1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "opto/addnode.hpp"
  40 #include "opto/block.hpp"
  41 #include "opto/c2compiler.hpp"
  42 #include "opto/callGenerator.hpp"
  43 #include "opto/callnode.hpp"
  44 #include "opto/castnode.hpp"
  45 #include "opto/cfgnode.hpp"
  46 #include "opto/chaitin.hpp"
  47 #include "opto/compile.hpp"
  48 #include "opto/connode.hpp"
  49 #include "opto/convertnode.hpp"
  50 #include "opto/divnode.hpp"
  51 #include "opto/escape.hpp"
  52 #include "opto/idealGraphPrinter.hpp"
  53 #include "opto/loopnode.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/macro.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/mathexactnode.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/narrowptrnode.hpp"
  61 #include "opto/node.hpp"
  62 #include "opto/opcodes.hpp"
  63 #include "opto/output.hpp"
  64 #include "opto/parse.hpp"
  65 #include "opto/phaseX.hpp"
  66 #include "opto/rootnode.hpp"
  67 #include "opto/runtime.hpp"
  68 #include "opto/stringopts.hpp"
  69 #include "opto/type.hpp"
  70 #include "opto/vectornode.hpp"
  71 #include "runtime/arguments.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/signature.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/timer.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/copy.hpp"
  78 #include "utilities/macros.hpp"
  79 #if INCLUDE_G1GC
  80 #include "gc/g1/g1ThreadLocalData.hpp"
  81 #endif // INCLUDE_G1GC
  82 #if INCLUDE_ZGC
  83 #include "gc/z/c2/zBarrierSetC2.hpp"
  84 #endif
  85 #if INCLUDE_SHENANDOAHGC
  86 #include "gc/shenandoah/c2/shenandoahSupport.hpp"
  87 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  88 #include "gc/shenandoah/brooksPointer.hpp"
  89 #endif
  90 
  91 
  92 // -------------------- Compile::mach_constant_base_node -----------------------
  93 // Constant table base node singleton.
  94 MachConstantBaseNode* Compile::mach_constant_base_node() {
  95   if (_mach_constant_base_node == NULL) {
  96     _mach_constant_base_node = new MachConstantBaseNode();
  97     _mach_constant_base_node->add_req(C->root());
  98   }
  99   return _mach_constant_base_node;
 100 }
 101 
 102 
 103 /// Support for intrinsics.
 104 
 105 // Return the index at which m must be inserted (or already exists).
 106 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 107 class IntrinsicDescPair {
 108  private:
 109   ciMethod* _m;
 110   bool _is_virtual;
 111  public:
 112   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 113   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 114     ciMethod* m= elt->method();
 115     ciMethod* key_m = key->_m;
 116     if (key_m < m)      return -1;
 117     else if (key_m > m) return 1;
 118     else {
 119       bool is_virtual = elt->is_virtual();
 120       bool key_virtual = key->_is_virtual;
 121       if (key_virtual < is_virtual)      return -1;
 122       else if (key_virtual > is_virtual) return 1;
 123       else                               return 0;
 124     }
 125   }
 126 };
 127 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 128 #ifdef ASSERT
 129   for (int i = 1; i < _intrinsics->length(); i++) {
 130     CallGenerator* cg1 = _intrinsics->at(i-1);
 131     CallGenerator* cg2 = _intrinsics->at(i);
 132     assert(cg1->method() != cg2->method()
 133            ? cg1->method()     < cg2->method()
 134            : cg1->is_virtual() < cg2->is_virtual(),
 135            "compiler intrinsics list must stay sorted");
 136   }
 137 #endif
 138   IntrinsicDescPair pair(m, is_virtual);
 139   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 140 }
 141 
 142 void Compile::register_intrinsic(CallGenerator* cg) {
 143   if (_intrinsics == NULL) {
 144     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 145   }
 146   int len = _intrinsics->length();
 147   bool found = false;
 148   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 149   assert(!found, "registering twice");
 150   _intrinsics->insert_before(index, cg);
 151   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 152 }
 153 
 154 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 155   assert(m->is_loaded(), "don't try this on unloaded methods");
 156   if (_intrinsics != NULL) {
 157     bool found = false;
 158     int index = intrinsic_insertion_index(m, is_virtual, found);
 159      if (found) {
 160       return _intrinsics->at(index);
 161     }
 162   }
 163   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 164   if (m->intrinsic_id() != vmIntrinsics::_none &&
 165       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 166     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 167     if (cg != NULL) {
 168       // Save it for next time:
 169       register_intrinsic(cg);
 170       return cg;
 171     } else {
 172       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 173     }
 174   }
 175   return NULL;
 176 }
 177 
 178 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 179 // in library_call.cpp.
 180 
 181 
 182 #ifndef PRODUCT
 183 // statistics gathering...
 184 
 185 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 186 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 187 
 188 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 189   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 190   int oflags = _intrinsic_hist_flags[id];
 191   assert(flags != 0, "what happened?");
 192   if (is_virtual) {
 193     flags |= _intrinsic_virtual;
 194   }
 195   bool changed = (flags != oflags);
 196   if ((flags & _intrinsic_worked) != 0) {
 197     juint count = (_intrinsic_hist_count[id] += 1);
 198     if (count == 1) {
 199       changed = true;           // first time
 200     }
 201     // increment the overall count also:
 202     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 203   }
 204   if (changed) {
 205     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 206       // Something changed about the intrinsic's virtuality.
 207       if ((flags & _intrinsic_virtual) != 0) {
 208         // This is the first use of this intrinsic as a virtual call.
 209         if (oflags != 0) {
 210           // We already saw it as a non-virtual, so note both cases.
 211           flags |= _intrinsic_both;
 212         }
 213       } else if ((oflags & _intrinsic_both) == 0) {
 214         // This is the first use of this intrinsic as a non-virtual
 215         flags |= _intrinsic_both;
 216       }
 217     }
 218     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 219   }
 220   // update the overall flags also:
 221   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 222   return changed;
 223 }
 224 
 225 static char* format_flags(int flags, char* buf) {
 226   buf[0] = 0;
 227   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 228   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 229   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 230   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 231   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 232   if (buf[0] == 0)  strcat(buf, ",");
 233   assert(buf[0] == ',', "must be");
 234   return &buf[1];
 235 }
 236 
 237 void Compile::print_intrinsic_statistics() {
 238   char flagsbuf[100];
 239   ttyLocker ttyl;
 240   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 241   tty->print_cr("Compiler intrinsic usage:");
 242   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 243   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 244   #define PRINT_STAT_LINE(name, c, f) \
 245     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 246   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 247     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 248     int   flags = _intrinsic_hist_flags[id];
 249     juint count = _intrinsic_hist_count[id];
 250     if ((flags | count) != 0) {
 251       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 252     }
 253   }
 254   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 255   if (xtty != NULL)  xtty->tail("statistics");
 256 }
 257 
 258 void Compile::print_statistics() {
 259   { ttyLocker ttyl;
 260     if (xtty != NULL)  xtty->head("statistics type='opto'");
 261     Parse::print_statistics();
 262     PhaseCCP::print_statistics();
 263     PhaseRegAlloc::print_statistics();
 264     Scheduling::print_statistics();
 265     PhasePeephole::print_statistics();
 266     PhaseIdealLoop::print_statistics();
 267     if (xtty != NULL)  xtty->tail("statistics");
 268   }
 269   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 270     // put this under its own <statistics> element.
 271     print_intrinsic_statistics();
 272   }
 273 }
 274 #endif //PRODUCT
 275 
 276 // Support for bundling info
 277 Bundle* Compile::node_bundling(const Node *n) {
 278   assert(valid_bundle_info(n), "oob");
 279   return &_node_bundling_base[n->_idx];
 280 }
 281 
 282 bool Compile::valid_bundle_info(const Node *n) {
 283   return (_node_bundling_limit > n->_idx);
 284 }
 285 
 286 
 287 void Compile::gvn_replace_by(Node* n, Node* nn) {
 288   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 289     Node* use = n->last_out(i);
 290     bool is_in_table = initial_gvn()->hash_delete(use);
 291     uint uses_found = 0;
 292     for (uint j = 0; j < use->len(); j++) {
 293       if (use->in(j) == n) {
 294         if (j < use->req())
 295           use->set_req(j, nn);
 296         else
 297           use->set_prec(j, nn);
 298         uses_found++;
 299       }
 300     }
 301     if (is_in_table) {
 302       // reinsert into table
 303       initial_gvn()->hash_find_insert(use);
 304     }
 305     record_for_igvn(use);
 306     i -= uses_found;    // we deleted 1 or more copies of this edge
 307   }
 308 }
 309 
 310 
 311 static inline bool not_a_node(const Node* n) {
 312   if (n == NULL)                   return true;
 313   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 314   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 315   return false;
 316 }
 317 
 318 // Identify all nodes that are reachable from below, useful.
 319 // Use breadth-first pass that records state in a Unique_Node_List,
 320 // recursive traversal is slower.
 321 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 322   int estimated_worklist_size = live_nodes();
 323   useful.map( estimated_worklist_size, NULL );  // preallocate space
 324 
 325   // Initialize worklist
 326   if (root() != NULL)     { useful.push(root()); }
 327   // If 'top' is cached, declare it useful to preserve cached node
 328   if( cached_top_node() ) { useful.push(cached_top_node()); }
 329 
 330   // Push all useful nodes onto the list, breadthfirst
 331   for( uint next = 0; next < useful.size(); ++next ) {
 332     assert( next < unique(), "Unique useful nodes < total nodes");
 333     Node *n  = useful.at(next);
 334     uint max = n->len();
 335     for( uint i = 0; i < max; ++i ) {
 336       Node *m = n->in(i);
 337       if (not_a_node(m))  continue;
 338       useful.push(m);
 339     }
 340   }
 341 }
 342 
 343 // Update dead_node_list with any missing dead nodes using useful
 344 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 345 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 346   uint max_idx = unique();
 347   VectorSet& useful_node_set = useful.member_set();
 348 
 349   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 350     // If node with index node_idx is not in useful set,
 351     // mark it as dead in dead node list.
 352     if (! useful_node_set.test(node_idx) ) {
 353       record_dead_node(node_idx);
 354     }
 355   }
 356 }
 357 
 358 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 359   int shift = 0;
 360   for (int i = 0; i < inlines->length(); i++) {
 361     CallGenerator* cg = inlines->at(i);
 362     CallNode* call = cg->call_node();
 363     if (shift > 0) {
 364       inlines->at_put(i-shift, cg);
 365     }
 366     if (!useful.member(call)) {
 367       shift++;
 368     }
 369   }
 370   inlines->trunc_to(inlines->length()-shift);
 371 }
 372 
 373 // Disconnect all useless nodes by disconnecting those at the boundary.
 374 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 375   uint next = 0;
 376   while (next < useful.size()) {
 377     Node *n = useful.at(next++);
 378     if (n->is_SafePoint()) {
 379       // We're done with a parsing phase. Replaced nodes are not valid
 380       // beyond that point.
 381       n->as_SafePoint()->delete_replaced_nodes();
 382     }
 383     // Use raw traversal of out edges since this code removes out edges
 384     int max = n->outcnt();
 385     for (int j = 0; j < max; ++j) {
 386       Node* child = n->raw_out(j);
 387       if (! useful.member(child)) {
 388         assert(!child->is_top() || child != top(),
 389                "If top is cached in Compile object it is in useful list");
 390         // Only need to remove this out-edge to the useless node
 391         n->raw_del_out(j);
 392         --j;
 393         --max;
 394       }
 395     }
 396     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 397       record_for_igvn(n->unique_out());
 398     }
 399 #if INCLUDE_SHENANDOAHGC
 400     if (n->Opcode() == Op_AddP && CallLeafNode::has_only_shenandoah_wb_pre_uses(n)) {
 401       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 402         record_for_igvn(n->fast_out(i));
 403       }
 404     }
 405 #endif
 406   }
 407   // Remove useless macro and predicate opaq nodes
 408   for (int i = C->macro_count()-1; i >= 0; i--) {
 409     Node* n = C->macro_node(i);
 410     if (!useful.member(n)) {
 411       remove_macro_node(n);
 412     }
 413   }
 414   // Remove useless CastII nodes with range check dependency
 415   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 416     Node* cast = range_check_cast_node(i);
 417     if (!useful.member(cast)) {
 418       remove_range_check_cast(cast);
 419     }
 420   }
 421   // Remove useless expensive nodes
 422   for (int i = C->expensive_count()-1; i >= 0; i--) {
 423     Node* n = C->expensive_node(i);
 424     if (!useful.member(n)) {
 425       remove_expensive_node(n);
 426     }
 427   }
 428 
 429   // Remove useless Opaque4 nodes
 430   for (int i = opaque4_count() - 1; i >= 0; i--) {
 431     Node* opaq = opaque4_node(i);
 432     if (!useful.member(opaq)) {
 433       remove_opaque4_node(opaq);
 434     }
 435   }
 436   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 437   bs->eliminate_useless_gc_barriers(useful);
 438   // clean up the late inline lists
 439   remove_useless_late_inlines(&_string_late_inlines, useful);
 440   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 441   remove_useless_late_inlines(&_late_inlines, useful);
 442   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 443 }
 444 
 445 //------------------------------frame_size_in_words-----------------------------
 446 // frame_slots in units of words
 447 int Compile::frame_size_in_words() const {
 448   // shift is 0 in LP32 and 1 in LP64
 449   const int shift = (LogBytesPerWord - LogBytesPerInt);
 450   int words = _frame_slots >> shift;
 451   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 452   return words;
 453 }
 454 
 455 // To bang the stack of this compiled method we use the stack size
 456 // that the interpreter would need in case of a deoptimization. This
 457 // removes the need to bang the stack in the deoptimization blob which
 458 // in turn simplifies stack overflow handling.
 459 int Compile::bang_size_in_bytes() const {
 460   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 461 }
 462 
 463 // ============================================================================
 464 //------------------------------CompileWrapper---------------------------------
 465 class CompileWrapper : public StackObj {
 466   Compile *const _compile;
 467  public:
 468   CompileWrapper(Compile* compile);
 469 
 470   ~CompileWrapper();
 471 };
 472 
 473 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 474   // the Compile* pointer is stored in the current ciEnv:
 475   ciEnv* env = compile->env();
 476   assert(env == ciEnv::current(), "must already be a ciEnv active");
 477   assert(env->compiler_data() == NULL, "compile already active?");
 478   env->set_compiler_data(compile);
 479   assert(compile == Compile::current(), "sanity");
 480 
 481   compile->set_type_dict(NULL);
 482   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 483   compile->clone_map().set_clone_idx(0);
 484   compile->set_type_hwm(NULL);
 485   compile->set_type_last_size(0);
 486   compile->set_last_tf(NULL, NULL);
 487   compile->set_indexSet_arena(NULL);
 488   compile->set_indexSet_free_block_list(NULL);
 489   compile->init_type_arena();
 490   Type::Initialize(compile);
 491   _compile->set_scratch_buffer_blob(NULL);
 492   _compile->begin_method();
 493   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 494 }
 495 CompileWrapper::~CompileWrapper() {
 496   _compile->end_method();
 497   if (_compile->scratch_buffer_blob() != NULL)
 498     BufferBlob::free(_compile->scratch_buffer_blob());
 499   _compile->env()->set_compiler_data(NULL);
 500 }
 501 
 502 
 503 //----------------------------print_compile_messages---------------------------
 504 void Compile::print_compile_messages() {
 505 #ifndef PRODUCT
 506   // Check if recompiling
 507   if (_subsume_loads == false && PrintOpto) {
 508     // Recompiling without allowing machine instructions to subsume loads
 509     tty->print_cr("*********************************************************");
 510     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 511     tty->print_cr("*********************************************************");
 512   }
 513   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 514     // Recompiling without escape analysis
 515     tty->print_cr("*********************************************************");
 516     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 517     tty->print_cr("*********************************************************");
 518   }
 519   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 520     // Recompiling without boxing elimination
 521     tty->print_cr("*********************************************************");
 522     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 523     tty->print_cr("*********************************************************");
 524   }
 525   if (C->directive()->BreakAtCompileOption) {
 526     // Open the debugger when compiling this method.
 527     tty->print("### Breaking when compiling: ");
 528     method()->print_short_name();
 529     tty->cr();
 530     BREAKPOINT;
 531   }
 532 
 533   if( PrintOpto ) {
 534     if (is_osr_compilation()) {
 535       tty->print("[OSR]%3d", _compile_id);
 536     } else {
 537       tty->print("%3d", _compile_id);
 538     }
 539   }
 540 #endif
 541 }
 542 
 543 
 544 //-----------------------init_scratch_buffer_blob------------------------------
 545 // Construct a temporary BufferBlob and cache it for this compile.
 546 void Compile::init_scratch_buffer_blob(int const_size) {
 547   // If there is already a scratch buffer blob allocated and the
 548   // constant section is big enough, use it.  Otherwise free the
 549   // current and allocate a new one.
 550   BufferBlob* blob = scratch_buffer_blob();
 551   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 552     // Use the current blob.
 553   } else {
 554     if (blob != NULL) {
 555       BufferBlob::free(blob);
 556     }
 557 
 558     ResourceMark rm;
 559     _scratch_const_size = const_size;
 560     int locs_size = sizeof(relocInfo) * MAX_locs_size;
 561     int slop = 2 * CodeSection::end_slop(); // space between sections
 562     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size + slop + locs_size);
 563     blob = BufferBlob::create("Compile::scratch_buffer", size);
 564     // Record the buffer blob for next time.
 565     set_scratch_buffer_blob(blob);
 566     // Have we run out of code space?
 567     if (scratch_buffer_blob() == NULL) {
 568       // Let CompilerBroker disable further compilations.
 569       record_failure("Not enough space for scratch buffer in CodeCache");
 570       return;
 571     }
 572   }
 573 
 574   // Initialize the relocation buffers
 575   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 576   set_scratch_locs_memory(locs_buf);
 577 }
 578 
 579 
 580 //-----------------------scratch_emit_size-------------------------------------
 581 // Helper function that computes size by emitting code
 582 uint Compile::scratch_emit_size(const Node* n) {
 583   // Start scratch_emit_size section.
 584   set_in_scratch_emit_size(true);
 585 
 586   // Emit into a trash buffer and count bytes emitted.
 587   // This is a pretty expensive way to compute a size,
 588   // but it works well enough if seldom used.
 589   // All common fixed-size instructions are given a size
 590   // method by the AD file.
 591   // Note that the scratch buffer blob and locs memory are
 592   // allocated at the beginning of the compile task, and
 593   // may be shared by several calls to scratch_emit_size.
 594   // The allocation of the scratch buffer blob is particularly
 595   // expensive, since it has to grab the code cache lock.
 596   BufferBlob* blob = this->scratch_buffer_blob();
 597   assert(blob != NULL, "Initialize BufferBlob at start");
 598   assert(blob->size() > MAX_inst_size, "sanity");
 599   relocInfo* locs_buf = scratch_locs_memory();
 600   address blob_begin = blob->content_begin();
 601   address blob_end   = (address)locs_buf;
 602   assert(blob->contains(blob_end), "sanity");
 603   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 604   buf.initialize_consts_size(_scratch_const_size);
 605   buf.initialize_stubs_size(MAX_stubs_size);
 606   assert(locs_buf != NULL, "sanity");
 607   int lsize = MAX_locs_size / 3;
 608   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 609   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 610   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 611   // Mark as scratch buffer.
 612   buf.consts()->set_scratch_emit();
 613   buf.insts()->set_scratch_emit();
 614   buf.stubs()->set_scratch_emit();
 615 
 616   // Do the emission.
 617 
 618   Label fakeL; // Fake label for branch instructions.
 619   Label*   saveL = NULL;
 620   uint save_bnum = 0;
 621   bool is_branch = n->is_MachBranch();
 622   if (is_branch) {
 623     MacroAssembler masm(&buf);
 624     masm.bind(fakeL);
 625     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 626     n->as_MachBranch()->label_set(&fakeL, 0);
 627   }
 628   n->emit(buf, this->regalloc());
 629 
 630   // Emitting into the scratch buffer should not fail
 631   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 632 
 633   if (is_branch) // Restore label.
 634     n->as_MachBranch()->label_set(saveL, save_bnum);
 635 
 636   // End scratch_emit_size section.
 637   set_in_scratch_emit_size(false);
 638 
 639   return buf.insts_size();
 640 }
 641 
 642 
 643 // ============================================================================
 644 //------------------------------Compile standard-------------------------------
 645 debug_only( int Compile::_debug_idx = 100000; )
 646 
 647 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 648 // the continuation bci for on stack replacement.
 649 
 650 
 651 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 652                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 653                 : Phase(Compiler),
 654                   _compile_id(ci_env->compile_id()),
 655                   _save_argument_registers(false),
 656                   _subsume_loads(subsume_loads),
 657                   _do_escape_analysis(do_escape_analysis),
 658                   _eliminate_boxing(eliminate_boxing),
 659                   _method(target),
 660                   _entry_bci(osr_bci),
 661                   _stub_function(NULL),
 662                   _stub_name(NULL),
 663                   _stub_entry_point(NULL),
 664                   _max_node_limit(MaxNodeLimit),
 665                   _orig_pc_slot(0),
 666                   _orig_pc_slot_offset_in_bytes(0),
 667                   _inlining_progress(false),
 668                   _inlining_incrementally(false),
 669                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 670 #ifndef PRODUCT
 671                   _trace_opto_output(directive->TraceOptoOutputOption),
 672 #endif
 673                   _has_method_handle_invokes(false),
 674                   _comp_arena(mtCompiler),
 675                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 676                   _env(ci_env),
 677                   _directive(directive),
 678                   _log(ci_env->log()),
 679                   _failure_reason(NULL),
 680                   _congraph(NULL),
 681 #ifndef PRODUCT
 682                   _printer(IdealGraphPrinter::printer()),
 683 #endif
 684                   _dead_node_list(comp_arena()),
 685                   _dead_node_count(0),
 686                   _node_arena(mtCompiler),
 687                   _old_arena(mtCompiler),
 688                   _mach_constant_base_node(NULL),
 689                   _Compile_types(mtCompiler),
 690                   _initial_gvn(NULL),
 691                   _for_igvn(NULL),
 692                   _warm_calls(NULL),
 693                   _late_inlines(comp_arena(), 2, 0, NULL),
 694                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 695                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 696                   _late_inlines_pos(0),
 697                   _number_of_mh_late_inlines(0),
 698                   _print_inlining_stream(NULL),
 699                   _print_inlining_list(NULL),
 700                   _print_inlining_idx(0),
 701                   _print_inlining_output(NULL),
 702                   _replay_inline_data(NULL),
 703                   _java_calls(0),
 704                   _inner_loops(0),
 705                   _interpreter_frame_size(0),
 706                   _node_bundling_limit(0),
 707                   _node_bundling_base(NULL),
 708                   _code_buffer("Compile::Fill_buffer"),
 709                   _scratch_const_size(-1),
 710                   _in_scratch_emit_size(false)
 711 #ifndef PRODUCT
 712                   , _in_dump_cnt(0)
 713 #endif
 714 {
 715   C = this;
 716 #ifndef PRODUCT
 717   if (_printer != NULL) {
 718     _printer->set_compile(this);
 719   }
 720 #endif
 721   CompileWrapper cw(this);
 722 
 723   if (CITimeVerbose) {
 724     tty->print(" ");
 725     target->holder()->name()->print();
 726     tty->print(".");
 727     target->print_short_name();
 728     tty->print("  ");
 729   }
 730   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 731   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 732 
 733 #ifndef PRODUCT
 734   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 735   if (!print_opto_assembly) {
 736     bool print_assembly = directive->PrintAssemblyOption;
 737     if (print_assembly && !Disassembler::can_decode()) {
 738       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 739       print_opto_assembly = true;
 740     }
 741   }
 742   set_print_assembly(print_opto_assembly);
 743   set_parsed_irreducible_loop(false);
 744 
 745   if (directive->ReplayInlineOption) {
 746     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 747   }
 748 #endif
 749   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 750   set_print_intrinsics(directive->PrintIntrinsicsOption);
 751   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 752 
 753   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 754     // Make sure the method being compiled gets its own MDO,
 755     // so we can at least track the decompile_count().
 756     // Need MDO to record RTM code generation state.
 757     method()->ensure_method_data();
 758   }
 759 
 760   Init(::AliasLevel);
 761 
 762 
 763   print_compile_messages();
 764 
 765   _ilt = InlineTree::build_inline_tree_root();
 766 
 767   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 768   assert(num_alias_types() >= AliasIdxRaw, "");
 769 
 770 #define MINIMUM_NODE_HASH  1023
 771   // Node list that Iterative GVN will start with
 772   Unique_Node_List for_igvn(comp_arena());
 773   set_for_igvn(&for_igvn);
 774 
 775   // GVN that will be run immediately on new nodes
 776   uint estimated_size = method()->code_size()*4+64;
 777   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 778   PhaseGVN gvn(node_arena(), estimated_size);
 779   set_initial_gvn(&gvn);
 780 
 781   print_inlining_init();
 782   { // Scope for timing the parser
 783     TracePhase tp("parse", &timers[_t_parser]);
 784 
 785     // Put top into the hash table ASAP.
 786     initial_gvn()->transform_no_reclaim(top());
 787 
 788     // Set up tf(), start(), and find a CallGenerator.
 789     CallGenerator* cg = NULL;
 790     if (is_osr_compilation()) {
 791       const TypeTuple *domain = StartOSRNode::osr_domain();
 792       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 793       init_tf(TypeFunc::make(domain, range));
 794       StartNode* s = new StartOSRNode(root(), domain);
 795       initial_gvn()->set_type_bottom(s);
 796       init_start(s);
 797       cg = CallGenerator::for_osr(method(), entry_bci());
 798     } else {
 799       // Normal case.
 800       init_tf(TypeFunc::make(method()));
 801       StartNode* s = new StartNode(root(), tf()->domain());
 802       initial_gvn()->set_type_bottom(s);
 803       init_start(s);
 804       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 805         // With java.lang.ref.reference.get() we must go through the
 806         // intrinsic - even when get() is the root
 807         // method of the compile - so that, if necessary, the value in
 808         // the referent field of the reference object gets recorded by
 809         // the pre-barrier code.
 810         cg = find_intrinsic(method(), false);
 811       }
 812       if (cg == NULL) {
 813         float past_uses = method()->interpreter_invocation_count();
 814         float expected_uses = past_uses;
 815         cg = CallGenerator::for_inline(method(), expected_uses);
 816       }
 817     }
 818     if (failing())  return;
 819     if (cg == NULL) {
 820       record_method_not_compilable("cannot parse method");
 821       return;
 822     }
 823     JVMState* jvms = build_start_state(start(), tf());
 824     if ((jvms = cg->generate(jvms)) == NULL) {
 825       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 826         record_method_not_compilable("method parse failed");
 827       }
 828       return;
 829     }
 830     GraphKit kit(jvms);
 831 
 832     if (!kit.stopped()) {
 833       // Accept return values, and transfer control we know not where.
 834       // This is done by a special, unique ReturnNode bound to root.
 835       return_values(kit.jvms());
 836     }
 837 
 838     if (kit.has_exceptions()) {
 839       // Any exceptions that escape from this call must be rethrown
 840       // to whatever caller is dynamically above us on the stack.
 841       // This is done by a special, unique RethrowNode bound to root.
 842       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 843     }
 844 
 845     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 846 
 847     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 848       inline_string_calls(true);
 849     }
 850 
 851     if (failing())  return;
 852 
 853     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 854 
 855     // Remove clutter produced by parsing.
 856     if (!failing()) {
 857       ResourceMark rm;
 858       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 859     }
 860   }
 861 
 862   // Note:  Large methods are capped off in do_one_bytecode().
 863   if (failing())  return;
 864 
 865   // After parsing, node notes are no longer automagic.
 866   // They must be propagated by register_new_node_with_optimizer(),
 867   // clone(), or the like.
 868   set_default_node_notes(NULL);
 869 
 870   for (;;) {
 871     int successes = Inline_Warm();
 872     if (failing())  return;
 873     if (successes == 0)  break;
 874   }
 875 
 876   // Drain the list.
 877   Finish_Warm();
 878 #ifndef PRODUCT
 879   if (_printer && _printer->should_print(1)) {
 880     _printer->print_inlining();
 881   }
 882 #endif
 883 
 884   if (failing())  return;
 885   NOT_PRODUCT( verify_graph_edges(); )
 886 
 887   // Now optimize
 888   Optimize();
 889   if (failing())  return;
 890   NOT_PRODUCT( verify_graph_edges(); )
 891 
 892 #ifndef PRODUCT
 893   if (PrintIdeal) {
 894     ttyLocker ttyl;  // keep the following output all in one block
 895     // This output goes directly to the tty, not the compiler log.
 896     // To enable tools to match it up with the compilation activity,
 897     // be sure to tag this tty output with the compile ID.
 898     if (xtty != NULL) {
 899       xtty->head("ideal compile_id='%d'%s", compile_id(),
 900                  is_osr_compilation()    ? " compile_kind='osr'" :
 901                  "");
 902     }
 903     root()->dump(9999);
 904     if (xtty != NULL) {
 905       xtty->tail("ideal");
 906     }
 907   }
 908 #endif
 909 
 910   NOT_PRODUCT( verify_barriers(); )
 911 
 912   // Dump compilation data to replay it.
 913   if (directive->DumpReplayOption) {
 914     env()->dump_replay_data(_compile_id);
 915   }
 916   if (directive->DumpInlineOption && (ilt() != NULL)) {
 917     env()->dump_inline_data(_compile_id);
 918   }
 919 
 920   // Now that we know the size of all the monitors we can add a fixed slot
 921   // for the original deopt pc.
 922 
 923   _orig_pc_slot =  fixed_slots();
 924   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 925   set_fixed_slots(next_slot);
 926 
 927   // Compute when to use implicit null checks. Used by matching trap based
 928   // nodes and NullCheck optimization.
 929   set_allowed_deopt_reasons();
 930 
 931   // Now generate code
 932   Code_Gen();
 933   if (failing())  return;
 934 
 935   // Check if we want to skip execution of all compiled code.
 936   {
 937 #ifndef PRODUCT
 938     if (OptoNoExecute) {
 939       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 940       return;
 941     }
 942 #endif
 943     TracePhase tp("install_code", &timers[_t_registerMethod]);
 944 
 945     if (is_osr_compilation()) {
 946       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 947       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 948     } else {
 949       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 950       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 951     }
 952 
 953     env()->register_method(_method, _entry_bci,
 954                            &_code_offsets,
 955                            _orig_pc_slot_offset_in_bytes,
 956                            code_buffer(),
 957                            frame_size_in_words(), _oop_map_set,
 958                            &_handler_table, &_inc_table,
 959                            compiler,
 960                            has_unsafe_access(),
 961                            SharedRuntime::is_wide_vector(max_vector_size()),
 962                            rtm_state()
 963                            );
 964 
 965     if (log() != NULL) // Print code cache state into compiler log
 966       log()->code_cache_state();
 967   }
 968 }
 969 
 970 //------------------------------Compile----------------------------------------
 971 // Compile a runtime stub
 972 Compile::Compile( ciEnv* ci_env,
 973                   TypeFunc_generator generator,
 974                   address stub_function,
 975                   const char *stub_name,
 976                   int is_fancy_jump,
 977                   bool pass_tls,
 978                   bool save_arg_registers,
 979                   bool return_pc,
 980                   DirectiveSet* directive)
 981   : Phase(Compiler),
 982     _compile_id(0),
 983     _save_argument_registers(save_arg_registers),
 984     _subsume_loads(true),
 985     _do_escape_analysis(false),
 986     _eliminate_boxing(false),
 987     _method(NULL),
 988     _entry_bci(InvocationEntryBci),
 989     _stub_function(stub_function),
 990     _stub_name(stub_name),
 991     _stub_entry_point(NULL),
 992     _max_node_limit(MaxNodeLimit),
 993     _orig_pc_slot(0),
 994     _orig_pc_slot_offset_in_bytes(0),
 995     _inlining_progress(false),
 996     _inlining_incrementally(false),
 997     _has_reserved_stack_access(false),
 998 #ifndef PRODUCT
 999     _trace_opto_output(directive->TraceOptoOutputOption),
1000 #endif
1001     _has_method_handle_invokes(false),
1002     _comp_arena(mtCompiler),
1003     _env(ci_env),
1004     _directive(directive),
1005     _log(ci_env->log()),
1006     _failure_reason(NULL),
1007     _congraph(NULL),
1008 #ifndef PRODUCT
1009     _printer(NULL),
1010 #endif
1011     _dead_node_list(comp_arena()),
1012     _dead_node_count(0),
1013     _node_arena(mtCompiler),
1014     _old_arena(mtCompiler),
1015     _mach_constant_base_node(NULL),
1016     _Compile_types(mtCompiler),
1017     _initial_gvn(NULL),
1018     _for_igvn(NULL),
1019     _warm_calls(NULL),
1020     _number_of_mh_late_inlines(0),
1021     _print_inlining_stream(NULL),
1022     _print_inlining_list(NULL),
1023     _print_inlining_idx(0),
1024     _print_inlining_output(NULL),
1025     _replay_inline_data(NULL),
1026     _java_calls(0),
1027     _inner_loops(0),
1028     _interpreter_frame_size(0),
1029     _node_bundling_limit(0),
1030     _node_bundling_base(NULL),
1031     _code_buffer("Compile::Fill_buffer"),
1032 #ifndef PRODUCT
1033     _in_dump_cnt(0),
1034 #endif
1035     _allowed_reasons(0) {
1036   C = this;
1037 
1038   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1039   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1040 
1041 #ifndef PRODUCT
1042   set_print_assembly(PrintFrameConverterAssembly);
1043   set_parsed_irreducible_loop(false);
1044 #endif
1045   set_has_irreducible_loop(false); // no loops
1046 
1047   CompileWrapper cw(this);
1048   Init(/*AliasLevel=*/ 0);
1049   init_tf((*generator)());
1050 
1051   {
1052     // The following is a dummy for the sake of GraphKit::gen_stub
1053     Unique_Node_List for_igvn(comp_arena());
1054     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1055     PhaseGVN gvn(Thread::current()->resource_area(),255);
1056     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1057     gvn.transform_no_reclaim(top());
1058 
1059     GraphKit kit;
1060     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1061   }
1062 
1063   NOT_PRODUCT( verify_graph_edges(); )
1064   Code_Gen();
1065   if (failing())  return;
1066 
1067 
1068   // Entry point will be accessed using compile->stub_entry_point();
1069   if (code_buffer() == NULL) {
1070     Matcher::soft_match_failure();
1071   } else {
1072     if (PrintAssembly && (WizardMode || Verbose))
1073       tty->print_cr("### Stub::%s", stub_name);
1074 
1075     if (!failing()) {
1076       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1077 
1078       // Make the NMethod
1079       // For now we mark the frame as never safe for profile stackwalking
1080       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1081                                                       code_buffer(),
1082                                                       CodeOffsets::frame_never_safe,
1083                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1084                                                       frame_size_in_words(),
1085                                                       _oop_map_set,
1086                                                       save_arg_registers);
1087       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1088 
1089       _stub_entry_point = rs->entry_point();
1090     }
1091   }
1092 }
1093 
1094 //------------------------------Init-------------------------------------------
1095 // Prepare for a single compilation
1096 void Compile::Init(int aliaslevel) {
1097   _unique  = 0;
1098   _regalloc = NULL;
1099 
1100   _tf      = NULL;  // filled in later
1101   _top     = NULL;  // cached later
1102   _matcher = NULL;  // filled in later
1103   _cfg     = NULL;  // filled in later
1104 
1105   set_24_bit_selection_and_mode(Use24BitFP, false);
1106 
1107   _node_note_array = NULL;
1108   _default_node_notes = NULL;
1109   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1110 
1111   _immutable_memory = NULL; // filled in at first inquiry
1112 
1113   // Globally visible Nodes
1114   // First set TOP to NULL to give safe behavior during creation of RootNode
1115   set_cached_top_node(NULL);
1116   set_root(new RootNode());
1117   // Now that you have a Root to point to, create the real TOP
1118   set_cached_top_node( new ConNode(Type::TOP) );
1119   set_recent_alloc(NULL, NULL);
1120 
1121   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1122   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1123   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1124   env()->set_dependencies(new Dependencies(env()));
1125 
1126   _fixed_slots = 0;
1127   set_has_split_ifs(false);
1128   set_has_loops(has_method() && method()->has_loops()); // first approximation
1129   set_has_stringbuilder(false);
1130   set_has_boxed_value(false);
1131   _trap_can_recompile = false;  // no traps emitted yet
1132   _major_progress = true; // start out assuming good things will happen
1133   set_has_unsafe_access(false);
1134   set_max_vector_size(0);
1135   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1136   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1137   set_decompile_count(0);
1138 
1139   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1140   set_num_loop_opts(LoopOptsCount);
1141   set_do_inlining(Inline);
1142   set_max_inline_size(MaxInlineSize);
1143   set_freq_inline_size(FreqInlineSize);
1144   set_do_scheduling(OptoScheduling);
1145   set_do_count_invocations(false);
1146   set_do_method_data_update(false);
1147 
1148   set_do_vector_loop(false);
1149 
1150   if (AllowVectorizeOnDemand) {
1151     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1152       set_do_vector_loop(true);
1153       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1154     } else if (has_method() && method()->name() != 0 &&
1155                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1156       set_do_vector_loop(true);
1157     }
1158   }
1159   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1160   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1161 
1162   set_age_code(has_method() && method()->profile_aging());
1163   set_rtm_state(NoRTM); // No RTM lock eliding by default
1164   _max_node_limit = _directive->MaxNodeLimitOption;
1165 
1166 #if INCLUDE_RTM_OPT
1167   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1168     int rtm_state = method()->method_data()->rtm_state();
1169     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1170       // Don't generate RTM lock eliding code.
1171       set_rtm_state(NoRTM);
1172     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1173       // Generate RTM lock eliding code without abort ratio calculation code.
1174       set_rtm_state(UseRTM);
1175     } else if (UseRTMDeopt) {
1176       // Generate RTM lock eliding code and include abort ratio calculation
1177       // code if UseRTMDeopt is on.
1178       set_rtm_state(ProfileRTM);
1179     }
1180   }
1181 #endif
1182   if (debug_info()->recording_non_safepoints()) {
1183     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1184                         (comp_arena(), 8, 0, NULL));
1185     set_default_node_notes(Node_Notes::make(this));
1186   }
1187 
1188   // // -- Initialize types before each compile --
1189   // // Update cached type information
1190   // if( _method && _method->constants() )
1191   //   Type::update_loaded_types(_method, _method->constants());
1192 
1193   // Init alias_type map.
1194   if (!_do_escape_analysis && aliaslevel == 3)
1195     aliaslevel = 2;  // No unique types without escape analysis
1196   _AliasLevel = aliaslevel;
1197   const int grow_ats = 16;
1198   _max_alias_types = grow_ats;
1199   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1200   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1201   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1202   {
1203     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1204   }
1205   // Initialize the first few types.
1206   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1207   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1208   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1209   _num_alias_types = AliasIdxRaw+1;
1210   // Zero out the alias type cache.
1211   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1212   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1213   probe_alias_cache(NULL)->_index = AliasIdxTop;
1214 
1215   _intrinsics = NULL;
1216   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1217   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1218   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1219   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1220   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1221   register_library_intrinsics();
1222 }
1223 
1224 //---------------------------init_start----------------------------------------
1225 // Install the StartNode on this compile object.
1226 void Compile::init_start(StartNode* s) {
1227   if (failing())
1228     return; // already failing
1229   assert(s == start(), "");
1230 }
1231 
1232 /**
1233  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1234  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1235  * the ideal graph.
1236  */
1237 StartNode* Compile::start() const {
1238   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1239   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1240     Node* start = root()->fast_out(i);
1241     if (start->is_Start()) {
1242       return start->as_Start();
1243     }
1244   }
1245   fatal("Did not find Start node!");
1246   return NULL;
1247 }
1248 
1249 //-------------------------------immutable_memory-------------------------------------
1250 // Access immutable memory
1251 Node* Compile::immutable_memory() {
1252   if (_immutable_memory != NULL) {
1253     return _immutable_memory;
1254   }
1255   StartNode* s = start();
1256   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1257     Node *p = s->fast_out(i);
1258     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1259       _immutable_memory = p;
1260       return _immutable_memory;
1261     }
1262   }
1263   ShouldNotReachHere();
1264   return NULL;
1265 }
1266 
1267 //----------------------set_cached_top_node------------------------------------
1268 // Install the cached top node, and make sure Node::is_top works correctly.
1269 void Compile::set_cached_top_node(Node* tn) {
1270   if (tn != NULL)  verify_top(tn);
1271   Node* old_top = _top;
1272   _top = tn;
1273   // Calling Node::setup_is_top allows the nodes the chance to adjust
1274   // their _out arrays.
1275   if (_top != NULL)     _top->setup_is_top();
1276   if (old_top != NULL)  old_top->setup_is_top();
1277   assert(_top == NULL || top()->is_top(), "");
1278 }
1279 
1280 #ifdef ASSERT
1281 uint Compile::count_live_nodes_by_graph_walk() {
1282   Unique_Node_List useful(comp_arena());
1283   // Get useful node list by walking the graph.
1284   identify_useful_nodes(useful);
1285   return useful.size();
1286 }
1287 
1288 void Compile::print_missing_nodes() {
1289 
1290   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1291   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1292     return;
1293   }
1294 
1295   // This is an expensive function. It is executed only when the user
1296   // specifies VerifyIdealNodeCount option or otherwise knows the
1297   // additional work that needs to be done to identify reachable nodes
1298   // by walking the flow graph and find the missing ones using
1299   // _dead_node_list.
1300 
1301   Unique_Node_List useful(comp_arena());
1302   // Get useful node list by walking the graph.
1303   identify_useful_nodes(useful);
1304 
1305   uint l_nodes = C->live_nodes();
1306   uint l_nodes_by_walk = useful.size();
1307 
1308   if (l_nodes != l_nodes_by_walk) {
1309     if (_log != NULL) {
1310       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1311       _log->stamp();
1312       _log->end_head();
1313     }
1314     VectorSet& useful_member_set = useful.member_set();
1315     int last_idx = l_nodes_by_walk;
1316     for (int i = 0; i < last_idx; i++) {
1317       if (useful_member_set.test(i)) {
1318         if (_dead_node_list.test(i)) {
1319           if (_log != NULL) {
1320             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1321           }
1322           if (PrintIdealNodeCount) {
1323             // Print the log message to tty
1324               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1325               useful.at(i)->dump();
1326           }
1327         }
1328       }
1329       else if (! _dead_node_list.test(i)) {
1330         if (_log != NULL) {
1331           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1332         }
1333         if (PrintIdealNodeCount) {
1334           // Print the log message to tty
1335           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1336         }
1337       }
1338     }
1339     if (_log != NULL) {
1340       _log->tail("mismatched_nodes");
1341     }
1342   }
1343 }
1344 void Compile::record_modified_node(Node* n) {
1345   if (_modified_nodes != NULL && !_inlining_incrementally &&
1346       n->outcnt() != 0 && !n->is_Con()) {
1347     _modified_nodes->push(n);
1348   }
1349 }
1350 
1351 void Compile::remove_modified_node(Node* n) {
1352   if (_modified_nodes != NULL) {
1353     _modified_nodes->remove(n);
1354   }
1355 }
1356 #endif
1357 
1358 #ifndef PRODUCT
1359 void Compile::verify_top(Node* tn) const {
1360   if (tn != NULL) {
1361     assert(tn->is_Con(), "top node must be a constant");
1362     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1363     assert(tn->in(0) != NULL, "must have live top node");
1364   }
1365 }
1366 #endif
1367 
1368 
1369 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1370 
1371 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1372   guarantee(arr != NULL, "");
1373   int num_blocks = arr->length();
1374   if (grow_by < num_blocks)  grow_by = num_blocks;
1375   int num_notes = grow_by * _node_notes_block_size;
1376   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1377   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1378   while (num_notes > 0) {
1379     arr->append(notes);
1380     notes     += _node_notes_block_size;
1381     num_notes -= _node_notes_block_size;
1382   }
1383   assert(num_notes == 0, "exact multiple, please");
1384 }
1385 
1386 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1387   if (source == NULL || dest == NULL)  return false;
1388 
1389   if (dest->is_Con())
1390     return false;               // Do not push debug info onto constants.
1391 
1392 #ifdef ASSERT
1393   // Leave a bread crumb trail pointing to the original node:
1394   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1395     dest->set_debug_orig(source);
1396   }
1397 #endif
1398 
1399   if (node_note_array() == NULL)
1400     return false;               // Not collecting any notes now.
1401 
1402   // This is a copy onto a pre-existing node, which may already have notes.
1403   // If both nodes have notes, do not overwrite any pre-existing notes.
1404   Node_Notes* source_notes = node_notes_at(source->_idx);
1405   if (source_notes == NULL || source_notes->is_clear())  return false;
1406   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1407   if (dest_notes == NULL || dest_notes->is_clear()) {
1408     return set_node_notes_at(dest->_idx, source_notes);
1409   }
1410 
1411   Node_Notes merged_notes = (*source_notes);
1412   // The order of operations here ensures that dest notes will win...
1413   merged_notes.update_from(dest_notes);
1414   return set_node_notes_at(dest->_idx, &merged_notes);
1415 }
1416 
1417 
1418 //--------------------------allow_range_check_smearing-------------------------
1419 // Gating condition for coalescing similar range checks.
1420 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1421 // single covering check that is at least as strong as any of them.
1422 // If the optimization succeeds, the simplified (strengthened) range check
1423 // will always succeed.  If it fails, we will deopt, and then give up
1424 // on the optimization.
1425 bool Compile::allow_range_check_smearing() const {
1426   // If this method has already thrown a range-check,
1427   // assume it was because we already tried range smearing
1428   // and it failed.
1429   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1430   return !already_trapped;
1431 }
1432 
1433 
1434 //------------------------------flatten_alias_type-----------------------------
1435 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1436   int offset = tj->offset();
1437   TypePtr::PTR ptr = tj->ptr();
1438 
1439   // Known instance (scalarizable allocation) alias only with itself.
1440   bool is_known_inst = tj->isa_oopptr() != NULL &&
1441                        tj->is_oopptr()->is_known_instance();
1442 
1443   // Process weird unsafe references.
1444   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1445     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1446     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1447     tj = TypeOopPtr::BOTTOM;
1448     ptr = tj->ptr();
1449     offset = tj->offset();
1450   }
1451 
1452   // Array pointers need some flattening
1453   const TypeAryPtr *ta = tj->isa_aryptr();
1454   if (ta && ta->is_stable()) {
1455     // Erase stability property for alias analysis.
1456     tj = ta = ta->cast_to_stable(false);
1457   }
1458   if( ta && is_known_inst ) {
1459     if ( offset != Type::OffsetBot &&
1460          offset > arrayOopDesc::length_offset_in_bytes() ) {
1461       offset = Type::OffsetBot; // Flatten constant access into array body only
1462       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1463     }
1464   } else if( ta && _AliasLevel >= 2 ) {
1465     // For arrays indexed by constant indices, we flatten the alias
1466     // space to include all of the array body.  Only the header, klass
1467     // and array length can be accessed un-aliased.
1468     if( offset != Type::OffsetBot ) {
1469       if( ta->const_oop() ) { // MethodData* or Method*
1470         offset = Type::OffsetBot;   // Flatten constant access into array body
1471         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1472       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1473         // range is OK as-is.
1474         tj = ta = TypeAryPtr::RANGE;
1475       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1476         tj = TypeInstPtr::KLASS; // all klass loads look alike
1477         ta = TypeAryPtr::RANGE; // generic ignored junk
1478         ptr = TypePtr::BotPTR;
1479       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1480         tj = TypeInstPtr::MARK;
1481         ta = TypeAryPtr::RANGE; // generic ignored junk
1482         ptr = TypePtr::BotPTR;
1483 #if INCLUDE_SHENANDOAHGC
1484       } else if (offset == BrooksPointer::byte_offset() && UseShenandoahGC) {
1485         // Need to distinguish brooks ptr as is.
1486         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1487 #endif
1488       } else {                  // Random constant offset into array body
1489         offset = Type::OffsetBot;   // Flatten constant access into array body
1490         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1491       }
1492     }
1493     // Arrays of fixed size alias with arrays of unknown size.
1494     if (ta->size() != TypeInt::POS) {
1495       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1496       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1497     }
1498     // Arrays of known objects become arrays of unknown objects.
1499     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1500       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1501       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1502     }
1503     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1504       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1505       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1506     }
1507     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1508     // cannot be distinguished by bytecode alone.
1509     if (ta->elem() == TypeInt::BOOL) {
1510       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1511       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1512       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1513     }
1514     // During the 2nd round of IterGVN, NotNull castings are removed.
1515     // Make sure the Bottom and NotNull variants alias the same.
1516     // Also, make sure exact and non-exact variants alias the same.
1517     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1518       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1519     }
1520   }
1521 
1522   // Oop pointers need some flattening
1523   const TypeInstPtr *to = tj->isa_instptr();
1524   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1525     ciInstanceKlass *k = to->klass()->as_instance_klass();
1526     if( ptr == TypePtr::Constant ) {
1527       if (to->klass() != ciEnv::current()->Class_klass() ||
1528           offset < k->size_helper() * wordSize) {
1529         // No constant oop pointers (such as Strings); they alias with
1530         // unknown strings.
1531         assert(!is_known_inst, "not scalarizable allocation");
1532         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1533       }
1534     } else if( is_known_inst ) {
1535       tj = to; // Keep NotNull and klass_is_exact for instance type
1536     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1537       // During the 2nd round of IterGVN, NotNull castings are removed.
1538       // Make sure the Bottom and NotNull variants alias the same.
1539       // Also, make sure exact and non-exact variants alias the same.
1540       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1541     }
1542     if (to->speculative() != NULL) {
1543       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1544     }
1545     // Canonicalize the holder of this field
1546     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1547       // First handle header references such as a LoadKlassNode, even if the
1548       // object's klass is unloaded at compile time (4965979).
1549       if (!is_known_inst) { // Do it only for non-instance types
1550         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1551       }
1552     } else if (SHENANDOAHGC_ONLY((offset != BrooksPointer::byte_offset() || !UseShenandoahGC) &&) (offset < 0 || offset >= k->size_helper() * wordSize)) {
1553       // Static fields are in the space above the normal instance
1554       // fields in the java.lang.Class instance.
1555       if (to->klass() != ciEnv::current()->Class_klass()) {
1556         to = NULL;
1557         tj = TypeOopPtr::BOTTOM;
1558         offset = tj->offset();
1559       }
1560     } else {
1561       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1562       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1563         if( is_known_inst ) {
1564           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1565         } else {
1566           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1567         }
1568       }
1569     }
1570   }
1571 
1572   // Klass pointers to object array klasses need some flattening
1573   const TypeKlassPtr *tk = tj->isa_klassptr();
1574   if( tk ) {
1575     // If we are referencing a field within a Klass, we need
1576     // to assume the worst case of an Object.  Both exact and
1577     // inexact types must flatten to the same alias class so
1578     // use NotNull as the PTR.
1579     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1580 
1581       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1582                                    TypeKlassPtr::OBJECT->klass(),
1583                                    offset);
1584     }
1585 
1586     ciKlass* klass = tk->klass();
1587     if( klass->is_obj_array_klass() ) {
1588       ciKlass* k = TypeAryPtr::OOPS->klass();
1589       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1590         k = TypeInstPtr::BOTTOM->klass();
1591       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1592     }
1593 
1594     // Check for precise loads from the primary supertype array and force them
1595     // to the supertype cache alias index.  Check for generic array loads from
1596     // the primary supertype array and also force them to the supertype cache
1597     // alias index.  Since the same load can reach both, we need to merge
1598     // these 2 disparate memories into the same alias class.  Since the
1599     // primary supertype array is read-only, there's no chance of confusion
1600     // where we bypass an array load and an array store.
1601     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1602     if (offset == Type::OffsetBot ||
1603         (offset >= primary_supers_offset &&
1604          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1605         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1606       offset = in_bytes(Klass::secondary_super_cache_offset());
1607       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1608     }
1609   }
1610 
1611   // Flatten all Raw pointers together.
1612   if (tj->base() == Type::RawPtr)
1613     tj = TypeRawPtr::BOTTOM;
1614 
1615   if (tj->base() == Type::AnyPtr)
1616     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1617 
1618   // Flatten all to bottom for now
1619   switch( _AliasLevel ) {
1620   case 0:
1621     tj = TypePtr::BOTTOM;
1622     break;
1623   case 1:                       // Flatten to: oop, static, field or array
1624     switch (tj->base()) {
1625     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1626     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1627     case Type::AryPtr:   // do not distinguish arrays at all
1628     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1629     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1630     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1631     default: ShouldNotReachHere();
1632     }
1633     break;
1634   case 2:                       // No collapsing at level 2; keep all splits
1635   case 3:                       // No collapsing at level 3; keep all splits
1636     break;
1637   default:
1638     Unimplemented();
1639   }
1640 
1641   offset = tj->offset();
1642   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1643 
1644   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1645           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1646           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1647           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1648           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1649           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1650           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1651           (UseShenandoahGC SHENANDOAHGC_ONLY(&& offset == BrooksPointer::byte_offset() && tj->base() == Type::AryPtr)),
1652           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1653   assert( tj->ptr() != TypePtr::TopPTR &&
1654           tj->ptr() != TypePtr::AnyNull &&
1655           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1656 //    assert( tj->ptr() != TypePtr::Constant ||
1657 //            tj->base() == Type::RawPtr ||
1658 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1659 
1660   return tj;
1661 }
1662 
1663 void Compile::AliasType::Init(int i, const TypePtr* at) {
1664   _index = i;
1665   _adr_type = at;
1666   _field = NULL;
1667   _element = NULL;
1668   _is_rewritable = true; // default
1669   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1670   if (atoop != NULL && atoop->is_known_instance()) {
1671     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1672     _general_index = Compile::current()->get_alias_index(gt);
1673   } else {
1674     _general_index = 0;
1675   }
1676 }
1677 
1678 BasicType Compile::AliasType::basic_type() const {
1679   if (element() != NULL) {
1680     const Type* element = adr_type()->is_aryptr()->elem();
1681     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1682   } if (field() != NULL) {
1683     return field()->layout_type();
1684   } else {
1685     return T_ILLEGAL; // unknown
1686   }
1687 }
1688 
1689 //---------------------------------print_on------------------------------------
1690 #ifndef PRODUCT
1691 void Compile::AliasType::print_on(outputStream* st) {
1692   if (index() < 10)
1693         st->print("@ <%d> ", index());
1694   else  st->print("@ <%d>",  index());
1695   st->print(is_rewritable() ? "   " : " RO");
1696   int offset = adr_type()->offset();
1697   if (offset == Type::OffsetBot)
1698         st->print(" +any");
1699   else  st->print(" +%-3d", offset);
1700   st->print(" in ");
1701   adr_type()->dump_on(st);
1702   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1703   if (field() != NULL && tjp) {
1704     if (tjp->klass()  != field()->holder() ||
1705         tjp->offset() != field()->offset_in_bytes()) {
1706       st->print(" != ");
1707       field()->print();
1708       st->print(" ***");
1709     }
1710   }
1711 }
1712 
1713 void print_alias_types() {
1714   Compile* C = Compile::current();
1715   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1716   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1717     C->alias_type(idx)->print_on(tty);
1718     tty->cr();
1719   }
1720 }
1721 #endif
1722 
1723 
1724 //----------------------------probe_alias_cache--------------------------------
1725 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1726   intptr_t key = (intptr_t) adr_type;
1727   key ^= key >> logAliasCacheSize;
1728   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1729 }
1730 
1731 
1732 //-----------------------------grow_alias_types--------------------------------
1733 void Compile::grow_alias_types() {
1734   const int old_ats  = _max_alias_types; // how many before?
1735   const int new_ats  = old_ats;          // how many more?
1736   const int grow_ats = old_ats+new_ats;  // how many now?
1737   _max_alias_types = grow_ats;
1738   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1739   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1740   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1741   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1742 }
1743 
1744 
1745 //--------------------------------find_alias_type------------------------------
1746 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1747   if (_AliasLevel == 0)
1748     return alias_type(AliasIdxBot);
1749 
1750   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1751   if (ace->_adr_type == adr_type) {
1752     return alias_type(ace->_index);
1753   }
1754 
1755   // Handle special cases.
1756   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1757   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1758 
1759   // Do it the slow way.
1760   const TypePtr* flat = flatten_alias_type(adr_type);
1761 
1762 #ifdef ASSERT
1763   {
1764     ResourceMark rm;
1765     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1766            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1767     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1768            Type::str(adr_type));
1769     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1770       const TypeOopPtr* foop = flat->is_oopptr();
1771       // Scalarizable allocations have exact klass always.
1772       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1773       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1774       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1775              Type::str(foop), Type::str(xoop));
1776     }
1777   }
1778 #endif
1779 
1780   int idx = AliasIdxTop;
1781   for (int i = 0; i < num_alias_types(); i++) {
1782     if (alias_type(i)->adr_type() == flat) {
1783       idx = i;
1784       break;
1785     }
1786   }
1787 
1788   if (idx == AliasIdxTop) {
1789     if (no_create)  return NULL;
1790     // Grow the array if necessary.
1791     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1792     // Add a new alias type.
1793     idx = _num_alias_types++;
1794     _alias_types[idx]->Init(idx, flat);
1795     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1796     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1797     if (flat->isa_instptr()) {
1798       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1799           && flat->is_instptr()->klass() == env()->Class_klass())
1800         alias_type(idx)->set_rewritable(false);
1801     }
1802     if (flat->isa_aryptr()) {
1803 #ifdef ASSERT
1804       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1805       // (T_BYTE has the weakest alignment and size restrictions...)
1806       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1807 #endif
1808       if (flat->offset() == TypePtr::OffsetBot) {
1809         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1810       }
1811     }
1812     if (flat->isa_klassptr()) {
1813       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1814         alias_type(idx)->set_rewritable(false);
1815       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1816         alias_type(idx)->set_rewritable(false);
1817       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1818         alias_type(idx)->set_rewritable(false);
1819       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1820         alias_type(idx)->set_rewritable(false);
1821     }
1822     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1823     // but the base pointer type is not distinctive enough to identify
1824     // references into JavaThread.)
1825 
1826     // Check for final fields.
1827     const TypeInstPtr* tinst = flat->isa_instptr();
1828     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1829       ciField* field;
1830       if (tinst->const_oop() != NULL &&
1831           tinst->klass() == ciEnv::current()->Class_klass() &&
1832           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1833         // static field
1834         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1835         field = k->get_field_by_offset(tinst->offset(), true);
1836       } else {
1837         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1838         field = k->get_field_by_offset(tinst->offset(), false);
1839       }
1840       assert(field == NULL ||
1841              original_field == NULL ||
1842              (field->holder() == original_field->holder() &&
1843               field->offset() == original_field->offset() &&
1844               field->is_static() == original_field->is_static()), "wrong field?");
1845       // Set field() and is_rewritable() attributes.
1846       if (field != NULL)  alias_type(idx)->set_field(field);
1847     }
1848   }
1849 
1850   // Fill the cache for next time.
1851   ace->_adr_type = adr_type;
1852   ace->_index    = idx;
1853   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1854 
1855   // Might as well try to fill the cache for the flattened version, too.
1856   AliasCacheEntry* face = probe_alias_cache(flat);
1857   if (face->_adr_type == NULL) {
1858     face->_adr_type = flat;
1859     face->_index    = idx;
1860     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1861   }
1862 
1863   return alias_type(idx);
1864 }
1865 
1866 
1867 Compile::AliasType* Compile::alias_type(ciField* field) {
1868   const TypeOopPtr* t;
1869   if (field->is_static())
1870     t = TypeInstPtr::make(field->holder()->java_mirror());
1871   else
1872     t = TypeOopPtr::make_from_klass_raw(field->holder());
1873   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1874   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1875   return atp;
1876 }
1877 
1878 
1879 //------------------------------have_alias_type--------------------------------
1880 bool Compile::have_alias_type(const TypePtr* adr_type) {
1881   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1882   if (ace->_adr_type == adr_type) {
1883     return true;
1884   }
1885 
1886   // Handle special cases.
1887   if (adr_type == NULL)             return true;
1888   if (adr_type == TypePtr::BOTTOM)  return true;
1889 
1890   return find_alias_type(adr_type, true, NULL) != NULL;
1891 }
1892 
1893 //-----------------------------must_alias--------------------------------------
1894 // True if all values of the given address type are in the given alias category.
1895 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1896   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1897   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1898   if (alias_idx == AliasIdxTop)         return false; // the empty category
1899   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1900 
1901   // the only remaining possible overlap is identity
1902   int adr_idx = get_alias_index(adr_type);
1903   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1904   assert(adr_idx == alias_idx ||
1905          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1906           && adr_type                       != TypeOopPtr::BOTTOM),
1907          "should not be testing for overlap with an unsafe pointer");
1908   return adr_idx == alias_idx;
1909 }
1910 
1911 //------------------------------can_alias--------------------------------------
1912 // True if any values of the given address type are in the given alias category.
1913 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1914   if (alias_idx == AliasIdxTop)         return false; // the empty category
1915   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1916   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1917   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1918 
1919   // the only remaining possible overlap is identity
1920   int adr_idx = get_alias_index(adr_type);
1921   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1922   return adr_idx == alias_idx;
1923 }
1924 
1925 
1926 
1927 //---------------------------pop_warm_call-------------------------------------
1928 WarmCallInfo* Compile::pop_warm_call() {
1929   WarmCallInfo* wci = _warm_calls;
1930   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1931   return wci;
1932 }
1933 
1934 //----------------------------Inline_Warm--------------------------------------
1935 int Compile::Inline_Warm() {
1936   // If there is room, try to inline some more warm call sites.
1937   // %%% Do a graph index compaction pass when we think we're out of space?
1938   if (!InlineWarmCalls)  return 0;
1939 
1940   int calls_made_hot = 0;
1941   int room_to_grow   = NodeCountInliningCutoff - unique();
1942   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1943   int amount_grown   = 0;
1944   WarmCallInfo* call;
1945   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1946     int est_size = (int)call->size();
1947     if (est_size > (room_to_grow - amount_grown)) {
1948       // This one won't fit anyway.  Get rid of it.
1949       call->make_cold();
1950       continue;
1951     }
1952     call->make_hot();
1953     calls_made_hot++;
1954     amount_grown   += est_size;
1955     amount_to_grow -= est_size;
1956   }
1957 
1958   if (calls_made_hot > 0)  set_major_progress();
1959   return calls_made_hot;
1960 }
1961 
1962 
1963 //----------------------------Finish_Warm--------------------------------------
1964 void Compile::Finish_Warm() {
1965   if (!InlineWarmCalls)  return;
1966   if (failing())  return;
1967   if (warm_calls() == NULL)  return;
1968 
1969   // Clean up loose ends, if we are out of space for inlining.
1970   WarmCallInfo* call;
1971   while ((call = pop_warm_call()) != NULL) {
1972     call->make_cold();
1973   }
1974 }
1975 
1976 //---------------------cleanup_loop_predicates-----------------------
1977 // Remove the opaque nodes that protect the predicates so that all unused
1978 // checks and uncommon_traps will be eliminated from the ideal graph
1979 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1980   if (predicate_count()==0) return;
1981   for (int i = predicate_count(); i > 0; i--) {
1982     Node * n = predicate_opaque1_node(i-1);
1983     assert(n->Opcode() == Op_Opaque1, "must be");
1984     igvn.replace_node(n, n->in(1));
1985   }
1986   assert(predicate_count()==0, "should be clean!");
1987 }
1988 
1989 void Compile::add_range_check_cast(Node* n) {
1990   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1991   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1992   _range_check_casts->append(n);
1993 }
1994 
1995 // Remove all range check dependent CastIINodes.
1996 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1997   for (int i = range_check_cast_count(); i > 0; i--) {
1998     Node* cast = range_check_cast_node(i-1);
1999     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
2000     igvn.replace_node(cast, cast->in(1));
2001   }
2002   assert(range_check_cast_count() == 0, "should be empty");
2003 }
2004 
2005 void Compile::add_opaque4_node(Node* n) {
2006   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
2007   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
2008   _opaque4_nodes->append(n);
2009 }
2010 
2011 // Remove all Opaque4 nodes.
2012 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
2013   for (int i = opaque4_count(); i > 0; i--) {
2014     Node* opaq = opaque4_node(i-1);
2015     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
2016     igvn.replace_node(opaq, opaq->in(2));
2017   }
2018   assert(opaque4_count() == 0, "should be empty");
2019 }
2020 
2021 // StringOpts and late inlining of string methods
2022 void Compile::inline_string_calls(bool parse_time) {
2023   {
2024     // remove useless nodes to make the usage analysis simpler
2025     ResourceMark rm;
2026     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2027   }
2028 
2029   {
2030     ResourceMark rm;
2031     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2032     PhaseStringOpts pso(initial_gvn(), for_igvn());
2033     print_method(PHASE_AFTER_STRINGOPTS, 3);
2034   }
2035 
2036   // now inline anything that we skipped the first time around
2037   if (!parse_time) {
2038     _late_inlines_pos = _late_inlines.length();
2039   }
2040 
2041   while (_string_late_inlines.length() > 0) {
2042     CallGenerator* cg = _string_late_inlines.pop();
2043     cg->do_late_inline();
2044     if (failing())  return;
2045   }
2046   _string_late_inlines.trunc_to(0);
2047 }
2048 
2049 // Late inlining of boxing methods
2050 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2051   if (_boxing_late_inlines.length() > 0) {
2052     assert(has_boxed_value(), "inconsistent");
2053 
2054     PhaseGVN* gvn = initial_gvn();
2055     set_inlining_incrementally(true);
2056 
2057     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2058     for_igvn()->clear();
2059     gvn->replace_with(&igvn);
2060 
2061     _late_inlines_pos = _late_inlines.length();
2062 
2063     while (_boxing_late_inlines.length() > 0) {
2064       CallGenerator* cg = _boxing_late_inlines.pop();
2065       cg->do_late_inline();
2066       if (failing())  return;
2067     }
2068     _boxing_late_inlines.trunc_to(0);
2069 
2070     {
2071       ResourceMark rm;
2072       PhaseRemoveUseless pru(gvn, for_igvn());
2073     }
2074 
2075     igvn = PhaseIterGVN(gvn);
2076     igvn.optimize();
2077 
2078     set_inlining_progress(false);
2079     set_inlining_incrementally(false);
2080   }
2081 }
2082 
2083 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2084   assert(IncrementalInline, "incremental inlining should be on");
2085   PhaseGVN* gvn = initial_gvn();
2086 
2087   set_inlining_progress(false);
2088   for_igvn()->clear();
2089   gvn->replace_with(&igvn);
2090 
2091   {
2092     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2093     int i = 0;
2094     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2095       CallGenerator* cg = _late_inlines.at(i);
2096       _late_inlines_pos = i+1;
2097       cg->do_late_inline();
2098       if (failing())  return;
2099     }
2100     int j = 0;
2101     for (; i < _late_inlines.length(); i++, j++) {
2102       _late_inlines.at_put(j, _late_inlines.at(i));
2103     }
2104     _late_inlines.trunc_to(j);
2105   }
2106 
2107   {
2108     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2109     ResourceMark rm;
2110     PhaseRemoveUseless pru(gvn, for_igvn());
2111   }
2112 
2113   {
2114     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2115     igvn = PhaseIterGVN(gvn);
2116   }
2117 }
2118 
2119 // Perform incremental inlining until bound on number of live nodes is reached
2120 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2121   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2122 
2123   PhaseGVN* gvn = initial_gvn();
2124 
2125   set_inlining_incrementally(true);
2126   set_inlining_progress(true);
2127   uint low_live_nodes = 0;
2128 
2129   while(inlining_progress() && _late_inlines.length() > 0) {
2130 
2131     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2132       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2133         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2134         // PhaseIdealLoop is expensive so we only try it once we are
2135         // out of live nodes and we only try it again if the previous
2136         // helped got the number of nodes down significantly
2137         PhaseIdealLoop ideal_loop(igvn, LoopOptsNone);
2138         if (failing())  return;
2139         low_live_nodes = live_nodes();
2140         _major_progress = true;
2141       }
2142 
2143       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2144         break;
2145       }
2146     }
2147 
2148     inline_incrementally_one(igvn);
2149 
2150     if (failing())  return;
2151 
2152     {
2153       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2154       igvn.optimize();
2155     }
2156 
2157     if (failing())  return;
2158   }
2159 
2160   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2161 
2162   if (_string_late_inlines.length() > 0) {
2163     assert(has_stringbuilder(), "inconsistent");
2164     for_igvn()->clear();
2165     initial_gvn()->replace_with(&igvn);
2166 
2167     inline_string_calls(false);
2168 
2169     if (failing())  return;
2170 
2171     {
2172       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2173       ResourceMark rm;
2174       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2175     }
2176 
2177     {
2178       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2179       igvn = PhaseIterGVN(gvn);
2180       igvn.optimize();
2181     }
2182   }
2183 
2184   set_inlining_incrementally(false);
2185 }
2186 
2187 
2188 bool Compile::optimize_loops(int& loop_opts_cnt, PhaseIterGVN& igvn, LoopOptsMode mode) {
2189   if(loop_opts_cnt > 0) {
2190     debug_only( int cnt = 0; );
2191     while(major_progress() && (loop_opts_cnt > 0)) {
2192       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2193       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2194       PhaseIdealLoop ideal_loop(igvn, mode);
2195       loop_opts_cnt--;
2196       if (failing())  return false;
2197       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2198     }
2199   }
2200   return true;
2201 }
2202 
2203 //------------------------------Optimize---------------------------------------
2204 // Given a graph, optimize it.
2205 void Compile::Optimize() {
2206   TracePhase tp("optimizer", &timers[_t_optimizer]);
2207 
2208 #ifndef PRODUCT
2209   if (_directive->BreakAtCompileOption) {
2210     BREAKPOINT;
2211   }
2212 
2213 #endif
2214 
2215 #ifdef ASSERT
2216   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2217   bs->verify_gc_barriers(true);
2218 #endif
2219 
2220   ResourceMark rm;
2221   int          loop_opts_cnt;
2222 
2223   print_inlining_reinit();
2224 
2225   NOT_PRODUCT( verify_graph_edges(); )
2226 
2227   print_method(PHASE_AFTER_PARSING);
2228 
2229  {
2230   // Iterative Global Value Numbering, including ideal transforms
2231   // Initialize IterGVN with types and values from parse-time GVN
2232   PhaseIterGVN igvn(initial_gvn());
2233 #ifdef ASSERT
2234   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2235 #endif
2236   {
2237     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2238     igvn.optimize();
2239   }
2240 
2241   if (failing())  return;
2242 
2243   print_method(PHASE_ITER_GVN1, 2);
2244 
2245   inline_incrementally(igvn);
2246 
2247   print_method(PHASE_INCREMENTAL_INLINE, 2);
2248 
2249   if (failing())  return;
2250 
2251   if (eliminate_boxing()) {
2252     // Inline valueOf() methods now.
2253     inline_boxing_calls(igvn);
2254 
2255     if (AlwaysIncrementalInline) {
2256       inline_incrementally(igvn);
2257     }
2258 
2259     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2260 
2261     if (failing())  return;
2262   }
2263 
2264   // Remove the speculative part of types and clean up the graph from
2265   // the extra CastPP nodes whose only purpose is to carry them. Do
2266   // that early so that optimizations are not disrupted by the extra
2267   // CastPP nodes.
2268   remove_speculative_types(igvn);
2269 
2270   // No more new expensive nodes will be added to the list from here
2271   // so keep only the actual candidates for optimizations.
2272   cleanup_expensive_nodes(igvn);
2273 
2274   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2275     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2276     initial_gvn()->replace_with(&igvn);
2277     for_igvn()->clear();
2278     Unique_Node_List new_worklist(C->comp_arena());
2279     {
2280       ResourceMark rm;
2281       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2282     }
2283     set_for_igvn(&new_worklist);
2284     igvn = PhaseIterGVN(initial_gvn());
2285     igvn.optimize();
2286   }
2287 
2288   // Perform escape analysis
2289   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2290     if (has_loops()) {
2291       // Cleanup graph (remove dead nodes).
2292       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2293       PhaseIdealLoop ideal_loop(igvn, LoopOptsNone);
2294       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2295       if (failing())  return;
2296     }
2297     ConnectionGraph::do_analysis(this, &igvn);
2298 
2299     if (failing())  return;
2300 
2301     // Optimize out fields loads from scalar replaceable allocations.
2302     igvn.optimize();
2303     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2304 
2305     if (failing())  return;
2306 
2307     if (congraph() != NULL && macro_count() > 0) {
2308       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2309       PhaseMacroExpand mexp(igvn);
2310       mexp.eliminate_macro_nodes();
2311       igvn.set_delay_transform(false);
2312 
2313       igvn.optimize();
2314       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2315 
2316       if (failing())  return;
2317     }
2318   }
2319 
2320   // Loop transforms on the ideal graph.  Range Check Elimination,
2321   // peeling, unrolling, etc.
2322 
2323   // Set loop opts counter
2324   loop_opts_cnt = num_loop_opts();
2325   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2326     {
2327       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2328       PhaseIdealLoop ideal_loop(igvn, LoopOptsDefault);
2329       loop_opts_cnt--;
2330       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2331       if (failing())  return;
2332     }
2333     // Loop opts pass if partial peeling occurred in previous pass
2334     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2335       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2336       PhaseIdealLoop ideal_loop(igvn, LoopOptsSkipSplitIf);
2337       loop_opts_cnt--;
2338       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2339       if (failing())  return;
2340     }
2341     // Loop opts pass for loop-unrolling before CCP
2342     if(major_progress() && (loop_opts_cnt > 0)) {
2343       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2344       PhaseIdealLoop ideal_loop(igvn, LoopOptsSkipSplitIf);
2345       loop_opts_cnt--;
2346       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2347     }
2348     if (!failing()) {
2349       // Verify that last round of loop opts produced a valid graph
2350       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2351       PhaseIdealLoop::verify(igvn);
2352     }
2353   }
2354   if (failing())  return;
2355 
2356   // Conditional Constant Propagation;
2357   PhaseCCP ccp( &igvn );
2358   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2359   {
2360     TracePhase tp("ccp", &timers[_t_ccp]);
2361     ccp.do_transform();
2362   }
2363   print_method(PHASE_CPP1, 2);
2364 
2365   assert( true, "Break here to ccp.dump_old2new_map()");
2366 
2367   // Iterative Global Value Numbering, including ideal transforms
2368   {
2369     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2370     igvn = ccp;
2371     igvn.optimize();
2372   }
2373 
2374   print_method(PHASE_ITER_GVN2, 2);
2375 
2376   if (failing())  return;
2377 
2378   // Loop transforms on the ideal graph.  Range Check Elimination,
2379   // peeling, unrolling, etc.
2380   if (!optimize_loops(loop_opts_cnt, igvn, LoopOptsDefault)) {
2381     return;
2382   }
2383 
2384 #if INCLUDE_ZGC
2385   if (UseZGC) {
2386     ZBarrierSetC2::find_dominating_barriers(igvn);
2387   }
2388 #endif
2389 
2390   if (failing())  return;
2391 
2392   // Ensure that major progress is now clear
2393   C->clear_major_progress();
2394 
2395   {
2396     // Verify that all previous optimizations produced a valid graph
2397     // at least to this point, even if no loop optimizations were done.
2398     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2399     PhaseIdealLoop::verify(igvn);
2400   }
2401 
2402   if (range_check_cast_count() > 0) {
2403     // No more loop optimizations. Remove all range check dependent CastIINodes.
2404     C->remove_range_check_casts(igvn);
2405     igvn.optimize();
2406   }
2407 
2408 #ifdef ASSERT
2409   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2410   bs->verify_gc_barriers(false);
2411 #endif
2412 
2413   {
2414     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2415     PhaseMacroExpand  mex(igvn);
2416     print_method(PHASE_BEFORE_MACRO_EXPANSION, 2);
2417     if (mex.expand_macro_nodes()) {
2418       assert(failing(), "must bail out w/ explicit message");
2419       return;
2420     }
2421   }
2422 
2423   print_method(PHASE_BEFORE_BARRIER_EXPAND, 2);
2424 
2425 #if INCLUDE_SHENANDOAHGC
2426   if (!ShenandoahWriteBarrierNode::expand(this, igvn, loop_opts_cnt)) {
2427     assert(failing(), "must bail out w/ explicit message");
2428     return;
2429   }
2430 #endif
2431 
2432   if (opaque4_count() > 0) {
2433     C->remove_opaque4_nodes(igvn);
2434     igvn.optimize();
2435   }
2436 
2437   DEBUG_ONLY( _modified_nodes = NULL; )
2438  } // (End scope of igvn; run destructor if necessary for asserts.)
2439 
2440  process_print_inlining();
2441  // A method with only infinite loops has no edges entering loops from root
2442  {
2443    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2444    if (final_graph_reshaping()) {
2445      assert(failing(), "must bail out w/ explicit message");
2446      return;
2447    }
2448  }
2449 
2450  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2451 }
2452 
2453 
2454 //------------------------------Code_Gen---------------------------------------
2455 // Given a graph, generate code for it
2456 void Compile::Code_Gen() {
2457   if (failing()) {
2458     return;
2459   }
2460 
2461   // Perform instruction selection.  You might think we could reclaim Matcher
2462   // memory PDQ, but actually the Matcher is used in generating spill code.
2463   // Internals of the Matcher (including some VectorSets) must remain live
2464   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2465   // set a bit in reclaimed memory.
2466 
2467   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2468   // nodes.  Mapping is only valid at the root of each matched subtree.
2469   NOT_PRODUCT( verify_graph_edges(); )
2470 
2471   Matcher matcher;
2472   _matcher = &matcher;
2473   {
2474     TracePhase tp("matcher", &timers[_t_matcher]);
2475     matcher.match();
2476   }
2477   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2478   // nodes.  Mapping is only valid at the root of each matched subtree.
2479   NOT_PRODUCT( verify_graph_edges(); )
2480 
2481   // If you have too many nodes, or if matching has failed, bail out
2482   check_node_count(0, "out of nodes matching instructions");
2483   if (failing()) {
2484     return;
2485   }
2486 
2487   print_method(PHASE_MATCHING, 2);
2488 
2489   // Build a proper-looking CFG
2490   PhaseCFG cfg(node_arena(), root(), matcher);
2491   _cfg = &cfg;
2492   {
2493     TracePhase tp("scheduler", &timers[_t_scheduler]);
2494     bool success = cfg.do_global_code_motion();
2495     if (!success) {
2496       return;
2497     }
2498 
2499     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2500     NOT_PRODUCT( verify_graph_edges(); )
2501     debug_only( cfg.verify(); )
2502   }
2503 
2504   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2505   _regalloc = &regalloc;
2506   {
2507     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2508     // Perform register allocation.  After Chaitin, use-def chains are
2509     // no longer accurate (at spill code) and so must be ignored.
2510     // Node->LRG->reg mappings are still accurate.
2511     _regalloc->Register_Allocate();
2512 
2513     // Bail out if the allocator builds too many nodes
2514     if (failing()) {
2515       return;
2516     }
2517   }
2518 
2519   // Prior to register allocation we kept empty basic blocks in case the
2520   // the allocator needed a place to spill.  After register allocation we
2521   // are not adding any new instructions.  If any basic block is empty, we
2522   // can now safely remove it.
2523   {
2524     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2525     cfg.remove_empty_blocks();
2526     if (do_freq_based_layout()) {
2527       PhaseBlockLayout layout(cfg);
2528     } else {
2529       cfg.set_loop_alignment();
2530     }
2531     cfg.fixup_flow();
2532   }
2533 
2534   // Apply peephole optimizations
2535   if( OptoPeephole ) {
2536     TracePhase tp("peephole", &timers[_t_peephole]);
2537     PhasePeephole peep( _regalloc, cfg);
2538     peep.do_transform();
2539   }
2540 
2541   // Do late expand if CPU requires this.
2542   if (Matcher::require_postalloc_expand) {
2543     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2544     cfg.postalloc_expand(_regalloc);
2545   }
2546 
2547   // Convert Nodes to instruction bits in a buffer
2548   {
2549     TraceTime tp("output", &timers[_t_output], CITime);
2550     Output();
2551   }
2552 
2553   print_method(PHASE_FINAL_CODE);
2554 
2555   // He's dead, Jim.
2556   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2557   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2558 }
2559 
2560 
2561 //------------------------------dump_asm---------------------------------------
2562 // Dump formatted assembly
2563 #ifndef PRODUCT
2564 void Compile::dump_asm(int *pcs, uint pc_limit) {
2565   bool cut_short = false;
2566   tty->print_cr("#");
2567   tty->print("#  ");  _tf->dump();  tty->cr();
2568   tty->print_cr("#");
2569 
2570   // For all blocks
2571   int pc = 0x0;                 // Program counter
2572   char starts_bundle = ' ';
2573   _regalloc->dump_frame();
2574 
2575   Node *n = NULL;
2576   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2577     if (VMThread::should_terminate()) {
2578       cut_short = true;
2579       break;
2580     }
2581     Block* block = _cfg->get_block(i);
2582     if (block->is_connector() && !Verbose) {
2583       continue;
2584     }
2585     n = block->head();
2586     if (pcs && n->_idx < pc_limit) {
2587       tty->print("%3.3x   ", pcs[n->_idx]);
2588     } else {
2589       tty->print("      ");
2590     }
2591     block->dump_head(_cfg);
2592     if (block->is_connector()) {
2593       tty->print_cr("        # Empty connector block");
2594     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2595       tty->print_cr("        # Block is sole successor of call");
2596     }
2597 
2598     // For all instructions
2599     Node *delay = NULL;
2600     for (uint j = 0; j < block->number_of_nodes(); j++) {
2601       if (VMThread::should_terminate()) {
2602         cut_short = true;
2603         break;
2604       }
2605       n = block->get_node(j);
2606       if (valid_bundle_info(n)) {
2607         Bundle* bundle = node_bundling(n);
2608         if (bundle->used_in_unconditional_delay()) {
2609           delay = n;
2610           continue;
2611         }
2612         if (bundle->starts_bundle()) {
2613           starts_bundle = '+';
2614         }
2615       }
2616 
2617       if (WizardMode) {
2618         n->dump();
2619       }
2620 
2621       if( !n->is_Region() &&    // Dont print in the Assembly
2622           !n->is_Phi() &&       // a few noisely useless nodes
2623           !n->is_Proj() &&
2624           !n->is_MachTemp() &&
2625           !n->is_SafePointScalarObject() &&
2626           !n->is_Catch() &&     // Would be nice to print exception table targets
2627           !n->is_MergeMem() &&  // Not very interesting
2628           !n->is_top() &&       // Debug info table constants
2629           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2630           ) {
2631         if (pcs && n->_idx < pc_limit)
2632           tty->print("%3.3x", pcs[n->_idx]);
2633         else
2634           tty->print("   ");
2635         tty->print(" %c ", starts_bundle);
2636         starts_bundle = ' ';
2637         tty->print("\t");
2638         n->format(_regalloc, tty);
2639         tty->cr();
2640       }
2641 
2642       // If we have an instruction with a delay slot, and have seen a delay,
2643       // then back up and print it
2644       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2645         assert(delay != NULL, "no unconditional delay instruction");
2646         if (WizardMode) delay->dump();
2647 
2648         if (node_bundling(delay)->starts_bundle())
2649           starts_bundle = '+';
2650         if (pcs && n->_idx < pc_limit)
2651           tty->print("%3.3x", pcs[n->_idx]);
2652         else
2653           tty->print("   ");
2654         tty->print(" %c ", starts_bundle);
2655         starts_bundle = ' ';
2656         tty->print("\t");
2657         delay->format(_regalloc, tty);
2658         tty->cr();
2659         delay = NULL;
2660       }
2661 
2662       // Dump the exception table as well
2663       if( n->is_Catch() && (Verbose || WizardMode) ) {
2664         // Print the exception table for this offset
2665         _handler_table.print_subtable_for(pc);
2666       }
2667     }
2668 
2669     if (pcs && n->_idx < pc_limit)
2670       tty->print_cr("%3.3x", pcs[n->_idx]);
2671     else
2672       tty->cr();
2673 
2674     assert(cut_short || delay == NULL, "no unconditional delay branch");
2675 
2676   } // End of per-block dump
2677   tty->cr();
2678 
2679   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2680 }
2681 #endif
2682 
2683 //------------------------------Final_Reshape_Counts---------------------------
2684 // This class defines counters to help identify when a method
2685 // may/must be executed using hardware with only 24-bit precision.
2686 struct Final_Reshape_Counts : public StackObj {
2687   int  _call_count;             // count non-inlined 'common' calls
2688   int  _float_count;            // count float ops requiring 24-bit precision
2689   int  _double_count;           // count double ops requiring more precision
2690   int  _java_call_count;        // count non-inlined 'java' calls
2691   int  _inner_loop_count;       // count loops which need alignment
2692   VectorSet _visited;           // Visitation flags
2693   Node_List _tests;             // Set of IfNodes & PCTableNodes
2694 
2695   Final_Reshape_Counts() :
2696     _call_count(0), _float_count(0), _double_count(0),
2697     _java_call_count(0), _inner_loop_count(0),
2698     _visited( Thread::current()->resource_area() ) { }
2699 
2700   void inc_call_count  () { _call_count  ++; }
2701   void inc_float_count () { _float_count ++; }
2702   void inc_double_count() { _double_count++; }
2703   void inc_java_call_count() { _java_call_count++; }
2704   void inc_inner_loop_count() { _inner_loop_count++; }
2705 
2706   int  get_call_count  () const { return _call_count  ; }
2707   int  get_float_count () const { return _float_count ; }
2708   int  get_double_count() const { return _double_count; }
2709   int  get_java_call_count() const { return _java_call_count; }
2710   int  get_inner_loop_count() const { return _inner_loop_count; }
2711 };
2712 
2713 #ifdef ASSERT
2714 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2715   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2716   // Make sure the offset goes inside the instance layout.
2717   return k->contains_field_offset(tp->offset());
2718   // Note that OffsetBot and OffsetTop are very negative.
2719 }
2720 #endif
2721 
2722 // Eliminate trivially redundant StoreCMs and accumulate their
2723 // precedence edges.
2724 void Compile::eliminate_redundant_card_marks(Node* n) {
2725   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2726   if (n->in(MemNode::Address)->outcnt() > 1) {
2727     // There are multiple users of the same address so it might be
2728     // possible to eliminate some of the StoreCMs
2729     Node* mem = n->in(MemNode::Memory);
2730     Node* adr = n->in(MemNode::Address);
2731     Node* val = n->in(MemNode::ValueIn);
2732     Node* prev = n;
2733     bool done = false;
2734     // Walk the chain of StoreCMs eliminating ones that match.  As
2735     // long as it's a chain of single users then the optimization is
2736     // safe.  Eliminating partially redundant StoreCMs would require
2737     // cloning copies down the other paths.
2738     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2739       if (adr == mem->in(MemNode::Address) &&
2740           val == mem->in(MemNode::ValueIn)) {
2741         // redundant StoreCM
2742         if (mem->req() > MemNode::OopStore) {
2743           // Hasn't been processed by this code yet.
2744           n->add_prec(mem->in(MemNode::OopStore));
2745         } else {
2746           // Already converted to precedence edge
2747           for (uint i = mem->req(); i < mem->len(); i++) {
2748             // Accumulate any precedence edges
2749             if (mem->in(i) != NULL) {
2750               n->add_prec(mem->in(i));
2751             }
2752           }
2753           // Everything above this point has been processed.
2754           done = true;
2755         }
2756         // Eliminate the previous StoreCM
2757         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2758         assert(mem->outcnt() == 0, "should be dead");
2759         mem->disconnect_inputs(NULL, this);
2760       } else {
2761         prev = mem;
2762       }
2763       mem = prev->in(MemNode::Memory);
2764     }
2765   }
2766 }
2767 
2768 //------------------------------final_graph_reshaping_impl----------------------
2769 // Implement items 1-5 from final_graph_reshaping below.
2770 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2771 
2772   if ( n->outcnt() == 0 ) return; // dead node
2773   uint nop = n->Opcode();
2774 
2775   // Check for 2-input instruction with "last use" on right input.
2776   // Swap to left input.  Implements item (2).
2777   if( n->req() == 3 &&          // two-input instruction
2778       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2779       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2780       n->in(2)->outcnt() == 1 &&// right use IS a last use
2781       !n->in(2)->is_Con() ) {   // right use is not a constant
2782     // Check for commutative opcode
2783     switch( nop ) {
2784     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2785     case Op_MaxI:  case Op_MinI:
2786     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2787     case Op_AndL:  case Op_XorL:  case Op_OrL:
2788     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2789       // Move "last use" input to left by swapping inputs
2790       n->swap_edges(1, 2);
2791       break;
2792     }
2793     default:
2794       break;
2795     }
2796   }
2797 
2798 #ifdef ASSERT
2799   if( n->is_Mem() ) {
2800     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2801     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2802             // oop will be recorded in oop map if load crosses safepoint
2803             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2804                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2805             "raw memory operations should have control edge");
2806   }
2807   if (n->is_MemBar()) {
2808     MemBarNode* mb = n->as_MemBar();
2809     if (mb->trailing_store() || mb->trailing_load_store()) {
2810       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2811       Node* mem = mb->in(MemBarNode::Precedent);
2812       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2813              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2814     } else if (mb->leading()) {
2815       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2816     }
2817   }
2818 #endif
2819   // Count FPU ops and common calls, implements item (3)
2820   switch( nop ) {
2821   // Count all float operations that may use FPU
2822   case Op_AddF:
2823   case Op_SubF:
2824   case Op_MulF:
2825   case Op_DivF:
2826   case Op_NegF:
2827   case Op_ModF:
2828   case Op_ConvI2F:
2829   case Op_ConF:
2830   case Op_CmpF:
2831   case Op_CmpF3:
2832   // case Op_ConvL2F: // longs are split into 32-bit halves
2833     frc.inc_float_count();
2834     break;
2835 
2836   case Op_ConvF2D:
2837   case Op_ConvD2F:
2838     frc.inc_float_count();
2839     frc.inc_double_count();
2840     break;
2841 
2842   // Count all double operations that may use FPU
2843   case Op_AddD:
2844   case Op_SubD:
2845   case Op_MulD:
2846   case Op_DivD:
2847   case Op_NegD:
2848   case Op_ModD:
2849   case Op_ConvI2D:
2850   case Op_ConvD2I:
2851   // case Op_ConvL2D: // handled by leaf call
2852   // case Op_ConvD2L: // handled by leaf call
2853   case Op_ConD:
2854   case Op_CmpD:
2855   case Op_CmpD3:
2856     frc.inc_double_count();
2857     break;
2858   case Op_Opaque1:              // Remove Opaque Nodes before matching
2859   case Op_Opaque2:              // Remove Opaque Nodes before matching
2860   case Op_Opaque3:
2861     n->subsume_by(n->in(1), this);
2862     break;
2863   case Op_CallStaticJava:
2864   case Op_CallJava:
2865   case Op_CallDynamicJava:
2866     frc.inc_java_call_count(); // Count java call site;
2867   case Op_CallRuntime:
2868   case Op_CallLeaf:
2869   case Op_CallLeafNoFP: {
2870     assert (n->is_Call(), "");
2871     CallNode *call = n->as_Call();
2872 #if INCLUDE_SHENANDOAHGC
2873     if (UseShenandoahGC && call->is_shenandoah_wb_pre_call()) {
2874       uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
2875       if (call->req() > cnt) {
2876         assert(call->req() == cnt+1, "only one extra input");
2877         Node* addp = call->in(cnt);
2878         assert(!CallLeafNode::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?");
2879         call->del_req(cnt);
2880       }
2881     }
2882 #endif
2883     // Count call sites where the FP mode bit would have to be flipped.
2884     // Do not count uncommon runtime calls:
2885     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2886     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2887     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2888       frc.inc_call_count();   // Count the call site
2889     } else {                  // See if uncommon argument is shared
2890       Node *n = call->in(TypeFunc::Parms);
2891       int nop = n->Opcode();
2892       // Clone shared simple arguments to uncommon calls, item (1).
2893       if (n->outcnt() > 1 &&
2894           !n->is_Proj() &&
2895           nop != Op_CreateEx &&
2896           nop != Op_CheckCastPP &&
2897           nop != Op_DecodeN &&
2898           nop != Op_DecodeNKlass &&
2899           !n->is_Mem() &&
2900           !n->is_Phi()) {
2901         Node *x = n->clone();
2902         call->set_req(TypeFunc::Parms, x);
2903       }
2904     }
2905     break;
2906   }
2907 
2908   case Op_StoreD:
2909   case Op_LoadD:
2910   case Op_LoadD_unaligned:
2911     frc.inc_double_count();
2912     goto handle_mem;
2913   case Op_StoreF:
2914   case Op_LoadF:
2915     frc.inc_float_count();
2916     goto handle_mem;
2917 
2918   case Op_StoreCM:
2919     {
2920       // Convert OopStore dependence into precedence edge
2921       Node* prec = n->in(MemNode::OopStore);
2922       n->del_req(MemNode::OopStore);
2923       n->add_prec(prec);
2924       eliminate_redundant_card_marks(n);
2925     }
2926 
2927     // fall through
2928 
2929   case Op_StoreB:
2930   case Op_StoreC:
2931   case Op_StorePConditional:
2932   case Op_StoreI:
2933   case Op_StoreL:
2934   case Op_StoreIConditional:
2935   case Op_StoreLConditional:
2936   case Op_CompareAndSwapB:
2937   case Op_CompareAndSwapS:
2938   case Op_CompareAndSwapI:
2939   case Op_CompareAndSwapL:
2940   case Op_CompareAndSwapP:
2941   case Op_CompareAndSwapN:
2942   case Op_WeakCompareAndSwapB:
2943   case Op_WeakCompareAndSwapS:
2944   case Op_WeakCompareAndSwapI:
2945   case Op_WeakCompareAndSwapL:
2946   case Op_WeakCompareAndSwapP:
2947   case Op_WeakCompareAndSwapN:
2948   case Op_CompareAndExchangeB:
2949   case Op_CompareAndExchangeS:
2950   case Op_CompareAndExchangeI:
2951   case Op_CompareAndExchangeL:
2952   case Op_CompareAndExchangeP:
2953   case Op_CompareAndExchangeN:
2954   case Op_GetAndAddS:
2955   case Op_GetAndAddB:
2956   case Op_GetAndAddI:
2957   case Op_GetAndAddL:
2958   case Op_GetAndSetS:
2959   case Op_GetAndSetB:
2960   case Op_GetAndSetI:
2961   case Op_GetAndSetL:
2962   case Op_GetAndSetP:
2963   case Op_GetAndSetN:
2964   case Op_StoreP:
2965   case Op_StoreN:
2966   case Op_StoreNKlass:
2967   case Op_LoadB:
2968   case Op_LoadUB:
2969   case Op_LoadUS:
2970   case Op_LoadI:
2971   case Op_LoadKlass:
2972   case Op_LoadNKlass:
2973   case Op_LoadL:
2974   case Op_LoadL_unaligned:
2975   case Op_LoadPLocked:
2976   case Op_LoadP:
2977 #if INCLUDE_ZGC
2978   case Op_LoadBarrierSlowReg:
2979   case Op_LoadBarrierWeakSlowReg:
2980 #endif
2981   case Op_LoadN:
2982   case Op_LoadRange:
2983   case Op_LoadS: {
2984   handle_mem:
2985 #ifdef ASSERT
2986     if( VerifyOptoOopOffsets ) {
2987       assert( n->is_Mem(), "" );
2988       MemNode *mem  = (MemNode*)n;
2989       // Check to see if address types have grounded out somehow.
2990       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2991       assert( !tp || oop_offset_is_sane(tp), "" );
2992     }
2993 #endif
2994     break;
2995   }
2996 
2997   case Op_AddP: {               // Assert sane base pointers
2998     Node *addp = n->in(AddPNode::Address);
2999     assert( !addp->is_AddP() ||
3000             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3001             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3002             "Base pointers must match (addp %u)", addp->_idx );
3003 #ifdef _LP64
3004     if ((UseCompressedOops || UseCompressedClassPointers) &&
3005         addp->Opcode() == Op_ConP &&
3006         addp == n->in(AddPNode::Base) &&
3007         n->in(AddPNode::Offset)->is_Con()) {
3008       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3009       // on the platform and on the compressed oops mode.
3010       // Use addressing with narrow klass to load with offset on x86.
3011       // Some platforms can use the constant pool to load ConP.
3012       // Do this transformation here since IGVN will convert ConN back to ConP.
3013       const Type* t = addp->bottom_type();
3014       bool is_oop   = t->isa_oopptr() != NULL;
3015       bool is_klass = t->isa_klassptr() != NULL;
3016 
3017       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3018           (is_klass && Matcher::const_klass_prefer_decode())) {
3019         Node* nn = NULL;
3020 
3021         int op = is_oop ? Op_ConN : Op_ConNKlass;
3022 
3023         // Look for existing ConN node of the same exact type.
3024         Node* r  = root();
3025         uint cnt = r->outcnt();
3026         for (uint i = 0; i < cnt; i++) {
3027           Node* m = r->raw_out(i);
3028           if (m!= NULL && m->Opcode() == op &&
3029               m->bottom_type()->make_ptr() == t) {
3030             nn = m;
3031             break;
3032           }
3033         }
3034         if (nn != NULL) {
3035           // Decode a narrow oop to match address
3036           // [R12 + narrow_oop_reg<<3 + offset]
3037           if (is_oop) {
3038             nn = new DecodeNNode(nn, t);
3039           } else {
3040             nn = new DecodeNKlassNode(nn, t);
3041           }
3042           // Check for succeeding AddP which uses the same Base.
3043           // Otherwise we will run into the assertion above when visiting that guy.
3044           for (uint i = 0; i < n->outcnt(); ++i) {
3045             Node *out_i = n->raw_out(i);
3046             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3047               out_i->set_req(AddPNode::Base, nn);
3048 #ifdef ASSERT
3049               for (uint j = 0; j < out_i->outcnt(); ++j) {
3050                 Node *out_j = out_i->raw_out(j);
3051                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3052                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3053               }
3054 #endif
3055             }
3056           }
3057           n->set_req(AddPNode::Base, nn);
3058           n->set_req(AddPNode::Address, nn);
3059           if (addp->outcnt() == 0) {
3060             addp->disconnect_inputs(NULL, this);
3061           }
3062         }
3063       }
3064     }
3065 #endif
3066     // platform dependent reshaping of the address expression
3067     reshape_address(n->as_AddP());
3068     break;
3069   }
3070 
3071   case Op_CastPP: {
3072     // Remove CastPP nodes to gain more freedom during scheduling but
3073     // keep the dependency they encode as control or precedence edges
3074     // (if control is set already) on memory operations. Some CastPP
3075     // nodes don't have a control (don't carry a dependency): skip
3076     // those.
3077     if (n->in(0) != NULL) {
3078       ResourceMark rm;
3079       Unique_Node_List wq;
3080       wq.push(n);
3081       for (uint next = 0; next < wq.size(); ++next) {
3082         Node *m = wq.at(next);
3083         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3084           Node* use = m->fast_out(i);
3085           if (use->is_Mem() || use->is_EncodeNarrowPtr() || use->is_ShenandoahBarrier()) {
3086             use->ensure_control_or_add_prec(n->in(0));
3087           } else {
3088             switch(use->Opcode()) {
3089             case Op_AddP:
3090             case Op_DecodeN:
3091             case Op_DecodeNKlass:
3092             case Op_CheckCastPP:
3093             case Op_CastPP:
3094               wq.push(use);
3095               break;
3096             }
3097           }
3098         }
3099       }
3100     }
3101     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3102     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3103       Node* in1 = n->in(1);
3104       const Type* t = n->bottom_type();
3105       Node* new_in1 = in1->clone();
3106       new_in1->as_DecodeN()->set_type(t);
3107 
3108       if (!Matcher::narrow_oop_use_complex_address()) {
3109         //
3110         // x86, ARM and friends can handle 2 adds in addressing mode
3111         // and Matcher can fold a DecodeN node into address by using
3112         // a narrow oop directly and do implicit NULL check in address:
3113         //
3114         // [R12 + narrow_oop_reg<<3 + offset]
3115         // NullCheck narrow_oop_reg
3116         //
3117         // On other platforms (Sparc) we have to keep new DecodeN node and
3118         // use it to do implicit NULL check in address:
3119         //
3120         // decode_not_null narrow_oop_reg, base_reg
3121         // [base_reg + offset]
3122         // NullCheck base_reg
3123         //
3124         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3125         // to keep the information to which NULL check the new DecodeN node
3126         // corresponds to use it as value in implicit_null_check().
3127         //
3128         new_in1->set_req(0, n->in(0));
3129       }
3130 
3131       n->subsume_by(new_in1, this);
3132       if (in1->outcnt() == 0) {
3133         in1->disconnect_inputs(NULL, this);
3134       }
3135     } else {
3136       n->subsume_by(n->in(1), this);
3137       if (n->outcnt() == 0) {
3138         n->disconnect_inputs(NULL, this);
3139       }
3140     }
3141     break;
3142   }
3143 #ifdef _LP64
3144   case Op_CmpP:
3145     // Do this transformation here to preserve CmpPNode::sub() and
3146     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3147     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3148       Node* in1 = n->in(1);
3149       Node* in2 = n->in(2);
3150       if (!in1->is_DecodeNarrowPtr()) {
3151         in2 = in1;
3152         in1 = n->in(2);
3153       }
3154       assert(in1->is_DecodeNarrowPtr(), "sanity");
3155 
3156       Node* new_in2 = NULL;
3157       if (in2->is_DecodeNarrowPtr()) {
3158         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3159         new_in2 = in2->in(1);
3160       } else if (in2->Opcode() == Op_ConP) {
3161         const Type* t = in2->bottom_type();
3162         if (t == TypePtr::NULL_PTR) {
3163           assert(in1->is_DecodeN(), "compare klass to null?");
3164           // Don't convert CmpP null check into CmpN if compressed
3165           // oops implicit null check is not generated.
3166           // This will allow to generate normal oop implicit null check.
3167           if (Matcher::gen_narrow_oop_implicit_null_checks())
3168             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3169           //
3170           // This transformation together with CastPP transformation above
3171           // will generated code for implicit NULL checks for compressed oops.
3172           //
3173           // The original code after Optimize()
3174           //
3175           //    LoadN memory, narrow_oop_reg
3176           //    decode narrow_oop_reg, base_reg
3177           //    CmpP base_reg, NULL
3178           //    CastPP base_reg // NotNull
3179           //    Load [base_reg + offset], val_reg
3180           //
3181           // after these transformations will be
3182           //
3183           //    LoadN memory, narrow_oop_reg
3184           //    CmpN narrow_oop_reg, NULL
3185           //    decode_not_null narrow_oop_reg, base_reg
3186           //    Load [base_reg + offset], val_reg
3187           //
3188           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3189           // since narrow oops can be used in debug info now (see the code in
3190           // final_graph_reshaping_walk()).
3191           //
3192           // At the end the code will be matched to
3193           // on x86:
3194           //
3195           //    Load_narrow_oop memory, narrow_oop_reg
3196           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3197           //    NullCheck narrow_oop_reg
3198           //
3199           // and on sparc:
3200           //
3201           //    Load_narrow_oop memory, narrow_oop_reg
3202           //    decode_not_null narrow_oop_reg, base_reg
3203           //    Load [base_reg + offset], val_reg
3204           //    NullCheck base_reg
3205           //
3206         } else if (t->isa_oopptr()) {
3207           new_in2 = ConNode::make(t->make_narrowoop());
3208         } else if (t->isa_klassptr()) {
3209           new_in2 = ConNode::make(t->make_narrowklass());
3210         }
3211       }
3212       if (new_in2 != NULL) {
3213         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3214         n->subsume_by(cmpN, this);
3215         if (in1->outcnt() == 0) {
3216           in1->disconnect_inputs(NULL, this);
3217         }
3218         if (in2->outcnt() == 0) {
3219           in2->disconnect_inputs(NULL, this);
3220         }
3221       }
3222     }
3223     break;
3224 
3225   case Op_DecodeN:
3226   case Op_DecodeNKlass:
3227     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3228     // DecodeN could be pinned when it can't be fold into
3229     // an address expression, see the code for Op_CastPP above.
3230     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3231     break;
3232 
3233   case Op_EncodeP:
3234   case Op_EncodePKlass: {
3235     Node* in1 = n->in(1);
3236     if (in1->is_DecodeNarrowPtr()) {
3237       n->subsume_by(in1->in(1), this);
3238     } else if (in1->Opcode() == Op_ConP) {
3239       const Type* t = in1->bottom_type();
3240       if (t == TypePtr::NULL_PTR) {
3241         assert(t->isa_oopptr(), "null klass?");
3242         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3243       } else if (t->isa_oopptr()) {
3244         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3245       } else if (t->isa_klassptr()) {
3246         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3247       }
3248     }
3249     if (in1->outcnt() == 0) {
3250       in1->disconnect_inputs(NULL, this);
3251     }
3252     break;
3253   }
3254 
3255   case Op_Proj: {
3256     if (OptimizeStringConcat) {
3257       ProjNode* p = n->as_Proj();
3258       if (p->_is_io_use) {
3259         // Separate projections were used for the exception path which
3260         // are normally removed by a late inline.  If it wasn't inlined
3261         // then they will hang around and should just be replaced with
3262         // the original one.
3263         Node* proj = NULL;
3264         // Replace with just one
3265         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3266           Node *use = i.get();
3267           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3268             proj = use;
3269             break;
3270           }
3271         }
3272         assert(proj != NULL, "must be found");
3273         p->subsume_by(proj, this);
3274       }
3275     }
3276     break;
3277   }
3278 
3279   case Op_Phi:
3280     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3281       // The EncodeP optimization may create Phi with the same edges
3282       // for all paths. It is not handled well by Register Allocator.
3283       Node* unique_in = n->in(1);
3284       assert(unique_in != NULL, "");
3285       uint cnt = n->req();
3286       for (uint i = 2; i < cnt; i++) {
3287         Node* m = n->in(i);
3288         assert(m != NULL, "");
3289         if (unique_in != m)
3290           unique_in = NULL;
3291       }
3292       if (unique_in != NULL) {
3293         n->subsume_by(unique_in, this);
3294       }
3295     }
3296     break;
3297 
3298 #endif
3299 
3300 #ifdef ASSERT
3301   case Op_CastII:
3302     // Verify that all range check dependent CastII nodes were removed.
3303     if (n->isa_CastII()->has_range_check()) {
3304       n->dump(3);
3305       assert(false, "Range check dependent CastII node was not removed");
3306     }
3307     break;
3308 #endif
3309 
3310   case Op_ModI:
3311     if (UseDivMod) {
3312       // Check if a%b and a/b both exist
3313       Node* d = n->find_similar(Op_DivI);
3314       if (d) {
3315         // Replace them with a fused divmod if supported
3316         if (Matcher::has_match_rule(Op_DivModI)) {
3317           DivModINode* divmod = DivModINode::make(n);
3318           d->subsume_by(divmod->div_proj(), this);
3319           n->subsume_by(divmod->mod_proj(), this);
3320         } else {
3321           // replace a%b with a-((a/b)*b)
3322           Node* mult = new MulINode(d, d->in(2));
3323           Node* sub  = new SubINode(d->in(1), mult);
3324           n->subsume_by(sub, this);
3325         }
3326       }
3327     }
3328     break;
3329 
3330   case Op_ModL:
3331     if (UseDivMod) {
3332       // Check if a%b and a/b both exist
3333       Node* d = n->find_similar(Op_DivL);
3334       if (d) {
3335         // Replace them with a fused divmod if supported
3336         if (Matcher::has_match_rule(Op_DivModL)) {
3337           DivModLNode* divmod = DivModLNode::make(n);
3338           d->subsume_by(divmod->div_proj(), this);
3339           n->subsume_by(divmod->mod_proj(), this);
3340         } else {
3341           // replace a%b with a-((a/b)*b)
3342           Node* mult = new MulLNode(d, d->in(2));
3343           Node* sub  = new SubLNode(d->in(1), mult);
3344           n->subsume_by(sub, this);
3345         }
3346       }
3347     }
3348     break;
3349 
3350   case Op_LoadVector:
3351   case Op_StoreVector:
3352     break;
3353 
3354   case Op_AddReductionVI:
3355   case Op_AddReductionVL:
3356   case Op_AddReductionVF:
3357   case Op_AddReductionVD:
3358   case Op_MulReductionVI:
3359   case Op_MulReductionVL:
3360   case Op_MulReductionVF:
3361   case Op_MulReductionVD:
3362     break;
3363 
3364   case Op_PackB:
3365   case Op_PackS:
3366   case Op_PackI:
3367   case Op_PackF:
3368   case Op_PackL:
3369   case Op_PackD:
3370     if (n->req()-1 > 2) {
3371       // Replace many operand PackNodes with a binary tree for matching
3372       PackNode* p = (PackNode*) n;
3373       Node* btp = p->binary_tree_pack(1, n->req());
3374       n->subsume_by(btp, this);
3375     }
3376     break;
3377   case Op_Loop:
3378   case Op_CountedLoop:
3379   case Op_OuterStripMinedLoop:
3380     if (n->as_Loop()->is_inner_loop()) {
3381       frc.inc_inner_loop_count();
3382     }
3383     n->as_Loop()->verify_strip_mined(0);
3384     break;
3385   case Op_LShiftI:
3386   case Op_RShiftI:
3387   case Op_URShiftI:
3388   case Op_LShiftL:
3389   case Op_RShiftL:
3390   case Op_URShiftL:
3391     if (Matcher::need_masked_shift_count) {
3392       // The cpu's shift instructions don't restrict the count to the
3393       // lower 5/6 bits. We need to do the masking ourselves.
3394       Node* in2 = n->in(2);
3395       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3396       const TypeInt* t = in2->find_int_type();
3397       if (t != NULL && t->is_con()) {
3398         juint shift = t->get_con();
3399         if (shift > mask) { // Unsigned cmp
3400           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3401         }
3402       } else {
3403         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3404           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3405           n->set_req(2, shift);
3406         }
3407       }
3408       if (in2->outcnt() == 0) { // Remove dead node
3409         in2->disconnect_inputs(NULL, this);
3410       }
3411     }
3412     break;
3413   case Op_MemBarStoreStore:
3414   case Op_MemBarRelease:
3415     // Break the link with AllocateNode: it is no longer useful and
3416     // confuses register allocation.
3417     if (n->req() > MemBarNode::Precedent) {
3418       n->set_req(MemBarNode::Precedent, top());
3419     }
3420     break;
3421 #if INCLUDE_SHENANDOAHGC
3422   case Op_ShenandoahReadBarrier:
3423     break;
3424   case Op_ShenandoahWriteBarrier:
3425     assert(false, "should have been expanded already");
3426     break;
3427 #endif
3428   case Op_RangeCheck: {
3429     RangeCheckNode* rc = n->as_RangeCheck();
3430     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3431     n->subsume_by(iff, this);
3432     frc._tests.push(iff);
3433     break;
3434   }
3435   case Op_ConvI2L: {
3436     if (!Matcher::convi2l_type_required) {
3437       // Code generation on some platforms doesn't need accurate
3438       // ConvI2L types. Widening the type can help remove redundant
3439       // address computations.
3440       n->as_Type()->set_type(TypeLong::INT);
3441       ResourceMark rm;
3442       Node_List wq;
3443       wq.push(n);
3444       for (uint next = 0; next < wq.size(); next++) {
3445         Node *m = wq.at(next);
3446 
3447         for(;;) {
3448           // Loop over all nodes with identical inputs edges as m
3449           Node* k = m->find_similar(m->Opcode());
3450           if (k == NULL) {
3451             break;
3452           }
3453           // Push their uses so we get a chance to remove node made
3454           // redundant
3455           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3456             Node* u = k->fast_out(i);
3457             assert(!wq.contains(u), "shouldn't process one node several times");
3458             if (u->Opcode() == Op_LShiftL ||
3459                 u->Opcode() == Op_AddL ||
3460                 u->Opcode() == Op_SubL ||
3461                 u->Opcode() == Op_AddP) {
3462               wq.push(u);
3463             }
3464           }
3465           // Replace all nodes with identical edges as m with m
3466           k->subsume_by(m, this);
3467         }
3468       }
3469     }
3470     break;
3471   }
3472   case Op_CmpUL: {
3473     if (!Matcher::has_match_rule(Op_CmpUL)) {
3474       // We don't support unsigned long comparisons. Set 'max_idx_expr'
3475       // to max_julong if < 0 to make the signed comparison fail.
3476       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3477       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3478       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3479       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3480       Node* andl = new AndLNode(orl, remove_sign_mask);
3481       Node* cmp = new CmpLNode(andl, n->in(2));
3482       n->subsume_by(cmp, this);
3483     }
3484     break;
3485   }
3486   default:
3487     assert( !n->is_Call(), "" );
3488     assert( !n->is_Mem(), "" );
3489     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3490     break;
3491   }
3492 
3493   // Collect CFG split points
3494   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3495     frc._tests.push(n);
3496   }
3497 }
3498 
3499 //------------------------------final_graph_reshaping_walk---------------------
3500 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3501 // requires that the walk visits a node's inputs before visiting the node.
3502 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3503   ResourceArea *area = Thread::current()->resource_area();
3504   Unique_Node_List sfpt(area);
3505 
3506   frc._visited.set(root->_idx); // first, mark node as visited
3507   uint cnt = root->req();
3508   Node *n = root;
3509   uint  i = 0;
3510   while (true) {
3511     if (i < cnt) {
3512       // Place all non-visited non-null inputs onto stack
3513       Node* m = n->in(i);
3514       ++i;
3515       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3516         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3517           // compute worst case interpreter size in case of a deoptimization
3518           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3519 
3520           sfpt.push(m);
3521         }
3522         cnt = m->req();
3523         nstack.push(n, i); // put on stack parent and next input's index
3524         n = m;
3525         i = 0;
3526       }
3527     } else {
3528       // Now do post-visit work
3529       final_graph_reshaping_impl( n, frc );
3530       if (nstack.is_empty())
3531         break;             // finished
3532       n = nstack.node();   // Get node from stack
3533       cnt = n->req();
3534       i = nstack.index();
3535       nstack.pop();        // Shift to the next node on stack
3536     }
3537   }
3538 
3539   // Skip next transformation if compressed oops are not used.
3540   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3541       (!UseCompressedOops && !UseCompressedClassPointers))
3542     return;
3543 
3544   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3545   // It could be done for an uncommon traps or any safepoints/calls
3546   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3547   while (sfpt.size() > 0) {
3548     n = sfpt.pop();
3549     JVMState *jvms = n->as_SafePoint()->jvms();
3550     assert(jvms != NULL, "sanity");
3551     int start = jvms->debug_start();
3552     int end   = n->req();
3553     bool is_uncommon = (n->is_CallStaticJava() &&
3554                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3555     for (int j = start; j < end; j++) {
3556       Node* in = n->in(j);
3557       if (in->is_DecodeNarrowPtr()) {
3558         bool safe_to_skip = true;
3559         if (!is_uncommon ) {
3560           // Is it safe to skip?
3561           for (uint i = 0; i < in->outcnt(); i++) {
3562             Node* u = in->raw_out(i);
3563             if (!u->is_SafePoint() ||
3564                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3565               safe_to_skip = false;
3566             }
3567           }
3568         }
3569         if (safe_to_skip) {
3570           n->set_req(j, in->in(1));
3571         }
3572         if (in->outcnt() == 0) {
3573           in->disconnect_inputs(NULL, this);
3574         }
3575       }
3576     }
3577   }
3578 }
3579 
3580 //------------------------------final_graph_reshaping--------------------------
3581 // Final Graph Reshaping.
3582 //
3583 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3584 //     and not commoned up and forced early.  Must come after regular
3585 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3586 //     inputs to Loop Phis; these will be split by the allocator anyways.
3587 //     Remove Opaque nodes.
3588 // (2) Move last-uses by commutative operations to the left input to encourage
3589 //     Intel update-in-place two-address operations and better register usage
3590 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3591 //     calls canonicalizing them back.
3592 // (3) Count the number of double-precision FP ops, single-precision FP ops
3593 //     and call sites.  On Intel, we can get correct rounding either by
3594 //     forcing singles to memory (requires extra stores and loads after each
3595 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3596 //     clearing the mode bit around call sites).  The mode bit is only used
3597 //     if the relative frequency of single FP ops to calls is low enough.
3598 //     This is a key transform for SPEC mpeg_audio.
3599 // (4) Detect infinite loops; blobs of code reachable from above but not
3600 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3601 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3602 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3603 //     Detection is by looking for IfNodes where only 1 projection is
3604 //     reachable from below or CatchNodes missing some targets.
3605 // (5) Assert for insane oop offsets in debug mode.
3606 
3607 bool Compile::final_graph_reshaping() {
3608   // an infinite loop may have been eliminated by the optimizer,
3609   // in which case the graph will be empty.
3610   if (root()->req() == 1) {
3611     record_method_not_compilable("trivial infinite loop");
3612     return true;
3613   }
3614 
3615   // Expensive nodes have their control input set to prevent the GVN
3616   // from freely commoning them. There's no GVN beyond this point so
3617   // no need to keep the control input. We want the expensive nodes to
3618   // be freely moved to the least frequent code path by gcm.
3619   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3620   for (int i = 0; i < expensive_count(); i++) {
3621     _expensive_nodes->at(i)->set_req(0, NULL);
3622   }
3623 
3624   Final_Reshape_Counts frc;
3625 
3626   // Visit everybody reachable!
3627   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3628   Node_Stack nstack(live_nodes() >> 1);
3629   final_graph_reshaping_walk(nstack, root(), frc);
3630 
3631   // Check for unreachable (from below) code (i.e., infinite loops).
3632   for( uint i = 0; i < frc._tests.size(); i++ ) {
3633     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3634     // Get number of CFG targets.
3635     // Note that PCTables include exception targets after calls.
3636     uint required_outcnt = n->required_outcnt();
3637     if (n->outcnt() != required_outcnt) {
3638       // Check for a few special cases.  Rethrow Nodes never take the
3639       // 'fall-thru' path, so expected kids is 1 less.
3640       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3641         if (n->in(0)->in(0)->is_Call()) {
3642           CallNode *call = n->in(0)->in(0)->as_Call();
3643           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3644             required_outcnt--;      // Rethrow always has 1 less kid
3645           } else if (call->req() > TypeFunc::Parms &&
3646                      call->is_CallDynamicJava()) {
3647             // Check for null receiver. In such case, the optimizer has
3648             // detected that the virtual call will always result in a null
3649             // pointer exception. The fall-through projection of this CatchNode
3650             // will not be populated.
3651             Node *arg0 = call->in(TypeFunc::Parms);
3652             if (arg0->is_Type() &&
3653                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3654               required_outcnt--;
3655             }
3656           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3657                      call->req() > TypeFunc::Parms+1 &&
3658                      call->is_CallStaticJava()) {
3659             // Check for negative array length. In such case, the optimizer has
3660             // detected that the allocation attempt will always result in an
3661             // exception. There is no fall-through projection of this CatchNode .
3662             Node *arg1 = call->in(TypeFunc::Parms+1);
3663             if (arg1->is_Type() &&
3664                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3665               required_outcnt--;
3666             }
3667           }
3668         }
3669       }
3670       // Recheck with a better notion of 'required_outcnt'
3671       if (n->outcnt() != required_outcnt) {
3672         record_method_not_compilable("malformed control flow");
3673         return true;            // Not all targets reachable!
3674       }
3675     }
3676     // Check that I actually visited all kids.  Unreached kids
3677     // must be infinite loops.
3678     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3679       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3680         record_method_not_compilable("infinite loop");
3681         return true;            // Found unvisited kid; must be unreach
3682       }
3683 
3684     // Here so verification code in final_graph_reshaping_walk()
3685     // always see an OuterStripMinedLoopEnd
3686     if (n->is_OuterStripMinedLoopEnd()) {
3687       IfNode* init_iff = n->as_If();
3688       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3689       n->subsume_by(iff, this);
3690     }
3691   }
3692 
3693   // If original bytecodes contained a mixture of floats and doubles
3694   // check if the optimizer has made it homogenous, item (3).
3695   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3696       frc.get_float_count() > 32 &&
3697       frc.get_double_count() == 0 &&
3698       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3699     set_24_bit_selection_and_mode( false,  true );
3700   }
3701 
3702   set_java_calls(frc.get_java_call_count());
3703   set_inner_loops(frc.get_inner_loop_count());
3704 
3705   // No infinite loops, no reason to bail out.
3706   return false;
3707 }
3708 
3709 //-----------------------------too_many_traps----------------------------------
3710 // Report if there are too many traps at the current method and bci.
3711 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3712 bool Compile::too_many_traps(ciMethod* method,
3713                              int bci,
3714                              Deoptimization::DeoptReason reason) {
3715   ciMethodData* md = method->method_data();
3716   if (md->is_empty()) {
3717     // Assume the trap has not occurred, or that it occurred only
3718     // because of a transient condition during start-up in the interpreter.
3719     return false;
3720   }
3721   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3722   if (md->has_trap_at(bci, m, reason) != 0) {
3723     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3724     // Also, if there are multiple reasons, or if there is no per-BCI record,
3725     // assume the worst.
3726     if (log())
3727       log()->elem("observe trap='%s' count='%d'",
3728                   Deoptimization::trap_reason_name(reason),
3729                   md->trap_count(reason));
3730     return true;
3731   } else {
3732     // Ignore method/bci and see if there have been too many globally.
3733     return too_many_traps(reason, md);
3734   }
3735 }
3736 
3737 // Less-accurate variant which does not require a method and bci.
3738 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3739                              ciMethodData* logmd) {
3740   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3741     // Too many traps globally.
3742     // Note that we use cumulative trap_count, not just md->trap_count.
3743     if (log()) {
3744       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3745       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3746                   Deoptimization::trap_reason_name(reason),
3747                   mcount, trap_count(reason));
3748     }
3749     return true;
3750   } else {
3751     // The coast is clear.
3752     return false;
3753   }
3754 }
3755 
3756 //--------------------------too_many_recompiles--------------------------------
3757 // Report if there are too many recompiles at the current method and bci.
3758 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3759 // Is not eager to return true, since this will cause the compiler to use
3760 // Action_none for a trap point, to avoid too many recompilations.
3761 bool Compile::too_many_recompiles(ciMethod* method,
3762                                   int bci,
3763                                   Deoptimization::DeoptReason reason) {
3764   ciMethodData* md = method->method_data();
3765   if (md->is_empty()) {
3766     // Assume the trap has not occurred, or that it occurred only
3767     // because of a transient condition during start-up in the interpreter.
3768     return false;
3769   }
3770   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3771   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3772   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3773   Deoptimization::DeoptReason per_bc_reason
3774     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3775   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3776   if ((per_bc_reason == Deoptimization::Reason_none
3777        || md->has_trap_at(bci, m, reason) != 0)
3778       // The trap frequency measure we care about is the recompile count:
3779       && md->trap_recompiled_at(bci, m)
3780       && md->overflow_recompile_count() >= bc_cutoff) {
3781     // Do not emit a trap here if it has already caused recompilations.
3782     // Also, if there are multiple reasons, or if there is no per-BCI record,
3783     // assume the worst.
3784     if (log())
3785       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3786                   Deoptimization::trap_reason_name(reason),
3787                   md->trap_count(reason),
3788                   md->overflow_recompile_count());
3789     return true;
3790   } else if (trap_count(reason) != 0
3791              && decompile_count() >= m_cutoff) {
3792     // Too many recompiles globally, and we have seen this sort of trap.
3793     // Use cumulative decompile_count, not just md->decompile_count.
3794     if (log())
3795       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3796                   Deoptimization::trap_reason_name(reason),
3797                   md->trap_count(reason), trap_count(reason),
3798                   md->decompile_count(), decompile_count());
3799     return true;
3800   } else {
3801     // The coast is clear.
3802     return false;
3803   }
3804 }
3805 
3806 // Compute when not to trap. Used by matching trap based nodes and
3807 // NullCheck optimization.
3808 void Compile::set_allowed_deopt_reasons() {
3809   _allowed_reasons = 0;
3810   if (is_method_compilation()) {
3811     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3812       assert(rs < BitsPerInt, "recode bit map");
3813       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3814         _allowed_reasons |= nth_bit(rs);
3815       }
3816     }
3817   }
3818 }
3819 
3820 #ifndef PRODUCT
3821 //------------------------------verify_graph_edges---------------------------
3822 // Walk the Graph and verify that there is a one-to-one correspondence
3823 // between Use-Def edges and Def-Use edges in the graph.
3824 void Compile::verify_graph_edges(bool no_dead_code) {
3825   if (VerifyGraphEdges) {
3826     ResourceArea *area = Thread::current()->resource_area();
3827     Unique_Node_List visited(area);
3828     // Call recursive graph walk to check edges
3829     _root->verify_edges(visited);
3830     if (no_dead_code) {
3831       // Now make sure that no visited node is used by an unvisited node.
3832       bool dead_nodes = false;
3833       Unique_Node_List checked(area);
3834       while (visited.size() > 0) {
3835         Node* n = visited.pop();
3836         checked.push(n);
3837         for (uint i = 0; i < n->outcnt(); i++) {
3838           Node* use = n->raw_out(i);
3839           if (checked.member(use))  continue;  // already checked
3840           if (visited.member(use))  continue;  // already in the graph
3841           if (use->is_Con())        continue;  // a dead ConNode is OK
3842           // At this point, we have found a dead node which is DU-reachable.
3843           if (!dead_nodes) {
3844             tty->print_cr("*** Dead nodes reachable via DU edges:");
3845             dead_nodes = true;
3846           }
3847           use->dump(2);
3848           tty->print_cr("---");
3849           checked.push(use);  // No repeats; pretend it is now checked.
3850         }
3851       }
3852       assert(!dead_nodes, "using nodes must be reachable from root");
3853     }
3854   }
3855 }
3856 
3857 // Verify GC barriers consistency
3858 // Currently supported:
3859 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3860 void Compile::verify_barriers() {
3861 #if INCLUDE_G1GC || INCLUDE_SHENANDOAHGC
3862   if (UseG1GC || UseShenandoahGC) {
3863     // Verify G1 pre-barriers
3864 
3865 #if INCLUDE_G1GC && INCLUDE_SHENANDOAHGC
3866     const int marking_offset = in_bytes(UseG1GC ? G1ThreadLocalData::satb_mark_queue_active_offset()
3867                                                 : ShenandoahThreadLocalData::satb_mark_queue_active_offset());
3868 #elif INCLUDE_G1GC
3869     const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
3870 #else
3871     const int marking_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset());
3872 #endif
3873 
3874     ResourceArea *area = Thread::current()->resource_area();
3875     Unique_Node_List visited(area);
3876     Node_List worklist(area);
3877     // We're going to walk control flow backwards starting from the Root
3878     worklist.push(_root);
3879     while (worklist.size() > 0) {
3880       Node* x = worklist.pop();
3881       if (x == NULL || x == top()) continue;
3882       if (visited.member(x)) {
3883         continue;
3884       } else {
3885         visited.push(x);
3886       }
3887 
3888       if (x->is_Region()) {
3889         for (uint i = 1; i < x->req(); i++) {
3890           worklist.push(x->in(i));
3891         }
3892       } else {
3893         worklist.push(x->in(0));
3894         // We are looking for the pattern:
3895         //                            /->ThreadLocal
3896         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3897         //              \->ConI(0)
3898         // We want to verify that the If and the LoadB have the same control
3899         // See GraphKit::g1_write_barrier_pre()
3900         if (x->is_If()) {
3901           IfNode *iff = x->as_If();
3902           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3903             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3904             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3905                 && cmp->in(1)->is_Load()) {
3906               LoadNode* load = cmp->in(1)->as_Load();
3907               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3908                   && load->in(2)->in(3)->is_Con()
3909                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3910 
3911                 Node* if_ctrl = iff->in(0);
3912                 Node* load_ctrl = load->in(0);
3913 
3914                 if (if_ctrl != load_ctrl) {
3915                   // Skip possible CProj->NeverBranch in infinite loops
3916                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3917                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3918                     if_ctrl = if_ctrl->in(0)->in(0);
3919                   }
3920                 }
3921                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3922               }
3923             }
3924           }
3925         }
3926       }
3927     }
3928   }
3929 #endif
3930 }
3931 
3932 #endif
3933 
3934 // The Compile object keeps track of failure reasons separately from the ciEnv.
3935 // This is required because there is not quite a 1-1 relation between the
3936 // ciEnv and its compilation task and the Compile object.  Note that one
3937 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3938 // to backtrack and retry without subsuming loads.  Other than this backtracking
3939 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3940 // by the logic in C2Compiler.
3941 void Compile::record_failure(const char* reason) {
3942   if (log() != NULL) {
3943     log()->elem("failure reason='%s' phase='compile'", reason);
3944   }
3945   if (_failure_reason == NULL) {
3946     // Record the first failure reason.
3947     _failure_reason = reason;
3948   }
3949 
3950   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3951     C->print_method(PHASE_FAILURE);
3952   }
3953   _root = NULL;  // flush the graph, too
3954 }
3955 
3956 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3957   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3958     _phase_name(name), _dolog(CITimeVerbose)
3959 {
3960   if (_dolog) {
3961     C = Compile::current();
3962     _log = C->log();
3963   } else {
3964     C = NULL;
3965     _log = NULL;
3966   }
3967   if (_log != NULL) {
3968     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3969     _log->stamp();
3970     _log->end_head();
3971   }
3972 }
3973 
3974 Compile::TracePhase::~TracePhase() {
3975 
3976   C = Compile::current();
3977   if (_dolog) {
3978     _log = C->log();
3979   } else {
3980     _log = NULL;
3981   }
3982 
3983 #ifdef ASSERT
3984   if (PrintIdealNodeCount) {
3985     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3986                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3987   }
3988 
3989   if (VerifyIdealNodeCount) {
3990     Compile::current()->print_missing_nodes();
3991   }
3992 #endif
3993 
3994   if (_log != NULL) {
3995     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3996   }
3997 }
3998 
3999 //=============================================================================
4000 // Two Constant's are equal when the type and the value are equal.
4001 bool Compile::Constant::operator==(const Constant& other) {
4002   if (type()          != other.type()         )  return false;
4003   if (can_be_reused() != other.can_be_reused())  return false;
4004   // For floating point values we compare the bit pattern.
4005   switch (type()) {
4006   case T_INT:
4007   case T_FLOAT:   return (_v._value.i == other._v._value.i);
4008   case T_LONG:
4009   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
4010   case T_OBJECT:
4011   case T_ADDRESS: return (_v._value.l == other._v._value.l);
4012   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
4013   case T_METADATA: return (_v._metadata == other._v._metadata);
4014   default: ShouldNotReachHere(); return false;
4015   }
4016 }
4017 
4018 static int type_to_size_in_bytes(BasicType t) {
4019   switch (t) {
4020   case T_INT:     return sizeof(jint   );
4021   case T_LONG:    return sizeof(jlong  );
4022   case T_FLOAT:   return sizeof(jfloat );
4023   case T_DOUBLE:  return sizeof(jdouble);
4024   case T_METADATA: return sizeof(Metadata*);
4025     // We use T_VOID as marker for jump-table entries (labels) which
4026     // need an internal word relocation.
4027   case T_VOID:
4028   case T_ADDRESS:
4029   case T_OBJECT:  return sizeof(jobject);
4030   default:
4031     ShouldNotReachHere();
4032     return -1;
4033   }
4034 }
4035 
4036 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
4037   // sort descending
4038   if (a->freq() > b->freq())  return -1;
4039   if (a->freq() < b->freq())  return  1;
4040   return 0;
4041 }
4042 
4043 void Compile::ConstantTable::calculate_offsets_and_size() {
4044   // First, sort the array by frequencies.
4045   _constants.sort(qsort_comparator);
4046 
4047 #ifdef ASSERT
4048   // Make sure all jump-table entries were sorted to the end of the
4049   // array (they have a negative frequency).
4050   bool found_void = false;
4051   for (int i = 0; i < _constants.length(); i++) {
4052     Constant con = _constants.at(i);
4053     if (con.type() == T_VOID)
4054       found_void = true;  // jump-tables
4055     else
4056       assert(!found_void, "wrong sorting");
4057   }
4058 #endif
4059 
4060   int offset = 0;
4061   for (int i = 0; i < _constants.length(); i++) {
4062     Constant* con = _constants.adr_at(i);
4063 
4064     // Align offset for type.
4065     int typesize = type_to_size_in_bytes(con->type());
4066     offset = align_up(offset, typesize);
4067     con->set_offset(offset);   // set constant's offset
4068 
4069     if (con->type() == T_VOID) {
4070       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
4071       offset = offset + typesize * n->outcnt();  // expand jump-table
4072     } else {
4073       offset = offset + typesize;
4074     }
4075   }
4076 
4077   // Align size up to the next section start (which is insts; see
4078   // CodeBuffer::align_at_start).
4079   assert(_size == -1, "already set?");
4080   _size = align_up(offset, (int)CodeEntryAlignment);
4081 }
4082 
4083 void Compile::ConstantTable::emit(CodeBuffer& cb) {
4084   MacroAssembler _masm(&cb);
4085   for (int i = 0; i < _constants.length(); i++) {
4086     Constant con = _constants.at(i);
4087     address constant_addr = NULL;
4088     switch (con.type()) {
4089     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
4090     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
4091     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4092     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4093     case T_OBJECT: {
4094       jobject obj = con.get_jobject();
4095       int oop_index = _masm.oop_recorder()->find_index(obj);
4096       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4097       break;
4098     }
4099     case T_ADDRESS: {
4100       address addr = (address) con.get_jobject();
4101       constant_addr = _masm.address_constant(addr);
4102       break;
4103     }
4104     // We use T_VOID as marker for jump-table entries (labels) which
4105     // need an internal word relocation.
4106     case T_VOID: {
4107       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4108       // Fill the jump-table with a dummy word.  The real value is
4109       // filled in later in fill_jump_table.
4110       address dummy = (address) n;
4111       constant_addr = _masm.address_constant(dummy);
4112       // Expand jump-table
4113       for (uint i = 1; i < n->outcnt(); i++) {
4114         address temp_addr = _masm.address_constant(dummy + i);
4115         assert(temp_addr, "consts section too small");
4116       }
4117       break;
4118     }
4119     case T_METADATA: {
4120       Metadata* obj = con.get_metadata();
4121       int metadata_index = _masm.oop_recorder()->find_index(obj);
4122       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4123       break;
4124     }
4125     default: ShouldNotReachHere();
4126     }
4127     assert(constant_addr, "consts section too small");
4128     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4129             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4130   }
4131 }
4132 
4133 int Compile::ConstantTable::find_offset(Constant& con) const {
4134   int idx = _constants.find(con);
4135   guarantee(idx != -1, "constant must be in constant table");
4136   int offset = _constants.at(idx).offset();
4137   guarantee(offset != -1, "constant table not emitted yet?");
4138   return offset;
4139 }
4140 
4141 void Compile::ConstantTable::add(Constant& con) {
4142   if (con.can_be_reused()) {
4143     int idx = _constants.find(con);
4144     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4145       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4146       return;
4147     }
4148   }
4149   (void) _constants.append(con);
4150 }
4151 
4152 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4153   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4154   Constant con(type, value, b->_freq);
4155   add(con);
4156   return con;
4157 }
4158 
4159 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4160   Constant con(metadata);
4161   add(con);
4162   return con;
4163 }
4164 
4165 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4166   jvalue value;
4167   BasicType type = oper->type()->basic_type();
4168   switch (type) {
4169   case T_LONG:    value.j = oper->constantL(); break;
4170   case T_FLOAT:   value.f = oper->constantF(); break;
4171   case T_DOUBLE:  value.d = oper->constantD(); break;
4172   case T_OBJECT:
4173   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4174   case T_METADATA: return add((Metadata*)oper->constant()); break;
4175   default: guarantee(false, "unhandled type: %s", type2name(type));
4176   }
4177   return add(n, type, value);
4178 }
4179 
4180 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4181   jvalue value;
4182   // We can use the node pointer here to identify the right jump-table
4183   // as this method is called from Compile::Fill_buffer right before
4184   // the MachNodes are emitted and the jump-table is filled (means the
4185   // MachNode pointers do not change anymore).
4186   value.l = (jobject) n;
4187   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4188   add(con);
4189   return con;
4190 }
4191 
4192 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4193   // If called from Compile::scratch_emit_size do nothing.
4194   if (Compile::current()->in_scratch_emit_size())  return;
4195 
4196   assert(labels.is_nonempty(), "must be");
4197   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4198 
4199   // Since MachConstantNode::constant_offset() also contains
4200   // table_base_offset() we need to subtract the table_base_offset()
4201   // to get the plain offset into the constant table.
4202   int offset = n->constant_offset() - table_base_offset();
4203 
4204   MacroAssembler _masm(&cb);
4205   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4206 
4207   for (uint i = 0; i < n->outcnt(); i++) {
4208     address* constant_addr = &jump_table_base[i];
4209     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4210     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4211     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4212   }
4213 }
4214 
4215 //----------------------------static_subtype_check-----------------------------
4216 // Shortcut important common cases when superklass is exact:
4217 // (0) superklass is java.lang.Object (can occur in reflective code)
4218 // (1) subklass is already limited to a subtype of superklass => always ok
4219 // (2) subklass does not overlap with superklass => always fail
4220 // (3) superklass has NO subtypes and we can check with a simple compare.
4221 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4222   if (StressReflectiveCode) {
4223     return SSC_full_test;       // Let caller generate the general case.
4224   }
4225 
4226   if (superk == env()->Object_klass()) {
4227     return SSC_always_true;     // (0) this test cannot fail
4228   }
4229 
4230   ciType* superelem = superk;
4231   if (superelem->is_array_klass())
4232     superelem = superelem->as_array_klass()->base_element_type();
4233 
4234   if (!subk->is_interface()) {  // cannot trust static interface types yet
4235     if (subk->is_subtype_of(superk)) {
4236       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4237     }
4238     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4239         !superk->is_subtype_of(subk)) {
4240       return SSC_always_false;
4241     }
4242   }
4243 
4244   // If casting to an instance klass, it must have no subtypes
4245   if (superk->is_interface()) {
4246     // Cannot trust interfaces yet.
4247     // %%% S.B. superk->nof_implementors() == 1
4248   } else if (superelem->is_instance_klass()) {
4249     ciInstanceKlass* ik = superelem->as_instance_klass();
4250     if (!ik->has_subklass() && !ik->is_interface()) {
4251       if (!ik->is_final()) {
4252         // Add a dependency if there is a chance of a later subclass.
4253         dependencies()->assert_leaf_type(ik);
4254       }
4255       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4256     }
4257   } else {
4258     // A primitive array type has no subtypes.
4259     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4260   }
4261 
4262   return SSC_full_test;
4263 }
4264 
4265 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4266 #ifdef _LP64
4267   // The scaled index operand to AddP must be a clean 64-bit value.
4268   // Java allows a 32-bit int to be incremented to a negative
4269   // value, which appears in a 64-bit register as a large
4270   // positive number.  Using that large positive number as an
4271   // operand in pointer arithmetic has bad consequences.
4272   // On the other hand, 32-bit overflow is rare, and the possibility
4273   // can often be excluded, if we annotate the ConvI2L node with
4274   // a type assertion that its value is known to be a small positive
4275   // number.  (The prior range check has ensured this.)
4276   // This assertion is used by ConvI2LNode::Ideal.
4277   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4278   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4279   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4280   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4281 #endif
4282   return idx;
4283 }
4284 
4285 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4286 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4287   if (ctrl != NULL) {
4288     // Express control dependency by a CastII node with a narrow type.
4289     value = new CastIINode(value, itype, false, true /* range check dependency */);
4290     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4291     // node from floating above the range check during loop optimizations. Otherwise, the
4292     // ConvI2L node may be eliminated independently of the range check, causing the data path
4293     // to become TOP while the control path is still there (although it's unreachable).
4294     value->set_req(0, ctrl);
4295     // Save CastII node to remove it after loop optimizations.
4296     phase->C->add_range_check_cast(value);
4297     value = phase->transform(value);
4298   }
4299   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4300   return phase->transform(new ConvI2LNode(value, ltype));
4301 }
4302 
4303 // The message about the current inlining is accumulated in
4304 // _print_inlining_stream and transfered into the _print_inlining_list
4305 // once we know whether inlining succeeds or not. For regular
4306 // inlining, messages are appended to the buffer pointed by
4307 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4308 // a new buffer is added after _print_inlining_idx in the list. This
4309 // way we can update the inlining message for late inlining call site
4310 // when the inlining is attempted again.
4311 void Compile::print_inlining_init() {
4312   if (print_inlining() || print_intrinsics()) {
4313     _print_inlining_stream = new stringStream();
4314     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4315   }
4316 }
4317 
4318 void Compile::print_inlining_reinit() {
4319   if (print_inlining() || print_intrinsics()) {
4320     // Re allocate buffer when we change ResourceMark
4321     _print_inlining_stream = new stringStream();
4322   }
4323 }
4324 
4325 void Compile::print_inlining_reset() {
4326   _print_inlining_stream->reset();
4327 }
4328 
4329 void Compile::print_inlining_commit() {
4330   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4331   // Transfer the message from _print_inlining_stream to the current
4332   // _print_inlining_list buffer and clear _print_inlining_stream.
4333   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4334   print_inlining_reset();
4335 }
4336 
4337 void Compile::print_inlining_push() {
4338   // Add new buffer to the _print_inlining_list at current position
4339   _print_inlining_idx++;
4340   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4341 }
4342 
4343 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4344   return _print_inlining_list->at(_print_inlining_idx);
4345 }
4346 
4347 void Compile::print_inlining_update(CallGenerator* cg) {
4348   if (print_inlining() || print_intrinsics()) {
4349     if (!cg->is_late_inline()) {
4350       if (print_inlining_current().cg() != NULL) {
4351         print_inlining_push();
4352       }
4353       print_inlining_commit();
4354     } else {
4355       if (print_inlining_current().cg() != cg &&
4356           (print_inlining_current().cg() != NULL ||
4357            print_inlining_current().ss()->size() != 0)) {
4358         print_inlining_push();
4359       }
4360       print_inlining_commit();
4361       print_inlining_current().set_cg(cg);
4362     }
4363   }
4364 }
4365 
4366 void Compile::print_inlining_move_to(CallGenerator* cg) {
4367   // We resume inlining at a late inlining call site. Locate the
4368   // corresponding inlining buffer so that we can update it.
4369   if (print_inlining()) {
4370     for (int i = 0; i < _print_inlining_list->length(); i++) {
4371       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4372         _print_inlining_idx = i;
4373         return;
4374       }
4375     }
4376     ShouldNotReachHere();
4377   }
4378 }
4379 
4380 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4381   if (print_inlining()) {
4382     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4383     assert(print_inlining_current().cg() == cg, "wrong entry");
4384     // replace message with new message
4385     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4386     print_inlining_commit();
4387     print_inlining_current().set_cg(cg);
4388   }
4389 }
4390 
4391 void Compile::print_inlining_assert_ready() {
4392   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4393 }
4394 
4395 void Compile::process_print_inlining() {
4396   bool do_print_inlining = print_inlining() || print_intrinsics();
4397   if (do_print_inlining || log() != NULL) {
4398     // Print inlining message for candidates that we couldn't inline
4399     // for lack of space
4400     for (int i = 0; i < _late_inlines.length(); i++) {
4401       CallGenerator* cg = _late_inlines.at(i);
4402       if (!cg->is_mh_late_inline()) {
4403         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4404         if (do_print_inlining) {
4405           cg->print_inlining_late(msg);
4406         }
4407         log_late_inline_failure(cg, msg);
4408       }
4409     }
4410   }
4411   if (do_print_inlining) {
4412     ResourceMark rm;
4413     stringStream ss;
4414     for (int i = 0; i < _print_inlining_list->length(); i++) {
4415       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4416     }
4417     size_t end = ss.size();
4418     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4419     strncpy(_print_inlining_output, ss.base(), end+1);
4420     _print_inlining_output[end] = 0;
4421   }
4422 }
4423 
4424 void Compile::dump_print_inlining() {
4425   if (_print_inlining_output != NULL) {
4426     tty->print_raw(_print_inlining_output);
4427   }
4428 }
4429 
4430 void Compile::log_late_inline(CallGenerator* cg) {
4431   if (log() != NULL) {
4432     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4433                 cg->unique_id());
4434     JVMState* p = cg->call_node()->jvms();
4435     while (p != NULL) {
4436       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4437       p = p->caller();
4438     }
4439     log()->tail("late_inline");
4440   }
4441 }
4442 
4443 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4444   log_late_inline(cg);
4445   if (log() != NULL) {
4446     log()->inline_fail(msg);
4447   }
4448 }
4449 
4450 void Compile::log_inline_id(CallGenerator* cg) {
4451   if (log() != NULL) {
4452     // The LogCompilation tool needs a unique way to identify late
4453     // inline call sites. This id must be unique for this call site in
4454     // this compilation. Try to have it unique across compilations as
4455     // well because it can be convenient when grepping through the log
4456     // file.
4457     // Distinguish OSR compilations from others in case CICountOSR is
4458     // on.
4459     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4460     cg->set_unique_id(id);
4461     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4462   }
4463 }
4464 
4465 void Compile::log_inline_failure(const char* msg) {
4466   if (C->log() != NULL) {
4467     C->log()->inline_fail(msg);
4468   }
4469 }
4470 
4471 
4472 // Dump inlining replay data to the stream.
4473 // Don't change thread state and acquire any locks.
4474 void Compile::dump_inline_data(outputStream* out) {
4475   InlineTree* inl_tree = ilt();
4476   if (inl_tree != NULL) {
4477     out->print(" inline %d", inl_tree->count());
4478     inl_tree->dump_replay_data(out);
4479   }
4480 }
4481 
4482 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4483   if (n1->Opcode() < n2->Opcode())      return -1;
4484   else if (n1->Opcode() > n2->Opcode()) return 1;
4485 
4486   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4487   for (uint i = 1; i < n1->req(); i++) {
4488     if (n1->in(i) < n2->in(i))      return -1;
4489     else if (n1->in(i) > n2->in(i)) return 1;
4490   }
4491 
4492   return 0;
4493 }
4494 
4495 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4496   Node* n1 = *n1p;
4497   Node* n2 = *n2p;
4498 
4499   return cmp_expensive_nodes(n1, n2);
4500 }
4501 
4502 void Compile::sort_expensive_nodes() {
4503   if (!expensive_nodes_sorted()) {
4504     _expensive_nodes->sort(cmp_expensive_nodes);
4505   }
4506 }
4507 
4508 bool Compile::expensive_nodes_sorted() const {
4509   for (int i = 1; i < _expensive_nodes->length(); i++) {
4510     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4511       return false;
4512     }
4513   }
4514   return true;
4515 }
4516 
4517 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4518   if (_expensive_nodes->length() == 0) {
4519     return false;
4520   }
4521 
4522   assert(OptimizeExpensiveOps, "optimization off?");
4523 
4524   // Take this opportunity to remove dead nodes from the list
4525   int j = 0;
4526   for (int i = 0; i < _expensive_nodes->length(); i++) {
4527     Node* n = _expensive_nodes->at(i);
4528     if (!n->is_unreachable(igvn)) {
4529       assert(n->is_expensive(), "should be expensive");
4530       _expensive_nodes->at_put(j, n);
4531       j++;
4532     }
4533   }
4534   _expensive_nodes->trunc_to(j);
4535 
4536   // Then sort the list so that similar nodes are next to each other
4537   // and check for at least two nodes of identical kind with same data
4538   // inputs.
4539   sort_expensive_nodes();
4540 
4541   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4542     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4543       return true;
4544     }
4545   }
4546 
4547   return false;
4548 }
4549 
4550 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4551   if (_expensive_nodes->length() == 0) {
4552     return;
4553   }
4554 
4555   assert(OptimizeExpensiveOps, "optimization off?");
4556 
4557   // Sort to bring similar nodes next to each other and clear the
4558   // control input of nodes for which there's only a single copy.
4559   sort_expensive_nodes();
4560 
4561   int j = 0;
4562   int identical = 0;
4563   int i = 0;
4564   bool modified = false;
4565   for (; i < _expensive_nodes->length()-1; i++) {
4566     assert(j <= i, "can't write beyond current index");
4567     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4568       identical++;
4569       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4570       continue;
4571     }
4572     if (identical > 0) {
4573       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4574       identical = 0;
4575     } else {
4576       Node* n = _expensive_nodes->at(i);
4577       igvn.replace_input_of(n, 0, NULL);
4578       igvn.hash_insert(n);
4579       modified = true;
4580     }
4581   }
4582   if (identical > 0) {
4583     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4584   } else if (_expensive_nodes->length() >= 1) {
4585     Node* n = _expensive_nodes->at(i);
4586     igvn.replace_input_of(n, 0, NULL);
4587     igvn.hash_insert(n);
4588     modified = true;
4589   }
4590   _expensive_nodes->trunc_to(j);
4591   if (modified) {
4592     igvn.optimize();
4593   }
4594 }
4595 
4596 void Compile::add_expensive_node(Node * n) {
4597   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4598   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4599   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4600   if (OptimizeExpensiveOps) {
4601     _expensive_nodes->append(n);
4602   } else {
4603     // Clear control input and let IGVN optimize expensive nodes if
4604     // OptimizeExpensiveOps is off.
4605     n->set_req(0, NULL);
4606   }
4607 }
4608 
4609 /**
4610  * Remove the speculative part of types and clean up the graph
4611  */
4612 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4613   if (UseTypeSpeculation) {
4614     Unique_Node_List worklist;
4615     worklist.push(root());
4616     int modified = 0;
4617     // Go over all type nodes that carry a speculative type, drop the
4618     // speculative part of the type and enqueue the node for an igvn
4619     // which may optimize it out.
4620     for (uint next = 0; next < worklist.size(); ++next) {
4621       Node *n  = worklist.at(next);
4622       if (n->is_Type()) {
4623         TypeNode* tn = n->as_Type();
4624         const Type* t = tn->type();
4625         const Type* t_no_spec = t->remove_speculative();
4626         if (t_no_spec != t) {
4627           bool in_hash = igvn.hash_delete(n);
4628           assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table");
4629           tn->set_type(t_no_spec);
4630           igvn.hash_insert(n);
4631           igvn._worklist.push(n); // give it a chance to go away
4632           modified++;
4633         }
4634       }
4635       uint max = n->len();
4636       for( uint i = 0; i < max; ++i ) {
4637         Node *m = n->in(i);
4638         if (not_a_node(m))  continue;
4639         worklist.push(m);
4640       }
4641     }
4642     // Drop the speculative part of all types in the igvn's type table
4643     igvn.remove_speculative_types();
4644     if (modified > 0) {
4645       igvn.optimize();
4646     }
4647 #ifdef ASSERT
4648     // Verify that after the IGVN is over no speculative type has resurfaced
4649     worklist.clear();
4650     worklist.push(root());
4651     for (uint next = 0; next < worklist.size(); ++next) {
4652       Node *n  = worklist.at(next);
4653       const Type* t = igvn.type_or_null(n);
4654       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4655       if (n->is_Type()) {
4656         t = n->as_Type()->type();
4657         assert(t == t->remove_speculative(), "no more speculative types");
4658       }
4659       uint max = n->len();
4660       for( uint i = 0; i < max; ++i ) {
4661         Node *m = n->in(i);
4662         if (not_a_node(m))  continue;
4663         worklist.push(m);
4664       }
4665     }
4666     igvn.check_no_speculative_types();
4667 #endif
4668   }
4669 }
4670 
4671 // Auxiliary method to support randomized stressing/fuzzing.
4672 //
4673 // This method can be called the arbitrary number of times, with current count
4674 // as the argument. The logic allows selecting a single candidate from the
4675 // running list of candidates as follows:
4676 //    int count = 0;
4677 //    Cand* selected = null;
4678 //    while(cand = cand->next()) {
4679 //      if (randomized_select(++count)) {
4680 //        selected = cand;
4681 //      }
4682 //    }
4683 //
4684 // Including count equalizes the chances any candidate is "selected".
4685 // This is useful when we don't have the complete list of candidates to choose
4686 // from uniformly. In this case, we need to adjust the randomicity of the
4687 // selection, or else we will end up biasing the selection towards the latter
4688 // candidates.
4689 //
4690 // Quick back-envelope calculation shows that for the list of n candidates
4691 // the equal probability for the candidate to persist as "best" can be
4692 // achieved by replacing it with "next" k-th candidate with the probability
4693 // of 1/k. It can be easily shown that by the end of the run, the
4694 // probability for any candidate is converged to 1/n, thus giving the
4695 // uniform distribution among all the candidates.
4696 //
4697 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4698 #define RANDOMIZED_DOMAIN_POW 29
4699 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4700 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4701 bool Compile::randomized_select(int count) {
4702   assert(count > 0, "only positive");
4703   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4704 }
4705 
4706 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4707 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4708 
4709 void NodeCloneInfo::dump() const {
4710   tty->print(" {%d:%d} ", idx(), gen());
4711 }
4712 
4713 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4714   uint64_t val = value(old->_idx);
4715   NodeCloneInfo cio(val);
4716   assert(val != 0, "old node should be in the map");
4717   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4718   insert(nnn->_idx, cin.get());
4719 #ifndef PRODUCT
4720   if (is_debug()) {
4721     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4722   }
4723 #endif
4724 }
4725 
4726 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4727   NodeCloneInfo cio(value(old->_idx));
4728   if (cio.get() == 0) {
4729     cio.set(old->_idx, 0);
4730     insert(old->_idx, cio.get());
4731 #ifndef PRODUCT
4732     if (is_debug()) {
4733       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4734     }
4735 #endif
4736   }
4737   clone(old, nnn, gen);
4738 }
4739 
4740 int CloneMap::max_gen() const {
4741   int g = 0;
4742   DictI di(_dict);
4743   for(; di.test(); ++di) {
4744     int t = gen(di._key);
4745     if (g < t) {
4746       g = t;
4747 #ifndef PRODUCT
4748       if (is_debug()) {
4749         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4750       }
4751 #endif
4752     }
4753   }
4754   return g;
4755 }
4756 
4757 void CloneMap::dump(node_idx_t key) const {
4758   uint64_t val = value(key);
4759   if (val != 0) {
4760     NodeCloneInfo ni(val);
4761     ni.dump();
4762   }
4763 }
4764 
4765 #if INCLUDE_SHENANDOAHGC
4766 void Compile::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) {
4767   assert(UseShenandoahGC && call->is_shenandoah_wb_pre_call(), "");
4768   Node* c = call->as_Call()->proj_out(TypeFunc::Control);
4769   c = c->unique_ctrl_out();
4770   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
4771   c = c->unique_ctrl_out();
4772   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
4773   Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
4774   assert(iff->is_If(), "expect test");
4775   if (!iff->is_shenandoah_marking_if(igvn)) {
4776     c = c->unique_ctrl_out();
4777     assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
4778     iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
4779     assert(iff->is_shenandoah_marking_if(igvn), "expect marking test");
4780   }
4781   Node* cmpx = iff->in(1)->in(1);
4782   igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ));
4783   igvn->rehash_node_delayed(call);
4784   call->del_req(call->req()-1);
4785 }
4786 #endif