1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "gc/shared/collectedHeap.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/symbol.hpp"
  42 #include "runtime/atomic.hpp"
  43 #include "runtime/compilationPolicy.hpp"
  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/orderAccess.inline.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/safepoint.hpp"
  51 #include "runtime/signature.hpp"
  52 #include "runtime/stubCodeGenerator.hpp"
  53 #include "runtime/stubRoutines.hpp"
  54 #include "runtime/sweeper.hpp"
  55 #include "runtime/synchronizer.hpp"
  56 #include "runtime/thread.inline.hpp"
  57 #include "runtime/timerTrace.hpp"
  58 #include "services/runtimeService.hpp"
  59 #include "trace/tracing.hpp"
  60 #include "trace/traceMacros.hpp"
  61 #include "utilities/events.hpp"
  62 #include "utilities/macros.hpp"
  63 #if INCLUDE_ALL_GCS
  64 #include "gc/shenandoah/shenandoahConcurrentThread.hpp"
  65 #include "gc/cms/concurrentMarkSweepThread.hpp"
  66 #include "gc/g1/suspendibleThreadSet.hpp"
  67 #endif // INCLUDE_ALL_GCS
  68 #ifdef COMPILER1
  69 #include "c1/c1_globals.hpp"
  70 #endif
  71 
  72 // --------------------------------------------------------------------------------------------------
  73 // Implementation of Safepoint begin/end
  74 
  75 WorkGang* SafepointSynchronize::_cleanup_workers = NULL;
  76 
  77 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  78 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  79 volatile int SafepointSynchronize::_safepoint_counter = 0;
  80 int SafepointSynchronize::_current_jni_active_count = 0;
  81 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  82 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  83 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  84 static bool timeout_error_printed = false;
  85 
  86 // Roll all threads forward to a safepoint and suspend them all
  87 void SafepointSynchronize::begin() {
  88   EventSafepointBegin begin_event;
  89   Thread* myThread = Thread::current();
  90   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
  91 
  92   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
  93     _safepoint_begin_time = os::javaTimeNanos();
  94     _ts_of_current_safepoint = tty->time_stamp().seconds();
  95   }
  96 
  97 #if INCLUDE_ALL_GCS
  98   if (UseConcMarkSweepGC) {
  99     // In the future we should investigate whether CMS can use the
 100     // more-general mechanism below.  DLD (01/05).
 101     ConcurrentMarkSweepThread::synchronize(false);
 102   } else if (UseG1GC) {
 103     SuspendibleThreadSet::synchronize();
 104   }
 105 #endif // INCLUDE_ALL_GCS
 106 
 107   // By getting the Threads_lock, we assure that no threads are about to start or
 108   // exit. It is released again in SafepointSynchronize::end().
 109   Threads_lock->lock();
 110 
 111   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 112 
 113   int nof_threads = Threads::number_of_threads();
 114 
 115   log_debug(safepoint)("Safepoint synchronization initiated. (%d)", nof_threads);
 116 
 117   RuntimeService::record_safepoint_begin();
 118 
 119   MutexLocker mu(Safepoint_lock);
 120 
 121   // Reset the count of active JNI critical threads
 122   _current_jni_active_count = 0;
 123 
 124   // Set number of threads to wait for, before we initiate the callbacks
 125   _waiting_to_block = nof_threads;
 126   TryingToBlock     = 0 ;
 127   int still_running = nof_threads;
 128 
 129   // Save the starting time, so that it can be compared to see if this has taken
 130   // too long to complete.
 131   jlong safepoint_limit_time = 0;
 132   timeout_error_printed = false;
 133 
 134   // PrintSafepointStatisticsTimeout can be specified separately. When
 135   // specified, PrintSafepointStatistics will be set to true in
 136   // deferred_initialize_stat method. The initialization has to be done
 137   // early enough to avoid any races. See bug 6880029 for details.
 138   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 139     deferred_initialize_stat();
 140   }
 141 
 142   // Begin the process of bringing the system to a safepoint.
 143   // Java threads can be in several different states and are
 144   // stopped by different mechanisms:
 145   //
 146   //  1. Running interpreted
 147   //     The interpreter dispatch table is changed to force it to
 148   //     check for a safepoint condition between bytecodes.
 149   //  2. Running in native code
 150   //     When returning from the native code, a Java thread must check
 151   //     the safepoint _state to see if we must block.  If the
 152   //     VM thread sees a Java thread in native, it does
 153   //     not wait for this thread to block.  The order of the memory
 154   //     writes and reads of both the safepoint state and the Java
 155   //     threads state is critical.  In order to guarantee that the
 156   //     memory writes are serialized with respect to each other,
 157   //     the VM thread issues a memory barrier instruction
 158   //     (on MP systems).  In order to avoid the overhead of issuing
 159   //     a memory barrier for each Java thread making native calls, each Java
 160   //     thread performs a write to a single memory page after changing
 161   //     the thread state.  The VM thread performs a sequence of
 162   //     mprotect OS calls which forces all previous writes from all
 163   //     Java threads to be serialized.  This is done in the
 164   //     os::serialize_thread_states() call.  This has proven to be
 165   //     much more efficient than executing a membar instruction
 166   //     on every call to native code.
 167   //  3. Running compiled Code
 168   //     Compiled code reads a global (Safepoint Polling) page that
 169   //     is set to fault if we are trying to get to a safepoint.
 170   //  4. Blocked
 171   //     A thread which is blocked will not be allowed to return from the
 172   //     block condition until the safepoint operation is complete.
 173   //  5. In VM or Transitioning between states
 174   //     If a Java thread is currently running in the VM or transitioning
 175   //     between states, the safepointing code will wait for the thread to
 176   //     block itself when it attempts transitions to a new state.
 177   //
 178   {
 179     EventSafepointStateSynchronization sync_event;
 180     int initial_running = 0;
 181 
 182     _state            = _synchronizing;
 183     OrderAccess::fence();
 184 
 185     // Flush all thread states to memory
 186     if (!UseMembar) {
 187       os::serialize_thread_states();
 188     }
 189 
 190     // Make interpreter safepoint aware
 191     Interpreter::notice_safepoints();
 192 
 193     if (DeferPollingPageLoopCount < 0) {
 194       // Make polling safepoint aware
 195       guarantee (PageArmed == 0, "invariant") ;
 196       PageArmed = 1 ;
 197       os::make_polling_page_unreadable();
 198     }
 199 
 200     // Consider using active_processor_count() ... but that call is expensive.
 201     int ncpus = os::processor_count() ;
 202 
 203 #ifdef ASSERT
 204     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 205       assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 206       // Clear the visited flag to ensure that the critical counts are collected properly.
 207       cur->set_visited_for_critical_count(false);
 208     }
 209 #endif // ASSERT
 210 
 211     if (SafepointTimeout)
 212       safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 213 
 214     // Iterate through all threads until it have been determined how to stop them all at a safepoint
 215     unsigned int iterations = 0;
 216     int steps = 0 ;
 217     while(still_running > 0) {
 218       for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 219         assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 220         ThreadSafepointState *cur_state = cur->safepoint_state();
 221         if (cur_state->is_running()) {
 222           cur_state->examine_state_of_thread();
 223           if (!cur_state->is_running()) {
 224             still_running--;
 225             // consider adjusting steps downward:
 226             //   steps = 0
 227             //   steps -= NNN
 228             //   steps >>= 1
 229             //   steps = MIN(steps, 2000-100)
 230             //   if (iterations != 0) steps -= NNN
 231           }
 232           if (log_is_enabled(Trace, safepoint)) {
 233             ResourceMark rm;
 234             cur_state->print_on(Log(safepoint)::trace_stream());
 235           }
 236         }
 237       }
 238 
 239       if (iterations == 0) {
 240         initial_running = still_running;
 241         if (PrintSafepointStatistics) {
 242           begin_statistics(nof_threads, still_running);
 243         }
 244       }
 245 
 246       if (still_running > 0) {
 247         // Check for if it takes to long
 248         if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 249           print_safepoint_timeout(_spinning_timeout);
 250         }
 251 
 252         // Spin to avoid context switching.
 253         // There's a tension between allowing the mutators to run (and rendezvous)
 254         // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 255         // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 256         // spinning by the VM thread on a saturated system can increase rendezvous latency.
 257         // Blocking or yielding incur their own penalties in the form of context switching
 258         // and the resultant loss of $ residency.
 259         //
 260         // Further complicating matters is that yield() does not work as naively expected
 261         // on many platforms -- yield() does not guarantee that any other ready threads
 262         // will run.   As such we revert to naked_short_sleep() after some number of iterations.
 263         // nakes_short_sleep() is implemented as a short unconditional sleep.
 264         // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 265         // can actually increase the time it takes the VM thread to detect that a system-wide
 266         // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 267         // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 268         // In that case the mutators will be stalled waiting for the safepoint to complete and the
 269         // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 270         // will eventually wake up and detect that all mutators are safe, at which point
 271         // we'll again make progress.
 272         //
 273         // Beware too that that the VMThread typically runs at elevated priority.
 274         // Its default priority is higher than the default mutator priority.
 275         // Obviously, this complicates spinning.
 276         //
 277         // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 278         // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 279         //
 280         // See the comments in synchronizer.cpp for additional remarks on spinning.
 281         //
 282         // In the future we might:
 283         // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
 284         //    This is tricky as the path used by a thread exiting the JVM (say on
 285         //    on JNI call-out) simply stores into its state field.  The burden
 286         //    is placed on the VM thread, which must poll (spin).
 287         // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 288         //    we might aggressively scan the stacks of threads that are already safe.
 289         // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 290         //    If all the mutators are ONPROC there's no reason to sleep or yield.
 291         // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 292         // 5. Check system saturation.  If the system is not fully saturated then
 293         //    simply spin and avoid sleep/yield.
 294         // 6. As still-running mutators rendezvous they could unpark the sleeping
 295         //    VMthread.  This works well for still-running mutators that become
 296         //    safe.  The VMthread must still poll for mutators that call-out.
 297         // 7. Drive the policy on time-since-begin instead of iterations.
 298         // 8. Consider making the spin duration a function of the # of CPUs:
 299         //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 300         //    Alternately, instead of counting iterations of the outer loop
 301         //    we could count the # of threads visited in the inner loop, above.
 302         // 9. On windows consider using the return value from SwitchThreadTo()
 303         //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 304 
 305         if (int(iterations) == DeferPollingPageLoopCount) {
 306           guarantee (PageArmed == 0, "invariant") ;
 307           PageArmed = 1 ;
 308           os::make_polling_page_unreadable();
 309         }
 310 
 311         // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 312         // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 313         ++steps ;
 314         if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 315           SpinPause() ;     // MP-Polite spin
 316         } else
 317           if (steps < DeferThrSuspendLoopCount) {
 318             os::naked_yield() ;
 319           } else {
 320             os::naked_short_sleep(1);
 321           }
 322 
 323         iterations ++ ;
 324       }
 325       assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 326     }
 327     assert(still_running == 0, "sanity check");
 328 
 329     if (PrintSafepointStatistics) {
 330       update_statistics_on_spin_end();
 331     }
 332 
 333     if (sync_event.should_commit()) {
 334       sync_event.set_safepointId(safepoint_counter());
 335       sync_event.set_initialThreadCount(initial_running);
 336       sync_event.set_runningThreadCount(_waiting_to_block);
 337       sync_event.set_iterations(iterations);
 338       sync_event.commit();
 339     }
 340   } //EventSafepointStateSync
 341 
 342   // wait until all threads are stopped
 343   {
 344     EventSafepointWaitBlocked wait_blocked_event;
 345     int initial_waiting_to_block = _waiting_to_block;
 346 
 347     while (_waiting_to_block > 0) {
 348       log_debug(safepoint)("Waiting for %d thread(s) to block", _waiting_to_block);
 349       if (!SafepointTimeout || timeout_error_printed) {
 350         Safepoint_lock->wait(true);  // true, means with no safepoint checks
 351       } else {
 352         // Compute remaining time
 353         jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 354 
 355         // If there is no remaining time, then there is an error
 356         if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 357           print_safepoint_timeout(_blocking_timeout);
 358         }
 359       }
 360     }
 361     assert(_waiting_to_block == 0, "sanity check");
 362 
 363 #ifndef PRODUCT
 364     if (SafepointTimeout) {
 365       jlong current_time = os::javaTimeNanos();
 366       if (safepoint_limit_time < current_time) {
 367         tty->print_cr("# SafepointSynchronize: Finished after "
 368                       INT64_FORMAT_W(6) " ms",
 369                       ((current_time - safepoint_limit_time) / MICROUNITS +
 370                        (jlong)SafepointTimeoutDelay));
 371       }
 372     }
 373 #endif
 374 
 375     assert((_safepoint_counter & 0x1) == 0, "must be even");
 376     assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 377     _safepoint_counter ++;
 378 
 379     // Record state
 380     _state = _synchronized;
 381 
 382     OrderAccess::fence();
 383 
 384     if (wait_blocked_event.should_commit()) {
 385       wait_blocked_event.set_safepointId(safepoint_counter());
 386       wait_blocked_event.set_runningThreadCount(initial_waiting_to_block);
 387       wait_blocked_event.commit();
 388     }
 389   } // EventSafepointWaitBlocked
 390 
 391 #ifdef ASSERT
 392   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 393     // make sure all the threads were visited
 394     assert(cur->was_visited_for_critical_count(), "missed a thread");
 395   }
 396 #endif // ASSERT
 397 
 398   // Update the count of active JNI critical regions
 399   GCLocker::set_jni_lock_count(_current_jni_active_count);
 400 
 401   if (log_is_enabled(Debug, safepoint)) {
 402     VM_Operation *op = VMThread::vm_operation();
 403     log_debug(safepoint)("Entering safepoint region: %s",
 404                          (op != NULL) ? op->name() : "no vm operation");
 405   }
 406 
 407   RuntimeService::record_safepoint_synchronized();
 408   if (PrintSafepointStatistics) {
 409     update_statistics_on_sync_end(os::javaTimeNanos());
 410   }
 411 
 412   // Call stuff that needs to be run when a safepoint is just about to be completed
 413   {
 414     EventSafepointCleanup cleanup_event;
 415     do_cleanup_tasks();
 416     if (cleanup_event.should_commit()) {
 417       cleanup_event.set_safepointId(safepoint_counter());
 418       cleanup_event.commit();
 419     }
 420   }
 421 
 422   if (PrintSafepointStatistics) {
 423     // Record how much time spend on the above cleanup tasks
 424     update_statistics_on_cleanup_end(os::javaTimeNanos());
 425   }
 426   if (begin_event.should_commit()) {
 427     begin_event.set_safepointId(safepoint_counter());
 428     begin_event.set_totalThreadCount(nof_threads);
 429     begin_event.set_jniCriticalThreadCount(_current_jni_active_count);
 430     begin_event.commit();
 431   }
 432 }
 433 
 434 // Wake up all threads, so they are ready to resume execution after the safepoint
 435 // operation has been carried out
 436 void SafepointSynchronize::end() {
 437   EventSafepointEnd event;
 438   int safepoint_id = safepoint_counter(); // Keep the odd counter as "id"
 439 
 440   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 441   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 442   _safepoint_counter ++;
 443   // memory fence isn't required here since an odd _safepoint_counter
 444   // value can do no harm and a fence is issued below anyway.
 445 
 446   DEBUG_ONLY(Thread* myThread = Thread::current();)
 447   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 448 
 449   if (PrintSafepointStatistics) {
 450     end_statistics(os::javaTimeNanos());
 451   }
 452 
 453 #ifdef ASSERT
 454   // A pending_exception cannot be installed during a safepoint.  The threads
 455   // may install an async exception after they come back from a safepoint into
 456   // pending_exception after they unblock.  But that should happen later.
 457   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 458     assert (!(cur->has_pending_exception() &&
 459               cur->safepoint_state()->is_at_poll_safepoint()),
 460             "safepoint installed a pending exception");
 461   }
 462 #endif // ASSERT
 463 
 464   if (PageArmed) {
 465     // Make polling safepoint aware
 466     os::make_polling_page_readable();
 467     PageArmed = 0 ;
 468   }
 469 
 470   // Remove safepoint check from interpreter
 471   Interpreter::ignore_safepoints();
 472 
 473   {
 474     MutexLocker mu(Safepoint_lock);
 475 
 476     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 477 
 478     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 479     // when they get restarted.
 480     _state = _not_synchronized;
 481     OrderAccess::fence();
 482 
 483     log_debug(safepoint)("Leaving safepoint region");
 484 
 485     // Start suspended threads
 486     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 487       // A problem occurring on Solaris is when attempting to restart threads
 488       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 489       // to the next one (since it has been running the longest).  We then have
 490       // to wait for a cpu to become available before we can continue restarting
 491       // threads.
 492       // FIXME: This causes the performance of the VM to degrade when active and with
 493       // large numbers of threads.  Apparently this is due to the synchronous nature
 494       // of suspending threads.
 495       //
 496       // TODO-FIXME: the comments above are vestigial and no longer apply.
 497       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 498       if (VMThreadHintNoPreempt) {
 499         os::hint_no_preempt();
 500       }
 501       ThreadSafepointState* cur_state = current->safepoint_state();
 502       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 503       cur_state->restart();
 504       assert(cur_state->is_running(), "safepoint state has not been reset");
 505     }
 506 
 507     RuntimeService::record_safepoint_end();
 508 
 509     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 510     // blocked in signal_thread_blocked
 511     Threads_lock->unlock();
 512 
 513   }
 514 #if INCLUDE_ALL_GCS
 515   // If there are any concurrent GC threads resume them.
 516   if (UseConcMarkSweepGC) {
 517     ConcurrentMarkSweepThread::desynchronize(false);
 518   } else if (UseG1GC) {
 519     SuspendibleThreadSet::desynchronize();
 520   }
 521 #endif // INCLUDE_ALL_GCS
 522   // record this time so VMThread can keep track how much time has elapsed
 523   // since last safepoint.
 524   _end_of_last_safepoint = os::javaTimeMillis();
 525 
 526   if (event.should_commit()) {
 527     event.set_safepointId(safepoint_id);
 528     event.commit();
 529   }
 530 }
 531 
 532 bool SafepointSynchronize::is_cleanup_needed() {
 533   // Need a safepoint if some inline cache buffers is non-empty
 534   if (!InlineCacheBuffer::is_empty()) return true;
 535   return false;
 536 }
 537 
 538 static void event_safepoint_cleanup_task_commit(EventSafepointCleanupTask& event, const char* name) {
 539   if (event.should_commit()) {
 540     event.set_safepointId(SafepointSynchronize::safepoint_counter());
 541     event.set_name(name);
 542     event.commit();
 543   }
 544 }
 545 
 546 // Various cleaning tasks that should be done periodically at safepoints
 547 void SafepointSynchronize::do_cleanup_tasks() {
 548   VM_Operation* op = VMThread::vm_operation();
 549   // If op does both deflating and nmethod marking, we don't bother firing up
 550   // the workers.
 551   bool op_does_cleanup = op != NULL && op->marks_nmethods() && op->deflates_idle_monitors();
 552   if (ParallelSPCleanup && ! op_does_cleanup) {
 553     parallel_cleanup();
 554   } else {
 555     serial_cleanup();
 556   }
 557 }
 558 
 559 void SafepointSynchronize::serial_cleanup() {
 560   VM_Operation* op = VMThread::vm_operation();
 561   {
 562     const char* name = "deflating idle monitors";
 563     EventSafepointCleanupTask event;
 564     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 565     ObjectSynchronizer::deflate_idle_monitors(op == NULL || ! op->deflates_idle_monitors());
 566     event_safepoint_cleanup_task_commit(event, name);
 567   }
 568 
 569   {
 570     const char* name = "updating inline caches";
 571     EventSafepointCleanupTask event;
 572     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 573     InlineCacheBuffer::update_inline_caches();
 574     event_safepoint_cleanup_task_commit(event, name);
 575   }
 576   {
 577     const char* name = "compilation policy safepoint handler";
 578     EventSafepointCleanupTask event;
 579     TraceTime timer("compilation policy safepoint handler", TRACETIME_LOG(Info, safepoint, cleanup));
 580     CompilationPolicy::policy()->do_safepoint_work();
 581     event_safepoint_cleanup_task_commit(event, name);
 582   }
 583 
 584   if (op == NULL || ! op->marks_nmethods()) {
 585     const char* name = "mark nmethods";
 586     EventSafepointCleanupTask event;
 587     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 588     NMethodSweeper::mark_active_nmethods();
 589     event_safepoint_cleanup_task_commit(event, name);
 590   }
 591 
 592   if (SymbolTable::needs_rehashing()) {
 593     const char* name = "rehashing symbol table";
 594     EventSafepointCleanupTask event;
 595     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 596     SymbolTable::rehash_table();
 597     event_safepoint_cleanup_task_commit(event, name);
 598   }
 599 
 600   if (StringTable::needs_rehashing()) {
 601     const char* name = "rehashing string table";
 602     EventSafepointCleanupTask event;
 603     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 604     StringTable::rehash_table();
 605     event_safepoint_cleanup_task_commit(event, name);
 606   }
 607 
 608   {
 609     // CMS delays purging the CLDG until the beginning of the next safepoint and to
 610     // make sure concurrent sweep is done
 611     const char* name = "purging class loader data graph";
 612     EventSafepointCleanupTask event;
 613     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 614     ClassLoaderDataGraph::purge_if_needed();
 615     event_safepoint_cleanup_task_commit(event, name);
 616   }
 617 }
 618 
 619 class ParallelSPCleanupThreadClosure : public ThreadClosure {
 620 private:
 621   bool _do_deflate_idle_monitors;
 622   CodeBlobClosure* _nmethod_cl;
 623 
 624 public:
 625   ParallelSPCleanupThreadClosure() {
 626     VM_Operation* op = VMThread::vm_operation();
 627     _do_deflate_idle_monitors = op == NULL || ! op->deflates_idle_monitors();
 628     if (op == NULL || ! op->marks_nmethods()) {
 629       _nmethod_cl = NMethodSweeper::prepare_mark_active_nmethods();
 630     } else {
 631       _nmethod_cl = NULL;
 632     }
 633   }
 634 
 635   void do_thread(Thread* thread) {
 636     if (_do_deflate_idle_monitors) {
 637       ObjectSynchronizer::deflate_idle_monitors_and_oops_do(thread, NULL);
 638     }
 639     if (_nmethod_cl != NULL) {
 640       if (thread->is_Java_thread()) {
 641         JavaThread* jt = (JavaThread*) thread;
 642         if(! jt->is_Code_cache_sweeper_thread()) {
 643           jt->nmethods_do(_nmethod_cl);
 644         }
 645       }
 646     }
 647   }
 648 };
 649 
 650 class ParallelSPCleanupTask : public AbstractGangTask {
 651 private:
 652   SubTasksDone _subtasks;
 653 public:
 654   ParallelSPCleanupTask() :
 655     AbstractGangTask("Parallel Safepoint Cleanup"),
 656     _subtasks(SafepointSynchronize::SAFEPOINT_CLEANUP_NUM_TASKS) {}
 657 
 658   void work(uint worker_id) {
 659     // All threads deflate monitors and mark nmethods (if necessary).
 660     ParallelSPCleanupThreadClosure cleanup_threads_cl;
 661     Threads::parallel_java_threads_do(&cleanup_threads_cl);
 662 
 663     if (! _subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_DEFLATE_MONITORS)) {
 664       const char* name = "deflating idle monitors";
 665       EventSafepointCleanupTask event;
 666       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 667       ObjectSynchronizer::deflate_idle_monitors(false);
 668       event_safepoint_cleanup_task_commit(event, name);
 669     }
 670     if (! _subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_UPDATE_INLINE_CACHES)) {
 671       const char* name = "updating inline caches";
 672       EventSafepointCleanupTask event;
 673       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 674       InlineCacheBuffer::update_inline_caches();
 675       event_safepoint_cleanup_task_commit(event, name);
 676     }
 677 
 678     if (! _subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_SYMBOL_TABLE_REHASH)) {
 679       const char* name = "rehashing symbol table";
 680       EventSafepointCleanupTask event;
 681       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 682       SymbolTable::rehash_table();
 683       event_safepoint_cleanup_task_commit(event, name);
 684     }
 685 
 686     if (! _subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_STRING_TABLE_REHASH)) {
 687       const char* name = "rehashing string table";
 688       EventSafepointCleanupTask event;
 689       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 690       StringTable::rehash_table();
 691       event_safepoint_cleanup_task_commit(event, name);
 692     }
 693 
 694     if (! _subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_CLD_PURGE)) {
 695       // CMS delays purging the CLDG until the beginning of the next safepoint and to
 696       // make sure concurrent sweep is done
 697       const char* name = "purging class loader data graph";
 698       EventSafepointCleanupTask event;
 699       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 700       ClassLoaderDataGraph::purge_if_needed();
 701       event_safepoint_cleanup_task_commit(event, name);
 702     }
 703   }
 704 };
 705 
 706 void SafepointSynchronize::parallel_cleanup() {
 707   // Deferred init
 708   if (_cleanup_workers == NULL) {
 709     _cleanup_workers = new WorkGang("Parallel Safepoint Cleanup", ParallelSPCleanupThreads, false, false);
 710     _cleanup_workers->initialize_workers();
 711   }
 712 
 713   StrongRootsScope srs(_cleanup_workers->active_workers());
 714   ParallelSPCleanupTask cleanup_task;
 715   _cleanup_workers->run_task(&cleanup_task);
 716 }
 717 
 718 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 719   switch(state) {
 720   case _thread_in_native:
 721     // native threads are safe if they have no java stack or have walkable stack
 722     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 723 
 724    // blocked threads should have already have walkable stack
 725   case _thread_blocked:
 726     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 727     return true;
 728 
 729   default:
 730     return false;
 731   }
 732 }
 733 
 734 
 735 // See if the thread is running inside a lazy critical native and
 736 // update the thread critical count if so.  Also set a suspend flag to
 737 // cause the native wrapper to return into the JVM to do the unlock
 738 // once the native finishes.
 739 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 740   if (state == _thread_in_native &&
 741       thread->has_last_Java_frame() &&
 742       thread->frame_anchor()->walkable()) {
 743     // This thread might be in a critical native nmethod so look at
 744     // the top of the stack and increment the critical count if it
 745     // is.
 746     frame wrapper_frame = thread->last_frame();
 747     CodeBlob* stub_cb = wrapper_frame.cb();
 748     if (stub_cb != NULL &&
 749         stub_cb->is_nmethod() &&
 750         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 751       // A thread could potentially be in a critical native across
 752       // more than one safepoint, so only update the critical state on
 753       // the first one.  When it returns it will perform the unlock.
 754       if (!thread->do_critical_native_unlock()) {
 755 #ifdef ASSERT
 756         if (!thread->in_critical()) {
 757           GCLocker::increment_debug_jni_lock_count();
 758         }
 759 #endif
 760         thread->enter_critical();
 761         // Make sure the native wrapper calls back on return to
 762         // perform the needed critical unlock.
 763         thread->set_critical_native_unlock();
 764       }
 765     }
 766   }
 767 }
 768 
 769 
 770 
 771 // -------------------------------------------------------------------------------------------------------
 772 // Implementation of Safepoint callback point
 773 
 774 void SafepointSynchronize::block(JavaThread *thread) {
 775   assert(thread != NULL, "thread must be set");
 776   assert(thread->is_Java_thread(), "not a Java thread");
 777 
 778   // Threads shouldn't block if they are in the middle of printing, but...
 779   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 780 
 781   // Only bail from the block() call if the thread is gone from the
 782   // thread list; starting to exit should still block.
 783   if (thread->is_terminated()) {
 784      // block current thread if we come here from native code when VM is gone
 785      thread->block_if_vm_exited();
 786 
 787      // otherwise do nothing
 788      return;
 789   }
 790 
 791   JavaThreadState state = thread->thread_state();
 792   thread->frame_anchor()->make_walkable(thread);
 793 
 794   // Check that we have a valid thread_state at this point
 795   switch(state) {
 796     case _thread_in_vm_trans:
 797     case _thread_in_Java:        // From compiled code
 798 
 799       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 800       // we pretend we are still in the VM.
 801       thread->set_thread_state(_thread_in_vm);
 802 
 803       if (is_synchronizing()) {
 804          Atomic::inc (&TryingToBlock) ;
 805       }
 806 
 807       // We will always be holding the Safepoint_lock when we are examine the state
 808       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 809       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 810       Safepoint_lock->lock_without_safepoint_check();
 811       if (is_synchronizing()) {
 812         // Decrement the number of threads to wait for and signal vm thread
 813         assert(_waiting_to_block > 0, "sanity check");
 814         _waiting_to_block--;
 815         thread->safepoint_state()->set_has_called_back(true);
 816 
 817         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 818         if (thread->in_critical()) {
 819           // Notice that this thread is in a critical section
 820           increment_jni_active_count();
 821         }
 822 
 823         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 824         if (_waiting_to_block == 0) {
 825           Safepoint_lock->notify_all();
 826         }
 827       }
 828 
 829       // We transition the thread to state _thread_blocked here, but
 830       // we can't do our usual check for external suspension and then
 831       // self-suspend after the lock_without_safepoint_check() call
 832       // below because we are often called during transitions while
 833       // we hold different locks. That would leave us suspended while
 834       // holding a resource which results in deadlocks.
 835       thread->set_thread_state(_thread_blocked);
 836       Safepoint_lock->unlock();
 837 
 838       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 839       // the entire safepoint, the threads will all line up here during the safepoint.
 840       Threads_lock->lock_without_safepoint_check();
 841       // restore original state. This is important if the thread comes from compiled code, so it
 842       // will continue to execute with the _thread_in_Java state.
 843       thread->set_thread_state(state);
 844       Threads_lock->unlock();
 845       break;
 846 
 847     case _thread_in_native_trans:
 848     case _thread_blocked_trans:
 849     case _thread_new_trans:
 850       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 851         thread->print_thread_state();
 852         fatal("Deadlock in safepoint code.  "
 853               "Should have called back to the VM before blocking.");
 854       }
 855 
 856       // We transition the thread to state _thread_blocked here, but
 857       // we can't do our usual check for external suspension and then
 858       // self-suspend after the lock_without_safepoint_check() call
 859       // below because we are often called during transitions while
 860       // we hold different locks. That would leave us suspended while
 861       // holding a resource which results in deadlocks.
 862       thread->set_thread_state(_thread_blocked);
 863 
 864       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 865       // the safepoint code might still be waiting for it to block. We need to change the state here,
 866       // so it can see that it is at a safepoint.
 867 
 868       // Block until the safepoint operation is completed.
 869       Threads_lock->lock_without_safepoint_check();
 870 
 871       // Restore state
 872       thread->set_thread_state(state);
 873 
 874       Threads_lock->unlock();
 875       break;
 876 
 877     default:
 878      fatal("Illegal threadstate encountered: %d", state);
 879   }
 880 
 881   // Check for pending. async. exceptions or suspends - except if the
 882   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 883   // is called last since it grabs a lock and we only want to do that when
 884   // we must.
 885   //
 886   // Note: we never deliver an async exception at a polling point as the
 887   // compiler may not have an exception handler for it. The polling
 888   // code will notice the async and deoptimize and the exception will
 889   // be delivered. (Polling at a return point is ok though). Sure is
 890   // a lot of bother for a deprecated feature...
 891   //
 892   // We don't deliver an async exception if the thread state is
 893   // _thread_in_native_trans so JNI functions won't be called with
 894   // a surprising pending exception. If the thread state is going back to java,
 895   // async exception is checked in check_special_condition_for_native_trans().
 896 
 897   if (state != _thread_blocked_trans &&
 898       state != _thread_in_vm_trans &&
 899       thread->has_special_runtime_exit_condition()) {
 900     thread->handle_special_runtime_exit_condition(
 901       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 902   }
 903 }
 904 
 905 // ------------------------------------------------------------------------------------------------------
 906 // Exception handlers
 907 
 908 
 909 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 910   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 911   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 912   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 913 
 914   if (ShowSafepointMsgs) {
 915     tty->print("handle_polling_page_exception: ");
 916   }
 917 
 918   if (PrintSafepointStatistics) {
 919     inc_page_trap_count();
 920   }
 921 
 922   ThreadSafepointState* state = thread->safepoint_state();
 923 
 924   state->handle_polling_page_exception();
 925 }
 926 
 927 
 928 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 929   if (!timeout_error_printed) {
 930     timeout_error_printed = true;
 931     // Print out the thread info which didn't reach the safepoint for debugging
 932     // purposes (useful when there are lots of threads in the debugger).
 933     tty->cr();
 934     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 935     if (reason ==  _spinning_timeout) {
 936       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 937     } else if (reason == _blocking_timeout) {
 938       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 939     }
 940 
 941     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 942     ThreadSafepointState *cur_state;
 943     ResourceMark rm;
 944     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 945         cur_thread = cur_thread->next()) {
 946       cur_state = cur_thread->safepoint_state();
 947 
 948       if (cur_thread->thread_state() != _thread_blocked &&
 949           ((reason == _spinning_timeout && cur_state->is_running()) ||
 950            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 951         tty->print("# ");
 952         cur_thread->print();
 953         tty->cr();
 954       }
 955     }
 956     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 957   }
 958 
 959   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 960   // ShowMessageBoxOnError.
 961   if (DieOnSafepointTimeout) {
 962     VM_Operation *op = VMThread::vm_operation();
 963     fatal("Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 964           SafepointTimeoutDelay,
 965           op != NULL ? op->name() : "no vm operation");
 966   }
 967 }
 968 
 969 
 970 // -------------------------------------------------------------------------------------------------------
 971 // Implementation of ThreadSafepointState
 972 
 973 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 974   _thread = thread;
 975   _type   = _running;
 976   _has_called_back = false;
 977   _at_poll_safepoint = false;
 978 }
 979 
 980 void ThreadSafepointState::create(JavaThread *thread) {
 981   ThreadSafepointState *state = new ThreadSafepointState(thread);
 982   thread->set_safepoint_state(state);
 983 }
 984 
 985 void ThreadSafepointState::destroy(JavaThread *thread) {
 986   if (thread->safepoint_state()) {
 987     delete(thread->safepoint_state());
 988     thread->set_safepoint_state(NULL);
 989   }
 990 }
 991 
 992 void ThreadSafepointState::examine_state_of_thread() {
 993   assert(is_running(), "better be running or just have hit safepoint poll");
 994 
 995   JavaThreadState state = _thread->thread_state();
 996 
 997   // Save the state at the start of safepoint processing.
 998   _orig_thread_state = state;
 999 
1000   // Check for a thread that is suspended. Note that thread resume tries
1001   // to grab the Threads_lock which we own here, so a thread cannot be
1002   // resumed during safepoint synchronization.
1003 
1004   // We check to see if this thread is suspended without locking to
1005   // avoid deadlocking with a third thread that is waiting for this
1006   // thread to be suspended. The third thread can notice the safepoint
1007   // that we're trying to start at the beginning of its SR_lock->wait()
1008   // call. If that happens, then the third thread will block on the
1009   // safepoint while still holding the underlying SR_lock. We won't be
1010   // able to get the SR_lock and we'll deadlock.
1011   //
1012   // We don't need to grab the SR_lock here for two reasons:
1013   // 1) The suspend flags are both volatile and are set with an
1014   //    Atomic::cmpxchg() call so we should see the suspended
1015   //    state right away.
1016   // 2) We're being called from the safepoint polling loop; if
1017   //    we don't see the suspended state on this iteration, then
1018   //    we'll come around again.
1019   //
1020   bool is_suspended = _thread->is_ext_suspended();
1021   if (is_suspended) {
1022     roll_forward(_at_safepoint);
1023     return;
1024   }
1025 
1026   // Some JavaThread states have an initial safepoint state of
1027   // running, but are actually at a safepoint. We will happily
1028   // agree and update the safepoint state here.
1029   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
1030     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
1031     roll_forward(_at_safepoint);
1032     return;
1033   }
1034 
1035   if (state == _thread_in_vm) {
1036     roll_forward(_call_back);
1037     return;
1038   }
1039 
1040   // All other thread states will continue to run until they
1041   // transition and self-block in state _blocked
1042   // Safepoint polling in compiled code causes the Java threads to do the same.
1043   // Note: new threads may require a malloc so they must be allowed to finish
1044 
1045   assert(is_running(), "examine_state_of_thread on non-running thread");
1046   return;
1047 }
1048 
1049 // Returns true is thread could not be rolled forward at present position.
1050 void ThreadSafepointState::roll_forward(suspend_type type) {
1051   _type = type;
1052 
1053   switch(_type) {
1054     case _at_safepoint:
1055       SafepointSynchronize::signal_thread_at_safepoint();
1056       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
1057       if (_thread->in_critical()) {
1058         // Notice that this thread is in a critical section
1059         SafepointSynchronize::increment_jni_active_count();
1060       }
1061       break;
1062 
1063     case _call_back:
1064       set_has_called_back(false);
1065       break;
1066 
1067     case _running:
1068     default:
1069       ShouldNotReachHere();
1070   }
1071 }
1072 
1073 void ThreadSafepointState::restart() {
1074   switch(type()) {
1075     case _at_safepoint:
1076     case _call_back:
1077       break;
1078 
1079     case _running:
1080     default:
1081        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
1082                      p2i(_thread), _type);
1083        _thread->print();
1084       ShouldNotReachHere();
1085   }
1086   _type = _running;
1087   set_has_called_back(false);
1088 }
1089 
1090 
1091 void ThreadSafepointState::print_on(outputStream *st) const {
1092   const char *s = NULL;
1093 
1094   switch(_type) {
1095     case _running                : s = "_running";              break;
1096     case _at_safepoint           : s = "_at_safepoint";         break;
1097     case _call_back              : s = "_call_back";            break;
1098     default:
1099       ShouldNotReachHere();
1100   }
1101 
1102   st->print_cr("Thread: " INTPTR_FORMAT
1103               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
1104                p2i(_thread), _thread->osthread()->thread_id(), s, _has_called_back,
1105                _at_poll_safepoint);
1106 
1107   _thread->print_thread_state_on(st);
1108 }
1109 
1110 // ---------------------------------------------------------------------------------------------------------------------
1111 
1112 // Block the thread at the safepoint poll or poll return.
1113 void ThreadSafepointState::handle_polling_page_exception() {
1114 
1115   // Check state.  block() will set thread state to thread_in_vm which will
1116   // cause the safepoint state _type to become _call_back.
1117   assert(type() == ThreadSafepointState::_running,
1118          "polling page exception on thread not running state");
1119 
1120   // Step 1: Find the nmethod from the return address
1121   if (ShowSafepointMsgs && Verbose) {
1122     tty->print_cr("Polling page exception at " INTPTR_FORMAT, p2i(thread()->saved_exception_pc()));
1123   }
1124   address real_return_addr = thread()->saved_exception_pc();
1125 
1126   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1127   assert(cb != NULL && cb->is_compiled(), "return address should be in nmethod");
1128   CompiledMethod* nm = (CompiledMethod*)cb;
1129 
1130   // Find frame of caller
1131   frame stub_fr = thread()->last_frame();
1132   CodeBlob* stub_cb = stub_fr.cb();
1133   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1134   RegisterMap map(thread(), true);
1135   frame caller_fr = stub_fr.sender(&map);
1136 
1137   // Should only be poll_return or poll
1138   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1139 
1140   // This is a poll immediately before a return. The exception handling code
1141   // has already had the effect of causing the return to occur, so the execution
1142   // will continue immediately after the call. In addition, the oopmap at the
1143   // return point does not mark the return value as an oop (if it is), so
1144   // it needs a handle here to be updated.
1145   if( nm->is_at_poll_return(real_return_addr) ) {
1146     // See if return type is an oop.
1147     bool return_oop = nm->method()->is_returning_oop();
1148     Handle return_value;
1149     if (return_oop) {
1150       // The oop result has been saved on the stack together with all
1151       // the other registers. In order to preserve it over GCs we need
1152       // to keep it in a handle.
1153       oop result = caller_fr.saved_oop_result(&map);
1154       assert(result == NULL || result->is_oop(), "must be oop");
1155       return_value = Handle(thread(), result);
1156       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1157     }
1158 
1159     // Block the thread
1160     SafepointSynchronize::block(thread());
1161 
1162     // restore oop result, if any
1163     if (return_oop) {
1164       caller_fr.set_saved_oop_result(&map, return_value());
1165     }
1166   }
1167 
1168   // This is a safepoint poll. Verify the return address and block.
1169   else {
1170     set_at_poll_safepoint(true);
1171 
1172     // verify the blob built the "return address" correctly
1173     assert(real_return_addr == caller_fr.pc(), "must match");
1174 
1175     // Block the thread
1176     SafepointSynchronize::block(thread());
1177     set_at_poll_safepoint(false);
1178 
1179     // If we have a pending async exception deoptimize the frame
1180     // as otherwise we may never deliver it.
1181     if (thread()->has_async_condition()) {
1182       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1183       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1184     }
1185 
1186     // If an exception has been installed we must check for a pending deoptimization
1187     // Deoptimize frame if exception has been thrown.
1188 
1189     if (thread()->has_pending_exception() ) {
1190       RegisterMap map(thread(), true);
1191       frame caller_fr = stub_fr.sender(&map);
1192       if (caller_fr.is_deoptimized_frame()) {
1193         // The exception patch will destroy registers that are still
1194         // live and will be needed during deoptimization. Defer the
1195         // Async exception should have deferred the exception until the
1196         // next safepoint which will be detected when we get into
1197         // the interpreter so if we have an exception now things
1198         // are messed up.
1199 
1200         fatal("Exception installed and deoptimization is pending");
1201       }
1202     }
1203   }
1204 }
1205 
1206 
1207 //
1208 //                     Statistics & Instrumentations
1209 //
1210 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1211 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1212 int    SafepointSynchronize::_cur_stat_index = 0;
1213 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1214 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1215 jlong  SafepointSynchronize::_max_sync_time = 0;
1216 jlong  SafepointSynchronize::_max_vmop_time = 0;
1217 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1218 
1219 static jlong  cleanup_end_time = 0;
1220 static bool   need_to_track_page_armed_status = false;
1221 static bool   init_done = false;
1222 
1223 // Helper method to print the header.
1224 static void print_header() {
1225   tty->print("         vmop                    "
1226              "[threads: total initially_running wait_to_block]    ");
1227   tty->print("[time: spin block sync cleanup vmop] ");
1228 
1229   // no page armed status printed out if it is always armed.
1230   if (need_to_track_page_armed_status) {
1231     tty->print("page_armed ");
1232   }
1233 
1234   tty->print_cr("page_trap_count");
1235 }
1236 
1237 void SafepointSynchronize::deferred_initialize_stat() {
1238   if (init_done) return;
1239 
1240   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1241   // be printed right away, in which case, _safepoint_stats will regress to
1242   // a single element array. Otherwise, it is a circular ring buffer with default
1243   // size of PrintSafepointStatisticsCount.
1244   int stats_array_size;
1245   if (PrintSafepointStatisticsTimeout > 0) {
1246     stats_array_size = 1;
1247     PrintSafepointStatistics = true;
1248   } else {
1249     stats_array_size = PrintSafepointStatisticsCount;
1250   }
1251   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1252                                                  * sizeof(SafepointStats), mtInternal);
1253   guarantee(_safepoint_stats != NULL,
1254             "not enough memory for safepoint instrumentation data");
1255 
1256   if (DeferPollingPageLoopCount >= 0) {
1257     need_to_track_page_armed_status = true;
1258   }
1259   init_done = true;
1260 }
1261 
1262 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1263   assert(init_done, "safepoint statistics array hasn't been initialized");
1264   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1265 
1266   spstat->_time_stamp = _ts_of_current_safepoint;
1267 
1268   VM_Operation *op = VMThread::vm_operation();
1269   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1270   if (op != NULL) {
1271     _safepoint_reasons[spstat->_vmop_type]++;
1272   }
1273 
1274   spstat->_nof_total_threads = nof_threads;
1275   spstat->_nof_initial_running_threads = nof_running;
1276   spstat->_nof_threads_hit_page_trap = 0;
1277 
1278   // Records the start time of spinning. The real time spent on spinning
1279   // will be adjusted when spin is done. Same trick is applied for time
1280   // spent on waiting for threads to block.
1281   if (nof_running != 0) {
1282     spstat->_time_to_spin = os::javaTimeNanos();
1283   }  else {
1284     spstat->_time_to_spin = 0;
1285   }
1286 }
1287 
1288 void SafepointSynchronize::update_statistics_on_spin_end() {
1289   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1290 
1291   jlong cur_time = os::javaTimeNanos();
1292 
1293   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1294   if (spstat->_nof_initial_running_threads != 0) {
1295     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1296   }
1297 
1298   if (need_to_track_page_armed_status) {
1299     spstat->_page_armed = (PageArmed == 1);
1300   }
1301 
1302   // Records the start time of waiting for to block. Updated when block is done.
1303   if (_waiting_to_block != 0) {
1304     spstat->_time_to_wait_to_block = cur_time;
1305   } else {
1306     spstat->_time_to_wait_to_block = 0;
1307   }
1308 }
1309 
1310 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1311   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1312 
1313   if (spstat->_nof_threads_wait_to_block != 0) {
1314     spstat->_time_to_wait_to_block = end_time -
1315       spstat->_time_to_wait_to_block;
1316   }
1317 
1318   // Records the end time of sync which will be used to calculate the total
1319   // vm operation time. Again, the real time spending in syncing will be deducted
1320   // from the start of the sync time later when end_statistics is called.
1321   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1322   if (spstat->_time_to_sync > _max_sync_time) {
1323     _max_sync_time = spstat->_time_to_sync;
1324   }
1325 
1326   spstat->_time_to_do_cleanups = end_time;
1327 }
1328 
1329 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1330   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1331 
1332   // Record how long spent in cleanup tasks.
1333   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1334 
1335   cleanup_end_time = end_time;
1336 }
1337 
1338 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1339   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1340 
1341   // Update the vm operation time.
1342   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1343   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1344     _max_vmop_time = spstat->_time_to_exec_vmop;
1345   }
1346   // Only the sync time longer than the specified
1347   // PrintSafepointStatisticsTimeout will be printed out right away.
1348   // By default, it is -1 meaning all samples will be put into the list.
1349   if ( PrintSafepointStatisticsTimeout > 0) {
1350     if (spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1351       print_statistics();
1352     }
1353   } else {
1354     // The safepoint statistics will be printed out when the _safepoin_stats
1355     // array fills up.
1356     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1357       print_statistics();
1358       _cur_stat_index = 0;
1359     } else {
1360       _cur_stat_index++;
1361     }
1362   }
1363 }
1364 
1365 void SafepointSynchronize::print_statistics() {
1366   SafepointStats* sstats = _safepoint_stats;
1367 
1368   for (int index = 0; index <= _cur_stat_index; index++) {
1369     if (index % 30 == 0) {
1370       print_header();
1371     }
1372     sstats = &_safepoint_stats[index];
1373     tty->print("%.3f: ", sstats->_time_stamp);
1374     tty->print("%-26s       ["
1375                INT32_FORMAT_W(8) INT32_FORMAT_W(11) INT32_FORMAT_W(15)
1376                "    ]    ",
1377                sstats->_vmop_type == -1 ? "no vm operation" :
1378                VM_Operation::name(sstats->_vmop_type),
1379                sstats->_nof_total_threads,
1380                sstats->_nof_initial_running_threads,
1381                sstats->_nof_threads_wait_to_block);
1382     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1383     tty->print("  ["
1384                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
1385                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
1386                INT64_FORMAT_W(6) "    ]  ",
1387                sstats->_time_to_spin / MICROUNITS,
1388                sstats->_time_to_wait_to_block / MICROUNITS,
1389                sstats->_time_to_sync / MICROUNITS,
1390                sstats->_time_to_do_cleanups / MICROUNITS,
1391                sstats->_time_to_exec_vmop / MICROUNITS);
1392 
1393     if (need_to_track_page_armed_status) {
1394       tty->print(INT32_FORMAT "         ", sstats->_page_armed);
1395     }
1396     tty->print_cr(INT32_FORMAT "   ", sstats->_nof_threads_hit_page_trap);
1397   }
1398 }
1399 
1400 // This method will be called when VM exits. It will first call
1401 // print_statistics to print out the rest of the sampling.  Then
1402 // it tries to summarize the sampling.
1403 void SafepointSynchronize::print_stat_on_exit() {
1404   if (_safepoint_stats == NULL) return;
1405 
1406   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1407 
1408   // During VM exit, end_statistics may not get called and in that
1409   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1410   // don't print it out.
1411   // Approximate the vm op time.
1412   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1413     os::javaTimeNanos() - cleanup_end_time;
1414 
1415   if ( PrintSafepointStatisticsTimeout < 0 ||
1416        spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1417     print_statistics();
1418   }
1419   tty->cr();
1420 
1421   // Print out polling page sampling status.
1422   if (!need_to_track_page_armed_status) {
1423     tty->print_cr("Polling page always armed");
1424   } else {
1425     tty->print_cr("Defer polling page loop count = " INTX_FORMAT "\n",
1426                   DeferPollingPageLoopCount);
1427   }
1428 
1429   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1430     if (_safepoint_reasons[index] != 0) {
1431       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1432                     _safepoint_reasons[index]);
1433     }
1434   }
1435 
1436   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
1437                 _coalesced_vmop_count);
1438   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
1439                 _max_sync_time / MICROUNITS);
1440   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1441                 INT64_FORMAT_W(5) " ms",
1442                 _max_vmop_time / MICROUNITS);
1443 }
1444 
1445 // ------------------------------------------------------------------------------------------------
1446 // Non-product code
1447 
1448 #ifndef PRODUCT
1449 
1450 void SafepointSynchronize::print_state() {
1451   if (_state == _not_synchronized) {
1452     tty->print_cr("not synchronized");
1453   } else if (_state == _synchronizing || _state == _synchronized) {
1454     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1455                   "synchronized");
1456 
1457     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1458        cur->safepoint_state()->print();
1459     }
1460   }
1461 }
1462 
1463 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1464   if (ShowSafepointMsgs) {
1465     va_list ap;
1466     va_start(ap, format);
1467     tty->vprint_cr(format, ap);
1468     va_end(ap);
1469   }
1470 }
1471 
1472 #endif // !PRODUCT