1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/loopnode.hpp"
  34 #include "opto/matcher.hpp"
  35 #include "opto/movenode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/opcodes.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_SHENANDOAHGC
  43 #include "gc/shenandoah/c2/shenandoahSupport.hpp"
  44 #endif
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 #include "math.h"
  51 
  52 //=============================================================================
  53 //------------------------------Identity---------------------------------------
  54 // If right input is a constant 0, return the left input.
  55 Node* SubNode::Identity(PhaseGVN* phase) {
  56   assert(in(1) != this, "Must already have called Value");
  57   assert(in(2) != this, "Must already have called Value");
  58 
  59   // Remove double negation
  60   const Type *zero = add_id();
  61   if( phase->type( in(1) )->higher_equal( zero ) &&
  62       in(2)->Opcode() == Opcode() &&
  63       phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
  64     return in(2)->in(2);
  65   }
  66 
  67   // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
  68   if( in(1)->Opcode() == Op_AddI ) {
  69     if( phase->eqv(in(1)->in(2),in(2)) )
  70       return in(1)->in(1);
  71     if (phase->eqv(in(1)->in(1),in(2)))
  72       return in(1)->in(2);
  73 
  74     // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
  75     // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
  76     // are originally used, although the optimizer sometimes jiggers things).
  77     // This folding through an O2 removes a loop-exit use of a loop-varying
  78     // value and generally lowers register pressure in and around the loop.
  79     if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
  80         phase->eqv(in(1)->in(2)->in(1),in(2)) )
  81       return in(1)->in(1);
  82   }
  83 
  84   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
  85 }
  86 
  87 //------------------------------Value------------------------------------------
  88 // A subtract node differences it's two inputs.
  89 const Type* SubNode::Value_common(PhaseTransform *phase) const {
  90   const Node* in1 = in(1);
  91   const Node* in2 = in(2);
  92   // Either input is TOP ==> the result is TOP
  93   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  94   if( t1 == Type::TOP ) return Type::TOP;
  95   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  96   if( t2 == Type::TOP ) return Type::TOP;
  97 
  98   // Not correct for SubFnode and AddFNode (must check for infinity)
  99   // Equal?  Subtract is zero
 100   if (in1->eqv_uncast(in2))  return add_id();
 101 
 102   // Either input is BOTTOM ==> the result is the local BOTTOM
 103   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
 104     return bottom_type();
 105 
 106   return NULL;
 107 }
 108 
 109 const Type* SubNode::Value(PhaseGVN* phase) const {
 110   const Type* t = Value_common(phase);
 111   if (t != NULL) {
 112     return t;
 113   }
 114   const Type* t1 = phase->type(in(1));
 115   const Type* t2 = phase->type(in(2));
 116   return sub(t1,t2);            // Local flavor of type subtraction
 117 
 118 }
 119 
 120 //=============================================================================
 121 
 122 //------------------------------Helper function--------------------------------
 123 static bool ok_to_convert(Node* inc, Node* iv) {
 124     // Do not collapse (x+c0)-y if "+" is a loop increment, because the
 125     // "-" is loop invariant and collapsing extends the live-range of "x"
 126     // to overlap with the "+", forcing another register to be used in
 127     // the loop.
 128     // This test will be clearer with '&&' (apply DeMorgan's rule)
 129     // but I like the early cutouts that happen here.
 130     const PhiNode *phi;
 131     if( ( !inc->in(1)->is_Phi() ||
 132           !(phi=inc->in(1)->as_Phi()) ||
 133           phi->is_copy() ||
 134           !phi->region()->is_CountedLoop() ||
 135           inc != phi->region()->as_CountedLoop()->incr() )
 136        &&
 137         // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
 138         // because "x" maybe invariant.
 139         ( !iv->is_loop_iv() )
 140       ) {
 141       return true;
 142     } else {
 143       return false;
 144     }
 145 }
 146 //------------------------------Ideal------------------------------------------
 147 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
 148   Node *in1 = in(1);
 149   Node *in2 = in(2);
 150   uint op1 = in1->Opcode();
 151   uint op2 = in2->Opcode();
 152 
 153 #ifdef ASSERT
 154   // Check for dead loop
 155   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
 156       ( ( op1 == Op_AddI || op1 == Op_SubI ) &&
 157         ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
 158           phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) ) )
 159     assert(false, "dead loop in SubINode::Ideal");
 160 #endif
 161 
 162   const Type *t2 = phase->type( in2 );
 163   if( t2 == Type::TOP ) return NULL;
 164   // Convert "x-c0" into "x+ -c0".
 165   if( t2->base() == Type::Int ){        // Might be bottom or top...
 166     const TypeInt *i = t2->is_int();
 167     if( i->is_con() )
 168       return new AddINode(in1, phase->intcon(-i->get_con()));
 169   }
 170 
 171   // Convert "(x+c0) - y" into (x-y) + c0"
 172   // Do not collapse (x+c0)-y if "+" is a loop increment or
 173   // if "y" is a loop induction variable.
 174   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
 175     const Type *tadd = phase->type( in1->in(2) );
 176     if( tadd->singleton() && tadd != Type::TOP ) {
 177       Node *sub2 = phase->transform( new SubINode( in1->in(1), in2 ));
 178       return new AddINode( sub2, in1->in(2) );
 179     }
 180   }
 181 
 182 
 183   // Convert "x - (y+c0)" into "(x-y) - c0"
 184   // Need the same check as in above optimization but reversed.
 185   if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
 186     Node* in21 = in2->in(1);
 187     Node* in22 = in2->in(2);
 188     const TypeInt* tcon = phase->type(in22)->isa_int();
 189     if (tcon != NULL && tcon->is_con()) {
 190       Node* sub2 = phase->transform( new SubINode(in1, in21) );
 191       Node* neg_c0 = phase->intcon(- tcon->get_con());
 192       return new AddINode(sub2, neg_c0);
 193     }
 194   }
 195 
 196   const Type *t1 = phase->type( in1 );
 197   if( t1 == Type::TOP ) return NULL;
 198 
 199 #ifdef ASSERT
 200   // Check for dead loop
 201   if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
 202       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
 203         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
 204     assert(false, "dead loop in SubINode::Ideal");
 205 #endif
 206 
 207   // Convert "x - (x+y)" into "-y"
 208   if( op2 == Op_AddI &&
 209       phase->eqv( in1, in2->in(1) ) )
 210     return new SubINode( phase->intcon(0),in2->in(2));
 211   // Convert "(x-y) - x" into "-y"
 212   if( op1 == Op_SubI &&
 213       phase->eqv( in1->in(1), in2 ) )
 214     return new SubINode( phase->intcon(0),in1->in(2));
 215   // Convert "x - (y+x)" into "-y"
 216   if( op2 == Op_AddI &&
 217       phase->eqv( in1, in2->in(2) ) )
 218     return new SubINode( phase->intcon(0),in2->in(1));
 219 
 220   // Convert "0 - (x-y)" into "y-x"
 221   if( t1 == TypeInt::ZERO && op2 == Op_SubI )
 222     return new SubINode( in2->in(2), in2->in(1) );
 223 
 224   // Convert "0 - (x+con)" into "-con-x"
 225   jint con;
 226   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
 227       (con = in2->in(2)->find_int_con(0)) != 0 )
 228     return new SubINode( phase->intcon(-con), in2->in(1) );
 229 
 230   // Convert "(X+A) - (X+B)" into "A - B"
 231   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
 232     return new SubINode( in1->in(2), in2->in(2) );
 233 
 234   // Convert "(A+X) - (B+X)" into "A - B"
 235   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
 236     return new SubINode( in1->in(1), in2->in(1) );
 237 
 238   // Convert "(A+X) - (X+B)" into "A - B"
 239   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
 240     return new SubINode( in1->in(1), in2->in(2) );
 241 
 242   // Convert "(X+A) - (B+X)" into "A - B"
 243   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
 244     return new SubINode( in1->in(2), in2->in(1) );
 245 
 246   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
 247   // nicer to optimize than subtract.
 248   if( op2 == Op_SubI && in2->outcnt() == 1) {
 249     Node *add1 = phase->transform( new AddINode( in1, in2->in(2) ) );
 250     return new SubINode( add1, in2->in(1) );
 251   }
 252 
 253   return NULL;
 254 }
 255 
 256 //------------------------------sub--------------------------------------------
 257 // A subtract node differences it's two inputs.
 258 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
 259   const TypeInt *r0 = t1->is_int(); // Handy access
 260   const TypeInt *r1 = t2->is_int();
 261   int32_t lo = java_subtract(r0->_lo, r1->_hi);
 262   int32_t hi = java_subtract(r0->_hi, r1->_lo);
 263 
 264   // We next check for 32-bit overflow.
 265   // If that happens, we just assume all integers are possible.
 266   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 267        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 268       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 269        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 270     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 271   else                          // Overflow; assume all integers
 272     return TypeInt::INT;
 273 }
 274 
 275 //=============================================================================
 276 //------------------------------Ideal------------------------------------------
 277 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 278   Node *in1 = in(1);
 279   Node *in2 = in(2);
 280   uint op1 = in1->Opcode();
 281   uint op2 = in2->Opcode();
 282 
 283 #ifdef ASSERT
 284   // Check for dead loop
 285   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
 286       ( ( op1 == Op_AddL || op1 == Op_SubL ) &&
 287         ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
 288           phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) ) )
 289     assert(false, "dead loop in SubLNode::Ideal");
 290 #endif
 291 
 292   if( phase->type( in2 ) == Type::TOP ) return NULL;
 293   const TypeLong *i = phase->type( in2 )->isa_long();
 294   // Convert "x-c0" into "x+ -c0".
 295   if( i &&                      // Might be bottom or top...
 296       i->is_con() )
 297     return new AddLNode(in1, phase->longcon(-i->get_con()));
 298 
 299   // Convert "(x+c0) - y" into (x-y) + c0"
 300   // Do not collapse (x+c0)-y if "+" is a loop increment or
 301   // if "y" is a loop induction variable.
 302   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
 303     Node *in11 = in1->in(1);
 304     const Type *tadd = phase->type( in1->in(2) );
 305     if( tadd->singleton() && tadd != Type::TOP ) {
 306       Node *sub2 = phase->transform( new SubLNode( in11, in2 ));
 307       return new AddLNode( sub2, in1->in(2) );
 308     }
 309   }
 310 
 311   // Convert "x - (y+c0)" into "(x-y) - c0"
 312   // Need the same check as in above optimization but reversed.
 313   if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
 314     Node* in21 = in2->in(1);
 315     Node* in22 = in2->in(2);
 316     const TypeLong* tcon = phase->type(in22)->isa_long();
 317     if (tcon != NULL && tcon->is_con()) {
 318       Node* sub2 = phase->transform( new SubLNode(in1, in21) );
 319       Node* neg_c0 = phase->longcon(- tcon->get_con());
 320       return new AddLNode(sub2, neg_c0);
 321     }
 322   }
 323 
 324   const Type *t1 = phase->type( in1 );
 325   if( t1 == Type::TOP ) return NULL;
 326 
 327 #ifdef ASSERT
 328   // Check for dead loop
 329   if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
 330       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
 331         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
 332     assert(false, "dead loop in SubLNode::Ideal");
 333 #endif
 334 
 335   // Convert "x - (x+y)" into "-y"
 336   if( op2 == Op_AddL &&
 337       phase->eqv( in1, in2->in(1) ) )
 338     return new SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
 339   // Convert "x - (y+x)" into "-y"
 340   if( op2 == Op_AddL &&
 341       phase->eqv( in1, in2->in(2) ) )
 342     return new SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
 343 
 344   // Convert "0 - (x-y)" into "y-x"
 345   if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
 346     return new SubLNode( in2->in(2), in2->in(1) );
 347 
 348   // Convert "(X+A) - (X+B)" into "A - B"
 349   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
 350     return new SubLNode( in1->in(2), in2->in(2) );
 351 
 352   // Convert "(A+X) - (B+X)" into "A - B"
 353   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
 354     return new SubLNode( in1->in(1), in2->in(1) );
 355 
 356   // Convert "A-(B-C)" into (A+C)-B"
 357   if( op2 == Op_SubL && in2->outcnt() == 1) {
 358     Node *add1 = phase->transform( new AddLNode( in1, in2->in(2) ) );
 359     return new SubLNode( add1, in2->in(1) );
 360   }
 361 
 362   return NULL;
 363 }
 364 
 365 //------------------------------sub--------------------------------------------
 366 // A subtract node differences it's two inputs.
 367 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
 368   const TypeLong *r0 = t1->is_long(); // Handy access
 369   const TypeLong *r1 = t2->is_long();
 370   jlong lo = java_subtract(r0->_lo, r1->_hi);
 371   jlong hi = java_subtract(r0->_hi, r1->_lo);
 372 
 373   // We next check for 32-bit overflow.
 374   // If that happens, we just assume all integers are possible.
 375   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 376        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 377       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 378        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 379     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 380   else                          // Overflow; assume all integers
 381     return TypeLong::LONG;
 382 }
 383 
 384 //=============================================================================
 385 //------------------------------Value------------------------------------------
 386 // A subtract node differences its two inputs.
 387 const Type* SubFPNode::Value(PhaseGVN* phase) const {
 388   const Node* in1 = in(1);
 389   const Node* in2 = in(2);
 390   // Either input is TOP ==> the result is TOP
 391   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
 392   if( t1 == Type::TOP ) return Type::TOP;
 393   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
 394   if( t2 == Type::TOP ) return Type::TOP;
 395 
 396   // if both operands are infinity of same sign, the result is NaN; do
 397   // not replace with zero
 398   if( (t1->is_finite() && t2->is_finite()) ) {
 399     if( phase->eqv(in1, in2) ) return add_id();
 400   }
 401 
 402   // Either input is BOTTOM ==> the result is the local BOTTOM
 403   const Type *bot = bottom_type();
 404   if( (t1 == bot) || (t2 == bot) ||
 405       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 406     return bot;
 407 
 408   return sub(t1,t2);            // Local flavor of type subtraction
 409 }
 410 
 411 
 412 //=============================================================================
 413 //------------------------------Ideal------------------------------------------
 414 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 415   const Type *t2 = phase->type( in(2) );
 416   // Convert "x-c0" into "x+ -c0".
 417   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
 418     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
 419   }
 420 
 421   // Not associative because of boundary conditions (infinity)
 422   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 423     // Convert "x - (x+y)" into "-y"
 424     if( in(2)->is_Add() &&
 425         phase->eqv(in(1),in(2)->in(1) ) )
 426       return new SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
 427   }
 428 
 429   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
 430   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
 431   //if( phase->type(in(1)) == TypeF::ZERO )
 432   //return new (phase->C, 2) NegFNode(in(2));
 433 
 434   return NULL;
 435 }
 436 
 437 //------------------------------sub--------------------------------------------
 438 // A subtract node differences its two inputs.
 439 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
 440   // no folding if one of operands is infinity or NaN, do not do constant folding
 441   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
 442     return TypeF::make( t1->getf() - t2->getf() );
 443   }
 444   else if( g_isnan(t1->getf()) ) {
 445     return t1;
 446   }
 447   else if( g_isnan(t2->getf()) ) {
 448     return t2;
 449   }
 450   else {
 451     return Type::FLOAT;
 452   }
 453 }
 454 
 455 //=============================================================================
 456 //------------------------------Ideal------------------------------------------
 457 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
 458   const Type *t2 = phase->type( in(2) );
 459   // Convert "x-c0" into "x+ -c0".
 460   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
 461     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
 462   }
 463 
 464   // Not associative because of boundary conditions (infinity)
 465   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 466     // Convert "x - (x+y)" into "-y"
 467     if( in(2)->is_Add() &&
 468         phase->eqv(in(1),in(2)->in(1) ) )
 469       return new SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
 470   }
 471 
 472   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
 473   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
 474   //if( phase->type(in(1)) == TypeD::ZERO )
 475   //return new (phase->C, 2) NegDNode(in(2));
 476 
 477   return NULL;
 478 }
 479 
 480 //------------------------------sub--------------------------------------------
 481 // A subtract node differences its two inputs.
 482 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
 483   // no folding if one of operands is infinity or NaN, do not do constant folding
 484   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
 485     return TypeD::make( t1->getd() - t2->getd() );
 486   }
 487   else if( g_isnan(t1->getd()) ) {
 488     return t1;
 489   }
 490   else if( g_isnan(t2->getd()) ) {
 491     return t2;
 492   }
 493   else {
 494     return Type::DOUBLE;
 495   }
 496 }
 497 
 498 //=============================================================================
 499 //------------------------------Idealize---------------------------------------
 500 // Unlike SubNodes, compare must still flatten return value to the
 501 // range -1, 0, 1.
 502 // And optimizations like those for (X + Y) - X fail if overflow happens.
 503 Node* CmpNode::Identity(PhaseGVN* phase) {
 504   return this;
 505 }
 506 
 507 #ifndef PRODUCT
 508 //----------------------------related------------------------------------------
 509 // Related nodes of comparison nodes include all data inputs (until hitting a
 510 // control boundary) as well as all outputs until and including control nodes
 511 // as well as their projections. In compact mode, data inputs till depth 1 and
 512 // all outputs till depth 1 are considered.
 513 void CmpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
 514   if (compact) {
 515     this->collect_nodes(in_rel, 1, false, true);
 516     this->collect_nodes(out_rel, -1, false, false);
 517   } else {
 518     this->collect_nodes_in_all_data(in_rel, false);
 519     this->collect_nodes_out_all_ctrl_boundary(out_rel);
 520     // Now, find all control nodes in out_rel, and include their projections
 521     // and projection targets (if any) in the result.
 522     GrowableArray<Node*> proj(Compile::current()->unique());
 523     for (GrowableArrayIterator<Node*> it = out_rel->begin(); it != out_rel->end(); ++it) {
 524       Node* n = *it;
 525       if (n->is_CFG() && !n->is_Proj()) {
 526         // Assume projections and projection targets are found at levels 1 and 2.
 527         n->collect_nodes(&proj, -2, false, false);
 528         for (GrowableArrayIterator<Node*> p = proj.begin(); p != proj.end(); ++p) {
 529           out_rel->append_if_missing(*p);
 530         }
 531         proj.clear();
 532       }
 533     }
 534   }
 535 }
 536 #endif
 537 
 538 //=============================================================================
 539 //------------------------------cmp--------------------------------------------
 540 // Simplify a CmpI (compare 2 integers) node, based on local information.
 541 // If both inputs are constants, compare them.
 542 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
 543   const TypeInt *r0 = t1->is_int(); // Handy access
 544   const TypeInt *r1 = t2->is_int();
 545 
 546   if( r0->_hi < r1->_lo )       // Range is always low?
 547     return TypeInt::CC_LT;
 548   else if( r0->_lo > r1->_hi )  // Range is always high?
 549     return TypeInt::CC_GT;
 550 
 551   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 552     assert(r0->get_con() == r1->get_con(), "must be equal");
 553     return TypeInt::CC_EQ;      // Equal results.
 554   } else if( r0->_hi == r1->_lo ) // Range is never high?
 555     return TypeInt::CC_LE;
 556   else if( r0->_lo == r1->_hi ) // Range is never low?
 557     return TypeInt::CC_GE;
 558   return TypeInt::CC;           // else use worst case results
 559 }
 560 
 561 // Simplify a CmpU (compare 2 integers) node, based on local information.
 562 // If both inputs are constants, compare them.
 563 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
 564   assert(!t1->isa_ptr(), "obsolete usage of CmpU");
 565 
 566   // comparing two unsigned ints
 567   const TypeInt *r0 = t1->is_int();   // Handy access
 568   const TypeInt *r1 = t2->is_int();
 569 
 570   // Current installed version
 571   // Compare ranges for non-overlap
 572   juint lo0 = r0->_lo;
 573   juint hi0 = r0->_hi;
 574   juint lo1 = r1->_lo;
 575   juint hi1 = r1->_hi;
 576 
 577   // If either one has both negative and positive values,
 578   // it therefore contains both 0 and -1, and since [0..-1] is the
 579   // full unsigned range, the type must act as an unsigned bottom.
 580   bool bot0 = ((jint)(lo0 ^ hi0) < 0);
 581   bool bot1 = ((jint)(lo1 ^ hi1) < 0);
 582 
 583   if (bot0 || bot1) {
 584     // All unsigned values are LE -1 and GE 0.
 585     if (lo0 == 0 && hi0 == 0) {
 586       return TypeInt::CC_LE;            //   0 <= bot
 587     } else if ((jint)lo0 == -1 && (jint)hi0 == -1) {
 588       return TypeInt::CC_GE;            // -1 >= bot
 589     } else if (lo1 == 0 && hi1 == 0) {
 590       return TypeInt::CC_GE;            // bot >= 0
 591     } else if ((jint)lo1 == -1 && (jint)hi1 == -1) {
 592       return TypeInt::CC_LE;            // bot <= -1
 593     }
 594   } else {
 595     // We can use ranges of the form [lo..hi] if signs are the same.
 596     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
 597     // results are reversed, '-' > '+' for unsigned compare
 598     if (hi0 < lo1) {
 599       return TypeInt::CC_LT;            // smaller
 600     } else if (lo0 > hi1) {
 601       return TypeInt::CC_GT;            // greater
 602     } else if (hi0 == lo1 && lo0 == hi1) {
 603       return TypeInt::CC_EQ;            // Equal results
 604     } else if (lo0 >= hi1) {
 605       return TypeInt::CC_GE;
 606     } else if (hi0 <= lo1) {
 607       // Check for special case in Hashtable::get.  (See below.)
 608       if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
 609         return TypeInt::CC_LT;
 610       return TypeInt::CC_LE;
 611     }
 612   }
 613   // Check for special case in Hashtable::get - the hash index is
 614   // mod'ed to the table size so the following range check is useless.
 615   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
 616   // to be positive.
 617   // (This is a gross hack, since the sub method never
 618   // looks at the structure of the node in any other case.)
 619   if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
 620     return TypeInt::CC_LT;
 621   return TypeInt::CC;                   // else use worst case results
 622 }
 623 
 624 const Type* CmpUNode::Value(PhaseGVN* phase) const {
 625   const Type* t = SubNode::Value_common(phase);
 626   if (t != NULL) {
 627     return t;
 628   }
 629   const Node* in1 = in(1);
 630   const Node* in2 = in(2);
 631   const Type* t1 = phase->type(in1);
 632   const Type* t2 = phase->type(in2);
 633   assert(t1->isa_int(), "CmpU has only Int type inputs");
 634   if (t2 == TypeInt::INT) { // Compare to bottom?
 635     return bottom_type();
 636   }
 637   uint in1_op = in1->Opcode();
 638   if (in1_op == Op_AddI || in1_op == Op_SubI) {
 639     // The problem rise when result of AddI(SubI) may overflow
 640     // signed integer value. Let say the input type is
 641     // [256, maxint] then +128 will create 2 ranges due to
 642     // overflow: [minint, minint+127] and [384, maxint].
 643     // But C2 type system keep only 1 type range and as result
 644     // it use general [minint, maxint] for this case which we
 645     // can't optimize.
 646     //
 647     // Make 2 separate type ranges based on types of AddI(SubI) inputs
 648     // and compare results of their compare. If results are the same
 649     // CmpU node can be optimized.
 650     const Node* in11 = in1->in(1);
 651     const Node* in12 = in1->in(2);
 652     const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11);
 653     const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12);
 654     // Skip cases when input types are top or bottom.
 655     if ((t11 != Type::TOP) && (t11 != TypeInt::INT) &&
 656         (t12 != Type::TOP) && (t12 != TypeInt::INT)) {
 657       const TypeInt *r0 = t11->is_int();
 658       const TypeInt *r1 = t12->is_int();
 659       jlong lo_r0 = r0->_lo;
 660       jlong hi_r0 = r0->_hi;
 661       jlong lo_r1 = r1->_lo;
 662       jlong hi_r1 = r1->_hi;
 663       if (in1_op == Op_SubI) {
 664         jlong tmp = hi_r1;
 665         hi_r1 = -lo_r1;
 666         lo_r1 = -tmp;
 667         // Note, for substructing [minint,x] type range
 668         // long arithmetic provides correct overflow answer.
 669         // The confusion come from the fact that in 32-bit
 670         // -minint == minint but in 64-bit -minint == maxint+1.
 671       }
 672       jlong lo_long = lo_r0 + lo_r1;
 673       jlong hi_long = hi_r0 + hi_r1;
 674       int lo_tr1 = min_jint;
 675       int hi_tr1 = (int)hi_long;
 676       int lo_tr2 = (int)lo_long;
 677       int hi_tr2 = max_jint;
 678       bool underflow = lo_long != (jlong)lo_tr2;
 679       bool overflow  = hi_long != (jlong)hi_tr1;
 680       // Use sub(t1, t2) when there is no overflow (one type range)
 681       // or when both overflow and underflow (too complex).
 682       if ((underflow != overflow) && (hi_tr1 < lo_tr2)) {
 683         // Overflow only on one boundary, compare 2 separate type ranges.
 684         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
 685         const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w);
 686         const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w);
 687         const Type* cmp1 = sub(tr1, t2);
 688         const Type* cmp2 = sub(tr2, t2);
 689         if (cmp1 == cmp2) {
 690           return cmp1; // Hit!
 691         }
 692       }
 693     }
 694   }
 695 
 696   return sub(t1, t2);            // Local flavor of type subtraction
 697 }
 698 
 699 bool CmpUNode::is_index_range_check() const {
 700   // Check for the "(X ModI Y) CmpU Y" shape
 701   return (in(1)->Opcode() == Op_ModI &&
 702           in(1)->in(2)->eqv_uncast(in(2)));
 703 }
 704 
 705 //------------------------------Idealize---------------------------------------
 706 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 707   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
 708     switch (in(1)->Opcode()) {
 709     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
 710       return new CmpLNode(in(1)->in(1),in(1)->in(2));
 711     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
 712       return new CmpFNode(in(1)->in(1),in(1)->in(2));
 713     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
 714       return new CmpDNode(in(1)->in(1),in(1)->in(2));
 715     //case Op_SubI:
 716       // If (x - y) cannot overflow, then ((x - y) <?> 0)
 717       // can be turned into (x <?> y).
 718       // This is handled (with more general cases) by Ideal_sub_algebra.
 719     }
 720   }
 721   return NULL;                  // No change
 722 }
 723 
 724 
 725 //=============================================================================
 726 // Simplify a CmpL (compare 2 longs ) node, based on local information.
 727 // If both inputs are constants, compare them.
 728 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
 729   const TypeLong *r0 = t1->is_long(); // Handy access
 730   const TypeLong *r1 = t2->is_long();
 731 
 732   if( r0->_hi < r1->_lo )       // Range is always low?
 733     return TypeInt::CC_LT;
 734   else if( r0->_lo > r1->_hi )  // Range is always high?
 735     return TypeInt::CC_GT;
 736 
 737   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 738     assert(r0->get_con() == r1->get_con(), "must be equal");
 739     return TypeInt::CC_EQ;      // Equal results.
 740   } else if( r0->_hi == r1->_lo ) // Range is never high?
 741     return TypeInt::CC_LE;
 742   else if( r0->_lo == r1->_hi ) // Range is never low?
 743     return TypeInt::CC_GE;
 744   return TypeInt::CC;           // else use worst case results
 745 }
 746 
 747 
 748 // Simplify a CmpUL (compare 2 unsigned longs) node, based on local information.
 749 // If both inputs are constants, compare them.
 750 const Type* CmpULNode::sub(const Type* t1, const Type* t2) const {
 751   assert(!t1->isa_ptr(), "obsolete usage of CmpUL");
 752 
 753   // comparing two unsigned longs
 754   const TypeLong* r0 = t1->is_long();   // Handy access
 755   const TypeLong* r1 = t2->is_long();
 756 
 757   // Current installed version
 758   // Compare ranges for non-overlap
 759   julong lo0 = r0->_lo;
 760   julong hi0 = r0->_hi;
 761   julong lo1 = r1->_lo;
 762   julong hi1 = r1->_hi;
 763 
 764   // If either one has both negative and positive values,
 765   // it therefore contains both 0 and -1, and since [0..-1] is the
 766   // full unsigned range, the type must act as an unsigned bottom.
 767   bool bot0 = ((jlong)(lo0 ^ hi0) < 0);
 768   bool bot1 = ((jlong)(lo1 ^ hi1) < 0);
 769 
 770   if (bot0 || bot1) {
 771     // All unsigned values are LE -1 and GE 0.
 772     if (lo0 == 0 && hi0 == 0) {
 773       return TypeInt::CC_LE;            //   0 <= bot
 774     } else if ((jlong)lo0 == -1 && (jlong)hi0 == -1) {
 775       return TypeInt::CC_GE;            // -1 >= bot
 776     } else if (lo1 == 0 && hi1 == 0) {
 777       return TypeInt::CC_GE;            // bot >= 0
 778     } else if ((jlong)lo1 == -1 && (jlong)hi1 == -1) {
 779       return TypeInt::CC_LE;            // bot <= -1
 780     }
 781   } else {
 782     // We can use ranges of the form [lo..hi] if signs are the same.
 783     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
 784     // results are reversed, '-' > '+' for unsigned compare
 785     if (hi0 < lo1) {
 786       return TypeInt::CC_LT;            // smaller
 787     } else if (lo0 > hi1) {
 788       return TypeInt::CC_GT;            // greater
 789     } else if (hi0 == lo1 && lo0 == hi1) {
 790       return TypeInt::CC_EQ;            // Equal results
 791     } else if (lo0 >= hi1) {
 792       return TypeInt::CC_GE;
 793     } else if (hi0 <= lo1) {
 794       return TypeInt::CC_LE;
 795     }
 796   }
 797 
 798   return TypeInt::CC;                   // else use worst case results
 799 }
 800 
 801 //=============================================================================
 802 //------------------------------sub--------------------------------------------
 803 // Simplify an CmpP (compare 2 pointers) node, based on local information.
 804 // If both inputs are constants, compare them.
 805 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
 806   const TypePtr *r0 = t1->is_ptr(); // Handy access
 807   const TypePtr *r1 = t2->is_ptr();
 808 
 809   // Undefined inputs makes for an undefined result
 810   if( TypePtr::above_centerline(r0->_ptr) ||
 811       TypePtr::above_centerline(r1->_ptr) )
 812     return Type::TOP;
 813 
 814   if (r0 == r1 && r0->singleton()) {
 815     // Equal pointer constants (klasses, nulls, etc.)
 816     return TypeInt::CC_EQ;
 817   }
 818 
 819   // See if it is 2 unrelated classes.
 820   const TypeOopPtr* p0 = r0->isa_oopptr();
 821   const TypeOopPtr* p1 = r1->isa_oopptr();
 822   if (p0 && p1) {
 823     Node* in1 = in(1)->uncast();
 824     Node* in2 = in(2)->uncast();
 825     AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
 826     AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
 827     if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
 828       return TypeInt::CC_GT;  // different pointers
 829     }
 830     ciKlass* klass0 = p0->klass();
 831     bool    xklass0 = p0->klass_is_exact();
 832     ciKlass* klass1 = p1->klass();
 833     bool    xklass1 = p1->klass_is_exact();
 834     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
 835     if (klass0 && klass1 &&
 836         kps != 1 &&             // both or neither are klass pointers
 837         klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
 838         klass1->is_loaded() && !klass1->is_interface() &&
 839         (!klass0->is_obj_array_klass() ||
 840          !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
 841         (!klass1->is_obj_array_klass() ||
 842          !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
 843       bool unrelated_classes = false;
 844       // See if neither subclasses the other, or if the class on top
 845       // is precise.  In either of these cases, the compare is known
 846       // to fail if at least one of the pointers is provably not null.
 847       if (klass0->equals(klass1)) {  // if types are unequal but klasses are equal
 848         // Do nothing; we know nothing for imprecise types
 849       } else if (klass0->is_subtype_of(klass1)) {
 850         // If klass1's type is PRECISE, then classes are unrelated.
 851         unrelated_classes = xklass1;
 852       } else if (klass1->is_subtype_of(klass0)) {
 853         // If klass0's type is PRECISE, then classes are unrelated.
 854         unrelated_classes = xklass0;
 855       } else {                  // Neither subtypes the other
 856         unrelated_classes = true;
 857       }
 858       if (unrelated_classes) {
 859         // The oops classes are known to be unrelated. If the joined PTRs of
 860         // two oops is not Null and not Bottom, then we are sure that one
 861         // of the two oops is non-null, and the comparison will always fail.
 862         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
 863         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
 864           return TypeInt::CC_GT;
 865         }
 866       }
 867     }
 868   }
 869 
 870   // Known constants can be compared exactly
 871   // Null can be distinguished from any NotNull pointers
 872   // Unknown inputs makes an unknown result
 873   if( r0->singleton() ) {
 874     intptr_t bits0 = r0->get_con();
 875     if( r1->singleton() )
 876       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
 877     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 878   } else if( r1->singleton() ) {
 879     intptr_t bits1 = r1->get_con();
 880     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 881   } else
 882     return TypeInt::CC;
 883 }
 884 
 885 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
 886   // Return the klass node for (indirect load from OopHandle)
 887   //   LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror))))
 888   //   or NULL if not matching.
 889   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 890     n = bs->step_over_gc_barrier(n);
 891 
 892   if (n->Opcode() != Op_LoadP) return NULL;
 893 
 894   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
 895   if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL;
 896 
 897   Node* adr = n->in(MemNode::Address);
 898   // First load from OopHandle: ((OopHandle)mirror)->resolve(); may need barrier.
 899   if (adr->Opcode() != Op_LoadP || !phase->type(adr)->isa_rawptr()) return NULL;
 900   adr = adr->in(MemNode::Address);
 901 
 902   intptr_t off = 0;
 903   Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
 904   if (k == NULL)  return NULL;
 905   const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
 906   if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL;
 907 
 908   // We've found the klass node of a Java mirror load.
 909   return k;
 910 }
 911 
 912 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
 913   // for ConP(Foo.class) return ConP(Foo.klass)
 914   // otherwise return NULL
 915   if (!n->is_Con()) return NULL;
 916 
 917   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
 918   if (!tp) return NULL;
 919 
 920   ciType* mirror_type = tp->java_mirror_type();
 921   // TypeInstPtr::java_mirror_type() returns non-NULL for compile-
 922   // time Class constants only.
 923   if (!mirror_type) return NULL;
 924 
 925   // x.getClass() == int.class can never be true (for all primitive types)
 926   // Return a ConP(NULL) node for this case.
 927   if (mirror_type->is_classless()) {
 928     return phase->makecon(TypePtr::NULL_PTR);
 929   }
 930 
 931   // return the ConP(Foo.klass)
 932   assert(mirror_type->is_klass(), "mirror_type should represent a Klass*");
 933   return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass()));
 934 }
 935 
 936 //------------------------------Ideal------------------------------------------
 937 // Normalize comparisons between Java mirror loads to compare the klass instead.
 938 //
 939 // Also check for the case of comparing an unknown klass loaded from the primary
 940 // super-type array vs a known klass with no subtypes.  This amounts to
 941 // checking to see an unknown klass subtypes a known klass with no subtypes;
 942 // this only happens on an exact match.  We can shorten this test by 1 load.
 943 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 944   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 945 #if INCLUDE_SHENANDOAHGC
 946   if (UseShenandoahGC) {
 947     Node* in1 = in(1);
 948     Node* in2 = in(2);
 949     if (in1->bottom_type() == TypePtr::NULL_PTR) {
 950       in2 = bs->step_over_gc_barrier(in2);
 951     }
 952     if (in2->bottom_type() == TypePtr::NULL_PTR) {
 953       in1 = bs->step_over_gc_barrier(in1);
 954     }
 955     PhaseIterGVN* igvn = phase->is_IterGVN();
 956     if (in1 != in(1)) {
 957       if (igvn != NULL) {
 958         set_req_X(1, in1, igvn);
 959       } else {
 960         set_req(1, in1);
 961       }
 962       assert(in2 == in(2), "only one change");
 963       return this;
 964     }
 965     if (in2 != in(2)) {
 966       if (igvn != NULL) {
 967         set_req_X(2, in2, igvn);
 968       } else {
 969         set_req(2, in2);
 970       }
 971       return this;
 972     }
 973   }
 974 #endif
 975 
 976   // Normalize comparisons between Java mirrors into comparisons of the low-
 977   // level klass, where a dependent load could be shortened.
 978   //
 979   // The new pattern has a nice effect of matching the same pattern used in the
 980   // fast path of instanceof/checkcast/Class.isInstance(), which allows
 981   // redundant exact type check be optimized away by GVN.
 982   // For example, in
 983   //   if (x.getClass() == Foo.class) {
 984   //     Foo foo = (Foo) x;
 985   //     // ... use a ...
 986   //   }
 987   // a CmpPNode could be shared between if_acmpne and checkcast
 988   {
 989     Node* k1 = isa_java_mirror_load(phase, in(1));
 990     Node* k2 = isa_java_mirror_load(phase, in(2));
 991     Node* conk2 = isa_const_java_mirror(phase, in(2));
 992 
 993     if (k1 && (k2 || conk2)) {
 994       Node* lhs = k1;
 995       Node* rhs = (k2 != NULL) ? k2 : conk2;
 996       PhaseIterGVN* igvn = phase->is_IterGVN();
 997       if (igvn != NULL) {
 998         set_req_X(1, lhs, igvn);
 999         set_req_X(2, rhs, igvn);
1000       } else {
1001         set_req(1, lhs);
1002         set_req(2, rhs);
1003       }
1004       return this;
1005     }
1006   }
1007 
1008   // Constant pointer on right?
1009   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
1010   if (t2 == NULL || !t2->klass_is_exact())
1011     return NULL;
1012   // Get the constant klass we are comparing to.
1013   ciKlass* superklass = t2->klass();
1014 
1015   // Now check for LoadKlass on left.
1016   Node* ldk1 = in(1);
1017   if (ldk1->is_DecodeNKlass()) {
1018     ldk1 = ldk1->in(1);
1019     if (ldk1->Opcode() != Op_LoadNKlass )
1020       return NULL;
1021   } else if (ldk1->Opcode() != Op_LoadKlass )
1022     return NULL;
1023   // Take apart the address of the LoadKlass:
1024   Node* adr1 = ldk1->in(MemNode::Address);
1025   intptr_t con2 = 0;
1026   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
1027   if (ldk2 == NULL)
1028     return NULL;
1029   if (con2 == oopDesc::klass_offset_in_bytes()) {
1030     // We are inspecting an object's concrete class.
1031     // Short-circuit the check if the query is abstract.
1032     if (superklass->is_interface() ||
1033         superklass->is_abstract()) {
1034       // Make it come out always false:
1035       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
1036       return this;
1037     }
1038   }
1039 
1040   // Check for a LoadKlass from primary supertype array.
1041   // Any nested loadklass from loadklass+con must be from the p.s. array.
1042   if (ldk2->is_DecodeNKlass()) {
1043     // Keep ldk2 as DecodeN since it could be used in CmpP below.
1044     if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
1045       return NULL;
1046   } else if (ldk2->Opcode() != Op_LoadKlass)
1047     return NULL;
1048 
1049   // Verify that we understand the situation
1050   if (con2 != (intptr_t) superklass->super_check_offset())
1051     return NULL;                // Might be element-klass loading from array klass
1052 
1053   // If 'superklass' has no subklasses and is not an interface, then we are
1054   // assured that the only input which will pass the type check is
1055   // 'superklass' itself.
1056   //
1057   // We could be more liberal here, and allow the optimization on interfaces
1058   // which have a single implementor.  This would require us to increase the
1059   // expressiveness of the add_dependency() mechanism.
1060   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
1061 
1062   // Object arrays must have their base element have no subtypes
1063   while (superklass->is_obj_array_klass()) {
1064     ciType* elem = superklass->as_obj_array_klass()->element_type();
1065     superklass = elem->as_klass();
1066   }
1067   if (superklass->is_instance_klass()) {
1068     ciInstanceKlass* ik = superklass->as_instance_klass();
1069     if (ik->has_subklass() || ik->is_interface())  return NULL;
1070     // Add a dependency if there is a chance that a subclass will be added later.
1071     if (!ik->is_final()) {
1072       phase->C->dependencies()->assert_leaf_type(ik);
1073     }
1074   }
1075 
1076   // Bypass the dependent load, and compare directly
1077   this->set_req(1,ldk2);
1078 
1079   return this;
1080 }
1081 
1082 //=============================================================================
1083 //------------------------------sub--------------------------------------------
1084 // Simplify an CmpN (compare 2 pointers) node, based on local information.
1085 // If both inputs are constants, compare them.
1086 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
1087   const TypePtr *r0 = t1->make_ptr(); // Handy access
1088   const TypePtr *r1 = t2->make_ptr();
1089 
1090   // Undefined inputs makes for an undefined result
1091   if ((r0 == NULL) || (r1 == NULL) ||
1092       TypePtr::above_centerline(r0->_ptr) ||
1093       TypePtr::above_centerline(r1->_ptr)) {
1094     return Type::TOP;
1095   }
1096   if (r0 == r1 && r0->singleton()) {
1097     // Equal pointer constants (klasses, nulls, etc.)
1098     return TypeInt::CC_EQ;
1099   }
1100 
1101   // See if it is 2 unrelated classes.
1102   const TypeOopPtr* p0 = r0->isa_oopptr();
1103   const TypeOopPtr* p1 = r1->isa_oopptr();
1104   if (p0 && p1) {
1105     ciKlass* klass0 = p0->klass();
1106     bool    xklass0 = p0->klass_is_exact();
1107     ciKlass* klass1 = p1->klass();
1108     bool    xklass1 = p1->klass_is_exact();
1109     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
1110     if (klass0 && klass1 &&
1111         kps != 1 &&             // both or neither are klass pointers
1112         !klass0->is_interface() && // do not trust interfaces
1113         !klass1->is_interface()) {
1114       bool unrelated_classes = false;
1115       // See if neither subclasses the other, or if the class on top
1116       // is precise.  In either of these cases, the compare is known
1117       // to fail if at least one of the pointers is provably not null.
1118       if (klass0->equals(klass1)) { // if types are unequal but klasses are equal
1119         // Do nothing; we know nothing for imprecise types
1120       } else if (klass0->is_subtype_of(klass1)) {
1121         // If klass1's type is PRECISE, then classes are unrelated.
1122         unrelated_classes = xklass1;
1123       } else if (klass1->is_subtype_of(klass0)) {
1124         // If klass0's type is PRECISE, then classes are unrelated.
1125         unrelated_classes = xklass0;
1126       } else {                  // Neither subtypes the other
1127         unrelated_classes = true;
1128       }
1129       if (unrelated_classes) {
1130         // The oops classes are known to be unrelated. If the joined PTRs of
1131         // two oops is not Null and not Bottom, then we are sure that one
1132         // of the two oops is non-null, and the comparison will always fail.
1133         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
1134         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
1135           return TypeInt::CC_GT;
1136         }
1137       }
1138     }
1139   }
1140 
1141   // Known constants can be compared exactly
1142   // Null can be distinguished from any NotNull pointers
1143   // Unknown inputs makes an unknown result
1144   if( r0->singleton() ) {
1145     intptr_t bits0 = r0->get_con();
1146     if( r1->singleton() )
1147       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
1148     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
1149   } else if( r1->singleton() ) {
1150     intptr_t bits1 = r1->get_con();
1151     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
1152   } else
1153     return TypeInt::CC;
1154 }
1155 
1156 //------------------------------Ideal------------------------------------------
1157 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
1158   return NULL;
1159 }
1160 
1161 //=============================================================================
1162 //------------------------------Value------------------------------------------
1163 // Simplify an CmpF (compare 2 floats ) node, based on local information.
1164 // If both inputs are constants, compare them.
1165 const Type* CmpFNode::Value(PhaseGVN* phase) const {
1166   const Node* in1 = in(1);
1167   const Node* in2 = in(2);
1168   // Either input is TOP ==> the result is TOP
1169   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1170   if( t1 == Type::TOP ) return Type::TOP;
1171   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1172   if( t2 == Type::TOP ) return Type::TOP;
1173 
1174   // Not constants?  Don't know squat - even if they are the same
1175   // value!  If they are NaN's they compare to LT instead of EQ.
1176   const TypeF *tf1 = t1->isa_float_constant();
1177   const TypeF *tf2 = t2->isa_float_constant();
1178   if( !tf1 || !tf2 ) return TypeInt::CC;
1179 
1180   // This implements the Java bytecode fcmpl, so unordered returns -1.
1181   if( tf1->is_nan() || tf2->is_nan() )
1182     return TypeInt::CC_LT;
1183 
1184   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
1185   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
1186   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
1187   return TypeInt::CC_EQ;
1188 }
1189 
1190 
1191 //=============================================================================
1192 //------------------------------Value------------------------------------------
1193 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
1194 // If both inputs are constants, compare them.
1195 const Type* CmpDNode::Value(PhaseGVN* phase) const {
1196   const Node* in1 = in(1);
1197   const Node* in2 = in(2);
1198   // Either input is TOP ==> the result is TOP
1199   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1200   if( t1 == Type::TOP ) return Type::TOP;
1201   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1202   if( t2 == Type::TOP ) return Type::TOP;
1203 
1204   // Not constants?  Don't know squat - even if they are the same
1205   // value!  If they are NaN's they compare to LT instead of EQ.
1206   const TypeD *td1 = t1->isa_double_constant();
1207   const TypeD *td2 = t2->isa_double_constant();
1208   if( !td1 || !td2 ) return TypeInt::CC;
1209 
1210   // This implements the Java bytecode dcmpl, so unordered returns -1.
1211   if( td1->is_nan() || td2->is_nan() )
1212     return TypeInt::CC_LT;
1213 
1214   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
1215   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
1216   assert( td1->_d == td2->_d, "do not understand FP behavior" );
1217   return TypeInt::CC_EQ;
1218 }
1219 
1220 //------------------------------Ideal------------------------------------------
1221 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
1222   // Check if we can change this to a CmpF and remove a ConvD2F operation.
1223   // Change  (CMPD (F2D (float)) (ConD value))
1224   // To      (CMPF      (float)  (ConF value))
1225   // Valid when 'value' does not lose precision as a float.
1226   // Benefits: eliminates conversion, does not require 24-bit mode
1227 
1228   // NaNs prevent commuting operands.  This transform works regardless of the
1229   // order of ConD and ConvF2D inputs by preserving the original order.
1230   int idx_f2d = 1;              // ConvF2D on left side?
1231   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
1232     idx_f2d = 2;                // No, swap to check for reversed args
1233   int idx_con = 3-idx_f2d;      // Check for the constant on other input
1234 
1235   if( ConvertCmpD2CmpF &&
1236       in(idx_f2d)->Opcode() == Op_ConvF2D &&
1237       in(idx_con)->Opcode() == Op_ConD ) {
1238     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
1239     double t2_value_as_double = t2->_d;
1240     float  t2_value_as_float  = (float)t2_value_as_double;
1241     if( t2_value_as_double == (double)t2_value_as_float ) {
1242       // Test value can be represented as a float
1243       // Eliminate the conversion to double and create new comparison
1244       Node *new_in1 = in(idx_f2d)->in(1);
1245       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
1246       if( idx_f2d != 1 ) {      // Must flip args to match original order
1247         Node *tmp = new_in1;
1248         new_in1 = new_in2;
1249         new_in2 = tmp;
1250       }
1251       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
1252         ? new CmpF3Node( new_in1, new_in2 )
1253         : new CmpFNode ( new_in1, new_in2 ) ;
1254       return new_cmp;           // Changed to CmpFNode
1255     }
1256     // Testing value required the precision of a double
1257   }
1258   return NULL;                  // No change
1259 }
1260 
1261 
1262 //=============================================================================
1263 //------------------------------cc2logical-------------------------------------
1264 // Convert a condition code type to a logical type
1265 const Type *BoolTest::cc2logical( const Type *CC ) const {
1266   if( CC == Type::TOP ) return Type::TOP;
1267   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
1268   const TypeInt *ti = CC->is_int();
1269   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
1270     // Match low order 2 bits
1271     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
1272     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
1273     return TypeInt::make(tmp);       // Boolean result
1274   }
1275 
1276   if( CC == TypeInt::CC_GE ) {
1277     if( _test == ge ) return TypeInt::ONE;
1278     if( _test == lt ) return TypeInt::ZERO;
1279   }
1280   if( CC == TypeInt::CC_LE ) {
1281     if( _test == le ) return TypeInt::ONE;
1282     if( _test == gt ) return TypeInt::ZERO;
1283   }
1284 
1285   return TypeInt::BOOL;
1286 }
1287 
1288 //------------------------------dump_spec-------------------------------------
1289 // Print special per-node info
1290 void BoolTest::dump_on(outputStream *st) const {
1291   const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"};
1292   st->print("%s", msg[_test]);
1293 }
1294 
1295 // Returns the logical AND of two tests (or 'never' if both tests can never be true).
1296 // For example, a test for 'le' followed by a test for 'lt' is equivalent with 'lt'.
1297 BoolTest::mask BoolTest::merge(BoolTest other) const {
1298   const mask res[illegal+1][illegal+1] = {
1299     // eq,      gt,      of,      lt,      ne,      le,      nof,     ge,      never,   illegal
1300       {eq,      never,   illegal, never,   never,   eq,      illegal, eq,      never,   illegal},  // eq
1301       {never,   gt,      illegal, never,   gt,      never,   illegal, gt,      never,   illegal},  // gt
1302       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never,   illegal},  // of
1303       {never,   never,   illegal, lt,      lt,      lt,      illegal, never,   never,   illegal},  // lt
1304       {never,   gt,      illegal, lt,      ne,      lt,      illegal, gt,      never,   illegal},  // ne
1305       {eq,      never,   illegal, lt,      lt,      le,      illegal, eq,      never,   illegal},  // le
1306       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never,   illegal},  // nof
1307       {eq,      gt,      illegal, never,   gt,      eq,      illegal, ge,      never,   illegal},  // ge
1308       {never,   never,   never,   never,   never,   never,   never,   never,   never,   illegal},  // never
1309       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal}}; // illegal
1310   return res[_test][other._test];
1311 }
1312 
1313 //=============================================================================
1314 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
1315 uint BoolNode::size_of() const { return sizeof(BoolNode); }
1316 
1317 //------------------------------operator==-------------------------------------
1318 uint BoolNode::cmp( const Node &n ) const {
1319   const BoolNode *b = (const BoolNode *)&n; // Cast up
1320   return (_test._test == b->_test._test);
1321 }
1322 
1323 //-------------------------------make_predicate--------------------------------
1324 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
1325   if (test_value->is_Con())   return test_value;
1326   if (test_value->is_Bool())  return test_value;
1327   if (test_value->is_CMove() &&
1328       test_value->in(CMoveNode::Condition)->is_Bool()) {
1329     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
1330     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
1331     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
1332     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
1333       return bol;
1334     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
1335       return phase->transform( bol->negate(phase) );
1336     }
1337     // Else fall through.  The CMove gets in the way of the test.
1338     // It should be the case that make_predicate(bol->as_int_value()) == bol.
1339   }
1340   Node* cmp = new CmpINode(test_value, phase->intcon(0));
1341   cmp = phase->transform(cmp);
1342   Node* bol = new BoolNode(cmp, BoolTest::ne);
1343   return phase->transform(bol);
1344 }
1345 
1346 //--------------------------------as_int_value---------------------------------
1347 Node* BoolNode::as_int_value(PhaseGVN* phase) {
1348   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
1349   Node* cmov = CMoveNode::make(NULL, this,
1350                                phase->intcon(0), phase->intcon(1),
1351                                TypeInt::BOOL);
1352   return phase->transform(cmov);
1353 }
1354 
1355 //----------------------------------negate-------------------------------------
1356 BoolNode* BoolNode::negate(PhaseGVN* phase) {
1357   return new BoolNode(in(1), _test.negate());
1358 }
1359 
1360 // Change "bool eq/ne (cmp (add/sub A B) C)" into false/true if add/sub
1361 // overflows and we can prove that C is not in the two resulting ranges.
1362 // This optimization is similar to the one performed by CmpUNode::Value().
1363 Node* BoolNode::fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
1364                           int cmp1_op, const TypeInt* cmp2_type) {
1365   // Only optimize eq/ne integer comparison of add/sub
1366   if((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1367      (cmp_op == Op_CmpI) && (cmp1_op == Op_AddI || cmp1_op == Op_SubI)) {
1368     // Skip cases were inputs of add/sub are not integers or of bottom type
1369     const TypeInt* r0 = phase->type(cmp1->in(1))->isa_int();
1370     const TypeInt* r1 = phase->type(cmp1->in(2))->isa_int();
1371     if ((r0 != NULL) && (r0 != TypeInt::INT) &&
1372         (r1 != NULL) && (r1 != TypeInt::INT) &&
1373         (cmp2_type != TypeInt::INT)) {
1374       // Compute exact (long) type range of add/sub result
1375       jlong lo_long = r0->_lo;
1376       jlong hi_long = r0->_hi;
1377       if (cmp1_op == Op_AddI) {
1378         lo_long += r1->_lo;
1379         hi_long += r1->_hi;
1380       } else {
1381         lo_long -= r1->_hi;
1382         hi_long -= r1->_lo;
1383       }
1384       // Check for over-/underflow by casting to integer
1385       int lo_int = (int)lo_long;
1386       int hi_int = (int)hi_long;
1387       bool underflow = lo_long != (jlong)lo_int;
1388       bool overflow  = hi_long != (jlong)hi_int;
1389       if ((underflow != overflow) && (hi_int < lo_int)) {
1390         // Overflow on one boundary, compute resulting type ranges:
1391         // tr1 [MIN_INT, hi_int] and tr2 [lo_int, MAX_INT]
1392         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
1393         const TypeInt* tr1 = TypeInt::make(min_jint, hi_int, w);
1394         const TypeInt* tr2 = TypeInt::make(lo_int, max_jint, w);
1395         // Compare second input of cmp to both type ranges
1396         const Type* sub_tr1 = cmp->sub(tr1, cmp2_type);
1397         const Type* sub_tr2 = cmp->sub(tr2, cmp2_type);
1398         if (sub_tr1 == TypeInt::CC_LT && sub_tr2 == TypeInt::CC_GT) {
1399           // The result of the add/sub will never equal cmp2. Replace BoolNode
1400           // by false (0) if it tests for equality and by true (1) otherwise.
1401           return ConINode::make((_test._test == BoolTest::eq) ? 0 : 1);
1402         }
1403       }
1404     }
1405   }
1406   return NULL;
1407 }
1408 
1409 static bool is_counted_loop_cmp(Node *cmp) {
1410   Node *n = cmp->in(1)->in(1);
1411   return n != NULL &&
1412          n->is_Phi() &&
1413          n->in(0) != NULL &&
1414          n->in(0)->is_CountedLoop() &&
1415          n->in(0)->as_CountedLoop()->phi() == n;
1416 }
1417 
1418 //------------------------------Ideal------------------------------------------
1419 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1420   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
1421   // This moves the constant to the right.  Helps value-numbering.
1422   Node *cmp = in(1);
1423   if( !cmp->is_Sub() ) return NULL;
1424   int cop = cmp->Opcode();
1425   if( cop == Op_FastLock || cop == Op_FastUnlock) return NULL;
1426   Node *cmp1 = cmp->in(1);
1427   Node *cmp2 = cmp->in(2);
1428   if( !cmp1 ) return NULL;
1429 
1430   if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) {
1431     return NULL;
1432   }
1433 
1434   // Constant on left?
1435   Node *con = cmp1;
1436   uint op2 = cmp2->Opcode();
1437   // Move constants to the right of compare's to canonicalize.
1438   // Do not muck with Opaque1 nodes, as this indicates a loop
1439   // guard that cannot change shape.
1440   if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
1441       // Because of NaN's, CmpD and CmpF are not commutative
1442       cop != Op_CmpD && cop != Op_CmpF &&
1443       // Protect against swapping inputs to a compare when it is used by a
1444       // counted loop exit, which requires maintaining the loop-limit as in(2)
1445       !is_counted_loop_exit_test() ) {
1446     // Ok, commute the constant to the right of the cmp node.
1447     // Clone the Node, getting a new Node of the same class
1448     cmp = cmp->clone();
1449     // Swap inputs to the clone
1450     cmp->swap_edges(1, 2);
1451     cmp = phase->transform( cmp );
1452     return new BoolNode( cmp, _test.commute() );
1453   }
1454 
1455   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
1456   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
1457   // test instead.
1458   int cmp1_op = cmp1->Opcode();
1459   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
1460   if (cmp2_type == NULL)  return NULL;
1461   Node* j_xor = cmp1;
1462   if( cmp2_type == TypeInt::ZERO &&
1463       cmp1_op == Op_XorI &&
1464       j_xor->in(1) != j_xor &&          // An xor of itself is dead
1465       phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
1466       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
1467       (_test._test == BoolTest::eq ||
1468        _test._test == BoolTest::ne) ) {
1469     Node *ncmp = phase->transform(new CmpINode(j_xor->in(1),cmp2));
1470     return new BoolNode( ncmp, _test.negate() );
1471   }
1472 
1473   // Change ((x & m) u<= m) or ((m & x) u<= m) to always true
1474   // Same with ((x & m) u< m+1) and ((m & x) u< m+1)
1475   if (cop == Op_CmpU &&
1476       cmp1_op == Op_AndI) {
1477     Node* bound = NULL;
1478     if (_test._test == BoolTest::le) {
1479       bound = cmp2;
1480     } else if (_test._test == BoolTest::lt &&
1481                cmp2->Opcode() == Op_AddI &&
1482                cmp2->in(2)->find_int_con(0) == 1) {
1483       bound = cmp2->in(1);
1484     }
1485     if (cmp1->in(2) == bound || cmp1->in(1) == bound) {
1486       return ConINode::make(1);
1487     }
1488   }
1489 
1490   // Change ((x & (m - 1)) u< m) into (m > 0)
1491   // This is the off-by-one variant of the above
1492   if (cop == Op_CmpU &&
1493       _test._test == BoolTest::lt &&
1494       cmp1_op == Op_AndI) {
1495     Node* l = cmp1->in(1);
1496     Node* r = cmp1->in(2);
1497     for (int repeat = 0; repeat < 2; repeat++) {
1498       bool match = r->Opcode() == Op_AddI && r->in(2)->find_int_con(0) == -1 &&
1499                    r->in(1) == cmp2;
1500       if (match) {
1501         // arraylength known to be non-negative, so a (arraylength != 0) is sufficient,
1502         // but to be compatible with the array range check pattern, use (arraylength u> 0)
1503         Node* ncmp = cmp2->Opcode() == Op_LoadRange
1504                      ? phase->transform(new CmpUNode(cmp2, phase->intcon(0)))
1505                      : phase->transform(new CmpINode(cmp2, phase->intcon(0)));
1506         return new BoolNode(ncmp, BoolTest::gt);
1507       } else {
1508         // commute and try again
1509         l = cmp1->in(2);
1510         r = cmp1->in(1);
1511       }
1512     }
1513   }
1514 
1515   // Change x u< 1 or x u<= 0 to x == 0
1516   if (cop == Op_CmpU &&
1517       cmp1_op != Op_LoadRange &&
1518       ((_test._test == BoolTest::lt &&
1519         cmp2->find_int_con(-1) == 1) ||
1520        (_test._test == BoolTest::le &&
1521         cmp2->find_int_con(-1) == 0))) {
1522     Node* ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0)));
1523     return new BoolNode(ncmp, BoolTest::eq);
1524   }
1525 
1526   // Change (arraylength <= 0) or (arraylength == 0)
1527   //   into (arraylength u<= 0)
1528   // Also change (arraylength != 0) into (arraylength u> 0)
1529   // The latter version matches the code pattern generated for
1530   // array range checks, which will more likely be optimized later.
1531   if (cop == Op_CmpI &&
1532       cmp1_op == Op_LoadRange &&
1533       cmp2->find_int_con(-1) == 0) {
1534     if (_test._test == BoolTest::le || _test._test == BoolTest::eq) {
1535       Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
1536       return new BoolNode(ncmp, BoolTest::le);
1537     } else if (_test._test == BoolTest::ne) {
1538       Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
1539       return new BoolNode(ncmp, BoolTest::gt);
1540     }
1541   }
1542 
1543   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
1544   // This is a standard idiom for branching on a boolean value.
1545   Node *c2b = cmp1;
1546   if( cmp2_type == TypeInt::ZERO &&
1547       cmp1_op == Op_Conv2B &&
1548       (_test._test == BoolTest::eq ||
1549        _test._test == BoolTest::ne) ) {
1550     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
1551        ? (Node*)new CmpINode(c2b->in(1),cmp2)
1552        : (Node*)new CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
1553     );
1554     return new BoolNode( ncmp, _test._test );
1555   }
1556 
1557   // Comparing a SubI against a zero is equal to comparing the SubI
1558   // arguments directly.  This only works for eq and ne comparisons
1559   // due to possible integer overflow.
1560   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1561         (cop == Op_CmpI) &&
1562         (cmp1_op == Op_SubI) &&
1563         ( cmp2_type == TypeInt::ZERO ) ) {
1564     Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),cmp1->in(2)));
1565     return new BoolNode( ncmp, _test._test );
1566   }
1567 
1568   // Same as above but with and AddI of a constant
1569   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1570       cop == Op_CmpI &&
1571       cmp1_op == Op_AddI &&
1572       cmp1->in(2) != NULL &&
1573       phase->type(cmp1->in(2))->isa_int() &&
1574       phase->type(cmp1->in(2))->is_int()->is_con() &&
1575       cmp2_type == TypeInt::ZERO &&
1576       !is_counted_loop_cmp(cmp) // modifying the exit test of a counted loop messes the counted loop shape
1577       ) {
1578     const TypeInt* cmp1_in2 = phase->type(cmp1->in(2))->is_int();
1579     Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),phase->intcon(-cmp1_in2->_hi)));
1580     return new BoolNode( ncmp, _test._test );
1581   }
1582 
1583   // Change "bool eq/ne (cmp (phi (X -X) 0))" into "bool eq/ne (cmp X 0)"
1584   // since zero check of conditional negation of an integer is equal to
1585   // zero check of the integer directly.
1586   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1587       (cop == Op_CmpI) &&
1588       (cmp2_type == TypeInt::ZERO) &&
1589       (cmp1_op == Op_Phi)) {
1590     // There should be a diamond phi with true path at index 1 or 2
1591     PhiNode *phi = cmp1->as_Phi();
1592     int idx_true = phi->is_diamond_phi();
1593     if (idx_true != 0) {
1594       // True input is in(idx_true) while false input is in(3 - idx_true)
1595       Node *tin = phi->in(idx_true);
1596       Node *fin = phi->in(3 - idx_true);
1597       if ((tin->Opcode() == Op_SubI) &&
1598           (phase->type(tin->in(1)) == TypeInt::ZERO) &&
1599           (tin->in(2) == fin)) {
1600         // Found conditional negation at true path, create a new CmpINode without that
1601         Node *ncmp = phase->transform(new CmpINode(fin, cmp2));
1602         return new BoolNode(ncmp, _test._test);
1603       }
1604       if ((fin->Opcode() == Op_SubI) &&
1605           (phase->type(fin->in(1)) == TypeInt::ZERO) &&
1606           (fin->in(2) == tin)) {
1607         // Found conditional negation at false path, create a new CmpINode without that
1608         Node *ncmp = phase->transform(new CmpINode(tin, cmp2));
1609         return new BoolNode(ncmp, _test._test);
1610       }
1611     }
1612   }
1613 
1614   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
1615   // most general case because negating 0x80000000 does nothing.  Needed for
1616   // the CmpF3/SubI/CmpI idiom.
1617   if( cop == Op_CmpI &&
1618       cmp1_op == Op_SubI &&
1619       cmp2_type == TypeInt::ZERO &&
1620       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
1621       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
1622     Node *ncmp = phase->transform( new CmpINode(cmp1->in(2),cmp2));
1623     return new BoolNode( ncmp, _test.commute() );
1624   }
1625 
1626   // Try to optimize signed integer comparison
1627   return fold_cmpI(phase, cmp->as_Sub(), cmp1, cop, cmp1_op, cmp2_type);
1628 
1629   //  The transformation below is not valid for either signed or unsigned
1630   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
1631   //  This transformation can be resurrected when we are able to
1632   //  make inferences about the range of values being subtracted from
1633   //  (or added to) relative to the wraparound point.
1634   //
1635   //    // Remove +/-1's if possible.
1636   //    // "X <= Y-1" becomes "X <  Y"
1637   //    // "X+1 <= Y" becomes "X <  Y"
1638   //    // "X <  Y+1" becomes "X <= Y"
1639   //    // "X-1 <  Y" becomes "X <= Y"
1640   //    // Do not this to compares off of the counted-loop-end.  These guys are
1641   //    // checking the trip counter and they want to use the post-incremented
1642   //    // counter.  If they use the PRE-incremented counter, then the counter has
1643   //    // to be incremented in a private block on a loop backedge.
1644   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
1645   //      return NULL;
1646   //  #ifndef PRODUCT
1647   //    // Do not do this in a wash GVN pass during verification.
1648   //    // Gets triggered by too many simple optimizations to be bothered with
1649   //    // re-trying it again and again.
1650   //    if( !phase->allow_progress() ) return NULL;
1651   //  #endif
1652   //    // Not valid for unsigned compare because of corner cases in involving zero.
1653   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
1654   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
1655   //    // "0 <=u Y" is always true).
1656   //    if( cmp->Opcode() == Op_CmpU ) return NULL;
1657   //    int cmp2_op = cmp2->Opcode();
1658   //    if( _test._test == BoolTest::le ) {
1659   //      if( cmp1_op == Op_AddI &&
1660   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
1661   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
1662   //      else if( cmp2_op == Op_AddI &&
1663   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
1664   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
1665   //    } else if( _test._test == BoolTest::lt ) {
1666   //      if( cmp1_op == Op_AddI &&
1667   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
1668   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
1669   //      else if( cmp2_op == Op_AddI &&
1670   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
1671   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
1672   //    }
1673 }
1674 
1675 //------------------------------Value------------------------------------------
1676 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
1677 // based on local information.   If the input is constant, do it.
1678 const Type* BoolNode::Value(PhaseGVN* phase) const {
1679   return _test.cc2logical( phase->type( in(1) ) );
1680 }
1681 
1682 #ifndef PRODUCT
1683 //------------------------------dump_spec--------------------------------------
1684 // Dump special per-node info
1685 void BoolNode::dump_spec(outputStream *st) const {
1686   st->print("[");
1687   _test.dump_on(st);
1688   st->print("]");
1689 }
1690 
1691 //-------------------------------related---------------------------------------
1692 // A BoolNode's related nodes are all of its data inputs, and all of its
1693 // outputs until control nodes are hit, which are included. In compact
1694 // representation, inputs till level 3 and immediate outputs are included.
1695 void BoolNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1696   if (compact) {
1697     this->collect_nodes(in_rel, 3, false, true);
1698     this->collect_nodes(out_rel, -1, false, false);
1699   } else {
1700     this->collect_nodes_in_all_data(in_rel, false);
1701     this->collect_nodes_out_all_ctrl_boundary(out_rel);
1702   }
1703 }
1704 #endif
1705 
1706 //----------------------is_counted_loop_exit_test------------------------------
1707 // Returns true if node is used by a counted loop node.
1708 bool BoolNode::is_counted_loop_exit_test() {
1709   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
1710     Node* use = fast_out(i);
1711     if (use->is_CountedLoopEnd()) {
1712       return true;
1713     }
1714   }
1715   return false;
1716 }
1717 
1718 //=============================================================================
1719 //------------------------------Value------------------------------------------
1720 // Compute sqrt
1721 const Type* SqrtDNode::Value(PhaseGVN* phase) const {
1722   const Type *t1 = phase->type( in(1) );
1723   if( t1 == Type::TOP ) return Type::TOP;
1724   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1725   double d = t1->getd();
1726   if( d < 0.0 ) return Type::DOUBLE;
1727   return TypeD::make( sqrt( d ) );
1728 }
1729 
1730 const Type* SqrtFNode::Value(PhaseGVN* phase) const {
1731   const Type *t1 = phase->type( in(1) );
1732   if( t1 == Type::TOP ) return Type::TOP;
1733   if( t1->base() != Type::FloatCon ) return Type::FLOAT;
1734   float f = t1->getf();
1735   if( f < 0.0f ) return Type::FLOAT;
1736   return TypeF::make( (float)sqrt( (double)f ) );
1737 }