1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "gc/shared/collectedHeap.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/symbol.hpp"
  42 #include "runtime/atomic.hpp"
  43 #include "runtime/compilationPolicy.hpp"
  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/orderAccess.inline.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/safepoint.hpp"
  51 #include "runtime/signature.hpp"
  52 #include "runtime/stubCodeGenerator.hpp"
  53 #include "runtime/stubRoutines.hpp"
  54 #include "runtime/sweeper.hpp"
  55 #include "runtime/synchronizer.hpp"
  56 #include "runtime/thread.inline.hpp"
  57 #include "runtime/timerTrace.hpp"
  58 #include "services/runtimeService.hpp"
  59 #include "trace/tracing.hpp"
  60 #include "trace/traceMacros.hpp"
  61 #include "utilities/events.hpp"
  62 #include "utilities/macros.hpp"
  63 #if INCLUDE_ALL_GCS
  64 #include "gc/shenandoah/shenandoahConcurrentThread.hpp"
  65 #include "gc/cms/concurrentMarkSweepThread.hpp"
  66 #include "gc/g1/suspendibleThreadSet.hpp"
  67 #endif // INCLUDE_ALL_GCS
  68 #ifdef COMPILER1
  69 #include "c1/c1_globals.hpp"
  70 #endif
  71 
  72 // --------------------------------------------------------------------------------------------------
  73 // Implementation of Safepoint begin/end
  74 
  75 WorkGang* SafepointSynchronize::_cleanup_workers = NULL;
  76 SubTasksDone* SafepointSynchronize::_cleanup_subtasks = NULL;
  77 
  78 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  79 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  80 volatile int SafepointSynchronize::_safepoint_counter = 0;
  81 int SafepointSynchronize::_current_jni_active_count = 0;
  82 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  83 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  84 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  85 static bool timeout_error_printed = false;
  86 
  87 // Roll all threads forward to a safepoint and suspend them all
  88 void SafepointSynchronize::begin() {
  89   EventSafepointBegin begin_event;
  90   Thread* myThread = Thread::current();
  91   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
  92 
  93   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
  94     _safepoint_begin_time = os::javaTimeNanos();
  95     _ts_of_current_safepoint = tty->time_stamp().seconds();
  96   }
  97 
  98 #if INCLUDE_ALL_GCS
  99   if (UseConcMarkSweepGC) {
 100     // In the future we should investigate whether CMS can use the
 101     // more-general mechanism below.  DLD (01/05).
 102     ConcurrentMarkSweepThread::synchronize(false);
 103   } else if (UseG1GC) {
 104     SuspendibleThreadSet::synchronize();
 105   }
 106 #endif // INCLUDE_ALL_GCS
 107 
 108   // By getting the Threads_lock, we assure that no threads are about to start or
 109   // exit. It is released again in SafepointSynchronize::end().
 110   Threads_lock->lock();
 111 
 112   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 113 
 114   int nof_threads = Threads::number_of_threads();
 115 
 116   log_debug(safepoint)("Safepoint synchronization initiated. (%d)", nof_threads);
 117 
 118   RuntimeService::record_safepoint_begin();
 119 
 120   MutexLocker mu(Safepoint_lock);
 121 
 122   // Reset the count of active JNI critical threads
 123   _current_jni_active_count = 0;
 124 
 125   // Set number of threads to wait for, before we initiate the callbacks
 126   _waiting_to_block = nof_threads;
 127   TryingToBlock     = 0 ;
 128   int still_running = nof_threads;
 129 
 130   // Save the starting time, so that it can be compared to see if this has taken
 131   // too long to complete.
 132   jlong safepoint_limit_time = 0;
 133   timeout_error_printed = false;
 134 
 135   // PrintSafepointStatisticsTimeout can be specified separately. When
 136   // specified, PrintSafepointStatistics will be set to true in
 137   // deferred_initialize_stat method. The initialization has to be done
 138   // early enough to avoid any races. See bug 6880029 for details.
 139   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 140     deferred_initialize_stat();
 141   }
 142 
 143   // Begin the process of bringing the system to a safepoint.
 144   // Java threads can be in several different states and are
 145   // stopped by different mechanisms:
 146   //
 147   //  1. Running interpreted
 148   //     The interpreter dispatch table is changed to force it to
 149   //     check for a safepoint condition between bytecodes.
 150   //  2. Running in native code
 151   //     When returning from the native code, a Java thread must check
 152   //     the safepoint _state to see if we must block.  If the
 153   //     VM thread sees a Java thread in native, it does
 154   //     not wait for this thread to block.  The order of the memory
 155   //     writes and reads of both the safepoint state and the Java
 156   //     threads state is critical.  In order to guarantee that the
 157   //     memory writes are serialized with respect to each other,
 158   //     the VM thread issues a memory barrier instruction
 159   //     (on MP systems).  In order to avoid the overhead of issuing
 160   //     a memory barrier for each Java thread making native calls, each Java
 161   //     thread performs a write to a single memory page after changing
 162   //     the thread state.  The VM thread performs a sequence of
 163   //     mprotect OS calls which forces all previous writes from all
 164   //     Java threads to be serialized.  This is done in the
 165   //     os::serialize_thread_states() call.  This has proven to be
 166   //     much more efficient than executing a membar instruction
 167   //     on every call to native code.
 168   //  3. Running compiled Code
 169   //     Compiled code reads a global (Safepoint Polling) page that
 170   //     is set to fault if we are trying to get to a safepoint.
 171   //  4. Blocked
 172   //     A thread which is blocked will not be allowed to return from the
 173   //     block condition until the safepoint operation is complete.
 174   //  5. In VM or Transitioning between states
 175   //     If a Java thread is currently running in the VM or transitioning
 176   //     between states, the safepointing code will wait for the thread to
 177   //     block itself when it attempts transitions to a new state.
 178   //
 179   {
 180     EventSafepointStateSynchronization sync_event;
 181     int initial_running = 0;
 182 
 183     _state            = _synchronizing;
 184     OrderAccess::fence();
 185 
 186     // Flush all thread states to memory
 187     if (!UseMembar) {
 188       os::serialize_thread_states();
 189     }
 190 
 191     // Make interpreter safepoint aware
 192     Interpreter::notice_safepoints();
 193 
 194     if (DeferPollingPageLoopCount < 0) {
 195       // Make polling safepoint aware
 196       guarantee (PageArmed == 0, "invariant") ;
 197       PageArmed = 1 ;
 198       os::make_polling_page_unreadable();
 199     }
 200 
 201     // Consider using active_processor_count() ... but that call is expensive.
 202     int ncpus = os::processor_count() ;
 203 
 204 #ifdef ASSERT
 205     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 206       assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 207       // Clear the visited flag to ensure that the critical counts are collected properly.
 208       cur->set_visited_for_critical_count(false);
 209     }
 210 #endif // ASSERT
 211 
 212     if (SafepointTimeout)
 213       safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 214 
 215     // Iterate through all threads until it have been determined how to stop them all at a safepoint
 216     unsigned int iterations = 0;
 217     int steps = 0 ;
 218     while(still_running > 0) {
 219       for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 220         assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 221         ThreadSafepointState *cur_state = cur->safepoint_state();
 222         if (cur_state->is_running()) {
 223           cur_state->examine_state_of_thread();
 224           if (!cur_state->is_running()) {
 225             still_running--;
 226             // consider adjusting steps downward:
 227             //   steps = 0
 228             //   steps -= NNN
 229             //   steps >>= 1
 230             //   steps = MIN(steps, 2000-100)
 231             //   if (iterations != 0) steps -= NNN
 232           }
 233           if (log_is_enabled(Trace, safepoint)) {
 234             ResourceMark rm;
 235             cur_state->print_on(Log(safepoint)::trace_stream());
 236           }
 237         }
 238       }
 239 
 240       if (iterations == 0) {
 241         initial_running = still_running;
 242         if (PrintSafepointStatistics) {
 243           begin_statistics(nof_threads, still_running);
 244         }
 245       }
 246 
 247       if (still_running > 0) {
 248         // Check for if it takes to long
 249         if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 250           print_safepoint_timeout(_spinning_timeout);
 251         }
 252 
 253         // Spin to avoid context switching.
 254         // There's a tension between allowing the mutators to run (and rendezvous)
 255         // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 256         // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 257         // spinning by the VM thread on a saturated system can increase rendezvous latency.
 258         // Blocking or yielding incur their own penalties in the form of context switching
 259         // and the resultant loss of $ residency.
 260         //
 261         // Further complicating matters is that yield() does not work as naively expected
 262         // on many platforms -- yield() does not guarantee that any other ready threads
 263         // will run.   As such we revert to naked_short_sleep() after some number of iterations.
 264         // nakes_short_sleep() is implemented as a short unconditional sleep.
 265         // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 266         // can actually increase the time it takes the VM thread to detect that a system-wide
 267         // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 268         // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 269         // In that case the mutators will be stalled waiting for the safepoint to complete and the
 270         // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 271         // will eventually wake up and detect that all mutators are safe, at which point
 272         // we'll again make progress.
 273         //
 274         // Beware too that that the VMThread typically runs at elevated priority.
 275         // Its default priority is higher than the default mutator priority.
 276         // Obviously, this complicates spinning.
 277         //
 278         // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 279         // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 280         //
 281         // See the comments in synchronizer.cpp for additional remarks on spinning.
 282         //
 283         // In the future we might:
 284         // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
 285         //    This is tricky as the path used by a thread exiting the JVM (say on
 286         //    on JNI call-out) simply stores into its state field.  The burden
 287         //    is placed on the VM thread, which must poll (spin).
 288         // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 289         //    we might aggressively scan the stacks of threads that are already safe.
 290         // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 291         //    If all the mutators are ONPROC there's no reason to sleep or yield.
 292         // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 293         // 5. Check system saturation.  If the system is not fully saturated then
 294         //    simply spin and avoid sleep/yield.
 295         // 6. As still-running mutators rendezvous they could unpark the sleeping
 296         //    VMthread.  This works well for still-running mutators that become
 297         //    safe.  The VMthread must still poll for mutators that call-out.
 298         // 7. Drive the policy on time-since-begin instead of iterations.
 299         // 8. Consider making the spin duration a function of the # of CPUs:
 300         //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 301         //    Alternately, instead of counting iterations of the outer loop
 302         //    we could count the # of threads visited in the inner loop, above.
 303         // 9. On windows consider using the return value from SwitchThreadTo()
 304         //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 305 
 306         if (int(iterations) == DeferPollingPageLoopCount) {
 307           guarantee (PageArmed == 0, "invariant") ;
 308           PageArmed = 1 ;
 309           os::make_polling_page_unreadable();
 310         }
 311 
 312         // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 313         // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 314         ++steps ;
 315         if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 316           SpinPause() ;     // MP-Polite spin
 317         } else
 318           if (steps < DeferThrSuspendLoopCount) {
 319             os::naked_yield() ;
 320           } else {
 321             os::naked_short_sleep(1);
 322           }
 323 
 324         iterations ++ ;
 325       }
 326       assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 327     }
 328     assert(still_running == 0, "sanity check");
 329 
 330     if (PrintSafepointStatistics) {
 331       update_statistics_on_spin_end();
 332     }
 333 
 334     if (sync_event.should_commit()) {
 335       sync_event.set_safepointId(safepoint_counter());
 336       sync_event.set_initialThreadCount(initial_running);
 337       sync_event.set_runningThreadCount(_waiting_to_block);
 338       sync_event.set_iterations(iterations);
 339       sync_event.commit();
 340     }
 341   } //EventSafepointStateSync
 342 
 343   // wait until all threads are stopped
 344   {
 345     EventSafepointWaitBlocked wait_blocked_event;
 346     int initial_waiting_to_block = _waiting_to_block;
 347 
 348     while (_waiting_to_block > 0) {
 349       log_debug(safepoint)("Waiting for %d thread(s) to block", _waiting_to_block);
 350       if (!SafepointTimeout || timeout_error_printed) {
 351         Safepoint_lock->wait(true);  // true, means with no safepoint checks
 352       } else {
 353         // Compute remaining time
 354         jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 355 
 356         // If there is no remaining time, then there is an error
 357         if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 358           print_safepoint_timeout(_blocking_timeout);
 359         }
 360       }
 361     }
 362     assert(_waiting_to_block == 0, "sanity check");
 363 
 364 #ifndef PRODUCT
 365     if (SafepointTimeout) {
 366       jlong current_time = os::javaTimeNanos();
 367       if (safepoint_limit_time < current_time) {
 368         tty->print_cr("# SafepointSynchronize: Finished after "
 369                       INT64_FORMAT_W(6) " ms",
 370                       ((current_time - safepoint_limit_time) / MICROUNITS +
 371                        (jlong)SafepointTimeoutDelay));
 372       }
 373     }
 374 #endif
 375 
 376     assert((_safepoint_counter & 0x1) == 0, "must be even");
 377     assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 378     _safepoint_counter ++;
 379 
 380     // Record state
 381     _state = _synchronized;
 382 
 383     OrderAccess::fence();
 384 
 385     if (wait_blocked_event.should_commit()) {
 386       wait_blocked_event.set_safepointId(safepoint_counter());
 387       wait_blocked_event.set_runningThreadCount(initial_waiting_to_block);
 388       wait_blocked_event.commit();
 389     }
 390   } // EventSafepointWaitBlocked
 391 
 392 #ifdef ASSERT
 393   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 394     // make sure all the threads were visited
 395     assert(cur->was_visited_for_critical_count(), "missed a thread");
 396   }
 397 #endif // ASSERT
 398 
 399   // Update the count of active JNI critical regions
 400   GCLocker::set_jni_lock_count(_current_jni_active_count);
 401 
 402   if (log_is_enabled(Debug, safepoint)) {
 403     VM_Operation *op = VMThread::vm_operation();
 404     log_debug(safepoint)("Entering safepoint region: %s",
 405                          (op != NULL) ? op->name() : "no vm operation");
 406   }
 407 
 408   RuntimeService::record_safepoint_synchronized();
 409   if (PrintSafepointStatistics) {
 410     update_statistics_on_sync_end(os::javaTimeNanos());
 411   }
 412 
 413   // Call stuff that needs to be run when a safepoint is just about to be completed
 414   {
 415     EventSafepointCleanup cleanup_event;
 416     do_cleanup_tasks();
 417     if (cleanup_event.should_commit()) {
 418       cleanup_event.set_safepointId(safepoint_counter());
 419       cleanup_event.commit();
 420     }
 421   }
 422 
 423   if (PrintSafepointStatistics) {
 424     // Record how much time spend on the above cleanup tasks
 425     update_statistics_on_cleanup_end(os::javaTimeNanos());
 426   }
 427   if (begin_event.should_commit()) {
 428     begin_event.set_safepointId(safepoint_counter());
 429     begin_event.set_totalThreadCount(nof_threads);
 430     begin_event.set_jniCriticalThreadCount(_current_jni_active_count);
 431     begin_event.commit();
 432   }
 433 }
 434 
 435 // Wake up all threads, so they are ready to resume execution after the safepoint
 436 // operation has been carried out
 437 void SafepointSynchronize::end() {
 438   EventSafepointEnd event;
 439   int safepoint_id = safepoint_counter(); // Keep the odd counter as "id"
 440 
 441   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 442   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 443   _safepoint_counter ++;
 444   // memory fence isn't required here since an odd _safepoint_counter
 445   // value can do no harm and a fence is issued below anyway.
 446 
 447   DEBUG_ONLY(Thread* myThread = Thread::current();)
 448   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 449 
 450   if (PrintSafepointStatistics) {
 451     end_statistics(os::javaTimeNanos());
 452   }
 453 
 454 #ifdef ASSERT
 455   // A pending_exception cannot be installed during a safepoint.  The threads
 456   // may install an async exception after they come back from a safepoint into
 457   // pending_exception after they unblock.  But that should happen later.
 458   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 459     assert (!(cur->has_pending_exception() &&
 460               cur->safepoint_state()->is_at_poll_safepoint()),
 461             "safepoint installed a pending exception");
 462   }
 463 #endif // ASSERT
 464 
 465   if (PageArmed) {
 466     // Make polling safepoint aware
 467     os::make_polling_page_readable();
 468     PageArmed = 0 ;
 469   }
 470 
 471   // Remove safepoint check from interpreter
 472   Interpreter::ignore_safepoints();
 473 
 474   {
 475     MutexLocker mu(Safepoint_lock);
 476 
 477     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 478 
 479     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 480     // when they get restarted.
 481     _state = _not_synchronized;
 482     OrderAccess::fence();
 483 
 484     log_debug(safepoint)("Leaving safepoint region");
 485 
 486     // Start suspended threads
 487     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 488       // A problem occurring on Solaris is when attempting to restart threads
 489       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 490       // to the next one (since it has been running the longest).  We then have
 491       // to wait for a cpu to become available before we can continue restarting
 492       // threads.
 493       // FIXME: This causes the performance of the VM to degrade when active and with
 494       // large numbers of threads.  Apparently this is due to the synchronous nature
 495       // of suspending threads.
 496       //
 497       // TODO-FIXME: the comments above are vestigial and no longer apply.
 498       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 499       if (VMThreadHintNoPreempt) {
 500         os::hint_no_preempt();
 501       }
 502       ThreadSafepointState* cur_state = current->safepoint_state();
 503       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 504       cur_state->restart();
 505       assert(cur_state->is_running(), "safepoint state has not been reset");
 506     }
 507 
 508     RuntimeService::record_safepoint_end();
 509 
 510     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 511     // blocked in signal_thread_blocked
 512     Threads_lock->unlock();
 513 
 514   }
 515 #if INCLUDE_ALL_GCS
 516   // If there are any concurrent GC threads resume them.
 517   if (UseConcMarkSweepGC) {
 518     ConcurrentMarkSweepThread::desynchronize(false);
 519   } else if (UseG1GC) {
 520     SuspendibleThreadSet::desynchronize();
 521   }
 522 #endif // INCLUDE_ALL_GCS
 523   // record this time so VMThread can keep track how much time has elapsed
 524   // since last safepoint.
 525   _end_of_last_safepoint = os::javaTimeMillis();
 526 
 527   if (event.should_commit()) {
 528     event.set_safepointId(safepoint_id);
 529     event.commit();
 530   }
 531 }
 532 
 533 bool SafepointSynchronize::is_cleanup_needed() {
 534   // Need a safepoint if some inline cache buffers is non-empty
 535   if (!InlineCacheBuffer::is_empty()) return true;
 536   return false;
 537 }
 538 
 539 static void event_safepoint_cleanup_task_commit(EventSafepointCleanupTask& event, const char* name) {
 540   if (event.should_commit()) {
 541     event.set_safepointId(SafepointSynchronize::safepoint_counter());
 542     event.set_name(name);
 543     event.commit();
 544   }
 545 }
 546 
 547 // Various cleaning tasks that should be done periodically at safepoints
 548 void SafepointSynchronize::do_cleanup_tasks() {
 549   VM_Operation* op = VMThread::vm_operation();
 550   // If op does both deflating and nmethod marking, we don't bother firing up
 551   // the workers.
 552   bool op_does_cleanup = op != NULL && op->marks_nmethods() && op->deflates_idle_monitors();
 553   if (ParallelSafepointCleanup && ! op_does_cleanup) {
 554     parallel_cleanup();
 555   } else {
 556     serial_cleanup();
 557   }
 558 }
 559 
 560 void SafepointSynchronize::serial_cleanup() {
 561   VM_Operation* op = VMThread::vm_operation();
 562   {
 563     const char* name = "deflating idle monitors";
 564     EventSafepointCleanupTask event;
 565     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 566     ObjectSynchronizer::deflate_idle_monitors(op == NULL || ! op->deflates_idle_monitors());
 567     event_safepoint_cleanup_task_commit(event, name);
 568   }
 569 
 570   {
 571     const char* name = "updating inline caches";
 572     EventSafepointCleanupTask event;
 573     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 574     InlineCacheBuffer::update_inline_caches();
 575     event_safepoint_cleanup_task_commit(event, name);
 576   }
 577   {
 578     const char* name = "compilation policy safepoint handler";
 579     EventSafepointCleanupTask event;
 580     TraceTime timer("compilation policy safepoint handler", TRACETIME_LOG(Info, safepoint, cleanup));
 581     CompilationPolicy::policy()->do_safepoint_work();
 582     event_safepoint_cleanup_task_commit(event, name);
 583   }
 584 
 585   if (op == NULL || ! op->marks_nmethods()) {
 586     const char* name = "mark nmethods";
 587     EventSafepointCleanupTask event;
 588     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 589     NMethodSweeper::mark_active_nmethods();
 590     event_safepoint_cleanup_task_commit(event, name);
 591   }
 592 
 593   if (SymbolTable::needs_rehashing()) {
 594     double start = os::elapsedTime();
 595     const char* name = "rehashing symbol table";
 596     EventSafepointCleanupTask event;
 597     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 598     SymbolTable::rehash_table();
 599     event_safepoint_cleanup_task_commit(event, name);
 600     double end = os::elapsedTime();
 601     tty->print_cr("vmthread took: %f ms for symbol table rehash", (end - start) * 1000.0);
 602   }
 603 
 604   if (StringTable::needs_rehashing()) {
 605     const char* name = "rehashing string table";
 606     EventSafepointCleanupTask event;
 607     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 608     StringTable::rehash_table();
 609     event_safepoint_cleanup_task_commit(event, name);
 610   }
 611 
 612   {
 613     // CMS delays purging the CLDG until the beginning of the next safepoint and to
 614     // make sure concurrent sweep is done
 615     const char* name = "purging class loader data graph";
 616     EventSafepointCleanupTask event;
 617     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 618     ClassLoaderDataGraph::purge_if_needed();
 619     event_safepoint_cleanup_task_commit(event, name);
 620   }
 621 }
 622 
 623 class ParallelSPCleanupThreadClosure : public ThreadClosure {
 624 private:
 625   bool _do_deflate_idle_monitors;
 626   CodeBlobClosure* _nmethod_cl;
 627 
 628 public:
 629   ParallelSPCleanupThreadClosure() {
 630     VM_Operation* op = VMThread::vm_operation();
 631     _do_deflate_idle_monitors = op == NULL || ! op->deflates_idle_monitors();
 632     if (op == NULL || ! op->marks_nmethods()) {
 633       _nmethod_cl = NMethodSweeper::prepare_mark_active_nmethods();
 634     } else {
 635       _nmethod_cl = NULL;
 636     }
 637   }
 638 
 639   void do_thread(Thread* thread) {
 640     if (_do_deflate_idle_monitors) {
 641       ObjectSynchronizer::deflate_idle_monitors_and_oops_do(thread, NULL);
 642     }
 643     if (_nmethod_cl != NULL && thread->is_Java_thread() &&
 644         ! thread->is_Code_cache_sweeper_thread()) {
 645       JavaThread* jt = (JavaThread*) thread;
 646       jt->nmethods_do(_nmethod_cl);
 647     }
 648   }
 649 };
 650 
 651 class ParallelSPCleanupTask : public AbstractGangTask {
 652 private:
 653   SubTasksDone* _subtasks;
 654   ParallelSPCleanupThreadClosure _cleanup_threads_cl;
 655 public:
 656   ParallelSPCleanupTask(SubTasksDone* subtasks) :
 657     AbstractGangTask("Parallel Safepoint Cleanup"),
 658     _cleanup_threads_cl(ParallelSPCleanupThreadClosure()),
 659     _subtasks(subtasks) {}
 660 
 661   void work(uint worker_id) {
 662     // All threads deflate monitors and mark nmethods (if necessary).
 663     Threads::parallel_java_threads_do(&_cleanup_threads_cl);
 664 
 665     if (! _subtasks->is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_DEFLATE_MONITORS)) {
 666       const char* name = "deflating idle monitors";
 667       EventSafepointCleanupTask event;
 668       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 669       ObjectSynchronizer::deflate_idle_monitors(false);
 670       event_safepoint_cleanup_task_commit(event, name);
 671     }
 672 
 673     if (! _subtasks->is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_UPDATE_INLINE_CACHES)) {
 674       const char* name = "updating inline caches";
 675       EventSafepointCleanupTask event;
 676       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 677       InlineCacheBuffer::update_inline_caches();
 678       event_safepoint_cleanup_task_commit(event, name);
 679     }
 680 
 681     if (! _subtasks->is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_COMPILATION_POLICY)) {
 682       const char* name = "compilation policy safepoint handler";
 683       EventSafepointCleanupTask event;
 684       TraceTime timer("compilation policy safepoint handler", TRACETIME_LOG(Info, safepoint, cleanup));
 685       CompilationPolicy::policy()->do_safepoint_work();
 686       event_safepoint_cleanup_task_commit(event, name);
 687     }
 688 
 689     if (! _subtasks->is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_SYMBOL_TABLE_REHASH)) {
 690       if (SymbolTable::needs_rehashing()) {
 691         const char* name = "rehashing symbol table";
 692         EventSafepointCleanupTask event;
 693         TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 694         SymbolTable::rehash_table();
 695         event_safepoint_cleanup_task_commit(event, name);
 696       }
 697     }
 698 
 699     if (! _subtasks->is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_STRING_TABLE_REHASH)) {
 700       if (StringTable::needs_rehashing()) {
 701         const char* name = "rehashing string table";
 702         EventSafepointCleanupTask event;
 703         TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 704         StringTable::rehash_table();
 705         event_safepoint_cleanup_task_commit(event, name);
 706       }
 707     }
 708 
 709     if (! _subtasks->is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_CLD_PURGE)) {
 710       // CMS delays purging the CLDG until the beginning of the next safepoint and to
 711       // make sure concurrent sweep is done
 712       const char* name = "purging class loader data graph";
 713       EventSafepointCleanupTask event;
 714       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 715       ClassLoaderDataGraph::purge_if_needed();
 716       event_safepoint_cleanup_task_commit(event, name);
 717     }
 718     _subtasks->all_tasks_completed(ParallelSafepointCleanupThreads);
 719   }
 720 };
 721 
 722 void SafepointSynchronize::parallel_cleanup() {
 723   // Deferred init
 724   if (_cleanup_workers == NULL) {
 725     _cleanup_workers = new WorkGang("Parallel Safepoint Cleanup", ParallelSafepointCleanupThreads, false, false);
 726     _cleanup_workers->initialize_workers();
 727     _cleanup_subtasks = new SubTasksDone(SAFEPOINT_CLEANUP_NUM_TASKS);
 728   }
 729 
 730   StrongRootsScope srs(_cleanup_workers->active_workers());
 731   ParallelSPCleanupTask cleanup_task(_cleanup_subtasks);
 732   _cleanup_workers->run_task(&cleanup_task);
 733 }
 734 
 735 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 736   switch(state) {
 737   case _thread_in_native:
 738     // native threads are safe if they have no java stack or have walkable stack
 739     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 740 
 741    // blocked threads should have already have walkable stack
 742   case _thread_blocked:
 743     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 744     return true;
 745 
 746   default:
 747     return false;
 748   }
 749 }
 750 
 751 
 752 // See if the thread is running inside a lazy critical native and
 753 // update the thread critical count if so.  Also set a suspend flag to
 754 // cause the native wrapper to return into the JVM to do the unlock
 755 // once the native finishes.
 756 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 757   if (state == _thread_in_native &&
 758       thread->has_last_Java_frame() &&
 759       thread->frame_anchor()->walkable()) {
 760     // This thread might be in a critical native nmethod so look at
 761     // the top of the stack and increment the critical count if it
 762     // is.
 763     frame wrapper_frame = thread->last_frame();
 764     CodeBlob* stub_cb = wrapper_frame.cb();
 765     if (stub_cb != NULL &&
 766         stub_cb->is_nmethod() &&
 767         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 768       // A thread could potentially be in a critical native across
 769       // more than one safepoint, so only update the critical state on
 770       // the first one.  When it returns it will perform the unlock.
 771       if (!thread->do_critical_native_unlock()) {
 772 #ifdef ASSERT
 773         if (!thread->in_critical()) {
 774           GCLocker::increment_debug_jni_lock_count();
 775         }
 776 #endif
 777         thread->enter_critical();
 778         // Make sure the native wrapper calls back on return to
 779         // perform the needed critical unlock.
 780         thread->set_critical_native_unlock();
 781       }
 782     }
 783   }
 784 }
 785 
 786 
 787 
 788 // -------------------------------------------------------------------------------------------------------
 789 // Implementation of Safepoint callback point
 790 
 791 void SafepointSynchronize::block(JavaThread *thread) {
 792   assert(thread != NULL, "thread must be set");
 793   assert(thread->is_Java_thread(), "not a Java thread");
 794 
 795   // Threads shouldn't block if they are in the middle of printing, but...
 796   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 797 
 798   // Only bail from the block() call if the thread is gone from the
 799   // thread list; starting to exit should still block.
 800   if (thread->is_terminated()) {
 801      // block current thread if we come here from native code when VM is gone
 802      thread->block_if_vm_exited();
 803 
 804      // otherwise do nothing
 805      return;
 806   }
 807 
 808   JavaThreadState state = thread->thread_state();
 809   thread->frame_anchor()->make_walkable(thread);
 810 
 811   // Check that we have a valid thread_state at this point
 812   switch(state) {
 813     case _thread_in_vm_trans:
 814     case _thread_in_Java:        // From compiled code
 815 
 816       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 817       // we pretend we are still in the VM.
 818       thread->set_thread_state(_thread_in_vm);
 819 
 820       if (is_synchronizing()) {
 821          Atomic::inc (&TryingToBlock) ;
 822       }
 823 
 824       // We will always be holding the Safepoint_lock when we are examine the state
 825       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 826       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 827       Safepoint_lock->lock_without_safepoint_check();
 828       if (is_synchronizing()) {
 829         // Decrement the number of threads to wait for and signal vm thread
 830         assert(_waiting_to_block > 0, "sanity check");
 831         _waiting_to_block--;
 832         thread->safepoint_state()->set_has_called_back(true);
 833 
 834         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 835         if (thread->in_critical()) {
 836           // Notice that this thread is in a critical section
 837           increment_jni_active_count();
 838         }
 839 
 840         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 841         if (_waiting_to_block == 0) {
 842           Safepoint_lock->notify_all();
 843         }
 844       }
 845 
 846       // We transition the thread to state _thread_blocked here, but
 847       // we can't do our usual check for external suspension and then
 848       // self-suspend after the lock_without_safepoint_check() call
 849       // below because we are often called during transitions while
 850       // we hold different locks. That would leave us suspended while
 851       // holding a resource which results in deadlocks.
 852       thread->set_thread_state(_thread_blocked);
 853       Safepoint_lock->unlock();
 854 
 855       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 856       // the entire safepoint, the threads will all line up here during the safepoint.
 857       Threads_lock->lock_without_safepoint_check();
 858       // restore original state. This is important if the thread comes from compiled code, so it
 859       // will continue to execute with the _thread_in_Java state.
 860       thread->set_thread_state(state);
 861       Threads_lock->unlock();
 862       break;
 863 
 864     case _thread_in_native_trans:
 865     case _thread_blocked_trans:
 866     case _thread_new_trans:
 867       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 868         thread->print_thread_state();
 869         fatal("Deadlock in safepoint code.  "
 870               "Should have called back to the VM before blocking.");
 871       }
 872 
 873       // We transition the thread to state _thread_blocked here, but
 874       // we can't do our usual check for external suspension and then
 875       // self-suspend after the lock_without_safepoint_check() call
 876       // below because we are often called during transitions while
 877       // we hold different locks. That would leave us suspended while
 878       // holding a resource which results in deadlocks.
 879       thread->set_thread_state(_thread_blocked);
 880 
 881       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 882       // the safepoint code might still be waiting for it to block. We need to change the state here,
 883       // so it can see that it is at a safepoint.
 884 
 885       // Block until the safepoint operation is completed.
 886       Threads_lock->lock_without_safepoint_check();
 887 
 888       // Restore state
 889       thread->set_thread_state(state);
 890 
 891       Threads_lock->unlock();
 892       break;
 893 
 894     default:
 895      fatal("Illegal threadstate encountered: %d", state);
 896   }
 897 
 898   // Check for pending. async. exceptions or suspends - except if the
 899   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 900   // is called last since it grabs a lock and we only want to do that when
 901   // we must.
 902   //
 903   // Note: we never deliver an async exception at a polling point as the
 904   // compiler may not have an exception handler for it. The polling
 905   // code will notice the async and deoptimize and the exception will
 906   // be delivered. (Polling at a return point is ok though). Sure is
 907   // a lot of bother for a deprecated feature...
 908   //
 909   // We don't deliver an async exception if the thread state is
 910   // _thread_in_native_trans so JNI functions won't be called with
 911   // a surprising pending exception. If the thread state is going back to java,
 912   // async exception is checked in check_special_condition_for_native_trans().
 913 
 914   if (state != _thread_blocked_trans &&
 915       state != _thread_in_vm_trans &&
 916       thread->has_special_runtime_exit_condition()) {
 917     thread->handle_special_runtime_exit_condition(
 918       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 919   }
 920 }
 921 
 922 // ------------------------------------------------------------------------------------------------------
 923 // Exception handlers
 924 
 925 
 926 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 927   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 928   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 929   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 930 
 931   if (ShowSafepointMsgs) {
 932     tty->print("handle_polling_page_exception: ");
 933   }
 934 
 935   if (PrintSafepointStatistics) {
 936     inc_page_trap_count();
 937   }
 938 
 939   ThreadSafepointState* state = thread->safepoint_state();
 940 
 941   state->handle_polling_page_exception();
 942 }
 943 
 944 
 945 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 946   if (!timeout_error_printed) {
 947     timeout_error_printed = true;
 948     // Print out the thread info which didn't reach the safepoint for debugging
 949     // purposes (useful when there are lots of threads in the debugger).
 950     tty->cr();
 951     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 952     if (reason ==  _spinning_timeout) {
 953       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 954     } else if (reason == _blocking_timeout) {
 955       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 956     }
 957 
 958     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 959     ThreadSafepointState *cur_state;
 960     ResourceMark rm;
 961     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 962         cur_thread = cur_thread->next()) {
 963       cur_state = cur_thread->safepoint_state();
 964 
 965       if (cur_thread->thread_state() != _thread_blocked &&
 966           ((reason == _spinning_timeout && cur_state->is_running()) ||
 967            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 968         tty->print("# ");
 969         cur_thread->print();
 970         tty->cr();
 971       }
 972     }
 973     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 974   }
 975 
 976   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 977   // ShowMessageBoxOnError.
 978   if (DieOnSafepointTimeout) {
 979     VM_Operation *op = VMThread::vm_operation();
 980     fatal("Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 981           SafepointTimeoutDelay,
 982           op != NULL ? op->name() : "no vm operation");
 983   }
 984 }
 985 
 986 
 987 // -------------------------------------------------------------------------------------------------------
 988 // Implementation of ThreadSafepointState
 989 
 990 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 991   _thread = thread;
 992   _type   = _running;
 993   _has_called_back = false;
 994   _at_poll_safepoint = false;
 995 }
 996 
 997 void ThreadSafepointState::create(JavaThread *thread) {
 998   ThreadSafepointState *state = new ThreadSafepointState(thread);
 999   thread->set_safepoint_state(state);
1000 }
1001 
1002 void ThreadSafepointState::destroy(JavaThread *thread) {
1003   if (thread->safepoint_state()) {
1004     delete(thread->safepoint_state());
1005     thread->set_safepoint_state(NULL);
1006   }
1007 }
1008 
1009 void ThreadSafepointState::examine_state_of_thread() {
1010   assert(is_running(), "better be running or just have hit safepoint poll");
1011 
1012   JavaThreadState state = _thread->thread_state();
1013 
1014   // Save the state at the start of safepoint processing.
1015   _orig_thread_state = state;
1016 
1017   // Check for a thread that is suspended. Note that thread resume tries
1018   // to grab the Threads_lock which we own here, so a thread cannot be
1019   // resumed during safepoint synchronization.
1020 
1021   // We check to see if this thread is suspended without locking to
1022   // avoid deadlocking with a third thread that is waiting for this
1023   // thread to be suspended. The third thread can notice the safepoint
1024   // that we're trying to start at the beginning of its SR_lock->wait()
1025   // call. If that happens, then the third thread will block on the
1026   // safepoint while still holding the underlying SR_lock. We won't be
1027   // able to get the SR_lock and we'll deadlock.
1028   //
1029   // We don't need to grab the SR_lock here for two reasons:
1030   // 1) The suspend flags are both volatile and are set with an
1031   //    Atomic::cmpxchg() call so we should see the suspended
1032   //    state right away.
1033   // 2) We're being called from the safepoint polling loop; if
1034   //    we don't see the suspended state on this iteration, then
1035   //    we'll come around again.
1036   //
1037   bool is_suspended = _thread->is_ext_suspended();
1038   if (is_suspended) {
1039     roll_forward(_at_safepoint);
1040     return;
1041   }
1042 
1043   // Some JavaThread states have an initial safepoint state of
1044   // running, but are actually at a safepoint. We will happily
1045   // agree and update the safepoint state here.
1046   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
1047     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
1048     roll_forward(_at_safepoint);
1049     return;
1050   }
1051 
1052   if (state == _thread_in_vm) {
1053     roll_forward(_call_back);
1054     return;
1055   }
1056 
1057   // All other thread states will continue to run until they
1058   // transition and self-block in state _blocked
1059   // Safepoint polling in compiled code causes the Java threads to do the same.
1060   // Note: new threads may require a malloc so they must be allowed to finish
1061 
1062   assert(is_running(), "examine_state_of_thread on non-running thread");
1063   return;
1064 }
1065 
1066 // Returns true is thread could not be rolled forward at present position.
1067 void ThreadSafepointState::roll_forward(suspend_type type) {
1068   _type = type;
1069 
1070   switch(_type) {
1071     case _at_safepoint:
1072       SafepointSynchronize::signal_thread_at_safepoint();
1073       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
1074       if (_thread->in_critical()) {
1075         // Notice that this thread is in a critical section
1076         SafepointSynchronize::increment_jni_active_count();
1077       }
1078       break;
1079 
1080     case _call_back:
1081       set_has_called_back(false);
1082       break;
1083 
1084     case _running:
1085     default:
1086       ShouldNotReachHere();
1087   }
1088 }
1089 
1090 void ThreadSafepointState::restart() {
1091   switch(type()) {
1092     case _at_safepoint:
1093     case _call_back:
1094       break;
1095 
1096     case _running:
1097     default:
1098        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
1099                      p2i(_thread), _type);
1100        _thread->print();
1101       ShouldNotReachHere();
1102   }
1103   _type = _running;
1104   set_has_called_back(false);
1105 }
1106 
1107 
1108 void ThreadSafepointState::print_on(outputStream *st) const {
1109   const char *s = NULL;
1110 
1111   switch(_type) {
1112     case _running                : s = "_running";              break;
1113     case _at_safepoint           : s = "_at_safepoint";         break;
1114     case _call_back              : s = "_call_back";            break;
1115     default:
1116       ShouldNotReachHere();
1117   }
1118 
1119   st->print_cr("Thread: " INTPTR_FORMAT
1120               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
1121                p2i(_thread), _thread->osthread()->thread_id(), s, _has_called_back,
1122                _at_poll_safepoint);
1123 
1124   _thread->print_thread_state_on(st);
1125 }
1126 
1127 // ---------------------------------------------------------------------------------------------------------------------
1128 
1129 // Block the thread at the safepoint poll or poll return.
1130 void ThreadSafepointState::handle_polling_page_exception() {
1131 
1132   // Check state.  block() will set thread state to thread_in_vm which will
1133   // cause the safepoint state _type to become _call_back.
1134   assert(type() == ThreadSafepointState::_running,
1135          "polling page exception on thread not running state");
1136 
1137   // Step 1: Find the nmethod from the return address
1138   if (ShowSafepointMsgs && Verbose) {
1139     tty->print_cr("Polling page exception at " INTPTR_FORMAT, p2i(thread()->saved_exception_pc()));
1140   }
1141   address real_return_addr = thread()->saved_exception_pc();
1142 
1143   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1144   assert(cb != NULL && cb->is_compiled(), "return address should be in nmethod");
1145   CompiledMethod* nm = (CompiledMethod*)cb;
1146 
1147   // Find frame of caller
1148   frame stub_fr = thread()->last_frame();
1149   CodeBlob* stub_cb = stub_fr.cb();
1150   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1151   RegisterMap map(thread(), true);
1152   frame caller_fr = stub_fr.sender(&map);
1153 
1154   // Should only be poll_return or poll
1155   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1156 
1157   // This is a poll immediately before a return. The exception handling code
1158   // has already had the effect of causing the return to occur, so the execution
1159   // will continue immediately after the call. In addition, the oopmap at the
1160   // return point does not mark the return value as an oop (if it is), so
1161   // it needs a handle here to be updated.
1162   if( nm->is_at_poll_return(real_return_addr) ) {
1163     // See if return type is an oop.
1164     bool return_oop = nm->method()->is_returning_oop();
1165     Handle return_value;
1166     if (return_oop) {
1167       // The oop result has been saved on the stack together with all
1168       // the other registers. In order to preserve it over GCs we need
1169       // to keep it in a handle.
1170       oop result = caller_fr.saved_oop_result(&map);
1171       assert(result == NULL || result->is_oop(), "must be oop");
1172       return_value = Handle(thread(), result);
1173       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1174     }
1175 
1176     // Block the thread
1177     SafepointSynchronize::block(thread());
1178 
1179     // restore oop result, if any
1180     if (return_oop) {
1181       caller_fr.set_saved_oop_result(&map, return_value());
1182     }
1183   }
1184 
1185   // This is a safepoint poll. Verify the return address and block.
1186   else {
1187     set_at_poll_safepoint(true);
1188 
1189     // verify the blob built the "return address" correctly
1190     assert(real_return_addr == caller_fr.pc(), "must match");
1191 
1192     // Block the thread
1193     SafepointSynchronize::block(thread());
1194     set_at_poll_safepoint(false);
1195 
1196     // If we have a pending async exception deoptimize the frame
1197     // as otherwise we may never deliver it.
1198     if (thread()->has_async_condition()) {
1199       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1200       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1201     }
1202 
1203     // If an exception has been installed we must check for a pending deoptimization
1204     // Deoptimize frame if exception has been thrown.
1205 
1206     if (thread()->has_pending_exception() ) {
1207       RegisterMap map(thread(), true);
1208       frame caller_fr = stub_fr.sender(&map);
1209       if (caller_fr.is_deoptimized_frame()) {
1210         // The exception patch will destroy registers that are still
1211         // live and will be needed during deoptimization. Defer the
1212         // Async exception should have deferred the exception until the
1213         // next safepoint which will be detected when we get into
1214         // the interpreter so if we have an exception now things
1215         // are messed up.
1216 
1217         fatal("Exception installed and deoptimization is pending");
1218       }
1219     }
1220   }
1221 }
1222 
1223 
1224 //
1225 //                     Statistics & Instrumentations
1226 //
1227 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1228 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1229 int    SafepointSynchronize::_cur_stat_index = 0;
1230 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1231 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1232 jlong  SafepointSynchronize::_max_sync_time = 0;
1233 jlong  SafepointSynchronize::_max_vmop_time = 0;
1234 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1235 
1236 static jlong  cleanup_end_time = 0;
1237 static bool   need_to_track_page_armed_status = false;
1238 static bool   init_done = false;
1239 
1240 // Helper method to print the header.
1241 static void print_header() {
1242   tty->print("         vmop                    "
1243              "[threads: total initially_running wait_to_block]    ");
1244   tty->print("[time: spin block sync cleanup vmop] ");
1245 
1246   // no page armed status printed out if it is always armed.
1247   if (need_to_track_page_armed_status) {
1248     tty->print("page_armed ");
1249   }
1250 
1251   tty->print_cr("page_trap_count");
1252 }
1253 
1254 void SafepointSynchronize::deferred_initialize_stat() {
1255   if (init_done) return;
1256 
1257   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1258   // be printed right away, in which case, _safepoint_stats will regress to
1259   // a single element array. Otherwise, it is a circular ring buffer with default
1260   // size of PrintSafepointStatisticsCount.
1261   int stats_array_size;
1262   if (PrintSafepointStatisticsTimeout > 0) {
1263     stats_array_size = 1;
1264     PrintSafepointStatistics = true;
1265   } else {
1266     stats_array_size = PrintSafepointStatisticsCount;
1267   }
1268   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1269                                                  * sizeof(SafepointStats), mtInternal);
1270   guarantee(_safepoint_stats != NULL,
1271             "not enough memory for safepoint instrumentation data");
1272 
1273   if (DeferPollingPageLoopCount >= 0) {
1274     need_to_track_page_armed_status = true;
1275   }
1276   init_done = true;
1277 }
1278 
1279 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1280   assert(init_done, "safepoint statistics array hasn't been initialized");
1281   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1282 
1283   spstat->_time_stamp = _ts_of_current_safepoint;
1284 
1285   VM_Operation *op = VMThread::vm_operation();
1286   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1287   if (op != NULL) {
1288     _safepoint_reasons[spstat->_vmop_type]++;
1289   }
1290 
1291   spstat->_nof_total_threads = nof_threads;
1292   spstat->_nof_initial_running_threads = nof_running;
1293   spstat->_nof_threads_hit_page_trap = 0;
1294 
1295   // Records the start time of spinning. The real time spent on spinning
1296   // will be adjusted when spin is done. Same trick is applied for time
1297   // spent on waiting for threads to block.
1298   if (nof_running != 0) {
1299     spstat->_time_to_spin = os::javaTimeNanos();
1300   }  else {
1301     spstat->_time_to_spin = 0;
1302   }
1303 }
1304 
1305 void SafepointSynchronize::update_statistics_on_spin_end() {
1306   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1307 
1308   jlong cur_time = os::javaTimeNanos();
1309 
1310   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1311   if (spstat->_nof_initial_running_threads != 0) {
1312     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1313   }
1314 
1315   if (need_to_track_page_armed_status) {
1316     spstat->_page_armed = (PageArmed == 1);
1317   }
1318 
1319   // Records the start time of waiting for to block. Updated when block is done.
1320   if (_waiting_to_block != 0) {
1321     spstat->_time_to_wait_to_block = cur_time;
1322   } else {
1323     spstat->_time_to_wait_to_block = 0;
1324   }
1325 }
1326 
1327 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1328   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1329 
1330   if (spstat->_nof_threads_wait_to_block != 0) {
1331     spstat->_time_to_wait_to_block = end_time -
1332       spstat->_time_to_wait_to_block;
1333   }
1334 
1335   // Records the end time of sync which will be used to calculate the total
1336   // vm operation time. Again, the real time spending in syncing will be deducted
1337   // from the start of the sync time later when end_statistics is called.
1338   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1339   if (spstat->_time_to_sync > _max_sync_time) {
1340     _max_sync_time = spstat->_time_to_sync;
1341   }
1342 
1343   spstat->_time_to_do_cleanups = end_time;
1344 }
1345 
1346 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1347   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1348 
1349   // Record how long spent in cleanup tasks.
1350   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1351 
1352   cleanup_end_time = end_time;
1353 }
1354 
1355 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1356   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1357 
1358   // Update the vm operation time.
1359   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1360   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1361     _max_vmop_time = spstat->_time_to_exec_vmop;
1362   }
1363   // Only the sync time longer than the specified
1364   // PrintSafepointStatisticsTimeout will be printed out right away.
1365   // By default, it is -1 meaning all samples will be put into the list.
1366   if ( PrintSafepointStatisticsTimeout > 0) {
1367     if (spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1368       print_statistics();
1369     }
1370   } else {
1371     // The safepoint statistics will be printed out when the _safepoin_stats
1372     // array fills up.
1373     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1374       print_statistics();
1375       _cur_stat_index = 0;
1376     } else {
1377       _cur_stat_index++;
1378     }
1379   }
1380 }
1381 
1382 void SafepointSynchronize::print_statistics() {
1383   SafepointStats* sstats = _safepoint_stats;
1384 
1385   for (int index = 0; index <= _cur_stat_index; index++) {
1386     if (index % 30 == 0) {
1387       print_header();
1388     }
1389     sstats = &_safepoint_stats[index];
1390     tty->print("%.3f: ", sstats->_time_stamp);
1391     tty->print("%-26s       ["
1392                INT32_FORMAT_W(8) INT32_FORMAT_W(11) INT32_FORMAT_W(15)
1393                "    ]    ",
1394                sstats->_vmop_type == -1 ? "no vm operation" :
1395                VM_Operation::name(sstats->_vmop_type),
1396                sstats->_nof_total_threads,
1397                sstats->_nof_initial_running_threads,
1398                sstats->_nof_threads_wait_to_block);
1399     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1400     tty->print("  ["
1401                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
1402                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
1403                INT64_FORMAT_W(6) "    ]  ",
1404                sstats->_time_to_spin / MICROUNITS,
1405                sstats->_time_to_wait_to_block / MICROUNITS,
1406                sstats->_time_to_sync / MICROUNITS,
1407                sstats->_time_to_do_cleanups / MICROUNITS,
1408                sstats->_time_to_exec_vmop / MICROUNITS);
1409 
1410     if (need_to_track_page_armed_status) {
1411       tty->print(INT32_FORMAT "         ", sstats->_page_armed);
1412     }
1413     tty->print_cr(INT32_FORMAT "   ", sstats->_nof_threads_hit_page_trap);
1414   }
1415 }
1416 
1417 // This method will be called when VM exits. It will first call
1418 // print_statistics to print out the rest of the sampling.  Then
1419 // it tries to summarize the sampling.
1420 void SafepointSynchronize::print_stat_on_exit() {
1421   if (_safepoint_stats == NULL) return;
1422 
1423   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1424 
1425   // During VM exit, end_statistics may not get called and in that
1426   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1427   // don't print it out.
1428   // Approximate the vm op time.
1429   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1430     os::javaTimeNanos() - cleanup_end_time;
1431 
1432   if ( PrintSafepointStatisticsTimeout < 0 ||
1433        spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1434     print_statistics();
1435   }
1436   tty->cr();
1437 
1438   // Print out polling page sampling status.
1439   if (!need_to_track_page_armed_status) {
1440     tty->print_cr("Polling page always armed");
1441   } else {
1442     tty->print_cr("Defer polling page loop count = " INTX_FORMAT "\n",
1443                   DeferPollingPageLoopCount);
1444   }
1445 
1446   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1447     if (_safepoint_reasons[index] != 0) {
1448       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1449                     _safepoint_reasons[index]);
1450     }
1451   }
1452 
1453   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
1454                 _coalesced_vmop_count);
1455   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
1456                 _max_sync_time / MICROUNITS);
1457   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1458                 INT64_FORMAT_W(5) " ms",
1459                 _max_vmop_time / MICROUNITS);
1460 }
1461 
1462 // ------------------------------------------------------------------------------------------------
1463 // Non-product code
1464 
1465 #ifndef PRODUCT
1466 
1467 void SafepointSynchronize::print_state() {
1468   if (_state == _not_synchronized) {
1469     tty->print_cr("not synchronized");
1470   } else if (_state == _synchronizing || _state == _synchronized) {
1471     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1472                   "synchronized");
1473 
1474     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1475        cur->safepoint_state()->print();
1476     }
1477   }
1478 }
1479 
1480 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1481   if (ShowSafepointMsgs) {
1482     va_list ap;
1483     va_start(ap, format);
1484     tty->vprint_cr(format, ap);
1485     va_end(ap);
1486   }
1487 }
1488 
1489 #endif // !PRODUCT