1 /*
   2  * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "interpreter/linkResolver.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "memory/universe.inline.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/divnode.hpp"
  38 #include "opto/idealGraphPrinter.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/memnode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/opaquenode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/shenandoahSupport.hpp"
  46 #include "runtime/deoptimization.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 
  49 #ifndef PRODUCT
  50 extern int explicit_null_checks_inserted,
  51            explicit_null_checks_elided;
  52 #endif
  53 
  54 //---------------------------------array_load----------------------------------
  55 void Parse::array_load(BasicType elem_type) {
  56   const Type* elem = Type::TOP;
  57   Node* adr = array_addressing(elem_type, 0, false, &elem);
  58   if (stopped())  return;     // guaranteed null or range check
  59   dec_sp(2);                  // Pop array and index
  60   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
  61   Node* ld = make_load(control(), adr, elem, elem_type, adr_type, MemNode::unordered);
  62   push(ld);
  63 }
  64 
  65 
  66 //--------------------------------array_store----------------------------------
  67 void Parse::array_store(BasicType elem_type) {
  68   const Type* elem = Type::TOP;
  69   Node* adr = array_addressing(elem_type, 1, true, &elem);
  70   if (stopped())  return;     // guaranteed null or range check
  71   Node* val = pop();
  72   dec_sp(2);                  // Pop array and index
  73   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
  74   if (elem == TypeInt::BOOL) {
  75     elem_type = T_BOOLEAN;
  76   }
  77   store_to_memory(control(), adr, val, elem_type, adr_type, StoreNode::release_if_reference(elem_type));
  78 }
  79 
  80 
  81 //------------------------------array_addressing-------------------------------
  82 // Pull array and index from the stack.  Compute pointer-to-element.
  83 Node* Parse::array_addressing(BasicType type, int vals, bool is_store, const Type* *result2) {
  84   Node *idx   = peek(0+vals);   // Get from stack without popping
  85   Node *ary   = peek(1+vals);   // in case of exception
  86 
  87   // Null check the array base, with correct stack contents
  88   ary = null_check(ary, T_ARRAY);
  89   // Compile-time detect of null-exception?
  90   if (stopped())  return top();
  91 
  92   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
  93   const TypeInt*    sizetype = arytype->size();
  94   const Type*       elemtype = arytype->elem();
  95 
  96   if (UseUniqueSubclasses && result2 != NULL) {
  97     const Type* el = elemtype->make_ptr();
  98     if (el && el->isa_instptr()) {
  99       const TypeInstPtr* toop = el->is_instptr();
 100       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
 101         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
 102         const Type* subklass = Type::get_const_type(toop->klass());
 103         elemtype = subklass->join_speculative(el);
 104       }
 105     }
 106   }
 107 
 108   // Check for big class initializers with all constant offsets
 109   // feeding into a known-size array.
 110   const TypeInt* idxtype = _gvn.type(idx)->is_int();
 111   // See if the highest idx value is less than the lowest array bound,
 112   // and if the idx value cannot be negative:
 113   bool need_range_check = true;
 114   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
 115     need_range_check = false;
 116     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
 117   }
 118 
 119   ciKlass * arytype_klass = arytype->klass();
 120   if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) {
 121     // Only fails for some -Xcomp runs
 122     // The class is unloaded.  We have to run this bytecode in the interpreter.
 123     uncommon_trap(Deoptimization::Reason_unloaded,
 124                   Deoptimization::Action_reinterpret,
 125                   arytype->klass(), "!loaded array");
 126     return top();
 127   }
 128 
 129   // Do the range check
 130   if (GenerateRangeChecks && need_range_check) {
 131     Node* tst;
 132     if (sizetype->_hi <= 0) {
 133       // The greatest array bound is negative, so we can conclude that we're
 134       // compiling unreachable code, but the unsigned compare trick used below
 135       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
 136       // the uncommon_trap path will always be taken.
 137       tst = _gvn.intcon(0);
 138     } else {
 139       // Range is constant in array-oop, so we can use the original state of mem
 140       Node* len = load_array_length(ary);
 141 
 142       // Test length vs index (standard trick using unsigned compare)
 143       Node* chk = _gvn.transform( new CmpUNode(idx, len) );
 144       BoolTest::mask btest = BoolTest::lt;
 145       tst = _gvn.transform( new BoolNode(chk, btest) );
 146     }
 147     RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 148     _gvn.set_type(rc, rc->Value(&_gvn));
 149     if (!tst->is_Con()) {
 150       record_for_igvn(rc);
 151     }
 152     set_control(_gvn.transform(new IfTrueNode(rc)));
 153     // Branch to failure if out of bounds
 154     {
 155       PreserveJVMState pjvms(this);
 156       set_control(_gvn.transform(new IfFalseNode(rc)));
 157       if (C->allow_range_check_smearing()) {
 158         // Do not use builtin_throw, since range checks are sometimes
 159         // made more stringent by an optimistic transformation.
 160         // This creates "tentative" range checks at this point,
 161         // which are not guaranteed to throw exceptions.
 162         // See IfNode::Ideal, is_range_check, adjust_check.
 163         uncommon_trap(Deoptimization::Reason_range_check,
 164                       Deoptimization::Action_make_not_entrant,
 165                       NULL, "range_check");
 166       } else {
 167         // If we have already recompiled with the range-check-widening
 168         // heroic optimization turned off, then we must really be throwing
 169         // range check exceptions.
 170         builtin_throw(Deoptimization::Reason_range_check, idx);
 171       }
 172     }
 173   }
 174   // Check for always knowing you are throwing a range-check exception
 175   if (stopped())  return top();
 176 
 177   if (is_store) {
 178     ary = shenandoah_write_barrier(ary);
 179   } else {
 180     ary = shenandoah_read_barrier(ary);
 181   }
 182 
 183   // Make array address computation control dependent to prevent it
 184   // from floating above the range check during loop optimizations.
 185   Node* ptr = array_element_address(ary, idx, type, sizetype, control());
 186 
 187   if (result2 != NULL)  *result2 = elemtype;
 188 
 189   assert(ptr != top(), "top should go hand-in-hand with stopped");
 190 
 191   return ptr;
 192 }
 193 
 194 
 195 // returns IfNode
 196 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
 197   Node   *cmp = _gvn.transform( new CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
 198   Node   *tst = _gvn.transform( new BoolNode( cmp, mask));
 199   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
 200   return iff;
 201 }
 202 
 203 // return Region node
 204 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
 205   Node *region  = new RegionNode(3); // 2 results
 206   record_for_igvn(region);
 207   region->init_req(1, iffalse);
 208   region->init_req(2, iftrue );
 209   _gvn.set_type(region, Type::CONTROL);
 210   region = _gvn.transform(region);
 211   set_control (region);
 212   return region;
 213 }
 214 
 215 
 216 //------------------------------helper for tableswitch-------------------------
 217 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
 218   // True branch, use existing map info
 219   { PreserveJVMState pjvms(this);
 220     Node *iftrue  = _gvn.transform( new IfTrueNode (iff) );
 221     set_control( iftrue );
 222     profile_switch_case(prof_table_index);
 223     merge_new_path(dest_bci_if_true);
 224   }
 225 
 226   // False branch
 227   Node *iffalse = _gvn.transform( new IfFalseNode(iff) );
 228   set_control( iffalse );
 229 }
 230 
 231 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
 232   // True branch, use existing map info
 233   { PreserveJVMState pjvms(this);
 234     Node *iffalse  = _gvn.transform( new IfFalseNode (iff) );
 235     set_control( iffalse );
 236     profile_switch_case(prof_table_index);
 237     merge_new_path(dest_bci_if_true);
 238   }
 239 
 240   // False branch
 241   Node *iftrue = _gvn.transform( new IfTrueNode(iff) );
 242   set_control( iftrue );
 243 }
 244 
 245 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
 246   // False branch, use existing map and control()
 247   profile_switch_case(prof_table_index);
 248   merge_new_path(dest_bci);
 249 }
 250 
 251 
 252 extern "C" {
 253   static int jint_cmp(const void *i, const void *j) {
 254     int a = *(jint *)i;
 255     int b = *(jint *)j;
 256     return a > b ? 1 : a < b ? -1 : 0;
 257   }
 258 }
 259 
 260 
 261 // Default value for methodData switch indexing. Must be a negative value to avoid
 262 // conflict with any legal switch index.
 263 #define NullTableIndex -1
 264 
 265 class SwitchRange : public StackObj {
 266   // a range of integers coupled with a bci destination
 267   jint _lo;                     // inclusive lower limit
 268   jint _hi;                     // inclusive upper limit
 269   int _dest;
 270   int _table_index;             // index into method data table
 271 
 272 public:
 273   jint lo() const              { return _lo;   }
 274   jint hi() const              { return _hi;   }
 275   int  dest() const            { return _dest; }
 276   int  table_index() const     { return _table_index; }
 277   bool is_singleton() const    { return _lo == _hi; }
 278 
 279   void setRange(jint lo, jint hi, int dest, int table_index) {
 280     assert(lo <= hi, "must be a non-empty range");
 281     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
 282   }
 283   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
 284     assert(lo <= hi, "must be a non-empty range");
 285     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
 286       _hi = hi;
 287       return true;
 288     }
 289     return false;
 290   }
 291 
 292   void set (jint value, int dest, int table_index) {
 293     setRange(value, value, dest, table_index);
 294   }
 295   bool adjoin(jint value, int dest, int table_index) {
 296     return adjoinRange(value, value, dest, table_index);
 297   }
 298 
 299   void print() {
 300     if (is_singleton())
 301       tty->print(" {%d}=>%d", lo(), dest());
 302     else if (lo() == min_jint)
 303       tty->print(" {..%d}=>%d", hi(), dest());
 304     else if (hi() == max_jint)
 305       tty->print(" {%d..}=>%d", lo(), dest());
 306     else
 307       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
 308   }
 309 };
 310 
 311 
 312 //-------------------------------do_tableswitch--------------------------------
 313 void Parse::do_tableswitch() {
 314   Node* lookup = pop();
 315 
 316   // Get information about tableswitch
 317   int default_dest = iter().get_dest_table(0);
 318   int lo_index     = iter().get_int_table(1);
 319   int hi_index     = iter().get_int_table(2);
 320   int len          = hi_index - lo_index + 1;
 321 
 322   if (len < 1) {
 323     // If this is a backward branch, add safepoint
 324     maybe_add_safepoint(default_dest);
 325     merge(default_dest);
 326     return;
 327   }
 328 
 329   // generate decision tree, using trichotomy when possible
 330   int rnum = len+2;
 331   bool makes_backward_branch = false;
 332   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 333   int rp = -1;
 334   if (lo_index != min_jint) {
 335     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
 336   }
 337   for (int j = 0; j < len; j++) {
 338     jint match_int = lo_index+j;
 339     int  dest      = iter().get_dest_table(j+3);
 340     makes_backward_branch |= (dest <= bci());
 341     int  table_index = method_data_update() ? j : NullTableIndex;
 342     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
 343       ranges[++rp].set(match_int, dest, table_index);
 344     }
 345   }
 346   jint highest = lo_index+(len-1);
 347   assert(ranges[rp].hi() == highest, "");
 348   if (highest != max_jint
 349       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
 350     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
 351   }
 352   assert(rp < len+2, "not too many ranges");
 353 
 354   // Safepoint in case if backward branch observed
 355   if( makes_backward_branch && UseLoopSafepoints )
 356     add_safepoint();
 357 
 358   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 359 }
 360 
 361 
 362 //------------------------------do_lookupswitch--------------------------------
 363 void Parse::do_lookupswitch() {
 364   Node *lookup = pop();         // lookup value
 365   // Get information about lookupswitch
 366   int default_dest = iter().get_dest_table(0);
 367   int len          = iter().get_int_table(1);
 368 
 369   if (len < 1) {    // If this is a backward branch, add safepoint
 370     maybe_add_safepoint(default_dest);
 371     merge(default_dest);
 372     return;
 373   }
 374 
 375   // generate decision tree, using trichotomy when possible
 376   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
 377   {
 378     for( int j = 0; j < len; j++ ) {
 379       table[j+j+0] = iter().get_int_table(2+j+j);
 380       table[j+j+1] = iter().get_dest_table(2+j+j+1);
 381     }
 382     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
 383   }
 384 
 385   int rnum = len*2+1;
 386   bool makes_backward_branch = false;
 387   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 388   int rp = -1;
 389   for( int j = 0; j < len; j++ ) {
 390     jint match_int   = table[j+j+0];
 391     int  dest        = table[j+j+1];
 392     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
 393     int  table_index = method_data_update() ? j : NullTableIndex;
 394     makes_backward_branch |= (dest <= bci());
 395     if( match_int != next_lo ) {
 396       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
 397     }
 398     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
 399       ranges[++rp].set(match_int, dest, table_index);
 400     }
 401   }
 402   jint highest = table[2*(len-1)];
 403   assert(ranges[rp].hi() == highest, "");
 404   if( highest != max_jint
 405       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
 406     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
 407   }
 408   assert(rp < rnum, "not too many ranges");
 409 
 410   // Safepoint in case backward branch observed
 411   if( makes_backward_branch && UseLoopSafepoints )
 412     add_safepoint();
 413 
 414   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 415 }
 416 
 417 //----------------------------create_jump_tables-------------------------------
 418 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
 419   // Are jumptables enabled
 420   if (!UseJumpTables)  return false;
 421 
 422   // Are jumptables supported
 423   if (!Matcher::has_match_rule(Op_Jump))  return false;
 424 
 425   // Don't make jump table if profiling
 426   if (method_data_update())  return false;
 427 
 428   // Decide if a guard is needed to lop off big ranges at either (or
 429   // both) end(s) of the input set. We'll call this the default target
 430   // even though we can't be sure that it is the true "default".
 431 
 432   bool needs_guard = false;
 433   int default_dest;
 434   int64_t total_outlier_size = 0;
 435   int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1;
 436   int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1;
 437 
 438   if (lo->dest() == hi->dest()) {
 439     total_outlier_size = hi_size + lo_size;
 440     default_dest = lo->dest();
 441   } else if (lo_size > hi_size) {
 442     total_outlier_size = lo_size;
 443     default_dest = lo->dest();
 444   } else {
 445     total_outlier_size = hi_size;
 446     default_dest = hi->dest();
 447   }
 448 
 449   // If a guard test will eliminate very sparse end ranges, then
 450   // it is worth the cost of an extra jump.
 451   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
 452     needs_guard = true;
 453     if (default_dest == lo->dest()) lo++;
 454     if (default_dest == hi->dest()) hi--;
 455   }
 456 
 457   // Find the total number of cases and ranges
 458   int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1;
 459   int num_range = hi - lo + 1;
 460 
 461   // Don't create table if: too large, too small, or too sparse.
 462   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
 463     return false;
 464   if (num_cases > (MaxJumpTableSparseness * num_range))
 465     return false;
 466 
 467   // Normalize table lookups to zero
 468   int lowval = lo->lo();
 469   key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) );
 470 
 471   // Generate a guard to protect against input keyvals that aren't
 472   // in the switch domain.
 473   if (needs_guard) {
 474     Node*   size = _gvn.intcon(num_cases);
 475     Node*   cmp = _gvn.transform( new CmpUNode(key_val, size) );
 476     Node*   tst = _gvn.transform( new BoolNode(cmp, BoolTest::ge) );
 477     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
 478     jump_if_true_fork(iff, default_dest, NullTableIndex);
 479   }
 480 
 481   // Create an ideal node JumpTable that has projections
 482   // of all possible ranges for a switch statement
 483   // The key_val input must be converted to a pointer offset and scaled.
 484   // Compare Parse::array_addressing above.
 485 
 486   // Clean the 32-bit int into a real 64-bit offset.
 487   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
 488   const TypeInt* ikeytype = TypeInt::make(0, num_cases, Type::WidenMin);
 489   // Make I2L conversion control dependent to prevent it from
 490   // floating above the range check during loop optimizations.
 491   key_val = C->conv_I2X_index(&_gvn, key_val, ikeytype, control());
 492 
 493   // Shift the value by wordsize so we have an index into the table, rather
 494   // than a switch value
 495   Node *shiftWord = _gvn.MakeConX(wordSize);
 496   key_val = _gvn.transform( new MulXNode( key_val, shiftWord));
 497 
 498   // Create the JumpNode
 499   Node* jtn = _gvn.transform( new JumpNode(control(), key_val, num_cases) );
 500 
 501   // These are the switch destinations hanging off the jumpnode
 502   int i = 0;
 503   for (SwitchRange* r = lo; r <= hi; r++) {
 504     for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
 505       Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
 506       {
 507         PreserveJVMState pjvms(this);
 508         set_control(input);
 509         jump_if_always_fork(r->dest(), r->table_index());
 510       }
 511     }
 512   }
 513   assert(i == num_cases, "miscount of cases");
 514   stop_and_kill_map();  // no more uses for this JVMS
 515   return true;
 516 }
 517 
 518 //----------------------------jump_switch_ranges-------------------------------
 519 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
 520   Block* switch_block = block();
 521 
 522   if (switch_depth == 0) {
 523     // Do special processing for the top-level call.
 524     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
 525     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
 526 
 527     // Decrement pred-numbers for the unique set of nodes.
 528 #ifdef ASSERT
 529     // Ensure that the block's successors are a (duplicate-free) set.
 530     int successors_counted = 0;  // block occurrences in [hi..lo]
 531     int unique_successors = switch_block->num_successors();
 532     for (int i = 0; i < unique_successors; i++) {
 533       Block* target = switch_block->successor_at(i);
 534 
 535       // Check that the set of successors is the same in both places.
 536       int successors_found = 0;
 537       for (SwitchRange* p = lo; p <= hi; p++) {
 538         if (p->dest() == target->start())  successors_found++;
 539       }
 540       assert(successors_found > 0, "successor must be known");
 541       successors_counted += successors_found;
 542     }
 543     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
 544 #endif
 545 
 546     // Maybe prune the inputs, based on the type of key_val.
 547     jint min_val = min_jint;
 548     jint max_val = max_jint;
 549     const TypeInt* ti = key_val->bottom_type()->isa_int();
 550     if (ti != NULL) {
 551       min_val = ti->_lo;
 552       max_val = ti->_hi;
 553       assert(min_val <= max_val, "invalid int type");
 554     }
 555     while (lo->hi() < min_val)  lo++;
 556     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
 557     while (hi->lo() > max_val)  hi--;
 558     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
 559   }
 560 
 561 #ifndef PRODUCT
 562   if (switch_depth == 0) {
 563     _max_switch_depth = 0;
 564     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
 565   }
 566 #endif
 567 
 568   assert(lo <= hi, "must be a non-empty set of ranges");
 569   if (lo == hi) {
 570     jump_if_always_fork(lo->dest(), lo->table_index());
 571   } else {
 572     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
 573     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
 574 
 575     if (create_jump_tables(key_val, lo, hi)) return;
 576 
 577     int nr = hi - lo + 1;
 578 
 579     SwitchRange* mid = lo + nr/2;
 580     // if there is an easy choice, pivot at a singleton:
 581     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
 582 
 583     assert(lo < mid && mid <= hi, "good pivot choice");
 584     assert(nr != 2 || mid == hi,   "should pick higher of 2");
 585     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
 586 
 587     Node *test_val = _gvn.intcon(mid->lo());
 588 
 589     if (mid->is_singleton()) {
 590       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
 591       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
 592 
 593       // Special Case:  If there are exactly three ranges, and the high
 594       // and low range each go to the same place, omit the "gt" test,
 595       // since it will not discriminate anything.
 596       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
 597       if (eq_test_only) {
 598         assert(mid == hi-1, "");
 599       }
 600 
 601       // if there is a higher range, test for it and process it:
 602       if (mid < hi && !eq_test_only) {
 603         // two comparisons of same values--should enable 1 test for 2 branches
 604         // Use BoolTest::le instead of BoolTest::gt
 605         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
 606         Node   *iftrue  = _gvn.transform( new IfTrueNode(iff_le) );
 607         Node   *iffalse = _gvn.transform( new IfFalseNode(iff_le) );
 608         { PreserveJVMState pjvms(this);
 609           set_control(iffalse);
 610           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
 611         }
 612         set_control(iftrue);
 613       }
 614 
 615     } else {
 616       // mid is a range, not a singleton, so treat mid..hi as a unit
 617       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
 618 
 619       // if there is a higher range, test for it and process it:
 620       if (mid == hi) {
 621         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
 622       } else {
 623         Node *iftrue  = _gvn.transform( new IfTrueNode(iff_ge) );
 624         Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) );
 625         { PreserveJVMState pjvms(this);
 626           set_control(iftrue);
 627           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
 628         }
 629         set_control(iffalse);
 630       }
 631     }
 632 
 633     // in any case, process the lower range
 634     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
 635   }
 636 
 637   // Decrease pred_count for each successor after all is done.
 638   if (switch_depth == 0) {
 639     int unique_successors = switch_block->num_successors();
 640     for (int i = 0; i < unique_successors; i++) {
 641       Block* target = switch_block->successor_at(i);
 642       // Throw away the pre-allocated path for each unique successor.
 643       target->next_path_num();
 644     }
 645   }
 646 
 647 #ifndef PRODUCT
 648   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
 649   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
 650     SwitchRange* r;
 651     int nsing = 0;
 652     for( r = lo; r <= hi; r++ ) {
 653       if( r->is_singleton() )  nsing++;
 654     }
 655     tty->print(">>> ");
 656     _method->print_short_name();
 657     tty->print_cr(" switch decision tree");
 658     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
 659                   (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth);
 660     if (_max_switch_depth > _est_switch_depth) {
 661       tty->print_cr("******** BAD SWITCH DEPTH ********");
 662     }
 663     tty->print("   ");
 664     for( r = lo; r <= hi; r++ ) {
 665       r->print();
 666     }
 667     tty->cr();
 668   }
 669 #endif
 670 }
 671 
 672 void Parse::modf() {
 673   Node *f2 = pop();
 674   Node *f1 = pop();
 675   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
 676                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
 677                               "frem", NULL, //no memory effects
 678                               f1, f2);
 679   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
 680 
 681   push(res);
 682 }
 683 
 684 void Parse::modd() {
 685   Node *d2 = pop_pair();
 686   Node *d1 = pop_pair();
 687   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
 688                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
 689                               "drem", NULL, //no memory effects
 690                               d1, top(), d2, top());
 691   Node* res_d   = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
 692 
 693 #ifdef ASSERT
 694   Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1));
 695   assert(res_top == top(), "second value must be top");
 696 #endif
 697 
 698   push_pair(res_d);
 699 }
 700 
 701 void Parse::l2f() {
 702   Node* f2 = pop();
 703   Node* f1 = pop();
 704   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
 705                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
 706                               "l2f", NULL, //no memory effects
 707                               f1, f2);
 708   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
 709 
 710   push(res);
 711 }
 712 
 713 void Parse::do_irem() {
 714   // Must keep both values on the expression-stack during null-check
 715   zero_check_int(peek());
 716   // Compile-time detect of null-exception?
 717   if (stopped())  return;
 718 
 719   Node* b = pop();
 720   Node* a = pop();
 721 
 722   const Type *t = _gvn.type(b);
 723   if (t != Type::TOP) {
 724     const TypeInt *ti = t->is_int();
 725     if (ti->is_con()) {
 726       int divisor = ti->get_con();
 727       // check for positive power of 2
 728       if (divisor > 0 &&
 729           (divisor & ~(divisor-1)) == divisor) {
 730         // yes !
 731         Node *mask = _gvn.intcon((divisor - 1));
 732         // Sigh, must handle negative dividends
 733         Node *zero = _gvn.intcon(0);
 734         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
 735         Node *iff = _gvn.transform( new IfFalseNode(ifff) );
 736         Node *ift = _gvn.transform( new IfTrueNode (ifff) );
 737         Node *reg = jump_if_join(ift, iff);
 738         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
 739         // Negative path; negate/and/negate
 740         Node *neg = _gvn.transform( new SubINode(zero, a) );
 741         Node *andn= _gvn.transform( new AndINode(neg, mask) );
 742         Node *negn= _gvn.transform( new SubINode(zero, andn) );
 743         phi->init_req(1, negn);
 744         // Fast positive case
 745         Node *andx = _gvn.transform( new AndINode(a, mask) );
 746         phi->init_req(2, andx);
 747         // Push the merge
 748         push( _gvn.transform(phi) );
 749         return;
 750       }
 751     }
 752   }
 753   // Default case
 754   push( _gvn.transform( new ModINode(control(),a,b) ) );
 755 }
 756 
 757 // Handle jsr and jsr_w bytecode
 758 void Parse::do_jsr() {
 759   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
 760 
 761   // Store information about current state, tagged with new _jsr_bci
 762   int return_bci = iter().next_bci();
 763   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
 764 
 765   // Update method data
 766   profile_taken_branch(jsr_bci);
 767 
 768   // The way we do things now, there is only one successor block
 769   // for the jsr, because the target code is cloned by ciTypeFlow.
 770   Block* target = successor_for_bci(jsr_bci);
 771 
 772   // What got pushed?
 773   const Type* ret_addr = target->peek();
 774   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
 775 
 776   // Effect on jsr on stack
 777   push(_gvn.makecon(ret_addr));
 778 
 779   // Flow to the jsr.
 780   merge(jsr_bci);
 781 }
 782 
 783 // Handle ret bytecode
 784 void Parse::do_ret() {
 785   // Find to whom we return.
 786   assert(block()->num_successors() == 1, "a ret can only go one place now");
 787   Block* target = block()->successor_at(0);
 788   assert(!target->is_ready(), "our arrival must be expected");
 789   profile_ret(target->flow()->start());
 790   int pnum = target->next_path_num();
 791   merge_common(target, pnum);
 792 }
 793 
 794 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) {
 795   if (btest != BoolTest::eq && btest != BoolTest::ne) {
 796     // Only ::eq and ::ne are supported for profile injection.
 797     return false;
 798   }
 799   if (test->is_Cmp() &&
 800       test->in(1)->Opcode() == Op_ProfileBoolean) {
 801     ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1);
 802     int false_cnt = profile->false_count();
 803     int  true_cnt = profile->true_count();
 804 
 805     // Counts matching depends on the actual test operation (::eq or ::ne).
 806     // No need to scale the counts because profile injection was designed
 807     // to feed exact counts into VM.
 808     taken     = (btest == BoolTest::eq) ? false_cnt :  true_cnt;
 809     not_taken = (btest == BoolTest::eq) ?  true_cnt : false_cnt;
 810 
 811     profile->consume();
 812     return true;
 813   }
 814   return false;
 815 }
 816 //--------------------------dynamic_branch_prediction--------------------------
 817 // Try to gather dynamic branch prediction behavior.  Return a probability
 818 // of the branch being taken and set the "cnt" field.  Returns a -1.0
 819 // if we need to use static prediction for some reason.
 820 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) {
 821   ResourceMark rm;
 822 
 823   cnt  = COUNT_UNKNOWN;
 824 
 825   int     taken = 0;
 826   int not_taken = 0;
 827 
 828   bool use_mdo = !has_injected_profile(btest, test, taken, not_taken);
 829 
 830   if (use_mdo) {
 831     // Use MethodData information if it is available
 832     // FIXME: free the ProfileData structure
 833     ciMethodData* methodData = method()->method_data();
 834     if (!methodData->is_mature())  return PROB_UNKNOWN;
 835     ciProfileData* data = methodData->bci_to_data(bci());
 836     if (data == NULL) {
 837       return PROB_UNKNOWN;
 838     }
 839     if (!data->is_JumpData())  return PROB_UNKNOWN;
 840 
 841     // get taken and not taken values
 842     taken = data->as_JumpData()->taken();
 843     not_taken = 0;
 844     if (data->is_BranchData()) {
 845       not_taken = data->as_BranchData()->not_taken();
 846     }
 847 
 848     // scale the counts to be commensurate with invocation counts:
 849     taken = method()->scale_count(taken);
 850     not_taken = method()->scale_count(not_taken);
 851   }
 852 
 853   // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
 854   // We also check that individual counters are positive first, otherwise the sum can become positive.
 855   if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
 856     if (C->log() != NULL) {
 857       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
 858     }
 859     return PROB_UNKNOWN;
 860   }
 861 
 862   // Compute frequency that we arrive here
 863   float sum = taken + not_taken;
 864   // Adjust, if this block is a cloned private block but the
 865   // Jump counts are shared.  Taken the private counts for
 866   // just this path instead of the shared counts.
 867   if( block()->count() > 0 )
 868     sum = block()->count();
 869   cnt = sum / FreqCountInvocations;
 870 
 871   // Pin probability to sane limits
 872   float prob;
 873   if( !taken )
 874     prob = (0+PROB_MIN) / 2;
 875   else if( !not_taken )
 876     prob = (1+PROB_MAX) / 2;
 877   else {                         // Compute probability of true path
 878     prob = (float)taken / (float)(taken + not_taken);
 879     if (prob > PROB_MAX)  prob = PROB_MAX;
 880     if (prob < PROB_MIN)   prob = PROB_MIN;
 881   }
 882 
 883   assert((cnt > 0.0f) && (prob > 0.0f),
 884          "Bad frequency assignment in if");
 885 
 886   if (C->log() != NULL) {
 887     const char* prob_str = NULL;
 888     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
 889     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
 890     char prob_str_buf[30];
 891     if (prob_str == NULL) {
 892       sprintf(prob_str_buf, "%g", prob);
 893       prob_str = prob_str_buf;
 894     }
 895     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'",
 896                    iter().get_dest(), taken, not_taken, cnt, prob_str);
 897   }
 898   return prob;
 899 }
 900 
 901 //-----------------------------branch_prediction-------------------------------
 902 float Parse::branch_prediction(float& cnt,
 903                                BoolTest::mask btest,
 904                                int target_bci,
 905                                Node* test) {
 906   float prob = dynamic_branch_prediction(cnt, btest, test);
 907   // If prob is unknown, switch to static prediction
 908   if (prob != PROB_UNKNOWN)  return prob;
 909 
 910   prob = PROB_FAIR;                   // Set default value
 911   if (btest == BoolTest::eq)          // Exactly equal test?
 912     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
 913   else if (btest == BoolTest::ne)
 914     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
 915 
 916   // If this is a conditional test guarding a backwards branch,
 917   // assume its a loop-back edge.  Make it a likely taken branch.
 918   if (target_bci < bci()) {
 919     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
 920       // Since it's an OSR, we probably have profile data, but since
 921       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
 922       // Let's make a special check here for completely zero counts.
 923       ciMethodData* methodData = method()->method_data();
 924       if (!methodData->is_empty()) {
 925         ciProfileData* data = methodData->bci_to_data(bci());
 926         // Only stop for truly zero counts, which mean an unknown part
 927         // of the OSR-ed method, and we want to deopt to gather more stats.
 928         // If you have ANY counts, then this loop is simply 'cold' relative
 929         // to the OSR loop.
 930         if (data == NULL ||
 931             (data->as_BranchData()->taken() +  data->as_BranchData()->not_taken() == 0)) {
 932           // This is the only way to return PROB_UNKNOWN:
 933           return PROB_UNKNOWN;
 934         }
 935       }
 936     }
 937     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
 938   }
 939 
 940   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
 941   return prob;
 942 }
 943 
 944 // The magic constants are chosen so as to match the output of
 945 // branch_prediction() when the profile reports a zero taken count.
 946 // It is important to distinguish zero counts unambiguously, because
 947 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
 948 // very small but nonzero probabilities, which if confused with zero
 949 // counts would keep the program recompiling indefinitely.
 950 bool Parse::seems_never_taken(float prob) const {
 951   return prob < PROB_MIN;
 952 }
 953 
 954 // True if the comparison seems to be the kind that will not change its
 955 // statistics from true to false.  See comments in adjust_map_after_if.
 956 // This question is only asked along paths which are already
 957 // classifed as untaken (by seems_never_taken), so really,
 958 // if a path is never taken, its controlling comparison is
 959 // already acting in a stable fashion.  If the comparison
 960 // seems stable, we will put an expensive uncommon trap
 961 // on the untaken path.
 962 bool Parse::seems_stable_comparison() const {
 963   if (C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if)) {
 964     return false;
 965   }
 966   return true;
 967 }
 968 
 969 //-------------------------------repush_if_args--------------------------------
 970 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
 971 inline int Parse::repush_if_args() {
 972   if (PrintOpto && WizardMode) {
 973     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
 974                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
 975     method()->print_name(); tty->cr();
 976   }
 977   int bc_depth = - Bytecodes::depth(iter().cur_bc());
 978   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
 979   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
 980   assert(argument(0) != NULL, "must exist");
 981   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
 982   inc_sp(bc_depth);
 983   return bc_depth;
 984 }
 985 
 986 //----------------------------------do_ifnull----------------------------------
 987 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
 988   int target_bci = iter().get_dest();
 989 
 990   Block* branch_block = successor_for_bci(target_bci);
 991   Block* next_block   = successor_for_bci(iter().next_bci());
 992 
 993   float cnt;
 994   float prob = branch_prediction(cnt, btest, target_bci, c);
 995   if (prob == PROB_UNKNOWN) {
 996     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
 997     if (PrintOpto && Verbose) {
 998       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
 999     }
1000     repush_if_args(); // to gather stats on loop
1001     // We need to mark this branch as taken so that if we recompile we will
1002     // see that it is possible. In the tiered system the interpreter doesn't
1003     // do profiling and by the time we get to the lower tier from the interpreter
1004     // the path may be cold again. Make sure it doesn't look untaken
1005     profile_taken_branch(target_bci, !ProfileInterpreter);
1006     uncommon_trap(Deoptimization::Reason_unreached,
1007                   Deoptimization::Action_reinterpret,
1008                   NULL, "cold");
1009     if (C->eliminate_boxing()) {
1010       // Mark the successor blocks as parsed
1011       branch_block->next_path_num();
1012       next_block->next_path_num();
1013     }
1014     return;
1015   }
1016 
1017   NOT_PRODUCT(explicit_null_checks_inserted++);
1018 
1019   // Generate real control flow
1020   Node   *tst = _gvn.transform( new BoolNode( c, btest ) );
1021 
1022   // Sanity check the probability value
1023   assert(prob > 0.0f,"Bad probability in Parser");
1024  // Need xform to put node in hash table
1025   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1026   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1027   // True branch
1028   { PreserveJVMState pjvms(this);
1029     Node* iftrue  = _gvn.transform( new IfTrueNode (iff) );
1030     set_control(iftrue);
1031 
1032     if (stopped()) {            // Path is dead?
1033       NOT_PRODUCT(explicit_null_checks_elided++);
1034       if (C->eliminate_boxing()) {
1035         // Mark the successor block as parsed
1036         branch_block->next_path_num();
1037       }
1038     } else {                    // Path is live.
1039       // Update method data
1040       profile_taken_branch(target_bci);
1041       adjust_map_after_if(btest, c, prob, branch_block, next_block);
1042       if (!stopped()) {
1043         merge(target_bci);
1044       }
1045     }
1046   }
1047 
1048   // False branch
1049   Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1050   set_control(iffalse);
1051 
1052   if (stopped()) {              // Path is dead?
1053     NOT_PRODUCT(explicit_null_checks_elided++);
1054     if (C->eliminate_boxing()) {
1055       // Mark the successor block as parsed
1056       next_block->next_path_num();
1057     }
1058   } else  {                     // Path is live.
1059     // Update method data
1060     profile_not_taken_branch();
1061     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
1062                         next_block, branch_block);
1063   }
1064 }
1065 
1066 //------------------------------------do_if------------------------------------
1067 void Parse::do_if(BoolTest::mask btest, Node* c) {
1068   int target_bci = iter().get_dest();
1069 
1070   Block* branch_block = successor_for_bci(target_bci);
1071   Block* next_block   = successor_for_bci(iter().next_bci());
1072 
1073   float cnt;
1074   float prob = branch_prediction(cnt, btest, target_bci, c);
1075   float untaken_prob = 1.0 - prob;
1076 
1077   if (prob == PROB_UNKNOWN) {
1078     if (PrintOpto && Verbose) {
1079       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1080     }
1081     repush_if_args(); // to gather stats on loop
1082     // We need to mark this branch as taken so that if we recompile we will
1083     // see that it is possible. In the tiered system the interpreter doesn't
1084     // do profiling and by the time we get to the lower tier from the interpreter
1085     // the path may be cold again. Make sure it doesn't look untaken
1086     profile_taken_branch(target_bci, !ProfileInterpreter);
1087     uncommon_trap(Deoptimization::Reason_unreached,
1088                   Deoptimization::Action_reinterpret,
1089                   NULL, "cold");
1090     if (C->eliminate_boxing()) {
1091       // Mark the successor blocks as parsed
1092       branch_block->next_path_num();
1093       next_block->next_path_num();
1094     }
1095     return;
1096   }
1097 
1098   // Sanity check the probability value
1099   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1100 
1101   bool taken_if_true = true;
1102   // Convert BoolTest to canonical form:
1103   if (!BoolTest(btest).is_canonical()) {
1104     btest         = BoolTest(btest).negate();
1105     taken_if_true = false;
1106     // prob is NOT updated here; it remains the probability of the taken
1107     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1108   }
1109   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1110 
1111   Node* tst0 = new BoolNode(c, btest);
1112   Node* tst = _gvn.transform(tst0);
1113   BoolTest::mask taken_btest   = BoolTest::illegal;
1114   BoolTest::mask untaken_btest = BoolTest::illegal;
1115 
1116   if (tst->is_Bool()) {
1117     // Refresh c from the transformed bool node, since it may be
1118     // simpler than the original c.  Also re-canonicalize btest.
1119     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1120     // That can arise from statements like: if (x instanceof C) ...
1121     if (tst != tst0) {
1122       // Canonicalize one more time since transform can change it.
1123       btest = tst->as_Bool()->_test._test;
1124       if (!BoolTest(btest).is_canonical()) {
1125         // Reverse edges one more time...
1126         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1127         btest = tst->as_Bool()->_test._test;
1128         assert(BoolTest(btest).is_canonical(), "sanity");
1129         taken_if_true = !taken_if_true;
1130       }
1131       c = tst->in(1);
1132     }
1133     BoolTest::mask neg_btest = BoolTest(btest).negate();
1134     taken_btest   = taken_if_true ?     btest : neg_btest;
1135     untaken_btest = taken_if_true ? neg_btest :     btest;
1136   }
1137 
1138   // Generate real control flow
1139   float true_prob = (taken_if_true ? prob : untaken_prob);
1140   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1141   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1142   Node* taken_branch   = new IfTrueNode(iff);
1143   Node* untaken_branch = new IfFalseNode(iff);
1144   if (!taken_if_true) {  // Finish conversion to canonical form
1145     Node* tmp      = taken_branch;
1146     taken_branch   = untaken_branch;
1147     untaken_branch = tmp;
1148   }
1149 
1150   taken_branch = _gvn.transform(taken_branch);
1151   untaken_branch = _gvn.transform(untaken_branch);
1152   Node* taken_memory = NULL;
1153   Node* untaken_memory = NULL;
1154 
1155   ShenandoahBarrierNode::do_cmpp_if(*this, taken_branch, untaken_branch, taken_memory, untaken_memory);
1156 
1157   // Branch is taken:
1158   { PreserveJVMState pjvms(this);
1159     set_control(taken_branch);
1160     if (taken_memory != NULL) {
1161       set_all_memory(taken_memory);
1162     }
1163 
1164     if (stopped()) {
1165       if (C->eliminate_boxing()) {
1166         // Mark the successor block as parsed
1167         branch_block->next_path_num();
1168       }
1169     } else {
1170       // Update method data
1171       profile_taken_branch(target_bci);
1172       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1173       if (!stopped()) {
1174         merge(target_bci);
1175       }
1176     }
1177   }
1178 
1179   set_control(untaken_branch);
1180   if (untaken_memory != NULL) {
1181     set_all_memory(untaken_memory);
1182   }
1183 
1184   // Branch not taken.
1185   if (stopped()) {
1186     if (C->eliminate_boxing()) {
1187       // Mark the successor block as parsed
1188       next_block->next_path_num();
1189     }
1190   } else {
1191     // Update method data
1192     profile_not_taken_branch();
1193     adjust_map_after_if(untaken_btest, c, untaken_prob,
1194                         next_block, branch_block);
1195   }
1196 }
1197 
1198 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const {
1199   // Don't want to speculate on uncommon traps when running with -Xcomp
1200   if (!UseInterpreter) {
1201     return false;
1202   }
1203   return (seems_never_taken(prob) && seems_stable_comparison());
1204 }
1205 
1206 //----------------------------adjust_map_after_if------------------------------
1207 // Adjust the JVM state to reflect the result of taking this path.
1208 // Basically, it means inspecting the CmpNode controlling this
1209 // branch, seeing how it constrains a tested value, and then
1210 // deciding if it's worth our while to encode this constraint
1211 // as graph nodes in the current abstract interpretation map.
1212 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1213                                 Block* path, Block* other_path) {
1214   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1215     return;                             // nothing to do
1216 
1217   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1218 
1219   if (path_is_suitable_for_uncommon_trap(prob)) {
1220     repush_if_args();
1221     uncommon_trap(Deoptimization::Reason_unstable_if,
1222                   Deoptimization::Action_reinterpret,
1223                   NULL,
1224                   (is_fallthrough ? "taken always" : "taken never"));
1225     return;
1226   }
1227 
1228   Node* val = c->in(1);
1229   Node* con = c->in(2);
1230   const Type* tcon = _gvn.type(con);
1231   const Type* tval = _gvn.type(val);
1232   bool have_con = tcon->singleton();
1233   if (tval->singleton()) {
1234     if (!have_con) {
1235       // Swap, so constant is in con.
1236       con  = val;
1237       tcon = tval;
1238       val  = c->in(2);
1239       tval = _gvn.type(val);
1240       btest = BoolTest(btest).commute();
1241       have_con = true;
1242     } else {
1243       // Do we have two constants?  Then leave well enough alone.
1244       have_con = false;
1245     }
1246   }
1247   if (!have_con)                        // remaining adjustments need a con
1248     return;
1249 
1250   sharpen_type_after_if(btest, con, tcon, val, tval);
1251 }
1252 
1253 
1254 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
1255   Node* ldk;
1256   if (n->is_DecodeNKlass()) {
1257     if (n->in(1)->Opcode() != Op_LoadNKlass) {
1258       return NULL;
1259     } else {
1260       ldk = n->in(1);
1261     }
1262   } else if (n->Opcode() != Op_LoadKlass) {
1263     return NULL;
1264   } else {
1265     ldk = n;
1266   }
1267   assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
1268 
1269   Node* adr = ldk->in(MemNode::Address);
1270   intptr_t off = 0;
1271   Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
1272   if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
1273     return NULL;
1274   const TypePtr* tp = gvn->type(obj)->is_ptr();
1275   if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
1276     return NULL;
1277 
1278   return obj;
1279 }
1280 
1281 void Parse::sharpen_type_after_if(BoolTest::mask btest,
1282                                   Node* con, const Type* tcon,
1283                                   Node* val, const Type* tval) {
1284   // Look for opportunities to sharpen the type of a node
1285   // whose klass is compared with a constant klass.
1286   if (btest == BoolTest::eq && tcon->isa_klassptr()) {
1287     Node* obj = extract_obj_from_klass_load(&_gvn, val);
1288     const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
1289     if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1290        // Found:
1291        //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1292        // or the narrowOop equivalent.
1293        const Type* obj_type = _gvn.type(obj);
1294        const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
1295        if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
1296            tboth->higher_equal(obj_type)) {
1297           // obj has to be of the exact type Foo if the CmpP succeeds.
1298           int obj_in_map = map()->find_edge(obj);
1299           JVMState* jvms = this->jvms();
1300           if (obj_in_map >= 0 &&
1301               (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1302             TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
1303             const Type* tcc = ccast->as_Type()->type();
1304             assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1305             // Delay transform() call to allow recovery of pre-cast value
1306             // at the control merge.
1307             _gvn.set_type_bottom(ccast);
1308             record_for_igvn(ccast);
1309             // Here's the payoff.
1310             replace_in_map(obj, ccast);
1311           }
1312        }
1313     }
1314   }
1315 
1316   int val_in_map = map()->find_edge(val);
1317   if (val_in_map < 0)  return;          // replace_in_map would be useless
1318   {
1319     JVMState* jvms = this->jvms();
1320     if (!(jvms->is_loc(val_in_map) ||
1321           jvms->is_stk(val_in_map)))
1322       return;                           // again, it would be useless
1323   }
1324 
1325   // Check for a comparison to a constant, and "know" that the compared
1326   // value is constrained on this path.
1327   assert(tcon->singleton(), "");
1328   ConstraintCastNode* ccast = NULL;
1329   Node* cast = NULL;
1330 
1331   switch (btest) {
1332   case BoolTest::eq:                    // Constant test?
1333     {
1334       const Type* tboth = tcon->join_speculative(tval);
1335       if (tboth == tval)  break;        // Nothing to gain.
1336       if (tcon->isa_int()) {
1337         ccast = new CastIINode(val, tboth);
1338       } else if (tcon == TypePtr::NULL_PTR) {
1339         // Cast to null, but keep the pointer identity temporarily live.
1340         ccast = new CastPPNode(val, tboth);
1341       } else {
1342         const TypeF* tf = tcon->isa_float_constant();
1343         const TypeD* td = tcon->isa_double_constant();
1344         // Exclude tests vs float/double 0 as these could be
1345         // either +0 or -0.  Just because you are equal to +0
1346         // doesn't mean you ARE +0!
1347         // Note, following code also replaces Long and Oop values.
1348         if ((!tf || tf->_f != 0.0) &&
1349             (!td || td->_d != 0.0))
1350           cast = con;                   // Replace non-constant val by con.
1351       }
1352     }
1353     break;
1354 
1355   case BoolTest::ne:
1356     if (tcon == TypePtr::NULL_PTR) {
1357       cast = cast_not_null(val, false);
1358     }
1359     break;
1360 
1361   default:
1362     // (At this point we could record int range types with CastII.)
1363     break;
1364   }
1365 
1366   if (ccast != NULL) {
1367     const Type* tcc = ccast->as_Type()->type();
1368     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1369     // Delay transform() call to allow recovery of pre-cast value
1370     // at the control merge.
1371     ccast->set_req(0, control());
1372     _gvn.set_type_bottom(ccast);
1373     record_for_igvn(ccast);
1374     cast = ccast;
1375   }
1376 
1377   if (cast != NULL) {                   // Here's the payoff.
1378     replace_in_map(val, cast);
1379   }
1380 }
1381 
1382 /**
1383  * Use speculative type to optimize CmpP node: if comparison is
1384  * against the low level class, cast the object to the speculative
1385  * type if any. CmpP should then go away.
1386  *
1387  * @param c  expected CmpP node
1388  * @return   result of CmpP on object casted to speculative type
1389  *
1390  */
1391 Node* Parse::optimize_cmp_with_klass(Node* c) {
1392   // If this is transformed by the _gvn to a comparison with the low
1393   // level klass then we may be able to use speculation
1394   if (c->Opcode() == Op_CmpP &&
1395       (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
1396       c->in(2)->is_Con()) {
1397     Node* load_klass = NULL;
1398     Node* decode = NULL;
1399     if (c->in(1)->Opcode() == Op_DecodeNKlass) {
1400       decode = c->in(1);
1401       load_klass = c->in(1)->in(1);
1402     } else {
1403       load_klass = c->in(1);
1404     }
1405     if (load_klass->in(2)->is_AddP()) {
1406       Node* addp = load_klass->in(2);
1407       Node* obj = addp->in(AddPNode::Address);
1408       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
1409       if (obj_type->speculative_type_not_null() != NULL) {
1410         ciKlass* k = obj_type->speculative_type();
1411         inc_sp(2);
1412         obj = maybe_cast_profiled_obj(obj, k);
1413         dec_sp(2);
1414         // Make the CmpP use the casted obj
1415         addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
1416         load_klass = load_klass->clone();
1417         load_klass->set_req(2, addp);
1418         load_klass = _gvn.transform(load_klass);
1419         if (decode != NULL) {
1420           decode = decode->clone();
1421           decode->set_req(1, load_klass);
1422           load_klass = _gvn.transform(decode);
1423         }
1424         c = c->clone();
1425         c->set_req(1, load_klass);
1426         c = _gvn.transform(c);
1427       }
1428     }
1429   }
1430   return c;
1431 }
1432 
1433 //------------------------------do_one_bytecode--------------------------------
1434 // Parse this bytecode, and alter the Parsers JVM->Node mapping
1435 void Parse::do_one_bytecode() {
1436   Node *a, *b, *c, *d;          // Handy temps
1437   BoolTest::mask btest;
1438   int i;
1439 
1440   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1441 
1442   if (C->check_node_count(NodeLimitFudgeFactor * 5,
1443                           "out of nodes parsing method")) {
1444     return;
1445   }
1446 
1447 #ifdef ASSERT
1448   // for setting breakpoints
1449   if (TraceOptoParse) {
1450     tty->print(" @");
1451     dump_bci(bci());
1452     tty->cr();
1453   }
1454 #endif
1455 
1456   switch (bc()) {
1457   case Bytecodes::_nop:
1458     // do nothing
1459     break;
1460   case Bytecodes::_lconst_0:
1461     push_pair(longcon(0));
1462     break;
1463 
1464   case Bytecodes::_lconst_1:
1465     push_pair(longcon(1));
1466     break;
1467 
1468   case Bytecodes::_fconst_0:
1469     push(zerocon(T_FLOAT));
1470     break;
1471 
1472   case Bytecodes::_fconst_1:
1473     push(makecon(TypeF::ONE));
1474     break;
1475 
1476   case Bytecodes::_fconst_2:
1477     push(makecon(TypeF::make(2.0f)));
1478     break;
1479 
1480   case Bytecodes::_dconst_0:
1481     push_pair(zerocon(T_DOUBLE));
1482     break;
1483 
1484   case Bytecodes::_dconst_1:
1485     push_pair(makecon(TypeD::ONE));
1486     break;
1487 
1488   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1489   case Bytecodes::_iconst_0: push(intcon( 0)); break;
1490   case Bytecodes::_iconst_1: push(intcon( 1)); break;
1491   case Bytecodes::_iconst_2: push(intcon( 2)); break;
1492   case Bytecodes::_iconst_3: push(intcon( 3)); break;
1493   case Bytecodes::_iconst_4: push(intcon( 4)); break;
1494   case Bytecodes::_iconst_5: push(intcon( 5)); break;
1495   case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
1496   case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
1497   case Bytecodes::_aconst_null: push(null());  break;
1498   case Bytecodes::_ldc:
1499   case Bytecodes::_ldc_w:
1500   case Bytecodes::_ldc2_w:
1501     // If the constant is unresolved, run this BC once in the interpreter.
1502     {
1503       ciConstant constant = iter().get_constant();
1504       if (constant.basic_type() == T_OBJECT &&
1505           !constant.as_object()->is_loaded()) {
1506         int index = iter().get_constant_pool_index();
1507         constantTag tag = iter().get_constant_pool_tag(index);
1508         uncommon_trap(Deoptimization::make_trap_request
1509                       (Deoptimization::Reason_unloaded,
1510                        Deoptimization::Action_reinterpret,
1511                        index),
1512                       NULL, tag.internal_name());
1513         break;
1514       }
1515       assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
1516              "must be java_mirror of klass");
1517       const Type* con_type = Type::make_from_constant(constant);
1518       if (con_type != NULL) {
1519         push_node(con_type->basic_type(), makecon(con_type));
1520       }
1521     }
1522 
1523     break;
1524 
1525   case Bytecodes::_aload_0:
1526     push( local(0) );
1527     break;
1528   case Bytecodes::_aload_1:
1529     push( local(1) );
1530     break;
1531   case Bytecodes::_aload_2:
1532     push( local(2) );
1533     break;
1534   case Bytecodes::_aload_3:
1535     push( local(3) );
1536     break;
1537   case Bytecodes::_aload:
1538     push( local(iter().get_index()) );
1539     break;
1540 
1541   case Bytecodes::_fload_0:
1542   case Bytecodes::_iload_0:
1543     push( local(0) );
1544     break;
1545   case Bytecodes::_fload_1:
1546   case Bytecodes::_iload_1:
1547     push( local(1) );
1548     break;
1549   case Bytecodes::_fload_2:
1550   case Bytecodes::_iload_2:
1551     push( local(2) );
1552     break;
1553   case Bytecodes::_fload_3:
1554   case Bytecodes::_iload_3:
1555     push( local(3) );
1556     break;
1557   case Bytecodes::_fload:
1558   case Bytecodes::_iload:
1559     push( local(iter().get_index()) );
1560     break;
1561   case Bytecodes::_lload_0:
1562     push_pair_local( 0 );
1563     break;
1564   case Bytecodes::_lload_1:
1565     push_pair_local( 1 );
1566     break;
1567   case Bytecodes::_lload_2:
1568     push_pair_local( 2 );
1569     break;
1570   case Bytecodes::_lload_3:
1571     push_pair_local( 3 );
1572     break;
1573   case Bytecodes::_lload:
1574     push_pair_local( iter().get_index() );
1575     break;
1576 
1577   case Bytecodes::_dload_0:
1578     push_pair_local(0);
1579     break;
1580   case Bytecodes::_dload_1:
1581     push_pair_local(1);
1582     break;
1583   case Bytecodes::_dload_2:
1584     push_pair_local(2);
1585     break;
1586   case Bytecodes::_dload_3:
1587     push_pair_local(3);
1588     break;
1589   case Bytecodes::_dload:
1590     push_pair_local(iter().get_index());
1591     break;
1592   case Bytecodes::_fstore_0:
1593   case Bytecodes::_istore_0:
1594   case Bytecodes::_astore_0:
1595     set_local( 0, pop() );
1596     break;
1597   case Bytecodes::_fstore_1:
1598   case Bytecodes::_istore_1:
1599   case Bytecodes::_astore_1:
1600     set_local( 1, pop() );
1601     break;
1602   case Bytecodes::_fstore_2:
1603   case Bytecodes::_istore_2:
1604   case Bytecodes::_astore_2:
1605     set_local( 2, pop() );
1606     break;
1607   case Bytecodes::_fstore_3:
1608   case Bytecodes::_istore_3:
1609   case Bytecodes::_astore_3:
1610     set_local( 3, pop() );
1611     break;
1612   case Bytecodes::_fstore:
1613   case Bytecodes::_istore:
1614   case Bytecodes::_astore:
1615     set_local( iter().get_index(), pop() );
1616     break;
1617   // long stores
1618   case Bytecodes::_lstore_0:
1619     set_pair_local( 0, pop_pair() );
1620     break;
1621   case Bytecodes::_lstore_1:
1622     set_pair_local( 1, pop_pair() );
1623     break;
1624   case Bytecodes::_lstore_2:
1625     set_pair_local( 2, pop_pair() );
1626     break;
1627   case Bytecodes::_lstore_3:
1628     set_pair_local( 3, pop_pair() );
1629     break;
1630   case Bytecodes::_lstore:
1631     set_pair_local( iter().get_index(), pop_pair() );
1632     break;
1633 
1634   // double stores
1635   case Bytecodes::_dstore_0:
1636     set_pair_local( 0, dstore_rounding(pop_pair()) );
1637     break;
1638   case Bytecodes::_dstore_1:
1639     set_pair_local( 1, dstore_rounding(pop_pair()) );
1640     break;
1641   case Bytecodes::_dstore_2:
1642     set_pair_local( 2, dstore_rounding(pop_pair()) );
1643     break;
1644   case Bytecodes::_dstore_3:
1645     set_pair_local( 3, dstore_rounding(pop_pair()) );
1646     break;
1647   case Bytecodes::_dstore:
1648     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1649     break;
1650 
1651   case Bytecodes::_pop:  dec_sp(1);   break;
1652   case Bytecodes::_pop2: dec_sp(2);   break;
1653   case Bytecodes::_swap:
1654     a = pop();
1655     b = pop();
1656     push(a);
1657     push(b);
1658     break;
1659   case Bytecodes::_dup:
1660     a = pop();
1661     push(a);
1662     push(a);
1663     break;
1664   case Bytecodes::_dup_x1:
1665     a = pop();
1666     b = pop();
1667     push( a );
1668     push( b );
1669     push( a );
1670     break;
1671   case Bytecodes::_dup_x2:
1672     a = pop();
1673     b = pop();
1674     c = pop();
1675     push( a );
1676     push( c );
1677     push( b );
1678     push( a );
1679     break;
1680   case Bytecodes::_dup2:
1681     a = pop();
1682     b = pop();
1683     push( b );
1684     push( a );
1685     push( b );
1686     push( a );
1687     break;
1688 
1689   case Bytecodes::_dup2_x1:
1690     // before: .. c, b, a
1691     // after:  .. b, a, c, b, a
1692     // not tested
1693     a = pop();
1694     b = pop();
1695     c = pop();
1696     push( b );
1697     push( a );
1698     push( c );
1699     push( b );
1700     push( a );
1701     break;
1702   case Bytecodes::_dup2_x2:
1703     // before: .. d, c, b, a
1704     // after:  .. b, a, d, c, b, a
1705     // not tested
1706     a = pop();
1707     b = pop();
1708     c = pop();
1709     d = pop();
1710     push( b );
1711     push( a );
1712     push( d );
1713     push( c );
1714     push( b );
1715     push( a );
1716     break;
1717 
1718   case Bytecodes::_arraylength: {
1719     // Must do null-check with value on expression stack
1720     Node *ary = null_check(peek(), T_ARRAY);
1721     // Compile-time detect of null-exception?
1722     if (stopped())  return;
1723     a = pop();
1724     push(load_array_length(a));
1725     break;
1726   }
1727 
1728   case Bytecodes::_baload: array_load(T_BYTE);   break;
1729   case Bytecodes::_caload: array_load(T_CHAR);   break;
1730   case Bytecodes::_iaload: array_load(T_INT);    break;
1731   case Bytecodes::_saload: array_load(T_SHORT);  break;
1732   case Bytecodes::_faload: array_load(T_FLOAT);  break;
1733   case Bytecodes::_aaload: array_load(T_OBJECT); break;
1734   case Bytecodes::_laload: {
1735     a = array_addressing(T_LONG, 0, false);
1736     if (stopped())  return;     // guaranteed null or range check
1737     dec_sp(2);                  // Pop array and index
1738     push_pair(make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS, MemNode::unordered));
1739     break;
1740   }
1741   case Bytecodes::_daload: {
1742     a = array_addressing(T_DOUBLE, 0, false);
1743     if (stopped())  return;     // guaranteed null or range check
1744     dec_sp(2);                  // Pop array and index
1745     push_pair(make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered));
1746     break;
1747   }
1748   case Bytecodes::_bastore: array_store(T_BYTE);  break;
1749   case Bytecodes::_castore: array_store(T_CHAR);  break;
1750   case Bytecodes::_iastore: array_store(T_INT);   break;
1751   case Bytecodes::_sastore: array_store(T_SHORT); break;
1752   case Bytecodes::_fastore: array_store(T_FLOAT); break;
1753   case Bytecodes::_aastore: {
1754     d = array_addressing(T_OBJECT, 1, true);
1755     if (stopped())  return;     // guaranteed null or range check
1756     array_store_check();
1757     c = pop();                  // Oop to store
1758     b = pop();                  // index (already used)
1759     a = pop();                  // the array itself
1760     const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
1761     const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
1762     // Note: We don't need a write barrier for Shenandoah on a here, because
1763     // a is not used except for an assert. The address d already has the
1764     // write barrier. Adding a barrier on a only results in additional code
1765     // being generated.
1766     c = shenandoah_storeval_barrier(c);
1767     Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT,
1768                                      StoreNode::release_if_reference(T_OBJECT));
1769     break;
1770   }
1771   case Bytecodes::_lastore: {
1772     a = array_addressing(T_LONG, 2, true);
1773     if (stopped())  return;     // guaranteed null or range check
1774     c = pop_pair();
1775     dec_sp(2);                  // Pop array and index
1776     store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS, MemNode::unordered);
1777     break;
1778   }
1779   case Bytecodes::_dastore: {
1780     a = array_addressing(T_DOUBLE, 2, true);
1781     if (stopped())  return;     // guaranteed null or range check
1782     c = pop_pair();
1783     dec_sp(2);                  // Pop array and index
1784     c = dstore_rounding(c);
1785     store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered);
1786     break;
1787   }
1788   case Bytecodes::_getfield:
1789     do_getfield();
1790     break;
1791 
1792   case Bytecodes::_getstatic:
1793     do_getstatic();
1794     break;
1795 
1796   case Bytecodes::_putfield:
1797     do_putfield();
1798     break;
1799 
1800   case Bytecodes::_putstatic:
1801     do_putstatic();
1802     break;
1803 
1804   case Bytecodes::_irem:
1805     do_irem();
1806     break;
1807   case Bytecodes::_idiv:
1808     // Must keep both values on the expression-stack during null-check
1809     zero_check_int(peek());
1810     // Compile-time detect of null-exception?
1811     if (stopped())  return;
1812     b = pop();
1813     a = pop();
1814     push( _gvn.transform( new DivINode(control(),a,b) ) );
1815     break;
1816   case Bytecodes::_imul:
1817     b = pop(); a = pop();
1818     push( _gvn.transform( new MulINode(a,b) ) );
1819     break;
1820   case Bytecodes::_iadd:
1821     b = pop(); a = pop();
1822     push( _gvn.transform( new AddINode(a,b) ) );
1823     break;
1824   case Bytecodes::_ineg:
1825     a = pop();
1826     push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) );
1827     break;
1828   case Bytecodes::_isub:
1829     b = pop(); a = pop();
1830     push( _gvn.transform( new SubINode(a,b) ) );
1831     break;
1832   case Bytecodes::_iand:
1833     b = pop(); a = pop();
1834     push( _gvn.transform( new AndINode(a,b) ) );
1835     break;
1836   case Bytecodes::_ior:
1837     b = pop(); a = pop();
1838     push( _gvn.transform( new OrINode(a,b) ) );
1839     break;
1840   case Bytecodes::_ixor:
1841     b = pop(); a = pop();
1842     push( _gvn.transform( new XorINode(a,b) ) );
1843     break;
1844   case Bytecodes::_ishl:
1845     b = pop(); a = pop();
1846     push( _gvn.transform( new LShiftINode(a,b) ) );
1847     break;
1848   case Bytecodes::_ishr:
1849     b = pop(); a = pop();
1850     push( _gvn.transform( new RShiftINode(a,b) ) );
1851     break;
1852   case Bytecodes::_iushr:
1853     b = pop(); a = pop();
1854     push( _gvn.transform( new URShiftINode(a,b) ) );
1855     break;
1856 
1857   case Bytecodes::_fneg:
1858     a = pop();
1859     b = _gvn.transform(new NegFNode (a));
1860     push(b);
1861     break;
1862 
1863   case Bytecodes::_fsub:
1864     b = pop();
1865     a = pop();
1866     c = _gvn.transform( new SubFNode(a,b) );
1867     d = precision_rounding(c);
1868     push( d );
1869     break;
1870 
1871   case Bytecodes::_fadd:
1872     b = pop();
1873     a = pop();
1874     c = _gvn.transform( new AddFNode(a,b) );
1875     d = precision_rounding(c);
1876     push( d );
1877     break;
1878 
1879   case Bytecodes::_fmul:
1880     b = pop();
1881     a = pop();
1882     c = _gvn.transform( new MulFNode(a,b) );
1883     d = precision_rounding(c);
1884     push( d );
1885     break;
1886 
1887   case Bytecodes::_fdiv:
1888     b = pop();
1889     a = pop();
1890     c = _gvn.transform( new DivFNode(0,a,b) );
1891     d = precision_rounding(c);
1892     push( d );
1893     break;
1894 
1895   case Bytecodes::_frem:
1896     if (Matcher::has_match_rule(Op_ModF)) {
1897       // Generate a ModF node.
1898       b = pop();
1899       a = pop();
1900       c = _gvn.transform( new ModFNode(0,a,b) );
1901       d = precision_rounding(c);
1902       push( d );
1903     }
1904     else {
1905       // Generate a call.
1906       modf();
1907     }
1908     break;
1909 
1910   case Bytecodes::_fcmpl:
1911     b = pop();
1912     a = pop();
1913     c = _gvn.transform( new CmpF3Node( a, b));
1914     push(c);
1915     break;
1916   case Bytecodes::_fcmpg:
1917     b = pop();
1918     a = pop();
1919 
1920     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
1921     // which negates the result sign except for unordered.  Flip the unordered
1922     // as well by using CmpF3 which implements unordered-lesser instead of
1923     // unordered-greater semantics.  Finally, commute the result bits.  Result
1924     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1925     c = _gvn.transform( new CmpF3Node( b, a));
1926     c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
1927     push(c);
1928     break;
1929 
1930   case Bytecodes::_f2i:
1931     a = pop();
1932     push(_gvn.transform(new ConvF2INode(a)));
1933     break;
1934 
1935   case Bytecodes::_d2i:
1936     a = pop_pair();
1937     b = _gvn.transform(new ConvD2INode(a));
1938     push( b );
1939     break;
1940 
1941   case Bytecodes::_f2d:
1942     a = pop();
1943     b = _gvn.transform( new ConvF2DNode(a));
1944     push_pair( b );
1945     break;
1946 
1947   case Bytecodes::_d2f:
1948     a = pop_pair();
1949     b = _gvn.transform( new ConvD2FNode(a));
1950     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1951     //b = _gvn.transform(new RoundFloatNode(0, b) );
1952     push( b );
1953     break;
1954 
1955   case Bytecodes::_l2f:
1956     if (Matcher::convL2FSupported()) {
1957       a = pop_pair();
1958       b = _gvn.transform( new ConvL2FNode(a));
1959       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1960       // Rather than storing the result into an FP register then pushing
1961       // out to memory to round, the machine instruction that implements
1962       // ConvL2D is responsible for rounding.
1963       // c = precision_rounding(b);
1964       c = _gvn.transform(b);
1965       push(c);
1966     } else {
1967       l2f();
1968     }
1969     break;
1970 
1971   case Bytecodes::_l2d:
1972     a = pop_pair();
1973     b = _gvn.transform( new ConvL2DNode(a));
1974     // For i486.ad, rounding is always necessary (see _l2f above).
1975     // c = dprecision_rounding(b);
1976     c = _gvn.transform(b);
1977     push_pair(c);
1978     break;
1979 
1980   case Bytecodes::_f2l:
1981     a = pop();
1982     b = _gvn.transform( new ConvF2LNode(a));
1983     push_pair(b);
1984     break;
1985 
1986   case Bytecodes::_d2l:
1987     a = pop_pair();
1988     b = _gvn.transform( new ConvD2LNode(a));
1989     push_pair(b);
1990     break;
1991 
1992   case Bytecodes::_dsub:
1993     b = pop_pair();
1994     a = pop_pair();
1995     c = _gvn.transform( new SubDNode(a,b) );
1996     d = dprecision_rounding(c);
1997     push_pair( d );
1998     break;
1999 
2000   case Bytecodes::_dadd:
2001     b = pop_pair();
2002     a = pop_pair();
2003     c = _gvn.transform( new AddDNode(a,b) );
2004     d = dprecision_rounding(c);
2005     push_pair( d );
2006     break;
2007 
2008   case Bytecodes::_dmul:
2009     b = pop_pair();
2010     a = pop_pair();
2011     c = _gvn.transform( new MulDNode(a,b) );
2012     d = dprecision_rounding(c);
2013     push_pair( d );
2014     break;
2015 
2016   case Bytecodes::_ddiv:
2017     b = pop_pair();
2018     a = pop_pair();
2019     c = _gvn.transform( new DivDNode(0,a,b) );
2020     d = dprecision_rounding(c);
2021     push_pair( d );
2022     break;
2023 
2024   case Bytecodes::_dneg:
2025     a = pop_pair();
2026     b = _gvn.transform(new NegDNode (a));
2027     push_pair(b);
2028     break;
2029 
2030   case Bytecodes::_drem:
2031     if (Matcher::has_match_rule(Op_ModD)) {
2032       // Generate a ModD node.
2033       b = pop_pair();
2034       a = pop_pair();
2035       // a % b
2036 
2037       c = _gvn.transform( new ModDNode(0,a,b) );
2038       d = dprecision_rounding(c);
2039       push_pair( d );
2040     }
2041     else {
2042       // Generate a call.
2043       modd();
2044     }
2045     break;
2046 
2047   case Bytecodes::_dcmpl:
2048     b = pop_pair();
2049     a = pop_pair();
2050     c = _gvn.transform( new CmpD3Node( a, b));
2051     push(c);
2052     break;
2053 
2054   case Bytecodes::_dcmpg:
2055     b = pop_pair();
2056     a = pop_pair();
2057     // Same as dcmpl but need to flip the unordered case.
2058     // Commute the inputs, which negates the result sign except for unordered.
2059     // Flip the unordered as well by using CmpD3 which implements
2060     // unordered-lesser instead of unordered-greater semantics.
2061     // Finally, negate the result bits.  Result is same as using a
2062     // CmpD3Greater except we did it with CmpD3 alone.
2063     c = _gvn.transform( new CmpD3Node( b, a));
2064     c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
2065     push(c);
2066     break;
2067 
2068 
2069     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
2070   case Bytecodes::_land:
2071     b = pop_pair();
2072     a = pop_pair();
2073     c = _gvn.transform( new AndLNode(a,b) );
2074     push_pair(c);
2075     break;
2076   case Bytecodes::_lor:
2077     b = pop_pair();
2078     a = pop_pair();
2079     c = _gvn.transform( new OrLNode(a,b) );
2080     push_pair(c);
2081     break;
2082   case Bytecodes::_lxor:
2083     b = pop_pair();
2084     a = pop_pair();
2085     c = _gvn.transform( new XorLNode(a,b) );
2086     push_pair(c);
2087     break;
2088 
2089   case Bytecodes::_lshl:
2090     b = pop();                  // the shift count
2091     a = pop_pair();             // value to be shifted
2092     c = _gvn.transform( new LShiftLNode(a,b) );
2093     push_pair(c);
2094     break;
2095   case Bytecodes::_lshr:
2096     b = pop();                  // the shift count
2097     a = pop_pair();             // value to be shifted
2098     c = _gvn.transform( new RShiftLNode(a,b) );
2099     push_pair(c);
2100     break;
2101   case Bytecodes::_lushr:
2102     b = pop();                  // the shift count
2103     a = pop_pair();             // value to be shifted
2104     c = _gvn.transform( new URShiftLNode(a,b) );
2105     push_pair(c);
2106     break;
2107   case Bytecodes::_lmul:
2108     b = pop_pair();
2109     a = pop_pair();
2110     c = _gvn.transform( new MulLNode(a,b) );
2111     push_pair(c);
2112     break;
2113 
2114   case Bytecodes::_lrem:
2115     // Must keep both values on the expression-stack during null-check
2116     assert(peek(0) == top(), "long word order");
2117     zero_check_long(peek(1));
2118     // Compile-time detect of null-exception?
2119     if (stopped())  return;
2120     b = pop_pair();
2121     a = pop_pair();
2122     c = _gvn.transform( new ModLNode(control(),a,b) );
2123     push_pair(c);
2124     break;
2125 
2126   case Bytecodes::_ldiv:
2127     // Must keep both values on the expression-stack during null-check
2128     assert(peek(0) == top(), "long word order");
2129     zero_check_long(peek(1));
2130     // Compile-time detect of null-exception?
2131     if (stopped())  return;
2132     b = pop_pair();
2133     a = pop_pair();
2134     c = _gvn.transform( new DivLNode(control(),a,b) );
2135     push_pair(c);
2136     break;
2137 
2138   case Bytecodes::_ladd:
2139     b = pop_pair();
2140     a = pop_pair();
2141     c = _gvn.transform( new AddLNode(a,b) );
2142     push_pair(c);
2143     break;
2144   case Bytecodes::_lsub:
2145     b = pop_pair();
2146     a = pop_pair();
2147     c = _gvn.transform( new SubLNode(a,b) );
2148     push_pair(c);
2149     break;
2150   case Bytecodes::_lcmp:
2151     // Safepoints are now inserted _before_ branches.  The long-compare
2152     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2153     // slew of control flow.  These are usually followed by a CmpI vs zero and
2154     // a branch; this pattern then optimizes to the obvious long-compare and
2155     // branch.  However, if the branch is backwards there's a Safepoint
2156     // inserted.  The inserted Safepoint captures the JVM state at the
2157     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2158     // long-compare is used to control a loop the debug info will force
2159     // computation of the 3-way value, even though the generated code uses a
2160     // long-compare and branch.  We try to rectify the situation by inserting
2161     // a SafePoint here and have it dominate and kill the safepoint added at a
2162     // following backwards branch.  At this point the JVM state merely holds 2
2163     // longs but not the 3-way value.
2164     if( UseLoopSafepoints ) {
2165       switch( iter().next_bc() ) {
2166       case Bytecodes::_ifgt:
2167       case Bytecodes::_iflt:
2168       case Bytecodes::_ifge:
2169       case Bytecodes::_ifle:
2170       case Bytecodes::_ifne:
2171       case Bytecodes::_ifeq:
2172         // If this is a backwards branch in the bytecodes, add Safepoint
2173         maybe_add_safepoint(iter().next_get_dest());
2174       default:
2175         break;
2176       }
2177     }
2178     b = pop_pair();
2179     a = pop_pair();
2180     c = _gvn.transform( new CmpL3Node( a, b ));
2181     push(c);
2182     break;
2183 
2184   case Bytecodes::_lneg:
2185     a = pop_pair();
2186     b = _gvn.transform( new SubLNode(longcon(0),a));
2187     push_pair(b);
2188     break;
2189   case Bytecodes::_l2i:
2190     a = pop_pair();
2191     push( _gvn.transform( new ConvL2INode(a)));
2192     break;
2193   case Bytecodes::_i2l:
2194     a = pop();
2195     b = _gvn.transform( new ConvI2LNode(a));
2196     push_pair(b);
2197     break;
2198   case Bytecodes::_i2b:
2199     // Sign extend
2200     a = pop();
2201     a = _gvn.transform( new LShiftINode(a,_gvn.intcon(24)) );
2202     a = _gvn.transform( new RShiftINode(a,_gvn.intcon(24)) );
2203     push( a );
2204     break;
2205   case Bytecodes::_i2s:
2206     a = pop();
2207     a = _gvn.transform( new LShiftINode(a,_gvn.intcon(16)) );
2208     a = _gvn.transform( new RShiftINode(a,_gvn.intcon(16)) );
2209     push( a );
2210     break;
2211   case Bytecodes::_i2c:
2212     a = pop();
2213     push( _gvn.transform( new AndINode(a,_gvn.intcon(0xFFFF)) ) );
2214     break;
2215 
2216   case Bytecodes::_i2f:
2217     a = pop();
2218     b = _gvn.transform( new ConvI2FNode(a) ) ;
2219     c = precision_rounding(b);
2220     push (b);
2221     break;
2222 
2223   case Bytecodes::_i2d:
2224     a = pop();
2225     b = _gvn.transform( new ConvI2DNode(a));
2226     push_pair(b);
2227     break;
2228 
2229   case Bytecodes::_iinc:        // Increment local
2230     i = iter().get_index();     // Get local index
2231     set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2232     break;
2233 
2234   // Exit points of synchronized methods must have an unlock node
2235   case Bytecodes::_return:
2236     return_current(NULL);
2237     break;
2238 
2239   case Bytecodes::_ireturn:
2240   case Bytecodes::_areturn:
2241   case Bytecodes::_freturn:
2242     return_current(pop());
2243     break;
2244   case Bytecodes::_lreturn:
2245     return_current(pop_pair());
2246     break;
2247   case Bytecodes::_dreturn:
2248     return_current(pop_pair());
2249     break;
2250 
2251   case Bytecodes::_athrow:
2252     // null exception oop throws NULL pointer exception
2253     null_check(peek());
2254     if (stopped())  return;
2255     // Hook the thrown exception directly to subsequent handlers.
2256     if (BailoutToInterpreterForThrows) {
2257       // Keep method interpreted from now on.
2258       uncommon_trap(Deoptimization::Reason_unhandled,
2259                     Deoptimization::Action_make_not_compilable);
2260       return;
2261     }
2262     if (env()->jvmti_can_post_on_exceptions()) {
2263       // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2264       uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2265     }
2266     // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2267     add_exception_state(make_exception_state(peek()));
2268     break;
2269 
2270   case Bytecodes::_goto:   // fall through
2271   case Bytecodes::_goto_w: {
2272     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2273 
2274     // If this is a backwards branch in the bytecodes, add Safepoint
2275     maybe_add_safepoint(target_bci);
2276 
2277     // Update method data
2278     profile_taken_branch(target_bci);
2279 
2280     // Merge the current control into the target basic block
2281     merge(target_bci);
2282 
2283     // See if we can get some profile data and hand it off to the next block
2284     Block *target_block = block()->successor_for_bci(target_bci);
2285     if (target_block->pred_count() != 1)  break;
2286     ciMethodData* methodData = method()->method_data();
2287     if (!methodData->is_mature())  break;
2288     ciProfileData* data = methodData->bci_to_data(bci());
2289     assert( data->is_JumpData(), "" );
2290     int taken = ((ciJumpData*)data)->taken();
2291     taken = method()->scale_count(taken);
2292     target_block->set_count(taken);
2293     break;
2294   }
2295 
2296   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2297   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2298   handle_if_null:
2299     // If this is a backwards branch in the bytecodes, add Safepoint
2300     maybe_add_safepoint(iter().get_dest());
2301     a = null();
2302     b = pop();
2303     if (!_gvn.type(b)->speculative_maybe_null() &&
2304         !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2305       inc_sp(1);
2306       Node* null_ctl = top();
2307       b = null_check_oop(b, &null_ctl, true, true, true);
2308       assert(null_ctl->is_top(), "no null control here");
2309       dec_sp(1);
2310     } else if (_gvn.type(b)->speculative_always_null() &&
2311                !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2312       inc_sp(1);
2313       b = null_assert(b);
2314       dec_sp(1);
2315     }
2316     c = _gvn.transform( new CmpPNode(b, a) );
2317     do_ifnull(btest, c);
2318     break;
2319 
2320   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2321   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2322   handle_if_acmp:
2323     // If this is a backwards branch in the bytecodes, add Safepoint
2324     maybe_add_safepoint(iter().get_dest());
2325     a = pop();
2326     b = pop();
2327     if (UseShenandoahGC && ShenandoahAcmpBarrier && ShenandoahVerifyOptoBarriers) {
2328       a = shenandoah_write_barrier(a);
2329       b = shenandoah_write_barrier(b);
2330     }
2331     c = _gvn.transform( new CmpPNode(b, a) );
2332     c = optimize_cmp_with_klass(c);
2333     do_if(btest, c);
2334     break;
2335 
2336   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2337   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2338   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2339   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2340   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2341   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2342   handle_ifxx:
2343     // If this is a backwards branch in the bytecodes, add Safepoint
2344     maybe_add_safepoint(iter().get_dest());
2345     a = _gvn.intcon(0);
2346     b = pop();
2347     c = _gvn.transform( new CmpINode(b, a) );
2348     do_if(btest, c);
2349     break;
2350 
2351   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2352   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2353   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2354   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2355   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2356   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2357   handle_if_icmp:
2358     // If this is a backwards branch in the bytecodes, add Safepoint
2359     maybe_add_safepoint(iter().get_dest());
2360     a = pop();
2361     b = pop();
2362     c = _gvn.transform( new CmpINode( b, a ) );
2363     do_if(btest, c);
2364     break;
2365 
2366   case Bytecodes::_tableswitch:
2367     do_tableswitch();
2368     break;
2369 
2370   case Bytecodes::_lookupswitch:
2371     do_lookupswitch();
2372     break;
2373 
2374   case Bytecodes::_invokestatic:
2375   case Bytecodes::_invokedynamic:
2376   case Bytecodes::_invokespecial:
2377   case Bytecodes::_invokevirtual:
2378   case Bytecodes::_invokeinterface:
2379     do_call();
2380     break;
2381   case Bytecodes::_checkcast:
2382     do_checkcast();
2383     break;
2384   case Bytecodes::_instanceof:
2385     do_instanceof();
2386     break;
2387   case Bytecodes::_anewarray:
2388     do_anewarray();
2389     break;
2390   case Bytecodes::_newarray:
2391     do_newarray((BasicType)iter().get_index());
2392     break;
2393   case Bytecodes::_multianewarray:
2394     do_multianewarray();
2395     break;
2396   case Bytecodes::_new:
2397     do_new();
2398     break;
2399 
2400   case Bytecodes::_jsr:
2401   case Bytecodes::_jsr_w:
2402     do_jsr();
2403     break;
2404 
2405   case Bytecodes::_ret:
2406     do_ret();
2407     break;
2408 
2409 
2410   case Bytecodes::_monitorenter:
2411     do_monitor_enter();
2412     break;
2413 
2414   case Bytecodes::_monitorexit:
2415     do_monitor_exit();
2416     break;
2417 
2418   case Bytecodes::_breakpoint:
2419     // Breakpoint set concurrently to compile
2420     // %%% use an uncommon trap?
2421     C->record_failure("breakpoint in method");
2422     return;
2423 
2424   default:
2425 #ifndef PRODUCT
2426     map()->dump(99);
2427 #endif
2428     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2429     ShouldNotReachHere();
2430   }
2431 
2432 #ifndef PRODUCT
2433   IdealGraphPrinter *printer = C->printer();
2434   if (printer && printer->should_print(1)) {
2435     char buffer[256];
2436     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2437     bool old = printer->traverse_outs();
2438     printer->set_traverse_outs(true);
2439     printer->print_method(buffer, 4);
2440     printer->set_traverse_outs(old);
2441   }
2442 #endif
2443 }