1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "memory/metaspaceShared.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.inline.hpp"
  48 #include "oops/instanceKlass.hpp"
  49 #include "oops/objArrayOop.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/symbol.hpp"
  52 #include "oops/verifyOopClosure.hpp"
  53 #include "prims/jvm_misc.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/privilegedStack.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/commandLineFlagConstraintList.hpp"
  61 #include "runtime/commandLineFlagWriteableList.hpp"
  62 #include "runtime/commandLineFlagRangeList.hpp"
  63 #include "runtime/deoptimization.hpp"
  64 #include "runtime/fprofiler.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/globals.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/jniPeriodicChecker.hpp"
  72 #include "runtime/timerTrace.hpp"
  73 #include "runtime/memprofiler.hpp"
  74 #include "runtime/mutexLocker.hpp"
  75 #include "runtime/objectMonitor.hpp"
  76 #include "runtime/orderAccess.inline.hpp"
  77 #include "runtime/osThread.hpp"
  78 #include "runtime/safepoint.hpp"
  79 #include "runtime/sharedRuntime.hpp"
  80 #include "runtime/statSampler.hpp"
  81 #include "runtime/stubRoutines.hpp"
  82 #include "runtime/sweeper.hpp"
  83 #include "runtime/task.hpp"
  84 #include "runtime/thread.inline.hpp"
  85 #include "runtime/threadCritical.hpp"
  86 #include "runtime/vframe.hpp"
  87 #include "runtime/vframeArray.hpp"
  88 #include "runtime/vframe_hp.hpp"
  89 #include "runtime/vmThread.hpp"
  90 #include "runtime/vm_operations.hpp"
  91 #include "runtime/vm_version.hpp"
  92 #include "services/attachListener.hpp"
  93 #include "services/management.hpp"
  94 #include "services/memTracker.hpp"
  95 #include "services/threadService.hpp"
  96 #include "trace/traceMacros.hpp"
  97 #include "trace/tracing.hpp"
  98 #include "utilities/defaultStream.hpp"
  99 #include "utilities/dtrace.hpp"
 100 #include "utilities/events.hpp"
 101 #include "utilities/macros.hpp"
 102 #include "utilities/preserveException.hpp"
 103 #if INCLUDE_ALL_GCS
 104 #include "gc/shenandoah/shenandoahConcurrentThread.hpp"
 105 #include "gc/cms/concurrentMarkSweepThread.hpp"
 106 #include "gc/g1/concurrentMarkThread.inline.hpp"
 107 #include "gc/parallel/pcTasks.hpp"
 108 #endif // INCLUDE_ALL_GCS
 109 #if INCLUDE_JVMCI
 110 #include "jvmci/jvmciCompiler.hpp"
 111 #include "jvmci/jvmciRuntime.hpp"
 112 #endif
 113 #ifdef COMPILER1
 114 #include "c1/c1_Compiler.hpp"
 115 #endif
 116 #ifdef COMPILER2
 117 #include "opto/c2compiler.hpp"
 118 #include "opto/idealGraphPrinter.hpp"
 119 #endif
 120 #if INCLUDE_RTM_OPT
 121 #include "runtime/rtmLocking.hpp"
 122 #endif
 123 
 124 // Initialization after module runtime initialization
 125 void universe_post_module_init();  // must happen after call_initPhase2
 126 
 127 #ifdef DTRACE_ENABLED
 128 
 129 // Only bother with this argument setup if dtrace is available
 130 
 131   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 132   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 133 
 134   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 135     {                                                                      \
 136       ResourceMark rm(this);                                               \
 137       int len = 0;                                                         \
 138       const char* name = (javathread)->get_thread_name();                  \
 139       len = strlen(name);                                                  \
 140       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 141         (char *) name, len,                                                \
 142         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 143         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 144         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 145     }
 146 
 147 #else //  ndef DTRACE_ENABLED
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)
 150 
 151 #endif // ndef DTRACE_ENABLED
 152 
 153 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 154 // Current thread is maintained as a thread-local variable
 155 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 156 #endif
 157 // Class hierarchy
 158 // - Thread
 159 //   - VMThread
 160 //   - WatcherThread
 161 //   - ConcurrentMarkSweepThread
 162 //   - JavaThread
 163 //     - CompilerThread
 164 
 165 // ======= Thread ========
 166 // Support for forcing alignment of thread objects for biased locking
 167 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 168   if (UseBiasedLocking) {
 169     const int alignment = markOopDesc::biased_lock_alignment;
 170     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 171     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 172                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 173                                                          AllocFailStrategy::RETURN_NULL);
 174     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 175     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 176            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 177            "JavaThread alignment code overflowed allocated storage");
 178     if (aligned_addr != real_malloc_addr) {
 179       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 180                               p2i(real_malloc_addr),
 181                               p2i(aligned_addr));
 182     }
 183     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 184     return aligned_addr;
 185   } else {
 186     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 187                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 188   }
 189 }
 190 
 191 void Thread::operator delete(void* p) {
 192   if (UseBiasedLocking) {
 193     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 194     FreeHeap(real_malloc_addr);
 195   } else {
 196     FreeHeap(p);
 197   }
 198 }
 199 
 200 
 201 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 202 // JavaThread
 203 
 204 
 205 Thread::Thread() {
 206   // stack and get_thread
 207   set_stack_base(NULL);
 208   set_stack_size(0);
 209   set_self_raw_id(0);
 210   set_lgrp_id(-1);
 211   DEBUG_ONLY(clear_suspendible_thread();)
 212 
 213   // allocated data structures
 214   set_osthread(NULL);
 215   set_resource_area(new (mtThread)ResourceArea());
 216   DEBUG_ONLY(_current_resource_mark = NULL;)
 217   set_handle_area(new (mtThread) HandleArea(NULL));
 218   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 219   set_active_handles(NULL);
 220   set_free_handle_block(NULL);
 221   set_last_handle_mark(NULL);
 222 
 223   // This initial value ==> never claimed.
 224   _oops_do_parity = 0;
 225 
 226   // the handle mark links itself to last_handle_mark
 227   new HandleMark(this);
 228 
 229   // plain initialization
 230   debug_only(_owned_locks = NULL;)
 231   debug_only(_allow_allocation_count = 0;)
 232   NOT_PRODUCT(_allow_safepoint_count = 0;)
 233   NOT_PRODUCT(_skip_gcalot = false;)
 234   _jvmti_env_iteration_count = 0;
 235   set_allocated_bytes(0);
 236   _vm_operation_started_count = 0;
 237   _vm_operation_completed_count = 0;
 238   _current_pending_monitor = NULL;
 239   _current_pending_monitor_is_from_java = true;
 240   _current_waiting_monitor = NULL;
 241   _num_nested_signal = 0;
 242   omFreeList = NULL;
 243   omFreeCount = 0;
 244   omFreeProvision = 32;
 245   omInUseList = NULL;
 246   omInUseCount = 0;
 247 
 248 #ifdef ASSERT
 249   _visited_for_critical_count = false;
 250 #endif
 251 
 252   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 253                          Monitor::_safepoint_check_sometimes);
 254   _suspend_flags = 0;
 255 
 256   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 257   _hashStateX = os::random();
 258   _hashStateY = 842502087;
 259   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 260   _hashStateW = 273326509;
 261 
 262   _OnTrap   = 0;
 263   _schedctl = NULL;
 264   _Stalled  = 0;
 265   _TypeTag  = 0x2BAD;
 266 
 267   // Many of the following fields are effectively final - immutable
 268   // Note that nascent threads can't use the Native Monitor-Mutex
 269   // construct until the _MutexEvent is initialized ...
 270   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 271   // we might instead use a stack of ParkEvents that we could provision on-demand.
 272   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 273   // and ::Release()
 274   _ParkEvent   = ParkEvent::Allocate(this);
 275   _SleepEvent  = ParkEvent::Allocate(this);
 276   _MutexEvent  = ParkEvent::Allocate(this);
 277   _MuxEvent    = ParkEvent::Allocate(this);
 278 
 279 #ifdef CHECK_UNHANDLED_OOPS
 280   if (CheckUnhandledOops) {
 281     _unhandled_oops = new UnhandledOops(this);
 282   }
 283 #endif // CHECK_UNHANDLED_OOPS
 284 #ifdef ASSERT
 285   if (UseBiasedLocking) {
 286     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 287     assert(this == _real_malloc_address ||
 288            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 289            "bug in forced alignment of thread objects");
 290   }
 291 #endif // ASSERT
 292 }
 293 
 294 void Thread::initialize_thread_current() {
 295 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 296   assert(_thr_current == NULL, "Thread::current already initialized");
 297   _thr_current = this;
 298 #endif
 299   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 300   ThreadLocalStorage::set_thread(this);
 301   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 302 }
 303 
 304 void Thread::clear_thread_current() {
 305   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 306 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 307   _thr_current = NULL;
 308 #endif
 309   ThreadLocalStorage::set_thread(NULL);
 310 }
 311 
 312 void Thread::record_stack_base_and_size() {
 313   set_stack_base(os::current_stack_base());
 314   set_stack_size(os::current_stack_size());
 315   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 316   // in initialize_thread(). Without the adjustment, stack size is
 317   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 318   // So far, only Solaris has real implementation of initialize_thread().
 319   //
 320   // set up any platform-specific state.
 321   os::initialize_thread(this);
 322 
 323   // Set stack limits after thread is initialized.
 324   if (is_Java_thread()) {
 325     ((JavaThread*) this)->set_stack_overflow_limit();
 326     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 327   }
 328 #if INCLUDE_NMT
 329   // record thread's native stack, stack grows downward
 330   MemTracker::record_thread_stack(stack_end(), stack_size());
 331 #endif // INCLUDE_NMT
 332   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 333     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 334     os::current_thread_id(), p2i(stack_base() - stack_size()),
 335     p2i(stack_base()), stack_size()/1024);
 336 }
 337 
 338 
 339 Thread::~Thread() {
 340   EVENT_THREAD_DESTRUCT(this);
 341 
 342   // stack_base can be NULL if the thread is never started or exited before
 343   // record_stack_base_and_size called. Although, we would like to ensure
 344   // that all started threads do call record_stack_base_and_size(), there is
 345   // not proper way to enforce that.
 346 #if INCLUDE_NMT
 347   if (_stack_base != NULL) {
 348     MemTracker::release_thread_stack(stack_end(), stack_size());
 349 #ifdef ASSERT
 350     set_stack_base(NULL);
 351 #endif
 352   }
 353 #endif // INCLUDE_NMT
 354 
 355   // deallocate data structures
 356   delete resource_area();
 357   // since the handle marks are using the handle area, we have to deallocated the root
 358   // handle mark before deallocating the thread's handle area,
 359   assert(last_handle_mark() != NULL, "check we have an element");
 360   delete last_handle_mark();
 361   assert(last_handle_mark() == NULL, "check we have reached the end");
 362 
 363   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 364   // We NULL out the fields for good hygiene.
 365   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 366   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 367   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 368   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 369 
 370   delete handle_area();
 371   delete metadata_handles();
 372 
 373   // SR_handler uses this as a termination indicator -
 374   // needs to happen before os::free_thread()
 375   delete _SR_lock;
 376   _SR_lock = NULL;
 377 
 378   // osthread() can be NULL, if creation of thread failed.
 379   if (osthread() != NULL) os::free_thread(osthread());
 380 
 381   // clear Thread::current if thread is deleting itself.
 382   // Needed to ensure JNI correctly detects non-attached threads.
 383   if (this == Thread::current()) {
 384     clear_thread_current();
 385   }
 386 
 387   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 388 }
 389 
 390 // NOTE: dummy function for assertion purpose.
 391 void Thread::run() {
 392   ShouldNotReachHere();
 393 }
 394 
 395 #ifdef ASSERT
 396 // Private method to check for dangling thread pointer
 397 void check_for_dangling_thread_pointer(Thread *thread) {
 398   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 399          "possibility of dangling Thread pointer");
 400 }
 401 #endif
 402 
 403 ThreadPriority Thread::get_priority(const Thread* const thread) {
 404   ThreadPriority priority;
 405   // Can return an error!
 406   (void)os::get_priority(thread, priority);
 407   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 408   return priority;
 409 }
 410 
 411 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 412   debug_only(check_for_dangling_thread_pointer(thread);)
 413   // Can return an error!
 414   (void)os::set_priority(thread, priority);
 415 }
 416 
 417 
 418 void Thread::start(Thread* thread) {
 419   // Start is different from resume in that its safety is guaranteed by context or
 420   // being called from a Java method synchronized on the Thread object.
 421   if (!DisableStartThread) {
 422     if (thread->is_Java_thread()) {
 423       // Initialize the thread state to RUNNABLE before starting this thread.
 424       // Can not set it after the thread started because we do not know the
 425       // exact thread state at that time. It could be in MONITOR_WAIT or
 426       // in SLEEPING or some other state.
 427       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 428                                           java_lang_Thread::RUNNABLE);
 429     }
 430     os::start_thread(thread);
 431   }
 432 }
 433 
 434 // Enqueue a VM_Operation to do the job for us - sometime later
 435 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 436   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 437   VMThread::execute(vm_stop);
 438 }
 439 
 440 
 441 // Check if an external suspend request has completed (or has been
 442 // cancelled). Returns true if the thread is externally suspended and
 443 // false otherwise.
 444 //
 445 // The bits parameter returns information about the code path through
 446 // the routine. Useful for debugging:
 447 //
 448 // set in is_ext_suspend_completed():
 449 // 0x00000001 - routine was entered
 450 // 0x00000010 - routine return false at end
 451 // 0x00000100 - thread exited (return false)
 452 // 0x00000200 - suspend request cancelled (return false)
 453 // 0x00000400 - thread suspended (return true)
 454 // 0x00001000 - thread is in a suspend equivalent state (return true)
 455 // 0x00002000 - thread is native and walkable (return true)
 456 // 0x00004000 - thread is native_trans and walkable (needed retry)
 457 //
 458 // set in wait_for_ext_suspend_completion():
 459 // 0x00010000 - routine was entered
 460 // 0x00020000 - suspend request cancelled before loop (return false)
 461 // 0x00040000 - thread suspended before loop (return true)
 462 // 0x00080000 - suspend request cancelled in loop (return false)
 463 // 0x00100000 - thread suspended in loop (return true)
 464 // 0x00200000 - suspend not completed during retry loop (return false)
 465 
 466 // Helper class for tracing suspend wait debug bits.
 467 //
 468 // 0x00000100 indicates that the target thread exited before it could
 469 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 470 // 0x00080000 each indicate a cancelled suspend request so they don't
 471 // count as wait failures either.
 472 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 473 
 474 class TraceSuspendDebugBits : public StackObj {
 475  private:
 476   JavaThread * jt;
 477   bool         is_wait;
 478   bool         called_by_wait;  // meaningful when !is_wait
 479   uint32_t *   bits;
 480 
 481  public:
 482   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 483                         uint32_t *_bits) {
 484     jt             = _jt;
 485     is_wait        = _is_wait;
 486     called_by_wait = _called_by_wait;
 487     bits           = _bits;
 488   }
 489 
 490   ~TraceSuspendDebugBits() {
 491     if (!is_wait) {
 492 #if 1
 493       // By default, don't trace bits for is_ext_suspend_completed() calls.
 494       // That trace is very chatty.
 495       return;
 496 #else
 497       if (!called_by_wait) {
 498         // If tracing for is_ext_suspend_completed() is enabled, then only
 499         // trace calls to it from wait_for_ext_suspend_completion()
 500         return;
 501       }
 502 #endif
 503     }
 504 
 505     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 506       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 507         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 508         ResourceMark rm;
 509 
 510         tty->print_cr(
 511                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 512                       jt->get_thread_name(), *bits);
 513 
 514         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 515       }
 516     }
 517   }
 518 };
 519 #undef DEBUG_FALSE_BITS
 520 
 521 
 522 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 523                                           uint32_t *bits) {
 524   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 525 
 526   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 527   bool do_trans_retry;           // flag to force the retry
 528 
 529   *bits |= 0x00000001;
 530 
 531   do {
 532     do_trans_retry = false;
 533 
 534     if (is_exiting()) {
 535       // Thread is in the process of exiting. This is always checked
 536       // first to reduce the risk of dereferencing a freed JavaThread.
 537       *bits |= 0x00000100;
 538       return false;
 539     }
 540 
 541     if (!is_external_suspend()) {
 542       // Suspend request is cancelled. This is always checked before
 543       // is_ext_suspended() to reduce the risk of a rogue resume
 544       // confusing the thread that made the suspend request.
 545       *bits |= 0x00000200;
 546       return false;
 547     }
 548 
 549     if (is_ext_suspended()) {
 550       // thread is suspended
 551       *bits |= 0x00000400;
 552       return true;
 553     }
 554 
 555     // Now that we no longer do hard suspends of threads running
 556     // native code, the target thread can be changing thread state
 557     // while we are in this routine:
 558     //
 559     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 560     //
 561     // We save a copy of the thread state as observed at this moment
 562     // and make our decision about suspend completeness based on the
 563     // copy. This closes the race where the thread state is seen as
 564     // _thread_in_native_trans in the if-thread_blocked check, but is
 565     // seen as _thread_blocked in if-thread_in_native_trans check.
 566     JavaThreadState save_state = thread_state();
 567 
 568     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 569       // If the thread's state is _thread_blocked and this blocking
 570       // condition is known to be equivalent to a suspend, then we can
 571       // consider the thread to be externally suspended. This means that
 572       // the code that sets _thread_blocked has been modified to do
 573       // self-suspension if the blocking condition releases. We also
 574       // used to check for CONDVAR_WAIT here, but that is now covered by
 575       // the _thread_blocked with self-suspension check.
 576       //
 577       // Return true since we wouldn't be here unless there was still an
 578       // external suspend request.
 579       *bits |= 0x00001000;
 580       return true;
 581     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 582       // Threads running native code will self-suspend on native==>VM/Java
 583       // transitions. If its stack is walkable (should always be the case
 584       // unless this function is called before the actual java_suspend()
 585       // call), then the wait is done.
 586       *bits |= 0x00002000;
 587       return true;
 588     } else if (!called_by_wait && !did_trans_retry &&
 589                save_state == _thread_in_native_trans &&
 590                frame_anchor()->walkable()) {
 591       // The thread is transitioning from thread_in_native to another
 592       // thread state. check_safepoint_and_suspend_for_native_trans()
 593       // will force the thread to self-suspend. If it hasn't gotten
 594       // there yet we may have caught the thread in-between the native
 595       // code check above and the self-suspend. Lucky us. If we were
 596       // called by wait_for_ext_suspend_completion(), then it
 597       // will be doing the retries so we don't have to.
 598       //
 599       // Since we use the saved thread state in the if-statement above,
 600       // there is a chance that the thread has already transitioned to
 601       // _thread_blocked by the time we get here. In that case, we will
 602       // make a single unnecessary pass through the logic below. This
 603       // doesn't hurt anything since we still do the trans retry.
 604 
 605       *bits |= 0x00004000;
 606 
 607       // Once the thread leaves thread_in_native_trans for another
 608       // thread state, we break out of this retry loop. We shouldn't
 609       // need this flag to prevent us from getting back here, but
 610       // sometimes paranoia is good.
 611       did_trans_retry = true;
 612 
 613       // We wait for the thread to transition to a more usable state.
 614       for (int i = 1; i <= SuspendRetryCount; i++) {
 615         // We used to do an "os::yield_all(i)" call here with the intention
 616         // that yielding would increase on each retry. However, the parameter
 617         // is ignored on Linux which means the yield didn't scale up. Waiting
 618         // on the SR_lock below provides a much more predictable scale up for
 619         // the delay. It also provides a simple/direct point to check for any
 620         // safepoint requests from the VMThread
 621 
 622         // temporarily drops SR_lock while doing wait with safepoint check
 623         // (if we're a JavaThread - the WatcherThread can also call this)
 624         // and increase delay with each retry
 625         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 626 
 627         // check the actual thread state instead of what we saved above
 628         if (thread_state() != _thread_in_native_trans) {
 629           // the thread has transitioned to another thread state so
 630           // try all the checks (except this one) one more time.
 631           do_trans_retry = true;
 632           break;
 633         }
 634       } // end retry loop
 635 
 636 
 637     }
 638   } while (do_trans_retry);
 639 
 640   *bits |= 0x00000010;
 641   return false;
 642 }
 643 
 644 // Wait for an external suspend request to complete (or be cancelled).
 645 // Returns true if the thread is externally suspended and false otherwise.
 646 //
 647 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 648                                                  uint32_t *bits) {
 649   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 650                              false /* !called_by_wait */, bits);
 651 
 652   // local flag copies to minimize SR_lock hold time
 653   bool is_suspended;
 654   bool pending;
 655   uint32_t reset_bits;
 656 
 657   // set a marker so is_ext_suspend_completed() knows we are the caller
 658   *bits |= 0x00010000;
 659 
 660   // We use reset_bits to reinitialize the bits value at the top of
 661   // each retry loop. This allows the caller to make use of any
 662   // unused bits for their own marking purposes.
 663   reset_bits = *bits;
 664 
 665   {
 666     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 667     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 668                                             delay, bits);
 669     pending = is_external_suspend();
 670   }
 671   // must release SR_lock to allow suspension to complete
 672 
 673   if (!pending) {
 674     // A cancelled suspend request is the only false return from
 675     // is_ext_suspend_completed() that keeps us from entering the
 676     // retry loop.
 677     *bits |= 0x00020000;
 678     return false;
 679   }
 680 
 681   if (is_suspended) {
 682     *bits |= 0x00040000;
 683     return true;
 684   }
 685 
 686   for (int i = 1; i <= retries; i++) {
 687     *bits = reset_bits;  // reinit to only track last retry
 688 
 689     // We used to do an "os::yield_all(i)" call here with the intention
 690     // that yielding would increase on each retry. However, the parameter
 691     // is ignored on Linux which means the yield didn't scale up. Waiting
 692     // on the SR_lock below provides a much more predictable scale up for
 693     // the delay. It also provides a simple/direct point to check for any
 694     // safepoint requests from the VMThread
 695 
 696     {
 697       MutexLocker ml(SR_lock());
 698       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 699       // can also call this)  and increase delay with each retry
 700       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 701 
 702       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 703                                               delay, bits);
 704 
 705       // It is possible for the external suspend request to be cancelled
 706       // (by a resume) before the actual suspend operation is completed.
 707       // Refresh our local copy to see if we still need to wait.
 708       pending = is_external_suspend();
 709     }
 710 
 711     if (!pending) {
 712       // A cancelled suspend request is the only false return from
 713       // is_ext_suspend_completed() that keeps us from staying in the
 714       // retry loop.
 715       *bits |= 0x00080000;
 716       return false;
 717     }
 718 
 719     if (is_suspended) {
 720       *bits |= 0x00100000;
 721       return true;
 722     }
 723   } // end retry loop
 724 
 725   // thread did not suspend after all our retries
 726   *bits |= 0x00200000;
 727   return false;
 728 }
 729 
 730 #ifndef PRODUCT
 731 void JavaThread::record_jump(address target, address instr, const char* file,
 732                              int line) {
 733 
 734   // This should not need to be atomic as the only way for simultaneous
 735   // updates is via interrupts. Even then this should be rare or non-existent
 736   // and we don't care that much anyway.
 737 
 738   int index = _jmp_ring_index;
 739   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 740   _jmp_ring[index]._target = (intptr_t) target;
 741   _jmp_ring[index]._instruction = (intptr_t) instr;
 742   _jmp_ring[index]._file = file;
 743   _jmp_ring[index]._line = line;
 744 }
 745 #endif // PRODUCT
 746 
 747 // Called by flat profiler
 748 // Callers have already called wait_for_ext_suspend_completion
 749 // The assertion for that is currently too complex to put here:
 750 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 751   bool gotframe = false;
 752   // self suspension saves needed state.
 753   if (has_last_Java_frame() && _anchor.walkable()) {
 754     *_fr = pd_last_frame();
 755     gotframe = true;
 756   }
 757   return gotframe;
 758 }
 759 
 760 void Thread::interrupt(Thread* thread) {
 761   debug_only(check_for_dangling_thread_pointer(thread);)
 762   os::interrupt(thread);
 763 }
 764 
 765 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 766   debug_only(check_for_dangling_thread_pointer(thread);)
 767   // Note:  If clear_interrupted==false, this simply fetches and
 768   // returns the value of the field osthread()->interrupted().
 769   return os::is_interrupted(thread, clear_interrupted);
 770 }
 771 
 772 
 773 // GC Support
 774 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 775   jint thread_parity = _oops_do_parity;
 776   if (thread_parity != strong_roots_parity) {
 777     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 778     if (res == thread_parity) {
 779       return true;
 780     } else {
 781       guarantee(res == strong_roots_parity, "Or else what?");
 782       return false;
 783     }
 784   }
 785   return false;
 786 }
 787 
 788 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 789   active_handles()->oops_do(f);
 790   // Do oop for ThreadShadow
 791   f->do_oop((oop*)&_pending_exception);
 792   handle_area()->oops_do(f);
 793   if (MonitorInUseLists) {
 794     if (Universe::heap()->supports_per_thread_monitor_deflation()) {
 795       ObjectSynchronizer::deflate_idle_monitors_and_oops_do(this, f);
 796     } else {
 797       ObjectSynchronizer::thread_local_used_oops_do(this, f);
 798     }
 799   }
 800 }
 801 
 802 void Thread::metadata_handles_do(void f(Metadata*)) {
 803   // Only walk the Handles in Thread.
 804   if (metadata_handles() != NULL) {
 805     for (int i = 0; i< metadata_handles()->length(); i++) {
 806       f(metadata_handles()->at(i));
 807     }
 808   }
 809 }
 810 
 811 void Thread::print_on(outputStream* st) const {
 812   // get_priority assumes osthread initialized
 813   if (osthread() != NULL) {
 814     int os_prio;
 815     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 816       st->print("os_prio=%d ", os_prio);
 817     }
 818     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 819     ext().print_on(st);
 820     osthread()->print_on(st);
 821   }
 822   debug_only(if (WizardMode) print_owned_locks_on(st);)
 823 }
 824 
 825 // Thread::print_on_error() is called by fatal error handler. Don't use
 826 // any lock or allocate memory.
 827 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 828   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 829 
 830   if (is_VM_thread())                 { st->print("VMThread"); }
 831   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 832   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 833   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 834   else                                { st->print("Thread"); }
 835 
 836   if (is_Named_thread()) {
 837     st->print(" \"%s\"", name());
 838   }
 839 
 840   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 841             p2i(stack_end()), p2i(stack_base()));
 842 
 843   if (osthread()) {
 844     st->print(" [id=%d]", osthread()->thread_id());
 845   }
 846 }
 847 
 848 #ifdef ASSERT
 849 void Thread::print_owned_locks_on(outputStream* st) const {
 850   Monitor *cur = _owned_locks;
 851   if (cur == NULL) {
 852     st->print(" (no locks) ");
 853   } else {
 854     st->print_cr(" Locks owned:");
 855     while (cur) {
 856       cur->print_on(st);
 857       cur = cur->next();
 858     }
 859   }
 860 }
 861 
 862 static int ref_use_count  = 0;
 863 
 864 bool Thread::owns_locks_but_compiled_lock() const {
 865   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 866     if (cur != Compile_lock) return true;
 867   }
 868   return false;
 869 }
 870 
 871 
 872 #endif
 873 
 874 #ifndef PRODUCT
 875 
 876 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 877 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 878 // no threads which allow_vm_block's are held
 879 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 880   // Check if current thread is allowed to block at a safepoint
 881   if (!(_allow_safepoint_count == 0)) {
 882     fatal("Possible safepoint reached by thread that does not allow it");
 883   }
 884   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 885     fatal("LEAF method calling lock?");
 886   }
 887 
 888 #ifdef ASSERT
 889   if (potential_vm_operation && is_Java_thread()
 890       && !Universe::is_bootstrapping()) {
 891     // Make sure we do not hold any locks that the VM thread also uses.
 892     // This could potentially lead to deadlocks
 893     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 894       // Threads_lock is special, since the safepoint synchronization will not start before this is
 895       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 896       // since it is used to transfer control between JavaThreads and the VMThread
 897       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 898       if ((cur->allow_vm_block() &&
 899            cur != Threads_lock &&
 900            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 901            cur != VMOperationRequest_lock &&
 902            cur != VMOperationQueue_lock) ||
 903            cur->rank() == Mutex::special) {
 904         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 905       }
 906     }
 907   }
 908 
 909   if (GCALotAtAllSafepoints) {
 910     // We could enter a safepoint here and thus have a gc
 911     InterfaceSupport::check_gc_alot();
 912   }
 913 #endif
 914 }
 915 #endif
 916 
 917 bool Thread::is_in_stack(address adr) const {
 918   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 919   address end = os::current_stack_pointer();
 920   // Allow non Java threads to call this without stack_base
 921   if (_stack_base == NULL) return true;
 922   if (stack_base() >= adr && adr >= end) return true;
 923 
 924   return false;
 925 }
 926 
 927 bool Thread::is_in_usable_stack(address adr) const {
 928   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 929   size_t usable_stack_size = _stack_size - stack_guard_size;
 930 
 931   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 932 }
 933 
 934 
 935 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 936 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 937 // used for compilation in the future. If that change is made, the need for these methods
 938 // should be revisited, and they should be removed if possible.
 939 
 940 bool Thread::is_lock_owned(address adr) const {
 941   return on_local_stack(adr);
 942 }
 943 
 944 bool Thread::set_as_starting_thread() {
 945   // NOTE: this must be called inside the main thread.
 946   return os::create_main_thread((JavaThread*)this);
 947 }
 948 
 949 static void initialize_class(Symbol* class_name, TRAPS) {
 950   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 951   InstanceKlass::cast(klass)->initialize(CHECK);
 952 }
 953 
 954 
 955 // Creates the initial ThreadGroup
 956 static Handle create_initial_thread_group(TRAPS) {
 957   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 958   instanceKlassHandle klass (THREAD, k);
 959 
 960   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 961   {
 962     JavaValue result(T_VOID);
 963     JavaCalls::call_special(&result,
 964                             system_instance,
 965                             klass,
 966                             vmSymbols::object_initializer_name(),
 967                             vmSymbols::void_method_signature(),
 968                             CHECK_NH);
 969   }
 970   Universe::set_system_thread_group(system_instance());
 971 
 972   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 973   {
 974     JavaValue result(T_VOID);
 975     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 976     JavaCalls::call_special(&result,
 977                             main_instance,
 978                             klass,
 979                             vmSymbols::object_initializer_name(),
 980                             vmSymbols::threadgroup_string_void_signature(),
 981                             system_instance,
 982                             string,
 983                             CHECK_NH);
 984   }
 985   return main_instance;
 986 }
 987 
 988 // Creates the initial Thread
 989 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 990                                  TRAPS) {
 991   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 992   instanceKlassHandle klass (THREAD, k);
 993   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 994 
 995   java_lang_Thread::set_thread(thread_oop(), thread);
 996   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 997   thread->set_threadObj(thread_oop());
 998 
 999   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1000 
1001   JavaValue result(T_VOID);
1002   JavaCalls::call_special(&result, thread_oop,
1003                           klass,
1004                           vmSymbols::object_initializer_name(),
1005                           vmSymbols::threadgroup_string_void_signature(),
1006                           thread_group,
1007                           string,
1008                           CHECK_NULL);
1009   return thread_oop();
1010 }
1011 
1012 char java_runtime_name[128] = "";
1013 char java_runtime_version[128] = "";
1014 
1015 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1016 static const char* get_java_runtime_name(TRAPS) {
1017   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1018                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1019   fieldDescriptor fd;
1020   bool found = k != NULL &&
1021                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1022                                                         vmSymbols::string_signature(), &fd);
1023   if (found) {
1024     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1025     if (name_oop == NULL) {
1026       return NULL;
1027     }
1028     const char* name = java_lang_String::as_utf8_string(name_oop,
1029                                                         java_runtime_name,
1030                                                         sizeof(java_runtime_name));
1031     return name;
1032   } else {
1033     return NULL;
1034   }
1035 }
1036 
1037 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1038 static const char* get_java_runtime_version(TRAPS) {
1039   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1040                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1041   fieldDescriptor fd;
1042   bool found = k != NULL &&
1043                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1044                                                         vmSymbols::string_signature(), &fd);
1045   if (found) {
1046     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1047     if (name_oop == NULL) {
1048       return NULL;
1049     }
1050     const char* name = java_lang_String::as_utf8_string(name_oop,
1051                                                         java_runtime_version,
1052                                                         sizeof(java_runtime_version));
1053     return name;
1054   } else {
1055     return NULL;
1056   }
1057 }
1058 
1059 // General purpose hook into Java code, run once when the VM is initialized.
1060 // The Java library method itself may be changed independently from the VM.
1061 static void call_postVMInitHook(TRAPS) {
1062   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1063   instanceKlassHandle klass (THREAD, k);
1064   if (klass.not_null()) {
1065     JavaValue result(T_VOID);
1066     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1067                            vmSymbols::void_method_signature(),
1068                            CHECK);
1069   }
1070 }
1071 
1072 static void reset_vm_info_property(TRAPS) {
1073   // the vm info string
1074   ResourceMark rm(THREAD);
1075   const char *vm_info = VM_Version::vm_info_string();
1076 
1077   // java.lang.System class
1078   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1079   instanceKlassHandle klass (THREAD, k);
1080 
1081   // setProperty arguments
1082   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1083   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1084 
1085   // return value
1086   JavaValue r(T_OBJECT);
1087 
1088   // public static String setProperty(String key, String value);
1089   JavaCalls::call_static(&r,
1090                          klass,
1091                          vmSymbols::setProperty_name(),
1092                          vmSymbols::string_string_string_signature(),
1093                          key_str,
1094                          value_str,
1095                          CHECK);
1096 }
1097 
1098 
1099 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1100                                     bool daemon, TRAPS) {
1101   assert(thread_group.not_null(), "thread group should be specified");
1102   assert(threadObj() == NULL, "should only create Java thread object once");
1103 
1104   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1105   instanceKlassHandle klass (THREAD, k);
1106   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1107 
1108   java_lang_Thread::set_thread(thread_oop(), this);
1109   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1110   set_threadObj(thread_oop());
1111 
1112   JavaValue result(T_VOID);
1113   if (thread_name != NULL) {
1114     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1115     // Thread gets assigned specified name and null target
1116     JavaCalls::call_special(&result,
1117                             thread_oop,
1118                             klass,
1119                             vmSymbols::object_initializer_name(),
1120                             vmSymbols::threadgroup_string_void_signature(),
1121                             thread_group, // Argument 1
1122                             name,         // Argument 2
1123                             THREAD);
1124   } else {
1125     // Thread gets assigned name "Thread-nnn" and null target
1126     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1127     JavaCalls::call_special(&result,
1128                             thread_oop,
1129                             klass,
1130                             vmSymbols::object_initializer_name(),
1131                             vmSymbols::threadgroup_runnable_void_signature(),
1132                             thread_group, // Argument 1
1133                             Handle(),     // Argument 2
1134                             THREAD);
1135   }
1136 
1137 
1138   if (daemon) {
1139     java_lang_Thread::set_daemon(thread_oop());
1140   }
1141 
1142   if (HAS_PENDING_EXCEPTION) {
1143     return;
1144   }
1145 
1146   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1147   Handle threadObj(THREAD, this->threadObj());
1148 
1149   JavaCalls::call_special(&result,
1150                           thread_group,
1151                           group,
1152                           vmSymbols::add_method_name(),
1153                           vmSymbols::thread_void_signature(),
1154                           threadObj,          // Arg 1
1155                           THREAD);
1156 }
1157 
1158 // NamedThread --  non-JavaThread subclasses with multiple
1159 // uniquely named instances should derive from this.
1160 NamedThread::NamedThread() : Thread() {
1161   _name = NULL;
1162   _processed_thread = NULL;
1163   _gc_id = GCId::undefined();
1164 }
1165 
1166 NamedThread::~NamedThread() {
1167   if (_name != NULL) {
1168     FREE_C_HEAP_ARRAY(char, _name);
1169     _name = NULL;
1170   }
1171 }
1172 
1173 void NamedThread::set_name(const char* format, ...) {
1174   guarantee(_name == NULL, "Only get to set name once.");
1175   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1176   guarantee(_name != NULL, "alloc failure");
1177   va_list ap;
1178   va_start(ap, format);
1179   jio_vsnprintf(_name, max_name_len, format, ap);
1180   va_end(ap);
1181 }
1182 
1183 void NamedThread::initialize_named_thread() {
1184   set_native_thread_name(name());
1185 }
1186 
1187 void NamedThread::print_on(outputStream* st) const {
1188   st->print("\"%s\" ", name());
1189   Thread::print_on(st);
1190   st->cr();
1191 }
1192 
1193 
1194 // ======= WatcherThread ========
1195 
1196 // The watcher thread exists to simulate timer interrupts.  It should
1197 // be replaced by an abstraction over whatever native support for
1198 // timer interrupts exists on the platform.
1199 
1200 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1201 bool WatcherThread::_startable = false;
1202 volatile bool  WatcherThread::_should_terminate = false;
1203 
1204 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1205   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1206   if (os::create_thread(this, os::watcher_thread)) {
1207     _watcher_thread = this;
1208 
1209     // WatcherThread needs GCLAB for cases when it writes to Java heap,
1210     // and needs the space to evacuate. Have to initialize here, because
1211     // WatcherThread is initialized before the Universe.
1212     if (UseShenandoahGC && UseTLAB) {
1213       gclab().initialize(true);
1214     }
1215 
1216     // Set the watcher thread to the highest OS priority which should not be
1217     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1218     // is created. The only normal thread using this priority is the reference
1219     // handler thread, which runs for very short intervals only.
1220     // If the VMThread's priority is not lower than the WatcherThread profiling
1221     // will be inaccurate.
1222     os::set_priority(this, MaxPriority);
1223     if (!DisableStartThread) {
1224       os::start_thread(this);
1225     }
1226   }
1227 }
1228 
1229 int WatcherThread::sleep() const {
1230   // The WatcherThread does not participate in the safepoint protocol
1231   // for the PeriodicTask_lock because it is not a JavaThread.
1232   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1233 
1234   if (_should_terminate) {
1235     // check for termination before we do any housekeeping or wait
1236     return 0;  // we did not sleep.
1237   }
1238 
1239   // remaining will be zero if there are no tasks,
1240   // causing the WatcherThread to sleep until a task is
1241   // enrolled
1242   int remaining = PeriodicTask::time_to_wait();
1243   int time_slept = 0;
1244 
1245   // we expect this to timeout - we only ever get unparked when
1246   // we should terminate or when a new task has been enrolled
1247   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1248 
1249   jlong time_before_loop = os::javaTimeNanos();
1250 
1251   while (true) {
1252     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1253                                             remaining);
1254     jlong now = os::javaTimeNanos();
1255 
1256     if (remaining == 0) {
1257       // if we didn't have any tasks we could have waited for a long time
1258       // consider the time_slept zero and reset time_before_loop
1259       time_slept = 0;
1260       time_before_loop = now;
1261     } else {
1262       // need to recalculate since we might have new tasks in _tasks
1263       time_slept = (int) ((now - time_before_loop) / 1000000);
1264     }
1265 
1266     // Change to task list or spurious wakeup of some kind
1267     if (timedout || _should_terminate) {
1268       break;
1269     }
1270 
1271     remaining = PeriodicTask::time_to_wait();
1272     if (remaining == 0) {
1273       // Last task was just disenrolled so loop around and wait until
1274       // another task gets enrolled
1275       continue;
1276     }
1277 
1278     remaining -= time_slept;
1279     if (remaining <= 0) {
1280       break;
1281     }
1282   }
1283 
1284   return time_slept;
1285 }
1286 
1287 void WatcherThread::run() {
1288   assert(this == watcher_thread(), "just checking");
1289 
1290   this->record_stack_base_and_size();
1291   this->set_native_thread_name(this->name());
1292   this->set_active_handles(JNIHandleBlock::allocate_block());
1293   while (true) {
1294     assert(watcher_thread() == Thread::current(), "thread consistency check");
1295     assert(watcher_thread() == this, "thread consistency check");
1296 
1297     // Calculate how long it'll be until the next PeriodicTask work
1298     // should be done, and sleep that amount of time.
1299     int time_waited = sleep();
1300 
1301     if (is_error_reported()) {
1302       // A fatal error has happened, the error handler(VMError::report_and_die)
1303       // should abort JVM after creating an error log file. However in some
1304       // rare cases, the error handler itself might deadlock. Here we try to
1305       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1306       //
1307       // This code is in WatcherThread because WatcherThread wakes up
1308       // periodically so the fatal error handler doesn't need to do anything;
1309       // also because the WatcherThread is less likely to crash than other
1310       // threads.
1311 
1312       for (;;) {
1313         if (!ShowMessageBoxOnError
1314             && (OnError == NULL || OnError[0] == '\0')
1315             && Arguments::abort_hook() == NULL) {
1316           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1317           fdStream err(defaultStream::output_fd());
1318           err.print_raw_cr("# [ timer expired, abort... ]");
1319           // skip atexit/vm_exit/vm_abort hooks
1320           os::die();
1321         }
1322 
1323         // Wake up 5 seconds later, the fatal handler may reset OnError or
1324         // ShowMessageBoxOnError when it is ready to abort.
1325         os::sleep(this, 5 * 1000, false);
1326       }
1327     }
1328 
1329     if (_should_terminate) {
1330       // check for termination before posting the next tick
1331       break;
1332     }
1333 
1334     PeriodicTask::real_time_tick(time_waited);
1335   }
1336 
1337   // Signal that it is terminated
1338   {
1339     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1340     _watcher_thread = NULL;
1341     Terminator_lock->notify();
1342   }
1343 }
1344 
1345 void WatcherThread::start() {
1346   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1347 
1348   if (watcher_thread() == NULL && _startable) {
1349     _should_terminate = false;
1350     // Create the single instance of WatcherThread
1351     new WatcherThread();
1352   }
1353 }
1354 
1355 void WatcherThread::make_startable() {
1356   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1357   _startable = true;
1358 }
1359 
1360 void WatcherThread::stop() {
1361   {
1362     // Follow normal safepoint aware lock enter protocol since the
1363     // WatcherThread is stopped by another JavaThread.
1364     MutexLocker ml(PeriodicTask_lock);
1365     _should_terminate = true;
1366 
1367     WatcherThread* watcher = watcher_thread();
1368     if (watcher != NULL) {
1369       // unpark the WatcherThread so it can see that it should terminate
1370       watcher->unpark();
1371     }
1372   }
1373 
1374   MutexLocker mu(Terminator_lock);
1375 
1376   while (watcher_thread() != NULL) {
1377     // This wait should make safepoint checks, wait without a timeout,
1378     // and wait as a suspend-equivalent condition.
1379     //
1380     // Note: If the FlatProfiler is running, then this thread is waiting
1381     // for the WatcherThread to terminate and the WatcherThread, via the
1382     // FlatProfiler task, is waiting for the external suspend request on
1383     // this thread to complete. wait_for_ext_suspend_completion() will
1384     // eventually timeout, but that takes time. Making this wait a
1385     // suspend-equivalent condition solves that timeout problem.
1386     //
1387     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1388                           Mutex::_as_suspend_equivalent_flag);
1389   }
1390 }
1391 
1392 void WatcherThread::unpark() {
1393   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1394   PeriodicTask_lock->notify();
1395 }
1396 
1397 void WatcherThread::print_on(outputStream* st) const {
1398   st->print("\"%s\" ", name());
1399   Thread::print_on(st);
1400   st->cr();
1401 }
1402 
1403 // ======= JavaThread ========
1404 
1405 #if INCLUDE_JVMCI
1406 
1407 jlong* JavaThread::_jvmci_old_thread_counters;
1408 
1409 bool jvmci_counters_include(JavaThread* thread) {
1410   oop threadObj = thread->threadObj();
1411   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1412 }
1413 
1414 void JavaThread::collect_counters(typeArrayOop array) {
1415   if (JVMCICounterSize > 0) {
1416     MutexLocker tl(Threads_lock);
1417     for (int i = 0; i < array->length(); i++) {
1418       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1419     }
1420     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1421       if (jvmci_counters_include(tp)) {
1422         for (int i = 0; i < array->length(); i++) {
1423           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1424         }
1425       }
1426     }
1427   }
1428 }
1429 
1430 #endif // INCLUDE_JVMCI
1431 
1432 // A JavaThread is a normal Java thread
1433 
1434 void JavaThread::initialize() {
1435   // Initialize fields
1436 
1437   set_saved_exception_pc(NULL);
1438   set_threadObj(NULL);
1439   _anchor.clear();
1440   set_entry_point(NULL);
1441   set_jni_functions(jni_functions());
1442   set_callee_target(NULL);
1443   set_vm_result(NULL);
1444   set_vm_result_2(NULL);
1445   set_vframe_array_head(NULL);
1446   set_vframe_array_last(NULL);
1447   set_deferred_locals(NULL);
1448   set_deopt_mark(NULL);
1449   set_deopt_compiled_method(NULL);
1450   clear_must_deopt_id();
1451   set_monitor_chunks(NULL);
1452   set_next(NULL);
1453   set_thread_state(_thread_new);
1454   _terminated = _not_terminated;
1455   _privileged_stack_top = NULL;
1456   _array_for_gc = NULL;
1457   _suspend_equivalent = false;
1458   _in_deopt_handler = 0;
1459   _doing_unsafe_access = false;
1460   _stack_guard_state = stack_guard_unused;
1461 #if INCLUDE_JVMCI
1462   _pending_monitorenter = false;
1463   _pending_deoptimization = -1;
1464   _pending_failed_speculation = NULL;
1465   _pending_transfer_to_interpreter = false;
1466   _adjusting_comp_level = false;
1467   _jvmci._alternate_call_target = NULL;
1468   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1469   if (JVMCICounterSize > 0) {
1470     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1471     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1472   } else {
1473     _jvmci_counters = NULL;
1474   }
1475 #endif // INCLUDE_JVMCI
1476   _reserved_stack_activation = NULL;  // stack base not known yet
1477   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1478   _exception_pc  = 0;
1479   _exception_handler_pc = 0;
1480   _is_method_handle_return = 0;
1481   _jvmti_thread_state= NULL;
1482   _should_post_on_exceptions_flag = JNI_FALSE;
1483   _jvmti_get_loaded_classes_closure = NULL;
1484   _interp_only_mode    = 0;
1485   _special_runtime_exit_condition = _no_async_condition;
1486   _pending_async_exception = NULL;
1487   _thread_stat = NULL;
1488   _thread_stat = new ThreadStatistics();
1489   _blocked_on_compilation = false;
1490   _jni_active_critical = 0;
1491   _pending_jni_exception_check_fn = NULL;
1492   _do_not_unlock_if_synchronized = false;
1493   _cached_monitor_info = NULL;
1494   _parker = Parker::Allocate(this);
1495 
1496 #ifndef PRODUCT
1497   _jmp_ring_index = 0;
1498   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1499     record_jump(NULL, NULL, NULL, 0);
1500   }
1501 #endif // PRODUCT
1502 
1503   set_thread_profiler(NULL);
1504   if (FlatProfiler::is_active()) {
1505     // This is where we would decide to either give each thread it's own profiler
1506     // or use one global one from FlatProfiler,
1507     // or up to some count of the number of profiled threads, etc.
1508     ThreadProfiler* pp = new ThreadProfiler();
1509     pp->engage();
1510     set_thread_profiler(pp);
1511   }
1512 
1513   // Setup safepoint state info for this thread
1514   ThreadSafepointState::create(this);
1515 
1516   debug_only(_java_call_counter = 0);
1517 
1518   // JVMTI PopFrame support
1519   _popframe_condition = popframe_inactive;
1520   _popframe_preserved_args = NULL;
1521   _popframe_preserved_args_size = 0;
1522   _frames_to_pop_failed_realloc = 0;
1523 
1524   pd_initialize();
1525 }
1526 
1527 #if INCLUDE_ALL_GCS
1528 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1529 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1530 bool JavaThread::_evacuation_in_progress_global = false;
1531 #endif // INCLUDE_ALL_GCS
1532 
1533 JavaThread::JavaThread(bool is_attaching_via_jni) :
1534                        Thread()
1535 #if INCLUDE_ALL_GCS
1536                        , _satb_mark_queue(&_satb_mark_queue_set),
1537                        _dirty_card_queue(&_dirty_card_queue_set),
1538                        _evacuation_in_progress(_evacuation_in_progress_global)
1539 #endif // INCLUDE_ALL_GCS
1540 {
1541   initialize();
1542   if (is_attaching_via_jni) {
1543     _jni_attach_state = _attaching_via_jni;
1544   } else {
1545     _jni_attach_state = _not_attaching_via_jni;
1546   }
1547   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1548 }
1549 
1550 bool JavaThread::reguard_stack(address cur_sp) {
1551   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1552       && _stack_guard_state != stack_guard_reserved_disabled) {
1553     return true; // Stack already guarded or guard pages not needed.
1554   }
1555 
1556   if (register_stack_overflow()) {
1557     // For those architectures which have separate register and
1558     // memory stacks, we must check the register stack to see if
1559     // it has overflowed.
1560     return false;
1561   }
1562 
1563   // Java code never executes within the yellow zone: the latter is only
1564   // there to provoke an exception during stack banging.  If java code
1565   // is executing there, either StackShadowPages should be larger, or
1566   // some exception code in c1, c2 or the interpreter isn't unwinding
1567   // when it should.
1568   guarantee(cur_sp > stack_reserved_zone_base(),
1569             "not enough space to reguard - increase StackShadowPages");
1570   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1571     enable_stack_yellow_reserved_zone();
1572     if (reserved_stack_activation() != stack_base()) {
1573       set_reserved_stack_activation(stack_base());
1574     }
1575   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1576     set_reserved_stack_activation(stack_base());
1577     enable_stack_reserved_zone();
1578   }
1579   return true;
1580 }
1581 
1582 bool JavaThread::reguard_stack(void) {
1583   return reguard_stack(os::current_stack_pointer());
1584 }
1585 
1586 
1587 void JavaThread::block_if_vm_exited() {
1588   if (_terminated == _vm_exited) {
1589     // _vm_exited is set at safepoint, and Threads_lock is never released
1590     // we will block here forever
1591     Threads_lock->lock_without_safepoint_check();
1592     ShouldNotReachHere();
1593   }
1594 }
1595 
1596 
1597 // Remove this ifdef when C1 is ported to the compiler interface.
1598 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1599 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1600 
1601 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1602                        Thread()
1603 #if INCLUDE_ALL_GCS
1604                        , _satb_mark_queue(&_satb_mark_queue_set),
1605                        _dirty_card_queue(&_dirty_card_queue_set),
1606                        _evacuation_in_progress(_evacuation_in_progress_global)
1607 #endif // INCLUDE_ALL_GCS
1608 {
1609   initialize();
1610   _jni_attach_state = _not_attaching_via_jni;
1611   set_entry_point(entry_point);
1612   // Create the native thread itself.
1613   // %note runtime_23
1614   os::ThreadType thr_type = os::java_thread;
1615   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1616                                                      os::java_thread;
1617   os::create_thread(this, thr_type, stack_sz);
1618   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1619   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1620   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1621   // the exception consists of creating the exception object & initializing it, initialization
1622   // will leave the VM via a JavaCall and then all locks must be unlocked).
1623   //
1624   // The thread is still suspended when we reach here. Thread must be explicit started
1625   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1626   // by calling Threads:add. The reason why this is not done here, is because the thread
1627   // object must be fully initialized (take a look at JVM_Start)
1628 }
1629 
1630 JavaThread::~JavaThread() {
1631 
1632   // JSR166 -- return the parker to the free list
1633   Parker::Release(_parker);
1634   _parker = NULL;
1635 
1636   // Free any remaining  previous UnrollBlock
1637   vframeArray* old_array = vframe_array_last();
1638 
1639   if (old_array != NULL) {
1640     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1641     old_array->set_unroll_block(NULL);
1642     delete old_info;
1643     delete old_array;
1644   }
1645 
1646   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1647   if (deferred != NULL) {
1648     // This can only happen if thread is destroyed before deoptimization occurs.
1649     assert(deferred->length() != 0, "empty array!");
1650     do {
1651       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1652       deferred->remove_at(0);
1653       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1654       delete dlv;
1655     } while (deferred->length() != 0);
1656     delete deferred;
1657   }
1658 
1659   // All Java related clean up happens in exit
1660   ThreadSafepointState::destroy(this);
1661   if (_thread_profiler != NULL) delete _thread_profiler;
1662   if (_thread_stat != NULL) delete _thread_stat;
1663 
1664 #if INCLUDE_JVMCI
1665   if (JVMCICounterSize > 0) {
1666     if (jvmci_counters_include(this)) {
1667       for (int i = 0; i < JVMCICounterSize; i++) {
1668         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1669       }
1670     }
1671     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1672   }
1673 #endif // INCLUDE_JVMCI
1674 }
1675 
1676 
1677 // The first routine called by a new Java thread
1678 void JavaThread::run() {
1679   // initialize thread-local alloc buffer related fields
1680   this->initialize_tlab();
1681 
1682   // used to test validity of stack trace backs
1683   this->record_base_of_stack_pointer();
1684 
1685   // Record real stack base and size.
1686   this->record_stack_base_and_size();
1687 
1688   this->create_stack_guard_pages();
1689 
1690   this->cache_global_variables();
1691 
1692   // Thread is now sufficient initialized to be handled by the safepoint code as being
1693   // in the VM. Change thread state from _thread_new to _thread_in_vm
1694   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1695 
1696   assert(JavaThread::current() == this, "sanity check");
1697   assert(!Thread::current()->owns_locks(), "sanity check");
1698 
1699   DTRACE_THREAD_PROBE(start, this);
1700 
1701   // This operation might block. We call that after all safepoint checks for a new thread has
1702   // been completed.
1703   this->set_active_handles(JNIHandleBlock::allocate_block());
1704 
1705   if (JvmtiExport::should_post_thread_life()) {
1706     JvmtiExport::post_thread_start(this);
1707   }
1708 
1709   EventThreadStart event;
1710   if (event.should_commit()) {
1711     event.set_thread(THREAD_TRACE_ID(this));
1712     event.commit();
1713   }
1714 
1715   // We call another function to do the rest so we are sure that the stack addresses used
1716   // from there will be lower than the stack base just computed
1717   thread_main_inner();
1718 
1719   // Note, thread is no longer valid at this point!
1720 }
1721 
1722 
1723 void JavaThread::thread_main_inner() {
1724   assert(JavaThread::current() == this, "sanity check");
1725   assert(this->threadObj() != NULL, "just checking");
1726 
1727   // Execute thread entry point unless this thread has a pending exception
1728   // or has been stopped before starting.
1729   // Note: Due to JVM_StopThread we can have pending exceptions already!
1730   if (!this->has_pending_exception() &&
1731       !java_lang_Thread::is_stillborn(this->threadObj())) {
1732     {
1733       ResourceMark rm(this);
1734       this->set_native_thread_name(this->get_thread_name());
1735     }
1736     HandleMark hm(this);
1737     this->entry_point()(this, this);
1738   }
1739 
1740   DTRACE_THREAD_PROBE(stop, this);
1741 
1742   this->exit(false);
1743   delete this;
1744 }
1745 
1746 
1747 static void ensure_join(JavaThread* thread) {
1748   // We do not need to grap the Threads_lock, since we are operating on ourself.
1749   Handle threadObj(thread, thread->threadObj());
1750   assert(threadObj.not_null(), "java thread object must exist");
1751   ObjectLocker lock(threadObj, thread);
1752   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1753   thread->clear_pending_exception();
1754   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1755   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1756   // Clear the native thread instance - this makes isAlive return false and allows the join()
1757   // to complete once we've done the notify_all below
1758   java_lang_Thread::set_thread(threadObj(), NULL);
1759   lock.notify_all(thread);
1760   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1761   thread->clear_pending_exception();
1762 }
1763 
1764 
1765 // For any new cleanup additions, please check to see if they need to be applied to
1766 // cleanup_failed_attach_current_thread as well.
1767 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1768   assert(this == JavaThread::current(), "thread consistency check");
1769 
1770   HandleMark hm(this);
1771   Handle uncaught_exception(this, this->pending_exception());
1772   this->clear_pending_exception();
1773   Handle threadObj(this, this->threadObj());
1774   assert(threadObj.not_null(), "Java thread object should be created");
1775 
1776   if (get_thread_profiler() != NULL) {
1777     get_thread_profiler()->disengage();
1778     ResourceMark rm;
1779     get_thread_profiler()->print(get_thread_name());
1780   }
1781 
1782 
1783   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1784   {
1785     EXCEPTION_MARK;
1786 
1787     CLEAR_PENDING_EXCEPTION;
1788   }
1789   if (!destroy_vm) {
1790     if (uncaught_exception.not_null()) {
1791       EXCEPTION_MARK;
1792       // Call method Thread.dispatchUncaughtException().
1793       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1794       JavaValue result(T_VOID);
1795       JavaCalls::call_virtual(&result,
1796                               threadObj, thread_klass,
1797                               vmSymbols::dispatchUncaughtException_name(),
1798                               vmSymbols::throwable_void_signature(),
1799                               uncaught_exception,
1800                               THREAD);
1801       if (HAS_PENDING_EXCEPTION) {
1802         ResourceMark rm(this);
1803         jio_fprintf(defaultStream::error_stream(),
1804                     "\nException: %s thrown from the UncaughtExceptionHandler"
1805                     " in thread \"%s\"\n",
1806                     pending_exception()->klass()->external_name(),
1807                     get_thread_name());
1808         CLEAR_PENDING_EXCEPTION;
1809       }
1810     }
1811 
1812     // Called before the java thread exit since we want to read info
1813     // from java_lang_Thread object
1814     EventThreadEnd event;
1815     if (event.should_commit()) {
1816       event.set_thread(THREAD_TRACE_ID(this));
1817       event.commit();
1818     }
1819 
1820     // Call after last event on thread
1821     EVENT_THREAD_EXIT(this);
1822 
1823     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1824     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1825     // is deprecated anyhow.
1826     if (!is_Compiler_thread()) {
1827       int count = 3;
1828       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1829         EXCEPTION_MARK;
1830         JavaValue result(T_VOID);
1831         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1832         JavaCalls::call_virtual(&result,
1833                                 threadObj, thread_klass,
1834                                 vmSymbols::exit_method_name(),
1835                                 vmSymbols::void_method_signature(),
1836                                 THREAD);
1837         CLEAR_PENDING_EXCEPTION;
1838       }
1839     }
1840     // notify JVMTI
1841     if (JvmtiExport::should_post_thread_life()) {
1842       JvmtiExport::post_thread_end(this);
1843     }
1844 
1845     // We have notified the agents that we are exiting, before we go on,
1846     // we must check for a pending external suspend request and honor it
1847     // in order to not surprise the thread that made the suspend request.
1848     while (true) {
1849       {
1850         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1851         if (!is_external_suspend()) {
1852           set_terminated(_thread_exiting);
1853           ThreadService::current_thread_exiting(this);
1854           break;
1855         }
1856         // Implied else:
1857         // Things get a little tricky here. We have a pending external
1858         // suspend request, but we are holding the SR_lock so we
1859         // can't just self-suspend. So we temporarily drop the lock
1860         // and then self-suspend.
1861       }
1862 
1863       ThreadBlockInVM tbivm(this);
1864       java_suspend_self();
1865 
1866       // We're done with this suspend request, but we have to loop around
1867       // and check again. Eventually we will get SR_lock without a pending
1868       // external suspend request and will be able to mark ourselves as
1869       // exiting.
1870     }
1871     // no more external suspends are allowed at this point
1872   } else {
1873     // before_exit() has already posted JVMTI THREAD_END events
1874   }
1875 
1876   // Notify waiters on thread object. This has to be done after exit() is called
1877   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1878   // group should have the destroyed bit set before waiters are notified).
1879   ensure_join(this);
1880   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1881 
1882   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1883   // held by this thread must be released. The spec does not distinguish
1884   // between JNI-acquired and regular Java monitors. We can only see
1885   // regular Java monitors here if monitor enter-exit matching is broken.
1886   //
1887   // Optionally release any monitors for regular JavaThread exits. This
1888   // is provided as a work around for any bugs in monitor enter-exit
1889   // matching. This can be expensive so it is not enabled by default.
1890   //
1891   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1892   // ObjectSynchronizer::release_monitors_owned_by_thread().
1893   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1894     // Sanity check even though JNI DetachCurrentThread() would have
1895     // returned JNI_ERR if there was a Java frame. JavaThread exit
1896     // should be done executing Java code by the time we get here.
1897     assert(!this->has_last_Java_frame(),
1898            "should not have a Java frame when detaching or exiting");
1899     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1900     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1901   }
1902 
1903   // These things needs to be done while we are still a Java Thread. Make sure that thread
1904   // is in a consistent state, in case GC happens
1905   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1906 
1907   if (active_handles() != NULL) {
1908     JNIHandleBlock* block = active_handles();
1909     set_active_handles(NULL);
1910     JNIHandleBlock::release_block(block);
1911   }
1912 
1913   if (free_handle_block() != NULL) {
1914     JNIHandleBlock* block = free_handle_block();
1915     set_free_handle_block(NULL);
1916     JNIHandleBlock::release_block(block);
1917   }
1918 
1919   // These have to be removed while this is still a valid thread.
1920   remove_stack_guard_pages();
1921 
1922   if (UseTLAB) {
1923     tlab().make_parsable(true);  // retire TLAB
1924   }
1925 
1926   if (JvmtiEnv::environments_might_exist()) {
1927     JvmtiExport::cleanup_thread(this);
1928   }
1929 
1930   // We must flush any deferred card marks before removing a thread from
1931   // the list of active threads.
1932   Universe::heap()->flush_deferred_store_barrier(this);
1933   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1934 
1935 #if INCLUDE_ALL_GCS
1936   // We must flush the G1-related buffers before removing a thread
1937   // from the list of active threads. We must do this after any deferred
1938   // card marks have been flushed (above) so that any entries that are
1939   // added to the thread's dirty card queue as a result are not lost.
1940   if (UseG1GC || (UseShenandoahGC && ShenandoahWriteBarrier)) {
1941     flush_barrier_queues();
1942   }
1943   if (UseShenandoahGC && UseTLAB) {
1944     gclab().make_parsable(true);
1945   }
1946 #endif // INCLUDE_ALL_GCS
1947 
1948   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1949     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1950     os::current_thread_id());
1951 
1952   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1953   Threads::remove(this);
1954 }
1955 
1956 #if INCLUDE_ALL_GCS
1957 // Flush G1-related queues.
1958 void JavaThread::flush_barrier_queues() {
1959   satb_mark_queue().flush();
1960   dirty_card_queue().flush();
1961 }
1962 
1963 void JavaThread::initialize_queues() {
1964   assert(!SafepointSynchronize::is_at_safepoint(),
1965          "we should not be at a safepoint");
1966 
1967   SATBMarkQueue& satb_queue = satb_mark_queue();
1968   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1969   // The SATB queue should have been constructed with its active
1970   // field set to false.
1971   assert(!satb_queue.is_active(), "SATB queue should not be active");
1972   assert(satb_queue.is_empty(), "SATB queue should be empty");
1973   // If we are creating the thread during a marking cycle, we should
1974   // set the active field of the SATB queue to true.
1975   if (satb_queue_set.is_active()) {
1976     satb_queue.set_active(true);
1977   }
1978 
1979   DirtyCardQueue& dirty_queue = dirty_card_queue();
1980   // The dirty card queue should have been constructed with its
1981   // active field set to true.
1982   assert(dirty_queue.is_active(), "dirty card queue should be active");
1983 
1984   _evacuation_in_progress = _evacuation_in_progress_global;
1985 }
1986 
1987 bool JavaThread::evacuation_in_progress() const {
1988   return _evacuation_in_progress;
1989 }
1990 
1991 void JavaThread::set_evacuation_in_progress(bool in_prog) {
1992   _evacuation_in_progress = in_prog;
1993 }
1994 
1995 void JavaThread::set_evacuation_in_progress_all_threads(bool in_prog) {
1996   assert_locked_or_safepoint(Threads_lock);
1997   _evacuation_in_progress_global = in_prog;
1998   for (JavaThread* t = Threads::first(); t != NULL; t = t->next()) {
1999     t->set_evacuation_in_progress(in_prog);
2000   }
2001 }
2002 #endif // INCLUDE_ALL_GCS
2003 
2004 void JavaThread::cleanup_failed_attach_current_thread() {
2005   if (get_thread_profiler() != NULL) {
2006     get_thread_profiler()->disengage();
2007     ResourceMark rm;
2008     get_thread_profiler()->print(get_thread_name());
2009   }
2010 
2011   if (active_handles() != NULL) {
2012     JNIHandleBlock* block = active_handles();
2013     set_active_handles(NULL);
2014     JNIHandleBlock::release_block(block);
2015   }
2016 
2017   if (free_handle_block() != NULL) {
2018     JNIHandleBlock* block = free_handle_block();
2019     set_free_handle_block(NULL);
2020     JNIHandleBlock::release_block(block);
2021   }
2022 
2023   // These have to be removed while this is still a valid thread.
2024   remove_stack_guard_pages();
2025 
2026   if (UseTLAB) {
2027     tlab().make_parsable(true);  // retire TLAB, if any
2028   }
2029 
2030 #if INCLUDE_ALL_GCS
2031   if (UseG1GC || (UseShenandoahGC && ShenandoahWriteBarrier)) {
2032     flush_barrier_queues();
2033   }
2034   if (UseShenandoahGC && UseTLAB) {
2035     gclab().make_parsable(true);
2036   }
2037 #endif // INCLUDE_ALL_GCS
2038 
2039   Threads::remove(this);
2040   delete this;
2041 }
2042 
2043 
2044 
2045 
2046 JavaThread* JavaThread::active() {
2047   Thread* thread = Thread::current();
2048   if (thread->is_Java_thread()) {
2049     return (JavaThread*) thread;
2050   } else {
2051     assert(thread->is_VM_thread(), "this must be a vm thread");
2052     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2053     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2054     assert(ret->is_Java_thread(), "must be a Java thread");
2055     return ret;
2056   }
2057 }
2058 
2059 bool JavaThread::is_lock_owned(address adr) const {
2060   if (Thread::is_lock_owned(adr)) return true;
2061 
2062   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2063     if (chunk->contains(adr)) return true;
2064   }
2065 
2066   return false;
2067 }
2068 
2069 
2070 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2071   chunk->set_next(monitor_chunks());
2072   set_monitor_chunks(chunk);
2073 }
2074 
2075 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2076   guarantee(monitor_chunks() != NULL, "must be non empty");
2077   if (monitor_chunks() == chunk) {
2078     set_monitor_chunks(chunk->next());
2079   } else {
2080     MonitorChunk* prev = monitor_chunks();
2081     while (prev->next() != chunk) prev = prev->next();
2082     prev->set_next(chunk->next());
2083   }
2084 }
2085 
2086 // JVM support.
2087 
2088 // Note: this function shouldn't block if it's called in
2089 // _thread_in_native_trans state (such as from
2090 // check_special_condition_for_native_trans()).
2091 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2092 
2093   if (has_last_Java_frame() && has_async_condition()) {
2094     // If we are at a polling page safepoint (not a poll return)
2095     // then we must defer async exception because live registers
2096     // will be clobbered by the exception path. Poll return is
2097     // ok because the call we a returning from already collides
2098     // with exception handling registers and so there is no issue.
2099     // (The exception handling path kills call result registers but
2100     //  this is ok since the exception kills the result anyway).
2101 
2102     if (is_at_poll_safepoint()) {
2103       // if the code we are returning to has deoptimized we must defer
2104       // the exception otherwise live registers get clobbered on the
2105       // exception path before deoptimization is able to retrieve them.
2106       //
2107       RegisterMap map(this, false);
2108       frame caller_fr = last_frame().sender(&map);
2109       assert(caller_fr.is_compiled_frame(), "what?");
2110       if (caller_fr.is_deoptimized_frame()) {
2111         log_info(exceptions)("deferred async exception at compiled safepoint");
2112         return;
2113       }
2114     }
2115   }
2116 
2117   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2118   if (condition == _no_async_condition) {
2119     // Conditions have changed since has_special_runtime_exit_condition()
2120     // was called:
2121     // - if we were here only because of an external suspend request,
2122     //   then that was taken care of above (or cancelled) so we are done
2123     // - if we were here because of another async request, then it has
2124     //   been cleared between the has_special_runtime_exit_condition()
2125     //   and now so again we are done
2126     return;
2127   }
2128 
2129   // Check for pending async. exception
2130   if (_pending_async_exception != NULL) {
2131     // Only overwrite an already pending exception, if it is not a threadDeath.
2132     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2133 
2134       // We cannot call Exceptions::_throw(...) here because we cannot block
2135       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2136 
2137       if (log_is_enabled(Info, exceptions)) {
2138         ResourceMark rm;
2139         outputStream* logstream = Log(exceptions)::info_stream();
2140         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2141           if (has_last_Java_frame()) {
2142             frame f = last_frame();
2143            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2144           }
2145         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2146       }
2147       _pending_async_exception = NULL;
2148       clear_has_async_exception();
2149     }
2150   }
2151 
2152   if (check_unsafe_error &&
2153       condition == _async_unsafe_access_error && !has_pending_exception()) {
2154     condition = _no_async_condition;  // done
2155     switch (thread_state()) {
2156     case _thread_in_vm: {
2157       JavaThread* THREAD = this;
2158       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2159     }
2160     case _thread_in_native: {
2161       ThreadInVMfromNative tiv(this);
2162       JavaThread* THREAD = this;
2163       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2164     }
2165     case _thread_in_Java: {
2166       ThreadInVMfromJava tiv(this);
2167       JavaThread* THREAD = this;
2168       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2169     }
2170     default:
2171       ShouldNotReachHere();
2172     }
2173   }
2174 
2175   assert(condition == _no_async_condition || has_pending_exception() ||
2176          (!check_unsafe_error && condition == _async_unsafe_access_error),
2177          "must have handled the async condition, if no exception");
2178 }
2179 
2180 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2181   //
2182   // Check for pending external suspend. Internal suspend requests do
2183   // not use handle_special_runtime_exit_condition().
2184   // If JNIEnv proxies are allowed, don't self-suspend if the target
2185   // thread is not the current thread. In older versions of jdbx, jdbx
2186   // threads could call into the VM with another thread's JNIEnv so we
2187   // can be here operating on behalf of a suspended thread (4432884).
2188   bool do_self_suspend = is_external_suspend_with_lock();
2189   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2190     //
2191     // Because thread is external suspended the safepoint code will count
2192     // thread as at a safepoint. This can be odd because we can be here
2193     // as _thread_in_Java which would normally transition to _thread_blocked
2194     // at a safepoint. We would like to mark the thread as _thread_blocked
2195     // before calling java_suspend_self like all other callers of it but
2196     // we must then observe proper safepoint protocol. (We can't leave
2197     // _thread_blocked with a safepoint in progress). However we can be
2198     // here as _thread_in_native_trans so we can't use a normal transition
2199     // constructor/destructor pair because they assert on that type of
2200     // transition. We could do something like:
2201     //
2202     // JavaThreadState state = thread_state();
2203     // set_thread_state(_thread_in_vm);
2204     // {
2205     //   ThreadBlockInVM tbivm(this);
2206     //   java_suspend_self()
2207     // }
2208     // set_thread_state(_thread_in_vm_trans);
2209     // if (safepoint) block;
2210     // set_thread_state(state);
2211     //
2212     // but that is pretty messy. Instead we just go with the way the
2213     // code has worked before and note that this is the only path to
2214     // java_suspend_self that doesn't put the thread in _thread_blocked
2215     // mode.
2216 
2217     frame_anchor()->make_walkable(this);
2218     java_suspend_self();
2219 
2220     // We might be here for reasons in addition to the self-suspend request
2221     // so check for other async requests.
2222   }
2223 
2224   if (check_asyncs) {
2225     check_and_handle_async_exceptions();
2226   }
2227 }
2228 
2229 void JavaThread::send_thread_stop(oop java_throwable)  {
2230   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2231   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2232   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2233 
2234   // Do not throw asynchronous exceptions against the compiler thread
2235   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2236   if (!can_call_java()) return;
2237 
2238   {
2239     // Actually throw the Throwable against the target Thread - however
2240     // only if there is no thread death exception installed already.
2241     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2242       // If the topmost frame is a runtime stub, then we are calling into
2243       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2244       // must deoptimize the caller before continuing, as the compiled  exception handler table
2245       // may not be valid
2246       if (has_last_Java_frame()) {
2247         frame f = last_frame();
2248         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2249           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2250           RegisterMap reg_map(this, UseBiasedLocking);
2251           frame compiled_frame = f.sender(&reg_map);
2252           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2253             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2254           }
2255         }
2256       }
2257 
2258       // Set async. pending exception in thread.
2259       set_pending_async_exception(java_throwable);
2260 
2261       if (log_is_enabled(Info, exceptions)) {
2262          ResourceMark rm;
2263         log_info(exceptions)("Pending Async. exception installed of type: %s",
2264                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2265       }
2266       // for AbortVMOnException flag
2267       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2268     }
2269   }
2270 
2271 
2272   // Interrupt thread so it will wake up from a potential wait()
2273   Thread::interrupt(this);
2274 }
2275 
2276 // External suspension mechanism.
2277 //
2278 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2279 // to any VM_locks and it is at a transition
2280 // Self-suspension will happen on the transition out of the vm.
2281 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2282 //
2283 // Guarantees on return:
2284 //   + Target thread will not execute any new bytecode (that's why we need to
2285 //     force a safepoint)
2286 //   + Target thread will not enter any new monitors
2287 //
2288 void JavaThread::java_suspend() {
2289   { MutexLocker mu(Threads_lock);
2290     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2291       return;
2292     }
2293   }
2294 
2295   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2296     if (!is_external_suspend()) {
2297       // a racing resume has cancelled us; bail out now
2298       return;
2299     }
2300 
2301     // suspend is done
2302     uint32_t debug_bits = 0;
2303     // Warning: is_ext_suspend_completed() may temporarily drop the
2304     // SR_lock to allow the thread to reach a stable thread state if
2305     // it is currently in a transient thread state.
2306     if (is_ext_suspend_completed(false /* !called_by_wait */,
2307                                  SuspendRetryDelay, &debug_bits)) {
2308       return;
2309     }
2310   }
2311 
2312   VM_ForceSafepoint vm_suspend;
2313   VMThread::execute(&vm_suspend);
2314 }
2315 
2316 // Part II of external suspension.
2317 // A JavaThread self suspends when it detects a pending external suspend
2318 // request. This is usually on transitions. It is also done in places
2319 // where continuing to the next transition would surprise the caller,
2320 // e.g., monitor entry.
2321 //
2322 // Returns the number of times that the thread self-suspended.
2323 //
2324 // Note: DO NOT call java_suspend_self() when you just want to block current
2325 //       thread. java_suspend_self() is the second stage of cooperative
2326 //       suspension for external suspend requests and should only be used
2327 //       to complete an external suspend request.
2328 //
2329 int JavaThread::java_suspend_self() {
2330   int ret = 0;
2331 
2332   // we are in the process of exiting so don't suspend
2333   if (is_exiting()) {
2334     clear_external_suspend();
2335     return ret;
2336   }
2337 
2338   assert(_anchor.walkable() ||
2339          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2340          "must have walkable stack");
2341 
2342   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2343 
2344   assert(!this->is_ext_suspended(),
2345          "a thread trying to self-suspend should not already be suspended");
2346 
2347   if (this->is_suspend_equivalent()) {
2348     // If we are self-suspending as a result of the lifting of a
2349     // suspend equivalent condition, then the suspend_equivalent
2350     // flag is not cleared until we set the ext_suspended flag so
2351     // that wait_for_ext_suspend_completion() returns consistent
2352     // results.
2353     this->clear_suspend_equivalent();
2354   }
2355 
2356   // A racing resume may have cancelled us before we grabbed SR_lock
2357   // above. Or another external suspend request could be waiting for us
2358   // by the time we return from SR_lock()->wait(). The thread
2359   // that requested the suspension may already be trying to walk our
2360   // stack and if we return now, we can change the stack out from under
2361   // it. This would be a "bad thing (TM)" and cause the stack walker
2362   // to crash. We stay self-suspended until there are no more pending
2363   // external suspend requests.
2364   while (is_external_suspend()) {
2365     ret++;
2366     this->set_ext_suspended();
2367 
2368     // _ext_suspended flag is cleared by java_resume()
2369     while (is_ext_suspended()) {
2370       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2371     }
2372   }
2373 
2374   return ret;
2375 }
2376 
2377 #ifdef ASSERT
2378 // verify the JavaThread has not yet been published in the Threads::list, and
2379 // hence doesn't need protection from concurrent access at this stage
2380 void JavaThread::verify_not_published() {
2381   if (!Threads_lock->owned_by_self()) {
2382     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2383     assert(!Threads::includes(this),
2384            "java thread shouldn't have been published yet!");
2385   } else {
2386     assert(!Threads::includes(this),
2387            "java thread shouldn't have been published yet!");
2388   }
2389 }
2390 #endif
2391 
2392 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2393 // progress or when _suspend_flags is non-zero.
2394 // Current thread needs to self-suspend if there is a suspend request and/or
2395 // block if a safepoint is in progress.
2396 // Async exception ISN'T checked.
2397 // Note only the ThreadInVMfromNative transition can call this function
2398 // directly and when thread state is _thread_in_native_trans
2399 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2400   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2401 
2402   JavaThread *curJT = JavaThread::current();
2403   bool do_self_suspend = thread->is_external_suspend();
2404 
2405   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2406 
2407   // If JNIEnv proxies are allowed, don't self-suspend if the target
2408   // thread is not the current thread. In older versions of jdbx, jdbx
2409   // threads could call into the VM with another thread's JNIEnv so we
2410   // can be here operating on behalf of a suspended thread (4432884).
2411   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2412     JavaThreadState state = thread->thread_state();
2413 
2414     // We mark this thread_blocked state as a suspend-equivalent so
2415     // that a caller to is_ext_suspend_completed() won't be confused.
2416     // The suspend-equivalent state is cleared by java_suspend_self().
2417     thread->set_suspend_equivalent();
2418 
2419     // If the safepoint code sees the _thread_in_native_trans state, it will
2420     // wait until the thread changes to other thread state. There is no
2421     // guarantee on how soon we can obtain the SR_lock and complete the
2422     // self-suspend request. It would be a bad idea to let safepoint wait for
2423     // too long. Temporarily change the state to _thread_blocked to
2424     // let the VM thread know that this thread is ready for GC. The problem
2425     // of changing thread state is that safepoint could happen just after
2426     // java_suspend_self() returns after being resumed, and VM thread will
2427     // see the _thread_blocked state. We must check for safepoint
2428     // after restoring the state and make sure we won't leave while a safepoint
2429     // is in progress.
2430     thread->set_thread_state(_thread_blocked);
2431     thread->java_suspend_self();
2432     thread->set_thread_state(state);
2433     // Make sure new state is seen by VM thread
2434     if (os::is_MP()) {
2435       if (UseMembar) {
2436         // Force a fence between the write above and read below
2437         OrderAccess::fence();
2438       } else {
2439         // Must use this rather than serialization page in particular on Windows
2440         InterfaceSupport::serialize_memory(thread);
2441       }
2442     }
2443   }
2444 
2445   if (SafepointSynchronize::do_call_back()) {
2446     // If we are safepointing, then block the caller which may not be
2447     // the same as the target thread (see above).
2448     SafepointSynchronize::block(curJT);
2449   }
2450 
2451   if (thread->is_deopt_suspend()) {
2452     thread->clear_deopt_suspend();
2453     RegisterMap map(thread, false);
2454     frame f = thread->last_frame();
2455     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2456       f = f.sender(&map);
2457     }
2458     if (f.id() == thread->must_deopt_id()) {
2459       thread->clear_must_deopt_id();
2460       f.deoptimize(thread);
2461     } else {
2462       fatal("missed deoptimization!");
2463     }
2464   }
2465 }
2466 
2467 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2468 // progress or when _suspend_flags is non-zero.
2469 // Current thread needs to self-suspend if there is a suspend request and/or
2470 // block if a safepoint is in progress.
2471 // Also check for pending async exception (not including unsafe access error).
2472 // Note only the native==>VM/Java barriers can call this function and when
2473 // thread state is _thread_in_native_trans.
2474 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2475   check_safepoint_and_suspend_for_native_trans(thread);
2476 
2477   if (thread->has_async_exception()) {
2478     // We are in _thread_in_native_trans state, don't handle unsafe
2479     // access error since that may block.
2480     thread->check_and_handle_async_exceptions(false);
2481   }
2482 }
2483 
2484 // This is a variant of the normal
2485 // check_special_condition_for_native_trans with slightly different
2486 // semantics for use by critical native wrappers.  It does all the
2487 // normal checks but also performs the transition back into
2488 // thread_in_Java state.  This is required so that critical natives
2489 // can potentially block and perform a GC if they are the last thread
2490 // exiting the GCLocker.
2491 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2492   check_special_condition_for_native_trans(thread);
2493 
2494   // Finish the transition
2495   thread->set_thread_state(_thread_in_Java);
2496 
2497   if (thread->do_critical_native_unlock()) {
2498     ThreadInVMfromJavaNoAsyncException tiv(thread);
2499     GCLocker::unlock_critical(thread);
2500     thread->clear_critical_native_unlock();
2501   }
2502 }
2503 
2504 // We need to guarantee the Threads_lock here, since resumes are not
2505 // allowed during safepoint synchronization
2506 // Can only resume from an external suspension
2507 void JavaThread::java_resume() {
2508   assert_locked_or_safepoint(Threads_lock);
2509 
2510   // Sanity check: thread is gone, has started exiting or the thread
2511   // was not externally suspended.
2512   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2513     return;
2514   }
2515 
2516   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2517 
2518   clear_external_suspend();
2519 
2520   if (is_ext_suspended()) {
2521     clear_ext_suspended();
2522     SR_lock()->notify_all();
2523   }
2524 }
2525 
2526 size_t JavaThread::_stack_red_zone_size = 0;
2527 size_t JavaThread::_stack_yellow_zone_size = 0;
2528 size_t JavaThread::_stack_reserved_zone_size = 0;
2529 size_t JavaThread::_stack_shadow_zone_size = 0;
2530 
2531 void JavaThread::create_stack_guard_pages() {
2532   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2533   address low_addr = stack_end();
2534   size_t len = stack_guard_zone_size();
2535 
2536   int must_commit = os::must_commit_stack_guard_pages();
2537   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2538 
2539   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2540     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2541     return;
2542   }
2543 
2544   if (os::guard_memory((char *) low_addr, len)) {
2545     _stack_guard_state = stack_guard_enabled;
2546   } else {
2547     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2548       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2549     if (os::uncommit_memory((char *) low_addr, len)) {
2550       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2551     }
2552     return;
2553   }
2554 
2555   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2556     PTR_FORMAT "-" PTR_FORMAT ".",
2557     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2558 }
2559 
2560 void JavaThread::remove_stack_guard_pages() {
2561   assert(Thread::current() == this, "from different thread");
2562   if (_stack_guard_state == stack_guard_unused) return;
2563   address low_addr = stack_end();
2564   size_t len = stack_guard_zone_size();
2565 
2566   if (os::must_commit_stack_guard_pages()) {
2567     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2568       _stack_guard_state = stack_guard_unused;
2569     } else {
2570       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2571         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2572       return;
2573     }
2574   } else {
2575     if (_stack_guard_state == stack_guard_unused) return;
2576     if (os::unguard_memory((char *) low_addr, len)) {
2577       _stack_guard_state = stack_guard_unused;
2578     } else {
2579       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2580         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2581       return;
2582     }
2583   }
2584 
2585   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2586     PTR_FORMAT "-" PTR_FORMAT ".",
2587     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2588 }
2589 
2590 void JavaThread::enable_stack_reserved_zone() {
2591   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2592   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2593 
2594   // The base notation is from the stack's point of view, growing downward.
2595   // We need to adjust it to work correctly with guard_memory()
2596   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2597 
2598   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2599   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2600 
2601   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2602     _stack_guard_state = stack_guard_enabled;
2603   } else {
2604     warning("Attempt to guard stack reserved zone failed.");
2605   }
2606   enable_register_stack_guard();
2607 }
2608 
2609 void JavaThread::disable_stack_reserved_zone() {
2610   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2611   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2612 
2613   // Simply return if called for a thread that does not use guard pages.
2614   if (_stack_guard_state == stack_guard_unused) return;
2615 
2616   // The base notation is from the stack's point of view, growing downward.
2617   // We need to adjust it to work correctly with guard_memory()
2618   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2619 
2620   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2621     _stack_guard_state = stack_guard_reserved_disabled;
2622   } else {
2623     warning("Attempt to unguard stack reserved zone failed.");
2624   }
2625   disable_register_stack_guard();
2626 }
2627 
2628 void JavaThread::enable_stack_yellow_reserved_zone() {
2629   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2630   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2631 
2632   // The base notation is from the stacks point of view, growing downward.
2633   // We need to adjust it to work correctly with guard_memory()
2634   address base = stack_red_zone_base();
2635 
2636   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2637   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2638 
2639   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2640     _stack_guard_state = stack_guard_enabled;
2641   } else {
2642     warning("Attempt to guard stack yellow zone failed.");
2643   }
2644   enable_register_stack_guard();
2645 }
2646 
2647 void JavaThread::disable_stack_yellow_reserved_zone() {
2648   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2649   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2650 
2651   // Simply return if called for a thread that does not use guard pages.
2652   if (_stack_guard_state == stack_guard_unused) return;
2653 
2654   // The base notation is from the stacks point of view, growing downward.
2655   // We need to adjust it to work correctly with guard_memory()
2656   address base = stack_red_zone_base();
2657 
2658   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2659     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2660   } else {
2661     warning("Attempt to unguard stack yellow zone failed.");
2662   }
2663   disable_register_stack_guard();
2664 }
2665 
2666 void JavaThread::enable_stack_red_zone() {
2667   // The base notation is from the stacks point of view, growing downward.
2668   // We need to adjust it to work correctly with guard_memory()
2669   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2670   address base = stack_red_zone_base() - stack_red_zone_size();
2671 
2672   guarantee(base < stack_base(), "Error calculating stack red zone");
2673   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2674 
2675   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2676     warning("Attempt to guard stack red zone failed.");
2677   }
2678 }
2679 
2680 void JavaThread::disable_stack_red_zone() {
2681   // The base notation is from the stacks point of view, growing downward.
2682   // We need to adjust it to work correctly with guard_memory()
2683   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2684   address base = stack_red_zone_base() - stack_red_zone_size();
2685   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2686     warning("Attempt to unguard stack red zone failed.");
2687   }
2688 }
2689 
2690 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2691   // ignore is there is no stack
2692   if (!has_last_Java_frame()) return;
2693   // traverse the stack frames. Starts from top frame.
2694   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2695     frame* fr = fst.current();
2696     f(fr, fst.register_map());
2697   }
2698 }
2699 
2700 
2701 #ifndef PRODUCT
2702 // Deoptimization
2703 // Function for testing deoptimization
2704 void JavaThread::deoptimize() {
2705   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2706   StackFrameStream fst(this, UseBiasedLocking);
2707   bool deopt = false;           // Dump stack only if a deopt actually happens.
2708   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2709   // Iterate over all frames in the thread and deoptimize
2710   for (; !fst.is_done(); fst.next()) {
2711     if (fst.current()->can_be_deoptimized()) {
2712 
2713       if (only_at) {
2714         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2715         // consists of comma or carriage return separated numbers so
2716         // search for the current bci in that string.
2717         address pc = fst.current()->pc();
2718         nmethod* nm =  (nmethod*) fst.current()->cb();
2719         ScopeDesc* sd = nm->scope_desc_at(pc);
2720         char buffer[8];
2721         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2722         size_t len = strlen(buffer);
2723         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2724         while (found != NULL) {
2725           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2726               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2727             // Check that the bci found is bracketed by terminators.
2728             break;
2729           }
2730           found = strstr(found + 1, buffer);
2731         }
2732         if (!found) {
2733           continue;
2734         }
2735       }
2736 
2737       if (DebugDeoptimization && !deopt) {
2738         deopt = true; // One-time only print before deopt
2739         tty->print_cr("[BEFORE Deoptimization]");
2740         trace_frames();
2741         trace_stack();
2742       }
2743       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2744     }
2745   }
2746 
2747   if (DebugDeoptimization && deopt) {
2748     tty->print_cr("[AFTER Deoptimization]");
2749     trace_frames();
2750   }
2751 }
2752 
2753 
2754 // Make zombies
2755 void JavaThread::make_zombies() {
2756   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2757     if (fst.current()->can_be_deoptimized()) {
2758       // it is a Java nmethod
2759       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2760       nm->make_not_entrant();
2761     }
2762   }
2763 }
2764 #endif // PRODUCT
2765 
2766 
2767 void JavaThread::deoptimized_wrt_marked_nmethods() {
2768   if (!has_last_Java_frame()) return;
2769   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2770   StackFrameStream fst(this, UseBiasedLocking);
2771   for (; !fst.is_done(); fst.next()) {
2772     if (fst.current()->should_be_deoptimized()) {
2773       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2774     }
2775   }
2776 }
2777 
2778 
2779 // If the caller is a NamedThread, then remember, in the current scope,
2780 // the given JavaThread in its _processed_thread field.
2781 class RememberProcessedThread: public StackObj {
2782   NamedThread* _cur_thr;
2783  public:
2784   RememberProcessedThread(JavaThread* jthr) {
2785     Thread* thread = Thread::current();
2786     if (thread->is_Named_thread()) {
2787       _cur_thr = (NamedThread *)thread;
2788       _cur_thr->set_processed_thread(jthr);
2789     } else {
2790       _cur_thr = NULL;
2791     }
2792   }
2793 
2794   ~RememberProcessedThread() {
2795     if (_cur_thr) {
2796       _cur_thr->set_processed_thread(NULL);
2797     }
2798   }
2799 };
2800 
2801 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2802   // Verify that the deferred card marks have been flushed.
2803   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2804 
2805   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2806   // since there may be more than one thread using each ThreadProfiler.
2807 
2808   // Traverse the GCHandles
2809   Thread::oops_do(f, cf);
2810 
2811   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2812 
2813   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2814          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2815 
2816   if (has_last_Java_frame()) {
2817     // Record JavaThread to GC thread
2818     RememberProcessedThread rpt(this);
2819 
2820     // Traverse the privileged stack
2821     if (_privileged_stack_top != NULL) {
2822       _privileged_stack_top->oops_do(f);
2823     }
2824 
2825     // traverse the registered growable array
2826     if (_array_for_gc != NULL) {
2827       for (int index = 0; index < _array_for_gc->length(); index++) {
2828         f->do_oop(_array_for_gc->adr_at(index));
2829       }
2830     }
2831 
2832     // Traverse the monitor chunks
2833     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2834       chunk->oops_do(f);
2835     }
2836 
2837     // Traverse the execution stack
2838     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2839       fst.current()->oops_do(f, cf, fst.register_map());
2840     }
2841   }
2842 
2843   // callee_target is never live across a gc point so NULL it here should
2844   // it still contain a methdOop.
2845 
2846   set_callee_target(NULL);
2847 
2848   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2849   // If we have deferred set_locals there might be oops waiting to be
2850   // written
2851   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2852   if (list != NULL) {
2853     for (int i = 0; i < list->length(); i++) {
2854       list->at(i)->oops_do(f);
2855     }
2856   }
2857 
2858   // Traverse instance variables at the end since the GC may be moving things
2859   // around using this function
2860   f->do_oop((oop*) &_threadObj);
2861   f->do_oop((oop*) &_vm_result);
2862   f->do_oop((oop*) &_exception_oop);
2863   f->do_oop((oop*) &_pending_async_exception);
2864 
2865   if (jvmti_thread_state() != NULL) {
2866     jvmti_thread_state()->oops_do(f);
2867   }
2868 }
2869 
2870 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2871   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2872          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2873 
2874   if (has_last_Java_frame()) {
2875     // Traverse the execution stack
2876     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2877       fst.current()->nmethods_do(cf);
2878     }
2879   }
2880 }
2881 
2882 void JavaThread::metadata_do(void f(Metadata*)) {
2883   if (has_last_Java_frame()) {
2884     // Traverse the execution stack to call f() on the methods in the stack
2885     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2886       fst.current()->metadata_do(f);
2887     }
2888   } else if (is_Compiler_thread()) {
2889     // need to walk ciMetadata in current compile tasks to keep alive.
2890     CompilerThread* ct = (CompilerThread*)this;
2891     if (ct->env() != NULL) {
2892       ct->env()->metadata_do(f);
2893     }
2894     if (ct->task() != NULL) {
2895       ct->task()->metadata_do(f);
2896     }
2897   }
2898 }
2899 
2900 // Printing
2901 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2902   switch (_thread_state) {
2903   case _thread_uninitialized:     return "_thread_uninitialized";
2904   case _thread_new:               return "_thread_new";
2905   case _thread_new_trans:         return "_thread_new_trans";
2906   case _thread_in_native:         return "_thread_in_native";
2907   case _thread_in_native_trans:   return "_thread_in_native_trans";
2908   case _thread_in_vm:             return "_thread_in_vm";
2909   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2910   case _thread_in_Java:           return "_thread_in_Java";
2911   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2912   case _thread_blocked:           return "_thread_blocked";
2913   case _thread_blocked_trans:     return "_thread_blocked_trans";
2914   default:                        return "unknown thread state";
2915   }
2916 }
2917 
2918 #ifndef PRODUCT
2919 void JavaThread::print_thread_state_on(outputStream *st) const {
2920   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2921 };
2922 void JavaThread::print_thread_state() const {
2923   print_thread_state_on(tty);
2924 }
2925 #endif // PRODUCT
2926 
2927 // Called by Threads::print() for VM_PrintThreads operation
2928 void JavaThread::print_on(outputStream *st) const {
2929   st->print_raw("\"");
2930   st->print_raw(get_thread_name());
2931   st->print_raw("\" ");
2932   oop thread_oop = threadObj();
2933   if (thread_oop != NULL) {
2934     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2935     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2936     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2937   }
2938   Thread::print_on(st);
2939   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2940   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2941   if (thread_oop != NULL) {
2942     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2943   }
2944 #ifndef PRODUCT
2945   print_thread_state_on(st);
2946   _safepoint_state->print_on(st);
2947 #endif // PRODUCT
2948   if (is_Compiler_thread()) {
2949     CompilerThread* ct = (CompilerThread*)this;
2950     if (ct->task() != NULL) {
2951       st->print("   Compiling: ");
2952       ct->task()->print(st, NULL, true, false);
2953     } else {
2954       st->print("   No compile task");
2955     }
2956     st->cr();
2957   }
2958 }
2959 
2960 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2961   st->print("%s", get_thread_name_string(buf, buflen));
2962 }
2963 
2964 // Called by fatal error handler. The difference between this and
2965 // JavaThread::print() is that we can't grab lock or allocate memory.
2966 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2967   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2968   oop thread_obj = threadObj();
2969   if (thread_obj != NULL) {
2970     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2971   }
2972   st->print(" [");
2973   st->print("%s", _get_thread_state_name(_thread_state));
2974   if (osthread()) {
2975     st->print(", id=%d", osthread()->thread_id());
2976   }
2977   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2978             p2i(stack_end()), p2i(stack_base()));
2979   st->print("]");
2980   return;
2981 }
2982 
2983 // Verification
2984 
2985 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2986 
2987 void JavaThread::verify() {
2988   // Verify oops in the thread.
2989   oops_do(&VerifyOopClosure::verify_oop, NULL);
2990 
2991   // Verify the stack frames.
2992   frames_do(frame_verify);
2993 }
2994 
2995 // CR 6300358 (sub-CR 2137150)
2996 // Most callers of this method assume that it can't return NULL but a
2997 // thread may not have a name whilst it is in the process of attaching to
2998 // the VM - see CR 6412693, and there are places where a JavaThread can be
2999 // seen prior to having it's threadObj set (eg JNI attaching threads and
3000 // if vm exit occurs during initialization). These cases can all be accounted
3001 // for such that this method never returns NULL.
3002 const char* JavaThread::get_thread_name() const {
3003 #ifdef ASSERT
3004   // early safepoints can hit while current thread does not yet have TLS
3005   if (!SafepointSynchronize::is_at_safepoint()) {
3006     Thread *cur = Thread::current();
3007     if (!(cur->is_Java_thread() && cur == this)) {
3008       // Current JavaThreads are allowed to get their own name without
3009       // the Threads_lock.
3010       assert_locked_or_safepoint(Threads_lock);
3011     }
3012   }
3013 #endif // ASSERT
3014   return get_thread_name_string();
3015 }
3016 
3017 // Returns a non-NULL representation of this thread's name, or a suitable
3018 // descriptive string if there is no set name
3019 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3020   const char* name_str;
3021   oop thread_obj = threadObj();
3022   if (thread_obj != NULL) {
3023     oop name = java_lang_Thread::name(thread_obj);
3024     if (name != NULL) {
3025       if (buf == NULL) {
3026         name_str = java_lang_String::as_utf8_string(name);
3027       } else {
3028         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3029       }
3030     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3031       name_str = "<no-name - thread is attaching>";
3032     } else {
3033       name_str = Thread::name();
3034     }
3035   } else {
3036     name_str = Thread::name();
3037   }
3038   assert(name_str != NULL, "unexpected NULL thread name");
3039   return name_str;
3040 }
3041 
3042 
3043 const char* JavaThread::get_threadgroup_name() const {
3044   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3045   oop thread_obj = threadObj();
3046   if (thread_obj != NULL) {
3047     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3048     if (thread_group != NULL) {
3049       // ThreadGroup.name can be null
3050       return java_lang_ThreadGroup::name(thread_group);
3051     }
3052   }
3053   return NULL;
3054 }
3055 
3056 const char* JavaThread::get_parent_name() const {
3057   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3058   oop thread_obj = threadObj();
3059   if (thread_obj != NULL) {
3060     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3061     if (thread_group != NULL) {
3062       oop parent = java_lang_ThreadGroup::parent(thread_group);
3063       if (parent != NULL) {
3064         // ThreadGroup.name can be null
3065         return java_lang_ThreadGroup::name(parent);
3066       }
3067     }
3068   }
3069   return NULL;
3070 }
3071 
3072 ThreadPriority JavaThread::java_priority() const {
3073   oop thr_oop = threadObj();
3074   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3075   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3076   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3077   return priority;
3078 }
3079 
3080 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3081 
3082   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3083   // Link Java Thread object <-> C++ Thread
3084 
3085   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3086   // and put it into a new Handle.  The Handle "thread_oop" can then
3087   // be used to pass the C++ thread object to other methods.
3088 
3089   // Set the Java level thread object (jthread) field of the
3090   // new thread (a JavaThread *) to C++ thread object using the
3091   // "thread_oop" handle.
3092 
3093   // Set the thread field (a JavaThread *) of the
3094   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3095 
3096   Handle thread_oop(Thread::current(),
3097                     JNIHandles::resolve_non_null(jni_thread));
3098   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3099          "must be initialized");
3100   set_threadObj(thread_oop());
3101   java_lang_Thread::set_thread(thread_oop(), this);
3102 
3103   if (prio == NoPriority) {
3104     prio = java_lang_Thread::priority(thread_oop());
3105     assert(prio != NoPriority, "A valid priority should be present");
3106   }
3107 
3108   // Push the Java priority down to the native thread; needs Threads_lock
3109   Thread::set_priority(this, prio);
3110 
3111   prepare_ext();
3112 
3113   // Add the new thread to the Threads list and set it in motion.
3114   // We must have threads lock in order to call Threads::add.
3115   // It is crucial that we do not block before the thread is
3116   // added to the Threads list for if a GC happens, then the java_thread oop
3117   // will not be visited by GC.
3118   Threads::add(this);
3119 }
3120 
3121 oop JavaThread::current_park_blocker() {
3122   // Support for JSR-166 locks
3123   oop thread_oop = threadObj();
3124   if (thread_oop != NULL &&
3125       JDK_Version::current().supports_thread_park_blocker()) {
3126     return java_lang_Thread::park_blocker(thread_oop);
3127   }
3128   return NULL;
3129 }
3130 
3131 
3132 void JavaThread::print_stack_on(outputStream* st) {
3133   if (!has_last_Java_frame()) return;
3134   ResourceMark rm;
3135   HandleMark   hm;
3136 
3137   RegisterMap reg_map(this);
3138   vframe* start_vf = last_java_vframe(&reg_map);
3139   int count = 0;
3140   for (vframe* f = start_vf; f; f = f->sender()) {
3141     if (f->is_java_frame()) {
3142       javaVFrame* jvf = javaVFrame::cast(f);
3143       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3144 
3145       // Print out lock information
3146       if (JavaMonitorsInStackTrace) {
3147         jvf->print_lock_info_on(st, count);
3148       }
3149     } else {
3150       // Ignore non-Java frames
3151     }
3152 
3153     // Bail-out case for too deep stacks
3154     count++;
3155     if (MaxJavaStackTraceDepth == count) return;
3156   }
3157 }
3158 
3159 
3160 // JVMTI PopFrame support
3161 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3162   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3163   if (in_bytes(size_in_bytes) != 0) {
3164     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3165     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3166     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3167   }
3168 }
3169 
3170 void* JavaThread::popframe_preserved_args() {
3171   return _popframe_preserved_args;
3172 }
3173 
3174 ByteSize JavaThread::popframe_preserved_args_size() {
3175   return in_ByteSize(_popframe_preserved_args_size);
3176 }
3177 
3178 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3179   int sz = in_bytes(popframe_preserved_args_size());
3180   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3181   return in_WordSize(sz / wordSize);
3182 }
3183 
3184 void JavaThread::popframe_free_preserved_args() {
3185   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3186   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3187   _popframe_preserved_args = NULL;
3188   _popframe_preserved_args_size = 0;
3189 }
3190 
3191 #ifndef PRODUCT
3192 
3193 void JavaThread::trace_frames() {
3194   tty->print_cr("[Describe stack]");
3195   int frame_no = 1;
3196   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3197     tty->print("  %d. ", frame_no++);
3198     fst.current()->print_value_on(tty, this);
3199     tty->cr();
3200   }
3201 }
3202 
3203 class PrintAndVerifyOopClosure: public OopClosure {
3204  protected:
3205   template <class T> inline void do_oop_work(T* p) {
3206     oop obj = oopDesc::load_decode_heap_oop(p);
3207     if (obj == NULL) return;
3208     tty->print(INTPTR_FORMAT ": ", p2i(p));
3209     if (obj->is_oop_or_null()) {
3210       if (obj->is_objArray()) {
3211         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3212       } else {
3213         obj->print();
3214       }
3215     } else {
3216       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3217     }
3218     tty->cr();
3219   }
3220  public:
3221   virtual void do_oop(oop* p) { do_oop_work(p); }
3222   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3223 };
3224 
3225 
3226 static void oops_print(frame* f, const RegisterMap *map) {
3227   PrintAndVerifyOopClosure print;
3228   f->print_value();
3229   f->oops_do(&print, NULL, (RegisterMap*)map);
3230 }
3231 
3232 // Print our all the locations that contain oops and whether they are
3233 // valid or not.  This useful when trying to find the oldest frame
3234 // where an oop has gone bad since the frame walk is from youngest to
3235 // oldest.
3236 void JavaThread::trace_oops() {
3237   tty->print_cr("[Trace oops]");
3238   frames_do(oops_print);
3239 }
3240 
3241 
3242 #ifdef ASSERT
3243 // Print or validate the layout of stack frames
3244 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3245   ResourceMark rm;
3246   PRESERVE_EXCEPTION_MARK;
3247   FrameValues values;
3248   int frame_no = 0;
3249   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3250     fst.current()->describe(values, ++frame_no);
3251     if (depth == frame_no) break;
3252   }
3253   if (validate_only) {
3254     values.validate();
3255   } else {
3256     tty->print_cr("[Describe stack layout]");
3257     values.print(this);
3258   }
3259 }
3260 #endif
3261 
3262 void JavaThread::trace_stack_from(vframe* start_vf) {
3263   ResourceMark rm;
3264   int vframe_no = 1;
3265   for (vframe* f = start_vf; f; f = f->sender()) {
3266     if (f->is_java_frame()) {
3267       javaVFrame::cast(f)->print_activation(vframe_no++);
3268     } else {
3269       f->print();
3270     }
3271     if (vframe_no > StackPrintLimit) {
3272       tty->print_cr("...<more frames>...");
3273       return;
3274     }
3275   }
3276 }
3277 
3278 
3279 void JavaThread::trace_stack() {
3280   if (!has_last_Java_frame()) return;
3281   ResourceMark rm;
3282   HandleMark   hm;
3283   RegisterMap reg_map(this);
3284   trace_stack_from(last_java_vframe(&reg_map));
3285 }
3286 
3287 
3288 #endif // PRODUCT
3289 
3290 
3291 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3292   assert(reg_map != NULL, "a map must be given");
3293   frame f = last_frame();
3294   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3295     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3296   }
3297   return NULL;
3298 }
3299 
3300 
3301 Klass* JavaThread::security_get_caller_class(int depth) {
3302   vframeStream vfst(this);
3303   vfst.security_get_caller_frame(depth);
3304   if (!vfst.at_end()) {
3305     return vfst.method()->method_holder();
3306   }
3307   return NULL;
3308 }
3309 
3310 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3311   assert(thread->is_Compiler_thread(), "must be compiler thread");
3312   CompileBroker::compiler_thread_loop();
3313 }
3314 
3315 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3316   NMethodSweeper::sweeper_loop();
3317 }
3318 
3319 // Create a CompilerThread
3320 CompilerThread::CompilerThread(CompileQueue* queue,
3321                                CompilerCounters* counters)
3322                                : JavaThread(&compiler_thread_entry) {
3323   _env   = NULL;
3324   _log   = NULL;
3325   _task  = NULL;
3326   _queue = queue;
3327   _counters = counters;
3328   _buffer_blob = NULL;
3329   _compiler = NULL;
3330 
3331 #ifndef PRODUCT
3332   _ideal_graph_printer = NULL;
3333 #endif
3334 }
3335 
3336 bool CompilerThread::can_call_java() const {
3337   return _compiler != NULL && _compiler->is_jvmci();
3338 }
3339 
3340 // Create sweeper thread
3341 CodeCacheSweeperThread::CodeCacheSweeperThread()
3342 : JavaThread(&sweeper_thread_entry) {
3343   _scanned_compiled_method = NULL;
3344 }
3345 
3346 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3347   JavaThread::oops_do(f, cf);
3348   if (_scanned_compiled_method != NULL && cf != NULL) {
3349     // Safepoints can occur when the sweeper is scanning an nmethod so
3350     // process it here to make sure it isn't unloaded in the middle of
3351     // a scan.
3352     cf->do_code_blob(_scanned_compiled_method);
3353   }
3354 }
3355 
3356 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3357   JavaThread::nmethods_do(cf);
3358   if (_scanned_compiled_method != NULL && cf != NULL) {
3359     // Safepoints can occur when the sweeper is scanning an nmethod so
3360     // process it here to make sure it isn't unloaded in the middle of
3361     // a scan.
3362     cf->do_code_blob(_scanned_compiled_method);
3363   }
3364 }
3365 
3366 
3367 // ======= Threads ========
3368 
3369 // The Threads class links together all active threads, and provides
3370 // operations over all threads.  It is protected by its own Mutex
3371 // lock, which is also used in other contexts to protect thread
3372 // operations from having the thread being operated on from exiting
3373 // and going away unexpectedly (e.g., safepoint synchronization)
3374 
3375 JavaThread* Threads::_thread_list = NULL;
3376 int         Threads::_number_of_threads = 0;
3377 int         Threads::_number_of_non_daemon_threads = 0;
3378 int         Threads::_return_code = 0;
3379 int         Threads::_thread_claim_parity = 0;
3380 size_t      JavaThread::_stack_size_at_create = 0;
3381 #ifdef ASSERT
3382 bool        Threads::_vm_complete = false;
3383 #endif
3384 
3385 // All JavaThreads
3386 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3387 
3388 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3389 void Threads::threads_do(ThreadClosure* tc) {
3390   assert_locked_or_safepoint(Threads_lock);
3391   // ALL_JAVA_THREADS iterates through all JavaThreads
3392   ALL_JAVA_THREADS(p) {
3393     tc->do_thread(p);
3394   }
3395   // Someday we could have a table or list of all non-JavaThreads.
3396   // For now, just manually iterate through them.
3397   tc->do_thread(VMThread::vm_thread());
3398   Universe::heap()->gc_threads_do(tc);
3399   WatcherThread *wt = WatcherThread::watcher_thread();
3400   // Strictly speaking, the following NULL check isn't sufficient to make sure
3401   // the data for WatcherThread is still valid upon being examined. However,
3402   // considering that WatchThread terminates when the VM is on the way to
3403   // exit at safepoint, the chance of the above is extremely small. The right
3404   // way to prevent termination of WatcherThread would be to acquire
3405   // Terminator_lock, but we can't do that without violating the lock rank
3406   // checking in some cases.
3407   if (wt != NULL) {
3408     tc->do_thread(wt);
3409   }
3410 
3411   // If CompilerThreads ever become non-JavaThreads, add them here
3412 }
3413 
3414 void Threads::parallel_java_threads_do(ThreadClosure* tc) {
3415   int cp = Threads::thread_claim_parity();
3416   ALL_JAVA_THREADS(p) {
3417     if (p->claim_oops_do(true, cp)) {
3418       tc->do_thread(p);
3419     }
3420   }
3421 }
3422 
3423 // The system initialization in the library has three phases.
3424 //
3425 // Phase 1: java.lang.System class initialization
3426 //     java.lang.System is a primordial class loaded and initialized
3427 //     by the VM early during startup.  java.lang.System.<clinit>
3428 //     only does registerNatives and keeps the rest of the class
3429 //     initialization work later until thread initialization completes.
3430 //
3431 //     System.initPhase1 initializes the system properties, the static
3432 //     fields in, out, and err. Set up java signal handlers, OS-specific
3433 //     system settings, and thread group of the main thread.
3434 static void call_initPhase1(TRAPS) {
3435   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3436   instanceKlassHandle klass (THREAD, k);
3437 
3438   JavaValue result(T_VOID);
3439   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3440                                          vmSymbols::void_method_signature(), CHECK);
3441 }
3442 
3443 // Phase 2. Module system initialization
3444 //     This will initialize the module system.  Only java.base classes
3445 //     can be loaded until phase 2 completes.
3446 //
3447 //     Call System.initPhase2 after the compiler initialization and jsr292
3448 //     classes get initialized because module initialization runs a lot of java
3449 //     code, that for performance reasons, should be compiled.  Also, this will
3450 //     enable the startup code to use lambda and other language features in this
3451 //     phase and onward.
3452 //
3453 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3454 static void call_initPhase2(TRAPS) {
3455   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, module, startuptime));
3456 
3457   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3458   instanceKlassHandle klass (THREAD, k);
3459 
3460   JavaValue result(T_INT);
3461   JavaCallArguments args;
3462   args.push_int(DisplayVMOutputToStderr);
3463   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3464   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3465                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3466   if (result.get_jint() != JNI_OK) {
3467     vm_exit_during_initialization(); // no message or exception
3468   }
3469 
3470   universe_post_module_init();
3471 }
3472 
3473 // Phase 3. final setup - set security manager, system class loader and TCCL
3474 //
3475 //     This will instantiate and set the security manager, set the system class
3476 //     loader as well as the thread context class loader.  The security manager
3477 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3478 //     other modules or the application's classpath.
3479 static void call_initPhase3(TRAPS) {
3480   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3481   instanceKlassHandle klass (THREAD, k);
3482 
3483   JavaValue result(T_VOID);
3484   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3485                                          vmSymbols::void_method_signature(), CHECK);
3486 }
3487 
3488 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3489   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3490 
3491   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3492     create_vm_init_libraries();
3493   }
3494 
3495   initialize_class(vmSymbols::java_lang_String(), CHECK);
3496 
3497   // Inject CompactStrings value after the static initializers for String ran.
3498   java_lang_String::set_compact_strings(CompactStrings);
3499 
3500   // Initialize java_lang.System (needed before creating the thread)
3501   initialize_class(vmSymbols::java_lang_System(), CHECK);
3502   // The VM creates & returns objects of this class. Make sure it's initialized.
3503   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3504   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3505   Handle thread_group = create_initial_thread_group(CHECK);
3506   Universe::set_main_thread_group(thread_group());
3507   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3508   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3509   main_thread->set_threadObj(thread_object);
3510   // Set thread status to running since main thread has
3511   // been started and running.
3512   java_lang_Thread::set_thread_status(thread_object,
3513                                       java_lang_Thread::RUNNABLE);
3514 
3515   // The VM creates objects of this class.
3516   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3517 
3518   // The VM preresolves methods to these classes. Make sure that they get initialized
3519   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3520   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3521 
3522   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3523   call_initPhase1(CHECK);
3524 
3525   // get the Java runtime name after java.lang.System is initialized
3526   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3527   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3528 
3529   // an instance of OutOfMemory exception has been allocated earlier
3530   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3531   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3532   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3533   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3534   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3535   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3536   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3537   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3538 }
3539 
3540 void Threads::initialize_jsr292_core_classes(TRAPS) {
3541   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3542 
3543   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3544   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3545   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3546 }
3547 
3548 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3549   extern void JDK_Version_init();
3550 
3551   // Preinitialize version info.
3552   VM_Version::early_initialize();
3553 
3554   // Check version
3555   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3556 
3557   // Initialize library-based TLS
3558   ThreadLocalStorage::init();
3559 
3560   // Initialize the output stream module
3561   ostream_init();
3562 
3563   // Process java launcher properties.
3564   Arguments::process_sun_java_launcher_properties(args);
3565 
3566   // Initialize the os module
3567   os::init();
3568 
3569   // Record VM creation timing statistics
3570   TraceVmCreationTime create_vm_timer;
3571   create_vm_timer.start();
3572 
3573   // Initialize system properties.
3574   Arguments::init_system_properties();
3575 
3576   // So that JDK version can be used as a discriminator when parsing arguments
3577   JDK_Version_init();
3578 
3579   // Update/Initialize System properties after JDK version number is known
3580   Arguments::init_version_specific_system_properties();
3581 
3582   // Make sure to initialize log configuration *before* parsing arguments
3583   LogConfiguration::initialize(create_vm_timer.begin_time());
3584 
3585   // Parse arguments
3586   jint parse_result = Arguments::parse(args);
3587   if (parse_result != JNI_OK) return parse_result;
3588 
3589   os::init_before_ergo();
3590 
3591   jint ergo_result = Arguments::apply_ergo();
3592   if (ergo_result != JNI_OK) return ergo_result;
3593 
3594   // Final check of all ranges after ergonomics which may change values.
3595   if (!CommandLineFlagRangeList::check_ranges()) {
3596     return JNI_EINVAL;
3597   }
3598 
3599   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3600   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3601   if (!constraint_result) {
3602     return JNI_EINVAL;
3603   }
3604 
3605   CommandLineFlagWriteableList::mark_startup();
3606 
3607   if (PauseAtStartup) {
3608     os::pause();
3609   }
3610 
3611   HOTSPOT_VM_INIT_BEGIN();
3612 
3613   // Timing (must come after argument parsing)
3614   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3615 
3616   // Initialize the os module after parsing the args
3617   jint os_init_2_result = os::init_2();
3618   if (os_init_2_result != JNI_OK) return os_init_2_result;
3619 
3620   jint adjust_after_os_result = Arguments::adjust_after_os();
3621   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3622 
3623   // Initialize output stream logging
3624   ostream_init_log();
3625 
3626   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3627   // Must be before create_vm_init_agents()
3628   if (Arguments::init_libraries_at_startup()) {
3629     convert_vm_init_libraries_to_agents();
3630   }
3631 
3632   // Launch -agentlib/-agentpath and converted -Xrun agents
3633   if (Arguments::init_agents_at_startup()) {
3634     create_vm_init_agents();
3635   }
3636 
3637   // Initialize Threads state
3638   _thread_list = NULL;
3639   _number_of_threads = 0;
3640   _number_of_non_daemon_threads = 0;
3641 
3642   // Initialize global data structures and create system classes in heap
3643   vm_init_globals();
3644 
3645 #if INCLUDE_JVMCI
3646   if (JVMCICounterSize > 0) {
3647     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3648     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3649   } else {
3650     JavaThread::_jvmci_old_thread_counters = NULL;
3651   }
3652 #endif // INCLUDE_JVMCI
3653 
3654   // Attach the main thread to this os thread
3655   JavaThread* main_thread = new JavaThread();
3656   main_thread->set_thread_state(_thread_in_vm);
3657   main_thread->initialize_thread_current();
3658   // must do this before set_active_handles
3659   main_thread->record_stack_base_and_size();
3660   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3661 
3662   if (!main_thread->set_as_starting_thread()) {
3663     vm_shutdown_during_initialization(
3664                                       "Failed necessary internal allocation. Out of swap space");
3665     delete main_thread;
3666     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3667     return JNI_ENOMEM;
3668   }
3669 
3670   // Enable guard page *after* os::create_main_thread(), otherwise it would
3671   // crash Linux VM, see notes in os_linux.cpp.
3672   main_thread->create_stack_guard_pages();
3673 
3674   // Initialize Java-Level synchronization subsystem
3675   ObjectMonitor::Initialize();
3676 
3677   // Initialize global modules
3678   jint status = init_globals();
3679   if (status != JNI_OK) {
3680     delete main_thread;
3681     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3682     return status;
3683   }
3684 
3685   if (TRACE_INITIALIZE() != JNI_OK) {
3686     vm_exit_during_initialization("Failed to initialize tracing backend");
3687   }
3688 
3689   // Should be done after the heap is fully created
3690   main_thread->cache_global_variables();
3691 
3692   HandleMark hm;
3693 
3694   { MutexLocker mu(Threads_lock);
3695     Threads::add(main_thread);
3696   }
3697 
3698   // Any JVMTI raw monitors entered in onload will transition into
3699   // real raw monitor. VM is setup enough here for raw monitor enter.
3700   JvmtiExport::transition_pending_onload_raw_monitors();
3701 
3702   // Create the VMThread
3703   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3704 
3705   VMThread::create();
3706     Thread* vmthread = VMThread::vm_thread();
3707 
3708     if (!os::create_thread(vmthread, os::vm_thread)) {
3709       vm_exit_during_initialization("Cannot create VM thread. "
3710                                     "Out of system resources.");
3711     }
3712 
3713     // Wait for the VM thread to become ready, and VMThread::run to initialize
3714     // Monitors can have spurious returns, must always check another state flag
3715     {
3716       MutexLocker ml(Notify_lock);
3717       os::start_thread(vmthread);
3718       while (vmthread->active_handles() == NULL) {
3719         Notify_lock->wait();
3720       }
3721     }
3722   }
3723 
3724   assert(Universe::is_fully_initialized(), "not initialized");
3725   if (VerifyDuringStartup) {
3726     // Make sure we're starting with a clean slate.
3727     VM_Verify verify_op;
3728     VMThread::execute(&verify_op);
3729   }
3730 
3731   Thread* THREAD = Thread::current();
3732 
3733   // At this point, the Universe is initialized, but we have not executed
3734   // any byte code.  Now is a good time (the only time) to dump out the
3735   // internal state of the JVM for sharing.
3736   if (DumpSharedSpaces) {
3737     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3738     ShouldNotReachHere();
3739   }
3740 
3741   // Always call even when there are not JVMTI environments yet, since environments
3742   // may be attached late and JVMTI must track phases of VM execution
3743   JvmtiExport::enter_early_start_phase();
3744 
3745   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3746   JvmtiExport::post_early_vm_start();
3747 
3748   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3749 
3750   // We need this for ClassDataSharing - the initial vm.info property is set
3751   // with the default value of CDS "sharing" which may be reset through
3752   // command line options.
3753   reset_vm_info_property(CHECK_JNI_ERR);
3754 
3755   quicken_jni_functions();
3756 
3757   // No more stub generation allowed after that point.
3758   StubCodeDesc::freeze();
3759 
3760   // Set flag that basic initialization has completed. Used by exceptions and various
3761   // debug stuff, that does not work until all basic classes have been initialized.
3762   set_init_completed();
3763 
3764   LogConfiguration::post_initialize();
3765   Metaspace::post_initialize();
3766 
3767   HOTSPOT_VM_INIT_END();
3768 
3769   // record VM initialization completion time
3770 #if INCLUDE_MANAGEMENT
3771   Management::record_vm_init_completed();
3772 #endif // INCLUDE_MANAGEMENT
3773 
3774   // Signal Dispatcher needs to be started before VMInit event is posted
3775   os::signal_init();
3776 
3777   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3778   if (!DisableAttachMechanism) {
3779     AttachListener::vm_start();
3780     if (StartAttachListener || AttachListener::init_at_startup()) {
3781       AttachListener::init();
3782     }
3783   }
3784 
3785   // Launch -Xrun agents
3786   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3787   // back-end can launch with -Xdebug -Xrunjdwp.
3788   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3789     create_vm_init_libraries();
3790   }
3791 
3792   if (CleanChunkPoolAsync) {
3793     Chunk::start_chunk_pool_cleaner_task();
3794   }
3795 
3796   // initialize compiler(s)
3797 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3798   CompileBroker::compilation_init(CHECK_JNI_ERR);
3799 #endif
3800 
3801   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3802   // It is done after compilers are initialized, because otherwise compilations of
3803   // signature polymorphic MH intrinsics can be missed
3804   // (see SystemDictionary::find_method_handle_intrinsic).
3805   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3806 
3807   // This will initialize the module system.  Only java.base classes can be
3808   // loaded until phase 2 completes
3809   call_initPhase2(CHECK_JNI_ERR);
3810 
3811   // Always call even when there are not JVMTI environments yet, since environments
3812   // may be attached late and JVMTI must track phases of VM execution
3813   JvmtiExport::enter_start_phase();
3814 
3815   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3816   JvmtiExport::post_vm_start();
3817 
3818   // Final system initialization including security manager and system class loader
3819   call_initPhase3(CHECK_JNI_ERR);
3820 
3821   // cache the system class loader
3822   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3823 
3824 #if INCLUDE_JVMCI
3825   if (EnableJVMCI) {
3826     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3827     // The JVMCI Java initialization code will read this flag and
3828     // do the printing if it's set.
3829     bool init = JVMCIPrintProperties;
3830 
3831     if (!init) {
3832       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3833       // compilations via JVMCI will not actually block until JVMCI is initialized.
3834       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3835     }
3836 
3837     if (init) {
3838       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3839     }
3840   }
3841 #endif
3842 
3843   // Always call even when there are not JVMTI environments yet, since environments
3844   // may be attached late and JVMTI must track phases of VM execution
3845   JvmtiExport::enter_live_phase();
3846 
3847   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3848   JvmtiExport::post_vm_initialized();
3849 
3850   if (TRACE_START() != JNI_OK) {
3851     vm_exit_during_initialization("Failed to start tracing backend.");
3852   }
3853 
3854 #if INCLUDE_MANAGEMENT
3855   Management::initialize(THREAD);
3856 
3857   if (HAS_PENDING_EXCEPTION) {
3858     // management agent fails to start possibly due to
3859     // configuration problem and is responsible for printing
3860     // stack trace if appropriate. Simply exit VM.
3861     vm_exit(1);
3862   }
3863 #endif // INCLUDE_MANAGEMENT
3864 
3865   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3866   if (MemProfiling)                   MemProfiler::engage();
3867   StatSampler::engage();
3868   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3869 
3870   BiasedLocking::init();
3871 
3872 #if INCLUDE_RTM_OPT
3873   RTMLockingCounters::init();
3874 #endif
3875 
3876   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3877     call_postVMInitHook(THREAD);
3878     // The Java side of PostVMInitHook.run must deal with all
3879     // exceptions and provide means of diagnosis.
3880     if (HAS_PENDING_EXCEPTION) {
3881       CLEAR_PENDING_EXCEPTION;
3882     }
3883   }
3884 
3885   {
3886     MutexLocker ml(PeriodicTask_lock);
3887     // Make sure the WatcherThread can be started by WatcherThread::start()
3888     // or by dynamic enrollment.
3889     WatcherThread::make_startable();
3890     // Start up the WatcherThread if there are any periodic tasks
3891     // NOTE:  All PeriodicTasks should be registered by now. If they
3892     //   aren't, late joiners might appear to start slowly (we might
3893     //   take a while to process their first tick).
3894     if (PeriodicTask::num_tasks() > 0) {
3895       WatcherThread::start();
3896     }
3897   }
3898 
3899   create_vm_timer.end();
3900 #ifdef ASSERT
3901   _vm_complete = true;
3902 #endif
3903   return JNI_OK;
3904 }
3905 
3906 // type for the Agent_OnLoad and JVM_OnLoad entry points
3907 extern "C" {
3908   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3909 }
3910 // Find a command line agent library and return its entry point for
3911 //         -agentlib:  -agentpath:   -Xrun
3912 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3913 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3914                                     const char *on_load_symbols[],
3915                                     size_t num_symbol_entries) {
3916   OnLoadEntry_t on_load_entry = NULL;
3917   void *library = NULL;
3918 
3919   if (!agent->valid()) {
3920     char buffer[JVM_MAXPATHLEN];
3921     char ebuf[1024] = "";
3922     const char *name = agent->name();
3923     const char *msg = "Could not find agent library ";
3924 
3925     // First check to see if agent is statically linked into executable
3926     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3927       library = agent->os_lib();
3928     } else if (agent->is_absolute_path()) {
3929       library = os::dll_load(name, ebuf, sizeof ebuf);
3930       if (library == NULL) {
3931         const char *sub_msg = " in absolute path, with error: ";
3932         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3933         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3934         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3935         // If we can't find the agent, exit.
3936         vm_exit_during_initialization(buf, NULL);
3937         FREE_C_HEAP_ARRAY(char, buf);
3938       }
3939     } else {
3940       // Try to load the agent from the standard dll directory
3941       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3942                              name)) {
3943         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3944       }
3945       if (library == NULL) { // Try the local directory
3946         char ns[1] = {0};
3947         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3948           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3949         }
3950         if (library == NULL) {
3951           const char *sub_msg = " on the library path, with error: ";
3952           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3953           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3954           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3955           // If we can't find the agent, exit.
3956           vm_exit_during_initialization(buf, NULL);
3957           FREE_C_HEAP_ARRAY(char, buf);
3958         }
3959       }
3960     }
3961     agent->set_os_lib(library);
3962     agent->set_valid();
3963   }
3964 
3965   // Find the OnLoad function.
3966   on_load_entry =
3967     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3968                                                           false,
3969                                                           on_load_symbols,
3970                                                           num_symbol_entries));
3971   return on_load_entry;
3972 }
3973 
3974 // Find the JVM_OnLoad entry point
3975 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3976   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3977   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3978 }
3979 
3980 // Find the Agent_OnLoad entry point
3981 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3982   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3983   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3984 }
3985 
3986 // For backwards compatibility with -Xrun
3987 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3988 // treated like -agentpath:
3989 // Must be called before agent libraries are created
3990 void Threads::convert_vm_init_libraries_to_agents() {
3991   AgentLibrary* agent;
3992   AgentLibrary* next;
3993 
3994   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3995     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3996     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3997 
3998     // If there is an JVM_OnLoad function it will get called later,
3999     // otherwise see if there is an Agent_OnLoad
4000     if (on_load_entry == NULL) {
4001       on_load_entry = lookup_agent_on_load(agent);
4002       if (on_load_entry != NULL) {
4003         // switch it to the agent list -- so that Agent_OnLoad will be called,
4004         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4005         Arguments::convert_library_to_agent(agent);
4006       } else {
4007         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4008       }
4009     }
4010   }
4011 }
4012 
4013 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4014 // Invokes Agent_OnLoad
4015 // Called very early -- before JavaThreads exist
4016 void Threads::create_vm_init_agents() {
4017   extern struct JavaVM_ main_vm;
4018   AgentLibrary* agent;
4019 
4020   JvmtiExport::enter_onload_phase();
4021 
4022   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4023     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4024 
4025     if (on_load_entry != NULL) {
4026       // Invoke the Agent_OnLoad function
4027       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4028       if (err != JNI_OK) {
4029         vm_exit_during_initialization("agent library failed to init", agent->name());
4030       }
4031     } else {
4032       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4033     }
4034   }
4035   JvmtiExport::enter_primordial_phase();
4036 }
4037 
4038 extern "C" {
4039   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4040 }
4041 
4042 void Threads::shutdown_vm_agents() {
4043   // Send any Agent_OnUnload notifications
4044   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4045   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4046   extern struct JavaVM_ main_vm;
4047   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4048 
4049     // Find the Agent_OnUnload function.
4050     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4051                                                    os::find_agent_function(agent,
4052                                                    false,
4053                                                    on_unload_symbols,
4054                                                    num_symbol_entries));
4055 
4056     // Invoke the Agent_OnUnload function
4057     if (unload_entry != NULL) {
4058       JavaThread* thread = JavaThread::current();
4059       ThreadToNativeFromVM ttn(thread);
4060       HandleMark hm(thread);
4061       (*unload_entry)(&main_vm);
4062     }
4063   }
4064 }
4065 
4066 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4067 // Invokes JVM_OnLoad
4068 void Threads::create_vm_init_libraries() {
4069   extern struct JavaVM_ main_vm;
4070   AgentLibrary* agent;
4071 
4072   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4073     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4074 
4075     if (on_load_entry != NULL) {
4076       // Invoke the JVM_OnLoad function
4077       JavaThread* thread = JavaThread::current();
4078       ThreadToNativeFromVM ttn(thread);
4079       HandleMark hm(thread);
4080       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4081       if (err != JNI_OK) {
4082         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4083       }
4084     } else {
4085       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4086     }
4087   }
4088 }
4089 
4090 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4091   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4092 
4093   JavaThread* java_thread = NULL;
4094   // Sequential search for now.  Need to do better optimization later.
4095   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4096     oop tobj = thread->threadObj();
4097     if (!thread->is_exiting() &&
4098         tobj != NULL &&
4099         java_tid == java_lang_Thread::thread_id(tobj)) {
4100       java_thread = thread;
4101       break;
4102     }
4103   }
4104   return java_thread;
4105 }
4106 
4107 
4108 // Last thread running calls java.lang.Shutdown.shutdown()
4109 void JavaThread::invoke_shutdown_hooks() {
4110   HandleMark hm(this);
4111 
4112   // We could get here with a pending exception, if so clear it now.
4113   if (this->has_pending_exception()) {
4114     this->clear_pending_exception();
4115   }
4116 
4117   EXCEPTION_MARK;
4118   Klass* k =
4119     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4120                                       THREAD);
4121   if (k != NULL) {
4122     // SystemDictionary::resolve_or_null will return null if there was
4123     // an exception.  If we cannot load the Shutdown class, just don't
4124     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4125     // and finalizers (if runFinalizersOnExit is set) won't be run.
4126     // Note that if a shutdown hook was registered or runFinalizersOnExit
4127     // was called, the Shutdown class would have already been loaded
4128     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4129     instanceKlassHandle shutdown_klass (THREAD, k);
4130     JavaValue result(T_VOID);
4131     JavaCalls::call_static(&result,
4132                            shutdown_klass,
4133                            vmSymbols::shutdown_method_name(),
4134                            vmSymbols::void_method_signature(),
4135                            THREAD);
4136   }
4137   CLEAR_PENDING_EXCEPTION;
4138 }
4139 
4140 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4141 // the program falls off the end of main(). Another VM exit path is through
4142 // vm_exit() when the program calls System.exit() to return a value or when
4143 // there is a serious error in VM. The two shutdown paths are not exactly
4144 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4145 // and VM_Exit op at VM level.
4146 //
4147 // Shutdown sequence:
4148 //   + Shutdown native memory tracking if it is on
4149 //   + Wait until we are the last non-daemon thread to execute
4150 //     <-- every thing is still working at this moment -->
4151 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4152 //        shutdown hooks, run finalizers if finalization-on-exit
4153 //   + Call before_exit(), prepare for VM exit
4154 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4155 //        currently the only user of this mechanism is File.deleteOnExit())
4156 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4157 //        post thread end and vm death events to JVMTI,
4158 //        stop signal thread
4159 //   + Call JavaThread::exit(), it will:
4160 //      > release JNI handle blocks, remove stack guard pages
4161 //      > remove this thread from Threads list
4162 //     <-- no more Java code from this thread after this point -->
4163 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4164 //     the compiler threads at safepoint
4165 //     <-- do not use anything that could get blocked by Safepoint -->
4166 //   + Disable tracing at JNI/JVM barriers
4167 //   + Set _vm_exited flag for threads that are still running native code
4168 //   + Delete this thread
4169 //   + Call exit_globals()
4170 //      > deletes tty
4171 //      > deletes PerfMemory resources
4172 //   + Return to caller
4173 
4174 bool Threads::destroy_vm() {
4175   JavaThread* thread = JavaThread::current();
4176 
4177 #ifdef ASSERT
4178   _vm_complete = false;
4179 #endif
4180   // Wait until we are the last non-daemon thread to execute
4181   { MutexLocker nu(Threads_lock);
4182     while (Threads::number_of_non_daemon_threads() > 1)
4183       // This wait should make safepoint checks, wait without a timeout,
4184       // and wait as a suspend-equivalent condition.
4185       //
4186       // Note: If the FlatProfiler is running and this thread is waiting
4187       // for another non-daemon thread to finish, then the FlatProfiler
4188       // is waiting for the external suspend request on this thread to
4189       // complete. wait_for_ext_suspend_completion() will eventually
4190       // timeout, but that takes time. Making this wait a suspend-
4191       // equivalent condition solves that timeout problem.
4192       //
4193       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4194                          Mutex::_as_suspend_equivalent_flag);
4195   }
4196 
4197   // Hang forever on exit if we are reporting an error.
4198   if (ShowMessageBoxOnError && is_error_reported()) {
4199     os::infinite_sleep();
4200   }
4201   os::wait_for_keypress_at_exit();
4202 
4203   // run Java level shutdown hooks
4204   thread->invoke_shutdown_hooks();
4205 
4206   before_exit(thread);
4207 
4208   thread->exit(true);
4209 
4210   // Stop VM thread.
4211   {
4212     // 4945125 The vm thread comes to a safepoint during exit.
4213     // GC vm_operations can get caught at the safepoint, and the
4214     // heap is unparseable if they are caught. Grab the Heap_lock
4215     // to prevent this. The GC vm_operations will not be able to
4216     // queue until after the vm thread is dead. After this point,
4217     // we'll never emerge out of the safepoint before the VM exits.
4218 
4219     MutexLocker ml(Heap_lock);
4220 
4221     VMThread::wait_for_vm_thread_exit();
4222     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4223     VMThread::destroy();
4224   }
4225 
4226   // clean up ideal graph printers
4227 #if defined(COMPILER2) && !defined(PRODUCT)
4228   IdealGraphPrinter::clean_up();
4229 #endif
4230 
4231   // Now, all Java threads are gone except daemon threads. Daemon threads
4232   // running Java code or in VM are stopped by the Safepoint. However,
4233   // daemon threads executing native code are still running.  But they
4234   // will be stopped at native=>Java/VM barriers. Note that we can't
4235   // simply kill or suspend them, as it is inherently deadlock-prone.
4236 
4237   VM_Exit::set_vm_exited();
4238 
4239   notify_vm_shutdown();
4240 
4241   delete thread;
4242 
4243 #if INCLUDE_JVMCI
4244   if (JVMCICounterSize > 0) {
4245     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4246   }
4247 #endif
4248 
4249   // exit_globals() will delete tty
4250   exit_globals();
4251 
4252   LogConfiguration::finalize();
4253 
4254   return true;
4255 }
4256 
4257 
4258 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4259   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4260   return is_supported_jni_version(version);
4261 }
4262 
4263 
4264 jboolean Threads::is_supported_jni_version(jint version) {
4265   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4266   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4267   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4268   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4269   if (version == JNI_VERSION_9) return JNI_TRUE;
4270   return JNI_FALSE;
4271 }
4272 
4273 
4274 void Threads::add(JavaThread* p, bool force_daemon) {
4275   // The threads lock must be owned at this point
4276   assert_locked_or_safepoint(Threads_lock);
4277 
4278   // See the comment for this method in thread.hpp for its purpose and
4279   // why it is called here.
4280   p->initialize_queues();
4281   p->set_next(_thread_list);
4282   _thread_list = p;
4283   _number_of_threads++;
4284   oop threadObj = p->threadObj();
4285   bool daemon = true;
4286   // Bootstrapping problem: threadObj can be null for initial
4287   // JavaThread (or for threads attached via JNI)
4288   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4289     _number_of_non_daemon_threads++;
4290     daemon = false;
4291   }
4292 
4293   ThreadService::add_thread(p, daemon);
4294 
4295   // Possible GC point.
4296   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4297 }
4298 
4299 void Threads::remove(JavaThread* p) {
4300 
4301   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4302   ObjectSynchronizer::omFlush(p);
4303 
4304   // Extra scope needed for Thread_lock, so we can check
4305   // that we do not remove thread without safepoint code notice
4306   { MutexLocker ml(Threads_lock);
4307 
4308     assert(includes(p), "p must be present");
4309 
4310     JavaThread* current = _thread_list;
4311     JavaThread* prev    = NULL;
4312 
4313     while (current != p) {
4314       prev    = current;
4315       current = current->next();
4316     }
4317 
4318     if (prev) {
4319       prev->set_next(current->next());
4320     } else {
4321       _thread_list = p->next();
4322     }
4323     _number_of_threads--;
4324     oop threadObj = p->threadObj();
4325     bool daemon = true;
4326     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4327       _number_of_non_daemon_threads--;
4328       daemon = false;
4329 
4330       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4331       // on destroy_vm will wake up.
4332       if (number_of_non_daemon_threads() == 1) {
4333         Threads_lock->notify_all();
4334       }
4335     }
4336     ThreadService::remove_thread(p, daemon);
4337 
4338     // Make sure that safepoint code disregard this thread. This is needed since
4339     // the thread might mess around with locks after this point. This can cause it
4340     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4341     // of this thread since it is removed from the queue.
4342     p->set_terminated_value();
4343   } // unlock Threads_lock
4344 
4345   // Since Events::log uses a lock, we grab it outside the Threads_lock
4346   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4347 }
4348 
4349 // Threads_lock must be held when this is called (or must be called during a safepoint)
4350 bool Threads::includes(JavaThread* p) {
4351   assert(Threads_lock->is_locked(), "sanity check");
4352   ALL_JAVA_THREADS(q) {
4353     if (q == p) {
4354       return true;
4355     }
4356   }
4357   return false;
4358 }
4359 
4360 // Operations on the Threads list for GC.  These are not explicitly locked,
4361 // but the garbage collector must provide a safe context for them to run.
4362 // In particular, these things should never be called when the Threads_lock
4363 // is held by some other thread. (Note: the Safepoint abstraction also
4364 // uses the Threads_lock to guarantee this property. It also makes sure that
4365 // all threads gets blocked when exiting or starting).
4366 
4367 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4368   ALL_JAVA_THREADS(p) {
4369     p->oops_do(f, cf);
4370   }
4371   VMThread::vm_thread()->oops_do(f, cf);
4372 }
4373 
4374 void Threads::change_thread_claim_parity() {
4375   // Set the new claim parity.
4376   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4377          "Not in range.");
4378   _thread_claim_parity++;
4379   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4380   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4381          "Not in range.");
4382 }
4383 
4384 #ifdef ASSERT
4385 void Threads::assert_all_threads_claimed() {
4386   ALL_JAVA_THREADS(p) {
4387     const int thread_parity = p->oops_do_parity();
4388     assert((thread_parity == _thread_claim_parity),
4389            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4390   }
4391 }
4392 #endif // ASSERT
4393 
4394 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4395   int cp = Threads::thread_claim_parity();
4396   ALL_JAVA_THREADS(p) {
4397     if (p->claim_oops_do(is_par, cp)) {
4398       p->oops_do(f, cf);
4399     }
4400   }
4401   VMThread* vmt = VMThread::vm_thread();
4402   if (vmt->claim_oops_do(is_par, cp)) {
4403     vmt->oops_do(f, cf);
4404   }
4405 }
4406 
4407 #if INCLUDE_ALL_GCS
4408 // Used by ParallelScavenge
4409 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4410   ALL_JAVA_THREADS(p) {
4411     q->enqueue(new ThreadRootsTask(p));
4412   }
4413   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4414 }
4415 
4416 // Used by Parallel Old
4417 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4418   ALL_JAVA_THREADS(p) {
4419     q->enqueue(new ThreadRootsMarkingTask(p));
4420   }
4421   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4422 }
4423 #endif // INCLUDE_ALL_GCS
4424 
4425 void Threads::nmethods_do(CodeBlobClosure* cf) {
4426   ALL_JAVA_THREADS(p) {
4427     // This is used by the code cache sweeper to mark nmethods that are active
4428     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4429     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4430     if(!p->is_Code_cache_sweeper_thread()) {
4431       p->nmethods_do(cf);
4432     }
4433   }
4434 }
4435 
4436 void Threads::metadata_do(void f(Metadata*)) {
4437   ALL_JAVA_THREADS(p) {
4438     p->metadata_do(f);
4439   }
4440 }
4441 
4442 class ThreadHandlesClosure : public ThreadClosure {
4443   void (*_f)(Metadata*);
4444  public:
4445   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4446   virtual void do_thread(Thread* thread) {
4447     thread->metadata_handles_do(_f);
4448   }
4449 };
4450 
4451 void Threads::metadata_handles_do(void f(Metadata*)) {
4452   // Only walk the Handles in Thread.
4453   ThreadHandlesClosure handles_closure(f);
4454   threads_do(&handles_closure);
4455 }
4456 
4457 void Threads::deoptimized_wrt_marked_nmethods() {
4458   ALL_JAVA_THREADS(p) {
4459     p->deoptimized_wrt_marked_nmethods();
4460   }
4461 }
4462 
4463 
4464 // Get count Java threads that are waiting to enter the specified monitor.
4465 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4466                                                          address monitor,
4467                                                          bool doLock) {
4468   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4469          "must grab Threads_lock or be at safepoint");
4470   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4471 
4472   int i = 0;
4473   {
4474     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4475     ALL_JAVA_THREADS(p) {
4476       if (!p->can_call_java()) continue;
4477 
4478       address pending = (address)p->current_pending_monitor();
4479       if (pending == monitor) {             // found a match
4480         if (i < count) result->append(p);   // save the first count matches
4481         i++;
4482       }
4483     }
4484   }
4485   return result;
4486 }
4487 
4488 
4489 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4490                                                       bool doLock) {
4491   assert(doLock ||
4492          Threads_lock->owned_by_self() ||
4493          SafepointSynchronize::is_at_safepoint(),
4494          "must grab Threads_lock or be at safepoint");
4495 
4496   // NULL owner means not locked so we can skip the search
4497   if (owner == NULL) return NULL;
4498 
4499   {
4500     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4501     ALL_JAVA_THREADS(p) {
4502       // first, see if owner is the address of a Java thread
4503       if (owner == (address)p) return p;
4504     }
4505   }
4506   // Cannot assert on lack of success here since this function may be
4507   // used by code that is trying to report useful problem information
4508   // like deadlock detection.
4509   if (UseHeavyMonitors) return NULL;
4510 
4511   // If we didn't find a matching Java thread and we didn't force use of
4512   // heavyweight monitors, then the owner is the stack address of the
4513   // Lock Word in the owning Java thread's stack.
4514   //
4515   JavaThread* the_owner = NULL;
4516   {
4517     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4518     ALL_JAVA_THREADS(q) {
4519       if (q->is_lock_owned(owner)) {
4520         the_owner = q;
4521         break;
4522       }
4523     }
4524   }
4525   // cannot assert on lack of success here; see above comment
4526   return the_owner;
4527 }
4528 
4529 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4530 void Threads::print_on(outputStream* st, bool print_stacks,
4531                        bool internal_format, bool print_concurrent_locks) {
4532   char buf[32];
4533   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4534 
4535   st->print_cr("Full thread dump %s (%s %s):",
4536                Abstract_VM_Version::vm_name(),
4537                Abstract_VM_Version::vm_release(),
4538                Abstract_VM_Version::vm_info_string());
4539   st->cr();
4540 
4541 #if INCLUDE_SERVICES
4542   // Dump concurrent locks
4543   ConcurrentLocksDump concurrent_locks;
4544   if (print_concurrent_locks) {
4545     concurrent_locks.dump_at_safepoint();
4546   }
4547 #endif // INCLUDE_SERVICES
4548 
4549   ALL_JAVA_THREADS(p) {
4550     ResourceMark rm;
4551     p->print_on(st);
4552     if (print_stacks) {
4553       if (internal_format) {
4554         p->trace_stack();
4555       } else {
4556         p->print_stack_on(st);
4557       }
4558     }
4559     st->cr();
4560 #if INCLUDE_SERVICES
4561     if (print_concurrent_locks) {
4562       concurrent_locks.print_locks_on(p, st);
4563     }
4564 #endif // INCLUDE_SERVICES
4565   }
4566 
4567   VMThread::vm_thread()->print_on(st);
4568   st->cr();
4569   Universe::heap()->print_gc_threads_on(st);
4570   WatcherThread* wt = WatcherThread::watcher_thread();
4571   if (wt != NULL) {
4572     wt->print_on(st);
4573     st->cr();
4574   }
4575   st->flush();
4576 }
4577 
4578 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4579                              int buflen, bool* found_current) {
4580   if (this_thread != NULL) {
4581     bool is_current = (current == this_thread);
4582     *found_current = *found_current || is_current;
4583     st->print("%s", is_current ? "=>" : "  ");
4584 
4585     st->print(PTR_FORMAT, p2i(this_thread));
4586     st->print(" ");
4587     this_thread->print_on_error(st, buf, buflen);
4588     st->cr();
4589   }
4590 }
4591 
4592 class PrintOnErrorClosure : public ThreadClosure {
4593   outputStream* _st;
4594   Thread* _current;
4595   char* _buf;
4596   int _buflen;
4597   bool* _found_current;
4598  public:
4599   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4600                       int buflen, bool* found_current) :
4601    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4602 
4603   virtual void do_thread(Thread* thread) {
4604     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4605   }
4606 };
4607 
4608 // Threads::print_on_error() is called by fatal error handler. It's possible
4609 // that VM is not at safepoint and/or current thread is inside signal handler.
4610 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4611 // memory (even in resource area), it might deadlock the error handler.
4612 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4613                              int buflen) {
4614   bool found_current = false;
4615   st->print_cr("Java Threads: ( => current thread )");
4616   ALL_JAVA_THREADS(thread) {
4617     print_on_error(thread, st, current, buf, buflen, &found_current);
4618   }
4619   st->cr();
4620 
4621   st->print_cr("Other Threads:");
4622   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4623   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4624 
4625   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4626   Universe::heap()->gc_threads_do(&print_closure);
4627 
4628   if (!found_current) {
4629     st->cr();
4630     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4631     current->print_on_error(st, buf, buflen);
4632     st->cr();
4633   }
4634   st->cr();
4635   st->print_cr("Threads with active compile tasks:");
4636   print_threads_compiling(st, buf, buflen);
4637 }
4638 
4639 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4640   ALL_JAVA_THREADS(thread) {
4641     if (thread->is_Compiler_thread()) {
4642       CompilerThread* ct = (CompilerThread*) thread;
4643       if (ct->task() != NULL) {
4644         thread->print_name_on_error(st, buf, buflen);
4645         ct->task()->print(st, NULL, true, true);
4646       }
4647     }
4648   }
4649 }
4650 
4651 
4652 // Internal SpinLock and Mutex
4653 // Based on ParkEvent
4654 
4655 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4656 //
4657 // We employ SpinLocks _only for low-contention, fixed-length
4658 // short-duration critical sections where we're concerned
4659 // about native mutex_t or HotSpot Mutex:: latency.
4660 // The mux construct provides a spin-then-block mutual exclusion
4661 // mechanism.
4662 //
4663 // Testing has shown that contention on the ListLock guarding gFreeList
4664 // is common.  If we implement ListLock as a simple SpinLock it's common
4665 // for the JVM to devolve to yielding with little progress.  This is true
4666 // despite the fact that the critical sections protected by ListLock are
4667 // extremely short.
4668 //
4669 // TODO-FIXME: ListLock should be of type SpinLock.
4670 // We should make this a 1st-class type, integrated into the lock
4671 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4672 // should have sufficient padding to avoid false-sharing and excessive
4673 // cache-coherency traffic.
4674 
4675 
4676 typedef volatile int SpinLockT;
4677 
4678 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4679   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4680     return;   // normal fast-path return
4681   }
4682 
4683   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4684   TEVENT(SpinAcquire - ctx);
4685   int ctr = 0;
4686   int Yields = 0;
4687   for (;;) {
4688     while (*adr != 0) {
4689       ++ctr;
4690       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4691         if (Yields > 5) {
4692           os::naked_short_sleep(1);
4693         } else {
4694           os::naked_yield();
4695           ++Yields;
4696         }
4697       } else {
4698         SpinPause();
4699       }
4700     }
4701     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4702   }
4703 }
4704 
4705 void Thread::SpinRelease(volatile int * adr) {
4706   assert(*adr != 0, "invariant");
4707   OrderAccess::fence();      // guarantee at least release consistency.
4708   // Roach-motel semantics.
4709   // It's safe if subsequent LDs and STs float "up" into the critical section,
4710   // but prior LDs and STs within the critical section can't be allowed
4711   // to reorder or float past the ST that releases the lock.
4712   // Loads and stores in the critical section - which appear in program
4713   // order before the store that releases the lock - must also appear
4714   // before the store that releases the lock in memory visibility order.
4715   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4716   // the ST of 0 into the lock-word which releases the lock, so fence
4717   // more than covers this on all platforms.
4718   *adr = 0;
4719 }
4720 
4721 // muxAcquire and muxRelease:
4722 //
4723 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4724 //    The LSB of the word is set IFF the lock is held.
4725 //    The remainder of the word points to the head of a singly-linked list
4726 //    of threads blocked on the lock.
4727 //
4728 // *  The current implementation of muxAcquire-muxRelease uses its own
4729 //    dedicated Thread._MuxEvent instance.  If we're interested in
4730 //    minimizing the peak number of extant ParkEvent instances then
4731 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4732 //    as certain invariants were satisfied.  Specifically, care would need
4733 //    to be taken with regards to consuming unpark() "permits".
4734 //    A safe rule of thumb is that a thread would never call muxAcquire()
4735 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4736 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4737 //    consume an unpark() permit intended for monitorenter, for instance.
4738 //    One way around this would be to widen the restricted-range semaphore
4739 //    implemented in park().  Another alternative would be to provide
4740 //    multiple instances of the PlatformEvent() for each thread.  One
4741 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4742 //
4743 // *  Usage:
4744 //    -- Only as leaf locks
4745 //    -- for short-term locking only as muxAcquire does not perform
4746 //       thread state transitions.
4747 //
4748 // Alternatives:
4749 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4750 //    but with parking or spin-then-park instead of pure spinning.
4751 // *  Use Taura-Oyama-Yonenzawa locks.
4752 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4753 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4754 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4755 //    acquiring threads use timers (ParkTimed) to detect and recover from
4756 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4757 //    boundaries by using placement-new.
4758 // *  Augment MCS with advisory back-link fields maintained with CAS().
4759 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4760 //    The validity of the backlinks must be ratified before we trust the value.
4761 //    If the backlinks are invalid the exiting thread must back-track through the
4762 //    the forward links, which are always trustworthy.
4763 // *  Add a successor indication.  The LockWord is currently encoded as
4764 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4765 //    to provide the usual futile-wakeup optimization.
4766 //    See RTStt for details.
4767 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4768 //
4769 
4770 
4771 typedef volatile intptr_t MutexT;      // Mux Lock-word
4772 enum MuxBits { LOCKBIT = 1 };
4773 
4774 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4775   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4776   if (w == 0) return;
4777   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4778     return;
4779   }
4780 
4781   TEVENT(muxAcquire - Contention);
4782   ParkEvent * const Self = Thread::current()->_MuxEvent;
4783   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4784   for (;;) {
4785     int its = (os::is_MP() ? 100 : 0) + 1;
4786 
4787     // Optional spin phase: spin-then-park strategy
4788     while (--its >= 0) {
4789       w = *Lock;
4790       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4791         return;
4792       }
4793     }
4794 
4795     Self->reset();
4796     Self->OnList = intptr_t(Lock);
4797     // The following fence() isn't _strictly necessary as the subsequent
4798     // CAS() both serializes execution and ratifies the fetched *Lock value.
4799     OrderAccess::fence();
4800     for (;;) {
4801       w = *Lock;
4802       if ((w & LOCKBIT) == 0) {
4803         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4804           Self->OnList = 0;   // hygiene - allows stronger asserts
4805           return;
4806         }
4807         continue;      // Interference -- *Lock changed -- Just retry
4808       }
4809       assert(w & LOCKBIT, "invariant");
4810       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4811       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4812     }
4813 
4814     while (Self->OnList != 0) {
4815       Self->park();
4816     }
4817   }
4818 }
4819 
4820 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4821   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4822   if (w == 0) return;
4823   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4824     return;
4825   }
4826 
4827   TEVENT(muxAcquire - Contention);
4828   ParkEvent * ReleaseAfter = NULL;
4829   if (ev == NULL) {
4830     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4831   }
4832   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4833   for (;;) {
4834     guarantee(ev->OnList == 0, "invariant");
4835     int its = (os::is_MP() ? 100 : 0) + 1;
4836 
4837     // Optional spin phase: spin-then-park strategy
4838     while (--its >= 0) {
4839       w = *Lock;
4840       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4841         if (ReleaseAfter != NULL) {
4842           ParkEvent::Release(ReleaseAfter);
4843         }
4844         return;
4845       }
4846     }
4847 
4848     ev->reset();
4849     ev->OnList = intptr_t(Lock);
4850     // The following fence() isn't _strictly necessary as the subsequent
4851     // CAS() both serializes execution and ratifies the fetched *Lock value.
4852     OrderAccess::fence();
4853     for (;;) {
4854       w = *Lock;
4855       if ((w & LOCKBIT) == 0) {
4856         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4857           ev->OnList = 0;
4858           // We call ::Release while holding the outer lock, thus
4859           // artificially lengthening the critical section.
4860           // Consider deferring the ::Release() until the subsequent unlock(),
4861           // after we've dropped the outer lock.
4862           if (ReleaseAfter != NULL) {
4863             ParkEvent::Release(ReleaseAfter);
4864           }
4865           return;
4866         }
4867         continue;      // Interference -- *Lock changed -- Just retry
4868       }
4869       assert(w & LOCKBIT, "invariant");
4870       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4871       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4872     }
4873 
4874     while (ev->OnList != 0) {
4875       ev->park();
4876     }
4877   }
4878 }
4879 
4880 // Release() must extract a successor from the list and then wake that thread.
4881 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4882 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4883 // Release() would :
4884 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4885 // (B) Extract a successor from the private list "in-hand"
4886 // (C) attempt to CAS() the residual back into *Lock over null.
4887 //     If there were any newly arrived threads and the CAS() would fail.
4888 //     In that case Release() would detach the RATs, re-merge the list in-hand
4889 //     with the RATs and repeat as needed.  Alternately, Release() might
4890 //     detach and extract a successor, but then pass the residual list to the wakee.
4891 //     The wakee would be responsible for reattaching and remerging before it
4892 //     competed for the lock.
4893 //
4894 // Both "pop" and DMR are immune from ABA corruption -- there can be
4895 // multiple concurrent pushers, but only one popper or detacher.
4896 // This implementation pops from the head of the list.  This is unfair,
4897 // but tends to provide excellent throughput as hot threads remain hot.
4898 // (We wake recently run threads first).
4899 //
4900 // All paths through muxRelease() will execute a CAS.
4901 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4902 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4903 // executed within the critical section are complete and globally visible before the
4904 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4905 void Thread::muxRelease(volatile intptr_t * Lock)  {
4906   for (;;) {
4907     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4908     assert(w & LOCKBIT, "invariant");
4909     if (w == LOCKBIT) return;
4910     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4911     assert(List != NULL, "invariant");
4912     assert(List->OnList == intptr_t(Lock), "invariant");
4913     ParkEvent * const nxt = List->ListNext;
4914     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4915 
4916     // The following CAS() releases the lock and pops the head element.
4917     // The CAS() also ratifies the previously fetched lock-word value.
4918     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4919       continue;
4920     }
4921     List->OnList = 0;
4922     OrderAccess::fence();
4923     List->unpark();
4924     return;
4925   }
4926 }
4927 
4928 
4929 void Threads::verify() {
4930   ALL_JAVA_THREADS(p) {
4931     p->verify();
4932   }
4933   VMThread* thread = VMThread::vm_thread();
4934   if (thread != NULL) thread->verify();
4935 }