1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc/g1/heapRegion.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/cardTableModRefBS.hpp"
  31 #include "gc/shared/collectedHeap.hpp"
  32 #include "gc/shenandoah/brooksPointer.hpp"
  33 #include "gc/shenandoah/shenandoahConnectionMatrix.hpp"
  34 #include "gc/shenandoah/shenandoahHeap.hpp"
  35 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/intrinsicnode.hpp"
  43 #include "opto/locknode.hpp"
  44 #include "opto/machnode.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/parse.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/shenandoahSupport.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 
  53 //----------------------------GraphKit-----------------------------------------
  54 // Main utility constructor.
  55 GraphKit::GraphKit(JVMState* jvms)
  56   : Phase(Phase::Parser),
  57     _env(C->env()),
  58     _gvn(*C->initial_gvn())
  59 {
  60   _exceptions = jvms->map()->next_exception();
  61   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  62   set_jvms(jvms);
  63 }
  64 
  65 // Private constructor for parser.
  66 GraphKit::GraphKit()
  67   : Phase(Phase::Parser),
  68     _env(C->env()),
  69     _gvn(*C->initial_gvn())
  70 {
  71   _exceptions = NULL;
  72   set_map(NULL);
  73   debug_only(_sp = -99);
  74   debug_only(set_bci(-99));
  75 }
  76 
  77 
  78 
  79 //---------------------------clean_stack---------------------------------------
  80 // Clear away rubbish from the stack area of the JVM state.
  81 // This destroys any arguments that may be waiting on the stack.
  82 void GraphKit::clean_stack(int from_sp) {
  83   SafePointNode* map      = this->map();
  84   JVMState*      jvms     = this->jvms();
  85   int            stk_size = jvms->stk_size();
  86   int            stkoff   = jvms->stkoff();
  87   Node*          top      = this->top();
  88   for (int i = from_sp; i < stk_size; i++) {
  89     if (map->in(stkoff + i) != top) {
  90       map->set_req(stkoff + i, top);
  91     }
  92   }
  93 }
  94 
  95 
  96 //--------------------------------sync_jvms-----------------------------------
  97 // Make sure our current jvms agrees with our parse state.
  98 JVMState* GraphKit::sync_jvms() const {
  99   JVMState* jvms = this->jvms();
 100   jvms->set_bci(bci());       // Record the new bci in the JVMState
 101   jvms->set_sp(sp());         // Record the new sp in the JVMState
 102   assert(jvms_in_sync(), "jvms is now in sync");
 103   return jvms;
 104 }
 105 
 106 //--------------------------------sync_jvms_for_reexecute---------------------
 107 // Make sure our current jvms agrees with our parse state.  This version
 108 // uses the reexecute_sp for reexecuting bytecodes.
 109 JVMState* GraphKit::sync_jvms_for_reexecute() {
 110   JVMState* jvms = this->jvms();
 111   jvms->set_bci(bci());          // Record the new bci in the JVMState
 112   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 113   return jvms;
 114 }
 115 
 116 #ifdef ASSERT
 117 bool GraphKit::jvms_in_sync() const {
 118   Parse* parse = is_Parse();
 119   if (parse == NULL) {
 120     if (bci() !=      jvms()->bci())          return false;
 121     if (sp()  != (int)jvms()->sp())           return false;
 122     return true;
 123   }
 124   if (jvms()->method() != parse->method())    return false;
 125   if (jvms()->bci()    != parse->bci())       return false;
 126   int jvms_sp = jvms()->sp();
 127   if (jvms_sp          != parse->sp())        return false;
 128   int jvms_depth = jvms()->depth();
 129   if (jvms_depth       != parse->depth())     return false;
 130   return true;
 131 }
 132 
 133 // Local helper checks for special internal merge points
 134 // used to accumulate and merge exception states.
 135 // They are marked by the region's in(0) edge being the map itself.
 136 // Such merge points must never "escape" into the parser at large,
 137 // until they have been handed to gvn.transform.
 138 static bool is_hidden_merge(Node* reg) {
 139   if (reg == NULL)  return false;
 140   if (reg->is_Phi()) {
 141     reg = reg->in(0);
 142     if (reg == NULL)  return false;
 143   }
 144   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 145 }
 146 
 147 void GraphKit::verify_map() const {
 148   if (map() == NULL)  return;  // null map is OK
 149   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 150   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 151   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 152 }
 153 
 154 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 155   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 156   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 157 }
 158 #endif
 159 
 160 //---------------------------stop_and_kill_map---------------------------------
 161 // Set _map to NULL, signalling a stop to further bytecode execution.
 162 // First smash the current map's control to a constant, to mark it dead.
 163 void GraphKit::stop_and_kill_map() {
 164   SafePointNode* dead_map = stop();
 165   if (dead_map != NULL) {
 166     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 167     assert(dead_map->is_killed(), "must be so marked");
 168   }
 169 }
 170 
 171 
 172 //--------------------------------stopped--------------------------------------
 173 // Tell if _map is NULL, or control is top.
 174 bool GraphKit::stopped() {
 175   if (map() == NULL)           return true;
 176   else if (control() == top()) return true;
 177   else                         return false;
 178 }
 179 
 180 
 181 //-----------------------------has_ex_handler----------------------------------
 182 // Tell if this method or any caller method has exception handlers.
 183 bool GraphKit::has_ex_handler() {
 184   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 185     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 186       return true;
 187     }
 188   }
 189   return false;
 190 }
 191 
 192 //------------------------------save_ex_oop------------------------------------
 193 // Save an exception without blowing stack contents or other JVM state.
 194 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 195   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 196   ex_map->add_req(ex_oop);
 197   debug_only(verify_exception_state(ex_map));
 198 }
 199 
 200 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 201   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 202   Node* ex_oop = ex_map->in(ex_map->req()-1);
 203   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 204   return ex_oop;
 205 }
 206 
 207 //-----------------------------saved_ex_oop------------------------------------
 208 // Recover a saved exception from its map.
 209 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 210   return common_saved_ex_oop(ex_map, false);
 211 }
 212 
 213 //--------------------------clear_saved_ex_oop---------------------------------
 214 // Erase a previously saved exception from its map.
 215 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 216   return common_saved_ex_oop(ex_map, true);
 217 }
 218 
 219 #ifdef ASSERT
 220 //---------------------------has_saved_ex_oop----------------------------------
 221 // Erase a previously saved exception from its map.
 222 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 223   return ex_map->req() == ex_map->jvms()->endoff()+1;
 224 }
 225 #endif
 226 
 227 //-------------------------make_exception_state--------------------------------
 228 // Turn the current JVM state into an exception state, appending the ex_oop.
 229 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 230   sync_jvms();
 231   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 232   set_saved_ex_oop(ex_map, ex_oop);
 233   return ex_map;
 234 }
 235 
 236 
 237 //--------------------------add_exception_state--------------------------------
 238 // Add an exception to my list of exceptions.
 239 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 240   if (ex_map == NULL || ex_map->control() == top()) {
 241     return;
 242   }
 243 #ifdef ASSERT
 244   verify_exception_state(ex_map);
 245   if (has_exceptions()) {
 246     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 247   }
 248 #endif
 249 
 250   // If there is already an exception of exactly this type, merge with it.
 251   // In particular, null-checks and other low-level exceptions common up here.
 252   Node*       ex_oop  = saved_ex_oop(ex_map);
 253   const Type* ex_type = _gvn.type(ex_oop);
 254   if (ex_oop == top()) {
 255     // No action needed.
 256     return;
 257   }
 258   assert(ex_type->isa_instptr(), "exception must be an instance");
 259   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 260     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 261     // We check sp also because call bytecodes can generate exceptions
 262     // both before and after arguments are popped!
 263     if (ex_type2 == ex_type
 264         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 265       combine_exception_states(ex_map, e2);
 266       return;
 267     }
 268   }
 269 
 270   // No pre-existing exception of the same type.  Chain it on the list.
 271   push_exception_state(ex_map);
 272 }
 273 
 274 //-----------------------add_exception_states_from-----------------------------
 275 void GraphKit::add_exception_states_from(JVMState* jvms) {
 276   SafePointNode* ex_map = jvms->map()->next_exception();
 277   if (ex_map != NULL) {
 278     jvms->map()->set_next_exception(NULL);
 279     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 280       next_map = ex_map->next_exception();
 281       ex_map->set_next_exception(NULL);
 282       add_exception_state(ex_map);
 283     }
 284   }
 285 }
 286 
 287 //-----------------------transfer_exceptions_into_jvms-------------------------
 288 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 289   if (map() == NULL) {
 290     // We need a JVMS to carry the exceptions, but the map has gone away.
 291     // Create a scratch JVMS, cloned from any of the exception states...
 292     if (has_exceptions()) {
 293       _map = _exceptions;
 294       _map = clone_map();
 295       _map->set_next_exception(NULL);
 296       clear_saved_ex_oop(_map);
 297       debug_only(verify_map());
 298     } else {
 299       // ...or created from scratch
 300       JVMState* jvms = new (C) JVMState(_method, NULL);
 301       jvms->set_bci(_bci);
 302       jvms->set_sp(_sp);
 303       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 304       set_jvms(jvms);
 305       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 306       set_all_memory(top());
 307       while (map()->req() < jvms->endoff())  map()->add_req(top());
 308     }
 309     // (This is a kludge, in case you didn't notice.)
 310     set_control(top());
 311   }
 312   JVMState* jvms = sync_jvms();
 313   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 314   jvms->map()->set_next_exception(_exceptions);
 315   _exceptions = NULL;   // done with this set of exceptions
 316   return jvms;
 317 }
 318 
 319 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 320   assert(is_hidden_merge(dstphi), "must be a special merge node");
 321   assert(is_hidden_merge(srcphi), "must be a special merge node");
 322   uint limit = srcphi->req();
 323   for (uint i = PhiNode::Input; i < limit; i++) {
 324     dstphi->add_req(srcphi->in(i));
 325   }
 326 }
 327 static inline void add_one_req(Node* dstphi, Node* src) {
 328   assert(is_hidden_merge(dstphi), "must be a special merge node");
 329   assert(!is_hidden_merge(src), "must not be a special merge node");
 330   dstphi->add_req(src);
 331 }
 332 
 333 //-----------------------combine_exception_states------------------------------
 334 // This helper function combines exception states by building phis on a
 335 // specially marked state-merging region.  These regions and phis are
 336 // untransformed, and can build up gradually.  The region is marked by
 337 // having a control input of its exception map, rather than NULL.  Such
 338 // regions do not appear except in this function, and in use_exception_state.
 339 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 340   if (failing())  return;  // dying anyway...
 341   JVMState* ex_jvms = ex_map->_jvms;
 342   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 343   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 344   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 345   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 346   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 347   assert(ex_map->req() == phi_map->req(), "matching maps");
 348   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 349   Node*         hidden_merge_mark = root();
 350   Node*         region  = phi_map->control();
 351   MergeMemNode* phi_mem = phi_map->merged_memory();
 352   MergeMemNode* ex_mem  = ex_map->merged_memory();
 353   if (region->in(0) != hidden_merge_mark) {
 354     // The control input is not (yet) a specially-marked region in phi_map.
 355     // Make it so, and build some phis.
 356     region = new RegionNode(2);
 357     _gvn.set_type(region, Type::CONTROL);
 358     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 359     region->init_req(1, phi_map->control());
 360     phi_map->set_control(region);
 361     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 362     record_for_igvn(io_phi);
 363     _gvn.set_type(io_phi, Type::ABIO);
 364     phi_map->set_i_o(io_phi);
 365     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 366       Node* m = mms.memory();
 367       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 368       record_for_igvn(m_phi);
 369       _gvn.set_type(m_phi, Type::MEMORY);
 370       mms.set_memory(m_phi);
 371     }
 372   }
 373 
 374   // Either or both of phi_map and ex_map might already be converted into phis.
 375   Node* ex_control = ex_map->control();
 376   // if there is special marking on ex_map also, we add multiple edges from src
 377   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 378   // how wide was the destination phi_map, originally?
 379   uint orig_width = region->req();
 380 
 381   if (add_multiple) {
 382     add_n_reqs(region, ex_control);
 383     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 384   } else {
 385     // ex_map has no merges, so we just add single edges everywhere
 386     add_one_req(region, ex_control);
 387     add_one_req(phi_map->i_o(), ex_map->i_o());
 388   }
 389   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 390     if (mms.is_empty()) {
 391       // get a copy of the base memory, and patch some inputs into it
 392       const TypePtr* adr_type = mms.adr_type(C);
 393       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 394       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 395       mms.set_memory(phi);
 396       // Prepare to append interesting stuff onto the newly sliced phi:
 397       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 398     }
 399     // Append stuff from ex_map:
 400     if (add_multiple) {
 401       add_n_reqs(mms.memory(), mms.memory2());
 402     } else {
 403       add_one_req(mms.memory(), mms.memory2());
 404     }
 405   }
 406   uint limit = ex_map->req();
 407   for (uint i = TypeFunc::Parms; i < limit; i++) {
 408     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 409     if (i == tos)  i = ex_jvms->monoff();
 410     Node* src = ex_map->in(i);
 411     Node* dst = phi_map->in(i);
 412     if (src != dst) {
 413       PhiNode* phi;
 414       if (dst->in(0) != region) {
 415         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 416         record_for_igvn(phi);
 417         _gvn.set_type(phi, phi->type());
 418         phi_map->set_req(i, dst);
 419         // Prepare to append interesting stuff onto the new phi:
 420         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 421       } else {
 422         assert(dst->is_Phi(), "nobody else uses a hidden region");
 423         phi = dst->as_Phi();
 424       }
 425       if (add_multiple && src->in(0) == ex_control) {
 426         // Both are phis.
 427         add_n_reqs(dst, src);
 428       } else {
 429         while (dst->req() < region->req())  add_one_req(dst, src);
 430       }
 431       const Type* srctype = _gvn.type(src);
 432       if (phi->type() != srctype) {
 433         const Type* dsttype = phi->type()->meet_speculative(srctype);
 434         if (phi->type() != dsttype) {
 435           phi->set_type(dsttype);
 436           _gvn.set_type(phi, dsttype);
 437         }
 438       }
 439     }
 440   }
 441   phi_map->merge_replaced_nodes_with(ex_map);
 442 }
 443 
 444 //--------------------------use_exception_state--------------------------------
 445 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 446   if (failing()) { stop(); return top(); }
 447   Node* region = phi_map->control();
 448   Node* hidden_merge_mark = root();
 449   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 450   Node* ex_oop = clear_saved_ex_oop(phi_map);
 451   if (region->in(0) == hidden_merge_mark) {
 452     // Special marking for internal ex-states.  Process the phis now.
 453     region->set_req(0, region);  // now it's an ordinary region
 454     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 455     // Note: Setting the jvms also sets the bci and sp.
 456     set_control(_gvn.transform(region));
 457     uint tos = jvms()->stkoff() + sp();
 458     for (uint i = 1; i < tos; i++) {
 459       Node* x = phi_map->in(i);
 460       if (x->in(0) == region) {
 461         assert(x->is_Phi(), "expected a special phi");
 462         phi_map->set_req(i, _gvn.transform(x));
 463       }
 464     }
 465     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 466       Node* x = mms.memory();
 467       if (x->in(0) == region) {
 468         assert(x->is_Phi(), "nobody else uses a hidden region");
 469         mms.set_memory(_gvn.transform(x));
 470       }
 471     }
 472     if (ex_oop->in(0) == region) {
 473       assert(ex_oop->is_Phi(), "expected a special phi");
 474       ex_oop = _gvn.transform(ex_oop);
 475     }
 476   } else {
 477     set_jvms(phi_map->jvms());
 478   }
 479 
 480   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 481   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 482   return ex_oop;
 483 }
 484 
 485 //---------------------------------java_bc-------------------------------------
 486 Bytecodes::Code GraphKit::java_bc() const {
 487   ciMethod* method = this->method();
 488   int       bci    = this->bci();
 489   if (method != NULL && bci != InvocationEntryBci)
 490     return method->java_code_at_bci(bci);
 491   else
 492     return Bytecodes::_illegal;
 493 }
 494 
 495 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 496                                                           bool must_throw) {
 497     // if the exception capability is set, then we will generate code
 498     // to check the JavaThread.should_post_on_exceptions flag to see
 499     // if we actually need to report exception events (for this
 500     // thread).  If we don't need to report exception events, we will
 501     // take the normal fast path provided by add_exception_events.  If
 502     // exception event reporting is enabled for this thread, we will
 503     // take the uncommon_trap in the BuildCutout below.
 504 
 505     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 506     Node* jthread = _gvn.transform(new ThreadLocalNode());
 507     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 508     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 509 
 510     // Test the should_post_on_exceptions_flag vs. 0
 511     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 512     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 513 
 514     // Branch to slow_path if should_post_on_exceptions_flag was true
 515     { BuildCutout unless(this, tst, PROB_MAX);
 516       // Do not try anything fancy if we're notifying the VM on every throw.
 517       // Cf. case Bytecodes::_athrow in parse2.cpp.
 518       uncommon_trap(reason, Deoptimization::Action_none,
 519                     (ciKlass*)NULL, (char*)NULL, must_throw);
 520     }
 521 
 522 }
 523 
 524 //------------------------------builtin_throw----------------------------------
 525 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 526   bool must_throw = true;
 527 
 528   if (env()->jvmti_can_post_on_exceptions()) {
 529     // check if we must post exception events, take uncommon trap if so
 530     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 531     // here if should_post_on_exceptions is false
 532     // continue on with the normal codegen
 533   }
 534 
 535   // If this particular condition has not yet happened at this
 536   // bytecode, then use the uncommon trap mechanism, and allow for
 537   // a future recompilation if several traps occur here.
 538   // If the throw is hot, try to use a more complicated inline mechanism
 539   // which keeps execution inside the compiled code.
 540   bool treat_throw_as_hot = false;
 541   ciMethodData* md = method()->method_data();
 542 
 543   if (ProfileTraps) {
 544     if (too_many_traps(reason)) {
 545       treat_throw_as_hot = true;
 546     }
 547     // (If there is no MDO at all, assume it is early in
 548     // execution, and that any deopts are part of the
 549     // startup transient, and don't need to be remembered.)
 550 
 551     // Also, if there is a local exception handler, treat all throws
 552     // as hot if there has been at least one in this method.
 553     if (C->trap_count(reason) != 0
 554         && method()->method_data()->trap_count(reason) != 0
 555         && has_ex_handler()) {
 556         treat_throw_as_hot = true;
 557     }
 558   }
 559 
 560   // If this throw happens frequently, an uncommon trap might cause
 561   // a performance pothole.  If there is a local exception handler,
 562   // and if this particular bytecode appears to be deoptimizing often,
 563   // let us handle the throw inline, with a preconstructed instance.
 564   // Note:   If the deopt count has blown up, the uncommon trap
 565   // runtime is going to flush this nmethod, not matter what.
 566   if (treat_throw_as_hot
 567       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 568     // If the throw is local, we use a pre-existing instance and
 569     // punt on the backtrace.  This would lead to a missing backtrace
 570     // (a repeat of 4292742) if the backtrace object is ever asked
 571     // for its backtrace.
 572     // Fixing this remaining case of 4292742 requires some flavor of
 573     // escape analysis.  Leave that for the future.
 574     ciInstance* ex_obj = NULL;
 575     switch (reason) {
 576     case Deoptimization::Reason_null_check:
 577       ex_obj = env()->NullPointerException_instance();
 578       break;
 579     case Deoptimization::Reason_div0_check:
 580       ex_obj = env()->ArithmeticException_instance();
 581       break;
 582     case Deoptimization::Reason_range_check:
 583       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 584       break;
 585     case Deoptimization::Reason_class_check:
 586       if (java_bc() == Bytecodes::_aastore) {
 587         ex_obj = env()->ArrayStoreException_instance();
 588       } else {
 589         ex_obj = env()->ClassCastException_instance();
 590       }
 591       break;
 592     default:
 593       break;
 594     }
 595     if (failing()) { stop(); return; }  // exception allocation might fail
 596     if (ex_obj != NULL) {
 597       // Cheat with a preallocated exception object.
 598       if (C->log() != NULL)
 599         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 600                        Deoptimization::trap_reason_name(reason));
 601       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 602       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 603 
 604       ex_node = shenandoah_write_barrier(ex_node);
 605 
 606       // Clear the detail message of the preallocated exception object.
 607       // Weblogic sometimes mutates the detail message of exceptions
 608       // using reflection.
 609       int offset = java_lang_Throwable::get_detailMessage_offset();
 610       const TypePtr* adr_typ = ex_con->add_offset(offset);
 611 
 612       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 613       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 614       // Conservatively release stores of object references.
 615       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
 616 
 617       add_exception_state(make_exception_state(ex_node));
 618       return;
 619     }
 620   }
 621 
 622   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 623   // It won't be much cheaper than bailing to the interp., since we'll
 624   // have to pass up all the debug-info, and the runtime will have to
 625   // create the stack trace.
 626 
 627   // Usual case:  Bail to interpreter.
 628   // Reserve the right to recompile if we haven't seen anything yet.
 629 
 630   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
 631   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 632   if (treat_throw_as_hot
 633       && (method()->method_data()->trap_recompiled_at(bci(), m)
 634           || C->too_many_traps(reason))) {
 635     // We cannot afford to take more traps here.  Suffer in the interpreter.
 636     if (C->log() != NULL)
 637       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 638                      Deoptimization::trap_reason_name(reason),
 639                      C->trap_count(reason));
 640     action = Deoptimization::Action_none;
 641   }
 642 
 643   // "must_throw" prunes the JVM state to include only the stack, if there
 644   // are no local exception handlers.  This should cut down on register
 645   // allocation time and code size, by drastically reducing the number
 646   // of in-edges on the call to the uncommon trap.
 647 
 648   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 649 }
 650 
 651 
 652 //----------------------------PreserveJVMState---------------------------------
 653 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 654   debug_only(kit->verify_map());
 655   _kit    = kit;
 656   _map    = kit->map();   // preserve the map
 657   _sp     = kit->sp();
 658   kit->set_map(clone_map ? kit->clone_map() : NULL);
 659 #ifdef ASSERT
 660   _bci    = kit->bci();
 661   Parse* parser = kit->is_Parse();
 662   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 663   _block  = block;
 664 #endif
 665 }
 666 PreserveJVMState::~PreserveJVMState() {
 667   GraphKit* kit = _kit;
 668 #ifdef ASSERT
 669   assert(kit->bci() == _bci, "bci must not shift");
 670   Parse* parser = kit->is_Parse();
 671   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 672   assert(block == _block,    "block must not shift");
 673 #endif
 674   kit->set_map(_map);
 675   kit->set_sp(_sp);
 676 }
 677 
 678 
 679 //-----------------------------BuildCutout-------------------------------------
 680 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 681   : PreserveJVMState(kit)
 682 {
 683   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 684   SafePointNode* outer_map = _map;   // preserved map is caller's
 685   SafePointNode* inner_map = kit->map();
 686   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 687   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 688   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 689 }
 690 BuildCutout::~BuildCutout() {
 691   GraphKit* kit = _kit;
 692   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 693 }
 694 
 695 //---------------------------PreserveReexecuteState----------------------------
 696 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 697   assert(!kit->stopped(), "must call stopped() before");
 698   _kit    =    kit;
 699   _sp     =    kit->sp();
 700   _reexecute = kit->jvms()->_reexecute;
 701 }
 702 PreserveReexecuteState::~PreserveReexecuteState() {
 703   if (_kit->stopped()) return;
 704   _kit->jvms()->_reexecute = _reexecute;
 705   _kit->set_sp(_sp);
 706 }
 707 
 708 //------------------------------clone_map--------------------------------------
 709 // Implementation of PreserveJVMState
 710 //
 711 // Only clone_map(...) here. If this function is only used in the
 712 // PreserveJVMState class we may want to get rid of this extra
 713 // function eventually and do it all there.
 714 
 715 SafePointNode* GraphKit::clone_map() {
 716   if (map() == NULL)  return NULL;
 717 
 718   // Clone the memory edge first
 719   Node* mem = MergeMemNode::make(map()->memory());
 720   gvn().set_type_bottom(mem);
 721 
 722   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 723   JVMState* jvms = this->jvms();
 724   JVMState* clonejvms = jvms->clone_shallow(C);
 725   clonemap->set_memory(mem);
 726   clonemap->set_jvms(clonejvms);
 727   clonejvms->set_map(clonemap);
 728   record_for_igvn(clonemap);
 729   gvn().set_type_bottom(clonemap);
 730   return clonemap;
 731 }
 732 
 733 
 734 //-----------------------------set_map_clone-----------------------------------
 735 void GraphKit::set_map_clone(SafePointNode* m) {
 736   _map = m;
 737   _map = clone_map();
 738   _map->set_next_exception(NULL);
 739   debug_only(verify_map());
 740 }
 741 
 742 
 743 //----------------------------kill_dead_locals---------------------------------
 744 // Detect any locals which are known to be dead, and force them to top.
 745 void GraphKit::kill_dead_locals() {
 746   // Consult the liveness information for the locals.  If any
 747   // of them are unused, then they can be replaced by top().  This
 748   // should help register allocation time and cut down on the size
 749   // of the deoptimization information.
 750 
 751   // This call is made from many of the bytecode handling
 752   // subroutines called from the Big Switch in do_one_bytecode.
 753   // Every bytecode which might include a slow path is responsible
 754   // for killing its dead locals.  The more consistent we
 755   // are about killing deads, the fewer useless phis will be
 756   // constructed for them at various merge points.
 757 
 758   // bci can be -1 (InvocationEntryBci).  We return the entry
 759   // liveness for the method.
 760 
 761   if (method() == NULL || method()->code_size() == 0) {
 762     // We are building a graph for a call to a native method.
 763     // All locals are live.
 764     return;
 765   }
 766 
 767   ResourceMark rm;
 768 
 769   // Consult the liveness information for the locals.  If any
 770   // of them are unused, then they can be replaced by top().  This
 771   // should help register allocation time and cut down on the size
 772   // of the deoptimization information.
 773   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 774 
 775   int len = (int)live_locals.size();
 776   assert(len <= jvms()->loc_size(), "too many live locals");
 777   for (int local = 0; local < len; local++) {
 778     if (!live_locals.at(local)) {
 779       set_local(local, top());
 780     }
 781   }
 782 }
 783 
 784 #ifdef ASSERT
 785 //-------------------------dead_locals_are_killed------------------------------
 786 // Return true if all dead locals are set to top in the map.
 787 // Used to assert "clean" debug info at various points.
 788 bool GraphKit::dead_locals_are_killed() {
 789   if (method() == NULL || method()->code_size() == 0) {
 790     // No locals need to be dead, so all is as it should be.
 791     return true;
 792   }
 793 
 794   // Make sure somebody called kill_dead_locals upstream.
 795   ResourceMark rm;
 796   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 797     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 798     SafePointNode* map = jvms->map();
 799     ciMethod* method = jvms->method();
 800     int       bci    = jvms->bci();
 801     if (jvms == this->jvms()) {
 802       bci = this->bci();  // it might not yet be synched
 803     }
 804     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 805     int len = (int)live_locals.size();
 806     if (!live_locals.is_valid() || len == 0)
 807       // This method is trivial, or is poisoned by a breakpoint.
 808       return true;
 809     assert(len == jvms->loc_size(), "live map consistent with locals map");
 810     for (int local = 0; local < len; local++) {
 811       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 812         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 813           tty->print_cr("Zombie local %d: ", local);
 814           jvms->dump();
 815         }
 816         return false;
 817       }
 818     }
 819   }
 820   return true;
 821 }
 822 
 823 #endif //ASSERT
 824 
 825 // Helper function for enforcing certain bytecodes to reexecute if
 826 // deoptimization happens
 827 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 828   ciMethod* cur_method = jvms->method();
 829   int       cur_bci   = jvms->bci();
 830   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 831     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 832     return Interpreter::bytecode_should_reexecute(code) ||
 833            (is_anewarray && code == Bytecodes::_multianewarray);
 834     // Reexecute _multianewarray bytecode which was replaced with
 835     // sequence of [a]newarray. See Parse::do_multianewarray().
 836     //
 837     // Note: interpreter should not have it set since this optimization
 838     // is limited by dimensions and guarded by flag so in some cases
 839     // multianewarray() runtime calls will be generated and
 840     // the bytecode should not be reexecutes (stack will not be reset).
 841   } else
 842     return false;
 843 }
 844 
 845 // Helper function for adding JVMState and debug information to node
 846 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 847   // Add the safepoint edges to the call (or other safepoint).
 848 
 849   // Make sure dead locals are set to top.  This
 850   // should help register allocation time and cut down on the size
 851   // of the deoptimization information.
 852   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 853 
 854   // Walk the inline list to fill in the correct set of JVMState's
 855   // Also fill in the associated edges for each JVMState.
 856 
 857   // If the bytecode needs to be reexecuted we need to put
 858   // the arguments back on the stack.
 859   const bool should_reexecute = jvms()->should_reexecute();
 860   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 861 
 862   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 863   // undefined if the bci is different.  This is normal for Parse but it
 864   // should not happen for LibraryCallKit because only one bci is processed.
 865   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 866          "in LibraryCallKit the reexecute bit should not change");
 867 
 868   // If we are guaranteed to throw, we can prune everything but the
 869   // input to the current bytecode.
 870   bool can_prune_locals = false;
 871   uint stack_slots_not_pruned = 0;
 872   int inputs = 0, depth = 0;
 873   if (must_throw) {
 874     assert(method() == youngest_jvms->method(), "sanity");
 875     if (compute_stack_effects(inputs, depth)) {
 876       can_prune_locals = true;
 877       stack_slots_not_pruned = inputs;
 878     }
 879   }
 880 
 881   if (env()->should_retain_local_variables()) {
 882     // At any safepoint, this method can get breakpointed, which would
 883     // then require an immediate deoptimization.
 884     can_prune_locals = false;  // do not prune locals
 885     stack_slots_not_pruned = 0;
 886   }
 887 
 888   // do not scribble on the input jvms
 889   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 890   call->set_jvms(out_jvms); // Start jvms list for call node
 891 
 892   // For a known set of bytecodes, the interpreter should reexecute them if
 893   // deoptimization happens. We set the reexecute state for them here
 894   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 895       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 896     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 897   }
 898 
 899   // Presize the call:
 900   DEBUG_ONLY(uint non_debug_edges = call->req());
 901   call->add_req_batch(top(), youngest_jvms->debug_depth());
 902   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 903 
 904   // Set up edges so that the call looks like this:
 905   //  Call [state:] ctl io mem fptr retadr
 906   //       [parms:] parm0 ... parmN
 907   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 908   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 909   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 910   // Note that caller debug info precedes callee debug info.
 911 
 912   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 913   uint debug_ptr = call->req();
 914 
 915   // Loop over the map input edges associated with jvms, add them
 916   // to the call node, & reset all offsets to match call node array.
 917   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 918     uint debug_end   = debug_ptr;
 919     uint debug_start = debug_ptr - in_jvms->debug_size();
 920     debug_ptr = debug_start;  // back up the ptr
 921 
 922     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 923     uint j, k, l;
 924     SafePointNode* in_map = in_jvms->map();
 925     out_jvms->set_map(call);
 926 
 927     if (can_prune_locals) {
 928       assert(in_jvms->method() == out_jvms->method(), "sanity");
 929       // If the current throw can reach an exception handler in this JVMS,
 930       // then we must keep everything live that can reach that handler.
 931       // As a quick and dirty approximation, we look for any handlers at all.
 932       if (in_jvms->method()->has_exception_handlers()) {
 933         can_prune_locals = false;
 934       }
 935     }
 936 
 937     // Add the Locals
 938     k = in_jvms->locoff();
 939     l = in_jvms->loc_size();
 940     out_jvms->set_locoff(p);
 941     if (!can_prune_locals) {
 942       for (j = 0; j < l; j++)
 943         call->set_req(p++, in_map->in(k+j));
 944     } else {
 945       p += l;  // already set to top above by add_req_batch
 946     }
 947 
 948     // Add the Expression Stack
 949     k = in_jvms->stkoff();
 950     l = in_jvms->sp();
 951     out_jvms->set_stkoff(p);
 952     if (!can_prune_locals) {
 953       for (j = 0; j < l; j++)
 954         call->set_req(p++, in_map->in(k+j));
 955     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 956       // Divide stack into {S0,...,S1}, where S0 is set to top.
 957       uint s1 = stack_slots_not_pruned;
 958       stack_slots_not_pruned = 0;  // for next iteration
 959       if (s1 > l)  s1 = l;
 960       uint s0 = l - s1;
 961       p += s0;  // skip the tops preinstalled by add_req_batch
 962       for (j = s0; j < l; j++)
 963         call->set_req(p++, in_map->in(k+j));
 964     } else {
 965       p += l;  // already set to top above by add_req_batch
 966     }
 967 
 968     // Add the Monitors
 969     k = in_jvms->monoff();
 970     l = in_jvms->mon_size();
 971     out_jvms->set_monoff(p);
 972     for (j = 0; j < l; j++)
 973       call->set_req(p++, in_map->in(k+j));
 974 
 975     // Copy any scalar object fields.
 976     k = in_jvms->scloff();
 977     l = in_jvms->scl_size();
 978     out_jvms->set_scloff(p);
 979     for (j = 0; j < l; j++)
 980       call->set_req(p++, in_map->in(k+j));
 981 
 982     // Finish the new jvms.
 983     out_jvms->set_endoff(p);
 984 
 985     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 986     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 987     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 988     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 989     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 990     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 991 
 992     // Update the two tail pointers in parallel.
 993     out_jvms = out_jvms->caller();
 994     in_jvms  = in_jvms->caller();
 995   }
 996 
 997   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 998 
 999   // Test the correctness of JVMState::debug_xxx accessors:
1000   assert(call->jvms()->debug_start() == non_debug_edges, "");
1001   assert(call->jvms()->debug_end()   == call->req(), "");
1002   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1003 }
1004 
1005 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1006   Bytecodes::Code code = java_bc();
1007   if (code == Bytecodes::_wide) {
1008     code = method()->java_code_at_bci(bci() + 1);
1009   }
1010 
1011   BasicType rtype = T_ILLEGAL;
1012   int       rsize = 0;
1013 
1014   if (code != Bytecodes::_illegal) {
1015     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1016     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1017     if (rtype < T_CONFLICT)
1018       rsize = type2size[rtype];
1019   }
1020 
1021   switch (code) {
1022   case Bytecodes::_illegal:
1023     return false;
1024 
1025   case Bytecodes::_ldc:
1026   case Bytecodes::_ldc_w:
1027   case Bytecodes::_ldc2_w:
1028     inputs = 0;
1029     break;
1030 
1031   case Bytecodes::_dup:         inputs = 1;  break;
1032   case Bytecodes::_dup_x1:      inputs = 2;  break;
1033   case Bytecodes::_dup_x2:      inputs = 3;  break;
1034   case Bytecodes::_dup2:        inputs = 2;  break;
1035   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1036   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1037   case Bytecodes::_swap:        inputs = 2;  break;
1038   case Bytecodes::_arraylength: inputs = 1;  break;
1039 
1040   case Bytecodes::_getstatic:
1041   case Bytecodes::_putstatic:
1042   case Bytecodes::_getfield:
1043   case Bytecodes::_putfield:
1044     {
1045       bool ignored_will_link;
1046       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1047       int      size  = field->type()->size();
1048       bool is_get = (depth >= 0), is_static = (depth & 1);
1049       inputs = (is_static ? 0 : 1);
1050       if (is_get) {
1051         depth = size - inputs;
1052       } else {
1053         inputs += size;        // putxxx pops the value from the stack
1054         depth = - inputs;
1055       }
1056     }
1057     break;
1058 
1059   case Bytecodes::_invokevirtual:
1060   case Bytecodes::_invokespecial:
1061   case Bytecodes::_invokestatic:
1062   case Bytecodes::_invokedynamic:
1063   case Bytecodes::_invokeinterface:
1064     {
1065       bool ignored_will_link;
1066       ciSignature* declared_signature = NULL;
1067       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1068       assert(declared_signature != NULL, "cannot be null");
1069       inputs   = declared_signature->arg_size_for_bc(code);
1070       int size = declared_signature->return_type()->size();
1071       depth = size - inputs;
1072     }
1073     break;
1074 
1075   case Bytecodes::_multianewarray:
1076     {
1077       ciBytecodeStream iter(method());
1078       iter.reset_to_bci(bci());
1079       iter.next();
1080       inputs = iter.get_dimensions();
1081       assert(rsize == 1, "");
1082       depth = rsize - inputs;
1083     }
1084     break;
1085 
1086   case Bytecodes::_ireturn:
1087   case Bytecodes::_lreturn:
1088   case Bytecodes::_freturn:
1089   case Bytecodes::_dreturn:
1090   case Bytecodes::_areturn:
1091     assert(rsize == -depth, "");
1092     inputs = rsize;
1093     break;
1094 
1095   case Bytecodes::_jsr:
1096   case Bytecodes::_jsr_w:
1097     inputs = 0;
1098     depth  = 1;                  // S.B. depth=1, not zero
1099     break;
1100 
1101   default:
1102     // bytecode produces a typed result
1103     inputs = rsize - depth;
1104     assert(inputs >= 0, "");
1105     break;
1106   }
1107 
1108 #ifdef ASSERT
1109   // spot check
1110   int outputs = depth + inputs;
1111   assert(outputs >= 0, "sanity");
1112   switch (code) {
1113   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1114   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1115   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1116   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1117   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1118   default:                    break;
1119   }
1120 #endif //ASSERT
1121 
1122   return true;
1123 }
1124 
1125 
1126 
1127 //------------------------------basic_plus_adr---------------------------------
1128 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1129   // short-circuit a common case
1130   if (offset == intcon(0))  return ptr;
1131   return _gvn.transform( new AddPNode(base, ptr, offset) );
1132 }
1133 
1134 Node* GraphKit::ConvI2L(Node* offset) {
1135   // short-circuit a common case
1136   jint offset_con = find_int_con(offset, Type::OffsetBot);
1137   if (offset_con != Type::OffsetBot) {
1138     return longcon((jlong) offset_con);
1139   }
1140   return _gvn.transform( new ConvI2LNode(offset));
1141 }
1142 
1143 Node* GraphKit::ConvI2UL(Node* offset) {
1144   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1145   if (offset_con != (juint) Type::OffsetBot) {
1146     return longcon((julong) offset_con);
1147   }
1148   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1149   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1150   return _gvn.transform( new AndLNode(conv, mask) );
1151 }
1152 
1153 Node* GraphKit::ConvL2I(Node* offset) {
1154   // short-circuit a common case
1155   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1156   if (offset_con != (jlong)Type::OffsetBot) {
1157     return intcon((int) offset_con);
1158   }
1159   return _gvn.transform( new ConvL2INode(offset));
1160 }
1161 
1162 //-------------------------load_object_klass-----------------------------------
1163 Node* GraphKit::load_object_klass(Node* obj) {
1164   // Special-case a fresh allocation to avoid building nodes:
1165   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1166   if (akls != NULL)  return akls;
1167   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1168   return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1169 }
1170 
1171 //-------------------------load_array_length-----------------------------------
1172 Node* GraphKit::load_array_length(Node* array) {
1173   // Special-case a fresh allocation to avoid building nodes:
1174   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1175   Node *alen;
1176   if (alloc == NULL) {
1177     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1178     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1179   } else {
1180     alen = alloc->Ideal_length();
1181     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1182     if (ccast != alen) {
1183       alen = _gvn.transform(ccast);
1184     }
1185   }
1186   return alen;
1187 }
1188 
1189 //------------------------------do_null_check----------------------------------
1190 // Helper function to do a NULL pointer check.  Returned value is
1191 // the incoming address with NULL casted away.  You are allowed to use the
1192 // not-null value only if you are control dependent on the test.
1193 #ifndef PRODUCT
1194 extern int explicit_null_checks_inserted,
1195            explicit_null_checks_elided;
1196 #endif
1197 Node* GraphKit::null_check_common(Node* value, BasicType type,
1198                                   // optional arguments for variations:
1199                                   bool assert_null,
1200                                   Node* *null_control,
1201                                   bool speculative) {
1202   assert(!assert_null || null_control == NULL, "not both at once");
1203   if (stopped())  return top();
1204   NOT_PRODUCT(explicit_null_checks_inserted++);
1205 
1206   // Construct NULL check
1207   Node *chk = NULL;
1208   switch(type) {
1209     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1210     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1211     case T_ARRAY  : // fall through
1212       type = T_OBJECT;  // simplify further tests
1213     case T_OBJECT : {
1214       const Type *t = _gvn.type( value );
1215 
1216       const TypeOopPtr* tp = t->isa_oopptr();
1217       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1218           // Only for do_null_check, not any of its siblings:
1219           && !assert_null && null_control == NULL) {
1220         // Usually, any field access or invocation on an unloaded oop type
1221         // will simply fail to link, since the statically linked class is
1222         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1223         // the static class is loaded but the sharper oop type is not.
1224         // Rather than checking for this obscure case in lots of places,
1225         // we simply observe that a null check on an unloaded class
1226         // will always be followed by a nonsense operation, so we
1227         // can just issue the uncommon trap here.
1228         // Our access to the unloaded class will only be correct
1229         // after it has been loaded and initialized, which requires
1230         // a trip through the interpreter.
1231 #ifndef PRODUCT
1232         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1233 #endif
1234         uncommon_trap(Deoptimization::Reason_unloaded,
1235                       Deoptimization::Action_reinterpret,
1236                       tp->klass(), "!loaded");
1237         return top();
1238       }
1239 
1240       if (assert_null) {
1241         // See if the type is contained in NULL_PTR.
1242         // If so, then the value is already null.
1243         if (t->higher_equal(TypePtr::NULL_PTR)) {
1244           NOT_PRODUCT(explicit_null_checks_elided++);
1245           return value;           // Elided null assert quickly!
1246         }
1247       } else {
1248         // See if mixing in the NULL pointer changes type.
1249         // If so, then the NULL pointer was not allowed in the original
1250         // type.  In other words, "value" was not-null.
1251         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1252           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1253           NOT_PRODUCT(explicit_null_checks_elided++);
1254           return value;           // Elided null check quickly!
1255         }
1256       }
1257       chk = new CmpPNode( value, null() );
1258       break;
1259     }
1260 
1261     default:
1262       fatal("unexpected type: %s", type2name(type));
1263   }
1264   assert(chk != NULL, "sanity check");
1265   chk = _gvn.transform(chk);
1266 
1267   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1268   BoolNode *btst = new BoolNode( chk, btest);
1269   Node   *tst = _gvn.transform( btst );
1270 
1271   //-----------
1272   // if peephole optimizations occurred, a prior test existed.
1273   // If a prior test existed, maybe it dominates as we can avoid this test.
1274   if (tst != btst && type == T_OBJECT) {
1275     // At this point we want to scan up the CFG to see if we can
1276     // find an identical test (and so avoid this test altogether).
1277     Node *cfg = control();
1278     int depth = 0;
1279     while( depth < 16 ) {       // Limit search depth for speed
1280       if( cfg->Opcode() == Op_IfTrue &&
1281           cfg->in(0)->in(1) == tst ) {
1282         // Found prior test.  Use "cast_not_null" to construct an identical
1283         // CastPP (and hence hash to) as already exists for the prior test.
1284         // Return that casted value.
1285         if (assert_null) {
1286           replace_in_map(value, null());
1287           return null();  // do not issue the redundant test
1288         }
1289         Node *oldcontrol = control();
1290         set_control(cfg);
1291         Node *res = cast_not_null(value);
1292         set_control(oldcontrol);
1293         NOT_PRODUCT(explicit_null_checks_elided++);
1294         return res;
1295       }
1296       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1297       if (cfg == NULL)  break;  // Quit at region nodes
1298       depth++;
1299     }
1300   }
1301 
1302   //-----------
1303   // Branch to failure if null
1304   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1305   Deoptimization::DeoptReason reason;
1306   if (assert_null) {
1307     reason = Deoptimization::reason_null_assert(speculative);
1308   } else if (type == T_OBJECT) {
1309     reason = Deoptimization::reason_null_check(speculative);
1310   } else {
1311     reason = Deoptimization::Reason_div0_check;
1312   }
1313   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1314   // ciMethodData::has_trap_at will return a conservative -1 if any
1315   // must-be-null assertion has failed.  This could cause performance
1316   // problems for a method after its first do_null_assert failure.
1317   // Consider using 'Reason_class_check' instead?
1318 
1319   // To cause an implicit null check, we set the not-null probability
1320   // to the maximum (PROB_MAX).  For an explicit check the probability
1321   // is set to a smaller value.
1322   if (null_control != NULL || too_many_traps(reason)) {
1323     // probability is less likely
1324     ok_prob =  PROB_LIKELY_MAG(3);
1325   } else if (!assert_null &&
1326              (ImplicitNullCheckThreshold > 0) &&
1327              method() != NULL &&
1328              (method()->method_data()->trap_count(reason)
1329               >= (uint)ImplicitNullCheckThreshold)) {
1330     ok_prob =  PROB_LIKELY_MAG(3);
1331   }
1332 
1333   if (null_control != NULL) {
1334     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1335     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1336     set_control(      _gvn.transform( new IfTrueNode(iff)));
1337 #ifndef PRODUCT
1338     if (null_true == top()) {
1339       explicit_null_checks_elided++;
1340     }
1341 #endif
1342     (*null_control) = null_true;
1343   } else {
1344     BuildCutout unless(this, tst, ok_prob);
1345     // Check for optimizer eliding test at parse time
1346     if (stopped()) {
1347       // Failure not possible; do not bother making uncommon trap.
1348       NOT_PRODUCT(explicit_null_checks_elided++);
1349     } else if (assert_null) {
1350       uncommon_trap(reason,
1351                     Deoptimization::Action_make_not_entrant,
1352                     NULL, "assert_null");
1353     } else {
1354       replace_in_map(value, zerocon(type));
1355       builtin_throw(reason);
1356     }
1357   }
1358 
1359   // Must throw exception, fall-thru not possible?
1360   if (stopped()) {
1361     return top();               // No result
1362   }
1363 
1364   if (assert_null) {
1365     // Cast obj to null on this path.
1366     replace_in_map(value, zerocon(type));
1367     return zerocon(type);
1368   }
1369 
1370   // Cast obj to not-null on this path, if there is no null_control.
1371   // (If there is a null_control, a non-null value may come back to haunt us.)
1372   if (type == T_OBJECT) {
1373     Node* cast = cast_not_null(value, false);
1374     if (null_control == NULL || (*null_control) == top())
1375       replace_in_map(value, cast);
1376     value = cast;
1377   }
1378 
1379   return value;
1380 }
1381 
1382 
1383 //------------------------------cast_not_null----------------------------------
1384 // Cast obj to not-null on this path
1385 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1386   const Type *t = _gvn.type(obj);
1387   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1388   // Object is already not-null?
1389   if( t == t_not_null ) return obj;
1390 
1391   Node *cast = new CastPPNode(obj,t_not_null);
1392   cast->init_req(0, control());
1393   cast = _gvn.transform( cast );
1394 
1395   // Scan for instances of 'obj' in the current JVM mapping.
1396   // These instances are known to be not-null after the test.
1397   if (do_replace_in_map)
1398     replace_in_map(obj, cast);
1399 
1400   return cast;                  // Return casted value
1401 }
1402 
1403 // Sometimes in intrinsics, we implicitly know an object is not null
1404 // (there's no actual null check) so we can cast it to not null. In
1405 // the course of optimizations, the input to the cast can become null.
1406 // In that case that data path will die and we need the control path
1407 // to become dead as well to keep the graph consistent. So we have to
1408 // add a check for null for which one branch can't be taken. It uses
1409 // an Opaque4 node that will cause the check to be removed after loop
1410 // opts so the test goes away and the compiled code doesn't execute a
1411 // useless check.
1412 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1413   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1414   Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1415   Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1)));
1416   IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1417   _gvn.set_type(iff, iff->Value(&_gvn));
1418   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1419   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1420   Node *halt = _gvn.transform(new HaltNode(if_f, frame));
1421   C->root()->add_req(halt);
1422   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1423   set_control(if_t);
1424   return cast_not_null(value, do_replace_in_map);
1425 }
1426 
1427 
1428 //--------------------------replace_in_map-------------------------------------
1429 void GraphKit::replace_in_map(Node* old, Node* neww) {
1430   if (old == neww) {
1431     return;
1432   }
1433 
1434   map()->replace_edge(old, neww);
1435 
1436   // Note: This operation potentially replaces any edge
1437   // on the map.  This includes locals, stack, and monitors
1438   // of the current (innermost) JVM state.
1439 
1440   // don't let inconsistent types from profiling escape this
1441   // method
1442 
1443   const Type* told = _gvn.type(old);
1444   const Type* tnew = _gvn.type(neww);
1445 
1446   if (!tnew->higher_equal(told)) {
1447     return;
1448   }
1449 
1450   map()->record_replaced_node(old, neww);
1451 }
1452 
1453 
1454 //=============================================================================
1455 //--------------------------------memory---------------------------------------
1456 Node* GraphKit::memory(uint alias_idx) {
1457   MergeMemNode* mem = merged_memory();
1458   Node* p = mem->memory_at(alias_idx);
1459   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1460   return p;
1461 }
1462 
1463 //-----------------------------reset_memory------------------------------------
1464 Node* GraphKit::reset_memory() {
1465   Node* mem = map()->memory();
1466   // do not use this node for any more parsing!
1467   debug_only( map()->set_memory((Node*)NULL) );
1468   return _gvn.transform( mem );
1469 }
1470 
1471 //------------------------------set_all_memory---------------------------------
1472 void GraphKit::set_all_memory(Node* newmem) {
1473   Node* mergemem = MergeMemNode::make(newmem);
1474   gvn().set_type_bottom(mergemem);
1475   map()->set_memory(mergemem);
1476 }
1477 
1478 //------------------------------set_all_memory_call----------------------------
1479 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1480   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1481   set_all_memory(newmem);
1482 }
1483 
1484 //=============================================================================
1485 //
1486 // parser factory methods for MemNodes
1487 //
1488 // These are layered on top of the factory methods in LoadNode and StoreNode,
1489 // and integrate with the parser's memory state and _gvn engine.
1490 //
1491 
1492 // factory methods in "int adr_idx"
1493 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1494                           int adr_idx,
1495                           MemNode::MemOrd mo,
1496                           LoadNode::ControlDependency control_dependency,
1497                           bool require_atomic_access,
1498                           bool unaligned,
1499                           bool mismatched) {
1500   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1501   const TypePtr* adr_type = NULL; // debug-mode-only argument
1502   debug_only(adr_type = C->get_adr_type(adr_idx));
1503   Node* mem = memory(adr_idx);
1504   Node* ld;
1505   if (require_atomic_access && bt == T_LONG) {
1506     ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1507   } else if (require_atomic_access && bt == T_DOUBLE) {
1508     ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1509   } else {
1510     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched);
1511   }
1512   ld = _gvn.transform(ld);
1513   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1514     // Improve graph before escape analysis and boxing elimination.
1515     record_for_igvn(ld);
1516   }
1517   return ld;
1518 }
1519 
1520 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1521                                 int adr_idx,
1522                                 MemNode::MemOrd mo,
1523                                 bool require_atomic_access,
1524                                 bool unaligned,
1525                                 bool mismatched) {
1526   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1527   const TypePtr* adr_type = NULL;
1528   debug_only(adr_type = C->get_adr_type(adr_idx));
1529   Node *mem = memory(adr_idx);
1530   Node* st;
1531   if (require_atomic_access && bt == T_LONG) {
1532     st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1533   } else if (require_atomic_access && bt == T_DOUBLE) {
1534     st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1535   } else {
1536     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1537   }
1538   if (unaligned) {
1539     st->as_Store()->set_unaligned_access();
1540   }
1541   if (mismatched) {
1542     st->as_Store()->set_mismatched_access();
1543   }
1544   st = _gvn.transform(st);
1545   set_memory(st, adr_idx);
1546   // Back-to-back stores can only remove intermediate store with DU info
1547   // so push on worklist for optimizer.
1548   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1549     record_for_igvn(st);
1550 
1551   return st;
1552 }
1553 
1554 
1555 Node* GraphKit::pre_barrier(bool do_load,
1556                            Node* ctl,
1557                            Node* obj,
1558                            Node* adr,
1559                            uint  adr_idx,
1560                            Node* val,
1561                            const TypeOopPtr* val_type,
1562                            Node* pre_val,
1563                            BasicType bt) {
1564 
1565   BarrierSet* bs = Universe::heap()->barrier_set();
1566   set_control(ctl);
1567   switch (bs->kind()) {
1568     case BarrierSet::G1SATBCTLogging:
1569       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1570       return val;
1571     case BarrierSet::ShenandoahBarrierSet:
1572       return shenandoah_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1573 
1574     case BarrierSet::CardTableForRS:
1575     case BarrierSet::CardTableExtension:
1576     case BarrierSet::ModRef:
1577       break;
1578 
1579     default      :
1580       ShouldNotReachHere();
1581 
1582   }
1583   return val;
1584 }
1585 
1586 bool GraphKit::can_move_pre_barrier() const {
1587   BarrierSet* bs = Universe::heap()->barrier_set();
1588   switch (bs->kind()) {
1589     case BarrierSet::G1SATBCTLogging:
1590     case BarrierSet::ShenandoahBarrierSet:
1591       return true; // Can move it if no safepoint
1592 
1593     case BarrierSet::CardTableForRS:
1594     case BarrierSet::CardTableExtension:
1595     case BarrierSet::ModRef:
1596       return true; // There is no pre-barrier
1597 
1598     default      :
1599       ShouldNotReachHere();
1600   }
1601   return false;
1602 }
1603 
1604 void GraphKit::post_barrier(Node* ctl,
1605                             Node* store,
1606                             Node* obj,
1607                             Node* adr,
1608                             uint  adr_idx,
1609                             Node* val,
1610                             BasicType bt,
1611                             bool use_precise) {
1612   BarrierSet* bs = Universe::heap()->barrier_set();
1613   set_control(ctl);
1614   switch (bs->kind()) {
1615     case BarrierSet::G1SATBCTLogging:
1616       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1617       break;
1618 
1619     case BarrierSet::CardTableForRS:
1620     case BarrierSet::CardTableExtension:
1621       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1622       break;
1623 
1624     case BarrierSet::ModRef:
1625     case BarrierSet::ShenandoahBarrierSet:
1626       break;
1627 
1628     default      :
1629       ShouldNotReachHere();
1630 
1631   }
1632 }
1633 
1634 Node* GraphKit::store_oop(Node* ctl,
1635                           Node* obj,
1636                           Node* adr,
1637                           const TypePtr* adr_type,
1638                           Node* val,
1639                           const TypeOopPtr* val_type,
1640                           BasicType bt,
1641                           bool use_precise,
1642                           MemNode::MemOrd mo,
1643                           bool mismatched) {
1644   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1645   // could be delayed during Parse (for example, in adjust_map_after_if()).
1646   // Execute transformation here to avoid barrier generation in such case.
1647   if (_gvn.type(val) == TypePtr::NULL_PTR)
1648     val = _gvn.makecon(TypePtr::NULL_PTR);
1649 
1650   set_control(ctl);
1651   if (stopped()) return top(); // Dead path ?
1652 
1653   assert(bt == T_OBJECT, "sanity");
1654   assert(val != NULL, "not dead path");
1655   uint adr_idx = C->get_alias_index(adr_type);
1656   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1657 
1658   val = pre_barrier(true /* do_load */,
1659               control(), obj, adr, adr_idx, val, val_type,
1660               NULL /* pre_val */,
1661               bt);
1662 
1663   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo, mismatched);
1664   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1665   return store;
1666 }
1667 
1668 // Could be an array or object we don't know at compile time (unsafe ref.)
1669 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1670                              Node* obj,   // containing obj
1671                              Node* adr,  // actual adress to store val at
1672                              const TypePtr* adr_type,
1673                              Node* val,
1674                              BasicType bt,
1675                              MemNode::MemOrd mo,
1676                              bool mismatched) {
1677   Compile::AliasType* at = C->alias_type(adr_type);
1678   const TypeOopPtr* val_type = NULL;
1679   if (adr_type->isa_instptr()) {
1680     if (at->field() != NULL) {
1681       // known field.  This code is a copy of the do_put_xxx logic.
1682       ciField* field = at->field();
1683       if (!field->type()->is_loaded()) {
1684         val_type = TypeInstPtr::BOTTOM;
1685       } else {
1686         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1687       }
1688     }
1689   } else if (adr_type->isa_aryptr()) {
1690     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1691   }
1692   if (val_type == NULL) {
1693     val_type = TypeInstPtr::BOTTOM;
1694   }
1695   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo, mismatched);
1696 }
1697 
1698 
1699 //-------------------------array_element_address-------------------------
1700 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1701                                       const TypeInt* sizetype, Node* ctrl) {
1702   uint shift  = exact_log2(type2aelembytes(elembt));
1703   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1704 
1705   // short-circuit a common case (saves lots of confusing waste motion)
1706   jint idx_con = find_int_con(idx, -1);
1707   if (idx_con >= 0) {
1708     intptr_t offset = header + ((intptr_t)idx_con << shift);
1709     return basic_plus_adr(ary, offset);
1710   }
1711 
1712   // must be correct type for alignment purposes
1713   Node* base  = basic_plus_adr(ary, header);
1714   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1715   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1716   return basic_plus_adr(ary, base, scale);
1717 }
1718 
1719 //-------------------------load_array_element-------------------------
1720 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1721   const Type* elemtype = arytype->elem();
1722   BasicType elembt = elemtype->array_element_basic_type();
1723   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1724   if (elembt == T_NARROWOOP) {
1725     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1726   }
1727   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1728   return ld;
1729 }
1730 
1731 //-------------------------set_arguments_for_java_call-------------------------
1732 // Arguments (pre-popped from the stack) are taken from the JVMS.
1733 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1734   // Add the call arguments:
1735   uint nargs = call->method()->arg_size();
1736   for (uint i = 0; i < nargs; i++) {
1737     Node* arg = argument(i);
1738     call->init_req(i + TypeFunc::Parms, arg);
1739   }
1740 }
1741 
1742 //---------------------------set_edges_for_java_call---------------------------
1743 // Connect a newly created call into the current JVMS.
1744 // A return value node (if any) is returned from set_edges_for_java_call.
1745 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1746 
1747   // Add the predefined inputs:
1748   call->init_req( TypeFunc::Control, control() );
1749   call->init_req( TypeFunc::I_O    , i_o() );
1750   call->init_req( TypeFunc::Memory , reset_memory() );
1751   call->init_req( TypeFunc::FramePtr, frameptr() );
1752   call->init_req( TypeFunc::ReturnAdr, top() );
1753 
1754   add_safepoint_edges(call, must_throw);
1755 
1756   Node* xcall = _gvn.transform(call);
1757 
1758   if (xcall == top()) {
1759     set_control(top());
1760     return;
1761   }
1762   assert(xcall == call, "call identity is stable");
1763 
1764   // Re-use the current map to produce the result.
1765 
1766   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1767   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1768   set_all_memory_call(xcall, separate_io_proj);
1769 
1770   //return xcall;   // no need, caller already has it
1771 }
1772 
1773 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1774   if (stopped())  return top();  // maybe the call folded up?
1775 
1776   // Capture the return value, if any.
1777   Node* ret;
1778   if (call->method() == NULL ||
1779       call->method()->return_type()->basic_type() == T_VOID)
1780         ret = top();
1781   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1782 
1783   // Note:  Since any out-of-line call can produce an exception,
1784   // we always insert an I_O projection from the call into the result.
1785 
1786   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1787 
1788   if (separate_io_proj) {
1789     // The caller requested separate projections be used by the fall
1790     // through and exceptional paths, so replace the projections for
1791     // the fall through path.
1792     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1793     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1794   }
1795   return ret;
1796 }
1797 
1798 //--------------------set_predefined_input_for_runtime_call--------------------
1799 // Reading and setting the memory state is way conservative here.
1800 // The real problem is that I am not doing real Type analysis on memory,
1801 // so I cannot distinguish card mark stores from other stores.  Across a GC
1802 // point the Store Barrier and the card mark memory has to agree.  I cannot
1803 // have a card mark store and its barrier split across the GC point from
1804 // either above or below.  Here I get that to happen by reading ALL of memory.
1805 // A better answer would be to separate out card marks from other memory.
1806 // For now, return the input memory state, so that it can be reused
1807 // after the call, if this call has restricted memory effects.
1808 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1809   // Set fixed predefined input arguments
1810   Node* memory = reset_memory();
1811   call->init_req( TypeFunc::Control,   control()  );
1812   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1813   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1814   call->init_req( TypeFunc::FramePtr,  frameptr() );
1815   call->init_req( TypeFunc::ReturnAdr, top()      );
1816   return memory;
1817 }
1818 
1819 //-------------------set_predefined_output_for_runtime_call--------------------
1820 // Set control and memory (not i_o) from the call.
1821 // If keep_mem is not NULL, use it for the output state,
1822 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1823 // If hook_mem is NULL, this call produces no memory effects at all.
1824 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1825 // then only that memory slice is taken from the call.
1826 // In the last case, we must put an appropriate memory barrier before
1827 // the call, so as to create the correct anti-dependencies on loads
1828 // preceding the call.
1829 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1830                                                       Node* keep_mem,
1831                                                       const TypePtr* hook_mem) {
1832   // no i/o
1833   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1834   if (keep_mem) {
1835     // First clone the existing memory state
1836     set_all_memory(keep_mem);
1837     if (hook_mem != NULL) {
1838       // Make memory for the call
1839       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1840       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1841       // We also use hook_mem to extract specific effects from arraycopy stubs.
1842       set_memory(mem, hook_mem);
1843     }
1844     // ...else the call has NO memory effects.
1845 
1846     // Make sure the call advertises its memory effects precisely.
1847     // This lets us build accurate anti-dependences in gcm.cpp.
1848     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1849            "call node must be constructed correctly");
1850   } else {
1851     assert(hook_mem == NULL, "");
1852     // This is not a "slow path" call; all memory comes from the call.
1853     set_all_memory_call(call);
1854   }
1855 }
1856 
1857 
1858 // Replace the call with the current state of the kit.
1859 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1860   JVMState* ejvms = NULL;
1861   if (has_exceptions()) {
1862     ejvms = transfer_exceptions_into_jvms();
1863   }
1864 
1865   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1866   ReplacedNodes replaced_nodes_exception;
1867   Node* ex_ctl = top();
1868 
1869   SafePointNode* final_state = stop();
1870 
1871   // Find all the needed outputs of this call
1872   CallProjections callprojs;
1873   call->extract_projections(&callprojs, true);
1874 
1875   Node* init_mem = call->in(TypeFunc::Memory);
1876   Node* final_mem = final_state->in(TypeFunc::Memory);
1877   Node* final_ctl = final_state->in(TypeFunc::Control);
1878   Node* final_io = final_state->in(TypeFunc::I_O);
1879 
1880   // Replace all the old call edges with the edges from the inlining result
1881   if (callprojs.fallthrough_catchproj != NULL) {
1882     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1883   }
1884   if (callprojs.fallthrough_memproj != NULL) {
1885     if (final_mem->is_MergeMem()) {
1886       // Parser's exits MergeMem was not transformed but may be optimized
1887       final_mem = _gvn.transform(final_mem);
1888     }
1889     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1890   }
1891   if (callprojs.fallthrough_ioproj != NULL) {
1892     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1893   }
1894 
1895   // Replace the result with the new result if it exists and is used
1896   if (callprojs.resproj != NULL && result != NULL) {
1897     C->gvn_replace_by(callprojs.resproj, result);
1898   }
1899 
1900   if (ejvms == NULL) {
1901     // No exception edges to simply kill off those paths
1902     if (callprojs.catchall_catchproj != NULL) {
1903       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1904     }
1905     if (callprojs.catchall_memproj != NULL) {
1906       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1907     }
1908     if (callprojs.catchall_ioproj != NULL) {
1909       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1910     }
1911     // Replace the old exception object with top
1912     if (callprojs.exobj != NULL) {
1913       C->gvn_replace_by(callprojs.exobj, C->top());
1914     }
1915   } else {
1916     GraphKit ekit(ejvms);
1917 
1918     // Load my combined exception state into the kit, with all phis transformed:
1919     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1920     replaced_nodes_exception = ex_map->replaced_nodes();
1921 
1922     Node* ex_oop = ekit.use_exception_state(ex_map);
1923 
1924     if (callprojs.catchall_catchproj != NULL) {
1925       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1926       ex_ctl = ekit.control();
1927     }
1928     if (callprojs.catchall_memproj != NULL) {
1929       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1930     }
1931     if (callprojs.catchall_ioproj != NULL) {
1932       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1933     }
1934 
1935     // Replace the old exception object with the newly created one
1936     if (callprojs.exobj != NULL) {
1937       C->gvn_replace_by(callprojs.exobj, ex_oop);
1938     }
1939   }
1940 
1941   // Disconnect the call from the graph
1942   call->disconnect_inputs(NULL, C);
1943   C->gvn_replace_by(call, C->top());
1944 
1945   // Clean up any MergeMems that feed other MergeMems since the
1946   // optimizer doesn't like that.
1947   if (final_mem->is_MergeMem()) {
1948     Node_List wl;
1949     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1950       Node* m = i.get();
1951       if (m->is_MergeMem() && !wl.contains(m)) {
1952         wl.push(m);
1953       }
1954     }
1955     while (wl.size()  > 0) {
1956       _gvn.transform(wl.pop());
1957     }
1958   }
1959 
1960   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1961     replaced_nodes.apply(C, final_ctl);
1962   }
1963   if (!ex_ctl->is_top() && do_replaced_nodes) {
1964     replaced_nodes_exception.apply(C, ex_ctl);
1965   }
1966 }
1967 
1968 
1969 //------------------------------increment_counter------------------------------
1970 // for statistics: increment a VM counter by 1
1971 
1972 void GraphKit::increment_counter(address counter_addr) {
1973   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1974   increment_counter(adr1);
1975 }
1976 
1977 void GraphKit::increment_counter(Node* counter_addr) {
1978   int adr_type = Compile::AliasIdxRaw;
1979   Node* ctrl = control();
1980   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1981   Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
1982   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1983 }
1984 
1985 
1986 //------------------------------uncommon_trap----------------------------------
1987 // Bail out to the interpreter in mid-method.  Implemented by calling the
1988 // uncommon_trap blob.  This helper function inserts a runtime call with the
1989 // right debug info.
1990 void GraphKit::uncommon_trap(int trap_request,
1991                              ciKlass* klass, const char* comment,
1992                              bool must_throw,
1993                              bool keep_exact_action) {
1994   if (failing())  stop();
1995   if (stopped())  return; // trap reachable?
1996 
1997   // Note:  If ProfileTraps is true, and if a deopt. actually
1998   // occurs here, the runtime will make sure an MDO exists.  There is
1999   // no need to call method()->ensure_method_data() at this point.
2000 
2001   // Set the stack pointer to the right value for reexecution:
2002   set_sp(reexecute_sp());
2003 
2004 #ifdef ASSERT
2005   if (!must_throw) {
2006     // Make sure the stack has at least enough depth to execute
2007     // the current bytecode.
2008     int inputs, ignored_depth;
2009     if (compute_stack_effects(inputs, ignored_depth)) {
2010       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2011              Bytecodes::name(java_bc()), sp(), inputs);
2012     }
2013   }
2014 #endif
2015 
2016   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2017   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2018 
2019   switch (action) {
2020   case Deoptimization::Action_maybe_recompile:
2021   case Deoptimization::Action_reinterpret:
2022     // Temporary fix for 6529811 to allow virtual calls to be sure they
2023     // get the chance to go from mono->bi->mega
2024     if (!keep_exact_action &&
2025         Deoptimization::trap_request_index(trap_request) < 0 &&
2026         too_many_recompiles(reason)) {
2027       // This BCI is causing too many recompilations.
2028       if (C->log() != NULL) {
2029         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2030                 Deoptimization::trap_reason_name(reason),
2031                 Deoptimization::trap_action_name(action));
2032       }
2033       action = Deoptimization::Action_none;
2034       trap_request = Deoptimization::make_trap_request(reason, action);
2035     } else {
2036       C->set_trap_can_recompile(true);
2037     }
2038     break;
2039   case Deoptimization::Action_make_not_entrant:
2040     C->set_trap_can_recompile(true);
2041     break;
2042   case Deoptimization::Action_none:
2043   case Deoptimization::Action_make_not_compilable:
2044     break;
2045   default:
2046 #ifdef ASSERT
2047     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2048 #endif
2049     break;
2050   }
2051 
2052   if (TraceOptoParse) {
2053     char buf[100];
2054     tty->print_cr("Uncommon trap %s at bci:%d",
2055                   Deoptimization::format_trap_request(buf, sizeof(buf),
2056                                                       trap_request), bci());
2057   }
2058 
2059   CompileLog* log = C->log();
2060   if (log != NULL) {
2061     int kid = (klass == NULL)? -1: log->identify(klass);
2062     log->begin_elem("uncommon_trap bci='%d'", bci());
2063     char buf[100];
2064     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2065                                                           trap_request));
2066     if (kid >= 0)         log->print(" klass='%d'", kid);
2067     if (comment != NULL)  log->print(" comment='%s'", comment);
2068     log->end_elem();
2069   }
2070 
2071   // Make sure any guarding test views this path as very unlikely
2072   Node *i0 = control()->in(0);
2073   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2074     IfNode *iff = i0->as_If();
2075     float f = iff->_prob;   // Get prob
2076     if (control()->Opcode() == Op_IfTrue) {
2077       if (f > PROB_UNLIKELY_MAG(4))
2078         iff->_prob = PROB_MIN;
2079     } else {
2080       if (f < PROB_LIKELY_MAG(4))
2081         iff->_prob = PROB_MAX;
2082     }
2083   }
2084 
2085   // Clear out dead values from the debug info.
2086   kill_dead_locals();
2087 
2088   // Now insert the uncommon trap subroutine call
2089   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2090   const TypePtr* no_memory_effects = NULL;
2091   // Pass the index of the class to be loaded
2092   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2093                                  (must_throw ? RC_MUST_THROW : 0),
2094                                  OptoRuntime::uncommon_trap_Type(),
2095                                  call_addr, "uncommon_trap", no_memory_effects,
2096                                  intcon(trap_request));
2097   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2098          "must extract request correctly from the graph");
2099   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2100 
2101   call->set_req(TypeFunc::ReturnAdr, returnadr());
2102   // The debug info is the only real input to this call.
2103 
2104   // Halt-and-catch fire here.  The above call should never return!
2105   HaltNode* halt = new HaltNode(control(), frameptr());
2106   _gvn.set_type_bottom(halt);
2107   root()->add_req(halt);
2108 
2109   stop_and_kill_map();
2110 }
2111 
2112 
2113 //--------------------------just_allocated_object------------------------------
2114 // Report the object that was just allocated.
2115 // It must be the case that there are no intervening safepoints.
2116 // We use this to determine if an object is so "fresh" that
2117 // it does not require card marks.
2118 Node* GraphKit::just_allocated_object(Node* current_control) {
2119   if (C->recent_alloc_ctl() == current_control)
2120     return C->recent_alloc_obj();
2121   return NULL;
2122 }
2123 
2124 
2125 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2126   // (Note:  TypeFunc::make has a cache that makes this fast.)
2127   const TypeFunc* tf    = TypeFunc::make(dest_method);
2128   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2129   for (int j = 0; j < nargs; j++) {
2130     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2131     if( targ->basic_type() == T_DOUBLE ) {
2132       // If any parameters are doubles, they must be rounded before
2133       // the call, dstore_rounding does gvn.transform
2134       Node *arg = argument(j);
2135       arg = dstore_rounding(arg);
2136       set_argument(j, arg);
2137     }
2138   }
2139 }
2140 
2141 /**
2142  * Record profiling data exact_kls for Node n with the type system so
2143  * that it can propagate it (speculation)
2144  *
2145  * @param n          node that the type applies to
2146  * @param exact_kls  type from profiling
2147  * @param maybe_null did profiling see null?
2148  *
2149  * @return           node with improved type
2150  */
2151 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2152   const Type* current_type = _gvn.type(n);
2153   assert(UseTypeSpeculation, "type speculation must be on");
2154 
2155   const TypePtr* speculative = current_type->speculative();
2156 
2157   // Should the klass from the profile be recorded in the speculative type?
2158   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2159     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2160     const TypeOopPtr* xtype = tklass->as_instance_type();
2161     assert(xtype->klass_is_exact(), "Should be exact");
2162     // Any reason to believe n is not null (from this profiling or a previous one)?
2163     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2164     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2165     // record the new speculative type's depth
2166     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2167     speculative = speculative->with_inline_depth(jvms()->depth());
2168   } else if (current_type->would_improve_ptr(ptr_kind)) {
2169     // Profiling report that null was never seen so we can change the
2170     // speculative type to non null ptr.
2171     if (ptr_kind == ProfileAlwaysNull) {
2172       speculative = TypePtr::NULL_PTR;
2173     } else {
2174       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2175       const TypePtr* ptr = TypePtr::NOTNULL;
2176       if (speculative != NULL) {
2177         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2178       } else {
2179         speculative = ptr;
2180       }
2181     }
2182   }
2183 
2184   if (speculative != current_type->speculative()) {
2185     // Build a type with a speculative type (what we think we know
2186     // about the type but will need a guard when we use it)
2187     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2188     // We're changing the type, we need a new CheckCast node to carry
2189     // the new type. The new type depends on the control: what
2190     // profiling tells us is only valid from here as far as we can
2191     // tell.
2192     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2193     cast = _gvn.transform(cast);
2194     replace_in_map(n, cast);
2195     n = cast;
2196   }
2197 
2198   return n;
2199 }
2200 
2201 /**
2202  * Record profiling data from receiver profiling at an invoke with the
2203  * type system so that it can propagate it (speculation)
2204  *
2205  * @param n  receiver node
2206  *
2207  * @return   node with improved type
2208  */
2209 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2210   if (!UseTypeSpeculation) {
2211     return n;
2212   }
2213   ciKlass* exact_kls = profile_has_unique_klass();
2214   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2215   if ((java_bc() == Bytecodes::_checkcast ||
2216        java_bc() == Bytecodes::_instanceof ||
2217        java_bc() == Bytecodes::_aastore) &&
2218       method()->method_data()->is_mature()) {
2219     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2220     if (data != NULL) {
2221       if (!data->as_BitData()->null_seen()) {
2222         ptr_kind = ProfileNeverNull;
2223       } else {
2224         assert(data->is_ReceiverTypeData(), "bad profile data type");
2225         ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2226         uint i = 0;
2227         for (; i < call->row_limit(); i++) {
2228           ciKlass* receiver = call->receiver(i);
2229           if (receiver != NULL) {
2230             break;
2231           }
2232         }
2233         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2234       }
2235     }
2236   }
2237   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2238 }
2239 
2240 /**
2241  * Record profiling data from argument profiling at an invoke with the
2242  * type system so that it can propagate it (speculation)
2243  *
2244  * @param dest_method  target method for the call
2245  * @param bc           what invoke bytecode is this?
2246  */
2247 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2248   if (!UseTypeSpeculation) {
2249     return;
2250   }
2251   const TypeFunc* tf    = TypeFunc::make(dest_method);
2252   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2253   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2254   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2255     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2256     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2257       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2258       ciKlass* better_type = NULL;
2259       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2260         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2261       }
2262       i++;
2263     }
2264   }
2265 }
2266 
2267 /**
2268  * Record profiling data from parameter profiling at an invoke with
2269  * the type system so that it can propagate it (speculation)
2270  */
2271 void GraphKit::record_profiled_parameters_for_speculation() {
2272   if (!UseTypeSpeculation) {
2273     return;
2274   }
2275   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2276     if (_gvn.type(local(i))->isa_oopptr()) {
2277       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2278       ciKlass* better_type = NULL;
2279       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2280         record_profile_for_speculation(local(i), better_type, ptr_kind);
2281       }
2282       j++;
2283     }
2284   }
2285 }
2286 
2287 /**
2288  * Record profiling data from return value profiling at an invoke with
2289  * the type system so that it can propagate it (speculation)
2290  */
2291 void GraphKit::record_profiled_return_for_speculation() {
2292   if (!UseTypeSpeculation) {
2293     return;
2294   }
2295   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2296   ciKlass* better_type = NULL;
2297   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2298     // If profiling reports a single type for the return value,
2299     // feed it to the type system so it can propagate it as a
2300     // speculative type
2301     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2302   }
2303 }
2304 
2305 void GraphKit::round_double_result(ciMethod* dest_method) {
2306   // A non-strict method may return a double value which has an extended
2307   // exponent, but this must not be visible in a caller which is 'strict'
2308   // If a strict caller invokes a non-strict callee, round a double result
2309 
2310   BasicType result_type = dest_method->return_type()->basic_type();
2311   assert( method() != NULL, "must have caller context");
2312   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2313     // Destination method's return value is on top of stack
2314     // dstore_rounding() does gvn.transform
2315     Node *result = pop_pair();
2316     result = dstore_rounding(result);
2317     push_pair(result);
2318   }
2319 }
2320 
2321 // rounding for strict float precision conformance
2322 Node* GraphKit::precision_rounding(Node* n) {
2323   return UseStrictFP && _method->flags().is_strict()
2324     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2325     ? _gvn.transform( new RoundFloatNode(0, n) )
2326     : n;
2327 }
2328 
2329 // rounding for strict double precision conformance
2330 Node* GraphKit::dprecision_rounding(Node *n) {
2331   return UseStrictFP && _method->flags().is_strict()
2332     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2333     ? _gvn.transform( new RoundDoubleNode(0, n) )
2334     : n;
2335 }
2336 
2337 // rounding for non-strict double stores
2338 Node* GraphKit::dstore_rounding(Node* n) {
2339   return Matcher::strict_fp_requires_explicit_rounding
2340     && UseSSE <= 1
2341     ? _gvn.transform( new RoundDoubleNode(0, n) )
2342     : n;
2343 }
2344 
2345 //=============================================================================
2346 // Generate a fast path/slow path idiom.  Graph looks like:
2347 // [foo] indicates that 'foo' is a parameter
2348 //
2349 //              [in]     NULL
2350 //                 \    /
2351 //                  CmpP
2352 //                  Bool ne
2353 //                   If
2354 //                  /  \
2355 //              True    False-<2>
2356 //              / |
2357 //             /  cast_not_null
2358 //           Load  |    |   ^
2359 //        [fast_test]   |   |
2360 // gvn to   opt_test    |   |
2361 //          /    \      |  <1>
2362 //      True     False  |
2363 //        |         \\  |
2364 //   [slow_call]     \[fast_result]
2365 //    Ctl   Val       \      \
2366 //     |               \      \
2367 //    Catch       <1>   \      \
2368 //   /    \        ^     \      \
2369 //  Ex    No_Ex    |      \      \
2370 //  |       \   \  |       \ <2>  \
2371 //  ...      \  [slow_res] |  |    \   [null_result]
2372 //            \         \--+--+---  |  |
2373 //             \           | /    \ | /
2374 //              --------Region     Phi
2375 //
2376 //=============================================================================
2377 // Code is structured as a series of driver functions all called 'do_XXX' that
2378 // call a set of helper functions.  Helper functions first, then drivers.
2379 
2380 //------------------------------null_check_oop---------------------------------
2381 // Null check oop.  Set null-path control into Region in slot 3.
2382 // Make a cast-not-nullness use the other not-null control.  Return cast.
2383 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2384                                bool never_see_null,
2385                                bool safe_for_replace,
2386                                bool speculative) {
2387   // Initial NULL check taken path
2388   (*null_control) = top();
2389   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2390 
2391   // Generate uncommon_trap:
2392   if (never_see_null && (*null_control) != top()) {
2393     // If we see an unexpected null at a check-cast we record it and force a
2394     // recompile; the offending check-cast will be compiled to handle NULLs.
2395     // If we see more than one offending BCI, then all checkcasts in the
2396     // method will be compiled to handle NULLs.
2397     PreserveJVMState pjvms(this);
2398     set_control(*null_control);
2399     replace_in_map(value, null());
2400     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2401     uncommon_trap(reason,
2402                   Deoptimization::Action_make_not_entrant);
2403     (*null_control) = top();    // NULL path is dead
2404   }
2405   if ((*null_control) == top() && safe_for_replace) {
2406     replace_in_map(value, cast);
2407   }
2408 
2409   // Cast away null-ness on the result
2410   return cast;
2411 }
2412 
2413 //------------------------------opt_iff----------------------------------------
2414 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2415 // Return slow-path control.
2416 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2417   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2418 
2419   // Fast path taken; set region slot 2
2420   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2421   region->init_req(2,fast_taken); // Capture fast-control
2422 
2423   // Fast path not-taken, i.e. slow path
2424   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2425   return slow_taken;
2426 }
2427 
2428 //-----------------------------make_runtime_call-------------------------------
2429 Node* GraphKit::make_runtime_call(int flags,
2430                                   const TypeFunc* call_type, address call_addr,
2431                                   const char* call_name,
2432                                   const TypePtr* adr_type,
2433                                   // The following parms are all optional.
2434                                   // The first NULL ends the list.
2435                                   Node* parm0, Node* parm1,
2436                                   Node* parm2, Node* parm3,
2437                                   Node* parm4, Node* parm5,
2438                                   Node* parm6, Node* parm7) {
2439   // Slow-path call
2440   bool is_leaf = !(flags & RC_NO_LEAF);
2441   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2442   if (call_name == NULL) {
2443     assert(!is_leaf, "must supply name for leaf");
2444     call_name = OptoRuntime::stub_name(call_addr);
2445   }
2446   CallNode* call;
2447   if (!is_leaf) {
2448     call = new CallStaticJavaNode(call_type, call_addr, call_name,
2449                                            bci(), adr_type);
2450   } else if (flags & RC_NO_FP) {
2451     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2452   } else {
2453     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2454   }
2455 
2456   // The following is similar to set_edges_for_java_call,
2457   // except that the memory effects of the call are restricted to AliasIdxRaw.
2458 
2459   // Slow path call has no side-effects, uses few values
2460   bool wide_in  = !(flags & RC_NARROW_MEM);
2461   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2462 
2463   Node* prev_mem = NULL;
2464   if (wide_in) {
2465     prev_mem = set_predefined_input_for_runtime_call(call);
2466   } else {
2467     assert(!wide_out, "narrow in => narrow out");
2468     Node* narrow_mem = memory(adr_type);
2469     prev_mem = reset_memory();
2470     map()->set_memory(narrow_mem);
2471     set_predefined_input_for_runtime_call(call);
2472   }
2473 
2474   // Hook each parm in order.  Stop looking at the first NULL.
2475   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2476   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2477   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2478   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2479   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2480   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2481   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2482   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2483     /* close each nested if ===> */  } } } } } } } }
2484   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2485 
2486   if (!is_leaf) {
2487     // Non-leaves can block and take safepoints:
2488     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2489   }
2490   // Non-leaves can throw exceptions:
2491   if (has_io) {
2492     call->set_req(TypeFunc::I_O, i_o());
2493   }
2494 
2495   if (flags & RC_UNCOMMON) {
2496     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2497     // (An "if" probability corresponds roughly to an unconditional count.
2498     // Sort of.)
2499     call->set_cnt(PROB_UNLIKELY_MAG(4));
2500   }
2501 
2502   Node* c = _gvn.transform(call);
2503   assert(c == call, "cannot disappear");
2504 
2505   if (wide_out) {
2506     // Slow path call has full side-effects.
2507     set_predefined_output_for_runtime_call(call);
2508   } else {
2509     // Slow path call has few side-effects, and/or sets few values.
2510     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2511   }
2512 
2513   if (has_io) {
2514     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2515   }
2516   return call;
2517 
2518 }
2519 
2520 //------------------------------merge_memory-----------------------------------
2521 // Merge memory from one path into the current memory state.
2522 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2523   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2524     Node* old_slice = mms.force_memory();
2525     Node* new_slice = mms.memory2();
2526     if (old_slice != new_slice) {
2527       PhiNode* phi;
2528       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2529         if (mms.is_empty()) {
2530           // clone base memory Phi's inputs for this memory slice
2531           assert(old_slice == mms.base_memory(), "sanity");
2532           phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2533           _gvn.set_type(phi, Type::MEMORY);
2534           for (uint i = 1; i < phi->req(); i++) {
2535             phi->init_req(i, old_slice->in(i));
2536           }
2537         } else {
2538           phi = old_slice->as_Phi(); // Phi was generated already
2539         }
2540       } else {
2541         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2542         _gvn.set_type(phi, Type::MEMORY);
2543       }
2544       phi->set_req(new_path, new_slice);
2545       mms.set_memory(phi);
2546     }
2547   }
2548 }
2549 
2550 //------------------------------make_slow_call_ex------------------------------
2551 // Make the exception handler hookups for the slow call
2552 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2553   if (stopped())  return;
2554 
2555   // Make a catch node with just two handlers:  fall-through and catch-all
2556   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2557   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2558   Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2559   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2560 
2561   { PreserveJVMState pjvms(this);
2562     set_control(excp);
2563     set_i_o(i_o);
2564 
2565     if (excp != top()) {
2566       if (deoptimize) {
2567         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2568         uncommon_trap(Deoptimization::Reason_unhandled,
2569                       Deoptimization::Action_none);
2570       } else {
2571         // Create an exception state also.
2572         // Use an exact type if the caller has specified a specific exception.
2573         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2574         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2575         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2576       }
2577     }
2578   }
2579 
2580   // Get the no-exception control from the CatchNode.
2581   set_control(norm);
2582 }
2583 
2584 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) {
2585   Node* cmp = NULL;
2586   switch(bt) {
2587   case T_INT: cmp = new CmpINode(in1, in2); break;
2588   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2589   default: fatal("unexpected comparison type %s", type2name(bt));
2590   }
2591   gvn->transform(cmp);
2592   Node* bol = gvn->transform(new BoolNode(cmp, test));
2593   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2594   gvn->transform(iff);
2595   if (!bol->is_Con()) gvn->record_for_igvn(iff);
2596   return iff;
2597 }
2598 
2599 
2600 //-------------------------------gen_subtype_check-----------------------------
2601 // Generate a subtyping check.  Takes as input the subtype and supertype.
2602 // Returns 2 values: sets the default control() to the true path and returns
2603 // the false path.  Only reads invariant memory; sets no (visible) memory.
2604 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2605 // but that's not exposed to the optimizer.  This call also doesn't take in an
2606 // Object; if you wish to check an Object you need to load the Object's class
2607 // prior to coming here.
2608 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) {
2609   Compile* C = gvn->C;
2610 
2611   if ((*ctrl)->is_top()) {
2612     return C->top();
2613   }
2614 
2615   // Fast check for identical types, perhaps identical constants.
2616   // The types can even be identical non-constants, in cases
2617   // involving Array.newInstance, Object.clone, etc.
2618   if (subklass == superklass)
2619     return C->top();             // false path is dead; no test needed.
2620 
2621   if (gvn->type(superklass)->singleton()) {
2622     ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass();
2623     ciKlass* subk   = gvn->type(subklass)->is_klassptr()->klass();
2624 
2625     // In the common case of an exact superklass, try to fold up the
2626     // test before generating code.  You may ask, why not just generate
2627     // the code and then let it fold up?  The answer is that the generated
2628     // code will necessarily include null checks, which do not always
2629     // completely fold away.  If they are also needless, then they turn
2630     // into a performance loss.  Example:
2631     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2632     // Here, the type of 'fa' is often exact, so the store check
2633     // of fa[1]=x will fold up, without testing the nullness of x.
2634     switch (C->static_subtype_check(superk, subk)) {
2635     case Compile::SSC_always_false:
2636       {
2637         Node* always_fail = *ctrl;
2638         *ctrl = gvn->C->top();
2639         return always_fail;
2640       }
2641     case Compile::SSC_always_true:
2642       return C->top();
2643     case Compile::SSC_easy_test:
2644       {
2645         // Just do a direct pointer compare and be done.
2646         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2647         *ctrl = gvn->transform(new IfTrueNode(iff));
2648         return gvn->transform(new IfFalseNode(iff));
2649       }
2650     case Compile::SSC_full_test:
2651       break;
2652     default:
2653       ShouldNotReachHere();
2654     }
2655   }
2656 
2657   // %%% Possible further optimization:  Even if the superklass is not exact,
2658   // if the subklass is the unique subtype of the superklass, the check
2659   // will always succeed.  We could leave a dependency behind to ensure this.
2660 
2661   // First load the super-klass's check-offset
2662   Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2663   Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr()));
2664   Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2665   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2666   bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2667 
2668   // Load from the sub-klass's super-class display list, or a 1-word cache of
2669   // the secondary superclass list, or a failing value with a sentinel offset
2670   // if the super-klass is an interface or exceptionally deep in the Java
2671   // hierarchy and we have to scan the secondary superclass list the hard way.
2672   // Worst-case type is a little odd: NULL is allowed as a result (usually
2673   // klass loads can never produce a NULL).
2674   Node *chk_off_X = chk_off;
2675 #ifdef _LP64
2676   chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X));
2677 #endif
2678   Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X));
2679   // For some types like interfaces the following loadKlass is from a 1-word
2680   // cache which is mutable so can't use immutable memory.  Other
2681   // types load from the super-class display table which is immutable.
2682   m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr()));
2683   Node *kmem = might_be_cache ? m : C->immutable_memory();
2684   Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2685 
2686   // Compile speed common case: ARE a subtype and we canNOT fail
2687   if( superklass == nkls )
2688     return C->top();             // false path is dead; no test needed.
2689 
2690   // See if we get an immediate positive hit.  Happens roughly 83% of the
2691   // time.  Test to see if the value loaded just previously from the subklass
2692   // is exactly the superklass.
2693   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2694   Node *iftrue1 = gvn->transform( new IfTrueNode (iff1));
2695   *ctrl = gvn->transform(new IfFalseNode(iff1));
2696 
2697   // Compile speed common case: Check for being deterministic right now.  If
2698   // chk_off is a constant and not equal to cacheoff then we are NOT a
2699   // subklass.  In this case we need exactly the 1 test above and we can
2700   // return those results immediately.
2701   if (!might_be_cache) {
2702     Node* not_subtype_ctrl = *ctrl;
2703     *ctrl = iftrue1; // We need exactly the 1 test above
2704     return not_subtype_ctrl;
2705   }
2706 
2707   // Gather the various success & failures here
2708   RegionNode *r_ok_subtype = new RegionNode(4);
2709   gvn->record_for_igvn(r_ok_subtype);
2710   RegionNode *r_not_subtype = new RegionNode(3);
2711   gvn->record_for_igvn(r_not_subtype);
2712 
2713   r_ok_subtype->init_req(1, iftrue1);
2714 
2715   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2716   // is roughly 63% of the remaining cases).  Test to see if the loaded
2717   // check-offset points into the subklass display list or the 1-element
2718   // cache.  If it points to the display (and NOT the cache) and the display
2719   // missed then it's not a subtype.
2720   Node *cacheoff = gvn->intcon(cacheoff_con);
2721   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2722   r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2)));
2723   *ctrl = gvn->transform(new IfFalseNode(iff2));
2724 
2725   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2726   // No performance impact (too rare) but allows sharing of secondary arrays
2727   // which has some footprint reduction.
2728   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2729   r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3)));
2730   *ctrl = gvn->transform(new IfFalseNode(iff3));
2731 
2732   // -- Roads not taken here: --
2733   // We could also have chosen to perform the self-check at the beginning
2734   // of this code sequence, as the assembler does.  This would not pay off
2735   // the same way, since the optimizer, unlike the assembler, can perform
2736   // static type analysis to fold away many successful self-checks.
2737   // Non-foldable self checks work better here in second position, because
2738   // the initial primary superclass check subsumes a self-check for most
2739   // types.  An exception would be a secondary type like array-of-interface,
2740   // which does not appear in its own primary supertype display.
2741   // Finally, we could have chosen to move the self-check into the
2742   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2743   // dependent manner.  But it is worthwhile to have the check here,
2744   // where it can be perhaps be optimized.  The cost in code space is
2745   // small (register compare, branch).
2746 
2747   // Now do a linear scan of the secondary super-klass array.  Again, no real
2748   // performance impact (too rare) but it's gotta be done.
2749   // Since the code is rarely used, there is no penalty for moving it
2750   // out of line, and it can only improve I-cache density.
2751   // The decision to inline or out-of-line this final check is platform
2752   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2753   Node* psc = gvn->transform(
2754     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2755 
2756   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2757   r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2758   r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2759 
2760   // Return false path; set default control to true path.
2761   *ctrl = gvn->transform(r_ok_subtype);
2762   return gvn->transform(r_not_subtype);
2763 }
2764 
2765 // Profile-driven exact type check:
2766 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2767                                     float prob,
2768                                     Node* *casted_receiver) {
2769   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2770   Node* recv_klass = load_object_klass(receiver);
2771   Node* want_klass = makecon(tklass);
2772   Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) );
2773   Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2774   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2775   set_control( _gvn.transform( new IfTrueNode (iff) ));
2776   Node* fail = _gvn.transform( new IfFalseNode(iff) );
2777 
2778   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2779   assert(recv_xtype->klass_is_exact(), "");
2780 
2781   // Subsume downstream occurrences of receiver with a cast to
2782   // recv_xtype, since now we know what the type will be.
2783   Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2784   (*casted_receiver) = _gvn.transform(cast);
2785   // (User must make the replace_in_map call.)
2786 
2787   return fail;
2788 }
2789 
2790 
2791 //------------------------------seems_never_null-------------------------------
2792 // Use null_seen information if it is available from the profile.
2793 // If we see an unexpected null at a type check we record it and force a
2794 // recompile; the offending check will be recompiled to handle NULLs.
2795 // If we see several offending BCIs, then all checks in the
2796 // method will be recompiled.
2797 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2798   speculating = !_gvn.type(obj)->speculative_maybe_null();
2799   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2800   if (UncommonNullCast               // Cutout for this technique
2801       && obj != null()               // And not the -Xcomp stupid case?
2802       && !too_many_traps(reason)
2803       ) {
2804     if (speculating) {
2805       return true;
2806     }
2807     if (data == NULL)
2808       // Edge case:  no mature data.  Be optimistic here.
2809       return true;
2810     // If the profile has not seen a null, assume it won't happen.
2811     assert(java_bc() == Bytecodes::_checkcast ||
2812            java_bc() == Bytecodes::_instanceof ||
2813            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2814     return !data->as_BitData()->null_seen();
2815   }
2816   speculating = false;
2817   return false;
2818 }
2819 
2820 //------------------------maybe_cast_profiled_receiver-------------------------
2821 // If the profile has seen exactly one type, narrow to exactly that type.
2822 // Subsequent type checks will always fold up.
2823 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2824                                              ciKlass* require_klass,
2825                                              ciKlass* spec_klass,
2826                                              bool safe_for_replace) {
2827   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2828 
2829   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2830 
2831   // Make sure we haven't already deoptimized from this tactic.
2832   if (too_many_traps(reason) || too_many_recompiles(reason))
2833     return NULL;
2834 
2835   // (No, this isn't a call, but it's enough like a virtual call
2836   // to use the same ciMethod accessor to get the profile info...)
2837   // If we have a speculative type use it instead of profiling (which
2838   // may not help us)
2839   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2840   if (exact_kls != NULL) {// no cast failures here
2841     if (require_klass == NULL ||
2842         C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) {
2843       // If we narrow the type to match what the type profile sees or
2844       // the speculative type, we can then remove the rest of the
2845       // cast.
2846       // This is a win, even if the exact_kls is very specific,
2847       // because downstream operations, such as method calls,
2848       // will often benefit from the sharper type.
2849       Node* exact_obj = not_null_obj; // will get updated in place...
2850       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2851                                             &exact_obj);
2852       { PreserveJVMState pjvms(this);
2853         set_control(slow_ctl);
2854         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2855       }
2856       if (safe_for_replace) {
2857         replace_in_map(not_null_obj, exact_obj);
2858       }
2859       return exact_obj;
2860     }
2861     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
2862   }
2863 
2864   return NULL;
2865 }
2866 
2867 /**
2868  * Cast obj to type and emit guard unless we had too many traps here
2869  * already
2870  *
2871  * @param obj       node being casted
2872  * @param type      type to cast the node to
2873  * @param not_null  true if we know node cannot be null
2874  */
2875 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2876                                         ciKlass* type,
2877                                         bool not_null) {
2878   if (stopped()) {
2879     return obj;
2880   }
2881 
2882   // type == NULL if profiling tells us this object is always null
2883   if (type != NULL) {
2884     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2885     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2886 
2887     if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
2888         !too_many_traps(class_reason) &&
2889         !too_many_recompiles(class_reason)) {
2890       Node* not_null_obj = NULL;
2891       // not_null is true if we know the object is not null and
2892       // there's no need for a null check
2893       if (!not_null) {
2894         Node* null_ctl = top();
2895         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
2896         assert(null_ctl->is_top(), "no null control here");
2897       } else {
2898         not_null_obj = obj;
2899       }
2900 
2901       Node* exact_obj = not_null_obj;
2902       ciKlass* exact_kls = type;
2903       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2904                                             &exact_obj);
2905       {
2906         PreserveJVMState pjvms(this);
2907         set_control(slow_ctl);
2908         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2909       }
2910       replace_in_map(not_null_obj, exact_obj);
2911       obj = exact_obj;
2912     }
2913   } else {
2914     if (!too_many_traps(Deoptimization::Reason_null_assert) &&
2915         !too_many_recompiles(Deoptimization::Reason_null_assert)) {
2916       Node* exact_obj = null_assert(obj);
2917       replace_in_map(obj, exact_obj);
2918       obj = exact_obj;
2919     }
2920   }
2921   return obj;
2922 }
2923 
2924 //-------------------------------gen_instanceof--------------------------------
2925 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2926 // and the reflective instance-of call.
2927 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2928   kill_dead_locals();           // Benefit all the uncommon traps
2929   assert( !stopped(), "dead parse path should be checked in callers" );
2930   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2931          "must check for not-null not-dead klass in callers");
2932 
2933   // Make the merge point
2934   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2935   RegionNode* region = new RegionNode(PATH_LIMIT);
2936   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
2937   C->set_has_split_ifs(true); // Has chance for split-if optimization
2938 
2939   ciProfileData* data = NULL;
2940   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2941     data = method()->method_data()->bci_to_data(bci());
2942   }
2943   bool speculative_not_null = false;
2944   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2945                          && seems_never_null(obj, data, speculative_not_null));
2946 
2947   // Null check; get casted pointer; set region slot 3
2948   Node* null_ctl = top();
2949   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
2950 
2951   // If not_null_obj is dead, only null-path is taken
2952   if (stopped()) {              // Doing instance-of on a NULL?
2953     set_control(null_ctl);
2954     return intcon(0);
2955   }
2956   region->init_req(_null_path, null_ctl);
2957   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2958   if (null_ctl == top()) {
2959     // Do this eagerly, so that pattern matches like is_diamond_phi
2960     // will work even during parsing.
2961     assert(_null_path == PATH_LIMIT-1, "delete last");
2962     region->del_req(_null_path);
2963     phi   ->del_req(_null_path);
2964   }
2965 
2966   // Do we know the type check always succeed?
2967   bool known_statically = false;
2968   if (_gvn.type(superklass)->singleton()) {
2969     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2970     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2971     if (subk != NULL && subk->is_loaded()) {
2972       int static_res = C->static_subtype_check(superk, subk);
2973       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
2974     }
2975   }
2976 
2977   if (!known_statically) {
2978     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2979     // We may not have profiling here or it may not help us. If we
2980     // have a speculative type use it to perform an exact cast.
2981     ciKlass* spec_obj_type = obj_type->speculative_type();
2982     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2983       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2984       if (stopped()) {            // Profile disagrees with this path.
2985         set_control(null_ctl);    // Null is the only remaining possibility.
2986         return intcon(0);
2987       }
2988       if (cast_obj != NULL) {
2989         not_null_obj = cast_obj;
2990       }
2991     }
2992   }
2993 
2994   // Load the object's klass
2995   Node* obj_klass = load_object_klass(not_null_obj);
2996 
2997   // Generate the subtype check
2998   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2999 
3000   // Plug in the success path to the general merge in slot 1.
3001   region->init_req(_obj_path, control());
3002   phi   ->init_req(_obj_path, intcon(1));
3003 
3004   // Plug in the failing path to the general merge in slot 2.
3005   region->init_req(_fail_path, not_subtype_ctrl);
3006   phi   ->init_req(_fail_path, intcon(0));
3007 
3008   // Return final merged results
3009   set_control( _gvn.transform(region) );
3010   record_for_igvn(region);
3011 
3012   // If we know the type check always succeeds then we don't use the
3013   // profiling data at this bytecode. Don't lose it, feed it to the
3014   // type system as a speculative type.
3015   if (safe_for_replace) {
3016     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3017     replace_in_map(obj, casted_obj);
3018   }
3019 
3020   return _gvn.transform(phi);
3021 }
3022 
3023 //-------------------------------gen_checkcast---------------------------------
3024 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3025 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3026 // uncommon-trap paths work.  Adjust stack after this call.
3027 // If failure_control is supplied and not null, it is filled in with
3028 // the control edge for the cast failure.  Otherwise, an appropriate
3029 // uncommon trap or exception is thrown.
3030 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3031                               Node* *failure_control) {
3032   kill_dead_locals();           // Benefit all the uncommon traps
3033   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
3034   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
3035 
3036   // Fast cutout:  Check the case that the cast is vacuously true.
3037   // This detects the common cases where the test will short-circuit
3038   // away completely.  We do this before we perform the null check,
3039   // because if the test is going to turn into zero code, we don't
3040   // want a residual null check left around.  (Causes a slowdown,
3041   // for example, in some objArray manipulations, such as a[i]=a[j].)
3042   if (tk->singleton()) {
3043     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3044     if (objtp != NULL && objtp->klass() != NULL) {
3045       switch (C->static_subtype_check(tk->klass(), objtp->klass())) {
3046       case Compile::SSC_always_true:
3047         // If we know the type check always succeed then we don't use
3048         // the profiling data at this bytecode. Don't lose it, feed it
3049         // to the type system as a speculative type.
3050         return record_profiled_receiver_for_speculation(obj);
3051       case Compile::SSC_always_false:
3052         // It needs a null check because a null will *pass* the cast check.
3053         // A non-null value will always produce an exception.
3054         return null_assert(obj);
3055       }
3056     }
3057   }
3058 
3059   ciProfileData* data = NULL;
3060   bool safe_for_replace = false;
3061   if (failure_control == NULL) {        // use MDO in regular case only
3062     assert(java_bc() == Bytecodes::_aastore ||
3063            java_bc() == Bytecodes::_checkcast,
3064            "interpreter profiles type checks only for these BCs");
3065     data = method()->method_data()->bci_to_data(bci());
3066     safe_for_replace = true;
3067   }
3068 
3069   // Make the merge point
3070   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3071   RegionNode* region = new RegionNode(PATH_LIMIT);
3072   Node*       phi    = new PhiNode(region, toop);
3073   C->set_has_split_ifs(true); // Has chance for split-if optimization
3074 
3075   // Use null-cast information if it is available
3076   bool speculative_not_null = false;
3077   bool never_see_null = ((failure_control == NULL)  // regular case only
3078                          && seems_never_null(obj, data, speculative_not_null));
3079 
3080   // Null check; get casted pointer; set region slot 3
3081   Node* null_ctl = top();
3082   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3083 
3084   // If not_null_obj is dead, only null-path is taken
3085   if (stopped()) {              // Doing instance-of on a NULL?
3086     set_control(null_ctl);
3087     return null();
3088   }
3089   region->init_req(_null_path, null_ctl);
3090   phi   ->init_req(_null_path, null());  // Set null path value
3091   if (null_ctl == top()) {
3092     // Do this eagerly, so that pattern matches like is_diamond_phi
3093     // will work even during parsing.
3094     assert(_null_path == PATH_LIMIT-1, "delete last");
3095     region->del_req(_null_path);
3096     phi   ->del_req(_null_path);
3097   }
3098 
3099   Node* cast_obj = NULL;
3100   if (tk->klass_is_exact()) {
3101     // The following optimization tries to statically cast the speculative type of the object
3102     // (for example obtained during profiling) to the type of the superklass and then do a
3103     // dynamic check that the type of the object is what we expect. To work correctly
3104     // for checkcast and aastore the type of superklass should be exact.
3105     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3106     // We may not have profiling here or it may not help us. If we have
3107     // a speculative type use it to perform an exact cast.
3108     ciKlass* spec_obj_type = obj_type->speculative_type();
3109     if (spec_obj_type != NULL || data != NULL) {
3110       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3111       if (cast_obj != NULL) {
3112         if (failure_control != NULL) // failure is now impossible
3113           (*failure_control) = top();
3114         // adjust the type of the phi to the exact klass:
3115         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3116       }
3117     }
3118   }
3119 
3120   if (cast_obj == NULL) {
3121     // Load the object's klass
3122     Node* obj_klass = load_object_klass(not_null_obj);
3123 
3124     // Generate the subtype check
3125     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3126 
3127     // Plug in success path into the merge
3128     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3129     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3130     if (failure_control == NULL) {
3131       if (not_subtype_ctrl != top()) { // If failure is possible
3132         PreserveJVMState pjvms(this);
3133         set_control(not_subtype_ctrl);
3134         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3135       }
3136     } else {
3137       (*failure_control) = not_subtype_ctrl;
3138     }
3139   }
3140 
3141   region->init_req(_obj_path, control());
3142   phi   ->init_req(_obj_path, cast_obj);
3143 
3144   // A merge of NULL or Casted-NotNull obj
3145   Node* res = _gvn.transform(phi);
3146 
3147   // Note I do NOT always 'replace_in_map(obj,result)' here.
3148   //  if( tk->klass()->can_be_primary_super()  )
3149     // This means that if I successfully store an Object into an array-of-String
3150     // I 'forget' that the Object is really now known to be a String.  I have to
3151     // do this because we don't have true union types for interfaces - if I store
3152     // a Baz into an array-of-Interface and then tell the optimizer it's an
3153     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3154     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3155   //  replace_in_map( obj, res );
3156 
3157   // Return final merged results
3158   set_control( _gvn.transform(region) );
3159   record_for_igvn(region);
3160 
3161   return record_profiled_receiver_for_speculation(res);
3162 }
3163 
3164 //------------------------------next_monitor-----------------------------------
3165 // What number should be given to the next monitor?
3166 int GraphKit::next_monitor() {
3167   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3168   int next = current + C->sync_stack_slots();
3169   // Keep the toplevel high water mark current:
3170   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3171   return current;
3172 }
3173 
3174 //------------------------------insert_mem_bar---------------------------------
3175 // Memory barrier to avoid floating things around
3176 // The membar serves as a pinch point between both control and all memory slices.
3177 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3178   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3179   mb->init_req(TypeFunc::Control, control());
3180   mb->init_req(TypeFunc::Memory,  reset_memory());
3181   Node* membar = _gvn.transform(mb);
3182   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3183   set_all_memory_call(membar);
3184   return membar;
3185 }
3186 
3187 //-------------------------insert_mem_bar_volatile----------------------------
3188 // Memory barrier to avoid floating things around
3189 // The membar serves as a pinch point between both control and memory(alias_idx).
3190 // If you want to make a pinch point on all memory slices, do not use this
3191 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3192 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3193   // When Parse::do_put_xxx updates a volatile field, it appends a series
3194   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3195   // The first membar is on the same memory slice as the field store opcode.
3196   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3197   // All the other membars (for other volatile slices, including AliasIdxBot,
3198   // which stands for all unknown volatile slices) are control-dependent
3199   // on the first membar.  This prevents later volatile loads or stores
3200   // from sliding up past the just-emitted store.
3201 
3202   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3203   mb->set_req(TypeFunc::Control,control());
3204   if (alias_idx == Compile::AliasIdxBot) {
3205     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3206   } else {
3207     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3208     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3209   }
3210   Node* membar = _gvn.transform(mb);
3211   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3212   if (alias_idx == Compile::AliasIdxBot) {
3213     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3214   } else {
3215     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3216   }
3217   return membar;
3218 }
3219 
3220 //------------------------------shared_lock------------------------------------
3221 // Emit locking code.
3222 FastLockNode* GraphKit::shared_lock(Node* obj) {
3223   // bci is either a monitorenter bc or InvocationEntryBci
3224   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3225   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3226 
3227   if( !GenerateSynchronizationCode )
3228     return NULL;                // Not locking things?
3229   if (stopped())                // Dead monitor?
3230     return NULL;
3231 
3232   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3233 
3234   obj = shenandoah_write_barrier(obj);
3235 
3236   // Box the stack location
3237   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3238   Node* mem = reset_memory();
3239 
3240   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3241   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3242     // Create the counters for this fast lock.
3243     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3244   }
3245 
3246   // Create the rtm counters for this fast lock if needed.
3247   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3248 
3249   // Add monitor to debug info for the slow path.  If we block inside the
3250   // slow path and de-opt, we need the monitor hanging around
3251   map()->push_monitor( flock );
3252 
3253   const TypeFunc *tf = LockNode::lock_type();
3254   LockNode *lock = new LockNode(C, tf);
3255 
3256   lock->init_req( TypeFunc::Control, control() );
3257   lock->init_req( TypeFunc::Memory , mem );
3258   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3259   lock->init_req( TypeFunc::FramePtr, frameptr() );
3260   lock->init_req( TypeFunc::ReturnAdr, top() );
3261 
3262   lock->init_req(TypeFunc::Parms + 0, obj);
3263   lock->init_req(TypeFunc::Parms + 1, box);
3264   lock->init_req(TypeFunc::Parms + 2, flock);
3265   add_safepoint_edges(lock);
3266 
3267   lock = _gvn.transform( lock )->as_Lock();
3268 
3269   // lock has no side-effects, sets few values
3270   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3271 
3272   insert_mem_bar(Op_MemBarAcquireLock);
3273 
3274   // Add this to the worklist so that the lock can be eliminated
3275   record_for_igvn(lock);
3276 
3277 #ifndef PRODUCT
3278   if (PrintLockStatistics) {
3279     // Update the counter for this lock.  Don't bother using an atomic
3280     // operation since we don't require absolute accuracy.
3281     lock->create_lock_counter(map()->jvms());
3282     increment_counter(lock->counter()->addr());
3283   }
3284 #endif
3285 
3286   return flock;
3287 }
3288 
3289 
3290 //------------------------------shared_unlock----------------------------------
3291 // Emit unlocking code.
3292 void GraphKit::shared_unlock(Node* box, Node* obj) {
3293   // bci is either a monitorenter bc or InvocationEntryBci
3294   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3295   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3296 
3297   if( !GenerateSynchronizationCode )
3298     return;
3299   if (stopped()) {               // Dead monitor?
3300     map()->pop_monitor();        // Kill monitor from debug info
3301     return;
3302   }
3303 
3304   // Memory barrier to avoid floating things down past the locked region
3305   insert_mem_bar(Op_MemBarReleaseLock);
3306 
3307   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3308   UnlockNode *unlock = new UnlockNode(C, tf);
3309 #ifdef ASSERT
3310   unlock->set_dbg_jvms(sync_jvms());
3311 #endif
3312   uint raw_idx = Compile::AliasIdxRaw;
3313   unlock->init_req( TypeFunc::Control, control() );
3314   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3315   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3316   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3317   unlock->init_req( TypeFunc::ReturnAdr, top() );
3318 
3319   unlock->init_req(TypeFunc::Parms + 0, obj);
3320   unlock->init_req(TypeFunc::Parms + 1, box);
3321   unlock = _gvn.transform(unlock)->as_Unlock();
3322 
3323   Node* mem = reset_memory();
3324 
3325   // unlock has no side-effects, sets few values
3326   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3327 
3328   // Kill monitor from debug info
3329   map()->pop_monitor( );
3330 }
3331 
3332 //-------------------------------get_layout_helper-----------------------------
3333 // If the given klass is a constant or known to be an array,
3334 // fetch the constant layout helper value into constant_value
3335 // and return (Node*)NULL.  Otherwise, load the non-constant
3336 // layout helper value, and return the node which represents it.
3337 // This two-faced routine is useful because allocation sites
3338 // almost always feature constant types.
3339 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3340   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3341   if (!StressReflectiveCode && inst_klass != NULL) {
3342     ciKlass* klass = inst_klass->klass();
3343     bool    xklass = inst_klass->klass_is_exact();
3344     if (xklass || klass->is_array_klass()) {
3345       jint lhelper = klass->layout_helper();
3346       if (lhelper != Klass::_lh_neutral_value) {
3347         constant_value = lhelper;
3348         return (Node*) NULL;
3349       }
3350     }
3351   }
3352   constant_value = Klass::_lh_neutral_value;  // put in a known value
3353   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3354   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3355 }
3356 
3357 // We just put in an allocate/initialize with a big raw-memory effect.
3358 // Hook selected additional alias categories on the initialization.
3359 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3360                                 MergeMemNode* init_in_merge,
3361                                 Node* init_out_raw) {
3362   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3363   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3364 
3365   Node* prevmem = kit.memory(alias_idx);
3366   init_in_merge->set_memory_at(alias_idx, prevmem);
3367   kit.set_memory(init_out_raw, alias_idx);
3368 }
3369 
3370 //---------------------------set_output_for_allocation-------------------------
3371 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3372                                           const TypeOopPtr* oop_type,
3373                                           bool deoptimize_on_exception) {
3374   int rawidx = Compile::AliasIdxRaw;
3375   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3376   add_safepoint_edges(alloc);
3377   Node* allocx = _gvn.transform(alloc);
3378   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3379   // create memory projection for i_o
3380   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3381   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3382 
3383   // create a memory projection as for the normal control path
3384   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3385   set_memory(malloc, rawidx);
3386 
3387   // a normal slow-call doesn't change i_o, but an allocation does
3388   // we create a separate i_o projection for the normal control path
3389   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3390   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3391 
3392   // put in an initialization barrier
3393   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3394                                                  rawoop)->as_Initialize();
3395   assert(alloc->initialization() == init,  "2-way macro link must work");
3396   assert(init ->allocation()     == alloc, "2-way macro link must work");
3397   {
3398     // Extract memory strands which may participate in the new object's
3399     // initialization, and source them from the new InitializeNode.
3400     // This will allow us to observe initializations when they occur,
3401     // and link them properly (as a group) to the InitializeNode.
3402     assert(init->in(InitializeNode::Memory) == malloc, "");
3403     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3404     init->set_req(InitializeNode::Memory, minit_in);
3405     record_for_igvn(minit_in); // fold it up later, if possible
3406     Node* minit_out = memory(rawidx);
3407     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3408     if (oop_type->isa_aryptr()) {
3409       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3410       int            elemidx  = C->get_alias_index(telemref);
3411       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3412     } else if (oop_type->isa_instptr()) {
3413       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3414       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3415         ciField* field = ik->nonstatic_field_at(i);
3416         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3417           continue;  // do not bother to track really large numbers of fields
3418         // Find (or create) the alias category for this field:
3419         int fieldidx = C->alias_type(field)->index();
3420         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3421       }
3422     }
3423   }
3424 
3425   // Cast raw oop to the real thing...
3426   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3427   javaoop = _gvn.transform(javaoop);
3428   C->set_recent_alloc(control(), javaoop);
3429   assert(just_allocated_object(control()) == javaoop, "just allocated");
3430 
3431 #ifdef ASSERT
3432   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3433     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3434            "Ideal_allocation works");
3435     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3436            "Ideal_allocation works");
3437     if (alloc->is_AllocateArray()) {
3438       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3439              "Ideal_allocation works");
3440       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3441              "Ideal_allocation works");
3442     } else {
3443       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3444     }
3445   }
3446 #endif //ASSERT
3447 
3448   return javaoop;
3449 }
3450 
3451 //---------------------------new_instance--------------------------------------
3452 // This routine takes a klass_node which may be constant (for a static type)
3453 // or may be non-constant (for reflective code).  It will work equally well
3454 // for either, and the graph will fold nicely if the optimizer later reduces
3455 // the type to a constant.
3456 // The optional arguments are for specialized use by intrinsics:
3457 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3458 //  - If 'return_size_val', report the the total object size to the caller.
3459 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3460 Node* GraphKit::new_instance(Node* klass_node,
3461                              Node* extra_slow_test,
3462                              Node* *return_size_val,
3463                              bool deoptimize_on_exception) {
3464   // Compute size in doublewords
3465   // The size is always an integral number of doublewords, represented
3466   // as a positive bytewise size stored in the klass's layout_helper.
3467   // The layout_helper also encodes (in a low bit) the need for a slow path.
3468   jint  layout_con = Klass::_lh_neutral_value;
3469   Node* layout_val = get_layout_helper(klass_node, layout_con);
3470   int   layout_is_con = (layout_val == NULL);
3471 
3472   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3473   // Generate the initial go-slow test.  It's either ALWAYS (return a
3474   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3475   // case) a computed value derived from the layout_helper.
3476   Node* initial_slow_test = NULL;
3477   if (layout_is_con) {
3478     assert(!StressReflectiveCode, "stress mode does not use these paths");
3479     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3480     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3481   } else {   // reflective case
3482     // This reflective path is used by Unsafe.allocateInstance.
3483     // (It may be stress-tested by specifying StressReflectiveCode.)
3484     // Basically, we want to get into the VM is there's an illegal argument.
3485     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3486     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3487     if (extra_slow_test != intcon(0)) {
3488       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3489     }
3490     // (Macro-expander will further convert this to a Bool, if necessary.)
3491   }
3492 
3493   // Find the size in bytes.  This is easy; it's the layout_helper.
3494   // The size value must be valid even if the slow path is taken.
3495   Node* size = NULL;
3496   if (layout_is_con) {
3497     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3498   } else {   // reflective case
3499     // This reflective path is used by clone and Unsafe.allocateInstance.
3500     size = ConvI2X(layout_val);
3501 
3502     // Clear the low bits to extract layout_helper_size_in_bytes:
3503     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3504     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3505     size = _gvn.transform( new AndXNode(size, mask) );
3506   }
3507   if (return_size_val != NULL) {
3508     (*return_size_val) = size;
3509   }
3510 
3511   // This is a precise notnull oop of the klass.
3512   // (Actually, it need not be precise if this is a reflective allocation.)
3513   // It's what we cast the result to.
3514   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3515   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3516   const TypeOopPtr* oop_type = tklass->as_instance_type();
3517 
3518   // Now generate allocation code
3519 
3520   // The entire memory state is needed for slow path of the allocation
3521   // since GC and deoptimization can happened.
3522   Node *mem = reset_memory();
3523   set_all_memory(mem); // Create new memory state
3524 
3525   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3526                                          control(), mem, i_o(),
3527                                          size, klass_node,
3528                                          initial_slow_test);
3529 
3530   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3531 }
3532 
3533 //-------------------------------new_array-------------------------------------
3534 // helper for both newarray and anewarray
3535 // The 'length' parameter is (obviously) the length of the array.
3536 // See comments on new_instance for the meaning of the other arguments.
3537 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3538                           Node* length,         // number of array elements
3539                           int   nargs,          // number of arguments to push back for uncommon trap
3540                           Node* *return_size_val,
3541                           bool deoptimize_on_exception) {
3542   jint  layout_con = Klass::_lh_neutral_value;
3543   Node* layout_val = get_layout_helper(klass_node, layout_con);
3544   int   layout_is_con = (layout_val == NULL);
3545 
3546   if (!layout_is_con && !StressReflectiveCode &&
3547       !too_many_traps(Deoptimization::Reason_class_check)) {
3548     // This is a reflective array creation site.
3549     // Optimistically assume that it is a subtype of Object[],
3550     // so that we can fold up all the address arithmetic.
3551     layout_con = Klass::array_layout_helper(T_OBJECT);
3552     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3553     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3554     { BuildCutout unless(this, bol_lh, PROB_MAX);
3555       inc_sp(nargs);
3556       uncommon_trap(Deoptimization::Reason_class_check,
3557                     Deoptimization::Action_maybe_recompile);
3558     }
3559     layout_val = NULL;
3560     layout_is_con = true;
3561   }
3562 
3563   // Generate the initial go-slow test.  Make sure we do not overflow
3564   // if length is huge (near 2Gig) or negative!  We do not need
3565   // exact double-words here, just a close approximation of needed
3566   // double-words.  We can't add any offset or rounding bits, lest we
3567   // take a size -1 of bytes and make it positive.  Use an unsigned
3568   // compare, so negative sizes look hugely positive.
3569   int fast_size_limit = FastAllocateSizeLimit;
3570   if (layout_is_con) {
3571     assert(!StressReflectiveCode, "stress mode does not use these paths");
3572     // Increase the size limit if we have exact knowledge of array type.
3573     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3574     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3575   }
3576 
3577   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3578   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3579 
3580   // --- Size Computation ---
3581   // array_size = round_to_heap(array_header + (length << elem_shift));
3582   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3583   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3584   // The rounding mask is strength-reduced, if possible.
3585   int round_mask = MinObjAlignmentInBytes - 1;
3586   Node* header_size = NULL;
3587   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3588   // (T_BYTE has the weakest alignment and size restrictions...)
3589   if (layout_is_con) {
3590     int       hsize  = Klass::layout_helper_header_size(layout_con);
3591     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3592     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3593     if ((round_mask & ~right_n_bits(eshift)) == 0)
3594       round_mask = 0;  // strength-reduce it if it goes away completely
3595     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3596     assert(header_size_min <= hsize, "generic minimum is smallest");
3597     header_size_min = hsize;
3598     header_size = intcon(hsize + round_mask);
3599   } else {
3600     Node* hss   = intcon(Klass::_lh_header_size_shift);
3601     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3602     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3603     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3604     Node* mask  = intcon(round_mask);
3605     header_size = _gvn.transform( new AddINode(hsize, mask) );
3606   }
3607 
3608   Node* elem_shift = NULL;
3609   if (layout_is_con) {
3610     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3611     if (eshift != 0)
3612       elem_shift = intcon(eshift);
3613   } else {
3614     // There is no need to mask or shift this value.
3615     // The semantics of LShiftINode include an implicit mask to 0x1F.
3616     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3617     elem_shift = layout_val;
3618   }
3619 
3620   // Transition to native address size for all offset calculations:
3621   Node* lengthx = ConvI2X(length);
3622   Node* headerx = ConvI2X(header_size);
3623 #ifdef _LP64
3624   { const TypeInt* tilen = _gvn.find_int_type(length);
3625     if (tilen != NULL && tilen->_lo < 0) {
3626       // Add a manual constraint to a positive range.  Cf. array_element_address.
3627       jint size_max = fast_size_limit;
3628       if (size_max > tilen->_hi)  size_max = tilen->_hi;
3629       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
3630 
3631       // Only do a narrow I2L conversion if the range check passed.
3632       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
3633       _gvn.transform(iff);
3634       RegionNode* region = new RegionNode(3);
3635       _gvn.set_type(region, Type::CONTROL);
3636       lengthx = new PhiNode(region, TypeLong::LONG);
3637       _gvn.set_type(lengthx, TypeLong::LONG);
3638 
3639       // Range check passed. Use ConvI2L node with narrow type.
3640       Node* passed = IfFalse(iff);
3641       region->init_req(1, passed);
3642       // Make I2L conversion control dependent to prevent it from
3643       // floating above the range check during loop optimizations.
3644       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
3645 
3646       // Range check failed. Use ConvI2L with wide type because length may be invalid.
3647       region->init_req(2, IfTrue(iff));
3648       lengthx->init_req(2, ConvI2X(length));
3649 
3650       set_control(region);
3651       record_for_igvn(region);
3652       record_for_igvn(lengthx);
3653     }
3654   }
3655 #endif
3656 
3657   // Combine header size (plus rounding) and body size.  Then round down.
3658   // This computation cannot overflow, because it is used only in two
3659   // places, one where the length is sharply limited, and the other
3660   // after a successful allocation.
3661   Node* abody = lengthx;
3662   if (elem_shift != NULL)
3663     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3664   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3665   if (round_mask != 0) {
3666     Node* mask = MakeConX(~round_mask);
3667     size       = _gvn.transform( new AndXNode(size, mask) );
3668   }
3669   // else if round_mask == 0, the size computation is self-rounding
3670 
3671   if (return_size_val != NULL) {
3672     // This is the size
3673     (*return_size_val) = size;
3674   }
3675 
3676   // Now generate allocation code
3677 
3678   // The entire memory state is needed for slow path of the allocation
3679   // since GC and deoptimization can happened.
3680   Node *mem = reset_memory();
3681   set_all_memory(mem); // Create new memory state
3682 
3683   if (initial_slow_test->is_Bool()) {
3684     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3685     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3686   }
3687 
3688   // Create the AllocateArrayNode and its result projections
3689   AllocateArrayNode* alloc
3690     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3691                             control(), mem, i_o(),
3692                             size, klass_node,
3693                             initial_slow_test,
3694                             length);
3695 
3696   // Cast to correct type.  Note that the klass_node may be constant or not,
3697   // and in the latter case the actual array type will be inexact also.
3698   // (This happens via a non-constant argument to inline_native_newArray.)
3699   // In any case, the value of klass_node provides the desired array type.
3700   const TypeInt* length_type = _gvn.find_int_type(length);
3701   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3702   if (ary_type->isa_aryptr() && length_type != NULL) {
3703     // Try to get a better type than POS for the size
3704     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3705   }
3706 
3707   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3708 
3709   // Cast length on remaining path to be as narrow as possible
3710   if (map()->find_edge(length) >= 0) {
3711     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3712     if (ccast != length) {
3713       _gvn.set_type_bottom(ccast);
3714       record_for_igvn(ccast);
3715       replace_in_map(length, ccast);
3716     }
3717   }
3718 
3719   return javaoop;
3720 }
3721 
3722 // The following "Ideal_foo" functions are placed here because they recognize
3723 // the graph shapes created by the functions immediately above.
3724 
3725 //---------------------------Ideal_allocation----------------------------------
3726 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3727 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3728   if (ptr == NULL) {     // reduce dumb test in callers
3729     return NULL;
3730   }
3731 
3732   // Attempt to see through Shenandoah barriers.
3733   ptr = ShenandoahBarrierNode::skip_through_barrier(ptr);
3734 
3735   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3736     ptr = ptr->in(1);
3737     if (ptr == NULL) return NULL;
3738   }
3739   // Return NULL for allocations with several casts:
3740   //   j.l.reflect.Array.newInstance(jobject, jint)
3741   //   Object.clone()
3742   // to keep more precise type from last cast.
3743   if (ptr->is_Proj()) {
3744     Node* allo = ptr->in(0);
3745     if (allo != NULL && allo->is_Allocate()) {
3746       return allo->as_Allocate();
3747     }
3748   }
3749   // Report failure to match.
3750   return NULL;
3751 }
3752 
3753 // Fancy version which also strips off an offset (and reports it to caller).
3754 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3755                                              intptr_t& offset) {
3756   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3757   if (base == NULL)  return NULL;
3758   return Ideal_allocation(base, phase);
3759 }
3760 
3761 // Trace Initialize <- Proj[Parm] <- Allocate
3762 AllocateNode* InitializeNode::allocation() {
3763   Node* rawoop = in(InitializeNode::RawAddress);
3764   if (rawoop->is_Proj()) {
3765     Node* alloc = rawoop->in(0);
3766     if (alloc->is_Allocate()) {
3767       return alloc->as_Allocate();
3768     }
3769   }
3770   return NULL;
3771 }
3772 
3773 // Trace Allocate -> Proj[Parm] -> Initialize
3774 InitializeNode* AllocateNode::initialization() {
3775   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3776   if (rawoop == NULL)  return NULL;
3777   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3778     Node* init = rawoop->fast_out(i);
3779     if (init->is_Initialize()) {
3780       assert(init->as_Initialize()->allocation() == this, "2-way link");
3781       return init->as_Initialize();
3782     }
3783   }
3784   return NULL;
3785 }
3786 
3787 //----------------------------- loop predicates ---------------------------
3788 
3789 //------------------------------add_predicate_impl----------------------------
3790 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3791   // Too many traps seen?
3792   if (too_many_traps(reason)) {
3793 #ifdef ASSERT
3794     if (TraceLoopPredicate) {
3795       int tc = C->trap_count(reason);
3796       tty->print("too many traps=%s tcount=%d in ",
3797                     Deoptimization::trap_reason_name(reason), tc);
3798       method()->print(); // which method has too many predicate traps
3799       tty->cr();
3800     }
3801 #endif
3802     // We cannot afford to take more traps here,
3803     // do not generate predicate.
3804     return;
3805   }
3806 
3807   Node *cont    = _gvn.intcon(1);
3808   Node* opq     = _gvn.transform(new Opaque1Node(C, cont));
3809   Node *bol     = _gvn.transform(new Conv2BNode(opq));
3810   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3811   Node* iffalse = _gvn.transform(new IfFalseNode(iff));
3812   C->add_predicate_opaq(opq);
3813   {
3814     PreserveJVMState pjvms(this);
3815     set_control(iffalse);
3816     inc_sp(nargs);
3817     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3818   }
3819   Node* iftrue = _gvn.transform(new IfTrueNode(iff));
3820   set_control(iftrue);
3821 }
3822 
3823 //------------------------------add_predicate---------------------------------
3824 void GraphKit::add_predicate(int nargs) {
3825   if (UseLoopPredicate) {
3826     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3827   }
3828   // loop's limit check predicate should be near the loop.
3829   add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3830 }
3831 
3832 //----------------------------- store barriers ----------------------------
3833 #define __ ideal.
3834 
3835 void GraphKit::sync_kit(IdealKit& ideal) {
3836   set_all_memory(__ merged_memory());
3837   set_i_o(__ i_o());
3838   set_control(__ ctrl());
3839 }
3840 
3841 void GraphKit::final_sync(IdealKit& ideal) {
3842   // Final sync IdealKit and graphKit.
3843   sync_kit(ideal);
3844 }
3845 
3846 Node* GraphKit::byte_map_base_node() {
3847   // Get base of card map
3848   CardTableModRefBS* ct =
3849     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
3850   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust users of this code");
3851   if (ct->byte_map_base != NULL) {
3852     return makecon(TypeRawPtr::make((address)ct->byte_map_base));
3853   } else {
3854     return null();
3855   }
3856 }
3857 
3858 // vanilla/CMS post barrier
3859 // Insert a write-barrier store.  This is to let generational GC work; we have
3860 // to flag all oop-stores before the next GC point.
3861 void GraphKit::write_barrier_post(Node* oop_store,
3862                                   Node* obj,
3863                                   Node* adr,
3864                                   uint  adr_idx,
3865                                   Node* val,
3866                                   bool use_precise) {
3867   // No store check needed if we're storing a NULL or an old object
3868   // (latter case is probably a string constant). The concurrent
3869   // mark sweep garbage collector, however, needs to have all nonNull
3870   // oop updates flagged via card-marks.
3871   if (val != NULL && val->is_Con()) {
3872     // must be either an oop or NULL
3873     const Type* t = val->bottom_type();
3874     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3875       // stores of null never (?) need barriers
3876       return;
3877   }
3878 
3879   if (use_ReduceInitialCardMarks()
3880       && obj == just_allocated_object(control())) {
3881     // We can skip marks on a freshly-allocated object in Eden.
3882     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3883     // That routine informs GC to take appropriate compensating steps,
3884     // upon a slow-path allocation, so as to make this card-mark
3885     // elision safe.
3886     return;
3887   }
3888 
3889   if (!use_precise) {
3890     // All card marks for a (non-array) instance are in one place:
3891     adr = obj;
3892   }
3893   // (Else it's an array (or unknown), and we want more precise card marks.)
3894   assert(adr != NULL, "");
3895 
3896   IdealKit ideal(this, true);
3897 
3898   // Convert the pointer to an int prior to doing math on it
3899   Node* cast = __ CastPX(__ ctrl(), adr);
3900 
3901   // Divide by card size
3902   assert(Universe::heap()->barrier_set()->is_a(BarrierSet::CardTableModRef),
3903          "Only one we handle so far.");
3904   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3905 
3906   // Combine card table base and card offset
3907   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3908 
3909   // Get the alias_index for raw card-mark memory
3910   int adr_type = Compile::AliasIdxRaw;
3911   Node*   zero = __ ConI(0); // Dirty card value
3912   BasicType bt = T_BYTE;
3913 
3914   if (UseConcMarkSweepGC && UseCondCardMark) {
3915     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
3916     __ sync_kit(this);
3917   }
3918 
3919   if (UseCondCardMark) {
3920     // The classic GC reference write barrier is typically implemented
3921     // as a store into the global card mark table.  Unfortunately
3922     // unconditional stores can result in false sharing and excessive
3923     // coherence traffic as well as false transactional aborts.
3924     // UseCondCardMark enables MP "polite" conditional card mark
3925     // stores.  In theory we could relax the load from ctrl() to
3926     // no_ctrl, but that doesn't buy much latitude.
3927     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3928     __ if_then(card_val, BoolTest::ne, zero);
3929   }
3930 
3931   // Smash zero into card
3932   if( !UseConcMarkSweepGC ) {
3933     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::unordered);
3934   } else {
3935     // Specialized path for CM store barrier
3936     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3937   }
3938 
3939   if (UseCondCardMark) {
3940     __ end_if();
3941   }
3942 
3943   // Final sync IdealKit and GraphKit.
3944   final_sync(ideal);
3945 }
3946 /*
3947  * Determine if the G1 pre-barrier can be removed. The pre-barrier is
3948  * required by SATB to make sure all objects live at the start of the
3949  * marking are kept alive, all reference updates need to any previous
3950  * reference stored before writing.
3951  *
3952  * If the previous value is NULL there is no need to save the old value.
3953  * References that are NULL are filtered during runtime by the barrier
3954  * code to avoid unnecessary queuing.
3955  *
3956  * However in the case of newly allocated objects it might be possible to
3957  * prove that the reference about to be overwritten is NULL during compile
3958  * time and avoid adding the barrier code completely.
3959  *
3960  * The compiler needs to determine that the object in which a field is about
3961  * to be written is newly allocated, and that no prior store to the same field
3962  * has happened since the allocation.
3963  *
3964  * Returns true if the pre-barrier can be removed
3965  */
3966 bool GraphKit::g1_can_remove_pre_barrier(PhaseTransform* phase, Node* adr,
3967                                          BasicType bt, uint adr_idx) {
3968   intptr_t offset = 0;
3969   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
3970   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
3971 
3972   if (offset == Type::OffsetBot) {
3973     return false; // cannot unalias unless there are precise offsets
3974   }
3975 
3976   if (alloc == NULL) {
3977     return false; // No allocation found
3978   }
3979 
3980   intptr_t size_in_bytes = type2aelembytes(bt);
3981 
3982   Node* mem = memory(adr_idx); // start searching here...
3983 
3984   for (int cnt = 0; cnt < 50; cnt++) {
3985 
3986     if (mem->is_Store()) {
3987 
3988       Node* st_adr = mem->in(MemNode::Address);
3989       intptr_t st_offset = 0;
3990       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
3991 
3992       if (st_base == NULL) {
3993         break; // inscrutable pointer
3994       }
3995 
3996       // Break we have found a store with same base and offset as ours so break
3997       if (st_base == base && st_offset == offset) {
3998         break;
3999       }
4000 
4001       if (st_offset != offset && st_offset != Type::OffsetBot) {
4002         const int MAX_STORE = BytesPerLong;
4003         if (st_offset >= offset + size_in_bytes ||
4004             st_offset <= offset - MAX_STORE ||
4005             st_offset <= offset - mem->as_Store()->memory_size()) {
4006           // Success:  The offsets are provably independent.
4007           // (You may ask, why not just test st_offset != offset and be done?
4008           // The answer is that stores of different sizes can co-exist
4009           // in the same sequence of RawMem effects.  We sometimes initialize
4010           // a whole 'tile' of array elements with a single jint or jlong.)
4011           mem = mem->in(MemNode::Memory);
4012           continue; // advance through independent store memory
4013         }
4014       }
4015 
4016       if (st_base != base
4017           && MemNode::detect_ptr_independence(base, alloc, st_base,
4018                                               AllocateNode::Ideal_allocation(st_base, phase),
4019                                               phase)) {
4020         // Success:  The bases are provably independent.
4021         mem = mem->in(MemNode::Memory);
4022         continue; // advance through independent store memory
4023       }
4024     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
4025 
4026       InitializeNode* st_init = mem->in(0)->as_Initialize();
4027       AllocateNode* st_alloc = st_init->allocation();
4028 
4029       // Make sure that we are looking at the same allocation site.
4030       // The alloc variable is guaranteed to not be null here from earlier check.
4031       if (alloc == st_alloc) {
4032         // Check that the initialization is storing NULL so that no previous store
4033         // has been moved up and directly write a reference
4034         Node* captured_store = st_init->find_captured_store(offset,
4035                                                             type2aelembytes(T_OBJECT),
4036                                                             phase);
4037         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
4038           return true;
4039         }
4040       }
4041     }
4042 
4043     // Unless there is an explicit 'continue', we must bail out here,
4044     // because 'mem' is an inscrutable memory state (e.g., a call).
4045     break;
4046   }
4047 
4048   return false;
4049 }
4050 
4051 static void g1_write_barrier_pre_helper(const GraphKit& kit, Node* adr) {
4052   if (UseShenandoahGC && ShenandoahSATBBarrier && adr != NULL) {
4053     Node* c = kit.control();
4054     Node* call = c->in(1)->in(1)->in(1)->in(0);
4055     assert(call->is_g1_wb_pre_call(), "g1_wb_pre call expected");
4056     call->add_req(adr);
4057   }
4058 }
4059 
4060 // G1 pre/post barriers
4061 void GraphKit::g1_write_barrier_pre(bool do_load,
4062                                     Node* obj,
4063                                     Node* adr,
4064                                     uint alias_idx,
4065                                     Node* val,
4066                                     const TypeOopPtr* val_type,
4067                                     Node* pre_val,
4068                                     BasicType bt) {
4069 
4070   // Some sanity checks
4071   // Note: val is unused in this routine.
4072 
4073   if (do_load) {
4074     // We need to generate the load of the previous value
4075     assert(obj != NULL, "must have a base");
4076     assert(adr != NULL, "where are loading from?");
4077     assert(pre_val == NULL, "loaded already?");
4078     assert(val_type != NULL, "need a type");
4079 
4080     if (use_ReduceInitialCardMarks()
4081         && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) {
4082       return;
4083     }
4084 
4085   } else {
4086     // In this case both val_type and alias_idx are unused.
4087     assert(pre_val != NULL, "must be loaded already");
4088     // Nothing to be done if pre_val is null.
4089     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
4090     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
4091   }
4092   assert(bt == T_OBJECT, "or we shouldn't be here");
4093 
4094   IdealKit ideal(this, true);
4095 
4096   Node* tls = __ thread(); // ThreadLocalStorage
4097 
4098   Node* no_ctrl = NULL;
4099   Node* no_base = __ top();
4100   Node* zero  = __ ConI(0);
4101   Node* zeroX = __ ConX(0);
4102 
4103   float likely  = PROB_LIKELY(0.999);
4104   float unlikely  = PROB_UNLIKELY(0.999);
4105 
4106   BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
4107   assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
4108 
4109   // Offsets into the thread
4110   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
4111                                           SATBMarkQueue::byte_offset_of_active());
4112   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
4113                                           SATBMarkQueue::byte_offset_of_index());
4114   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
4115                                           SATBMarkQueue::byte_offset_of_buf());
4116 
4117   // Now the actual pointers into the thread
4118   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
4119   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
4120   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
4121 
4122   // Now some of the values
4123   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
4124 
4125   // if (!marking)
4126   __ if_then(marking, BoolTest::ne, zero, unlikely); {
4127     BasicType index_bt = TypeX_X->basic_type();
4128     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
4129     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
4130 
4131     if (do_load) {
4132       // load original value
4133       // alias_idx correct??
4134       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
4135     }
4136 
4137     // if (pre_val != NULL)
4138     __ if_then(pre_val, BoolTest::ne, null()); {
4139       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4140 
4141       // is the queue for this thread full?
4142       __ if_then(index, BoolTest::ne, zeroX, likely); {
4143 
4144         // decrement the index
4145         Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4146 
4147         // Now get the buffer location we will log the previous value into and store it
4148         Node *log_addr = __ AddP(no_base, buffer, next_index);
4149         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
4150         // update the index
4151         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
4152 
4153       } __ else_(); {
4154 
4155         // logging buffer is full, call the runtime
4156         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
4157         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
4158       } __ end_if();  // (!index)
4159     } __ end_if();  // (pre_val != NULL)
4160   } __ end_if();  // (!marking)
4161 
4162   // Final sync IdealKit and GraphKit.
4163   final_sync(ideal);
4164   g1_write_barrier_pre_helper(*this, adr);
4165 }
4166 
4167 Node* GraphKit::shenandoah_write_barrier_pre(bool do_load,
4168                                     Node* obj,
4169                                     Node* adr,
4170                                     uint alias_idx,
4171                                     Node* val,
4172                                     const TypeOopPtr* val_type,
4173                                     Node* pre_val,
4174                                     BasicType bt) {
4175 
4176   // Some sanity checks
4177   // Note: val is unused in this routine.
4178 
4179   if (!ShenandoahSATBBarrier) {
4180     if (val != NULL) {
4181       shenandoah_update_matrix(adr, val);
4182     }
4183     return val;
4184   }
4185 
4186   if (val == NULL) {
4187     g1_write_barrier_pre(do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
4188     return NULL;
4189   }
4190 
4191   if (! ShenandoahReduceStoreValBarrier) {
4192     val = shenandoah_storeval_barrier(val);
4193     shenandoah_update_matrix(adr, val);
4194     g1_write_barrier_pre(do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
4195     return val;
4196   }
4197 
4198   if (do_load) {
4199     // We need to generate the load of the previous value
4200     assert(obj != NULL, "must have a base");
4201     assert(adr != NULL, "where are loading from?");
4202     assert(pre_val == NULL, "loaded already?");
4203     assert(val_type != NULL, "need a type");
4204 
4205     if (use_ReduceInitialCardMarks()
4206         && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) {
4207       return shenandoah_storeval_barrier(val);
4208     }
4209 
4210   } else {
4211     // In this case both val_type and alias_idx are unused.
4212     assert(pre_val != NULL, "must be loaded already");
4213     // Nothing to be done if pre_val is null.
4214     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return val;
4215     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
4216   }
4217   assert(bt == T_OBJECT, "or we shouldn't be here");
4218 
4219   IdealKit ideal(this, true, true);
4220   IdealVariable ival(ideal);
4221   __ declarations_done();
4222   __  set(ival, val);
4223   Node* tls = __ thread(); // ThreadLocalStorage
4224 
4225   Node* no_ctrl = NULL;
4226   Node* no_base = __ top();
4227   Node* zero  = __ ConI(0);
4228   Node* zeroX = __ ConX(0);
4229 
4230   float likely  = PROB_LIKELY(0.999);
4231   float unlikely  = PROB_UNLIKELY(0.999);
4232 
4233   BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
4234   assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
4235 
4236   // Offsets into the thread
4237   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
4238                                           SATBMarkQueue::byte_offset_of_active());
4239   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
4240                                           SATBMarkQueue::byte_offset_of_index());
4241   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
4242                                           SATBMarkQueue::byte_offset_of_buf());
4243 
4244   // Now the actual pointers into the thread
4245   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
4246   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
4247   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
4248 
4249   // Now some of the values
4250   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
4251 
4252   // if (!marking)
4253   __ if_then(marking, BoolTest::ne, zero, unlikely); {
4254 
4255     Node* storeval = ideal.value(ival);
4256     sync_kit(ideal);
4257     storeval = shenandoah_storeval_barrier(storeval);
4258     __ sync_kit(this);
4259     __ set(ival, storeval);
4260 
4261     BasicType index_bt = TypeX_X->basic_type();
4262     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
4263     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
4264 
4265     if (do_load) {
4266       // load original value
4267       // alias_idx correct??
4268       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
4269     }
4270 
4271     // if (pre_val != NULL)
4272     __ if_then(pre_val, BoolTest::ne, null()); {
4273       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4274 
4275       // is the queue for this thread full?
4276       __ if_then(index, BoolTest::ne, zeroX, likely); {
4277 
4278         // decrement the index
4279         Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4280 
4281         // Now get the buffer location we will log the previous value into and store it
4282         Node *log_addr = __ AddP(no_base, buffer, next_index);
4283         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
4284         // update the index
4285         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
4286 
4287       } __ else_(); {
4288 
4289         // logging buffer is full, call the runtime
4290         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
4291         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
4292       } __ end_if();  // (!index)
4293     } __ end_if();  // (pre_val != NULL)
4294   } __ end_if();  // (!marking)
4295   Node* new_val = __ value(ival);
4296   // IdealKit generates a Phi with very conservative type, and even
4297   // turns array types into TypeInstPtr (see type.cpp, _const_basic_type[T_ARRAY]).
4298   // We're forcing the result to be the original type.
4299   if (new_val != val) {
4300     const Type* t = _gvn.type(val);
4301     if (new_val->isa_Type()) {
4302       new_val->as_Type()->set_type(t);
4303     }
4304     _gvn.set_type(new_val, t);
4305   }
4306   val = new_val;
4307   __ dead(ival);
4308   // Final sync IdealKit and GraphKit.
4309   final_sync(ideal);
4310   g1_write_barrier_pre_helper(*this, adr);
4311   return val;
4312 }
4313 
4314 void GraphKit::shenandoah_update_matrix(Node* adr, Node* val) {
4315   if (!UseShenandoahMatrix) {
4316     return;
4317   }
4318 
4319   assert(val != NULL, "checked before");
4320   if (adr == NULL) {
4321     return; // Nothing to do
4322   }
4323   assert(adr != NULL, "must not happen");
4324   if (val->bottom_type()->higher_equal(TypePtr::NULL_PTR)) {
4325     // Nothing to do.
4326     return;
4327   }
4328 
4329   ShenandoahConnectionMatrix* matrix = ShenandoahHeap::heap()->connection_matrix();
4330 
4331   enum { _set_path = 1, _already_set_path, _val_null_path, PATH_LIMIT };
4332   RegionNode* region = new RegionNode(PATH_LIMIT);
4333   Node* prev_mem = memory(Compile::AliasIdxRaw);
4334   Node* memphi    = PhiNode::make(region, prev_mem, Type::MEMORY, TypeRawPtr::BOTTOM);
4335   Node* null_ctrl = top();
4336   Node* not_null_val = null_check_oop(val, &null_ctrl);
4337 
4338   // Null path: nothing to do.
4339   region->init_req(_val_null_path, null_ctrl);
4340   memphi->init_req(_val_null_path, prev_mem);
4341 
4342   // Not null path. Update the matrix.
4343 
4344   // This uses a fast calculation for the matrix address. For a description,
4345   // see src/share/vm/gc/shenandoah/shenandoahConnectionMatrix.inline.hpp,
4346   // ShenandoahConnectionMatrix::compute_address(const void* from, const void* to).
4347   address heap_base = ShenandoahHeap::heap()->base();
4348   jint stride = matrix->stride_jint();
4349   jint rs = ShenandoahHeapRegion::region_size_bytes_shift_jint();
4350 
4351   guarantee(stride < ShenandoahHeapRegion::region_size_bytes_jint(), "sanity");
4352   guarantee(is_aligned(heap_base, ShenandoahHeapRegion::region_size_bytes()), "sanity");
4353 
4354   Node* magic_con = MakeConX((jlong) matrix->matrix_addr() - ((jlong) heap_base >> rs) * (stride + 1));
4355 
4356   // Compute addr part
4357   Node* adr_idx = _gvn.transform(new CastP2XNode(control(), adr));
4358   adr_idx = _gvn.transform(new URShiftXNode(adr_idx, intcon(rs)));
4359 
4360   // Compute new_val part
4361   Node* val_idx = _gvn.transform(new CastP2XNode(control(), not_null_val));
4362   val_idx = _gvn.transform(new URShiftXNode(val_idx, intcon(rs)));
4363   val_idx = _gvn.transform(new MulXNode(val_idx, MakeConX(stride)));
4364 
4365   // Add everything up
4366   adr_idx = _gvn.transform(new AddXNode(adr_idx, val_idx));
4367   adr_idx = _gvn.transform(new CastX2PNode(adr_idx));
4368   Node* matrix_adr = _gvn.transform(new AddPNode(top(), adr_idx, magic_con));
4369 
4370   // Load current value
4371   const TypePtr* adr_type = TypeRawPtr::BOTTOM;
4372   Node* current = _gvn.transform(LoadNode::make(_gvn, control(), memory(Compile::AliasIdxRaw),
4373                                                 matrix_adr, adr_type, TypeInt::INT, T_BYTE, MemNode::unordered));
4374 
4375   // Check if already set
4376   Node* cmp_set = _gvn.transform(new CmpINode(current, intcon(0)));
4377   Node* cmp_set_bool = _gvn.transform(new BoolNode(cmp_set, BoolTest::eq));
4378   IfNode* cmp_iff = create_and_map_if(control(), cmp_set_bool, PROB_MIN, COUNT_UNKNOWN);
4379 
4380   Node* if_not_set = _gvn.transform(new IfTrueNode(cmp_iff));
4381   Node* if_set = _gvn.transform(new IfFalseNode(cmp_iff));
4382 
4383   // Already set, exit
4384   set_control(if_set);
4385   region->init_req(_already_set_path, control());
4386   memphi->init_req(_already_set_path, prev_mem);
4387 
4388   // Not set: do the store, and finish up
4389   set_control(if_not_set);
4390   Node* store = _gvn.transform(StoreNode::make(_gvn, control(), memory(Compile::AliasIdxRaw),
4391                                                matrix_adr, adr_type, intcon(1), T_BYTE, MemNode::unordered));
4392   region->init_req(_set_path, control());
4393   memphi->init_req(_set_path, store);
4394 
4395   // Merge control flows and memory.
4396   set_control(_gvn.transform(region));
4397   record_for_igvn(region);
4398   set_memory(_gvn.transform(memphi), Compile::AliasIdxRaw);
4399 }
4400 
4401 /*
4402  * G1 similar to any GC with a Young Generation requires a way to keep track of
4403  * references from Old Generation to Young Generation to make sure all live
4404  * objects are found. G1 also requires to keep track of object references
4405  * between different regions to enable evacuation of old regions, which is done
4406  * as part of mixed collections. References are tracked in remembered sets and
4407  * is continuously updated as reference are written to with the help of the
4408  * post-barrier.
4409  *
4410  * To reduce the number of updates to the remembered set the post-barrier
4411  * filters updates to fields in objects located in the Young Generation,
4412  * the same region as the reference, when the NULL is being written or
4413  * if the card is already marked as dirty by an earlier write.
4414  *
4415  * Under certain circumstances it is possible to avoid generating the
4416  * post-barrier completely if it is possible during compile time to prove
4417  * the object is newly allocated and that no safepoint exists between the
4418  * allocation and the store.
4419  *
4420  * In the case of slow allocation the allocation code must handle the barrier
4421  * as part of the allocation in the case the allocated object is not located
4422  * in the nursery, this would happen for humongous objects. This is similar to
4423  * how CMS is required to handle this case, see the comments for the method
4424  * CollectedHeap::new_store_pre_barrier and OptoRuntime::new_store_pre_barrier.
4425  * A deferred card mark is required for these objects and handled in the above
4426  * mentioned methods.
4427  *
4428  * Returns true if the post barrier can be removed
4429  */
4430 bool GraphKit::g1_can_remove_post_barrier(PhaseTransform* phase, Node* store,
4431                                           Node* adr) {
4432   intptr_t      offset = 0;
4433   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
4434   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
4435 
4436   if (offset == Type::OffsetBot) {
4437     return false; // cannot unalias unless there are precise offsets
4438   }
4439 
4440   if (alloc == NULL) {
4441      return false; // No allocation found
4442   }
4443 
4444   // Start search from Store node
4445   Node* mem = store->in(MemNode::Control);
4446   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
4447 
4448     InitializeNode* st_init = mem->in(0)->as_Initialize();
4449     AllocateNode*  st_alloc = st_init->allocation();
4450 
4451     // Make sure we are looking at the same allocation
4452     if (alloc == st_alloc) {
4453       return true;
4454     }
4455   }
4456 
4457   return false;
4458 }
4459 
4460 //
4461 // Update the card table and add card address to the queue
4462 //
4463 void GraphKit::g1_mark_card(IdealKit& ideal,
4464                             Node* card_adr,
4465                             Node* oop_store,
4466                             uint oop_alias_idx,
4467                             Node* index,
4468                             Node* index_adr,
4469                             Node* buffer,
4470                             const TypeFunc* tf) {
4471 
4472   Node* zero  = __ ConI(0);
4473   Node* zeroX = __ ConX(0);
4474   Node* no_base = __ top();
4475   BasicType card_bt = T_BYTE;
4476   // Smash zero into card. MUST BE ORDERED WRT TO STORE
4477   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
4478 
4479   //  Now do the queue work
4480   __ if_then(index, BoolTest::ne, zeroX); {
4481 
4482     Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4483     Node* log_addr = __ AddP(no_base, buffer, next_index);
4484 
4485     // Order, see storeCM.
4486     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
4487     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
4488 
4489   } __ else_(); {
4490     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
4491   } __ end_if();
4492 
4493 }
4494 
4495 void GraphKit::g1_write_barrier_post(Node* oop_store,
4496                                      Node* obj,
4497                                      Node* adr,
4498                                      uint alias_idx,
4499                                      Node* val,
4500                                      BasicType bt,
4501                                      bool use_precise) {
4502   // If we are writing a NULL then we need no post barrier
4503 
4504   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
4505     // Must be NULL
4506     const Type* t = val->bottom_type();
4507     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
4508     // No post barrier if writing NULLx
4509     return;
4510   }
4511 
4512   if (use_ReduceInitialCardMarks() && obj == just_allocated_object(control())) {
4513     // We can skip marks on a freshly-allocated object in Eden.
4514     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
4515     // That routine informs GC to take appropriate compensating steps,
4516     // upon a slow-path allocation, so as to make this card-mark
4517     // elision safe.
4518     return;
4519   }
4520 
4521   if (use_ReduceInitialCardMarks()
4522       && g1_can_remove_post_barrier(&_gvn, oop_store, adr)) {
4523     return;
4524   }
4525 
4526   if (!use_precise) {
4527     // All card marks for a (non-array) instance are in one place:
4528     adr = obj;
4529   }
4530   // (Else it's an array (or unknown), and we want more precise card marks.)
4531   assert(adr != NULL, "");
4532 
4533   IdealKit ideal(this, true);
4534 
4535   Node* tls = __ thread(); // ThreadLocalStorage
4536 
4537   Node* no_base = __ top();
4538   float likely  = PROB_LIKELY(0.999);
4539   float unlikely  = PROB_UNLIKELY(0.999);
4540   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
4541   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
4542   Node* zeroX = __ ConX(0);
4543 
4544   // Get the alias_index for raw card-mark memory
4545   const TypePtr* card_type = TypeRawPtr::BOTTOM;
4546 
4547   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
4548 
4549   // Offsets into the thread
4550   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
4551                                      DirtyCardQueue::byte_offset_of_index());
4552   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
4553                                      DirtyCardQueue::byte_offset_of_buf());
4554 
4555   // Pointers into the thread
4556 
4557   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
4558   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
4559 
4560   // Now some values
4561   // Use ctrl to avoid hoisting these values past a safepoint, which could
4562   // potentially reset these fields in the JavaThread.
4563   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
4564   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4565 
4566   // Convert the store obj pointer to an int prior to doing math on it
4567   // Must use ctrl to prevent "integerized oop" existing across safepoint
4568   Node* cast =  __ CastPX(__ ctrl(), adr);
4569 
4570   // Divide pointer by card size
4571   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
4572 
4573   // Combine card table base and card offset
4574   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
4575 
4576   // If we know the value being stored does it cross regions?
4577 
4578   if (val != NULL) {
4579     // Does the store cause us to cross regions?
4580 
4581     // Should be able to do an unsigned compare of region_size instead of
4582     // and extra shift. Do we have an unsigned compare??
4583     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
4584     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4585 
4586     // if (xor_res == 0) same region so skip
4587     __ if_then(xor_res, BoolTest::ne, zeroX); {
4588 
4589       // No barrier if we are storing a NULL
4590       __ if_then(val, BoolTest::ne, null(), unlikely); {
4591 
4592         // Ok must mark the card if not already dirty
4593 
4594         // load the original value of the card
4595         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4596 
4597         __ if_then(card_val, BoolTest::ne, young_card); {
4598           sync_kit(ideal);
4599           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4600           insert_mem_bar(Op_MemBarVolatile, oop_store);
4601           __ sync_kit(this);
4602 
4603           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4604           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4605             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4606           } __ end_if();
4607         } __ end_if();
4608       } __ end_if();
4609     } __ end_if();
4610   } else {
4611     // The Object.clone() intrinsic uses this path if !ReduceInitialCardMarks.
4612     // We don't need a barrier here if the destination is a newly allocated object
4613     // in Eden. Otherwise, GC verification breaks because we assume that cards in Eden
4614     // are set to 'g1_young_gen' (see G1SATBCardTableModRefBS::verify_g1_young_region()).
4615     assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
4616     Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4617     __ if_then(card_val, BoolTest::ne, young_card); {
4618       g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4619     } __ end_if();
4620   }
4621 
4622   // Final sync IdealKit and GraphKit.
4623   final_sync(ideal);
4624 }
4625 #undef __
4626 
4627 
4628 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4629   Node* len = load_array_length(load_String_value(ctrl, str));
4630   Node* coder = load_String_coder(ctrl, str);
4631   // Divide length by 2 if coder is UTF16
4632   return _gvn.transform(new RShiftINode(len, coder));
4633 }
4634 
4635 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4636   int value_offset = java_lang_String::value_offset_in_bytes();
4637   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4638                                                      false, NULL, 0);
4639   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4640   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4641                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4642                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4643   int value_field_idx = C->get_alias_index(value_field_type);
4644 
4645   if (! ShenandoahOptimizeFinals) {
4646     str = shenandoah_read_barrier(str);
4647   }
4648 
4649   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4650                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
4651   // String.value field is known to be @Stable.
4652   if (UseImplicitStableValues) {
4653     load = cast_array_to_stable(load, value_type);
4654   }
4655   return load;
4656 }
4657 
4658 Node* GraphKit::load_String_coder(Node* ctrl, Node* str) {
4659   if (!CompactStrings) {
4660     return intcon(java_lang_String::CODER_UTF16);
4661   }
4662   int coder_offset = java_lang_String::coder_offset_in_bytes();
4663   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4664                                                      false, NULL, 0);
4665   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4666   int coder_field_idx = C->get_alias_index(coder_field_type);
4667 
4668   if (! ShenandoahOptimizeFinals) {
4669     str = shenandoah_read_barrier(str);
4670   }
4671 
4672   return make_load(ctrl, basic_plus_adr(str, str, coder_offset),
4673                    TypeInt::BYTE, T_BYTE, coder_field_idx, MemNode::unordered);
4674 }
4675 
4676 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4677   int value_offset = java_lang_String::value_offset_in_bytes();
4678   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4679                                                      false, NULL, 0);
4680   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4681 
4682   str = shenandoah_write_barrier(str);
4683 
4684   store_oop_to_object(control(), str,  basic_plus_adr(str, value_offset), value_field_type,
4685       value, TypeAryPtr::BYTES, T_OBJECT, MemNode::unordered);
4686 }
4687 
4688 void GraphKit::store_String_coder(Node* ctrl, Node* str, Node* value) {
4689   int coder_offset = java_lang_String::coder_offset_in_bytes();
4690   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4691                                                      false, NULL, 0);
4692 
4693   str = shenandoah_write_barrier(str);
4694 
4695   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4696   int coder_field_idx = C->get_alias_index(coder_field_type);
4697   store_to_memory(control(), basic_plus_adr(str, coder_offset),
4698                   value, T_BYTE, coder_field_idx, MemNode::unordered);
4699 }
4700 
4701 // Capture src and dst memory state with a MergeMemNode
4702 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4703   if (src_type == dst_type) {
4704     // Types are equal, we don't need a MergeMemNode
4705     return memory(src_type);
4706   }
4707   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4708   record_for_igvn(merge); // fold it up later, if possible
4709   int src_idx = C->get_alias_index(src_type);
4710   int dst_idx = C->get_alias_index(dst_type);
4711   merge->set_memory_at(src_idx, memory(src_idx));
4712   merge->set_memory_at(dst_idx, memory(dst_idx));
4713   return merge;
4714 }
4715 
4716 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4717   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4718   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4719   // If input and output memory types differ, capture both states to preserve
4720   // the dependency between preceding and subsequent loads/stores.
4721   // For example, the following program:
4722   //  StoreB
4723   //  compress_string
4724   //  LoadB
4725   // has this memory graph (use->def):
4726   //  LoadB -> compress_string -> CharMem
4727   //             ... -> StoreB -> ByteMem
4728   // The intrinsic hides the dependency between LoadB and StoreB, causing
4729   // the load to read from memory not containing the result of the StoreB.
4730   // The correct memory graph should look like this:
4731   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4732   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4733   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4734   Node* res_mem = _gvn.transform(new SCMemProjNode(str));
4735   set_memory(res_mem, TypeAryPtr::BYTES);
4736   return str;
4737 }
4738 
4739 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4740   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4741   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4742   // Capture src and dst memory (see comment in 'compress_string').
4743   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4744   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4745   set_memory(_gvn.transform(str), dst_type);
4746 }
4747 
4748 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4749 
4750   src = shenandoah_read_barrier(src);
4751   dst = shenandoah_write_barrier(dst);
4752 
4753   /**
4754    * int i_char = start;
4755    * for (int i_byte = 0; i_byte < count; i_byte++) {
4756    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4757    * }
4758    */
4759   add_predicate();
4760   RegionNode* head = new RegionNode(3);
4761   head->init_req(1, control());
4762   gvn().set_type(head, Type::CONTROL);
4763   record_for_igvn(head);
4764 
4765   Node* i_byte = new PhiNode(head, TypeInt::INT);
4766   i_byte->init_req(1, intcon(0));
4767   gvn().set_type(i_byte, TypeInt::INT);
4768   record_for_igvn(i_byte);
4769 
4770   Node* i_char = new PhiNode(head, TypeInt::INT);
4771   i_char->init_req(1, start);
4772   gvn().set_type(i_char, TypeInt::INT);
4773   record_for_igvn(i_char);
4774 
4775   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4776   gvn().set_type(mem, Type::MEMORY);
4777   record_for_igvn(mem);
4778   set_control(head);
4779   set_memory(mem, TypeAryPtr::BYTES);
4780   Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES);
4781   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4782                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4783                              false, false, true /* mismatched */);
4784 
4785   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4786   head->init_req(2, IfTrue(iff));
4787   mem->init_req(2, st);
4788   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4789   i_char->init_req(2, AddI(i_char, intcon(2)));
4790 
4791   set_control(IfFalse(iff));
4792   set_memory(st, TypeAryPtr::BYTES);
4793 }
4794 
4795 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4796   if (!field->is_constant()) {
4797     return NULL; // Field not marked as constant.
4798   }
4799   ciInstance* holder = NULL;
4800   if (!field->is_static()) {
4801     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4802     if (const_oop != NULL && const_oop->is_instance()) {
4803       holder = const_oop->as_instance();
4804     }
4805   }
4806   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4807                                                         /*is_unsigned_load=*/false);
4808   if (con_type != NULL) {
4809     return makecon(con_type);
4810   }
4811   return NULL;
4812 }
4813 
4814 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4815   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4816   // assumption of CCP analysis.
4817   return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true)));
4818 }
4819 
4820 Node* GraphKit::shenandoah_read_barrier(Node* obj) {
4821   if (UseShenandoahGC && ShenandoahReadBarrier) {
4822     return shenandoah_read_barrier_impl(obj, false, true, true);
4823   } else {
4824     return obj;
4825   }
4826 }
4827 
4828 Node* GraphKit::shenandoah_storeval_barrier(Node* obj) {
4829   if (UseShenandoahGC && ShenandoahStoreValBarrier) {
4830     return shenandoah_read_barrier_impl(obj, true, false, false);
4831   } else {
4832     return obj;
4833   }
4834 }
4835 
4836 Node* GraphKit::shenandoah_read_barrier_acmp(Node* obj) {
4837   return shenandoah_read_barrier_impl(obj, true, true, false);
4838 }
4839 
4840 Node* GraphKit::shenandoah_read_barrier_impl(Node* obj, bool use_ctrl, bool use_mem, bool allow_fromspace) {
4841 
4842   const Type* obj_type = obj->bottom_type();
4843   if (obj_type->higher_equal(TypePtr::NULL_PTR)) {
4844     return obj;
4845   }
4846   const TypePtr* adr_type = ShenandoahBarrierNode::brooks_pointer_type(obj_type);
4847   Node* mem = use_mem ? memory(adr_type) : immutable_memory();
4848 
4849   if (! ShenandoahBarrierNode::needs_barrier(&_gvn, NULL, obj, mem, allow_fromspace)) {
4850     // We know it is null, no barrier needed.
4851     return obj;
4852   }
4853 
4854 
4855   if (obj_type->meet(TypePtr::NULL_PTR) == obj_type->remove_speculative()) {
4856 
4857     // We don't know if it's null or not. Need null-check.
4858     enum { _not_null_path = 1, _null_path, PATH_LIMIT };
4859     RegionNode* region = new RegionNode(PATH_LIMIT);
4860     Node*       phi    = new PhiNode(region, obj_type);
4861     Node* null_ctrl = top();
4862     Node* not_null_obj = null_check_oop(obj, &null_ctrl);
4863 
4864     region->init_req(_null_path, null_ctrl);
4865     phi   ->init_req(_null_path, zerocon(T_OBJECT));
4866 
4867     Node* ctrl = use_ctrl ? control() : NULL;
4868     ShenandoahReadBarrierNode* rb = new ShenandoahReadBarrierNode(ctrl, mem, not_null_obj, allow_fromspace);
4869     Node* n = _gvn.transform(rb);
4870 
4871     region->init_req(_not_null_path, control());
4872     phi   ->init_req(_not_null_path, n);
4873 
4874     set_control(_gvn.transform(region));
4875     record_for_igvn(region);
4876     return _gvn.transform(phi);
4877 
4878   } else {
4879     // We know it is not null. Simple barrier is sufficient.
4880     Node* ctrl = use_ctrl ? control() : NULL;
4881     ShenandoahReadBarrierNode* rb = new ShenandoahReadBarrierNode(ctrl, mem, obj, allow_fromspace);
4882     Node* n = _gvn.transform(rb);
4883     record_for_igvn(n);
4884     return n;
4885   }
4886 }
4887 
4888 static Node* shenandoah_write_barrier_helper(GraphKit& kit, Node* obj, const TypePtr* adr_type) {
4889   ShenandoahWriteBarrierNode* wb = new ShenandoahWriteBarrierNode(kit.C, kit.control(), kit.memory(adr_type), obj);
4890   Node* n = kit.gvn().transform(wb);
4891   if (n == wb) { // New barrier needs memory projection.
4892     Node* proj = kit.gvn().transform(new ShenandoahWBMemProjNode(n));
4893     kit.set_memory(proj, adr_type);
4894   }
4895 
4896   return n;
4897 }
4898 
4899 Node* GraphKit::shenandoah_write_barrier(Node* obj) {
4900 
4901   if (UseShenandoahGC && ShenandoahWriteBarrier) {
4902 
4903     if (! ShenandoahBarrierNode::needs_barrier(&_gvn, NULL, obj, NULL, true)) {
4904       return obj;
4905     }
4906     const Type* obj_type = obj->bottom_type();
4907     const TypePtr* adr_type = ShenandoahBarrierNode::brooks_pointer_type(obj_type);
4908     if (obj_type->meet(TypePtr::NULL_PTR) == obj_type->remove_speculative()) {
4909       // We don't know if it's null or not. Need null-check.
4910       enum { _not_null_path = 1, _null_path, PATH_LIMIT };
4911       RegionNode* region = new RegionNode(PATH_LIMIT);
4912       Node*       phi    = new PhiNode(region, obj_type);
4913       Node*    memphi    = PhiNode::make(region, memory(adr_type), Type::MEMORY, C->alias_type(adr_type)->adr_type());
4914 
4915       Node* prev_mem = memory(adr_type);
4916       Node* null_ctrl = top();
4917       Node* not_null_obj = null_check_oop(obj, &null_ctrl);
4918 
4919       region->init_req(_null_path, null_ctrl);
4920       phi   ->init_req(_null_path, zerocon(T_OBJECT));
4921       memphi->init_req(_null_path, prev_mem);
4922 
4923       Node* n = shenandoah_write_barrier_helper(*this, not_null_obj, adr_type);
4924 
4925       region->init_req(_not_null_path, control());
4926       phi   ->init_req(_not_null_path, n);
4927       memphi->init_req(_not_null_path, memory(adr_type));
4928 
4929       set_control(_gvn.transform(region));
4930       record_for_igvn(region);
4931       set_memory(_gvn.transform(memphi), adr_type);
4932 
4933       Node* res_val = _gvn.transform(phi);
4934       // replace_in_map(obj, res_val);
4935       return res_val;
4936     } else {
4937       // We know it is not null. Simple barrier is sufficient.
4938       Node* n = shenandoah_write_barrier_helper(*this, obj, adr_type);
4939       // replace_in_map(obj, n);
4940       record_for_igvn(n);
4941       return n;
4942     }
4943 
4944   } else {
4945     return obj;
4946   }
4947 }