constant() && can_inline_as_constant(x->index())) {
2125     // let it be a constant
2126     index.dont_load_item();
2127   } else {
2128     index.load_item();
2129   }
2130 
2131   CodeEmitInfo* range_check_info = state_for(x);
2132   CodeEmitInfo* null_check_info = NULL;
2133   if (x->needs_null_check()) {
2134     NullCheck* nc = x->explicit_null_check();
2135     if (nc != NULL) {
2136       null_check_info = state_for(nc);
2137     } else {
2138       null_check_info = range_check_info;
2139     }
2140     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2141       LIR_Opr obj = new_register(T_OBJECT);
2142       __ move(LIR_OprFact::oopConst(NULL), obj);
2143       __ null_check(obj, new CodeEmitInfo(null_check_info));
2144     }
2145   }
2146 
2147   LIR_Opr ary = array.result();
2148   ary = shenandoah_read_barrier(ary, null_check_info, null_check_info != NULL);
2149 
2150   // emit array address setup early so it schedules better
2151   LIR_Address* array_addr = emit_array_address(ary, index.result(), x->elt_type(), false);
2152 
2153   if (GenerateRangeChecks && needs_range_check) {
2154     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2155       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
2156     } else if (use_length) {
2157       // TODO: use a (modified) version of array_range_check that does not require a
2158       //       constant length to be loaded to a register
2159       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2160       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
2161     } else {
2162       array_range_check(ary, index.result(), null_check_info, range_check_info);
2163       // The range check performs the null check, so clear it out for the load
2164       null_check_info = NULL;
2165     }
2166   }
2167 
2168   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
2169 }
2170 
2171 
2172 void LIRGenerator::do_NullCheck(NullCheck* x) {
2173   if (x->can_trap()) {
2174     LIRItem value(x->obj(), this);
2175     value.load_item();
2176     CodeEmitInfo* info = state_for(x);
2177     __ null_check(value.result(), info);
2178   }
2179 }
2180 
2181 
2182 void LIRGenerator::do_TypeCast(TypeCast* x) {
2183   LIRItem value(x->obj(), this);
2184   value.load_item();
2185   // the result is the same as from the node we are casting
2186   set_result(x, value.result());
2187 }
2188 
2189 
2190 void LIRGenerator::do_Throw(Throw* x) {
2191   LIRItem exception(x->exception(), this);
2192   exception.load_item();
2193   set_no_result(x);
2194   LIR_Opr exception_opr = exception.result();
2195   CodeEmitInfo* info = state_for(x, x->state());
2196 
2197 #ifndef PRODUCT
2198   if (PrintC1Statistics) {
2199     increment_counter(Runtime1::throw_count_address(), T_INT);
2200   }
2201 #endif
2202 
2203   // check if the instruction has an xhandler in any of the nested scopes
2204   bool unwind = false;
2205   if (info->exception_handlers()->length() == 0) {
2206     // this throw is not inside an xhandler
2207     unwind = true;
2208   } else {
2209     // get some idea of the throw type
2210     bool type_is_exact = true;
2211     ciType* throw_type = x->exception()->exact_type();
2212     if (throw_type == NULL) {
2213       type_is_exact = false;
2214       throw_type = x->exception()->declared_type();
2215     }
2216     if (throw_type != NULL && throw_type->is_instance_klass()) {
2217       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2218       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2219     }
2220   }
2221 
2222   // do null check before moving exception oop into fixed register
2223   // to avoid a fixed interval with an oop during the null check.
2224   // Use a copy of the CodeEmitInfo because debug information is
2225   // different for null_check and throw.
2226   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2227     // if the exception object wasn't created using new then it might be null.
2228     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2229   }
2230 
2231   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2232     // we need to go through the exception lookup path to get JVMTI
2233     // notification done
2234     unwind = false;
2235   }
2236 
2237   // move exception oop into fixed register
2238   __ move(exception_opr, exceptionOopOpr());
2239 
2240   if (unwind) {
2241     __ unwind_exception(exceptionOopOpr());
2242   } else {
2243     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2244   }
2245 }
2246 
2247 
2248 void LIRGenerator::do_RoundFP(RoundFP* x) {
2249   LIRItem input(x->input(), this);
2250   input.load_item();
2251   LIR_Opr input_opr = input.result();
2252   assert(input_opr->is_register(), "why round if value is not in a register?");
2253   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2254   if (input_opr->is_single_fpu()) {
2255     set_result(x, round_item(input_opr)); // This code path not currently taken
2256   } else {
2257     LIR_Opr result = new_register(T_DOUBLE);
2258     set_vreg_flag(result, must_start_in_memory);
2259     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2260     set_result(x, result);
2261   }
2262 }
2263 
2264 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2265 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2266 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2267   LIRItem base(x->base(), this);
2268   LIRItem idx(this);
2269 
2270   base.load_item();
2271   if (x->has_index()) {
2272     idx.set_instruction(x->index());
2273     idx.load_nonconstant();
2274   }
2275 
2276   LIR_Opr reg = rlock_result(x, x->basic_type());
2277 
2278   int   log2_scale = 0;
2279   if (x->has_index()) {
2280     log2_scale = x->log2_scale();
2281   }
2282 
2283   assert(!x->has_index() || idx.value() == x->index(), "should match");
2284 
2285   LIR_Opr base_op = base.result();
2286   LIR_Opr index_op = idx.result();
2287 #ifndef _LP64
2288   if (base_op->type() == T_LONG) {
2289     base_op = new_register(T_INT);
2290     __ convert(Bytecodes::_l2i, base.result(), base_op);
2291   }
2292   if (x->has_index()) {
2293     if (index_op->type() == T_LONG) {
2294       LIR_Opr long_index_op = index_op;
2295       if (index_op->is_constant()) {
2296         long_index_op = new_register(T_LONG);
2297         __ move(index_op, long_index_op);
2298       }
2299       index_op = new_register(T_INT);
2300       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2301     } else {
2302       assert(x->index()->type()->tag() == intTag, "must be");
2303     }
2304   }
2305   // At this point base and index should be all ints.
2306   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2307   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2308 #else
2309   if (x->has_index()) {
2310     if (index_op->type() == T_INT) {
2311       if (!index_op->is_constant()) {
2312         index_op = new_register(T_LONG);
2313         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2314       }
2315     } else {
2316       assert(index_op->type() == T_LONG, "must be");
2317       if (index_op->is_constant()) {
2318         index_op = new_register(T_LONG);
2319         __ move(idx.result(), index_op);
2320       }
2321     }
2322   }
2323   // At this point base is a long non-constant
2324   // Index is a long register or a int constant.
2325   // We allow the constant to stay an int because that would allow us a more compact encoding by
2326   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2327   // move it into a register first.
2328   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2329   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2330                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2331 #endif
2332 
2333   BasicType dst_type = x->basic_type();
2334 
2335   LIR_Address* addr;
2336   if (index_op->is_constant()) {
2337     assert(log2_scale == 0, "must not have a scale");
2338     assert(index_op->type() == T_INT, "only int constants supported");
2339     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2340   } else {
2341 #ifdef X86
2342     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2343 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2344     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2345 #else
2346     if (index_op->is_illegal() || log2_scale == 0) {
2347       addr = new LIR_Address(base_op, index_op, dst_type);
2348     } else {
2349       LIR_Opr tmp = new_pointer_register();
2350       __ shift_left(index_op, log2_scale, tmp);
2351       addr = new LIR_Address(base_op, tmp, dst_type);
2352     }
2353 #endif
2354   }
2355 
2356   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2357     __ unaligned_move(addr, reg);
2358   } else {
2359     if (dst_type == T_OBJECT && x->is_wide()) {
2360       __ move_wide(addr, reg);
2361     } else {
2362       __ move(addr, reg);
2363     }
2364   }
2365 }
2366 
2367 
2368 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2369   int  log2_scale = 0;
2370   BasicType type = x->basic_type();
2371 
2372   if (x->has_index()) {
2373     log2_scale = x->log2_scale();
2374   }
2375 
2376   LIRItem base(x->base(), this);
2377   LIRItem value(x->value(), this);
2378   LIRItem idx(this);
2379 
2380   base.load_item();
2381   if (x->has_index()) {
2382     idx.set_instruction(x->index());
2383     idx.load_item();
2384   }
2385 
2386   if (type == T_BYTE || type == T_BOOLEAN) {
2387     value.load_byte_item();
2388   } else {
2389     value.load_item();
2390   }
2391 
2392   set_no_result(x);
2393 
2394   LIR_Opr base_op = base.result();
2395   LIR_Opr index_op = idx.result();
2396 
2397 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2398   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2399 #else
2400 #ifndef _LP64
2401   if (base_op->type() == T_LONG) {
2402     base_op = new_register(T_INT);
2403     __ convert(Bytecodes::_l2i, base.result(), base_op);
2404   }
2405   if (x->has_index()) {
2406     if (index_op->type() == T_LONG) {
2407       index_op = new_register(T_INT);
2408       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2409     }
2410   }
2411   // At this point base and index should be all ints and not constants
2412   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2413   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2414 #else
2415   if (x->has_index()) {
2416     if (index_op->type() == T_INT) {
2417       index_op = new_register(T_LONG);
2418       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2419     }
2420   }
2421   // At this point base and index are long and non-constant
2422   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2423   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2424 #endif
2425 
2426   if (log2_scale != 0) {
2427     // temporary fix (platform dependent code without shift on Intel would be better)
2428     // TODO: ARM also allows embedded shift in the address
2429     LIR_Opr tmp = new_pointer_register();
2430     if (TwoOperandLIRForm) {
2431       __ move(index_op, tmp);
2432       index_op = tmp;
2433     }
2434     __ shift_left(index_op, log2_scale, tmp);
2435     if (!TwoOperandLIRForm) {
2436       index_op = tmp;
2437     }
2438   }
2439 
2440   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2441 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2442   __ move(value.result(), addr);
2443 }
2444 
2445 
2446 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2447   BasicType type = x->basic_type();
2448   LIRItem src(x->object(), this);
2449   LIRItem off(x->offset(), this);
2450 
2451   off.load_item();
2452   src.load_item();
2453 
2454   LIR_Opr value = rlock_result(x, x->basic_type());
2455 
2456   if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2457     __ membar();
2458   }
2459 
2460   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2461 
2462 #if INCLUDE_ALL_GCS
2463   // We might be reading the value of the referent field of a
2464   // Reference object in order to attach it back to the live
2465   // object graph. If G1 is enabled then we need to record
2466   // the value that is being returned in an SATB log buffer.
2467   //
2468   // We need to generate code similar to the following...
2469   //
2470   // if (offset == java_lang_ref_Reference::referent_offset) {
2471   //   if (src != NULL) {
2472   //     if (klass(src)->reference_type() != REF_NONE) {
2473   //       pre_barrier(..., value, ...);
2474   //     }
2475   //   }
2476   // }
2477 
2478   if ((UseShenandoahGC || UseG1GC) && type == T_OBJECT) {
2479     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2480     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2481     bool gen_source_check = true;    // Assume we need to check the src object for null.
2482     bool gen_type_check = true;      // Assume we need to check the reference_type.
2483 
2484     if (off.is_constant()) {
2485       jlong off_con = (off.type()->is_int() ?
2486                         (jlong) off.get_jint_constant() :
2487                         off.get_jlong_constant());
2488 
2489 
2490       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2491         // The constant offset is something other than referent_offset.
2492         // We can skip generating/checking the remaining guards and
2493         // skip generation of the code stub.
2494         gen_pre_barrier = false;
2495       } else {
2496         // The constant offset is the same as referent_offset -
2497         // we do not need to generate a runtime offset check.
2498         gen_offset_check = false;
2499       }
2500     }
2501 
2502     // We don't need to generate stub if the source object is an array
2503     if (gen_pre_barrier && src.type()->is_array()) {
2504       gen_pre_barrier = false;
2505     }
2506 
2507     if (gen_pre_barrier) {
2508       // We still need to continue with the checks.
2509       if (src.is_constant()) {
2510         ciObject* src_con = src.get_jobject_constant();
2511         guarantee(src_con != NULL, "no source constant");
2512 
2513         if (src_con->is_null_object()) {
2514           // The constant src object is null - We can skip
2515           // generating the code stub.
2516           gen_pre_barrier = false;
2517         } else {
2518           // Non-null constant source object. We still have to generate
2519           // the slow stub - but we don't need to generate the runtime
2520           // null object check.
2521           gen_source_check = false;
2522         }
2523       }
2524     }
2525     if (gen_pre_barrier && !PatchALot) {
2526       // Can the klass of object be statically determined to be
2527       // a sub-class of Reference?
2528       ciType* type = src.value()->declared_type();
2529       if ((type != NULL) && type->is_loaded()) {
2530         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2531           gen_type_check = false;
2532         } else if (type->is_klass() &&
2533                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2534           // Not Reference and not Object klass.
2535           gen_pre_barrier = false;
2536         }
2537       }
2538     }
2539 
2540     if (gen_pre_barrier) {
2541       LabelObj* Lcont = new LabelObj();
2542 
2543       // We can have generate one runtime check here. Let's start with
2544       // the offset check.
2545       if (gen_offset_check) {
2546         // if (offset != referent_offset) -> continue
2547         // If offset is an int then we can do the comparison with the
2548         // referent_offset constant; otherwise we need to move
2549         // referent_offset into a temporary register and generate
2550         // a reg-reg compare.
2551 
2552         LIR_Opr referent_off;
2553 
2554         if (off.type()->is_int()) {
2555           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2556         } else {
2557           assert(off.type()->is_long(), "what else?");
2558           referent_off = new_register(T_LONG);
2559           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2560         }
2561         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2562         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2563       }
2564       if (gen_source_check) {
2565         // offset is a const and equals referent offset
2566         // if (source == null) -> continue
2567         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2568         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2569       }
2570       LIR_Opr src_klass = new_register(T_OBJECT);
2571       if (gen_type_check) {
2572         // We have determined that offset == referent_offset && src != null.
2573         // if (src->_klass->_reference_type == REF_NONE) -> continue
2574         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2575         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2576         LIR_Opr reference_type = new_register(T_INT);
2577         __ move(reference_type_addr, reference_type);
2578         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2579         __ branch(lir_cond_equal, T_INT, Lcont->label());
2580       }
2581       {
2582         // We have determined that src->_klass->_reference_type != REF_NONE
2583         // so register the value in the referent field with the pre-barrier.
2584         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2585                     value  /* pre_val */,
2586                     false  /* do_load */,
2587                     false  /* patch */,
2588                     NULL   /* info */);
2589       }
2590       __ branch_destination(Lcont->label());
2591     }
2592   }
2593 #endif // INCLUDE_ALL_GCS
2594 
2595   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2596 
2597   /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
2598   if (type == T_BOOLEAN) {
2599     LabelObj* equalZeroLabel = new LabelObj();
2600     __ cmp(lir_cond_equal, value, 0);
2601     __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
2602     __ move(LIR_OprFact::intConst(1), value);
2603     __ branch_destination(equalZeroLabel->label());
2604   }
2605 }
2606 
2607 
2608 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2609   BasicType type = x->basic_type();
2610   LIRItem src(x->object(), this);
2611   LIRItem off(x->offset(), this);
2612   LIRItem data(x->value(), this);
2613 
2614   src.load_item();
2615   if (type == T_BOOLEAN || type == T_BYTE) {
2616     data.load_byte_item();
2617   } else {
2618     data.load_item();
2619   }
2620   off.load_item();
2621 
2622   set_no_result(x);
2623 
2624   if (x->is_volatile() && os::is_MP()) __ membar_release();
2625   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2626   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2627 }
2628 
2629 
2630 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2631   int lng = x->length();
2632 
2633   for (int i = 0; i < lng; i++) {
2634     SwitchRange* one_range = x->at(i);
2635     int low_key = one_range->low_key();
2636     int high_key = one_range->high_key();
2637     BlockBegin* dest = one_range->sux();
2638     if (low_key == high_key) {
2639       __ cmp(lir_cond_equal, value, low_key);
2640       __ branch(lir_cond_equal, T_INT, dest);
2641     } else if (high_key - low_key == 1) {
2642       __ cmp(lir_cond_equal, value, low_key);
2643       __ branch(lir_cond_equal, T_INT, dest);
2644       __ cmp(lir_cond_equal, value, high_key);
2645       __ branch(lir_cond_equal, T_INT, dest);
2646     } else {
2647       LabelObj* L = new LabelObj();
2648       __ cmp(lir_cond_less, value, low_key);
2649       __ branch(lir_cond_less, T_INT, L->label());
2650       __ cmp(lir_cond_lessEqual, value, high_key);
2651       __ branch(lir_cond_lessEqual, T_INT, dest);
2652       __ branch_destination(L->label());
2653     }
2654   }
2655   __ jump(default_sux);
2656 }
2657 
2658 
2659 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2660   SwitchRangeList* res = new SwitchRangeList();
2661   int len = x->length();
2662   if (len > 0) {
2663     BlockBegin* sux = x->sux_at(0);
2664     int key = x->lo_key();
2665     BlockBegin* default_sux = x->default_sux();
2666     SwitchRange* range = new SwitchRange(key, sux);
2667     for (int i = 0; i < len; i++, key++) {
2668       BlockBegin* new_sux = x->sux_at(i);
2669       if (sux == new_sux) {
2670         // still in same range
2671         range->set_high_key(key);
2672       } else {
2673         // skip tests which explicitly dispatch to the default
2674         if (sux != default_sux) {
2675           res->append(range);
2676         }
2677         range = new SwitchRange(key, new_sux);
2678       }
2679       sux = new_sux;
2680     }
2681     if (res->length() == 0 || res->last() != range)  res->append(range);
2682   }
2683   return res;
2684 }
2685 
2686 
2687 // we expect the keys to be sorted by increasing value
2688 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2689   SwitchRangeList* res = new SwitchRangeList();
2690   int len = x->length();
2691   if (len > 0) {
2692     BlockBegin* default_sux = x->default_sux();
2693     int key = x->key_at(0);
2694     BlockBegin* sux = x->sux_at(0);
2695     SwitchRange* range = new SwitchRange(key, sux);
2696     for (int i = 1; i < len; i++) {
2697       int new_key = x->key_at(i);
2698       BlockBegin* new_sux = x->sux_at(i);
2699       if (key+1 == new_key && sux == new_sux) {
2700         // still in same range
2701         range->set_high_key(new_key);
2702       } else {
2703         // skip tests which explicitly dispatch to the default
2704         if (range->sux() != default_sux) {
2705           res->append(range);
2706         }
2707         range = new SwitchRange(new_key, new_sux);
2708       }
2709       key = new_key;
2710       sux = new_sux;
2711     }
2712     if (res->length() == 0 || res->last() != range)  res->append(range);
2713   }
2714   return res;
2715 }
2716 
2717 
2718 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2719   LIRItem tag(x->tag(), this);
2720   tag.load_item();
2721   set_no_result(x);
2722 
2723   if (x->is_safepoint()) {
2724     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2725   }
2726 
2727   // move values into phi locations
2728   move_to_phi(x->state());
2729 
2730   int lo_key = x->lo_key();
2731   int hi_key = x->hi_key();
2732   int len = x->length();
2733   LIR_Opr value = tag.result();
2734   if (UseTableRanges) {
2735     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2736   } else {
2737     for (int i = 0; i < len; i++) {
2738       __ cmp(lir_cond_equal, value, i + lo_key);
2739       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2740     }
2741     __ jump(x->default_sux());
2742   }
2743 }
2744 
2745 
2746 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2747   LIRItem tag(x->tag(), this);
2748   tag.load_item();
2749   set_no_result(x);
2750 
2751   if (x->is_safepoint()) {
2752     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2753   }
2754 
2755   // move values into phi locations
2756   move_to_phi(x->state());
2757 
2758   LIR_Opr value = tag.result();
2759   if (UseTableRanges) {
2760     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2761   } else {
2762     int len = x->length();
2763     for (int i = 0; i < len; i++) {
2764       __ cmp(lir_cond_equal, value, x->key_at(i));
2765       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2766     }
2767     __ jump(x->default_sux());
2768   }
2769 }
2770 
2771 
2772 void LIRGenerator::do_Goto(Goto* x) {
2773   set_no_result(x);
2774 
2775   if (block()->next()->as_OsrEntry()) {
2776     // need to free up storage used for OSR entry point
2777     LIR_Opr osrBuffer = block()->next()->operand();
2778     BasicTypeList signature;
2779     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2780     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2781     __ move(osrBuffer, cc->args()->at(0));
2782     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2783                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2784   }
2785 
2786   if (x->is_safepoint()) {
2787     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2788 
2789     // increment backedge counter if needed
2790     CodeEmitInfo* info = state_for(x, state);
2791     increment_backedge_counter(info, x->profiled_bci());
2792     CodeEmitInfo* safepoint_info = state_for(x, state);
2793     __ safepoint(safepoint_poll_register(), safepoint_info);
2794   }
2795 
2796   // Gotos can be folded Ifs, handle this case.
2797   if (x->should_profile()) {
2798     ciMethod* method = x->profiled_method();
2799     assert(method != NULL, "method should be set if branch is profiled");
2800     ciMethodData* md = method->method_data_or_null();
2801     assert(md != NULL, "Sanity");
2802     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2803     assert(data != NULL, "must have profiling data");
2804     int offset;
2805     if (x->direction() == Goto::taken) {
2806       assert(data->is_BranchData(), "need BranchData for two-way branches");
2807       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2808     } else if (x->direction() == Goto::not_taken) {
2809       assert(data->is_BranchData(), "need BranchData for two-way branches");
2810       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2811     } else {
2812       assert(data->is_JumpData(), "need JumpData for branches");
2813       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2814     }
2815     LIR_Opr md_reg = new_register(T_METADATA);
2816     __ metadata2reg(md->constant_encoding(), md_reg);
2817 
2818     increment_counter(new LIR_Address(md_reg, offset,
2819                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2820   }
2821 
2822   // emit phi-instruction move after safepoint since this simplifies
2823   // describing the state as the safepoint.
2824   move_to_phi(x->state());
2825 
2826   __ jump(x->default_sux());
2827 }
2828 
2829 /**
2830  * Emit profiling code if needed for arguments, parameters, return value types
2831  *
2832  * @param md                    MDO the code will update at runtime
2833  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2834  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2835  * @param profiled_k            current profile
2836  * @param obj                   IR node for the object to be profiled
2837  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2838  *                              Set once we find an update to make and use for next ones.
2839  * @param not_null              true if we know obj cannot be null
2840  * @param signature_at_call_k   signature at call for obj
2841  * @param callee_signature_k    signature of callee for obj
2842  *                              at call and callee signatures differ at method handle call
2843  * @return                      the only klass we know will ever be seen at this profile point
2844  */
2845 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2846                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2847                                     ciKlass* callee_signature_k) {
2848   ciKlass* result = NULL;
2849   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2850   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2851   // known not to be null or null bit already set and already set to
2852   // unknown: nothing we can do to improve profiling
2853   if (!do_null && !do_update) {
2854     return result;
2855   }
2856 
2857   ciKlass* exact_klass = NULL;
2858   Compilation* comp = Compilation::current();
2859   if (do_update) {
2860     // try to find exact type, using CHA if possible, so that loading
2861     // the klass from the object can be avoided
2862     ciType* type = obj->exact_type();
2863     if (type == NULL) {
2864       type = obj->declared_type();
2865       type = comp->cha_exact_type(type);
2866     }
2867     assert(type == NULL || type->is_klass(), "type should be class");
2868     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2869 
2870     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2871   }
2872 
2873   if (!do_null && !do_update) {
2874     return result;
2875   }
2876 
2877   ciKlass* exact_signature_k = NULL;
2878   if (do_update) {
2879     // Is the type from the signature exact (the only one possible)?
2880     exact_signature_k = signature_at_call_k->exact_klass();
2881     if (exact_signature_k == NULL) {
2882       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2883     } else {
2884       result = exact_signature_k;
2885       // Known statically. No need to emit any code: prevent
2886       // LIR_Assembler::emit_profile_type() from emitting useless code
2887       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2888     }
2889     // exact_klass and exact_signature_k can be both non NULL but
2890     // different if exact_klass is loaded after the ciObject for
2891     // exact_signature_k is created.
2892     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2893       // sometimes the type of the signature is better than the best type
2894       // the compiler has
2895       exact_klass = exact_signature_k;
2896     }
2897     if (callee_signature_k != NULL &&
2898         callee_signature_k != signature_at_call_k) {
2899       ciKlass* improved_klass = callee_signature_k->exact_klass();
2900       if (improved_klass == NULL) {
2901         improved_klass = comp->cha_exact_type(callee_signature_k);
2902       }
2903       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2904         exact_klass = exact_signature_k;
2905       }
2906     }
2907     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2908   }
2909 
2910   if (!do_null && !do_update) {
2911     return result;
2912   }
2913 
2914   if (mdp == LIR_OprFact::illegalOpr) {
2915     mdp = new_register(T_METADATA);
2916     __ metadata2reg(md->constant_encoding(), mdp);
2917     if (md_base_offset != 0) {
2918       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2919       mdp = new_pointer_register();
2920       __ leal(LIR_OprFact::address(base_type_address), mdp);
2921     }
2922   }
2923   LIRItem value(obj, this);
2924   value.load_item();
2925   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2926                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2927   return result;
2928 }
2929 
2930 // profile parameters on entry to the root of the compilation
2931 void LIRGenerator::profile_parameters(Base* x) {
2932   if (compilation()->profile_parameters()) {
2933     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2934     ciMethodData* md = scope()->method()->method_data_or_null();
2935     assert(md != NULL, "Sanity");
2936 
2937     if (md->parameters_type_data() != NULL) {
2938       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2939       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2940       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2941       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2942         LIR_Opr src = args->at(i);
2943         assert(!src->is_illegal(), "check");
2944         BasicType t = src->type();
2945         if (t == T_OBJECT || t == T_ARRAY) {
2946           intptr_t profiled_k = parameters->type(j);
2947           Local* local = x->state()->local_at(java_index)->as_Local();
2948           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2949                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2950                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2951           // If the profile is known statically set it once for all and do not emit any code
2952           if (exact != NULL) {
2953             md->set_parameter_type(j, exact);
2954           }
2955           j++;
2956         }
2957         java_index += type2size[t];
2958       }
2959     }
2960   }
2961 }
2962 
2963 void LIRGenerator::do_Base(Base* x) {
2964   __ std_entry(LIR_OprFact::illegalOpr);
2965   // Emit moves from physical registers / stack slots to virtual registers
2966   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2967   IRScope* irScope = compilation()->hir()->top_scope();
2968   int java_index = 0;
2969   for (int i = 0; i < args->length(); i++) {
2970     LIR_Opr src = args->at(i);
2971     assert(!src->is_illegal(), "check");
2972     BasicType t = src->type();
2973 
2974     // Types which are smaller than int are passed as int, so
2975     // correct the type which passed.
2976     switch (t) {
2977     case T_BYTE:
2978     case T_BOOLEAN:
2979     case T_SHORT:
2980     case T_CHAR:
2981       t = T_INT;
2982       break;
2983     default:
2984       break;
2985     }
2986 
2987     LIR_Opr dest = new_register(t);
2988     __ move(src, dest);
2989 
2990     // Assign new location to Local instruction for this local
2991     Local* local = x->state()->local_at(java_index)->as_Local();
2992     assert(local != NULL, "Locals for incoming arguments must have been created");
2993 #ifndef __SOFTFP__
2994     // The java calling convention passes double as long and float as int.
2995     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2996 #endif // __SOFTFP__
2997     local->set_operand(dest);
2998     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2999     java_index += type2size[t];
3000   }
3001 
3002   if (compilation()->env()->dtrace_method_probes()) {
3003     BasicTypeList signature;
3004     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3005     signature.append(T_METADATA); // Method*
3006     LIR_OprList* args = new LIR_OprList();
3007     args->append(getThreadPointer());
3008     LIR_Opr meth = new_register(T_METADATA);
3009     __ metadata2reg(method()->constant_encoding(), meth);
3010     args->append(meth);
3011     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
3012   }
3013 
3014   if (method()->is_synchronized()) {
3015     LIR_Opr obj;
3016     if (method()->is_static()) {
3017       obj = new_register(T_OBJECT);
3018       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
3019     } else {
3020       Local* receiver = x->state()->local_at(0)->as_Local();
3021       assert(receiver != NULL, "must already exist");
3022       obj = receiver->operand();
3023     }
3024     assert(obj->is_valid(), "must be valid");
3025 
3026     if (method()->is_synchronized() && GenerateSynchronizationCode) {
3027       LIR_Opr lock = syncLockOpr();
3028       __ load_stack_address_monitor(0, lock);
3029 
3030       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
3031       obj = shenandoah_write_barrier(obj, info, false);
3032       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3033 
3034       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
3035       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
3036     }
3037   }
3038   if (compilation()->age_code()) {
3039     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
3040     decrement_age(info);
3041   }
3042   // increment invocation counters if needed
3043   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3044     profile_parameters(x);
3045     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
3046     increment_invocation_counter(info);
3047   }
3048 
3049   // all blocks with a successor must end with an unconditional jump
3050   // to the successor even if they are consecutive
3051   __ jump(x->default_sux());
3052 }
3053 
3054 
3055 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3056   // construct our frame and model the production of incoming pointer
3057   // to the OSR buffer.
3058   __ osr_entry(LIR_Assembler::osrBufferPointer());
3059   LIR_Opr result = rlock_result(x);
3060   __ move(LIR_Assembler::osrBufferPointer(), result);
3061 }
3062 
3063 
3064 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3065   assert(args->length() == arg_list->length(),
3066          "args=%d, arg_list=%d", args->length(), arg_list->length());
3067   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3068     LIRItem* param = args->at(i);
3069     LIR_Opr loc = arg_list->at(i);
3070     if (loc->is_register()) {
3071       param->load_item_force(loc);
3072     } else {
3073       LIR_Address* addr = loc->as_address_ptr();
3074       param->load_for_store(addr->type());
3075       if (addr->type() == T_OBJECT) {
3076         __ move_wide(param->result(), addr);
3077       } else
3078         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3079           __ unaligned_move(param->result(), addr);
3080         } else {
3081           __ move(param->result(), addr);
3082         }
3083     }
3084   }
3085 
3086   if (x->has_receiver()) {
3087     LIRItem* receiver = args->at(0);
3088     LIR_Opr loc = arg_list->at(0);
3089     if (loc->is_register()) {
3090       receiver->load_item_force(loc);
3091     } else {
3092       assert(loc->is_address(), "just checking");
3093       receiver->load_for_store(T_OBJECT);
3094       __ move_wide(receiver->result(), loc->as_address_ptr());
3095     }
3096   }
3097 }
3098 
3099 
3100 // Visits all arguments, returns appropriate items without loading them
3101 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3102   LIRItemList* argument_items = new LIRItemList();
3103   if (x->has_receiver()) {
3104     LIRItem* receiver = new LIRItem(x->receiver(), this);
3105     argument_items->append(receiver);
3106   }
3107   for (int i = 0; i < x->number_of_arguments(); i++) {
3108     LIRItem* param = new LIRItem(x->argument_at(i), this);
3109     argument_items->append(param);
3110   }
3111   return argument_items;
3112 }
3113 
3114 
3115 // The invoke with receiver has following phases:
3116 //   a) traverse and load/lock receiver;
3117 //   b) traverse all arguments -> item-array (invoke_visit_argument)
3118 //   c) push receiver on stack
3119 //   d) load each of the items and push on stack
3120 //   e) unlock receiver
3121 //   f) move receiver into receiver-register %o0
3122 //   g) lock result registers and emit call operation
3123 //
3124 // Before issuing a call, we must spill-save all values on stack
3125 // that are in caller-save register. "spill-save" moves those registers
3126 // either in a free callee-save register or spills them if no free
3127 // callee save register is available.
3128 //
3129 // The problem is where to invoke spill-save.
3130 // - if invoked between e) and f), we may lock callee save
3131 //   register in "spill-save" that destroys the receiver register
3132 //   before f) is executed
3133 // - if we rearrange f) to be earlier (by loading %o0) it
3134 //   may destroy a value on the stack that is currently in %o0
3135 //   and is waiting to be spilled
3136 // - if we keep the receiver locked while doing spill-save,
3137 //   we cannot spill it as it is spill-locked
3138 //
3139 void LIRGenerator::do_Invoke(Invoke* x) {
3140   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
3141 
3142   LIR_OprList* arg_list = cc->args();
3143   LIRItemList* args = invoke_visit_arguments(x);
3144   LIR_Opr receiver = LIR_OprFact::illegalOpr;
3145 
3146   // setup result register
3147   LIR_Opr result_register = LIR_OprFact::illegalOpr;
3148   if (x->type() != voidType) {
3149     result_register = result_register_for(x->type());
3150   }
3151 
3152   CodeEmitInfo* info = state_for(x, x->state());
3153 
3154   invoke_load_arguments(x, args, arg_list);
3155 
3156   if (x->has_receiver()) {
3157     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3158     receiver = args->at(0)->result();
3159   }
3160 
3161   // emit invoke code
3162   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3163 
3164   // JSR 292
3165   // Preserve the SP over MethodHandle call sites, if needed.
3166   ciMethod* target = x->target();
3167   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3168                                   target->is_method_handle_intrinsic() ||
3169                                   target->is_compiled_lambda_form());
3170   if (is_method_handle_invoke) {
3171     info->set_is_method_handle_invoke(true);
3172     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3173         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3174     }
3175   }
3176 
3177   switch (x->code()) {
3178     case Bytecodes::_invokestatic:
3179       __ call_static(target, result_register,
3180                      SharedRuntime::get_resolve_static_call_stub(),
3181                      arg_list, info);
3182       break;
3183     case Bytecodes::_invokespecial:
3184     case Bytecodes::_invokevirtual:
3185     case Bytecodes::_invokeinterface:
3186       // for loaded and final (method or class) target we still produce an inline cache,
3187       // in order to be able to call mixed mode
3188       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3189         __ call_opt_virtual(target, receiver, result_register,
3190                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3191                             arg_list, info);
3192       } else if (x->vtable_index() < 0) {
3193         __ call_icvirtual(target, receiver, result_register,
3194                           SharedRuntime::get_resolve_virtual_call_stub(),
3195                           arg_list, info);
3196       } else {
3197         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3198         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3199         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3200       }
3201       break;
3202     case Bytecodes::_invokedynamic: {
3203       __ call_dynamic(target, receiver, result_register,
3204                       SharedRuntime::get_resolve_static_call_stub(),
3205                       arg_list, info);
3206       break;
3207     }
3208     default:
3209       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3210       break;
3211   }
3212 
3213   // JSR 292
3214   // Restore the SP after MethodHandle call sites, if needed.
3215   if (is_method_handle_invoke
3216       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3217     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3218   }
3219 
3220   if (x->type()->is_float() || x->type()->is_double()) {
3221     // Force rounding of results from non-strictfp when in strictfp
3222     // scope (or when we don't know the strictness of the callee, to
3223     // be safe.)
3224     if (method()->is_strict()) {
3225       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3226         result_register = round_item(result_register);
3227       }
3228     }
3229   }
3230 
3231   if (result_register->is_valid()) {
3232     LIR_Opr result = rlock_result(x);
3233     __ move(result_register, result);
3234   }
3235 }
3236 
3237 
3238 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3239   assert(x->number_of_arguments() == 1, "wrong type");
3240   LIRItem value       (x->argument_at(0), this);
3241   LIR_Opr reg = rlock_result(x);
3242   value.load_item();
3243   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3244   __ move(tmp, reg);
3245 }
3246 
3247 
3248 
3249 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3250 void LIRGenerator::do_IfOp(IfOp* x) {
3251 #ifdef ASSERT
3252   {
3253     ValueTag xtag = x->x()->type()->tag();
3254     ValueTag ttag = x->tval()->type()->tag();
3255     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3256     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3257     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3258   }
3259 #endif
3260 
3261   LIRItem left(x->x(), this);
3262   LIRItem right(x->y(), this);
3263   left.load_item();
3264   if (can_inline_as_constant(right.value())) {
3265     right.dont_load_item();
3266   } else {
3267     right.load_item();
3268   }
3269 
3270   LIRItem t_val(x->tval(), this);
3271   LIRItem f_val(x->fval(), this);
3272   t_val.dont_load_item();
3273   f_val.dont_load_item();
3274   LIR_Opr reg = rlock_result(x);
3275 
3276   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3277   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3278 }
3279 
3280 #ifdef TRACE_HAVE_INTRINSICS
3281 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3282   CodeEmitInfo* info = state_for(x);
3283   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3284 
3285   assert(info != NULL, "must have info");
3286   LIRItem arg(x->argument_at(0), this);
3287 
3288   arg.load_item();
3289   LIR_Opr klass = new_register(T_METADATA);
3290   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3291   LIR_Opr id = new_register(T_LONG);
3292   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3293   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3294 
3295   __ move(trace_id_addr, id);
3296   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3297   __ store(id, trace_id_addr);
3298 
3299 #ifdef TRACE_ID_META_BITS
3300   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3301 #endif
3302 #ifdef TRACE_ID_CLASS_SHIFT
3303   __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
3304 #endif
3305 
3306   __ move(id, rlock_result(x));
3307 }
3308 
3309 void LIRGenerator::do_getBufferWriter(Intrinsic* x) {
3310   LabelObj* L_end = new LabelObj();
3311 
3312   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3313                                            in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET),
3314                                            T_OBJECT);
3315   LIR_Opr result = rlock_result(x);
3316   __ move_wide(jobj_addr, result);
3317   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3318   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3319   __ move_wide(new LIR_Address(result, T_OBJECT), result);
3320 
3321   __ branch_destination(L_end->label());
3322 }
3323 
3324 #endif
3325 
3326 
3327 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3328   assert(x->number_of_arguments() == 0, "wrong type");
3329   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3330   BasicTypeList signature;
3331   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3332   LIR_Opr reg = result_register_for(x->type());
3333   __ call_runtime_leaf(routine, getThreadTemp(),
3334                        reg, new LIR_OprList());
3335   LIR_Opr result = rlock_result(x);
3336   __ move(reg, result);
3337 }
3338 
3339 
3340 
3341 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3342   switch (x->id()) {
3343   case vmIntrinsics::_intBitsToFloat      :
3344   case vmIntrinsics::_doubleToRawLongBits :
3345   case vmIntrinsics::_longBitsToDouble    :
3346   case vmIntrinsics::_floatToRawIntBits   : {
3347     do_FPIntrinsics(x);
3348     break;
3349   }
3350 
3351 #ifdef TRACE_HAVE_INTRINSICS
3352   case vmIntrinsics::_getClassId:
3353     do_ClassIDIntrinsic(x);
3354     break;
3355   case vmIntrinsics::_getBufferWriter:
3356     do_getBufferWriter(x);
3357     break;
3358   case vmIntrinsics::_counterTime:
3359     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3360     break;
3361 #endif
3362 
3363   case vmIntrinsics::_currentTimeMillis:
3364     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3365     break;
3366 
3367   case vmIntrinsics::_nanoTime:
3368     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3369     break;
3370 
3371   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3372   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3373   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3374   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3375   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3376 
3377   case vmIntrinsics::_dlog:           // fall through
3378   case vmIntrinsics::_dlog10:         // fall through
3379   case vmIntrinsics::_dabs:           // fall through
3380   case vmIntrinsics::_dsqrt:          // fall through
3381   case vmIntrinsics::_dtan:           // fall through
3382   case vmIntrinsics::_dsin :          // fall through
3383   case vmIntrinsics::_dcos :          // fall through
3384   case vmIntrinsics::_dexp :          // fall through
3385   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3386   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3387 
3388   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3389   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3390 
3391   // java.nio.Buffer.checkIndex
3392   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3393 
3394   case vmIntrinsics::_compareAndSetObject:
3395     do_CompareAndSwap(x, objectType);
3396     break;
3397   case vmIntrinsics::_compareAndSetInt:
3398     do_CompareAndSwap(x, intType);
3399     break;
3400   case vmIntrinsics::_compareAndSetLong:
3401     do_CompareAndSwap(x, longType);
3402     break;
3403 
3404   case vmIntrinsics::_loadFence :
3405     if (os::is_MP()) __ membar_acquire();
3406     break;
3407   case vmIntrinsics::_storeFence:
3408     if (os::is_MP()) __ membar_release();
3409     break;
3410   case vmIntrinsics::_fullFence :
3411     if (os::is_MP()) __ membar();
3412     break;
3413   case vmIntrinsics::_onSpinWait:
3414     __ on_spin_wait();
3415     break;
3416   case vmIntrinsics::_Reference_get:
3417     do_Reference_get(x);
3418     break;
3419 
3420   case vmIntrinsics::_updateCRC32:
3421   case vmIntrinsics::_updateBytesCRC32:
3422   case vmIntrinsics::_updateByteBufferCRC32:
3423     do_update_CRC32(x);
3424     break;
3425 
3426   case vmIntrinsics::_updateBytesCRC32C:
3427   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3428     do_update_CRC32C(x);
3429     break;
3430 
3431   case vmIntrinsics::_vectorizedMismatch:
3432     do_vectorizedMismatch(x);
3433     break;
3434 
3435   default: ShouldNotReachHere(); break;
3436   }
3437 }
3438 
3439 void LIRGenerator::profile_arguments(ProfileCall* x) {
3440   if (compilation()->profile_arguments()) {
3441     int bci = x->bci_of_invoke();
3442     ciMethodData* md = x->method()->method_data_or_null();
3443     ciProfileData* data = md->bci_to_data(bci);
3444     if (data != NULL) {
3445       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3446           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3447         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3448         int base_offset = md->byte_offset_of_slot(data, extra);
3449         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3450         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3451 
3452         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3453         int start = 0;
3454         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3455         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3456           // first argument is not profiled at call (method handle invoke)
3457           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3458           start = 1;
3459         }
3460         ciSignature* callee_signature = x->callee()->signature();
3461         // method handle call to virtual method
3462         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3463         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3464 
3465         bool ignored_will_link;
3466         ciSignature* signature_at_call = NULL;
3467         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3468         ciSignatureStream signature_at_call_stream(signature_at_call);
3469 
3470         // if called through method handle invoke, some arguments may have been popped
3471         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3472           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3473           ciKlass* exact = profile_type(md, base_offset, off,
3474               args->type(i), x->profiled_arg_at(i+start), mdp,
3475               !x->arg_needs_null_check(i+start),
3476               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3477           if (exact != NULL) {
3478             md->set_argument_type(bci, i, exact);
3479           }
3480         }
3481       } else {
3482 #ifdef ASSERT
3483         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3484         int n = x->nb_profiled_args();
3485         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3486             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3487             "only at JSR292 bytecodes");
3488 #endif
3489       }
3490     }
3491   }
3492 }
3493 
3494 // profile parameters on entry to an inlined method
3495 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3496   if (compilation()->profile_parameters() && x->inlined()) {
3497     ciMethodData* md = x->callee()->method_data_or_null();
3498     if (md != NULL) {
3499       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3500       if (parameters_type_data != NULL) {
3501         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3502         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3503         bool has_receiver = !x->callee()->is_static();
3504         ciSignature* sig = x->callee()->signature();
3505         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3506         int i = 0; // to iterate on the Instructions
3507         Value arg = x->recv();
3508         bool not_null = false;
3509         int bci = x->bci_of_invoke();
3510         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3511         // The first parameter is the receiver so that's what we start
3512         // with if it exists. One exception is method handle call to
3513         // virtual method: the receiver is in the args list
3514         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3515           i = 1;
3516           arg = x->profiled_arg_at(0);
3517           not_null = !x->arg_needs_null_check(0);
3518         }
3519         int k = 0; // to iterate on the profile data
3520         for (;;) {
3521           intptr_t profiled_k = parameters->type(k);
3522           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3523                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3524                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3525           // If the profile is known statically set it once for all and do not emit any code
3526           if (exact != NULL) {
3527             md->set_parameter_type(k, exact);
3528           }
3529           k++;
3530           if (k >= parameters_type_data->number_of_parameters()) {
3531 #ifdef ASSERT
3532             int extra = 0;
3533             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3534                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3535                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3536               extra += 1;
3537             }
3538             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3539 #endif
3540             break;
3541           }
3542           arg = x->profiled_arg_at(i);
3543           not_null = !x->arg_needs_null_check(i);
3544           i++;
3545         }
3546       }
3547     }
3548   }
3549 }
3550 
3551 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3552   // Need recv in a temporary register so it interferes with the other temporaries
3553   LIR_Opr recv = LIR_OprFact::illegalOpr;
3554   LIR_Opr mdo = new_register(T_OBJECT);
3555   // tmp is used to hold the counters on SPARC
3556   LIR_Opr tmp = new_pointer_register();
3557 
3558   if (x->nb_profiled_args() > 0) {
3559     profile_arguments(x);
3560   }
3561 
3562   // profile parameters on inlined method entry including receiver
3563   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3564     profile_parameters_at_call(x);
3565   }
3566 
3567   if (x->recv() != NULL) {
3568     LIRItem value(x->recv(), this);
3569     value.load_item();
3570     recv = new_register(T_OBJECT);
3571     __ move(value.result(), recv);
3572   }
3573   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3574 }
3575 
3576 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3577   int bci = x->bci_of_invoke();
3578   ciMethodData* md = x->method()->method_data_or_null();
3579   ciProfileData* data = md->bci_to_data(bci);
3580   if (data != NULL) {
3581     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3582     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3583     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3584 
3585     bool ignored_will_link;
3586     ciSignature* signature_at_call = NULL;
3587     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3588 
3589     // The offset within the MDO of the entry to update may be too large
3590     // to be used in load/store instructions on some platforms. So have
3591     // profile_type() compute the address of the profile in a register.
3592     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3593         ret->type(), x->ret(), mdp,
3594         !x->needs_null_check(),
3595         signature_at_call->return_type()->as_klass(),
3596         x->callee()->signature()->return_type()->as_klass());
3597     if (exact != NULL) {
3598       md->set_return_type(bci, exact);
3599     }
3600   }
3601 }
3602 
3603 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3604   // We can safely ignore accessors here, since c2 will inline them anyway,
3605   // accessors are also always mature.
3606   if (!x->inlinee()->is_accessor()) {
3607     CodeEmitInfo* info = state_for(x, x->state(), true);
3608     // Notify the runtime very infrequently only to take care of counter overflows
3609     int freq_log = Tier23InlineeNotifyFreqLog;
3610     double scale;
3611     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3612       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3613     }
3614     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3615   }
3616 }
3617 
3618 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3619   int freq_log = 0;
3620   int level = compilation()->env()->comp_level();
3621   if (level == CompLevel_limited_profile) {
3622     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3623   } else if (level == CompLevel_full_profile) {
3624     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3625   } else {
3626     ShouldNotReachHere();
3627   }
3628   // Increment the appropriate invocation/backedge counter and notify the runtime.
3629   double scale;
3630   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3631     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3632   }
3633   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3634 }
3635 
3636 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3637   ciMethod* method = info->scope()->method();
3638   MethodCounters* mc_adr = method->ensure_method_counters();
3639   if (mc_adr != NULL) {
3640     LIR_Opr mc = new_pointer_register();
3641     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3642     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3643     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3644     LIR_Opr result = new_register(T_INT);
3645     __ load(counter, result);
3646     __ sub(result, LIR_OprFact::intConst(1), result);
3647     __ store(result, counter);
3648     // DeoptimizeStub will reexecute from the current state in code info.
3649     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3650                                          Deoptimization::Action_make_not_entrant);
3651     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3652     __ branch(lir_cond_lessEqual, T_INT, deopt);
3653   }
3654 }
3655 
3656 
3657 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3658                                                 ciMethod *method, int frequency,
3659                                                 int bci, bool backedge, bool notify) {
3660   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3661   int level = _compilation->env()->comp_level();
3662   assert(level > CompLevel_simple, "Shouldn't be here");
3663 
3664   int offset = -1;
3665   LIR_Opr counter_holder = NULL;
3666   if (level == CompLevel_limited_profile) {
3667     MethodCounters* counters_adr = method->ensure_method_counters();
3668     if (counters_adr == NULL) {
3669       bailout("method counters allocation failed");
3670       return;
3671     }
3672     counter_holder = new_pointer_register();
3673     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3674     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3675                                  MethodCounters::invocation_counter_offset());
3676   } else if (level == CompLevel_full_profile) {
3677     counter_holder = new_register(T_METADATA);
3678     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3679                                  MethodData::invocation_counter_offset());
3680     ciMethodData* md = method->method_data_or_null();
3681     assert(md != NULL, "Sanity");
3682     __ metadata2reg(md->constant_encoding(), counter_holder);
3683   } else {
3684     ShouldNotReachHere();
3685   }
3686   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3687   LIR_Opr result = new_register(T_INT);
3688   __ load(counter, result);
3689   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3690   __ store(result, counter);
3691   if (notify && (!backedge || UseOnStackReplacement)) {
3692     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3693     // The bci for info can point to cmp for if's we want the if bci
3694     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3695     int freq = frequency << InvocationCounter::count_shift;
3696     if (freq == 0) {
3697       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3698     } else {
3699       LIR_Opr mask = load_immediate(freq, T_INT);
3700       __ logical_and(result, mask, result);
3701       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3702       __ branch(lir_cond_equal, T_INT, overflow);
3703     }
3704     __ branch_destination(overflow->continuation());
3705   }
3706 }
3707 
3708 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3709   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3710   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3711 
3712   if (x->pass_thread()) {
3713     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3714     args->append(getThreadPointer());
3715   }
3716 
3717   for (int i = 0; i < x->number_of_arguments(); i++) {
3718     Value a = x->argument_at(i);
3719     LIRItem* item = new LIRItem(a, this);
3720     item->load_item();
3721     args->append(item->result());
3722     signature->append(as_BasicType(a->type()));
3723   }
3724 
3725   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3726   if (x->type() == voidType) {
3727     set_no_result(x);
3728   } else {
3729     __ move(result, rlock_result(x));
3730   }
3731 }
3732 
3733 #ifdef ASSERT
3734 void LIRGenerator::do_Assert(Assert *x) {
3735   ValueTag tag = x->x()->type()->tag();
3736   If::Condition cond = x->cond();
3737 
3738   LIRItem xitem(x->x(), this);
3739   LIRItem yitem(x->y(), this);
3740   LIRItem* xin = &xitem;
3741   LIRItem* yin = &yitem;
3742 
3743   assert(tag == intTag, "Only integer assertions are valid!");
3744 
3745   xin->load_item();
3746   yin->dont_load_item();
3747 
3748   set_no_result(x);
3749 
3750   LIR_Opr left = xin->result();
3751   LIR_Opr right = yin->result();
3752 
3753   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3754 }
3755 #endif
3756 
3757 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3758 
3759 
3760   Instruction *a = x->x();
3761   Instruction *b = x->y();
3762   if (!a || StressRangeCheckElimination) {
3763     assert(!b || StressRangeCheckElimination, "B must also be null");
3764 
3765     CodeEmitInfo *info = state_for(x, x->state());
3766     CodeStub* stub = new PredicateFailedStub(info);
3767 
3768     __ jump(stub);
3769   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3770     int a_int = a->type()->as_IntConstant()->value();
3771     int b_int = b->type()->as_IntConstant()->value();
3772 
3773     bool ok = false;
3774 
3775     switch(x->cond()) {
3776       case Instruction::eql: ok = (a_int == b_int); break;
3777       case Instruction::neq: ok = (a_int != b_int); break;
3778       case Instruction::lss: ok = (a_int < b_int); break;
3779       case Instruction::leq: ok = (a_int <= b_int); break;
3780       case Instruction::gtr: ok = (a_int > b_int); break;
3781       case Instruction::geq: ok = (a_int >= b_int); break;
3782       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3783       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3784       default: ShouldNotReachHere();
3785     }
3786 
3787     if (ok) {
3788 
3789       CodeEmitInfo *info = state_for(x, x->state());
3790       CodeStub* stub = new PredicateFailedStub(info);
3791 
3792       __ jump(stub);
3793     }
3794   } else {
3795 
3796     ValueTag tag = x->x()->type()->tag();
3797     If::Condition cond = x->cond();
3798     LIRItem xitem(x->x(), this);
3799     LIRItem yitem(x->y(), this);
3800     LIRItem* xin = &xitem;
3801     LIRItem* yin = &yitem;
3802 
3803     assert(tag == intTag, "Only integer deoptimizations are valid!");
3804 
3805     xin->load_item();
3806     yin->dont_load_item();
3807     set_no_result(x);
3808 
3809     LIR_Opr left = xin->result();
3810     LIR_Opr right = yin->result();
3811 
3812     CodeEmitInfo *info = state_for(x, x->state());
3813     CodeStub* stub = new PredicateFailedStub(info);
3814 
3815     __ cmp(lir_cond(cond), left, right);
3816     __ branch(lir_cond(cond), right->type(), stub);
3817   }
3818 }
3819 
3820 
3821 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3822   LIRItemList args(1);
3823   LIRItem value(arg1, this);
3824   args.append(&value);
3825   BasicTypeList signature;
3826   signature.append(as_BasicType(arg1->type()));
3827 
3828   return call_runtime(&signature, &args, entry, result_type, info);
3829 }
3830 
3831 
3832 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3833   LIRItemList args(2);
3834   LIRItem value1(arg1, this);
3835   LIRItem value2(arg2, this);
3836   args.append(&value1);
3837   args.append(&value2);
3838   BasicTypeList signature;
3839   signature.append(as_BasicType(arg1->type()));
3840   signature.append(as_BasicType(arg2->type()));
3841 
3842   return call_runtime(&signature, &args, entry, result_type, info);
3843 }
3844 
3845 
3846 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3847                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3848   // get a result register
3849   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3850   LIR_Opr result = LIR_OprFact::illegalOpr;
3851   if (result_type->tag() != voidTag) {
3852     result = new_register(result_type);
3853     phys_reg = result_register_for(result_type);
3854   }
3855 
3856   // move the arguments into the correct location
3857   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3858   assert(cc->length() == args->length(), "argument mismatch");
3859   for (int i = 0; i < args->length(); i++) {
3860     LIR_Opr arg = args->at(i);
3861     LIR_Opr loc = cc->at(i);
3862     if (loc->is_register()) {
3863       __ move(arg, loc);
3864     } else {
3865       LIR_Address* addr = loc->as_address_ptr();
3866 //           if (!can_store_as_constant(arg)) {
3867 //             LIR_Opr tmp = new_register(arg->type());
3868 //             __ move(arg, tmp);
3869 //             arg = tmp;
3870 //           }
3871       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3872         __ unaligned_move(arg, addr);
3873       } else {
3874         __ move(arg, addr);
3875       }
3876     }
3877   }
3878 
3879   if (info) {
3880     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3881   } else {
3882     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3883   }
3884   if (result->is_valid()) {
3885     __ move(phys_reg, result);
3886   }
3887   return result;
3888 }
3889 
3890 
3891 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3892                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3893   // get a result register
3894   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3895   LIR_Opr result = LIR_OprFact::illegalOpr;
3896   if (result_type->tag() != voidTag) {
3897     result = new_register(result_type);
3898     phys_reg = result_register_for(result_type);
3899   }
3900 
3901   // move the arguments into the correct location
3902   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3903 
3904   assert(cc->length() == args->length(), "argument mismatch");
3905   for (int i = 0; i < args->length(); i++) {
3906     LIRItem* arg = args->at(i);
3907     LIR_Opr loc = cc->at(i);
3908     if (loc->is_register()) {
3909       arg->load_item_force(loc);
3910     } else {
3911       LIR_Address* addr = loc->as_address_ptr();
3912       arg->load_for_store(addr->type());
3913       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3914         __ unaligned_move(arg->result(), addr);
3915       } else {
3916         __ move(arg->result(), addr);
3917       }
3918     }
3919   }
3920 
3921   if (info) {
3922     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3923   } else {
3924     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3925   }
3926   if (result->is_valid()) {
3927     __ move(phys_reg, result);
3928   }
3929   return result;
3930 }
3931 
3932 void LIRGenerator::do_MemBar(MemBar* x) {
3933   if (os::is_MP()) {
3934     LIR_Code code = x->code();
3935     switch(code) {
3936       case lir_membar_acquire   : __ membar_acquire(); break;
3937       case lir_membar_release   : __ membar_release(); break;
3938       case lir_membar           : __ membar(); break;
3939       case lir_membar_loadload  : __ membar_loadload(); break;
3940       case lir_membar_storestore: __ membar_storestore(); break;
3941       case lir_membar_loadstore : __ membar_loadstore(); break;
3942       case lir_membar_storeload : __ membar_storeload(); break;
3943       default                   : ShouldNotReachHere(); break;
3944     }
3945   }
3946 }
3947 
3948 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3949   if (x->check_boolean()) {
3950     LIR_Opr value_fixed = rlock_byte(T_BYTE);
3951     if (TwoOperandLIRForm) {
3952       __ move(value, value_fixed);
3953       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3954     } else {
3955       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3956     }
3957     LIR_Opr klass = new_register(T_METADATA);
3958     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3959     null_check_info = NULL;
3960     LIR_Opr layout = new_register(T_INT);
3961     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3962     int diffbit = Klass::layout_helper_boolean_diffbit();
3963     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3964     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3965     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3966     value = value_fixed;
3967   }
3968   return value;
3969 }