/* * Copyright (c) 2013, 2018, Red Hat, Inc. and/or its affiliates. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1BarrierSet.hpp" #include "gc/shenandoah/shenandoahAsserts.hpp" #include "gc/shenandoah/shenandoahBarrierSet.hpp" #include "gc/shenandoah/shenandoahBarrierSetAssembler.hpp" #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" #include "gc/shenandoah/shenandoahConnectionMatrix.inline.hpp" #include "gc/shenandoah/shenandoahHeap.inline.hpp" #include "gc/shenandoah/shenandoahHeuristics.hpp" #include "gc/shenandoah/shenandoahTraversalGC.hpp" #include "memory/iterator.inline.hpp" #include "runtime/interfaceSupport.inline.hpp" #ifdef COMPILER1 #include "gc/shenandoah/c1/shenandoahBarrierSetC1.hpp" #endif #ifdef COMPILER2 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp" #endif class ShenandoahBarrierSetC1; class ShenandoahBarrierSetC2; ShenandoahSATBMarkQueueSet ShenandoahBarrierSet::_satb_mark_queue_set; template class ShenandoahUpdateRefsForOopClosure: public BasicOopIterateClosure { private: ShenandoahHeap* _heap; ShenandoahBarrierSet* _bs; template inline void do_oop_work(T* p) { oop o; if (STOREVAL_WRITE_BARRIER) { o = _heap->evac_update_with_forwarded(p); if (!CompressedOops::is_null(o)) { _bs->enqueue(o); } } else { o = _heap->maybe_update_with_forwarded(p); } if (UPDATE_MATRIX && !CompressedOops::is_null(o)) { _heap->connection_matrix()->set_connected(p, o); } } public: ShenandoahUpdateRefsForOopClosure() : _heap(ShenandoahHeap::heap()), _bs(ShenandoahBarrierSet::barrier_set()) { assert(UseShenandoahGC && ShenandoahCloneBarrier, "should be enabled"); } virtual void do_oop(oop* p) { do_oop_work(p); } virtual void do_oop(narrowOop* p) { do_oop_work(p); } }; ShenandoahBarrierSet::ShenandoahBarrierSet(ShenandoahHeap* heap) : BarrierSet(make_barrier_set_assembler(), make_barrier_set_c1(), make_barrier_set_c2(), BarrierSet::FakeRtti(BarrierSet::Shenandoah)), _heap(heap) { } void ShenandoahBarrierSet::print_on(outputStream* st) const { st->print("ShenandoahBarrierSet"); } bool ShenandoahBarrierSet::is_a(BarrierSet::Name bsn) { return bsn == BarrierSet::Shenandoah; } bool ShenandoahBarrierSet::is_aligned(HeapWord* hw) { return true; } void ShenandoahBarrierSet::resize_covered_region(MemRegion mr) { Unimplemented(); } void ShenandoahBarrierSet::write_ref_array_work(MemRegion r) { ShouldNotReachHere(); } template void ShenandoahBarrierSet::write_ref_array_loop(HeapWord* start, size_t count) { assert(UseShenandoahGC && ShenandoahCloneBarrier, "should be enabled"); ShenandoahUpdateRefsForOopClosure cl; T* dst = (T*) start; for (size_t i = 0; i < count; i++) { cl.do_oop(dst++); } } void ShenandoahBarrierSet::write_ref_array(HeapWord* start, size_t count) { assert(UseShenandoahGC, "should be enabled"); if (count == 0) return; if (!ShenandoahCloneBarrier) return; if (!need_update_refs_barrier()) return; if (_heap->is_concurrent_traversal_in_progress()) { if (count > ShenandoahEnqueueArrayCopyThreshold) { _heap->traversal_gc()->push_arraycopy(start, count); } else { ShenandoahEvacOOMScope oom_evac_scope; if (UseShenandoahMatrix) { if (UseCompressedOops) { write_ref_array_loop(start, count); } else { write_ref_array_loop(start, count); } } else { if (UseCompressedOops) { write_ref_array_loop(start, count); } else { write_ref_array_loop(start, count); } } } } else { if (UseShenandoahMatrix) { if (UseCompressedOops) { write_ref_array_loop(start, count); } else { write_ref_array_loop(start, count); } } else { if (UseCompressedOops) { write_ref_array_loop(start, count); } else { write_ref_array_loop(start, count); } } } } template void ShenandoahBarrierSet::write_ref_array_pre_work(T* dst, size_t count) { shenandoah_assert_not_in_cset_loc_except(dst, _heap->cancelled_gc()); if (ShenandoahSATBBarrier && _heap->is_concurrent_mark_in_progress()) { T* elem_ptr = dst; for (size_t i = 0; i < count; i++, elem_ptr++) { T heap_oop = RawAccess<>::oop_load(elem_ptr); if (!CompressedOops::is_null(heap_oop)) { enqueue(CompressedOops::decode_not_null(heap_oop)); } } } } void ShenandoahBarrierSet::write_ref_array_pre(oop* dst, size_t count, bool dest_uninitialized) { if (! dest_uninitialized) { write_ref_array_pre_work(dst, count); } } void ShenandoahBarrierSet::write_ref_array_pre(narrowOop* dst, size_t count, bool dest_uninitialized) { if (! dest_uninitialized) { write_ref_array_pre_work(dst, count); } } template inline void ShenandoahBarrierSet::inline_write_ref_field_pre(T* field, oop new_val) { shenandoah_assert_not_in_cset_loc_except(field, _heap->cancelled_gc()); if (_heap->is_concurrent_mark_in_progress()) { T heap_oop = RawAccess<>::oop_load(field); if (!CompressedOops::is_null(heap_oop)) { enqueue(CompressedOops::decode(heap_oop)); } } if (UseShenandoahMatrix && ! CompressedOops::is_null(new_val)) { ShenandoahConnectionMatrix* matrix = _heap->connection_matrix(); matrix->set_connected(field, new_val); } } // These are the more general virtual versions. void ShenandoahBarrierSet::write_ref_field_pre_work(oop* field, oop new_val) { inline_write_ref_field_pre(field, new_val); } void ShenandoahBarrierSet::write_ref_field_pre_work(narrowOop* field, oop new_val) { inline_write_ref_field_pre(field, new_val); } void ShenandoahBarrierSet::write_ref_field_pre_work(void* field, oop new_val) { guarantee(false, "Not needed"); } void ShenandoahBarrierSet::write_ref_field_work(void* v, oop o, bool release) { shenandoah_assert_not_in_cset_loc_except(v, _heap->cancelled_gc()); shenandoah_assert_not_forwarded_except (v, o, o == NULL || _heap->cancelled_gc() || !_heap->is_concurrent_mark_in_progress()); shenandoah_assert_not_in_cset_except (v, o, o == NULL || _heap->cancelled_gc() || !_heap->is_concurrent_mark_in_progress()); } void ShenandoahBarrierSet::write_region(MemRegion mr) { assert(UseShenandoahGC, "should be enabled"); if (!ShenandoahCloneBarrier) return; if (! need_update_refs_barrier()) return; // This is called for cloning an object (see jvm.cpp) after the clone // has been made. We are not interested in any 'previous value' because // it would be NULL in any case. But we *are* interested in any oop* // that potentially need to be updated. oop obj = oop(mr.start()); assert(oopDesc::is_oop(obj), "must be an oop"); if (_heap->is_concurrent_traversal_in_progress()) { if ((size_t) obj->size() > ShenandoahEnqueueArrayCopyThreshold) { _heap->traversal_gc()->push_arraycopy(mr.start(), 0); } else { ShenandoahEvacOOMScope oom_evac_scope; if (UseShenandoahMatrix) { ShenandoahUpdateRefsForOopClosure cl; obj->oop_iterate(&cl); } else { ShenandoahUpdateRefsForOopClosure cl; obj->oop_iterate(&cl); } } } else { if (UseShenandoahMatrix) { ShenandoahUpdateRefsForOopClosure cl; obj->oop_iterate(&cl); } else { ShenandoahUpdateRefsForOopClosure cl; obj->oop_iterate(&cl); } } } oop ShenandoahBarrierSet::read_barrier(oop src) { // Check for forwarded objects, because on Full GC path we might deal with // non-trivial fwdptrs that contain Full GC specific metadata. We could check // for is_full_gc_in_progress(), but this also covers the case of stable heap, // which provides a bit of performance improvement. if (ShenandoahReadBarrier && _heap->has_forwarded_objects()) { return ShenandoahBarrierSet::resolve_forwarded(src); } else { return src; } } bool ShenandoahBarrierSet::obj_equals(oop obj1, oop obj2) { bool eq = oopDesc::unsafe_equals(obj1, obj2); if (! eq && ShenandoahAcmpBarrier) { OrderAccess::loadload(); obj1 = resolve_forwarded(obj1); obj2 = resolve_forwarded(obj2); eq = oopDesc::unsafe_equals(obj1, obj2); } return eq; } oop ShenandoahBarrierSet::write_barrier_impl(oop obj) { assert(UseShenandoahGC && ShenandoahWriteBarrier, "should be enabled"); if (!CompressedOops::is_null(obj)) { bool evac_in_progress = _heap->is_gc_in_progress_mask(ShenandoahHeap::EVACUATION | ShenandoahHeap::TRAVERSAL); oop fwd = resolve_forwarded_not_null(obj); if (evac_in_progress && _heap->in_collection_set(obj) && oopDesc::unsafe_equals(obj, fwd)) { ShenandoahEvacOOMScope oom_evac_scope; return _heap->evacuate_object(obj, Thread::current()); } else { return fwd; } } else { return obj; } } oop ShenandoahBarrierSet::write_barrier(oop obj) { if (ShenandoahWriteBarrier) { return write_barrier_impl(obj); } else { return obj; } } oop ShenandoahBarrierSet::storeval_barrier(oop obj) { if (ShenandoahStoreValEnqueueBarrier) { if (!CompressedOops::is_null(obj)) { obj = write_barrier(obj); enqueue(obj); } } if (ShenandoahStoreValReadBarrier) { obj = resolve_forwarded(obj); } return obj; } void ShenandoahBarrierSet::keep_alive_barrier(oop obj) { if (ShenandoahKeepAliveBarrier && _heap->is_concurrent_mark_in_progress()) { enqueue(obj); } } void ShenandoahBarrierSet::enqueue(oop obj) { shenandoah_assert_not_forwarded_if(NULL, obj, ShenandoahHeap::heap()->is_concurrent_traversal_in_progress()); // Nulls should have been already filtered. assert(oopDesc::is_oop(obj, true), "Error"); if (!_satb_mark_queue_set.is_active()) return; // Filter marked objects before hitting the SATB queues. The same predicate would // be used by SATBMQ::filter to eliminate already marked objects downstream, but // filtering here helps to avoid wasteful SATB queueing work to begin with. if (!_heap->requires_marking(obj)) return; Thread* thr = Thread::current(); if (thr->is_Java_thread()) { ShenandoahThreadLocalData::satb_mark_queue(thr).enqueue(obj); } else { MutexLockerEx x(Shared_SATB_Q_lock, Mutex::_no_safepoint_check_flag); _satb_mark_queue_set.shared_satb_queue()->enqueue(obj); } } void ShenandoahBarrierSet::on_thread_create(Thread* thread) { // Create thread local data ShenandoahThreadLocalData::create(thread); } void ShenandoahBarrierSet::on_thread_destroy(Thread* thread) { // Destroy thread local data ShenandoahThreadLocalData::destroy(thread); } void ShenandoahBarrierSet::on_thread_attach(JavaThread* thread) { assert(!SafepointSynchronize::is_at_safepoint(), "We should not be at a safepoint"); assert(!ShenandoahThreadLocalData::satb_mark_queue(thread).is_active(), "SATB queue should not be active"); assert(ShenandoahThreadLocalData::satb_mark_queue(thread).is_empty(), "SATB queue should be empty"); if (ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { ShenandoahThreadLocalData::satb_mark_queue(thread).set_active(true); } ShenandoahThreadLocalData::set_gc_state(thread, ShenandoahHeap::heap()->gc_state()); ShenandoahThreadLocalData::initialize_gclab(thread); } void ShenandoahBarrierSet::on_thread_detach(JavaThread* thread) { ShenandoahThreadLocalData::satb_mark_queue(thread).flush(); PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); if (gclab != NULL) { gclab->flush_and_retire_stats(_heap->mutator_gclab_stats()); } }