1 /*
   2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "vmreg_x86.inline.hpp"
  42 
  43 
  44 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  45 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  46 // fast versions of NegF/NegD and AbsF/AbsD.
  47 
  48 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  49 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  50   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  51   // of 128-bits operands for SSE instructions.
  52   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  53   // Store the value to a 128-bits operand.
  54   operand[0] = lo;
  55   operand[1] = hi;
  56   return operand;
  57 }
  58 
  59 // Buffer for 128-bits masks used by SSE instructions.
  60 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  61 
  62 // Static initialization during VM startup.
  63 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  64 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  65 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  66 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  67 
  68 
  69 
  70 NEEDS_CLEANUP // remove this definitions ?
  71 const Register IC_Klass    = rax;   // where the IC klass is cached
  72 const Register SYNC_header = rax;   // synchronization header
  73 const Register SHIFT_count = rcx;   // where count for shift operations must be
  74 
  75 #define __ _masm->
  76 
  77 
  78 static void select_different_registers(Register preserve,
  79                                        Register extra,
  80                                        Register &tmp1,
  81                                        Register &tmp2) {
  82   if (tmp1 == preserve) {
  83     assert_different_registers(tmp1, tmp2, extra);
  84     tmp1 = extra;
  85   } else if (tmp2 == preserve) {
  86     assert_different_registers(tmp1, tmp2, extra);
  87     tmp2 = extra;
  88   }
  89   assert_different_registers(preserve, tmp1, tmp2);
  90 }
  91 
  92 
  93 
  94 static void select_different_registers(Register preserve,
  95                                        Register extra,
  96                                        Register &tmp1,
  97                                        Register &tmp2,
  98                                        Register &tmp3) {
  99   if (tmp1 == preserve) {
 100     assert_different_registers(tmp1, tmp2, tmp3, extra);
 101     tmp1 = extra;
 102   } else if (tmp2 == preserve) {
 103     assert_different_registers(tmp1, tmp2, tmp3, extra);
 104     tmp2 = extra;
 105   } else if (tmp3 == preserve) {
 106     assert_different_registers(tmp1, tmp2, tmp3, extra);
 107     tmp3 = extra;
 108   }
 109   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 110 }
 111 
 112 
 113 
 114 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 115   if (opr->is_constant()) {
 116     LIR_Const* constant = opr->as_constant_ptr();
 117     switch (constant->type()) {
 118       case T_INT: {
 119         return true;
 120       }
 121 
 122       default:
 123         return false;
 124     }
 125   }
 126   return false;
 127 }
 128 
 129 
 130 LIR_Opr LIR_Assembler::receiverOpr() {
 131   return FrameMap::receiver_opr;
 132 }
 133 
 134 LIR_Opr LIR_Assembler::osrBufferPointer() {
 135   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 136 }
 137 
 138 //--------------fpu register translations-----------------------
 139 
 140 
 141 address LIR_Assembler::float_constant(float f) {
 142   address const_addr = __ float_constant(f);
 143   if (const_addr == NULL) {
 144     bailout("const section overflow");
 145     return __ code()->consts()->start();
 146   } else {
 147     return const_addr;
 148   }
 149 }
 150 
 151 
 152 address LIR_Assembler::double_constant(double d) {
 153   address const_addr = __ double_constant(d);
 154   if (const_addr == NULL) {
 155     bailout("const section overflow");
 156     return __ code()->consts()->start();
 157   } else {
 158     return const_addr;
 159   }
 160 }
 161 
 162 
 163 void LIR_Assembler::set_24bit_FPU() {
 164   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 165 }
 166 
 167 void LIR_Assembler::reset_FPU() {
 168   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 169 }
 170 
 171 void LIR_Assembler::fpop() {
 172   __ fpop();
 173 }
 174 
 175 void LIR_Assembler::fxch(int i) {
 176   __ fxch(i);
 177 }
 178 
 179 void LIR_Assembler::fld(int i) {
 180   __ fld_s(i);
 181 }
 182 
 183 void LIR_Assembler::ffree(int i) {
 184   __ ffree(i);
 185 }
 186 
 187 void LIR_Assembler::breakpoint() {
 188   __ int3();
 189 }
 190 
 191 void LIR_Assembler::push(LIR_Opr opr) {
 192   if (opr->is_single_cpu()) {
 193     __ push_reg(opr->as_register());
 194   } else if (opr->is_double_cpu()) {
 195     NOT_LP64(__ push_reg(opr->as_register_hi()));
 196     __ push_reg(opr->as_register_lo());
 197   } else if (opr->is_stack()) {
 198     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 199   } else if (opr->is_constant()) {
 200     LIR_Const* const_opr = opr->as_constant_ptr();
 201     if (const_opr->type() == T_OBJECT) {
 202       __ push_oop(const_opr->as_jobject());
 203     } else if (const_opr->type() == T_INT) {
 204       __ push_jint(const_opr->as_jint());
 205     } else {
 206       ShouldNotReachHere();
 207     }
 208 
 209   } else {
 210     ShouldNotReachHere();
 211   }
 212 }
 213 
 214 void LIR_Assembler::pop(LIR_Opr opr) {
 215   if (opr->is_single_cpu()) {
 216     __ pop_reg(opr->as_register());
 217   } else {
 218     ShouldNotReachHere();
 219   }
 220 }
 221 
 222 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 223   return addr->base()->is_illegal() && addr->index()->is_illegal();
 224 }
 225 
 226 //-------------------------------------------
 227 
 228 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 229   return as_Address(addr, rscratch1);
 230 }
 231 
 232 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 233   if (addr->base()->is_illegal()) {
 234     assert(addr->index()->is_illegal(), "must be illegal too");
 235     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 236     if (! __ reachable(laddr)) {
 237       __ movptr(tmp, laddr.addr());
 238       Address res(tmp, 0);
 239       return res;
 240     } else {
 241       return __ as_Address(laddr);
 242     }
 243   }
 244 
 245   Register base = addr->base()->as_pointer_register();
 246 
 247   if (addr->index()->is_illegal()) {
 248     return Address( base, addr->disp());
 249   } else if (addr->index()->is_cpu_register()) {
 250     Register index = addr->index()->as_pointer_register();
 251     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 252   } else if (addr->index()->is_constant()) {
 253     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 254     assert(Assembler::is_simm32(addr_offset), "must be");
 255 
 256     return Address(base, addr_offset);
 257   } else {
 258     Unimplemented();
 259     return Address();
 260   }
 261 }
 262 
 263 
 264 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 265   Address base = as_Address(addr);
 266   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 267 }
 268 
 269 
 270 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 271   return as_Address(addr);
 272 }
 273 
 274 
 275 void LIR_Assembler::osr_entry() {
 276   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 277   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 278   ValueStack* entry_state = osr_entry->state();
 279   int number_of_locks = entry_state->locks_size();
 280 
 281   // we jump here if osr happens with the interpreter
 282   // state set up to continue at the beginning of the
 283   // loop that triggered osr - in particular, we have
 284   // the following registers setup:
 285   //
 286   // rcx: osr buffer
 287   //
 288 
 289   // build frame
 290   ciMethod* m = compilation()->method();
 291   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 292 
 293   // OSR buffer is
 294   //
 295   // locals[nlocals-1..0]
 296   // monitors[0..number_of_locks]
 297   //
 298   // locals is a direct copy of the interpreter frame so in the osr buffer
 299   // so first slot in the local array is the last local from the interpreter
 300   // and last slot is local[0] (receiver) from the interpreter
 301   //
 302   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 303   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 304   // in the interpreter frame (the method lock if a sync method)
 305 
 306   // Initialize monitors in the compiled activation.
 307   //   rcx: pointer to osr buffer
 308   //
 309   // All other registers are dead at this point and the locals will be
 310   // copied into place by code emitted in the IR.
 311 
 312   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 313   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 314     int monitor_offset = BytesPerWord * method()->max_locals() +
 315       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 316     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 317     // the OSR buffer using 2 word entries: first the lock and then
 318     // the oop.
 319     for (int i = 0; i < number_of_locks; i++) {
 320       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 321 #ifdef ASSERT
 322       // verify the interpreter's monitor has a non-null object
 323       {
 324         Label L;
 325         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 326         __ jcc(Assembler::notZero, L);
 327         __ stop("locked object is NULL");
 328         __ bind(L);
 329       }
 330 #endif
 331       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 332       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 333       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 334       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 335     }
 336   }
 337 }
 338 
 339 
 340 // inline cache check; done before the frame is built.
 341 int LIR_Assembler::check_icache() {
 342   Register receiver = FrameMap::receiver_opr->as_register();
 343   Register ic_klass = IC_Klass;
 344   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 345   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 346   if (!do_post_padding) {
 347     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 348     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 349   }
 350   int offset = __ offset();
 351   __ inline_cache_check(receiver, IC_Klass);
 352   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 353   if (do_post_padding) {
 354     // force alignment after the cache check.
 355     // It's been verified to be aligned if !VerifyOops
 356     __ align(CodeEntryAlignment);
 357   }
 358   return offset;
 359 }
 360 
 361 
 362 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 363   jobject o = NULL;
 364   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 365   __ movoop(reg, o);
 366   patching_epilog(patch, lir_patch_normal, reg, info);
 367 }
 368 
 369 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 370   Metadata* o = NULL;
 371   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 372   __ mov_metadata(reg, o);
 373   patching_epilog(patch, lir_patch_normal, reg, info);
 374 }
 375 
 376 // This specifies the rsp decrement needed to build the frame
 377 int LIR_Assembler::initial_frame_size_in_bytes() const {
 378   // if rounding, must let FrameMap know!
 379 
 380   // The frame_map records size in slots (32bit word)
 381 
 382   // subtract two words to account for return address and link
 383   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 384 }
 385 
 386 
 387 int LIR_Assembler::emit_exception_handler() {
 388   // if the last instruction is a call (typically to do a throw which
 389   // is coming at the end after block reordering) the return address
 390   // must still point into the code area in order to avoid assertion
 391   // failures when searching for the corresponding bci => add a nop
 392   // (was bug 5/14/1999 - gri)
 393   __ nop();
 394 
 395   // generate code for exception handler
 396   address handler_base = __ start_a_stub(exception_handler_size());
 397   if (handler_base == NULL) {
 398     // not enough space left for the handler
 399     bailout("exception handler overflow");
 400     return -1;
 401   }
 402 
 403   int offset = code_offset();
 404 
 405   // the exception oop and pc are in rax, and rdx
 406   // no other registers need to be preserved, so invalidate them
 407   __ invalidate_registers(false, true, true, false, true, true);
 408 
 409   // check that there is really an exception
 410   __ verify_not_null_oop(rax);
 411 
 412   // search an exception handler (rax: exception oop, rdx: throwing pc)
 413   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 414   __ should_not_reach_here();
 415   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 416   __ end_a_stub();
 417 
 418   return offset;
 419 }
 420 
 421 
 422 // Emit the code to remove the frame from the stack in the exception
 423 // unwind path.
 424 int LIR_Assembler::emit_unwind_handler() {
 425 #ifndef PRODUCT
 426   if (CommentedAssembly) {
 427     _masm->block_comment("Unwind handler");
 428   }
 429 #endif
 430 
 431   int offset = code_offset();
 432 
 433   // Fetch the exception from TLS and clear out exception related thread state
 434   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 435   NOT_LP64(__ get_thread(rsi));
 436   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 437   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 438   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 439 
 440   __ bind(_unwind_handler_entry);
 441   __ verify_not_null_oop(rax);
 442   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 443     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 444   }
 445 
 446   // Preform needed unlocking
 447   MonitorExitStub* stub = NULL;
 448   if (method()->is_synchronized()) {
 449     monitor_address(0, FrameMap::rax_opr);
 450     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 451     __ unlock_object(rdi, rsi, rax, *stub->entry());
 452     __ bind(*stub->continuation());
 453   }
 454 
 455   if (compilation()->env()->dtrace_method_probes()) {
 456 #ifdef _LP64
 457     __ mov(rdi, r15_thread);
 458     __ mov_metadata(rsi, method()->constant_encoding());
 459 #else
 460     __ get_thread(rax);
 461     __ movptr(Address(rsp, 0), rax);
 462     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 463 #endif
 464     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 465   }
 466 
 467   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 468     __ mov(rax, rbx);  // Restore the exception
 469   }
 470 
 471   // remove the activation and dispatch to the unwind handler
 472   __ remove_frame(initial_frame_size_in_bytes());
 473   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 474 
 475   // Emit the slow path assembly
 476   if (stub != NULL) {
 477     stub->emit_code(this);
 478   }
 479 
 480   return offset;
 481 }
 482 
 483 
 484 int LIR_Assembler::emit_deopt_handler() {
 485   // if the last instruction is a call (typically to do a throw which
 486   // is coming at the end after block reordering) the return address
 487   // must still point into the code area in order to avoid assertion
 488   // failures when searching for the corresponding bci => add a nop
 489   // (was bug 5/14/1999 - gri)
 490   __ nop();
 491 
 492   // generate code for exception handler
 493   address handler_base = __ start_a_stub(deopt_handler_size());
 494   if (handler_base == NULL) {
 495     // not enough space left for the handler
 496     bailout("deopt handler overflow");
 497     return -1;
 498   }
 499 
 500   int offset = code_offset();
 501   InternalAddress here(__ pc());
 502 
 503   __ pushptr(here.addr());
 504   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 505   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 506   __ end_a_stub();
 507 
 508   return offset;
 509 }
 510 
 511 
 512 void LIR_Assembler::return_op(LIR_Opr result) {
 513   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 514   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 515     assert(result->fpu() == 0, "result must already be on TOS");
 516   }
 517 
 518   // Pop the stack before the safepoint code
 519   __ remove_frame(initial_frame_size_in_bytes());
 520 
 521   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 522     __ reserved_stack_check();
 523   }
 524 
 525   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 526 
 527   // Note: we do not need to round double result; float result has the right precision
 528   // the poll sets the condition code, but no data registers
 529   AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 530 
 531   if (Assembler::is_polling_page_far()) {
 532     __ lea(rscratch1, polling_page);
 533     __ relocate(relocInfo::poll_return_type);
 534     __ testl(rax, Address(rscratch1, 0));
 535   } else {
 536     __ testl(rax, polling_page);
 537   }
 538   __ ret(0);
 539 }
 540 
 541 
 542 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 543   AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 544   guarantee(info != NULL, "Shouldn't be NULL");
 545   int offset = __ offset();
 546   if (Assembler::is_polling_page_far()) {
 547     __ lea(rscratch1, polling_page);
 548     offset = __ offset();
 549     add_debug_info_for_branch(info);
 550     __ relocate(relocInfo::poll_type);
 551     __ testl(rax, Address(rscratch1, 0));
 552   } else {
 553     add_debug_info_for_branch(info);
 554     __ testl(rax, polling_page);
 555   }
 556   return offset;
 557 }
 558 
 559 
 560 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 561   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 562 }
 563 
 564 void LIR_Assembler::swap_reg(Register a, Register b) {
 565   __ xchgptr(a, b);
 566 }
 567 
 568 
 569 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 570   assert(src->is_constant(), "should not call otherwise");
 571   assert(dest->is_register(), "should not call otherwise");
 572   LIR_Const* c = src->as_constant_ptr();
 573 
 574   switch (c->type()) {
 575     case T_INT: {
 576       assert(patch_code == lir_patch_none, "no patching handled here");
 577       __ movl(dest->as_register(), c->as_jint());
 578       break;
 579     }
 580 
 581     case T_ADDRESS: {
 582       assert(patch_code == lir_patch_none, "no patching handled here");
 583       __ movptr(dest->as_register(), c->as_jint());
 584       break;
 585     }
 586 
 587     case T_LONG: {
 588       assert(patch_code == lir_patch_none, "no patching handled here");
 589 #ifdef _LP64
 590       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 591 #else
 592       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 593       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 594 #endif // _LP64
 595       break;
 596     }
 597 
 598     case T_OBJECT: {
 599       if (patch_code != lir_patch_none) {
 600         jobject2reg_with_patching(dest->as_register(), info);
 601       } else {
 602         __ movoop(dest->as_register(), c->as_jobject());
 603       }
 604       break;
 605     }
 606 
 607     case T_METADATA: {
 608       if (patch_code != lir_patch_none) {
 609         klass2reg_with_patching(dest->as_register(), info);
 610       } else {
 611         __ mov_metadata(dest->as_register(), c->as_metadata());
 612       }
 613       break;
 614     }
 615 
 616     case T_FLOAT: {
 617       if (dest->is_single_xmm()) {
 618         if (c->is_zero_float()) {
 619           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 620         } else {
 621           __ movflt(dest->as_xmm_float_reg(),
 622                    InternalAddress(float_constant(c->as_jfloat())));
 623         }
 624       } else {
 625         assert(dest->is_single_fpu(), "must be");
 626         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 627         if (c->is_zero_float()) {
 628           __ fldz();
 629         } else if (c->is_one_float()) {
 630           __ fld1();
 631         } else {
 632           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 633         }
 634       }
 635       break;
 636     }
 637 
 638     case T_DOUBLE: {
 639       if (dest->is_double_xmm()) {
 640         if (c->is_zero_double()) {
 641           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 642         } else {
 643           __ movdbl(dest->as_xmm_double_reg(),
 644                     InternalAddress(double_constant(c->as_jdouble())));
 645         }
 646       } else {
 647         assert(dest->is_double_fpu(), "must be");
 648         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 649         if (c->is_zero_double()) {
 650           __ fldz();
 651         } else if (c->is_one_double()) {
 652           __ fld1();
 653         } else {
 654           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 655         }
 656       }
 657       break;
 658     }
 659 
 660     default:
 661       ShouldNotReachHere();
 662   }
 663 }
 664 
 665 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 666   assert(src->is_constant(), "should not call otherwise");
 667   assert(dest->is_stack(), "should not call otherwise");
 668   LIR_Const* c = src->as_constant_ptr();
 669 
 670   switch (c->type()) {
 671     case T_INT:  // fall through
 672     case T_FLOAT:
 673       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 674       break;
 675 
 676     case T_ADDRESS:
 677       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 678       break;
 679 
 680     case T_OBJECT:
 681       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 682       break;
 683 
 684     case T_LONG:  // fall through
 685     case T_DOUBLE:
 686 #ifdef _LP64
 687       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 688                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 689 #else
 690       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 691                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 692       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 693                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 694 #endif // _LP64
 695       break;
 696 
 697     default:
 698       ShouldNotReachHere();
 699   }
 700 }
 701 
 702 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 703   assert(src->is_constant(), "should not call otherwise");
 704   assert(dest->is_address(), "should not call otherwise");
 705   LIR_Const* c = src->as_constant_ptr();
 706   LIR_Address* addr = dest->as_address_ptr();
 707 
 708   int null_check_here = code_offset();
 709   switch (type) {
 710     case T_INT:    // fall through
 711     case T_FLOAT:
 712       __ movl(as_Address(addr), c->as_jint_bits());
 713       break;
 714 
 715     case T_ADDRESS:
 716       __ movptr(as_Address(addr), c->as_jint_bits());
 717       break;
 718 
 719     case T_OBJECT:  // fall through
 720     case T_ARRAY:
 721       if (c->as_jobject() == NULL) {
 722         if (UseCompressedOops && !wide) {
 723           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 724         } else {
 725 #ifdef _LP64
 726           __ xorptr(rscratch1, rscratch1);
 727           null_check_here = code_offset();
 728           __ movptr(as_Address(addr), rscratch1);
 729 #else
 730           __ movptr(as_Address(addr), NULL_WORD);
 731 #endif
 732         }
 733       } else {
 734         if (is_literal_address(addr)) {
 735           ShouldNotReachHere();
 736           __ movoop(as_Address(addr, noreg), c->as_jobject());
 737         } else {
 738 #ifdef _LP64
 739           __ movoop(rscratch1, c->as_jobject());
 740           if (UseCompressedOops && !wide) {
 741             __ encode_heap_oop(rscratch1);
 742             null_check_here = code_offset();
 743             __ movl(as_Address_lo(addr), rscratch1);
 744           } else {
 745             null_check_here = code_offset();
 746             __ movptr(as_Address_lo(addr), rscratch1);
 747           }
 748 #else
 749           __ movoop(as_Address(addr), c->as_jobject());
 750 #endif
 751         }
 752       }
 753       break;
 754 
 755     case T_LONG:    // fall through
 756     case T_DOUBLE:
 757 #ifdef _LP64
 758       if (is_literal_address(addr)) {
 759         ShouldNotReachHere();
 760         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 761       } else {
 762         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 763         null_check_here = code_offset();
 764         __ movptr(as_Address_lo(addr), r10);
 765       }
 766 #else
 767       // Always reachable in 32bit so this doesn't produce useless move literal
 768       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 769       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 770 #endif // _LP64
 771       break;
 772 
 773     case T_BOOLEAN: // fall through
 774     case T_BYTE:
 775       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 776       break;
 777 
 778     case T_CHAR:    // fall through
 779     case T_SHORT:
 780       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 781       break;
 782 
 783     default:
 784       ShouldNotReachHere();
 785   };
 786 
 787   if (info != NULL) {
 788     add_debug_info_for_null_check(null_check_here, info);
 789   }
 790 }
 791 
 792 
 793 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 794   assert(src->is_register(), "should not call otherwise");
 795   assert(dest->is_register(), "should not call otherwise");
 796 
 797   // move between cpu-registers
 798   if (dest->is_single_cpu()) {
 799 #ifdef _LP64
 800     if (src->type() == T_LONG) {
 801       // Can do LONG -> OBJECT
 802       move_regs(src->as_register_lo(), dest->as_register());
 803       return;
 804     }
 805 #endif
 806     assert(src->is_single_cpu(), "must match");
 807     if (src->type() == T_OBJECT) {
 808       __ verify_oop(src->as_register());
 809     }
 810     move_regs(src->as_register(), dest->as_register());
 811 
 812   } else if (dest->is_double_cpu()) {
 813 #ifdef _LP64
 814     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 815       // Surprising to me but we can see move of a long to t_object
 816       __ verify_oop(src->as_register());
 817       move_regs(src->as_register(), dest->as_register_lo());
 818       return;
 819     }
 820 #endif
 821     assert(src->is_double_cpu(), "must match");
 822     Register f_lo = src->as_register_lo();
 823     Register f_hi = src->as_register_hi();
 824     Register t_lo = dest->as_register_lo();
 825     Register t_hi = dest->as_register_hi();
 826 #ifdef _LP64
 827     assert(f_hi == f_lo, "must be same");
 828     assert(t_hi == t_lo, "must be same");
 829     move_regs(f_lo, t_lo);
 830 #else
 831     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 832 
 833 
 834     if (f_lo == t_hi && f_hi == t_lo) {
 835       swap_reg(f_lo, f_hi);
 836     } else if (f_hi == t_lo) {
 837       assert(f_lo != t_hi, "overwriting register");
 838       move_regs(f_hi, t_hi);
 839       move_regs(f_lo, t_lo);
 840     } else {
 841       assert(f_hi != t_lo, "overwriting register");
 842       move_regs(f_lo, t_lo);
 843       move_regs(f_hi, t_hi);
 844     }
 845 #endif // LP64
 846 
 847     // special moves from fpu-register to xmm-register
 848     // necessary for method results
 849   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 850     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 851     __ fld_s(Address(rsp, 0));
 852   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 853     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 854     __ fld_d(Address(rsp, 0));
 855   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 856     __ fstp_s(Address(rsp, 0));
 857     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 858   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 859     __ fstp_d(Address(rsp, 0));
 860     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 861 
 862     // move between xmm-registers
 863   } else if (dest->is_single_xmm()) {
 864     assert(src->is_single_xmm(), "must match");
 865     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 866   } else if (dest->is_double_xmm()) {
 867     assert(src->is_double_xmm(), "must match");
 868     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 869 
 870     // move between fpu-registers (no instruction necessary because of fpu-stack)
 871   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 872     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 873     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 874   } else {
 875     ShouldNotReachHere();
 876   }
 877 }
 878 
 879 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 880   assert(src->is_register(), "should not call otherwise");
 881   assert(dest->is_stack(), "should not call otherwise");
 882 
 883   if (src->is_single_cpu()) {
 884     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 885     if (type == T_OBJECT || type == T_ARRAY) {
 886       __ verify_oop(src->as_register());
 887       __ movptr (dst, src->as_register());
 888     } else if (type == T_METADATA) {
 889       __ movptr (dst, src->as_register());
 890     } else {
 891       __ movl (dst, src->as_register());
 892     }
 893 
 894   } else if (src->is_double_cpu()) {
 895     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 896     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 897     __ movptr (dstLO, src->as_register_lo());
 898     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 899 
 900   } else if (src->is_single_xmm()) {
 901     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 902     __ movflt(dst_addr, src->as_xmm_float_reg());
 903 
 904   } else if (src->is_double_xmm()) {
 905     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 906     __ movdbl(dst_addr, src->as_xmm_double_reg());
 907 
 908   } else if (src->is_single_fpu()) {
 909     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 910     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 911     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 912     else                   __ fst_s  (dst_addr);
 913 
 914   } else if (src->is_double_fpu()) {
 915     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 916     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 917     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 918     else                   __ fst_d  (dst_addr);
 919 
 920   } else {
 921     ShouldNotReachHere();
 922   }
 923 }
 924 
 925 
 926 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 927   LIR_Address* to_addr = dest->as_address_ptr();
 928   PatchingStub* patch = NULL;
 929   Register compressed_src = rscratch1;
 930 
 931   if (type == T_ARRAY || type == T_OBJECT) {
 932     __ verify_oop(src->as_register());
 933     __ shenandoah_store_addr_check(as_Address(to_addr));
 934     __ shenandoah_store_val_check(as_Address(to_addr), src->as_register());
 935 #ifdef _LP64
 936     if (UseCompressedOops && !wide) {
 937       __ movptr(compressed_src, src->as_register());
 938       __ encode_heap_oop(compressed_src);
 939       if (patch_code != lir_patch_none) {
 940         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 941       }
 942     }
 943 #endif
 944   } else {
 945     __ shenandoah_store_addr_check(to_addr->base()->as_pointer_register());
 946   }
 947 
 948   if (patch_code != lir_patch_none) {
 949     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 950     Address toa = as_Address(to_addr);
 951     assert(toa.disp() != 0, "must have");
 952   }
 953 
 954   int null_check_here = code_offset();
 955   switch (type) {
 956     case T_FLOAT: {
 957       if (src->is_single_xmm()) {
 958         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 959       } else {
 960         assert(src->is_single_fpu(), "must be");
 961         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 962         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 963         else                    __ fst_s (as_Address(to_addr));
 964       }
 965       break;
 966     }
 967 
 968     case T_DOUBLE: {
 969       if (src->is_double_xmm()) {
 970         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 971       } else {
 972         assert(src->is_double_fpu(), "must be");
 973         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 974         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
 975         else                    __ fst_d (as_Address(to_addr));
 976       }
 977       break;
 978     }
 979 
 980     case T_ARRAY:   // fall through
 981     case T_OBJECT:  // fall through
 982       if (UseCompressedOops && !wide) {
 983         __ movl(as_Address(to_addr), compressed_src);
 984       } else {
 985         __ movptr(as_Address(to_addr), src->as_register());
 986       }
 987       break;
 988     case T_METADATA:
 989       // We get here to store a method pointer to the stack to pass to
 990       // a dtrace runtime call. This can't work on 64 bit with
 991       // compressed klass ptrs: T_METADATA can be a compressed klass
 992       // ptr or a 64 bit method pointer.
 993       LP64_ONLY(ShouldNotReachHere());
 994       __ movptr(as_Address(to_addr), src->as_register());
 995       break;
 996     case T_ADDRESS:
 997       __ movptr(as_Address(to_addr), src->as_register());
 998       break;
 999     case T_INT:
1000       __ movl(as_Address(to_addr), src->as_register());
1001       break;
1002 
1003     case T_LONG: {
1004       Register from_lo = src->as_register_lo();
1005       Register from_hi = src->as_register_hi();
1006 #ifdef _LP64
1007       __ movptr(as_Address_lo(to_addr), from_lo);
1008 #else
1009       Register base = to_addr->base()->as_register();
1010       Register index = noreg;
1011       if (to_addr->index()->is_register()) {
1012         index = to_addr->index()->as_register();
1013       }
1014       if (base == from_lo || index == from_lo) {
1015         assert(base != from_hi, "can't be");
1016         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1017         __ movl(as_Address_hi(to_addr), from_hi);
1018         if (patch != NULL) {
1019           patching_epilog(patch, lir_patch_high, base, info);
1020           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1021           patch_code = lir_patch_low;
1022         }
1023         __ movl(as_Address_lo(to_addr), from_lo);
1024       } else {
1025         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1026         __ movl(as_Address_lo(to_addr), from_lo);
1027         if (patch != NULL) {
1028           patching_epilog(patch, lir_patch_low, base, info);
1029           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1030           patch_code = lir_patch_high;
1031         }
1032         __ movl(as_Address_hi(to_addr), from_hi);
1033       }
1034 #endif // _LP64
1035       break;
1036     }
1037 
1038     case T_BYTE:    // fall through
1039     case T_BOOLEAN: {
1040       Register src_reg = src->as_register();
1041       Address dst_addr = as_Address(to_addr);
1042       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1043       __ movb(dst_addr, src_reg);
1044       break;
1045     }
1046 
1047     case T_CHAR:    // fall through
1048     case T_SHORT:
1049       __ movw(as_Address(to_addr), src->as_register());
1050       break;
1051 
1052     default:
1053       ShouldNotReachHere();
1054   }
1055   if (info != NULL) {
1056     add_debug_info_for_null_check(null_check_here, info);
1057   }
1058 
1059   if (patch_code != lir_patch_none) {
1060     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1061   }
1062 }
1063 
1064 
1065 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1066   assert(src->is_stack(), "should not call otherwise");
1067   assert(dest->is_register(), "should not call otherwise");
1068 
1069   if (dest->is_single_cpu()) {
1070     if (type == T_ARRAY || type == T_OBJECT) {
1071       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1072       __ verify_oop(dest->as_register());
1073     } else if (type == T_METADATA) {
1074       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1075     } else {
1076       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1077     }
1078 
1079   } else if (dest->is_double_cpu()) {
1080     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1081     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1082     __ movptr(dest->as_register_lo(), src_addr_LO);
1083     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1084 
1085   } else if (dest->is_single_xmm()) {
1086     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1087     __ movflt(dest->as_xmm_float_reg(), src_addr);
1088 
1089   } else if (dest->is_double_xmm()) {
1090     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1091     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1092 
1093   } else if (dest->is_single_fpu()) {
1094     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1095     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1096     __ fld_s(src_addr);
1097 
1098   } else if (dest->is_double_fpu()) {
1099     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1100     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1101     __ fld_d(src_addr);
1102 
1103   } else {
1104     ShouldNotReachHere();
1105   }
1106 }
1107 
1108 
1109 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1110   if (src->is_single_stack()) {
1111     if (type == T_OBJECT || type == T_ARRAY) {
1112       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1113       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1114     } else {
1115 #ifndef _LP64
1116       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1117       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1118 #else
1119       //no pushl on 64bits
1120       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1121       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1122 #endif
1123     }
1124 
1125   } else if (src->is_double_stack()) {
1126 #ifdef _LP64
1127     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1128     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1129 #else
1130     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1131     // push and pop the part at src + wordSize, adding wordSize for the previous push
1132     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1133     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1134     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1135 #endif // _LP64
1136 
1137   } else {
1138     ShouldNotReachHere();
1139   }
1140 }
1141 
1142 
1143 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1144   assert(src->is_address(), "should not call otherwise");
1145   assert(dest->is_register(), "should not call otherwise");
1146 
1147   LIR_Address* addr = src->as_address_ptr();
1148   Address from_addr = as_Address(addr);
1149 
1150   if (addr->base()->type() == T_OBJECT) {
1151     __ verify_oop(addr->base()->as_pointer_register());
1152   }
1153 
1154   switch (type) {
1155     case T_BOOLEAN: // fall through
1156     case T_BYTE:    // fall through
1157     case T_CHAR:    // fall through
1158     case T_SHORT:
1159       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1160         // on pre P6 processors we may get partial register stalls
1161         // so blow away the value of to_rinfo before loading a
1162         // partial word into it.  Do it here so that it precedes
1163         // the potential patch point below.
1164         __ xorptr(dest->as_register(), dest->as_register());
1165       }
1166       break;
1167    default:
1168      break;
1169   }
1170 
1171   PatchingStub* patch = NULL;
1172   if (patch_code != lir_patch_none) {
1173     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1174     assert(from_addr.disp() != 0, "must have");
1175   }
1176   if (info != NULL) {
1177     add_debug_info_for_null_check_here(info);
1178   }
1179 
1180   switch (type) {
1181     case T_FLOAT: {
1182       if (dest->is_single_xmm()) {
1183         __ movflt(dest->as_xmm_float_reg(), from_addr);
1184       } else {
1185         assert(dest->is_single_fpu(), "must be");
1186         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1187         __ fld_s(from_addr);
1188       }
1189       break;
1190     }
1191 
1192     case T_DOUBLE: {
1193       if (dest->is_double_xmm()) {
1194         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1195       } else {
1196         assert(dest->is_double_fpu(), "must be");
1197         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1198         __ fld_d(from_addr);
1199       }
1200       break;
1201     }
1202 
1203     case T_OBJECT:  // fall through
1204     case T_ARRAY:   // fall through
1205       if (UseCompressedOops && !wide) {
1206         __ movl(dest->as_register(), from_addr);
1207       } else {
1208         __ movptr(dest->as_register(), from_addr);
1209       }
1210       break;
1211 
1212     case T_ADDRESS:
1213       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1214         __ movl(dest->as_register(), from_addr);
1215       } else {
1216         __ movptr(dest->as_register(), from_addr);
1217       }
1218       break;
1219     case T_INT:
1220       __ movl(dest->as_register(), from_addr);
1221       break;
1222 
1223     case T_LONG: {
1224       Register to_lo = dest->as_register_lo();
1225       Register to_hi = dest->as_register_hi();
1226 #ifdef _LP64
1227       __ movptr(to_lo, as_Address_lo(addr));
1228 #else
1229       Register base = addr->base()->as_register();
1230       Register index = noreg;
1231       if (addr->index()->is_register()) {
1232         index = addr->index()->as_register();
1233       }
1234       if ((base == to_lo && index == to_hi) ||
1235           (base == to_hi && index == to_lo)) {
1236         // addresses with 2 registers are only formed as a result of
1237         // array access so this code will never have to deal with
1238         // patches or null checks.
1239         assert(info == NULL && patch == NULL, "must be");
1240         __ lea(to_hi, as_Address(addr));
1241         __ movl(to_lo, Address(to_hi, 0));
1242         __ movl(to_hi, Address(to_hi, BytesPerWord));
1243       } else if (base == to_lo || index == to_lo) {
1244         assert(base != to_hi, "can't be");
1245         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1246         __ movl(to_hi, as_Address_hi(addr));
1247         if (patch != NULL) {
1248           patching_epilog(patch, lir_patch_high, base, info);
1249           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1250           patch_code = lir_patch_low;
1251         }
1252         __ movl(to_lo, as_Address_lo(addr));
1253       } else {
1254         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1255         __ movl(to_lo, as_Address_lo(addr));
1256         if (patch != NULL) {
1257           patching_epilog(patch, lir_patch_low, base, info);
1258           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1259           patch_code = lir_patch_high;
1260         }
1261         __ movl(to_hi, as_Address_hi(addr));
1262       }
1263 #endif // _LP64
1264       break;
1265     }
1266 
1267     case T_BOOLEAN: // fall through
1268     case T_BYTE: {
1269       Register dest_reg = dest->as_register();
1270       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1271       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1272         __ movsbl(dest_reg, from_addr);
1273       } else {
1274         __ movb(dest_reg, from_addr);
1275         __ shll(dest_reg, 24);
1276         __ sarl(dest_reg, 24);
1277       }
1278       break;
1279     }
1280 
1281     case T_CHAR: {
1282       Register dest_reg = dest->as_register();
1283       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1284       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1285         __ movzwl(dest_reg, from_addr);
1286       } else {
1287         __ movw(dest_reg, from_addr);
1288       }
1289       break;
1290     }
1291 
1292     case T_SHORT: {
1293       Register dest_reg = dest->as_register();
1294       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1295         __ movswl(dest_reg, from_addr);
1296       } else {
1297         __ movw(dest_reg, from_addr);
1298         __ shll(dest_reg, 16);
1299         __ sarl(dest_reg, 16);
1300       }
1301       break;
1302     }
1303 
1304     default:
1305       ShouldNotReachHere();
1306   }
1307 
1308   if (patch != NULL) {
1309     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1310   }
1311 
1312   if (type == T_ARRAY || type == T_OBJECT) {
1313 #ifdef _LP64
1314     if (UseCompressedOops && !wide) {
1315       __ decode_heap_oop(dest->as_register());
1316     }
1317 #endif
1318     __ verify_oop(dest->as_register());
1319   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1320 #ifdef _LP64
1321     if (UseCompressedClassPointers) {
1322       __ decode_klass_not_null(dest->as_register());
1323     }
1324 #endif
1325   }
1326 }
1327 
1328 
1329 NEEDS_CLEANUP; // This could be static?
1330 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1331   int elem_size = type2aelembytes(type);
1332   switch (elem_size) {
1333     case 1: return Address::times_1;
1334     case 2: return Address::times_2;
1335     case 4: return Address::times_4;
1336     case 8: return Address::times_8;
1337   }
1338   ShouldNotReachHere();
1339   return Address::no_scale;
1340 }
1341 
1342 
1343 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1344   switch (op->code()) {
1345     case lir_idiv:
1346     case lir_irem:
1347       arithmetic_idiv(op->code(),
1348                       op->in_opr1(),
1349                       op->in_opr2(),
1350                       op->in_opr3(),
1351                       op->result_opr(),
1352                       op->info());
1353       break;
1354     case lir_fmad:
1355       __ fmad(op->result_opr()->as_xmm_double_reg(),
1356               op->in_opr1()->as_xmm_double_reg(),
1357               op->in_opr2()->as_xmm_double_reg(),
1358               op->in_opr3()->as_xmm_double_reg());
1359       break;
1360     case lir_fmaf:
1361       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1362               op->in_opr1()->as_xmm_float_reg(),
1363               op->in_opr2()->as_xmm_float_reg(),
1364               op->in_opr3()->as_xmm_float_reg());
1365       break;
1366     default:      ShouldNotReachHere(); break;
1367   }
1368 }
1369 
1370 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1371 #ifdef ASSERT
1372   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1373   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1374   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1375 #endif
1376 
1377   if (op->cond() == lir_cond_always) {
1378     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1379     __ jmp (*(op->label()));
1380   } else {
1381     Assembler::Condition acond = Assembler::zero;
1382     if (op->code() == lir_cond_float_branch) {
1383       assert(op->ublock() != NULL, "must have unordered successor");
1384       __ jcc(Assembler::parity, *(op->ublock()->label()));
1385       switch(op->cond()) {
1386         case lir_cond_equal:        acond = Assembler::equal;      break;
1387         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1388         case lir_cond_less:         acond = Assembler::below;      break;
1389         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1390         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1391         case lir_cond_greater:      acond = Assembler::above;      break;
1392         default:                         ShouldNotReachHere();
1393       }
1394     } else {
1395       switch (op->cond()) {
1396         case lir_cond_equal:        acond = Assembler::equal;       break;
1397         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1398         case lir_cond_less:         acond = Assembler::less;        break;
1399         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1400         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1401         case lir_cond_greater:      acond = Assembler::greater;     break;
1402         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1403         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1404         default:                         ShouldNotReachHere();
1405       }
1406     }
1407     __ jcc(acond,*(op->label()));
1408   }
1409 }
1410 
1411 void LIR_Assembler::emit_opShenandoahWriteBarrier(LIR_OpShenandoahWriteBarrier* op) {
1412   Label done;
1413   Register obj = op->in_opr()->as_register();
1414   Register res = op->result_opr()->as_register();
1415 
1416   if (res != obj) {
1417     __ mov(res, obj);
1418   }
1419 
1420   // Check for null.
1421   if (op->need_null_check()) {
1422     __ testptr(res, res);
1423     __ jcc(Assembler::zero, done);
1424   }
1425 
1426   __ shenandoah_write_barrier(res);
1427 
1428   __ bind(done);
1429 
1430 }
1431 
1432 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1433   LIR_Opr src  = op->in_opr();
1434   LIR_Opr dest = op->result_opr();
1435 
1436   switch (op->bytecode()) {
1437     case Bytecodes::_i2l:
1438 #ifdef _LP64
1439       __ movl2ptr(dest->as_register_lo(), src->as_register());
1440 #else
1441       move_regs(src->as_register(), dest->as_register_lo());
1442       move_regs(src->as_register(), dest->as_register_hi());
1443       __ sarl(dest->as_register_hi(), 31);
1444 #endif // LP64
1445       break;
1446 
1447     case Bytecodes::_l2i:
1448 #ifdef _LP64
1449       __ movl(dest->as_register(), src->as_register_lo());
1450 #else
1451       move_regs(src->as_register_lo(), dest->as_register());
1452 #endif
1453       break;
1454 
1455     case Bytecodes::_i2b:
1456       move_regs(src->as_register(), dest->as_register());
1457       __ sign_extend_byte(dest->as_register());
1458       break;
1459 
1460     case Bytecodes::_i2c:
1461       move_regs(src->as_register(), dest->as_register());
1462       __ andl(dest->as_register(), 0xFFFF);
1463       break;
1464 
1465     case Bytecodes::_i2s:
1466       move_regs(src->as_register(), dest->as_register());
1467       __ sign_extend_short(dest->as_register());
1468       break;
1469 
1470 
1471     case Bytecodes::_f2d:
1472     case Bytecodes::_d2f:
1473       if (dest->is_single_xmm()) {
1474         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1475       } else if (dest->is_double_xmm()) {
1476         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1477       } else {
1478         assert(src->fpu() == dest->fpu(), "register must be equal");
1479         // do nothing (float result is rounded later through spilling)
1480       }
1481       break;
1482 
1483     case Bytecodes::_i2f:
1484     case Bytecodes::_i2d:
1485       if (dest->is_single_xmm()) {
1486         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1487       } else if (dest->is_double_xmm()) {
1488         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1489       } else {
1490         assert(dest->fpu() == 0, "result must be on TOS");
1491         __ movl(Address(rsp, 0), src->as_register());
1492         __ fild_s(Address(rsp, 0));
1493       }
1494       break;
1495 
1496     case Bytecodes::_f2i:
1497     case Bytecodes::_d2i:
1498       if (src->is_single_xmm()) {
1499         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1500       } else if (src->is_double_xmm()) {
1501         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1502       } else {
1503         assert(src->fpu() == 0, "input must be on TOS");
1504         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1505         __ fist_s(Address(rsp, 0));
1506         __ movl(dest->as_register(), Address(rsp, 0));
1507         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1508       }
1509 
1510       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1511       assert(op->stub() != NULL, "stub required");
1512       __ cmpl(dest->as_register(), 0x80000000);
1513       __ jcc(Assembler::equal, *op->stub()->entry());
1514       __ bind(*op->stub()->continuation());
1515       break;
1516 
1517     case Bytecodes::_l2f:
1518     case Bytecodes::_l2d:
1519       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1520       assert(dest->fpu() == 0, "result must be on TOS");
1521 
1522       __ movptr(Address(rsp, 0),            src->as_register_lo());
1523       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1524       __ fild_d(Address(rsp, 0));
1525       // float result is rounded later through spilling
1526       break;
1527 
1528     case Bytecodes::_f2l:
1529     case Bytecodes::_d2l:
1530       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1531       assert(src->fpu() == 0, "input must be on TOS");
1532       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1533 
1534       // instruction sequence too long to inline it here
1535       {
1536         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1537       }
1538       break;
1539 
1540     default: ShouldNotReachHere();
1541   }
1542 }
1543 
1544 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1545   if (op->init_check()) {
1546     __ cmpb(Address(op->klass()->as_register(),
1547                     InstanceKlass::init_state_offset()),
1548                     InstanceKlass::fully_initialized);
1549     add_debug_info_for_null_check_here(op->stub()->info());
1550     __ jcc(Assembler::notEqual, *op->stub()->entry());
1551   }
1552   __ allocate_object(op->obj()->as_register(),
1553                      op->tmp1()->as_register(),
1554                      op->tmp2()->as_register(),
1555                      op->header_size(),
1556                      op->object_size(),
1557                      op->klass()->as_register(),
1558                      *op->stub()->entry());
1559   __ bind(*op->stub()->continuation());
1560 }
1561 
1562 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1563   Register len =  op->len()->as_register();
1564   LP64_ONLY( __ movslq(len, len); )
1565 
1566   if (UseSlowPath ||
1567       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1568       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1569     __ jmp(*op->stub()->entry());
1570   } else {
1571     Register tmp1 = op->tmp1()->as_register();
1572     Register tmp2 = op->tmp2()->as_register();
1573     Register tmp3 = op->tmp3()->as_register();
1574     if (len == tmp1) {
1575       tmp1 = tmp3;
1576     } else if (len == tmp2) {
1577       tmp2 = tmp3;
1578     } else if (len == tmp3) {
1579       // everything is ok
1580     } else {
1581       __ mov(tmp3, len);
1582     }
1583     __ allocate_array(op->obj()->as_register(),
1584                       len,
1585                       tmp1,
1586                       tmp2,
1587                       arrayOopDesc::header_size(op->type()),
1588                       array_element_size(op->type()),
1589                       op->klass()->as_register(),
1590                       *op->stub()->entry());
1591   }
1592   __ bind(*op->stub()->continuation());
1593 }
1594 
1595 void LIR_Assembler::type_profile_helper(Register mdo,
1596                                         ciMethodData *md, ciProfileData *data,
1597                                         Register recv, Label* update_done) {
1598   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1599     Label next_test;
1600     // See if the receiver is receiver[n].
1601     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1602     __ jccb(Assembler::notEqual, next_test);
1603     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1604     __ addptr(data_addr, DataLayout::counter_increment);
1605     __ jmp(*update_done);
1606     __ bind(next_test);
1607   }
1608 
1609   // Didn't find receiver; find next empty slot and fill it in
1610   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1611     Label next_test;
1612     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1613     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1614     __ jccb(Assembler::notEqual, next_test);
1615     __ movptr(recv_addr, recv);
1616     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1617     __ jmp(*update_done);
1618     __ bind(next_test);
1619   }
1620 }
1621 
1622 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1623   // we always need a stub for the failure case.
1624   CodeStub* stub = op->stub();
1625   Register obj = op->object()->as_register();
1626   Register k_RInfo = op->tmp1()->as_register();
1627   Register klass_RInfo = op->tmp2()->as_register();
1628   Register dst = op->result_opr()->as_register();
1629   ciKlass* k = op->klass();
1630   Register Rtmp1 = noreg;
1631 
1632   // check if it needs to be profiled
1633   ciMethodData* md = NULL;
1634   ciProfileData* data = NULL;
1635 
1636   if (op->should_profile()) {
1637     ciMethod* method = op->profiled_method();
1638     assert(method != NULL, "Should have method");
1639     int bci = op->profiled_bci();
1640     md = method->method_data_or_null();
1641     assert(md != NULL, "Sanity");
1642     data = md->bci_to_data(bci);
1643     assert(data != NULL,                "need data for type check");
1644     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1645   }
1646   Label profile_cast_success, profile_cast_failure;
1647   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1648   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1649 
1650   if (obj == k_RInfo) {
1651     k_RInfo = dst;
1652   } else if (obj == klass_RInfo) {
1653     klass_RInfo = dst;
1654   }
1655   if (k->is_loaded() && !UseCompressedClassPointers) {
1656     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1657   } else {
1658     Rtmp1 = op->tmp3()->as_register();
1659     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1660   }
1661 
1662   assert_different_registers(obj, k_RInfo, klass_RInfo);
1663 
1664   __ cmpptr(obj, (int32_t)NULL_WORD);
1665   if (op->should_profile()) {
1666     Label not_null;
1667     __ jccb(Assembler::notEqual, not_null);
1668     // Object is null; update MDO and exit
1669     Register mdo  = klass_RInfo;
1670     __ mov_metadata(mdo, md->constant_encoding());
1671     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1672     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1673     __ orl(data_addr, header_bits);
1674     __ jmp(*obj_is_null);
1675     __ bind(not_null);
1676   } else {
1677     __ jcc(Assembler::equal, *obj_is_null);
1678   }
1679 
1680   if (!k->is_loaded()) {
1681     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1682   } else {
1683 #ifdef _LP64
1684     __ mov_metadata(k_RInfo, k->constant_encoding());
1685 #endif // _LP64
1686   }
1687   __ verify_oop(obj);
1688 
1689   if (op->fast_check()) {
1690     // get object class
1691     // not a safepoint as obj null check happens earlier
1692 #ifdef _LP64
1693     if (UseCompressedClassPointers) {
1694       __ load_klass(Rtmp1, obj);
1695       __ cmpptr(k_RInfo, Rtmp1);
1696     } else {
1697       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1698     }
1699 #else
1700     if (k->is_loaded()) {
1701       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1702     } else {
1703       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1704     }
1705 #endif
1706     __ jcc(Assembler::notEqual, *failure_target);
1707     // successful cast, fall through to profile or jump
1708   } else {
1709     // get object class
1710     // not a safepoint as obj null check happens earlier
1711     __ load_klass(klass_RInfo, obj);
1712     if (k->is_loaded()) {
1713       // See if we get an immediate positive hit
1714 #ifdef _LP64
1715       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1716 #else
1717       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1718 #endif // _LP64
1719       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1720         __ jcc(Assembler::notEqual, *failure_target);
1721         // successful cast, fall through to profile or jump
1722       } else {
1723         // See if we get an immediate positive hit
1724         __ jcc(Assembler::equal, *success_target);
1725         // check for self
1726 #ifdef _LP64
1727         __ cmpptr(klass_RInfo, k_RInfo);
1728 #else
1729         __ cmpklass(klass_RInfo, k->constant_encoding());
1730 #endif // _LP64
1731         __ jcc(Assembler::equal, *success_target);
1732 
1733         __ push(klass_RInfo);
1734 #ifdef _LP64
1735         __ push(k_RInfo);
1736 #else
1737         __ pushklass(k->constant_encoding());
1738 #endif // _LP64
1739         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1740         __ pop(klass_RInfo);
1741         __ pop(klass_RInfo);
1742         // result is a boolean
1743         __ cmpl(klass_RInfo, 0);
1744         __ jcc(Assembler::equal, *failure_target);
1745         // successful cast, fall through to profile or jump
1746       }
1747     } else {
1748       // perform the fast part of the checking logic
1749       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1750       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1751       __ push(klass_RInfo);
1752       __ push(k_RInfo);
1753       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1754       __ pop(klass_RInfo);
1755       __ pop(k_RInfo);
1756       // result is a boolean
1757       __ cmpl(k_RInfo, 0);
1758       __ jcc(Assembler::equal, *failure_target);
1759       // successful cast, fall through to profile or jump
1760     }
1761   }
1762   if (op->should_profile()) {
1763     Register mdo  = klass_RInfo, recv = k_RInfo;
1764     __ bind(profile_cast_success);
1765     __ mov_metadata(mdo, md->constant_encoding());
1766     __ load_klass(recv, obj);
1767     Label update_done;
1768     type_profile_helper(mdo, md, data, recv, success);
1769     __ jmp(*success);
1770 
1771     __ bind(profile_cast_failure);
1772     __ mov_metadata(mdo, md->constant_encoding());
1773     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1774     __ subptr(counter_addr, DataLayout::counter_increment);
1775     __ jmp(*failure);
1776   }
1777   __ jmp(*success);
1778 }
1779 
1780 
1781 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1782   LIR_Code code = op->code();
1783   if (code == lir_store_check) {
1784     Register value = op->object()->as_register();
1785     Register array = op->array()->as_register();
1786     Register k_RInfo = op->tmp1()->as_register();
1787     Register klass_RInfo = op->tmp2()->as_register();
1788     Register Rtmp1 = op->tmp3()->as_register();
1789 
1790     CodeStub* stub = op->stub();
1791 
1792     // check if it needs to be profiled
1793     ciMethodData* md = NULL;
1794     ciProfileData* data = NULL;
1795 
1796     if (op->should_profile()) {
1797       ciMethod* method = op->profiled_method();
1798       assert(method != NULL, "Should have method");
1799       int bci = op->profiled_bci();
1800       md = method->method_data_or_null();
1801       assert(md != NULL, "Sanity");
1802       data = md->bci_to_data(bci);
1803       assert(data != NULL,                "need data for type check");
1804       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1805     }
1806     Label profile_cast_success, profile_cast_failure, done;
1807     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1808     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1809 
1810     __ cmpptr(value, (int32_t)NULL_WORD);
1811     if (op->should_profile()) {
1812       Label not_null;
1813       __ jccb(Assembler::notEqual, not_null);
1814       // Object is null; update MDO and exit
1815       Register mdo  = klass_RInfo;
1816       __ mov_metadata(mdo, md->constant_encoding());
1817       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1818       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1819       __ orl(data_addr, header_bits);
1820       __ jmp(done);
1821       __ bind(not_null);
1822     } else {
1823       __ jcc(Assembler::equal, done);
1824     }
1825 
1826     add_debug_info_for_null_check_here(op->info_for_exception());
1827     __ load_klass(k_RInfo, array);
1828     __ load_klass(klass_RInfo, value);
1829 
1830     // get instance klass (it's already uncompressed)
1831     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1832     // perform the fast part of the checking logic
1833     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1834     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1835     __ push(klass_RInfo);
1836     __ push(k_RInfo);
1837     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1838     __ pop(klass_RInfo);
1839     __ pop(k_RInfo);
1840     // result is a boolean
1841     __ cmpl(k_RInfo, 0);
1842     __ jcc(Assembler::equal, *failure_target);
1843     // fall through to the success case
1844 
1845     if (op->should_profile()) {
1846       Register mdo  = klass_RInfo, recv = k_RInfo;
1847       __ bind(profile_cast_success);
1848       __ mov_metadata(mdo, md->constant_encoding());
1849       __ load_klass(recv, value);
1850       Label update_done;
1851       type_profile_helper(mdo, md, data, recv, &done);
1852       __ jmpb(done);
1853 
1854       __ bind(profile_cast_failure);
1855       __ mov_metadata(mdo, md->constant_encoding());
1856       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1857       __ subptr(counter_addr, DataLayout::counter_increment);
1858       __ jmp(*stub->entry());
1859     }
1860 
1861     __ bind(done);
1862   } else
1863     if (code == lir_checkcast) {
1864       Register obj = op->object()->as_register();
1865       Register dst = op->result_opr()->as_register();
1866       Label success;
1867       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1868       __ bind(success);
1869       if (dst != obj) {
1870         __ mov(dst, obj);
1871       }
1872     } else
1873       if (code == lir_instanceof) {
1874         Register obj = op->object()->as_register();
1875         Register dst = op->result_opr()->as_register();
1876         Label success, failure, done;
1877         emit_typecheck_helper(op, &success, &failure, &failure);
1878         __ bind(failure);
1879         __ xorptr(dst, dst);
1880         __ jmpb(done);
1881         __ bind(success);
1882         __ movptr(dst, 1);
1883         __ bind(done);
1884       } else {
1885         ShouldNotReachHere();
1886       }
1887 
1888 }
1889 
1890 
1891 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1892   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1893     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1894     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1895     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1896     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1897     Register addr = op->addr()->as_register();
1898     if (os::is_MP()) {
1899       __ lock();
1900     }
1901     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1902 
1903   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1904     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1905     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1906     Register newval = op->new_value()->as_register();
1907     Register cmpval = op->cmp_value()->as_register();
1908     assert(cmpval == rax, "wrong register");
1909     assert(newval != NULL, "new val must be register");
1910     assert(cmpval != newval, "cmp and new values must be in different registers");
1911     assert(cmpval != addr, "cmp and addr must be in different registers");
1912     assert(newval != addr, "new value and addr must be in different registers");
1913 
1914     if ( op->code() == lir_cas_obj) {
1915 #ifdef _LP64
1916       if (UseCompressedOops) {
1917         if (UseShenandoahGC && ShenandoahCASBarrier) {
1918           Register tmp1 = op->tmp1()->as_register();
1919           Register tmp2 = op->tmp2()->as_register();
1920 
1921           __ encode_heap_oop(cmpval);
1922           __ mov(rscratch1, newval);
1923           __ encode_heap_oop(rscratch1);
1924           __ cmpxchg_oop_shenandoah(NULL, Address(addr, 0), cmpval, rscratch1, true, tmp1, tmp2);
1925         } else {
1926           __ encode_heap_oop(cmpval);
1927           __ mov(rscratch1, newval);
1928           __ encode_heap_oop(rscratch1);
1929           if (os::is_MP()) {
1930             __ lock();
1931           }
1932           // cmpval (rax) is implicitly used by this instruction
1933           __ cmpxchgl(rscratch1, Address(addr, 0));
1934         }
1935       } else
1936 #endif
1937       {
1938         if (UseShenandoahGC && ShenandoahCASBarrier) {
1939           Register tmp1 = op->tmp1()->as_register();
1940           Register tmp2 = op->tmp2()->as_register();
1941           __ cmpxchg_oop_shenandoah(NULL, Address(addr, 0), cmpval, newval, true, tmp1, tmp2);
1942         } else {
1943           if (os::is_MP()) {
1944             __ lock();
1945           }
1946           __ cmpxchgptr(newval, Address(addr, 0));
1947         }
1948       }
1949     } else {
1950       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1951       if (os::is_MP()) {
1952         __ lock();
1953       }
1954       __ cmpxchgl(newval, Address(addr, 0));
1955     }
1956 #ifdef _LP64
1957   } else if (op->code() == lir_cas_long) {
1958     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1959     Register newval = op->new_value()->as_register_lo();
1960     Register cmpval = op->cmp_value()->as_register_lo();
1961     assert(cmpval == rax, "wrong register");
1962     assert(newval != NULL, "new val must be register");
1963     assert(cmpval != newval, "cmp and new values must be in different registers");
1964     assert(cmpval != addr, "cmp and addr must be in different registers");
1965     assert(newval != addr, "new value and addr must be in different registers");
1966     if (os::is_MP()) {
1967       __ lock();
1968     }
1969     __ cmpxchgq(newval, Address(addr, 0));
1970 #endif // _LP64
1971   } else {
1972     Unimplemented();
1973   }
1974 }
1975 
1976 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1977   Assembler::Condition acond, ncond;
1978   switch (condition) {
1979     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1980     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1981     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1982     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1983     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1984     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1985     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1986     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1987     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
1988                                 ShouldNotReachHere();
1989   }
1990 
1991   if (opr1->is_cpu_register()) {
1992     reg2reg(opr1, result);
1993   } else if (opr1->is_stack()) {
1994     stack2reg(opr1, result, result->type());
1995   } else if (opr1->is_constant()) {
1996     const2reg(opr1, result, lir_patch_none, NULL);
1997   } else {
1998     ShouldNotReachHere();
1999   }
2000 
2001   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2002     // optimized version that does not require a branch
2003     if (opr2->is_single_cpu()) {
2004       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2005       __ cmov(ncond, result->as_register(), opr2->as_register());
2006     } else if (opr2->is_double_cpu()) {
2007       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2008       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2009       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2010       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2011     } else if (opr2->is_single_stack()) {
2012       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2013     } else if (opr2->is_double_stack()) {
2014       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2015       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2016     } else {
2017       ShouldNotReachHere();
2018     }
2019 
2020   } else {
2021     Label skip;
2022     __ jcc (acond, skip);
2023     if (opr2->is_cpu_register()) {
2024       reg2reg(opr2, result);
2025     } else if (opr2->is_stack()) {
2026       stack2reg(opr2, result, result->type());
2027     } else if (opr2->is_constant()) {
2028       const2reg(opr2, result, lir_patch_none, NULL);
2029     } else {
2030       ShouldNotReachHere();
2031     }
2032     __ bind(skip);
2033   }
2034 }
2035 
2036 
2037 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2038   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2039 
2040   if (left->is_single_cpu()) {
2041     assert(left == dest, "left and dest must be equal");
2042     Register lreg = left->as_register();
2043 
2044     if (right->is_single_cpu()) {
2045       // cpu register - cpu register
2046       Register rreg = right->as_register();
2047       switch (code) {
2048         case lir_add: __ addl (lreg, rreg); break;
2049         case lir_sub: __ subl (lreg, rreg); break;
2050         case lir_mul: __ imull(lreg, rreg); break;
2051         default:      ShouldNotReachHere();
2052       }
2053 
2054     } else if (right->is_stack()) {
2055       // cpu register - stack
2056       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2057       switch (code) {
2058         case lir_add: __ addl(lreg, raddr); break;
2059         case lir_sub: __ subl(lreg, raddr); break;
2060         default:      ShouldNotReachHere();
2061       }
2062 
2063     } else if (right->is_constant()) {
2064       // cpu register - constant
2065       jint c = right->as_constant_ptr()->as_jint();
2066       switch (code) {
2067         case lir_add: {
2068           __ incrementl(lreg, c);
2069           break;
2070         }
2071         case lir_sub: {
2072           __ decrementl(lreg, c);
2073           break;
2074         }
2075         default: ShouldNotReachHere();
2076       }
2077 
2078     } else {
2079       ShouldNotReachHere();
2080     }
2081 
2082   } else if (left->is_double_cpu()) {
2083     assert(left == dest, "left and dest must be equal");
2084     Register lreg_lo = left->as_register_lo();
2085     Register lreg_hi = left->as_register_hi();
2086 
2087     if (right->is_double_cpu()) {
2088       // cpu register - cpu register
2089       Register rreg_lo = right->as_register_lo();
2090       Register rreg_hi = right->as_register_hi();
2091       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2092       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2093       switch (code) {
2094         case lir_add:
2095           __ addptr(lreg_lo, rreg_lo);
2096           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2097           break;
2098         case lir_sub:
2099           __ subptr(lreg_lo, rreg_lo);
2100           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2101           break;
2102         case lir_mul:
2103 #ifdef _LP64
2104           __ imulq(lreg_lo, rreg_lo);
2105 #else
2106           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2107           __ imull(lreg_hi, rreg_lo);
2108           __ imull(rreg_hi, lreg_lo);
2109           __ addl (rreg_hi, lreg_hi);
2110           __ mull (rreg_lo);
2111           __ addl (lreg_hi, rreg_hi);
2112 #endif // _LP64
2113           break;
2114         default:
2115           ShouldNotReachHere();
2116       }
2117 
2118     } else if (right->is_constant()) {
2119       // cpu register - constant
2120 #ifdef _LP64
2121       jlong c = right->as_constant_ptr()->as_jlong_bits();
2122       __ movptr(r10, (intptr_t) c);
2123       switch (code) {
2124         case lir_add:
2125           __ addptr(lreg_lo, r10);
2126           break;
2127         case lir_sub:
2128           __ subptr(lreg_lo, r10);
2129           break;
2130         default:
2131           ShouldNotReachHere();
2132       }
2133 #else
2134       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2135       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2136       switch (code) {
2137         case lir_add:
2138           __ addptr(lreg_lo, c_lo);
2139           __ adcl(lreg_hi, c_hi);
2140           break;
2141         case lir_sub:
2142           __ subptr(lreg_lo, c_lo);
2143           __ sbbl(lreg_hi, c_hi);
2144           break;
2145         default:
2146           ShouldNotReachHere();
2147       }
2148 #endif // _LP64
2149 
2150     } else {
2151       ShouldNotReachHere();
2152     }
2153 
2154   } else if (left->is_single_xmm()) {
2155     assert(left == dest, "left and dest must be equal");
2156     XMMRegister lreg = left->as_xmm_float_reg();
2157 
2158     if (right->is_single_xmm()) {
2159       XMMRegister rreg = right->as_xmm_float_reg();
2160       switch (code) {
2161         case lir_add: __ addss(lreg, rreg);  break;
2162         case lir_sub: __ subss(lreg, rreg);  break;
2163         case lir_mul_strictfp: // fall through
2164         case lir_mul: __ mulss(lreg, rreg);  break;
2165         case lir_div_strictfp: // fall through
2166         case lir_div: __ divss(lreg, rreg);  break;
2167         default: ShouldNotReachHere();
2168       }
2169     } else {
2170       Address raddr;
2171       if (right->is_single_stack()) {
2172         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2173       } else if (right->is_constant()) {
2174         // hack for now
2175         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2176       } else {
2177         ShouldNotReachHere();
2178       }
2179       switch (code) {
2180         case lir_add: __ addss(lreg, raddr);  break;
2181         case lir_sub: __ subss(lreg, raddr);  break;
2182         case lir_mul_strictfp: // fall through
2183         case lir_mul: __ mulss(lreg, raddr);  break;
2184         case lir_div_strictfp: // fall through
2185         case lir_div: __ divss(lreg, raddr);  break;
2186         default: ShouldNotReachHere();
2187       }
2188     }
2189 
2190   } else if (left->is_double_xmm()) {
2191     assert(left == dest, "left and dest must be equal");
2192 
2193     XMMRegister lreg = left->as_xmm_double_reg();
2194     if (right->is_double_xmm()) {
2195       XMMRegister rreg = right->as_xmm_double_reg();
2196       switch (code) {
2197         case lir_add: __ addsd(lreg, rreg);  break;
2198         case lir_sub: __ subsd(lreg, rreg);  break;
2199         case lir_mul_strictfp: // fall through
2200         case lir_mul: __ mulsd(lreg, rreg);  break;
2201         case lir_div_strictfp: // fall through
2202         case lir_div: __ divsd(lreg, rreg);  break;
2203         default: ShouldNotReachHere();
2204       }
2205     } else {
2206       Address raddr;
2207       if (right->is_double_stack()) {
2208         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2209       } else if (right->is_constant()) {
2210         // hack for now
2211         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2212       } else {
2213         ShouldNotReachHere();
2214       }
2215       switch (code) {
2216         case lir_add: __ addsd(lreg, raddr);  break;
2217         case lir_sub: __ subsd(lreg, raddr);  break;
2218         case lir_mul_strictfp: // fall through
2219         case lir_mul: __ mulsd(lreg, raddr);  break;
2220         case lir_div_strictfp: // fall through
2221         case lir_div: __ divsd(lreg, raddr);  break;
2222         default: ShouldNotReachHere();
2223       }
2224     }
2225 
2226   } else if (left->is_single_fpu()) {
2227     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2228 
2229     if (right->is_single_fpu()) {
2230       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2231 
2232     } else {
2233       assert(left->fpu_regnr() == 0, "left must be on TOS");
2234       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2235 
2236       Address raddr;
2237       if (right->is_single_stack()) {
2238         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2239       } else if (right->is_constant()) {
2240         address const_addr = float_constant(right->as_jfloat());
2241         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2242         // hack for now
2243         raddr = __ as_Address(InternalAddress(const_addr));
2244       } else {
2245         ShouldNotReachHere();
2246       }
2247 
2248       switch (code) {
2249         case lir_add: __ fadd_s(raddr); break;
2250         case lir_sub: __ fsub_s(raddr); break;
2251         case lir_mul_strictfp: // fall through
2252         case lir_mul: __ fmul_s(raddr); break;
2253         case lir_div_strictfp: // fall through
2254         case lir_div: __ fdiv_s(raddr); break;
2255         default:      ShouldNotReachHere();
2256       }
2257     }
2258 
2259   } else if (left->is_double_fpu()) {
2260     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2261 
2262     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2263       // Double values require special handling for strictfp mul/div on x86
2264       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2265       __ fmulp(left->fpu_regnrLo() + 1);
2266     }
2267 
2268     if (right->is_double_fpu()) {
2269       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2270 
2271     } else {
2272       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2273       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2274 
2275       Address raddr;
2276       if (right->is_double_stack()) {
2277         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2278       } else if (right->is_constant()) {
2279         // hack for now
2280         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2281       } else {
2282         ShouldNotReachHere();
2283       }
2284 
2285       switch (code) {
2286         case lir_add: __ fadd_d(raddr); break;
2287         case lir_sub: __ fsub_d(raddr); break;
2288         case lir_mul_strictfp: // fall through
2289         case lir_mul: __ fmul_d(raddr); break;
2290         case lir_div_strictfp: // fall through
2291         case lir_div: __ fdiv_d(raddr); break;
2292         default: ShouldNotReachHere();
2293       }
2294     }
2295 
2296     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2297       // Double values require special handling for strictfp mul/div on x86
2298       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2299       __ fmulp(dest->fpu_regnrLo() + 1);
2300     }
2301 
2302   } else if (left->is_single_stack() || left->is_address()) {
2303     assert(left == dest, "left and dest must be equal");
2304 
2305     Address laddr;
2306     if (left->is_single_stack()) {
2307       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2308     } else if (left->is_address()) {
2309       laddr = as_Address(left->as_address_ptr());
2310     } else {
2311       ShouldNotReachHere();
2312     }
2313 
2314     if (right->is_single_cpu()) {
2315       Register rreg = right->as_register();
2316       switch (code) {
2317         case lir_add: __ addl(laddr, rreg); break;
2318         case lir_sub: __ subl(laddr, rreg); break;
2319         default:      ShouldNotReachHere();
2320       }
2321     } else if (right->is_constant()) {
2322       jint c = right->as_constant_ptr()->as_jint();
2323       switch (code) {
2324         case lir_add: {
2325           __ incrementl(laddr, c);
2326           break;
2327         }
2328         case lir_sub: {
2329           __ decrementl(laddr, c);
2330           break;
2331         }
2332         default: ShouldNotReachHere();
2333       }
2334     } else {
2335       ShouldNotReachHere();
2336     }
2337 
2338   } else {
2339     ShouldNotReachHere();
2340   }
2341 }
2342 
2343 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2344   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2345   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2346   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2347 
2348   bool left_is_tos = (left_index == 0);
2349   bool dest_is_tos = (dest_index == 0);
2350   int non_tos_index = (left_is_tos ? right_index : left_index);
2351 
2352   switch (code) {
2353     case lir_add:
2354       if (pop_fpu_stack)       __ faddp(non_tos_index);
2355       else if (dest_is_tos)    __ fadd (non_tos_index);
2356       else                     __ fadda(non_tos_index);
2357       break;
2358 
2359     case lir_sub:
2360       if (left_is_tos) {
2361         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2362         else if (dest_is_tos)  __ fsub  (non_tos_index);
2363         else                   __ fsubra(non_tos_index);
2364       } else {
2365         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2366         else if (dest_is_tos)  __ fsubr (non_tos_index);
2367         else                   __ fsuba (non_tos_index);
2368       }
2369       break;
2370 
2371     case lir_mul_strictfp: // fall through
2372     case lir_mul:
2373       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2374       else if (dest_is_tos)    __ fmul (non_tos_index);
2375       else                     __ fmula(non_tos_index);
2376       break;
2377 
2378     case lir_div_strictfp: // fall through
2379     case lir_div:
2380       if (left_is_tos) {
2381         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2382         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2383         else                   __ fdivra(non_tos_index);
2384       } else {
2385         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2386         else if (dest_is_tos)  __ fdivr (non_tos_index);
2387         else                   __ fdiva (non_tos_index);
2388       }
2389       break;
2390 
2391     case lir_rem:
2392       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2393       __ fremr(noreg);
2394       break;
2395 
2396     default:
2397       ShouldNotReachHere();
2398   }
2399 }
2400 
2401 
2402 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2403   if (value->is_double_xmm()) {
2404     switch(code) {
2405       case lir_abs :
2406         {
2407           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2408             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2409           }
2410           __ andpd(dest->as_xmm_double_reg(),
2411                     ExternalAddress((address)double_signmask_pool));
2412         }
2413         break;
2414 
2415       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2416       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2417       default      : ShouldNotReachHere();
2418     }
2419 
2420   } else if (value->is_double_fpu()) {
2421     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2422     switch(code) {
2423       case lir_abs   : __ fabs() ; break;
2424       case lir_sqrt  : __ fsqrt(); break;
2425       default      : ShouldNotReachHere();
2426     }
2427   } else {
2428     Unimplemented();
2429   }
2430 }
2431 
2432 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2433   // assert(left->destroys_register(), "check");
2434   if (left->is_single_cpu()) {
2435     Register reg = left->as_register();
2436     if (right->is_constant()) {
2437       int val = right->as_constant_ptr()->as_jint();
2438       switch (code) {
2439         case lir_logic_and: __ andl (reg, val); break;
2440         case lir_logic_or:  __ orl  (reg, val); break;
2441         case lir_logic_xor: __ xorl (reg, val); break;
2442         default: ShouldNotReachHere();
2443       }
2444     } else if (right->is_stack()) {
2445       // added support for stack operands
2446       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2447       switch (code) {
2448         case lir_logic_and: __ andl (reg, raddr); break;
2449         case lir_logic_or:  __ orl  (reg, raddr); break;
2450         case lir_logic_xor: __ xorl (reg, raddr); break;
2451         default: ShouldNotReachHere();
2452       }
2453     } else {
2454       Register rright = right->as_register();
2455       switch (code) {
2456         case lir_logic_and: __ andptr (reg, rright); break;
2457         case lir_logic_or : __ orptr  (reg, rright); break;
2458         case lir_logic_xor: __ xorptr (reg, rright); break;
2459         default: ShouldNotReachHere();
2460       }
2461     }
2462     move_regs(reg, dst->as_register());
2463   } else {
2464     Register l_lo = left->as_register_lo();
2465     Register l_hi = left->as_register_hi();
2466     if (right->is_constant()) {
2467 #ifdef _LP64
2468       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2469       switch (code) {
2470         case lir_logic_and:
2471           __ andq(l_lo, rscratch1);
2472           break;
2473         case lir_logic_or:
2474           __ orq(l_lo, rscratch1);
2475           break;
2476         case lir_logic_xor:
2477           __ xorq(l_lo, rscratch1);
2478           break;
2479         default: ShouldNotReachHere();
2480       }
2481 #else
2482       int r_lo = right->as_constant_ptr()->as_jint_lo();
2483       int r_hi = right->as_constant_ptr()->as_jint_hi();
2484       switch (code) {
2485         case lir_logic_and:
2486           __ andl(l_lo, r_lo);
2487           __ andl(l_hi, r_hi);
2488           break;
2489         case lir_logic_or:
2490           __ orl(l_lo, r_lo);
2491           __ orl(l_hi, r_hi);
2492           break;
2493         case lir_logic_xor:
2494           __ xorl(l_lo, r_lo);
2495           __ xorl(l_hi, r_hi);
2496           break;
2497         default: ShouldNotReachHere();
2498       }
2499 #endif // _LP64
2500     } else {
2501 #ifdef _LP64
2502       Register r_lo;
2503       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2504         r_lo = right->as_register();
2505       } else {
2506         r_lo = right->as_register_lo();
2507       }
2508 #else
2509       Register r_lo = right->as_register_lo();
2510       Register r_hi = right->as_register_hi();
2511       assert(l_lo != r_hi, "overwriting registers");
2512 #endif
2513       switch (code) {
2514         case lir_logic_and:
2515           __ andptr(l_lo, r_lo);
2516           NOT_LP64(__ andptr(l_hi, r_hi);)
2517           break;
2518         case lir_logic_or:
2519           __ orptr(l_lo, r_lo);
2520           NOT_LP64(__ orptr(l_hi, r_hi);)
2521           break;
2522         case lir_logic_xor:
2523           __ xorptr(l_lo, r_lo);
2524           NOT_LP64(__ xorptr(l_hi, r_hi);)
2525           break;
2526         default: ShouldNotReachHere();
2527       }
2528     }
2529 
2530     Register dst_lo = dst->as_register_lo();
2531     Register dst_hi = dst->as_register_hi();
2532 
2533 #ifdef _LP64
2534     move_regs(l_lo, dst_lo);
2535 #else
2536     if (dst_lo == l_hi) {
2537       assert(dst_hi != l_lo, "overwriting registers");
2538       move_regs(l_hi, dst_hi);
2539       move_regs(l_lo, dst_lo);
2540     } else {
2541       assert(dst_lo != l_hi, "overwriting registers");
2542       move_regs(l_lo, dst_lo);
2543       move_regs(l_hi, dst_hi);
2544     }
2545 #endif // _LP64
2546   }
2547 }
2548 
2549 
2550 // we assume that rax, and rdx can be overwritten
2551 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2552 
2553   assert(left->is_single_cpu(),   "left must be register");
2554   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2555   assert(result->is_single_cpu(), "result must be register");
2556 
2557   //  assert(left->destroys_register(), "check");
2558   //  assert(right->destroys_register(), "check");
2559 
2560   Register lreg = left->as_register();
2561   Register dreg = result->as_register();
2562 
2563   if (right->is_constant()) {
2564     int divisor = right->as_constant_ptr()->as_jint();
2565     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2566     if (code == lir_idiv) {
2567       assert(lreg == rax, "must be rax,");
2568       assert(temp->as_register() == rdx, "tmp register must be rdx");
2569       __ cdql(); // sign extend into rdx:rax
2570       if (divisor == 2) {
2571         __ subl(lreg, rdx);
2572       } else {
2573         __ andl(rdx, divisor - 1);
2574         __ addl(lreg, rdx);
2575       }
2576       __ sarl(lreg, log2_intptr(divisor));
2577       move_regs(lreg, dreg);
2578     } else if (code == lir_irem) {
2579       Label done;
2580       __ mov(dreg, lreg);
2581       __ andl(dreg, 0x80000000 | (divisor - 1));
2582       __ jcc(Assembler::positive, done);
2583       __ decrement(dreg);
2584       __ orl(dreg, ~(divisor - 1));
2585       __ increment(dreg);
2586       __ bind(done);
2587     } else {
2588       ShouldNotReachHere();
2589     }
2590   } else {
2591     Register rreg = right->as_register();
2592     assert(lreg == rax, "left register must be rax,");
2593     assert(rreg != rdx, "right register must not be rdx");
2594     assert(temp->as_register() == rdx, "tmp register must be rdx");
2595 
2596     move_regs(lreg, rax);
2597 
2598     int idivl_offset = __ corrected_idivl(rreg);
2599     add_debug_info_for_div0(idivl_offset, info);
2600     if (code == lir_irem) {
2601       move_regs(rdx, dreg); // result is in rdx
2602     } else {
2603       move_regs(rax, dreg);
2604     }
2605   }
2606 }
2607 
2608 
2609 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2610   if (opr1->is_single_cpu()) {
2611     Register reg1 = opr1->as_register();
2612     if (opr2->is_single_cpu()) {
2613       // cpu register - cpu register
2614       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2615         __ cmpoopptr(reg1, opr2->as_register());
2616       } else {
2617         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2618         __ cmpl(reg1, opr2->as_register());
2619       }
2620     } else if (opr2->is_stack()) {
2621       // cpu register - stack
2622       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2623         __ cmpoopptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2624       } else {
2625         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2626       }
2627     } else if (opr2->is_constant()) {
2628       // cpu register - constant
2629       LIR_Const* c = opr2->as_constant_ptr();
2630       if (c->type() == T_INT) {
2631         __ cmpl(reg1, c->as_jint());
2632       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2633         // In 64bit oops are single register
2634         jobject o = c->as_jobject();
2635         if (o == NULL) {
2636           __ cmpptr(reg1, (int32_t)NULL_WORD);
2637         } else {
2638 #ifdef _LP64
2639           __ movoop(rscratch1, o);
2640           __ cmpoopptr(reg1, rscratch1);
2641 #else
2642           __ cmpoop(reg1, c->as_jobject());
2643 #endif // _LP64
2644         }
2645       } else {
2646         fatal("unexpected type: %s", basictype_to_str(c->type()));
2647       }
2648       // cpu register - address
2649     } else if (opr2->is_address()) {
2650       if (op->info() != NULL) {
2651         add_debug_info_for_null_check_here(op->info());
2652       }
2653       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2654     } else {
2655       ShouldNotReachHere();
2656     }
2657 
2658   } else if(opr1->is_double_cpu()) {
2659     Register xlo = opr1->as_register_lo();
2660     Register xhi = opr1->as_register_hi();
2661     if (opr2->is_double_cpu()) {
2662 #ifdef _LP64
2663       __ cmpptr(xlo, opr2->as_register_lo());
2664 #else
2665       // cpu register - cpu register
2666       Register ylo = opr2->as_register_lo();
2667       Register yhi = opr2->as_register_hi();
2668       __ subl(xlo, ylo);
2669       __ sbbl(xhi, yhi);
2670       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2671         __ orl(xhi, xlo);
2672       }
2673 #endif // _LP64
2674     } else if (opr2->is_constant()) {
2675       // cpu register - constant 0
2676       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2677 #ifdef _LP64
2678       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2679 #else
2680       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2681       __ orl(xhi, xlo);
2682 #endif // _LP64
2683     } else {
2684       ShouldNotReachHere();
2685     }
2686 
2687   } else if (opr1->is_single_xmm()) {
2688     XMMRegister reg1 = opr1->as_xmm_float_reg();
2689     if (opr2->is_single_xmm()) {
2690       // xmm register - xmm register
2691       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2692     } else if (opr2->is_stack()) {
2693       // xmm register - stack
2694       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2695     } else if (opr2->is_constant()) {
2696       // xmm register - constant
2697       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2698     } else if (opr2->is_address()) {
2699       // xmm register - address
2700       if (op->info() != NULL) {
2701         add_debug_info_for_null_check_here(op->info());
2702       }
2703       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2704     } else {
2705       ShouldNotReachHere();
2706     }
2707 
2708   } else if (opr1->is_double_xmm()) {
2709     XMMRegister reg1 = opr1->as_xmm_double_reg();
2710     if (opr2->is_double_xmm()) {
2711       // xmm register - xmm register
2712       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2713     } else if (opr2->is_stack()) {
2714       // xmm register - stack
2715       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2716     } else if (opr2->is_constant()) {
2717       // xmm register - constant
2718       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2719     } else if (opr2->is_address()) {
2720       // xmm register - address
2721       if (op->info() != NULL) {
2722         add_debug_info_for_null_check_here(op->info());
2723       }
2724       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2725     } else {
2726       ShouldNotReachHere();
2727     }
2728 
2729   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2730     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2731     assert(opr2->is_fpu_register(), "both must be registers");
2732     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2733 
2734   } else if (opr1->is_address() && opr2->is_constant()) {
2735     LIR_Const* c = opr2->as_constant_ptr();
2736 #ifdef _LP64
2737     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2738       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2739       __ movoop(rscratch1, c->as_jobject());
2740     }
2741 #endif // LP64
2742     if (op->info() != NULL) {
2743       add_debug_info_for_null_check_here(op->info());
2744     }
2745     // special case: address - constant
2746     LIR_Address* addr = opr1->as_address_ptr();
2747     if (c->type() == T_INT) {
2748       __ cmpl(as_Address(addr), c->as_jint());
2749     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2750 #ifdef _LP64
2751       // %%% Make this explode if addr isn't reachable until we figure out a
2752       // better strategy by giving noreg as the temp for as_Address
2753       __ cmpoopptr(rscratch1, as_Address(addr, noreg));
2754 #else
2755       __ cmpoop(as_Address(addr), c->as_jobject());
2756 #endif // _LP64
2757     } else {
2758       ShouldNotReachHere();
2759     }
2760 
2761   } else {
2762     ShouldNotReachHere();
2763   }
2764 }
2765 
2766 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2767   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2768     if (left->is_single_xmm()) {
2769       assert(right->is_single_xmm(), "must match");
2770       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2771     } else if (left->is_double_xmm()) {
2772       assert(right->is_double_xmm(), "must match");
2773       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2774 
2775     } else {
2776       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2777       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2778 
2779       assert(left->fpu() == 0, "left must be on TOS");
2780       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2781                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2782     }
2783   } else {
2784     assert(code == lir_cmp_l2i, "check");
2785 #ifdef _LP64
2786     Label done;
2787     Register dest = dst->as_register();
2788     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2789     __ movl(dest, -1);
2790     __ jccb(Assembler::less, done);
2791     __ set_byte_if_not_zero(dest);
2792     __ movzbl(dest, dest);
2793     __ bind(done);
2794 #else
2795     __ lcmp2int(left->as_register_hi(),
2796                 left->as_register_lo(),
2797                 right->as_register_hi(),
2798                 right->as_register_lo());
2799     move_regs(left->as_register_hi(), dst->as_register());
2800 #endif // _LP64
2801   }
2802 }
2803 
2804 
2805 void LIR_Assembler::align_call(LIR_Code code) {
2806   if (os::is_MP()) {
2807     // make sure that the displacement word of the call ends up word aligned
2808     int offset = __ offset();
2809     switch (code) {
2810       case lir_static_call:
2811       case lir_optvirtual_call:
2812       case lir_dynamic_call:
2813         offset += NativeCall::displacement_offset;
2814         break;
2815       case lir_icvirtual_call:
2816         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2817       break;
2818       case lir_virtual_call:  // currently, sparc-specific for niagara
2819       default: ShouldNotReachHere();
2820     }
2821     __ align(BytesPerWord, offset);
2822   }
2823 }
2824 
2825 
2826 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2827   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2828          "must be aligned");
2829   __ call(AddressLiteral(op->addr(), rtype));
2830   add_call_info(code_offset(), op->info());
2831 }
2832 
2833 
2834 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2835   __ ic_call(op->addr());
2836   add_call_info(code_offset(), op->info());
2837   assert(!os::is_MP() ||
2838          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2839          "must be aligned");
2840 }
2841 
2842 
2843 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2844 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2845   ShouldNotReachHere();
2846 }
2847 
2848 
2849 void LIR_Assembler::emit_static_call_stub() {
2850   address call_pc = __ pc();
2851   address stub = __ start_a_stub(call_stub_size());
2852   if (stub == NULL) {
2853     bailout("static call stub overflow");
2854     return;
2855   }
2856 
2857   int start = __ offset();
2858   if (os::is_MP()) {
2859     // make sure that the displacement word of the call ends up word aligned
2860     __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2861   }
2862   __ relocate(static_stub_Relocation::spec(call_pc, false /* is_aot */));
2863   __ mov_metadata(rbx, (Metadata*)NULL);
2864   // must be set to -1 at code generation time
2865   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2866   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2867   __ jump(RuntimeAddress(__ pc()));
2868 
2869   if (UseAOT) {
2870     // Trampoline to aot code
2871     __ relocate(static_stub_Relocation::spec(call_pc, true /* is_aot */));
2872 #ifdef _LP64
2873     __ mov64(rax, CONST64(0));  // address is zapped till fixup time.
2874 #else
2875     __ movl(rax, 0xdeadffff);  // address is zapped till fixup time.
2876 #endif
2877     __ jmp(rax);
2878   }
2879   assert(__ offset() - start <= call_stub_size(), "stub too big");
2880   __ end_a_stub();
2881 }
2882 
2883 
2884 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2885   assert(exceptionOop->as_register() == rax, "must match");
2886   assert(exceptionPC->as_register() == rdx, "must match");
2887 
2888   // exception object is not added to oop map by LinearScan
2889   // (LinearScan assumes that no oops are in fixed registers)
2890   info->add_register_oop(exceptionOop);
2891   Runtime1::StubID unwind_id;
2892 
2893   // get current pc information
2894   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2895   int pc_for_athrow_offset = __ offset();
2896   InternalAddress pc_for_athrow(__ pc());
2897   __ lea(exceptionPC->as_register(), pc_for_athrow);
2898   add_call_info(pc_for_athrow_offset, info); // for exception handler
2899 
2900   __ verify_not_null_oop(rax);
2901   // search an exception handler (rax: exception oop, rdx: throwing pc)
2902   if (compilation()->has_fpu_code()) {
2903     unwind_id = Runtime1::handle_exception_id;
2904   } else {
2905     unwind_id = Runtime1::handle_exception_nofpu_id;
2906   }
2907   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2908 
2909   // enough room for two byte trap
2910   __ nop();
2911 }
2912 
2913 
2914 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2915   assert(exceptionOop->as_register() == rax, "must match");
2916 
2917   __ jmp(_unwind_handler_entry);
2918 }
2919 
2920 
2921 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2922 
2923   // optimized version for linear scan:
2924   // * count must be already in ECX (guaranteed by LinearScan)
2925   // * left and dest must be equal
2926   // * tmp must be unused
2927   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2928   assert(left == dest, "left and dest must be equal");
2929   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2930 
2931   if (left->is_single_cpu()) {
2932     Register value = left->as_register();
2933     assert(value != SHIFT_count, "left cannot be ECX");
2934 
2935     switch (code) {
2936       case lir_shl:  __ shll(value); break;
2937       case lir_shr:  __ sarl(value); break;
2938       case lir_ushr: __ shrl(value); break;
2939       default: ShouldNotReachHere();
2940     }
2941   } else if (left->is_double_cpu()) {
2942     Register lo = left->as_register_lo();
2943     Register hi = left->as_register_hi();
2944     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2945 #ifdef _LP64
2946     switch (code) {
2947       case lir_shl:  __ shlptr(lo);        break;
2948       case lir_shr:  __ sarptr(lo);        break;
2949       case lir_ushr: __ shrptr(lo);        break;
2950       default: ShouldNotReachHere();
2951     }
2952 #else
2953 
2954     switch (code) {
2955       case lir_shl:  __ lshl(hi, lo);        break;
2956       case lir_shr:  __ lshr(hi, lo, true);  break;
2957       case lir_ushr: __ lshr(hi, lo, false); break;
2958       default: ShouldNotReachHere();
2959     }
2960 #endif // LP64
2961   } else {
2962     ShouldNotReachHere();
2963   }
2964 }
2965 
2966 
2967 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2968   if (dest->is_single_cpu()) {
2969     // first move left into dest so that left is not destroyed by the shift
2970     Register value = dest->as_register();
2971     count = count & 0x1F; // Java spec
2972 
2973     move_regs(left->as_register(), value);
2974     switch (code) {
2975       case lir_shl:  __ shll(value, count); break;
2976       case lir_shr:  __ sarl(value, count); break;
2977       case lir_ushr: __ shrl(value, count); break;
2978       default: ShouldNotReachHere();
2979     }
2980   } else if (dest->is_double_cpu()) {
2981 #ifndef _LP64
2982     Unimplemented();
2983 #else
2984     // first move left into dest so that left is not destroyed by the shift
2985     Register value = dest->as_register_lo();
2986     count = count & 0x1F; // Java spec
2987 
2988     move_regs(left->as_register_lo(), value);
2989     switch (code) {
2990       case lir_shl:  __ shlptr(value, count); break;
2991       case lir_shr:  __ sarptr(value, count); break;
2992       case lir_ushr: __ shrptr(value, count); break;
2993       default: ShouldNotReachHere();
2994     }
2995 #endif // _LP64
2996   } else {
2997     ShouldNotReachHere();
2998   }
2999 }
3000 
3001 
3002 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3003   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3004   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3005   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3006   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3007 }
3008 
3009 
3010 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3011   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3012   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3013   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3014   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3015 }
3016 
3017 
3018 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3019   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3020   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3021   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3022   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3023 }
3024 
3025 
3026 void LIR_Assembler::store_parameter(Metadata* m,  int offset_from_rsp_in_words) {
3027   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3028   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3029   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3030   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
3031 }
3032 
3033 
3034 // This code replaces a call to arraycopy; no exception may
3035 // be thrown in this code, they must be thrown in the System.arraycopy
3036 // activation frame; we could save some checks if this would not be the case
3037 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3038   ciArrayKlass* default_type = op->expected_type();
3039   Register src = op->src()->as_register();
3040   Register dst = op->dst()->as_register();
3041   Register src_pos = op->src_pos()->as_register();
3042   Register dst_pos = op->dst_pos()->as_register();
3043   Register length  = op->length()->as_register();
3044   Register tmp = op->tmp()->as_register();
3045 
3046   CodeStub* stub = op->stub();
3047   int flags = op->flags();
3048   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3049   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3050 
3051   // if we don't know anything, just go through the generic arraycopy
3052   if (default_type == NULL) {
3053     Label done;
3054     // save outgoing arguments on stack in case call to System.arraycopy is needed
3055     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3056     // for interpreter calling conventions. Now we have to do it in new style conventions.
3057     // For the moment until C1 gets the new register allocator I just force all the
3058     // args to the right place (except the register args) and then on the back side
3059     // reload the register args properly if we go slow path. Yuck
3060 
3061     // These are proper for the calling convention
3062     store_parameter(length, 2);
3063     store_parameter(dst_pos, 1);
3064     store_parameter(dst, 0);
3065 
3066     // these are just temporary placements until we need to reload
3067     store_parameter(src_pos, 3);
3068     store_parameter(src, 4);
3069     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3070 
3071     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3072 
3073     address copyfunc_addr = StubRoutines::generic_arraycopy();
3074 
3075     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3076 #ifdef _LP64
3077     // The arguments are in java calling convention so we can trivially shift them to C
3078     // convention
3079     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3080     __ mov(c_rarg0, j_rarg0);
3081     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3082     __ mov(c_rarg1, j_rarg1);
3083     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3084     __ mov(c_rarg2, j_rarg2);
3085     assert_different_registers(c_rarg3, j_rarg4);
3086     __ mov(c_rarg3, j_rarg3);
3087 #ifdef _WIN64
3088     // Allocate abi space for args but be sure to keep stack aligned
3089     __ subptr(rsp, 6*wordSize);
3090     store_parameter(j_rarg4, 4);
3091     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3092       __ call(RuntimeAddress(C_entry));
3093     } else {
3094 #ifndef PRODUCT
3095       if (PrintC1Statistics) {
3096         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3097       }
3098 #endif
3099       __ call(RuntimeAddress(copyfunc_addr));
3100     }
3101     __ addptr(rsp, 6*wordSize);
3102 #else
3103     __ mov(c_rarg4, j_rarg4);
3104     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3105       __ call(RuntimeAddress(C_entry));
3106     } else {
3107 #ifndef PRODUCT
3108       if (PrintC1Statistics) {
3109         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3110       }
3111 #endif
3112       __ call(RuntimeAddress(copyfunc_addr));
3113     }
3114 #endif // _WIN64
3115 #else
3116     __ push(length);
3117     __ push(dst_pos);
3118     __ push(dst);
3119     __ push(src_pos);
3120     __ push(src);
3121 
3122     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3123       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3124     } else {
3125 #ifndef PRODUCT
3126       if (PrintC1Statistics) {
3127         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3128       }
3129 #endif
3130       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3131     }
3132 
3133 #endif // _LP64
3134 
3135     __ cmpl(rax, 0);
3136     __ jcc(Assembler::equal, *stub->continuation());
3137 
3138     if (copyfunc_addr != NULL) {
3139       __ mov(tmp, rax);
3140       __ xorl(tmp, -1);
3141     }
3142 
3143     // Reload values from the stack so they are where the stub
3144     // expects them.
3145     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3146     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3147     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3148     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3149     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3150 
3151     if (copyfunc_addr != NULL) {
3152       __ subl(length, tmp);
3153       __ addl(src_pos, tmp);
3154       __ addl(dst_pos, tmp);
3155     }
3156     __ jmp(*stub->entry());
3157 
3158     __ bind(*stub->continuation());
3159     return;
3160   }
3161 
3162   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3163 
3164   int elem_size = type2aelembytes(basic_type);
3165   Address::ScaleFactor scale;
3166 
3167   switch (elem_size) {
3168     case 1 :
3169       scale = Address::times_1;
3170       break;
3171     case 2 :
3172       scale = Address::times_2;
3173       break;
3174     case 4 :
3175       scale = Address::times_4;
3176       break;
3177     case 8 :
3178       scale = Address::times_8;
3179       break;
3180     default:
3181       scale = Address::no_scale;
3182       ShouldNotReachHere();
3183   }
3184 
3185   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3186   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3187   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3188   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3189 
3190   // length and pos's are all sign extended at this point on 64bit
3191 
3192   // test for NULL
3193   if (flags & LIR_OpArrayCopy::src_null_check) {
3194     __ testptr(src, src);
3195     __ jcc(Assembler::zero, *stub->entry());
3196   }
3197   if (flags & LIR_OpArrayCopy::dst_null_check) {
3198     __ testptr(dst, dst);
3199     __ jcc(Assembler::zero, *stub->entry());
3200   }
3201 
3202   // If the compiler was not able to prove that exact type of the source or the destination
3203   // of the arraycopy is an array type, check at runtime if the source or the destination is
3204   // an instance type.
3205   if (flags & LIR_OpArrayCopy::type_check) {
3206     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3207       __ load_klass(tmp, dst);
3208       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3209       __ jcc(Assembler::greaterEqual, *stub->entry());
3210     }
3211 
3212     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3213       __ load_klass(tmp, src);
3214       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3215       __ jcc(Assembler::greaterEqual, *stub->entry());
3216     }
3217   }
3218 
3219   // check if negative
3220   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3221     __ testl(src_pos, src_pos);
3222     __ jcc(Assembler::less, *stub->entry());
3223   }
3224   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3225     __ testl(dst_pos, dst_pos);
3226     __ jcc(Assembler::less, *stub->entry());
3227   }
3228 
3229   if (flags & LIR_OpArrayCopy::src_range_check) {
3230     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3231     __ cmpl(tmp, src_length_addr);
3232     __ jcc(Assembler::above, *stub->entry());
3233   }
3234   if (flags & LIR_OpArrayCopy::dst_range_check) {
3235     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3236     __ cmpl(tmp, dst_length_addr);
3237     __ jcc(Assembler::above, *stub->entry());
3238   }
3239 
3240   if (flags & LIR_OpArrayCopy::length_positive_check) {
3241     __ testl(length, length);
3242     __ jcc(Assembler::less, *stub->entry());
3243   }
3244 
3245 #ifdef _LP64
3246   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3247   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3248 #endif
3249 
3250   if (flags & LIR_OpArrayCopy::type_check) {
3251     // We don't know the array types are compatible
3252     if (basic_type != T_OBJECT) {
3253       // Simple test for basic type arrays
3254       if (UseCompressedClassPointers) {
3255         __ movl(tmp, src_klass_addr);
3256         __ cmpl(tmp, dst_klass_addr);
3257       } else {
3258         __ movptr(tmp, src_klass_addr);
3259         __ cmpptr(tmp, dst_klass_addr);
3260       }
3261       __ jcc(Assembler::notEqual, *stub->entry());
3262     } else {
3263       // For object arrays, if src is a sub class of dst then we can
3264       // safely do the copy.
3265       Label cont, slow;
3266 
3267       __ push(src);
3268       __ push(dst);
3269 
3270       __ load_klass(src, src);
3271       __ load_klass(dst, dst);
3272 
3273       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3274 
3275       __ push(src);
3276       __ push(dst);
3277       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3278       __ pop(dst);
3279       __ pop(src);
3280 
3281       __ cmpl(src, 0);
3282       __ jcc(Assembler::notEqual, cont);
3283 
3284       __ bind(slow);
3285       __ pop(dst);
3286       __ pop(src);
3287 
3288       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3289       if (copyfunc_addr != NULL) { // use stub if available
3290         // src is not a sub class of dst so we have to do a
3291         // per-element check.
3292 
3293         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3294         if ((flags & mask) != mask) {
3295           // Check that at least both of them object arrays.
3296           assert(flags & mask, "one of the two should be known to be an object array");
3297 
3298           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3299             __ load_klass(tmp, src);
3300           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3301             __ load_klass(tmp, dst);
3302           }
3303           int lh_offset = in_bytes(Klass::layout_helper_offset());
3304           Address klass_lh_addr(tmp, lh_offset);
3305           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3306           __ cmpl(klass_lh_addr, objArray_lh);
3307           __ jcc(Assembler::notEqual, *stub->entry());
3308         }
3309 
3310        // Spill because stubs can use any register they like and it's
3311        // easier to restore just those that we care about.
3312        store_parameter(dst, 0);
3313        store_parameter(dst_pos, 1);
3314        store_parameter(length, 2);
3315        store_parameter(src_pos, 3);
3316        store_parameter(src, 4);
3317 
3318 #ifndef _LP64
3319         __ movptr(tmp, dst_klass_addr);
3320         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3321         __ push(tmp);
3322         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3323         __ push(tmp);
3324         __ push(length);
3325         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3326         __ push(tmp);
3327         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3328         __ push(tmp);
3329 
3330         __ call_VM_leaf(copyfunc_addr, 5);
3331 #else
3332         __ movl2ptr(length, length); //higher 32bits must be null
3333 
3334         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3335         assert_different_registers(c_rarg0, dst, dst_pos, length);
3336         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3337         assert_different_registers(c_rarg1, dst, length);
3338 
3339         __ mov(c_rarg2, length);
3340         assert_different_registers(c_rarg2, dst);
3341 
3342 #ifdef _WIN64
3343         // Allocate abi space for args but be sure to keep stack aligned
3344         __ subptr(rsp, 6*wordSize);
3345         __ load_klass(c_rarg3, dst);
3346         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3347         store_parameter(c_rarg3, 4);
3348         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3349         __ call(RuntimeAddress(copyfunc_addr));
3350         __ addptr(rsp, 6*wordSize);
3351 #else
3352         __ load_klass(c_rarg4, dst);
3353         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3354         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3355         __ call(RuntimeAddress(copyfunc_addr));
3356 #endif
3357 
3358 #endif
3359 
3360 #ifndef PRODUCT
3361         if (PrintC1Statistics) {
3362           Label failed;
3363           __ testl(rax, rax);
3364           __ jcc(Assembler::notZero, failed);
3365           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3366           __ bind(failed);
3367         }
3368 #endif
3369 
3370         __ testl(rax, rax);
3371         __ jcc(Assembler::zero, *stub->continuation());
3372 
3373 #ifndef PRODUCT
3374         if (PrintC1Statistics) {
3375           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3376         }
3377 #endif
3378 
3379         __ mov(tmp, rax);
3380 
3381         __ xorl(tmp, -1);
3382 
3383         // Restore previously spilled arguments
3384         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3385         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3386         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3387         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3388         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3389 
3390 
3391         __ subl(length, tmp);
3392         __ addl(src_pos, tmp);
3393         __ addl(dst_pos, tmp);
3394       }
3395 
3396       __ jmp(*stub->entry());
3397 
3398       __ bind(cont);
3399       __ pop(dst);
3400       __ pop(src);
3401     }
3402   }
3403 
3404 #ifdef ASSERT
3405   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3406     // Sanity check the known type with the incoming class.  For the
3407     // primitive case the types must match exactly with src.klass and
3408     // dst.klass each exactly matching the default type.  For the
3409     // object array case, if no type check is needed then either the
3410     // dst type is exactly the expected type and the src type is a
3411     // subtype which we can't check or src is the same array as dst
3412     // but not necessarily exactly of type default_type.
3413     Label known_ok, halt;
3414     __ mov_metadata(tmp, default_type->constant_encoding());
3415 #ifdef _LP64
3416     if (UseCompressedClassPointers) {
3417       __ encode_klass_not_null(tmp);
3418     }
3419 #endif
3420 
3421     if (basic_type != T_OBJECT) {
3422 
3423       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3424       else                   __ cmpptr(tmp, dst_klass_addr);
3425       __ jcc(Assembler::notEqual, halt);
3426       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3427       else                   __ cmpptr(tmp, src_klass_addr);
3428       __ jcc(Assembler::equal, known_ok);
3429     } else {
3430       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3431       else                   __ cmpptr(tmp, dst_klass_addr);
3432       __ jcc(Assembler::equal, known_ok);
3433       __ cmpptr(src, dst);
3434       __ jcc(Assembler::equal, known_ok);
3435     }
3436     __ bind(halt);
3437     __ stop("incorrect type information in arraycopy");
3438     __ bind(known_ok);
3439   }
3440 #endif
3441 
3442 #ifndef PRODUCT
3443   if (PrintC1Statistics) {
3444     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3445   }
3446 #endif
3447 
3448 #ifdef _LP64
3449   assert_different_registers(c_rarg0, dst, dst_pos, length);
3450   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3451   assert_different_registers(c_rarg1, length);
3452   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3453   __ mov(c_rarg2, length);
3454 
3455 #else
3456   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3457   store_parameter(tmp, 0);
3458   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3459   store_parameter(tmp, 1);
3460   store_parameter(length, 2);
3461 #endif // _LP64
3462 
3463   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3464   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3465   const char *name;
3466   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3467   __ call_VM_leaf(entry, 0);
3468 
3469   __ bind(*stub->continuation());
3470 }
3471 
3472 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3473   assert(op->crc()->is_single_cpu(),  "crc must be register");
3474   assert(op->val()->is_single_cpu(),  "byte value must be register");
3475   assert(op->result_opr()->is_single_cpu(), "result must be register");
3476   Register crc = op->crc()->as_register();
3477   Register val = op->val()->as_register();
3478   Register res = op->result_opr()->as_register();
3479 
3480   assert_different_registers(val, crc, res);
3481 
3482   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3483   __ notl(crc); // ~crc
3484   __ update_byte_crc32(crc, val, res);
3485   __ notl(crc); // ~crc
3486   __ mov(res, crc);
3487 }
3488 
3489 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3490   Register obj = op->obj_opr()->as_register();  // may not be an oop
3491   Register hdr = op->hdr_opr()->as_register();
3492   Register lock = op->lock_opr()->as_register();
3493   if (!UseFastLocking) {
3494     __ jmp(*op->stub()->entry());
3495   } else if (op->code() == lir_lock) {
3496     Register scratch = noreg;
3497     if (UseBiasedLocking) {
3498       scratch = op->scratch_opr()->as_register();
3499     }
3500     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3501     // add debug info for NullPointerException only if one is possible
3502     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3503     if (op->info() != NULL) {
3504       add_debug_info_for_null_check(null_check_offset, op->info());
3505     }
3506     // done
3507   } else if (op->code() == lir_unlock) {
3508     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3509     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3510   } else {
3511     Unimplemented();
3512   }
3513   __ bind(*op->stub()->continuation());
3514 }
3515 
3516 
3517 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3518   ciMethod* method = op->profiled_method();
3519   int bci          = op->profiled_bci();
3520   ciMethod* callee = op->profiled_callee();
3521 
3522   // Update counter for all call types
3523   ciMethodData* md = method->method_data_or_null();
3524   assert(md != NULL, "Sanity");
3525   ciProfileData* data = md->bci_to_data(bci);
3526   assert(data->is_CounterData(), "need CounterData for calls");
3527   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3528   Register mdo  = op->mdo()->as_register();
3529   __ mov_metadata(mdo, md->constant_encoding());
3530   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3531   Bytecodes::Code bc = method->java_code_at_bci(bci);
3532   const bool callee_is_static = callee->is_loaded() && callee->is_static();
3533   // Perform additional virtual call profiling for invokevirtual and
3534   // invokeinterface bytecodes
3535   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3536       !callee_is_static &&  // required for optimized MH invokes
3537       C1ProfileVirtualCalls) {
3538     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3539     Register recv = op->recv()->as_register();
3540     assert_different_registers(mdo, recv);
3541     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3542     ciKlass* known_klass = op->known_holder();
3543     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3544       // We know the type that will be seen at this call site; we can
3545       // statically update the MethodData* rather than needing to do
3546       // dynamic tests on the receiver type
3547 
3548       // NOTE: we should probably put a lock around this search to
3549       // avoid collisions by concurrent compilations
3550       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3551       uint i;
3552       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3553         ciKlass* receiver = vc_data->receiver(i);
3554         if (known_klass->equals(receiver)) {
3555           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3556           __ addptr(data_addr, DataLayout::counter_increment);
3557           return;
3558         }
3559       }
3560 
3561       // Receiver type not found in profile data; select an empty slot
3562 
3563       // Note that this is less efficient than it should be because it
3564       // always does a write to the receiver part of the
3565       // VirtualCallData rather than just the first time
3566       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3567         ciKlass* receiver = vc_data->receiver(i);
3568         if (receiver == NULL) {
3569           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3570           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3571           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3572           __ addptr(data_addr, DataLayout::counter_increment);
3573           return;
3574         }
3575       }
3576     } else {
3577       __ load_klass(recv, recv);
3578       Label update_done;
3579       type_profile_helper(mdo, md, data, recv, &update_done);
3580       // Receiver did not match any saved receiver and there is no empty row for it.
3581       // Increment total counter to indicate polymorphic case.
3582       __ addptr(counter_addr, DataLayout::counter_increment);
3583 
3584       __ bind(update_done);
3585     }
3586   } else {
3587     // Static call
3588     __ addptr(counter_addr, DataLayout::counter_increment);
3589   }
3590 }
3591 
3592 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3593   Register obj = op->obj()->as_register();
3594   Register tmp = op->tmp()->as_pointer_register();
3595   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3596   ciKlass* exact_klass = op->exact_klass();
3597   intptr_t current_klass = op->current_klass();
3598   bool not_null = op->not_null();
3599   bool no_conflict = op->no_conflict();
3600 
3601   Label update, next, none;
3602 
3603   bool do_null = !not_null;
3604   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3605   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3606 
3607   assert(do_null || do_update, "why are we here?");
3608   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3609 
3610   __ verify_oop(obj);
3611 
3612   if (tmp != obj) {
3613     __ mov(tmp, obj);
3614   }
3615   if (do_null) {
3616     __ testptr(tmp, tmp);
3617     __ jccb(Assembler::notZero, update);
3618     if (!TypeEntries::was_null_seen(current_klass)) {
3619       __ orptr(mdo_addr, TypeEntries::null_seen);
3620     }
3621     if (do_update) {
3622 #ifndef ASSERT
3623       __ jmpb(next);
3624     }
3625 #else
3626       __ jmp(next);
3627     }
3628   } else {
3629     __ testptr(tmp, tmp);
3630     __ jccb(Assembler::notZero, update);
3631     __ stop("unexpect null obj");
3632 #endif
3633   }
3634 
3635   __ bind(update);
3636 
3637   if (do_update) {
3638 #ifdef ASSERT
3639     if (exact_klass != NULL) {
3640       Label ok;
3641       __ load_klass(tmp, tmp);
3642       __ push(tmp);
3643       __ mov_metadata(tmp, exact_klass->constant_encoding());
3644       __ cmpptr(tmp, Address(rsp, 0));
3645       __ jccb(Assembler::equal, ok);
3646       __ stop("exact klass and actual klass differ");
3647       __ bind(ok);
3648       __ pop(tmp);
3649     }
3650 #endif
3651     if (!no_conflict) {
3652       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3653         if (exact_klass != NULL) {
3654           __ mov_metadata(tmp, exact_klass->constant_encoding());
3655         } else {
3656           __ load_klass(tmp, tmp);
3657         }
3658 
3659         __ xorptr(tmp, mdo_addr);
3660         __ testptr(tmp, TypeEntries::type_klass_mask);
3661         // klass seen before, nothing to do. The unknown bit may have been
3662         // set already but no need to check.
3663         __ jccb(Assembler::zero, next);
3664 
3665         __ testptr(tmp, TypeEntries::type_unknown);
3666         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3667 
3668         if (TypeEntries::is_type_none(current_klass)) {
3669           __ cmpptr(mdo_addr, 0);
3670           __ jccb(Assembler::equal, none);
3671           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3672           __ jccb(Assembler::equal, none);
3673           // There is a chance that the checks above (re-reading profiling
3674           // data from memory) fail if another thread has just set the
3675           // profiling to this obj's klass
3676           __ xorptr(tmp, mdo_addr);
3677           __ testptr(tmp, TypeEntries::type_klass_mask);
3678           __ jccb(Assembler::zero, next);
3679         }
3680       } else {
3681         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3682                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3683 
3684         __ movptr(tmp, mdo_addr);
3685         __ testptr(tmp, TypeEntries::type_unknown);
3686         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3687       }
3688 
3689       // different than before. Cannot keep accurate profile.
3690       __ orptr(mdo_addr, TypeEntries::type_unknown);
3691 
3692       if (TypeEntries::is_type_none(current_klass)) {
3693         __ jmpb(next);
3694 
3695         __ bind(none);
3696         // first time here. Set profile type.
3697         __ movptr(mdo_addr, tmp);
3698       }
3699     } else {
3700       // There's a single possible klass at this profile point
3701       assert(exact_klass != NULL, "should be");
3702       if (TypeEntries::is_type_none(current_klass)) {
3703         __ mov_metadata(tmp, exact_klass->constant_encoding());
3704         __ xorptr(tmp, mdo_addr);
3705         __ testptr(tmp, TypeEntries::type_klass_mask);
3706 #ifdef ASSERT
3707         __ jcc(Assembler::zero, next);
3708 
3709         {
3710           Label ok;
3711           __ push(tmp);
3712           __ cmpptr(mdo_addr, 0);
3713           __ jcc(Assembler::equal, ok);
3714           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3715           __ jcc(Assembler::equal, ok);
3716           // may have been set by another thread
3717           __ mov_metadata(tmp, exact_klass->constant_encoding());
3718           __ xorptr(tmp, mdo_addr);
3719           __ testptr(tmp, TypeEntries::type_mask);
3720           __ jcc(Assembler::zero, ok);
3721 
3722           __ stop("unexpected profiling mismatch");
3723           __ bind(ok);
3724           __ pop(tmp);
3725         }
3726 #else
3727         __ jccb(Assembler::zero, next);
3728 #endif
3729         // first time here. Set profile type.
3730         __ movptr(mdo_addr, tmp);
3731       } else {
3732         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3733                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3734 
3735         __ movptr(tmp, mdo_addr);
3736         __ testptr(tmp, TypeEntries::type_unknown);
3737         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3738 
3739         __ orptr(mdo_addr, TypeEntries::type_unknown);
3740       }
3741     }
3742 
3743     __ bind(next);
3744   }
3745 }
3746 
3747 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3748   Unimplemented();
3749 }
3750 
3751 
3752 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3753   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3754 }
3755 
3756 
3757 void LIR_Assembler::align_backward_branch_target() {
3758   __ align(BytesPerWord);
3759 }
3760 
3761 
3762 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3763   if (left->is_single_cpu()) {
3764     __ negl(left->as_register());
3765     move_regs(left->as_register(), dest->as_register());
3766 
3767   } else if (left->is_double_cpu()) {
3768     Register lo = left->as_register_lo();
3769 #ifdef _LP64
3770     Register dst = dest->as_register_lo();
3771     __ movptr(dst, lo);
3772     __ negptr(dst);
3773 #else
3774     Register hi = left->as_register_hi();
3775     __ lneg(hi, lo);
3776     if (dest->as_register_lo() == hi) {
3777       assert(dest->as_register_hi() != lo, "destroying register");
3778       move_regs(hi, dest->as_register_hi());
3779       move_regs(lo, dest->as_register_lo());
3780     } else {
3781       move_regs(lo, dest->as_register_lo());
3782       move_regs(hi, dest->as_register_hi());
3783     }
3784 #endif // _LP64
3785 
3786   } else if (dest->is_single_xmm()) {
3787     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3788       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3789     }
3790     if (UseAVX > 0) {
3791       __ vnegatess(dest->as_xmm_float_reg(), dest->as_xmm_float_reg(),
3792                    ExternalAddress((address)float_signflip_pool));
3793     } else {
3794       __ xorps(dest->as_xmm_float_reg(),
3795                ExternalAddress((address)float_signflip_pool));
3796     }
3797   } else if (dest->is_double_xmm()) {
3798     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3799       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3800     }
3801     if (UseAVX > 0) {
3802       __ vnegatesd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg(),
3803                    ExternalAddress((address)double_signflip_pool));
3804     } else {
3805       __ xorpd(dest->as_xmm_double_reg(),
3806                ExternalAddress((address)double_signflip_pool));
3807     }
3808   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3809     assert(left->fpu() == 0, "arg must be on TOS");
3810     assert(dest->fpu() == 0, "dest must be TOS");
3811     __ fchs();
3812 
3813   } else {
3814     ShouldNotReachHere();
3815   }
3816 }
3817 
3818 
3819 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3820   assert(addr->is_address() && dest->is_register(), "check");
3821   Register reg;
3822   reg = dest->as_pointer_register();
3823   __ lea(reg, as_Address(addr->as_address_ptr()));
3824 }
3825 
3826 
3827 
3828 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3829   assert(!tmp->is_valid(), "don't need temporary");
3830   __ call(RuntimeAddress(dest));
3831   if (info != NULL) {
3832     add_call_info_here(info);
3833   }
3834 }
3835 
3836 
3837 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3838   assert(type == T_LONG, "only for volatile long fields");
3839 
3840   if (info != NULL) {
3841     add_debug_info_for_null_check_here(info);
3842   }
3843 
3844   if (src->is_double_xmm()) {
3845     if (dest->is_double_cpu()) {
3846 #ifdef _LP64
3847       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3848 #else
3849       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3850       __ psrlq(src->as_xmm_double_reg(), 32);
3851       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3852 #endif // _LP64
3853     } else if (dest->is_double_stack()) {
3854       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3855     } else if (dest->is_address()) {
3856       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3857     } else {
3858       ShouldNotReachHere();
3859     }
3860 
3861   } else if (dest->is_double_xmm()) {
3862     if (src->is_double_stack()) {
3863       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3864     } else if (src->is_address()) {
3865       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3866     } else {
3867       ShouldNotReachHere();
3868     }
3869 
3870   } else if (src->is_double_fpu()) {
3871     assert(src->fpu_regnrLo() == 0, "must be TOS");
3872     if (dest->is_double_stack()) {
3873       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3874     } else if (dest->is_address()) {
3875       __ fistp_d(as_Address(dest->as_address_ptr()));
3876     } else {
3877       ShouldNotReachHere();
3878     }
3879 
3880   } else if (dest->is_double_fpu()) {
3881     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3882     if (src->is_double_stack()) {
3883       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3884     } else if (src->is_address()) {
3885       __ fild_d(as_Address(src->as_address_ptr()));
3886     } else {
3887       ShouldNotReachHere();
3888     }
3889   } else {
3890     ShouldNotReachHere();
3891   }
3892 }
3893 
3894 #ifdef ASSERT
3895 // emit run-time assertion
3896 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3897   assert(op->code() == lir_assert, "must be");
3898 
3899   if (op->in_opr1()->is_valid()) {
3900     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3901     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3902   } else {
3903     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3904     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3905   }
3906 
3907   Label ok;
3908   if (op->condition() != lir_cond_always) {
3909     Assembler::Condition acond = Assembler::zero;
3910     switch (op->condition()) {
3911       case lir_cond_equal:        acond = Assembler::equal;       break;
3912       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3913       case lir_cond_less:         acond = Assembler::less;        break;
3914       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3915       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3916       case lir_cond_greater:      acond = Assembler::greater;     break;
3917       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3918       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3919       default:                    ShouldNotReachHere();
3920     }
3921     __ jcc(acond, ok);
3922   }
3923   if (op->halt()) {
3924     const char* str = __ code_string(op->msg());
3925     __ stop(str);
3926   } else {
3927     breakpoint();
3928   }
3929   __ bind(ok);
3930 }
3931 #endif
3932 
3933 void LIR_Assembler::membar() {
3934   // QQQ sparc TSO uses this,
3935   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3936 }
3937 
3938 void LIR_Assembler::membar_acquire() {
3939   // No x86 machines currently require load fences
3940 }
3941 
3942 void LIR_Assembler::membar_release() {
3943   // No x86 machines currently require store fences
3944 }
3945 
3946 void LIR_Assembler::membar_loadload() {
3947   // no-op
3948   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3949 }
3950 
3951 void LIR_Assembler::membar_storestore() {
3952   // no-op
3953   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3954 }
3955 
3956 void LIR_Assembler::membar_loadstore() {
3957   // no-op
3958   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3959 }
3960 
3961 void LIR_Assembler::membar_storeload() {
3962   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3963 }
3964 
3965 void LIR_Assembler::on_spin_wait() {
3966   __ pause ();
3967 }
3968 
3969 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3970   assert(result_reg->is_register(), "check");
3971 #ifdef _LP64
3972   // __ get_thread(result_reg->as_register_lo());
3973   __ mov(result_reg->as_register(), r15_thread);
3974 #else
3975   __ get_thread(result_reg->as_register());
3976 #endif // _LP64
3977 }
3978 
3979 
3980 void LIR_Assembler::peephole(LIR_List*) {
3981   // do nothing for now
3982 }
3983 
3984 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3985   assert(data == dest, "xchg/xadd uses only 2 operands");
3986 
3987   if (data->type() == T_INT) {
3988     if (code == lir_xadd) {
3989       if (os::is_MP()) {
3990         __ lock();
3991       }
3992       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
3993     } else {
3994       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
3995     }
3996   } else if (data->is_oop()) {
3997     assert (code == lir_xchg, "xadd for oops");
3998     Register obj = data->as_register();
3999 #ifdef _LP64
4000     if (UseCompressedOops) {
4001       __ encode_heap_oop(obj);
4002       __ xchgl(obj, as_Address(src->as_address_ptr()));
4003       __ decode_heap_oop(obj);
4004     } else {
4005       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4006     }
4007 #else
4008     __ xchgl(obj, as_Address(src->as_address_ptr()));
4009 #endif
4010   } else if (data->type() == T_LONG) {
4011 #ifdef _LP64
4012     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4013     if (code == lir_xadd) {
4014       if (os::is_MP()) {
4015         __ lock();
4016       }
4017       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4018     } else {
4019       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4020     }
4021 #else
4022     ShouldNotReachHere();
4023 #endif
4024   } else {
4025     ShouldNotReachHere();
4026   }
4027 }
4028 
4029 #undef __