/* * Copyright (c) 2015, 2019, Red Hat, Inc. All rights reserved. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shenandoah/c2/shenandoahSupport.hpp" #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp" #include "gc/shenandoah/shenandoahBarrierSetAssembler.hpp" #include "gc/shenandoah/shenandoahForwarding.hpp" #include "gc/shenandoah/shenandoahHeap.hpp" #include "gc/shenandoah/shenandoahHeapRegion.hpp" #include "gc/shenandoah/shenandoahRuntime.hpp" #include "gc/shenandoah/shenandoahThreadLocalData.hpp" #include "opto/arraycopynode.hpp" #include "opto/block.hpp" #include "opto/callnode.hpp" #include "opto/castnode.hpp" #include "opto/movenode.hpp" #include "opto/phaseX.hpp" #include "opto/rootnode.hpp" #include "opto/runtime.hpp" #include "opto/subnode.hpp" bool ShenandoahBarrierC2Support::expand(Compile* C, PhaseIterGVN& igvn) { ShenandoahBarrierSetC2State* state = ShenandoahBarrierSetC2::bsc2()->state(); if ((state->enqueue_barriers_count() + state->load_reference_barriers_count()) > 0) { bool attempt_more_loopopts = ShenandoahLoopOptsAfterExpansion; C->clear_major_progress(); PhaseIdealLoop ideal_loop(igvn, LoopOptsShenandoahExpand); if (C->failing()) return false; PhaseIdealLoop::verify(igvn); DEBUG_ONLY(verify_raw_mem(C->root());) if (attempt_more_loopopts) { C->set_major_progress(); if (!C->optimize_loops(igvn, LoopOptsShenandoahPostExpand)) { return false; } C->clear_major_progress(); } } return true; } bool ShenandoahBarrierC2Support::is_heap_state_test(Node* iff, int mask) { if (!UseShenandoahGC) { return false; } assert(iff->is_If(), "bad input"); if (iff->Opcode() != Op_If) { return false; } Node* bol = iff->in(1); if (!bol->is_Bool() || bol->as_Bool()->_test._test != BoolTest::ne) { return false; } Node* cmp = bol->in(1); if (cmp->Opcode() != Op_CmpI) { return false; } Node* in1 = cmp->in(1); Node* in2 = cmp->in(2); if (in2->find_int_con(-1) != 0) { return false; } if (in1->Opcode() != Op_AndI) { return false; } in2 = in1->in(2); if (in2->find_int_con(-1) != mask) { return false; } in1 = in1->in(1); return is_gc_state_load(in1); } bool ShenandoahBarrierC2Support::is_heap_stable_test(Node* iff) { return is_heap_state_test(iff, ShenandoahHeap::HAS_FORWARDED); } bool ShenandoahBarrierC2Support::is_gc_state_load(Node *n) { if (!UseShenandoahGC) { return false; } if (n->Opcode() != Op_LoadB && n->Opcode() != Op_LoadUB) { return false; } Node* addp = n->in(MemNode::Address); if (!addp->is_AddP()) { return false; } Node* base = addp->in(AddPNode::Address); Node* off = addp->in(AddPNode::Offset); if (base->Opcode() != Op_ThreadLocal) { return false; } if (off->find_intptr_t_con(-1) != in_bytes(ShenandoahThreadLocalData::gc_state_offset())) { return false; } return true; } bool ShenandoahBarrierC2Support::has_safepoint_between(Node* start, Node* stop, PhaseIdealLoop *phase) { assert(phase->is_dominator(stop, start), "bad inputs"); ResourceMark rm; Unique_Node_List wq; wq.push(start); for (uint next = 0; next < wq.size(); next++) { Node *m = wq.at(next); if (m == stop) { continue; } if (m->is_SafePoint() && !m->is_CallLeaf()) { return true; } if (m->is_Region()) { for (uint i = 1; i < m->req(); i++) { wq.push(m->in(i)); } } else { wq.push(m->in(0)); } } return false; } bool ShenandoahBarrierC2Support::try_common_gc_state_load(Node *n, PhaseIdealLoop *phase) { assert(is_gc_state_load(n), "inconsistent"); Node* addp = n->in(MemNode::Address); Node* dominator = NULL; for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) { Node* u = addp->fast_out(i); assert(is_gc_state_load(u), "inconsistent"); if (u != n && phase->is_dominator(u->in(0), n->in(0))) { if (dominator == NULL) { dominator = u; } else { if (phase->dom_depth(u->in(0)) < phase->dom_depth(dominator->in(0))) { dominator = u; } } } } if (dominator == NULL || has_safepoint_between(n->in(0), dominator->in(0), phase)) { return false; } phase->igvn().replace_node(n, dominator); return true; } #ifdef ASSERT bool ShenandoahBarrierC2Support::verify_helper(Node* in, Node_Stack& phis, VectorSet& visited, verify_type t, bool trace, Unique_Node_List& barriers_used) { assert(phis.size() == 0, ""); while (true) { if (in->bottom_type() == TypePtr::NULL_PTR) { if (trace) {tty->print_cr("NULL");} } else if (!in->bottom_type()->make_ptr()->make_oopptr()) { if (trace) {tty->print_cr("Non oop");} } else if (t == ShenandoahLoad && ShenandoahOptimizeStableFinals && in->bottom_type()->make_ptr()->isa_aryptr() && in->bottom_type()->make_ptr()->is_aryptr()->is_stable()) { if (trace) {tty->print_cr("Stable array load");} } else { if (in->is_ConstraintCast()) { in = in->in(1); continue; } else if (in->is_AddP()) { assert(!in->in(AddPNode::Address)->is_top(), "no raw memory access"); in = in->in(AddPNode::Address); continue; } else if (in->is_Con()) { if (trace) { tty->print("Found constant"); in->dump(); } } else if (in->Opcode() == Op_Parm) { if (trace) { tty->print("Found argument"); } } else if (in->Opcode() == Op_CreateEx) { if (trace) { tty->print("Found create-exception"); } } else if (in->Opcode() == Op_LoadP && in->adr_type() == TypeRawPtr::BOTTOM) { if (trace) { tty->print("Found raw LoadP (OSR argument?)"); } } else if (in->Opcode() == Op_ShenandoahLoadReferenceBarrier) { if (t == ShenandoahOopStore) { uint i = 0; for (; i < phis.size(); i++) { Node* n = phis.node_at(i); if (n->Opcode() == Op_ShenandoahEnqueueBarrier) { break; } } if (i == phis.size()) { return false; } } barriers_used.push(in); if (trace) {tty->print("Found barrier"); in->dump();} } else if (in->Opcode() == Op_ShenandoahEnqueueBarrier) { if (t != ShenandoahOopStore) { in = in->in(1); continue; } if (trace) {tty->print("Found enqueue barrier"); in->dump();} phis.push(in, in->req()); in = in->in(1); continue; } else if (in->is_Proj() && in->in(0)->is_Allocate()) { if (trace) { tty->print("Found alloc"); in->in(0)->dump(); } } else if (in->is_Proj() && (in->in(0)->Opcode() == Op_CallStaticJava || in->in(0)->Opcode() == Op_CallDynamicJava)) { if (trace) { tty->print("Found Java call"); } } else if (in->is_Phi()) { if (!visited.test_set(in->_idx)) { if (trace) {tty->print("Pushed phi:"); in->dump();} phis.push(in, 2); in = in->in(1); continue; } if (trace) {tty->print("Already seen phi:"); in->dump();} } else if (in->Opcode() == Op_CMoveP || in->Opcode() == Op_CMoveN) { if (!visited.test_set(in->_idx)) { if (trace) {tty->print("Pushed cmovep:"); in->dump();} phis.push(in, CMoveNode::IfTrue); in = in->in(CMoveNode::IfFalse); continue; } if (trace) {tty->print("Already seen cmovep:"); in->dump();} } else if (in->Opcode() == Op_EncodeP || in->Opcode() == Op_DecodeN) { in = in->in(1); continue; } else { return false; } } bool cont = false; while (phis.is_nonempty()) { uint idx = phis.index(); Node* phi = phis.node(); if (idx >= phi->req()) { if (trace) {tty->print("Popped phi:"); phi->dump();} phis.pop(); continue; } if (trace) {tty->print("Next entry(%d) for phi:", idx); phi->dump();} in = phi->in(idx); phis.set_index(idx+1); cont = true; break; } if (!cont) { break; } } return true; } void ShenandoahBarrierC2Support::report_verify_failure(const char* msg, Node* n1, Node* n2) { if (n1 != NULL) { n1->dump(+10); } if (n2 != NULL) { n2->dump(+10); } fatal("%s", msg); } void ShenandoahBarrierC2Support::verify(RootNode* root) { ResourceMark rm; Unique_Node_List wq; GrowableArray barriers; Unique_Node_List barriers_used; Node_Stack phis(0); VectorSet visited(Thread::current()->resource_area()); const bool trace = false; const bool verify_no_useless_barrier = false; wq.push(root); for (uint next = 0; next < wq.size(); next++) { Node *n = wq.at(next); if (n->is_Load()) { const bool trace = false; if (trace) {tty->print("Verifying"); n->dump();} if (n->Opcode() == Op_LoadRange || n->Opcode() == Op_LoadKlass || n->Opcode() == Op_LoadNKlass) { if (trace) {tty->print_cr("Load range/klass");} } else { const TypePtr* adr_type = n->as_Load()->adr_type(); if (adr_type->isa_oopptr() && adr_type->is_oopptr()->offset() == oopDesc::mark_offset_in_bytes()) { if (trace) {tty->print_cr("Mark load");} } else if (adr_type->isa_instptr() && adr_type->is_instptr()->klass()->is_subtype_of(Compile::current()->env()->Reference_klass()) && adr_type->is_instptr()->offset() == java_lang_ref_Reference::referent_offset) { if (trace) {tty->print_cr("Reference.get()");} } else { bool verify = true; if (adr_type->isa_instptr()) { const TypeInstPtr* tinst = adr_type->is_instptr(); ciKlass* k = tinst->klass(); assert(k->is_instance_klass(), ""); ciInstanceKlass* ik = (ciInstanceKlass*)k; int offset = adr_type->offset(); if ((ik->debug_final_field_at(offset) && ShenandoahOptimizeInstanceFinals) || (ik->debug_stable_field_at(offset) && ShenandoahOptimizeStableFinals)) { if (trace) {tty->print_cr("Final/stable");} verify = false; } else if (k == ciEnv::current()->Class_klass() && tinst->const_oop() != NULL && tinst->offset() >= (ik->size_helper() * wordSize)) { ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); ciField* field = k->get_field_by_offset(tinst->offset(), true); if ((ShenandoahOptimizeStaticFinals && field->is_final()) || (ShenandoahOptimizeStableFinals && field->is_stable())) { verify = false; } } } if (verify && !verify_helper(n->in(MemNode::Address), phis, visited, ShenandoahLoad, trace, barriers_used)) { report_verify_failure("Shenandoah verification: Load should have barriers", n); } } } } else if (n->is_Store()) { const bool trace = false; if (trace) {tty->print("Verifying"); n->dump();} if (n->in(MemNode::ValueIn)->bottom_type()->make_oopptr()) { Node* adr = n->in(MemNode::Address); bool verify = true; if (adr->is_AddP() && adr->in(AddPNode::Base)->is_top()) { adr = adr->in(AddPNode::Address); if (adr->is_AddP()) { assert(adr->in(AddPNode::Base)->is_top(), ""); adr = adr->in(AddPNode::Address); if (adr->Opcode() == Op_LoadP && adr->in(MemNode::Address)->in(AddPNode::Base)->is_top() && adr->in(MemNode::Address)->in(AddPNode::Address)->Opcode() == Op_ThreadLocal && adr->in(MemNode::Address)->in(AddPNode::Offset)->find_intptr_t_con(-1) == in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset())) { if (trace) {tty->print_cr("SATB prebarrier");} verify = false; } } } if (verify && !verify_helper(n->in(MemNode::ValueIn), phis, visited, ShenandoahStoreValEnqueueBarrier ? ShenandoahOopStore : ShenandoahValue, trace, barriers_used)) { report_verify_failure("Shenandoah verification: Store should have barriers", n); } } if (!verify_helper(n->in(MemNode::Address), phis, visited, ShenandoahStore, trace, barriers_used)) { report_verify_failure("Shenandoah verification: Store (address) should have barriers", n); } } else if (n->Opcode() == Op_CmpP) { const bool trace = false; Node* in1 = n->in(1); Node* in2 = n->in(2); if (in1->bottom_type()->isa_oopptr()) { if (trace) {tty->print("Verifying"); n->dump();} bool mark_inputs = false; if (in1->bottom_type() == TypePtr::NULL_PTR || in2->bottom_type() == TypePtr::NULL_PTR || (in1->is_Con() || in2->is_Con())) { if (trace) {tty->print_cr("Comparison against a constant");} mark_inputs = true; } else if ((in1->is_CheckCastPP() && in1->in(1)->is_Proj() && in1->in(1)->in(0)->is_Allocate()) || (in2->is_CheckCastPP() && in2->in(1)->is_Proj() && in2->in(1)->in(0)->is_Allocate())) { if (trace) {tty->print_cr("Comparison with newly alloc'ed object");} mark_inputs = true; } else { assert(in2->bottom_type()->isa_oopptr(), ""); if (!verify_helper(in1, phis, visited, ShenandoahStore, trace, barriers_used) || !verify_helper(in2, phis, visited, ShenandoahStore, trace, barriers_used)) { report_verify_failure("Shenandoah verification: Cmp should have barriers", n); } } if (verify_no_useless_barrier && mark_inputs && (!verify_helper(in1, phis, visited, ShenandoahValue, trace, barriers_used) || !verify_helper(in2, phis, visited, ShenandoahValue, trace, barriers_used))) { phis.clear(); visited.Reset(); } } } else if (n->is_LoadStore()) { if (n->in(MemNode::ValueIn)->bottom_type()->make_ptr() && !verify_helper(n->in(MemNode::ValueIn), phis, visited, ShenandoahStoreValEnqueueBarrier ? ShenandoahOopStore : ShenandoahValue, trace, barriers_used)) { report_verify_failure("Shenandoah verification: LoadStore (value) should have barriers", n); } if (n->in(MemNode::Address)->bottom_type()->make_oopptr() && !verify_helper(n->in(MemNode::Address), phis, visited, ShenandoahStore, trace, barriers_used)) { report_verify_failure("Shenandoah verification: LoadStore (address) should have barriers", n); } } else if (n->Opcode() == Op_CallLeafNoFP || n->Opcode() == Op_CallLeaf) { CallNode* call = n->as_Call(); static struct { const char* name; struct { int pos; verify_type t; } args[6]; } calls[] = { "aescrypt_encryptBlock", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { TypeFunc::Parms+2, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "aescrypt_decryptBlock", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { TypeFunc::Parms+2, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "multiplyToLen", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+2, ShenandoahLoad }, { TypeFunc::Parms+4, ShenandoahStore }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "squareToLen", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+2, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "montgomery_multiply", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahLoad }, { TypeFunc::Parms+2, ShenandoahLoad }, { TypeFunc::Parms+6, ShenandoahStore }, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "montgomery_square", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahLoad }, { TypeFunc::Parms+5, ShenandoahStore }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "mulAdd", { { TypeFunc::Parms, ShenandoahStore }, { TypeFunc::Parms+1, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "vectorizedMismatch", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "updateBytesCRC32", { { TypeFunc::Parms+1, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "updateBytesAdler32", { { TypeFunc::Parms+1, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "updateBytesCRC32C", { { TypeFunc::Parms+1, ShenandoahLoad }, { TypeFunc::Parms+3, ShenandoahLoad}, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "counterMode_AESCrypt", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { TypeFunc::Parms+2, ShenandoahLoad }, { TypeFunc::Parms+3, ShenandoahStore }, { TypeFunc::Parms+5, ShenandoahStore }, { TypeFunc::Parms+6, ShenandoahStore } }, "cipherBlockChaining_encryptAESCrypt", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { TypeFunc::Parms+2, ShenandoahLoad }, { TypeFunc::Parms+3, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "cipherBlockChaining_decryptAESCrypt", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { TypeFunc::Parms+2, ShenandoahLoad }, { TypeFunc::Parms+3, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "shenandoah_clone_barrier", { { TypeFunc::Parms, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "ghash_processBlocks", { { TypeFunc::Parms, ShenandoahStore }, { TypeFunc::Parms+1, ShenandoahLoad }, { TypeFunc::Parms+2, ShenandoahLoad }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "sha1_implCompress", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { -1, ShenandoahNone }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "sha256_implCompress", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { -1, ShenandoahNone }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "sha512_implCompress", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { -1, ShenandoahNone }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "sha1_implCompressMB", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { -1, ShenandoahNone }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "sha256_implCompressMB", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { -1, ShenandoahNone }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "sha512_implCompressMB", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+1, ShenandoahStore }, { -1, ShenandoahNone }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, "encodeBlock", { { TypeFunc::Parms, ShenandoahLoad }, { TypeFunc::Parms+3, ShenandoahStore }, { -1, ShenandoahNone }, { -1, ShenandoahNone}, { -1, ShenandoahNone}, { -1, ShenandoahNone} }, }; if (call->is_call_to_arraycopystub()) { Node* dest = NULL; const TypeTuple* args = n->as_Call()->_tf->domain(); for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) { if (args->field_at(i)->isa_ptr()) { j++; if (j == 2) { dest = n->in(i); break; } } } if (!verify_helper(n->in(TypeFunc::Parms), phis, visited, ShenandoahLoad, trace, barriers_used) || !verify_helper(dest, phis, visited, ShenandoahStore, trace, barriers_used)) { report_verify_failure("Shenandoah verification: ArrayCopy should have barriers", n); } } else if (strlen(call->_name) > 5 && !strcmp(call->_name + strlen(call->_name) - 5, "_fill")) { if (!verify_helper(n->in(TypeFunc::Parms), phis, visited, ShenandoahStore, trace, barriers_used)) { report_verify_failure("Shenandoah verification: _fill should have barriers", n); } } else if (!strcmp(call->_name, "shenandoah_wb_pre")) { // skip } else { const int calls_len = sizeof(calls) / sizeof(calls[0]); int i = 0; for (; i < calls_len; i++) { if (!strcmp(calls[i].name, call->_name)) { break; } } if (i != calls_len) { const uint args_len = sizeof(calls[0].args) / sizeof(calls[0].args[0]); for (uint j = 0; j < args_len; j++) { int pos = calls[i].args[j].pos; if (pos == -1) { break; } if (!verify_helper(call->in(pos), phis, visited, calls[i].args[j].t, trace, barriers_used)) { report_verify_failure("Shenandoah verification: intrinsic calls should have barriers", n); } } for (uint j = TypeFunc::Parms; j < call->req(); j++) { if (call->in(j)->bottom_type()->make_ptr() && call->in(j)->bottom_type()->make_ptr()->isa_oopptr()) { uint k = 0; for (; k < args_len && calls[i].args[k].pos != (int)j; k++); if (k == args_len) { fatal("arg %d for call %s not covered", j, call->_name); } } } } else { for (uint j = TypeFunc::Parms; j < call->req(); j++) { if (call->in(j)->bottom_type()->make_ptr() && call->in(j)->bottom_type()->make_ptr()->isa_oopptr()) { fatal("%s not covered", call->_name); } } } } } else if (n->Opcode() == Op_ShenandoahEnqueueBarrier || n->Opcode() == Op_ShenandoahLoadReferenceBarrier) { // skip } else if (n->is_AddP() || n->is_Phi() || n->is_ConstraintCast() || n->Opcode() == Op_Return || n->Opcode() == Op_CMoveP || n->Opcode() == Op_CMoveN || n->Opcode() == Op_Rethrow || n->is_MemBar() || n->Opcode() == Op_Conv2B || n->Opcode() == Op_SafePoint || n->is_CallJava() || n->Opcode() == Op_Unlock || n->Opcode() == Op_EncodeP || n->Opcode() == Op_DecodeN) { // nothing to do } else { static struct { int opcode; struct { int pos; verify_type t; } inputs[2]; } others[] = { Op_FastLock, { { 1, ShenandoahLoad }, { -1, ShenandoahNone} }, Op_Lock, { { TypeFunc::Parms, ShenandoahLoad }, { -1, ShenandoahNone} }, Op_ArrayCopy, { { ArrayCopyNode::Src, ShenandoahLoad }, { ArrayCopyNode::Dest, ShenandoahStore } }, Op_StrCompressedCopy, { { 2, ShenandoahLoad }, { 3, ShenandoahStore } }, Op_StrInflatedCopy, { { 2, ShenandoahLoad }, { 3, ShenandoahStore } }, Op_AryEq, { { 2, ShenandoahLoad }, { 3, ShenandoahLoad } }, Op_StrIndexOf, { { 2, ShenandoahLoad }, { 4, ShenandoahLoad } }, Op_StrComp, { { 2, ShenandoahLoad }, { 4, ShenandoahLoad } }, Op_StrEquals, { { 2, ShenandoahLoad }, { 3, ShenandoahLoad } }, Op_EncodeISOArray, { { 2, ShenandoahLoad }, { 3, ShenandoahStore } }, Op_HasNegatives, { { 2, ShenandoahLoad }, { -1, ShenandoahNone} }, Op_CastP2X, { { 1, ShenandoahLoad }, { -1, ShenandoahNone} }, Op_StrIndexOfChar, { { 2, ShenandoahLoad }, { -1, ShenandoahNone } }, }; const int others_len = sizeof(others) / sizeof(others[0]); int i = 0; for (; i < others_len; i++) { if (others[i].opcode == n->Opcode()) { break; } } uint stop = n->is_Call() ? n->as_Call()->tf()->domain()->cnt() : n->req(); if (i != others_len) { const uint inputs_len = sizeof(others[0].inputs) / sizeof(others[0].inputs[0]); for (uint j = 0; j < inputs_len; j++) { int pos = others[i].inputs[j].pos; if (pos == -1) { break; } if (!verify_helper(n->in(pos), phis, visited, others[i].inputs[j].t, trace, barriers_used)) { report_verify_failure("Shenandoah verification: intrinsic calls should have barriers", n); } } for (uint j = 1; j < stop; j++) { if (n->in(j) != NULL && n->in(j)->bottom_type()->make_ptr() && n->in(j)->bottom_type()->make_ptr()->make_oopptr()) { uint k = 0; for (; k < inputs_len && others[i].inputs[k].pos != (int)j; k++); if (k == inputs_len) { fatal("arg %d for node %s not covered", j, n->Name()); } } } } else { for (uint j = 1; j < stop; j++) { if (n->in(j) != NULL && n->in(j)->bottom_type()->make_ptr() && n->in(j)->bottom_type()->make_ptr()->make_oopptr()) { fatal("%s not covered", n->Name()); } } } } if (n->is_SafePoint()) { SafePointNode* sfpt = n->as_SafePoint(); if (verify_no_useless_barrier && sfpt->jvms() != NULL) { for (uint i = sfpt->jvms()->scloff(); i < sfpt->jvms()->endoff(); i++) { if (!verify_helper(sfpt->in(i), phis, visited, ShenandoahLoad, trace, barriers_used)) { phis.clear(); visited.Reset(); } } } } for( uint i = 0; i < n->len(); ++i ) { Node *m = n->in(i); if (m == NULL) continue; // In most cases, inputs should be known to be non null. If it's // not the case, it could be a missing cast_not_null() in an // intrinsic or support might be needed in AddPNode::Ideal() to // avoid a NULL+offset input. if (!(n->is_Phi() || (n->is_SafePoint() && (!n->is_CallRuntime() || !strcmp(n->as_Call()->_name, "shenandoah_wb_pre") || !strcmp(n->as_Call()->_name, "unsafe_arraycopy"))) || n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN || (n->Opcode() == Op_StoreP && i == StoreNode::ValueIn) || (n->Opcode() == Op_StoreN && i == StoreNode::ValueIn) || n->is_ConstraintCast() || n->Opcode() == Op_Return || n->Opcode() == Op_Conv2B || n->is_AddP() || n->Opcode() == Op_CMoveP || n->Opcode() == Op_CMoveN || n->Opcode() == Op_Rethrow || n->is_MemBar() || n->is_Mem() || n->Opcode() == Op_AryEq || n->Opcode() == Op_SCMemProj || n->Opcode() == Op_EncodeP || n->Opcode() == Op_DecodeN || n->Opcode() == Op_ShenandoahEnqueueBarrier || n->Opcode() == Op_ShenandoahLoadReferenceBarrier)) { if (m->bottom_type()->make_oopptr() && m->bottom_type()->make_oopptr()->meet(TypePtr::NULL_PTR) == m->bottom_type()) { report_verify_failure("Shenandoah verification: null input", n, m); } } wq.push(m); } } if (verify_no_useless_barrier) { for (int i = 0; i < barriers.length(); i++) { Node* n = barriers.at(i); if (!barriers_used.member(n)) { tty->print("XXX useless barrier"); n->dump(-2); ShouldNotReachHere(); } } } } #endif bool ShenandoahBarrierC2Support::is_dominator_same_ctrl(Node* c, Node* d, Node* n, PhaseIdealLoop* phase) { // That both nodes have the same control is not sufficient to prove // domination, verify that there's no path from d to n ResourceMark rm; Unique_Node_List wq; wq.push(d); for (uint next = 0; next < wq.size(); next++) { Node *m = wq.at(next); if (m == n) { return false; } if (m->is_Phi() && m->in(0)->is_Loop()) { assert(phase->ctrl_or_self(m->in(LoopNode::EntryControl)) != c, "following loop entry should lead to new control"); } else { for (uint i = 0; i < m->req(); i++) { if (m->in(i) != NULL && phase->ctrl_or_self(m->in(i)) == c) { wq.push(m->in(i)); } } } } return true; } bool ShenandoahBarrierC2Support::is_dominator(Node* d_c, Node* n_c, Node* d, Node* n, PhaseIdealLoop* phase) { if (d_c != n_c) { return phase->is_dominator(d_c, n_c); } return is_dominator_same_ctrl(d_c, d, n, phase); } Node* next_mem(Node* mem, int alias) { Node* res = NULL; if (mem->is_Proj()) { res = mem->in(0); } else if (mem->is_SafePoint() || mem->is_MemBar()) { res = mem->in(TypeFunc::Memory); } else if (mem->is_Phi()) { res = mem->in(1); } else if (mem->is_MergeMem()) { res = mem->as_MergeMem()->memory_at(alias); } else if (mem->is_Store() || mem->is_LoadStore() || mem->is_ClearArray()) { assert(alias = Compile::AliasIdxRaw, "following raw memory can't lead to a barrier"); res = mem->in(MemNode::Memory); } else { #ifdef ASSERT mem->dump(); #endif ShouldNotReachHere(); } return res; } Node* ShenandoahBarrierC2Support::no_branches(Node* c, Node* dom, bool allow_one_proj, PhaseIdealLoop* phase) { Node* iffproj = NULL; while (c != dom) { Node* next = phase->idom(c); assert(next->unique_ctrl_out() == c || c->is_Proj() || c->is_Region(), "multiple control flow out but no proj or region?"); if (c->is_Region()) { ResourceMark rm; Unique_Node_List wq; wq.push(c); for (uint i = 0; i < wq.size(); i++) { Node *n = wq.at(i); if (n == next) { continue; } if (n->is_Region()) { for (uint j = 1; j < n->req(); j++) { wq.push(n->in(j)); } } else { wq.push(n->in(0)); } } for (uint i = 0; i < wq.size(); i++) { Node *n = wq.at(i); assert(n->is_CFG(), ""); if (n->is_Multi()) { for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { Node* u = n->fast_out(j); if (u->is_CFG()) { if (!wq.member(u) && !u->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) { return NodeSentinel; } } } } } } else if (c->is_Proj()) { if (c->is_IfProj()) { if (c->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none) != NULL) { // continue; } else { if (!allow_one_proj) { return NodeSentinel; } if (iffproj == NULL) { iffproj = c; } else { return NodeSentinel; } } } else if (c->Opcode() == Op_JumpProj) { return NodeSentinel; // unsupported } else if (c->Opcode() == Op_CatchProj) { return NodeSentinel; // unsupported } else if (c->Opcode() == Op_CProj && next->Opcode() == Op_NeverBranch) { return NodeSentinel; // unsupported } else { assert(next->unique_ctrl_out() == c, "unsupported branch pattern"); } } c = next; } return iffproj; } Node* ShenandoahBarrierC2Support::dom_mem(Node* mem, Node* ctrl, int alias, Node*& mem_ctrl, PhaseIdealLoop* phase) { ResourceMark rm; VectorSet wq(Thread::current()->resource_area()); wq.set(mem->_idx); mem_ctrl = phase->ctrl_or_self(mem); while (!phase->is_dominator(mem_ctrl, ctrl) || mem_ctrl == ctrl) { mem = next_mem(mem, alias); if (wq.test_set(mem->_idx)) { return NULL; } mem_ctrl = phase->ctrl_or_self(mem); } if (mem->is_MergeMem()) { mem = mem->as_MergeMem()->memory_at(alias); mem_ctrl = phase->ctrl_or_self(mem); } return mem; } Node* ShenandoahBarrierC2Support::find_bottom_mem(Node* ctrl, PhaseIdealLoop* phase) { Node* mem = NULL; Node* c = ctrl; do { if (c->is_Region()) { Node* phi_bottom = NULL; for (DUIterator_Fast imax, i = c->fast_outs(imax); i < imax && mem == NULL; i++) { Node* u = c->fast_out(i); if (u->is_Phi() && u->bottom_type() == Type::MEMORY) { if (u->adr_type() == TypePtr::BOTTOM) { mem = u; } } } } else { if (c->is_Call() && c->as_Call()->adr_type() != NULL) { CallProjections projs; c->as_Call()->extract_projections(&projs, true, false); if (projs.fallthrough_memproj != NULL) { if (projs.fallthrough_memproj->adr_type() == TypePtr::BOTTOM) { if (projs.catchall_memproj == NULL) { mem = projs.fallthrough_memproj; } else { if (phase->is_dominator(projs.fallthrough_catchproj, ctrl)) { mem = projs.fallthrough_memproj; } else { assert(phase->is_dominator(projs.catchall_catchproj, ctrl), "one proj must dominate barrier"); mem = projs.catchall_memproj; } } } } else { Node* proj = c->as_Call()->proj_out(TypeFunc::Memory); if (proj != NULL && proj->adr_type() == TypePtr::BOTTOM) { mem = proj; } } } else { for (DUIterator_Fast imax, i = c->fast_outs(imax); i < imax; i++) { Node* u = c->fast_out(i); if (u->is_Proj() && u->bottom_type() == Type::MEMORY && u->adr_type() == TypePtr::BOTTOM) { assert(c->is_SafePoint() || c->is_MemBar() || c->is_Start(), ""); assert(mem == NULL, "only one proj"); mem = u; } } assert(!c->is_Call() || c->as_Call()->adr_type() != NULL || mem == NULL, "no mem projection expected"); } } c = phase->idom(c); } while (mem == NULL); return mem; } void ShenandoahBarrierC2Support::follow_barrier_uses(Node* n, Node* ctrl, Unique_Node_List& uses, PhaseIdealLoop* phase) { for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { Node* u = n->fast_out(i); if (!u->is_CFG() && phase->get_ctrl(u) == ctrl && (!u->is_Phi() || !u->in(0)->is_Loop() || u->in(LoopNode::LoopBackControl) != n)) { uses.push(u); } } } static void hide_strip_mined_loop(OuterStripMinedLoopNode* outer, CountedLoopNode* inner, PhaseIdealLoop* phase) { OuterStripMinedLoopEndNode* le = inner->outer_loop_end(); Node* new_outer = new LoopNode(outer->in(LoopNode::EntryControl), outer->in(LoopNode::LoopBackControl)); phase->register_control(new_outer, phase->get_loop(outer), outer->in(LoopNode::EntryControl)); Node* new_le = new IfNode(le->in(0), le->in(1), le->_prob, le->_fcnt); phase->register_control(new_le, phase->get_loop(le), le->in(0)); phase->lazy_replace(outer, new_outer); phase->lazy_replace(le, new_le); inner->clear_strip_mined(); } void ShenandoahBarrierC2Support::test_heap_stable(Node*& ctrl, Node* raw_mem, Node*& heap_stable_ctrl, PhaseIdealLoop* phase) { IdealLoopTree* loop = phase->get_loop(ctrl); Node* thread = new ThreadLocalNode(); phase->register_new_node(thread, ctrl); Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())); phase->set_ctrl(offset, phase->C->root()); Node* gc_state_addr = new AddPNode(phase->C->top(), thread, offset); phase->register_new_node(gc_state_addr, ctrl); uint gc_state_idx = Compile::AliasIdxRaw; const TypePtr* gc_state_adr_type = NULL; // debug-mode-only argument debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx)); Node* gc_state = new LoadBNode(ctrl, raw_mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered); phase->register_new_node(gc_state, ctrl); Node* heap_stable_and = new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED)); phase->register_new_node(heap_stable_and, ctrl); Node* heap_stable_cmp = new CmpINode(heap_stable_and, phase->igvn().zerocon(T_INT)); phase->register_new_node(heap_stable_cmp, ctrl); Node* heap_stable_test = new BoolNode(heap_stable_cmp, BoolTest::ne); phase->register_new_node(heap_stable_test, ctrl); IfNode* heap_stable_iff = new IfNode(ctrl, heap_stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN); phase->register_control(heap_stable_iff, loop, ctrl); heap_stable_ctrl = new IfFalseNode(heap_stable_iff); phase->register_control(heap_stable_ctrl, loop, heap_stable_iff); ctrl = new IfTrueNode(heap_stable_iff); phase->register_control(ctrl, loop, heap_stable_iff); assert(is_heap_stable_test(heap_stable_iff), "Should match the shape"); } void ShenandoahBarrierC2Support::test_null(Node*& ctrl, Node* val, Node*& null_ctrl, PhaseIdealLoop* phase) { const Type* val_t = phase->igvn().type(val); if (val_t->meet(TypePtr::NULL_PTR) == val_t) { IdealLoopTree* loop = phase->get_loop(ctrl); Node* null_cmp = new CmpPNode(val, phase->igvn().zerocon(T_OBJECT)); phase->register_new_node(null_cmp, ctrl); Node* null_test = new BoolNode(null_cmp, BoolTest::ne); phase->register_new_node(null_test, ctrl); IfNode* null_iff = new IfNode(ctrl, null_test, PROB_LIKELY(0.999), COUNT_UNKNOWN); phase->register_control(null_iff, loop, ctrl); ctrl = new IfTrueNode(null_iff); phase->register_control(ctrl, loop, null_iff); null_ctrl = new IfFalseNode(null_iff); phase->register_control(null_ctrl, loop, null_iff); } } Node* ShenandoahBarrierC2Support::clone_null_check(Node*& c, Node* val, Node* unc_ctrl, PhaseIdealLoop* phase) { IdealLoopTree *loop = phase->get_loop(c); Node* iff = unc_ctrl->in(0); assert(iff->is_If(), "broken"); Node* new_iff = iff->clone(); new_iff->set_req(0, c); phase->register_control(new_iff, loop, c); Node* iffalse = new IfFalseNode(new_iff->as_If()); phase->register_control(iffalse, loop, new_iff); Node* iftrue = new IfTrueNode(new_iff->as_If()); phase->register_control(iftrue, loop, new_iff); c = iftrue; const Type *t = phase->igvn().type(val); assert(val->Opcode() == Op_CastPP, "expect cast to non null here"); Node* uncasted_val = val->in(1); val = new CastPPNode(uncasted_val, t); val->init_req(0, c); phase->register_new_node(val, c); return val; } void ShenandoahBarrierC2Support::fix_null_check(Node* unc, Node* unc_ctrl, Node* new_unc_ctrl, Unique_Node_List& uses, PhaseIdealLoop* phase) { IfNode* iff = unc_ctrl->in(0)->as_If(); Node* proj = iff->proj_out(0); assert(proj != unc_ctrl, "bad projection"); Node* use = proj->unique_ctrl_out(); assert(use == unc || use->is_Region(), "what else?"); uses.clear(); if (use == unc) { phase->set_idom(use, new_unc_ctrl, phase->dom_depth(use)); for (uint i = 1; i < unc->req(); i++) { Node* n = unc->in(i); if (phase->has_ctrl(n) && phase->get_ctrl(n) == proj) { uses.push(n); } } } else { assert(use->is_Region(), "what else?"); uint idx = 1; for (; use->in(idx) != proj; idx++); for (DUIterator_Fast imax, i = use->fast_outs(imax); i < imax; i++) { Node* u = use->fast_out(i); if (u->is_Phi() && phase->get_ctrl(u->in(idx)) == proj) { uses.push(u->in(idx)); } } } for(uint next = 0; next < uses.size(); next++ ) { Node *n = uses.at(next); assert(phase->get_ctrl(n) == proj, "bad control"); phase->set_ctrl_and_loop(n, new_unc_ctrl); if (n->in(0) == proj) { phase->igvn().replace_input_of(n, 0, new_unc_ctrl); } for (uint i = 0; i < n->req(); i++) { Node* m = n->in(i); if (m != NULL && phase->has_ctrl(m) && phase->get_ctrl(m) == proj) { uses.push(m); } } } phase->igvn().rehash_node_delayed(use); int nb = use->replace_edge(proj, new_unc_ctrl); assert(nb == 1, "only use expected"); } void ShenandoahBarrierC2Support::in_cset_fast_test(Node*& ctrl, Node*& not_cset_ctrl, Node* val, Node* raw_mem, PhaseIdealLoop* phase) { IdealLoopTree *loop = phase->get_loop(ctrl); Node* raw_rbtrue = new CastP2XNode(ctrl, val); phase->register_new_node(raw_rbtrue, ctrl); Node* cset_offset = new URShiftXNode(raw_rbtrue, phase->igvn().intcon(ShenandoahHeapRegion::region_size_bytes_shift_jint())); phase->register_new_node(cset_offset, ctrl); Node* in_cset_fast_test_base_addr = phase->igvn().makecon(TypeRawPtr::make(ShenandoahHeap::in_cset_fast_test_addr())); phase->set_ctrl(in_cset_fast_test_base_addr, phase->C->root()); Node* in_cset_fast_test_adr = new AddPNode(phase->C->top(), in_cset_fast_test_base_addr, cset_offset); phase->register_new_node(in_cset_fast_test_adr, ctrl); uint in_cset_fast_test_idx = Compile::AliasIdxRaw; const TypePtr* in_cset_fast_test_adr_type = NULL; // debug-mode-only argument debug_only(in_cset_fast_test_adr_type = phase->C->get_adr_type(in_cset_fast_test_idx)); Node* in_cset_fast_test_load = new LoadBNode(ctrl, raw_mem, in_cset_fast_test_adr, in_cset_fast_test_adr_type, TypeInt::BYTE, MemNode::unordered); phase->register_new_node(in_cset_fast_test_load, ctrl); Node* in_cset_fast_test_cmp = new CmpINode(in_cset_fast_test_load, phase->igvn().zerocon(T_INT)); phase->register_new_node(in_cset_fast_test_cmp, ctrl); Node* in_cset_fast_test_test = new BoolNode(in_cset_fast_test_cmp, BoolTest::eq); phase->register_new_node(in_cset_fast_test_test, ctrl); IfNode* in_cset_fast_test_iff = new IfNode(ctrl, in_cset_fast_test_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN); phase->register_control(in_cset_fast_test_iff, loop, ctrl); not_cset_ctrl = new IfTrueNode(in_cset_fast_test_iff); phase->register_control(not_cset_ctrl, loop, in_cset_fast_test_iff); ctrl = new IfFalseNode(in_cset_fast_test_iff); phase->register_control(ctrl, loop, in_cset_fast_test_iff); } void ShenandoahBarrierC2Support::call_lrb_stub(Node*& ctrl, Node*& val, Node* load_addr, Node*& result_mem, Node* raw_mem, PhaseIdealLoop* phase) { IdealLoopTree*loop = phase->get_loop(ctrl); const TypePtr* obj_type = phase->igvn().type(val)->is_oopptr()->cast_to_nonconst(); // The slow path stub consumes and produces raw memory in addition // to the existing memory edges Node* base = find_bottom_mem(ctrl, phase); MergeMemNode* mm = MergeMemNode::make(base); mm->set_memory_at(Compile::AliasIdxRaw, raw_mem); phase->register_new_node(mm, ctrl); address target = LP64_ONLY(UseCompressedOops) NOT_LP64(false) ? CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_fixup_narrow_JRT) : CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_fixup_JRT); Node* call = new CallLeafNode(ShenandoahBarrierSetC2::shenandoah_load_reference_barrier_Type(), target, "shenandoah_load_reference_barrier", TypeRawPtr::BOTTOM); call->init_req(TypeFunc::Control, ctrl); call->init_req(TypeFunc::I_O, phase->C->top()); call->init_req(TypeFunc::Memory, mm); call->init_req(TypeFunc::FramePtr, phase->C->top()); call->init_req(TypeFunc::ReturnAdr, phase->C->top()); call->init_req(TypeFunc::Parms, val); call->init_req(TypeFunc::Parms+1, load_addr); phase->register_control(call, loop, ctrl); ctrl = new ProjNode(call, TypeFunc::Control); phase->register_control(ctrl, loop, call); result_mem = new ProjNode(call, TypeFunc::Memory); phase->register_new_node(result_mem, call); val = new ProjNode(call, TypeFunc::Parms); phase->register_new_node(val, call); val = new CheckCastPPNode(ctrl, val, obj_type); phase->register_new_node(val, ctrl); } void ShenandoahBarrierC2Support::fix_ctrl(Node* barrier, Node* region, const MemoryGraphFixer& fixer, Unique_Node_List& uses, Unique_Node_List& uses_to_ignore, uint last, PhaseIdealLoop* phase) { Node* ctrl = phase->get_ctrl(barrier); Node* init_raw_mem = fixer.find_mem(ctrl, barrier); // Update the control of all nodes that should be after the // barrier control flow uses.clear(); // Every node that is control dependent on the barrier's input // control will be after the expanded barrier. The raw memory (if // its memory is control dependent on the barrier's input control) // must stay above the barrier. uses_to_ignore.clear(); if (phase->has_ctrl(init_raw_mem) && phase->get_ctrl(init_raw_mem) == ctrl && !init_raw_mem->is_Phi()) { uses_to_ignore.push(init_raw_mem); } for (uint next = 0; next < uses_to_ignore.size(); next++) { Node *n = uses_to_ignore.at(next); for (uint i = 0; i < n->req(); i++) { Node* in = n->in(i); if (in != NULL && phase->has_ctrl(in) && phase->get_ctrl(in) == ctrl) { uses_to_ignore.push(in); } } } for (DUIterator_Fast imax, i = ctrl->fast_outs(imax); i < imax; i++) { Node* u = ctrl->fast_out(i); if (u->_idx < last && u != barrier && !uses_to_ignore.member(u) && (u->in(0) != ctrl || (!u->is_Region() && !u->is_Phi())) && (ctrl->Opcode() != Op_CatchProj || u->Opcode() != Op_CreateEx)) { Node* old_c = phase->ctrl_or_self(u); Node* c = old_c; if (c != ctrl || is_dominator_same_ctrl(old_c, barrier, u, phase) || ShenandoahBarrierSetC2::is_shenandoah_state_load(u)) { phase->igvn().rehash_node_delayed(u); int nb = u->replace_edge(ctrl, region); if (u->is_CFG()) { if (phase->idom(u) == ctrl) { phase->set_idom(u, region, phase->dom_depth(region)); } } else if (phase->get_ctrl(u) == ctrl) { assert(u != init_raw_mem, "should leave input raw mem above the barrier"); uses.push(u); } assert(nb == 1, "more than 1 ctrl input?"); --i, imax -= nb; } } } } static Node* create_phis_on_call_return(Node* ctrl, Node* c, Node* n, Node* n_clone, const CallProjections& projs, PhaseIdealLoop* phase) { Node* region = NULL; while (c != ctrl) { if (c->is_Region()) { region = c; } c = phase->idom(c); } assert(region != NULL, ""); Node* phi = new PhiNode(region, n->bottom_type()); for (uint j = 1; j < region->req(); j++) { Node* in = region->in(j); if (phase->is_dominator(projs.fallthrough_catchproj, in)) { phi->init_req(j, n); } else if (phase->is_dominator(projs.catchall_catchproj, in)) { phi->init_req(j, n_clone); } else { phi->init_req(j, create_phis_on_call_return(ctrl, in, n, n_clone, projs, phase)); } } phase->register_new_node(phi, region); return phi; } void ShenandoahBarrierC2Support::pin_and_expand(PhaseIdealLoop* phase) { ShenandoahBarrierSetC2State* state = ShenandoahBarrierSetC2::bsc2()->state(); Unique_Node_List uses; for (int i = 0; i < state->enqueue_barriers_count(); i++) { Node* barrier = state->enqueue_barrier(i); Node* ctrl = phase->get_ctrl(barrier); IdealLoopTree* loop = phase->get_loop(ctrl); if (loop->_head->is_OuterStripMinedLoop()) { // Expanding a barrier here will break loop strip mining // verification. Transform the loop so the loop nest doesn't // appear as strip mined. OuterStripMinedLoopNode* outer = loop->_head->as_OuterStripMinedLoop(); hide_strip_mined_loop(outer, outer->unique_ctrl_out()->as_CountedLoop(), phase); } } Node_Stack stack(0); Node_List clones; for (int i = state->load_reference_barriers_count() - 1; i >= 0; i--) { ShenandoahLoadReferenceBarrierNode* lrb = state->load_reference_barrier(i); if (lrb->get_barrier_strength() == ShenandoahLoadReferenceBarrierNode::NONE) { continue; } Node* ctrl = phase->get_ctrl(lrb); Node* val = lrb->in(ShenandoahLoadReferenceBarrierNode::ValueIn); CallStaticJavaNode* unc = NULL; Node* unc_ctrl = NULL; Node* uncasted_val = val; for (DUIterator_Fast imax, i = lrb->fast_outs(imax); i < imax; i++) { Node* u = lrb->fast_out(i); if (u->Opcode() == Op_CastPP && u->in(0) != NULL && phase->is_dominator(u->in(0), ctrl)) { const Type* u_t = phase->igvn().type(u); if (u_t->meet(TypePtr::NULL_PTR) != u_t && u->in(0)->Opcode() == Op_IfTrue && u->in(0)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none) && u->in(0)->in(0)->is_If() && u->in(0)->in(0)->in(1)->Opcode() == Op_Bool && u->in(0)->in(0)->in(1)->as_Bool()->_test._test == BoolTest::ne && u->in(0)->in(0)->in(1)->in(1)->Opcode() == Op_CmpP && u->in(0)->in(0)->in(1)->in(1)->in(1) == val && u->in(0)->in(0)->in(1)->in(1)->in(2)->bottom_type() == TypePtr::NULL_PTR) { IdealLoopTree* loop = phase->get_loop(ctrl); IdealLoopTree* unc_loop = phase->get_loop(u->in(0)); if (!unc_loop->is_member(loop)) { continue; } Node* branch = no_branches(ctrl, u->in(0), false, phase); assert(branch == NULL || branch == NodeSentinel, "was not looking for a branch"); if (branch == NodeSentinel) { continue; } phase->igvn().replace_input_of(u, 1, val); phase->igvn().replace_input_of(lrb, ShenandoahLoadReferenceBarrierNode::ValueIn, u); phase->set_ctrl(u, u->in(0)); phase->set_ctrl(lrb, u->in(0)); unc = u->in(0)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none); unc_ctrl = u->in(0); val = u; for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) { Node* u = val->fast_out(j); if (u == lrb) continue; phase->igvn().rehash_node_delayed(u); int nb = u->replace_edge(val, lrb); --j; jmax -= nb; } RegionNode* r = new RegionNode(3); IfNode* iff = unc_ctrl->in(0)->as_If(); Node* ctrl_use = unc_ctrl->unique_ctrl_out(); Node* unc_ctrl_clone = unc_ctrl->clone(); phase->register_control(unc_ctrl_clone, loop, iff); Node* c = unc_ctrl_clone; Node* new_cast = clone_null_check(c, val, unc_ctrl_clone, phase); r->init_req(1, new_cast->in(0)->in(0)->as_If()->proj_out(0)); phase->igvn().replace_input_of(unc_ctrl, 0, c->in(0)); phase->set_idom(unc_ctrl, c->in(0), phase->dom_depth(unc_ctrl)); phase->lazy_replace(c, unc_ctrl); c = NULL;; phase->igvn().replace_input_of(val, 0, unc_ctrl_clone); phase->set_ctrl(val, unc_ctrl_clone); IfNode* new_iff = new_cast->in(0)->in(0)->as_If(); fix_null_check(unc, unc_ctrl_clone, r, uses, phase); Node* iff_proj = iff->proj_out(0); r->init_req(2, iff_proj); phase->register_control(r, phase->ltree_root(), iff); Node* new_bol = new_iff->in(1)->clone(); Node* new_cmp = new_bol->in(1)->clone(); assert(new_cmp->Opcode() == Op_CmpP, "broken"); assert(new_cmp->in(1) == val->in(1), "broken"); new_bol->set_req(1, new_cmp); new_cmp->set_req(1, lrb); phase->register_new_node(new_bol, new_iff->in(0)); phase->register_new_node(new_cmp, new_iff->in(0)); phase->igvn().replace_input_of(new_iff, 1, new_bol); phase->igvn().replace_input_of(new_cast, 1, lrb); for (DUIterator_Fast imax, i = lrb->fast_outs(imax); i < imax; i++) { Node* u = lrb->fast_out(i); if (u == new_cast || u == new_cmp) { continue; } phase->igvn().rehash_node_delayed(u); int nb = u->replace_edge(lrb, new_cast); assert(nb > 0, "no update?"); --i; imax -= nb; } for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) { Node* u = val->fast_out(i); if (u == lrb) { continue; } phase->igvn().rehash_node_delayed(u); int nb = u->replace_edge(val, new_cast); assert(nb > 0, "no update?"); --i; imax -= nb; } ctrl = unc_ctrl_clone; phase->set_ctrl_and_loop(lrb, ctrl); break; } } } if ((ctrl->is_Proj() && ctrl->in(0)->is_CallJava()) || ctrl->is_CallJava()) { CallNode* call = ctrl->is_Proj() ? ctrl->in(0)->as_CallJava() : ctrl->as_CallJava(); CallProjections projs; call->extract_projections(&projs, false, false); Node* lrb_clone = lrb->clone(); phase->register_new_node(lrb_clone, projs.catchall_catchproj); phase->set_ctrl(lrb, projs.fallthrough_catchproj); stack.push(lrb, 0); clones.push(lrb_clone); do { assert(stack.size() == clones.size(), ""); Node* n = stack.node(); #ifdef ASSERT if (n->is_Load()) { Node* mem = n->in(MemNode::Memory); for (DUIterator_Fast jmax, j = mem->fast_outs(jmax); j < jmax; j++) { Node* u = mem->fast_out(j); assert(!u->is_Store() || !u->is_LoadStore() || phase->get_ctrl(u) != ctrl, "anti dependent store?"); } } #endif uint idx = stack.index(); Node* n_clone = clones.at(clones.size()-1); if (idx < n->outcnt()) { Node* u = n->raw_out(idx); Node* c = phase->ctrl_or_self(u); if (phase->is_dominator(call, c) && phase->is_dominator(c, projs.fallthrough_proj)) { stack.set_index(idx+1); assert(!u->is_CFG(), ""); stack.push(u, 0); Node* u_clone = u->clone(); int nb = u_clone->replace_edge(n, n_clone); assert(nb > 0, "should have replaced some uses"); phase->register_new_node(u_clone, projs.catchall_catchproj); clones.push(u_clone); phase->set_ctrl(u, projs.fallthrough_catchproj); } else { bool replaced = false; if (u->is_Phi()) { for (uint k = 1; k < u->req(); k++) { if (u->in(k) == n) { if (phase->is_dominator(projs.catchall_catchproj, u->in(0)->in(k))) { phase->igvn().replace_input_of(u, k, n_clone); replaced = true; } else if (!phase->is_dominator(projs.fallthrough_catchproj, u->in(0)->in(k))) { phase->igvn().replace_input_of(u, k, create_phis_on_call_return(ctrl, u->in(0)->in(k), n, n_clone, projs, phase)); replaced = true; } } } } else { if (phase->is_dominator(projs.catchall_catchproj, c)) { phase->igvn().rehash_node_delayed(u); int nb = u->replace_edge(n, n_clone); assert(nb > 0, "should have replaced some uses"); replaced = true; } else if (!phase->is_dominator(projs.fallthrough_catchproj, c)) { phase->igvn().rehash_node_delayed(u); int nb = u->replace_edge(n, create_phis_on_call_return(ctrl, c, n, n_clone, projs, phase)); assert(nb > 0, "should have replaced some uses"); replaced = true; } } if (!replaced) { stack.set_index(idx+1); } } } else { stack.pop(); clones.pop(); } } while (stack.size() > 0); assert(stack.size() == 0 && clones.size() == 0, ""); } } for (int i = 0; i < state->load_reference_barriers_count(); i++) { ShenandoahLoadReferenceBarrierNode* lrb = state->load_reference_barrier(i); if (lrb->get_barrier_strength() == ShenandoahLoadReferenceBarrierNode::NONE) { continue; } Node* ctrl = phase->get_ctrl(lrb); IdealLoopTree* loop = phase->get_loop(ctrl); if (loop->_head->is_OuterStripMinedLoop()) { // Expanding a barrier here will break loop strip mining // verification. Transform the loop so the loop nest doesn't // appear as strip mined. OuterStripMinedLoopNode* outer = loop->_head->as_OuterStripMinedLoop(); hide_strip_mined_loop(outer, outer->unique_ctrl_out()->as_CountedLoop(), phase); } } // Expand load-reference-barriers MemoryGraphFixer fixer(Compile::AliasIdxRaw, true, phase); Unique_Node_List uses_to_ignore; for (int i = state->load_reference_barriers_count() - 1; i >= 0; i--) { ShenandoahLoadReferenceBarrierNode* lrb = state->load_reference_barrier(i); if (lrb->get_barrier_strength() == ShenandoahLoadReferenceBarrierNode::NONE) { phase->igvn().replace_node(lrb, lrb->in(ShenandoahLoadReferenceBarrierNode::ValueIn)); continue; } uint last = phase->C->unique(); Node* ctrl = phase->get_ctrl(lrb); Node* val = lrb->in(ShenandoahLoadReferenceBarrierNode::ValueIn); Node* orig_ctrl = ctrl; Node* raw_mem = fixer.find_mem(ctrl, lrb); Node* init_raw_mem = raw_mem; Node* raw_mem_for_ctrl = fixer.find_mem(ctrl, NULL); IdealLoopTree *loop = phase->get_loop(ctrl); CallStaticJavaNode* unc = lrb->pin_and_expand_null_check(phase->igvn()); Node* unc_ctrl = NULL; if (unc != NULL) { if (val->in(ShenandoahLoadReferenceBarrierNode::Control) != ctrl) { unc = NULL; } else { unc_ctrl = val->in(ShenandoahLoadReferenceBarrierNode::Control); } } Node* uncasted_val = val; if (unc != NULL) { uncasted_val = val->in(1); } Node* heap_stable_ctrl = NULL; Node* null_ctrl = NULL; assert(val->bottom_type()->make_oopptr(), "need oop"); assert(val->bottom_type()->make_oopptr()->const_oop() == NULL, "expect non-constant"); enum { _heap_stable = 1, _not_cset, _evac_path, _null_path, PATH_LIMIT }; Node* region = new RegionNode(PATH_LIMIT); Node* val_phi = new PhiNode(region, uncasted_val->bottom_type()->is_oopptr()); Node* raw_mem_phi = PhiNode::make(region, raw_mem, Type::MEMORY, TypeRawPtr::BOTTOM); // Stable path. test_heap_stable(ctrl, raw_mem, heap_stable_ctrl, phase); IfNode* heap_stable_iff = heap_stable_ctrl->in(0)->as_If(); // Heap stable case region->init_req(_heap_stable, heap_stable_ctrl); val_phi->init_req(_heap_stable, uncasted_val); raw_mem_phi->init_req(_heap_stable, raw_mem); Node* reg2_ctrl = NULL; // Null case test_null(ctrl, val, null_ctrl, phase); if (null_ctrl != NULL) { reg2_ctrl = null_ctrl->in(0); region->init_req(_null_path, null_ctrl); val_phi->init_req(_null_path, uncasted_val); raw_mem_phi->init_req(_null_path, raw_mem); } else { region->del_req(_null_path); val_phi->del_req(_null_path); raw_mem_phi->del_req(_null_path); } // Test for in-cset. // Wires !in_cset(obj) to slot 2 of region and phis Node* not_cset_ctrl = NULL; in_cset_fast_test(ctrl, not_cset_ctrl, uncasted_val, raw_mem, phase); if (not_cset_ctrl != NULL) { if (reg2_ctrl == NULL) reg2_ctrl = not_cset_ctrl->in(0); region->init_req(_not_cset, not_cset_ctrl); val_phi->init_req(_not_cset, uncasted_val); raw_mem_phi->init_req(_not_cset, raw_mem); } // Resolve object when orig-value is in cset. // Make the unconditional resolve for fwdptr. Node* new_val = uncasted_val; if (unc_ctrl != NULL) { // Clone the null check in this branch to allow implicit null check new_val = clone_null_check(ctrl, val, unc_ctrl, phase); fix_null_check(unc, unc_ctrl, ctrl->in(0)->as_If()->proj_out(0), uses, phase); IfNode* iff = unc_ctrl->in(0)->as_If(); phase->igvn().replace_input_of(iff, 1, phase->igvn().intcon(1)); } // Call lrb-stub and wire up that path in slots 4 Node* result_mem = NULL; Node* fwd = new_val; Node* addr; if (ShenandoahSelfFixing) { VectorSet visited(Thread::current()->resource_area()); addr = get_load_addr(phase, visited, lrb); } else { addr = phase->igvn().zerocon(T_OBJECT); } if (addr->Opcode() == Op_AddP) { Node* orig_base = addr->in(AddPNode::Base); Node* base = new CheckCastPPNode(ctrl, orig_base, orig_base->bottom_type(), true); phase->register_new_node(base, ctrl); if (addr->in(AddPNode::Base) == addr->in((AddPNode::Address))) { // Field access addr = addr->clone(); addr->set_req(AddPNode::Base, base); addr->set_req(AddPNode::Address, base); phase->register_new_node(addr, ctrl); } else { Node* addr2 = addr->in(AddPNode::Address); assert(addr2->Opcode() == Op_AddP, "expected"); assert(addr2->in(AddPNode::Base) == orig_base, "expected"); assert(addr2->in(AddPNode::Base) == addr2->in(AddPNode::Address), "expected"); addr2 = addr2->clone(); addr2->set_req(AddPNode::Base, base); addr2->set_req(AddPNode::Address, base); phase->register_new_node(addr2, ctrl); addr = addr->clone(); addr->set_req(AddPNode::Base, base); addr->set_req(AddPNode::Address, addr2); phase->register_new_node(addr, ctrl); } } call_lrb_stub(ctrl, fwd, addr, result_mem, raw_mem, phase); region->init_req(_evac_path, ctrl); val_phi->init_req(_evac_path, fwd); raw_mem_phi->init_req(_evac_path, result_mem); phase->register_control(region, loop, heap_stable_iff); Node* out_val = val_phi; phase->register_new_node(val_phi, region); phase->register_new_node(raw_mem_phi, region); fix_ctrl(lrb, region, fixer, uses, uses_to_ignore, last, phase); ctrl = orig_ctrl; if (unc != NULL) { for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) { Node* u = val->fast_out(i); Node* c = phase->ctrl_or_self(u); if (u != lrb && (c != ctrl || is_dominator_same_ctrl(c, lrb, u, phase))) { phase->igvn().rehash_node_delayed(u); int nb = u->replace_edge(val, out_val); --i, imax -= nb; } } if (val->outcnt() == 0) { phase->igvn()._worklist.push(val); } } phase->igvn().replace_node(lrb, out_val); follow_barrier_uses(out_val, ctrl, uses, phase); for(uint next = 0; next < uses.size(); next++ ) { Node *n = uses.at(next); assert(phase->get_ctrl(n) == ctrl, "bad control"); assert(n != init_raw_mem, "should leave input raw mem above the barrier"); phase->set_ctrl(n, region); follow_barrier_uses(n, ctrl, uses, phase); } // The slow path call produces memory: hook the raw memory phi // from the expanded load reference barrier with the rest of the graph // which may require adding memory phis at every post dominated // region and at enclosing loop heads. Use the memory state // collected in memory_nodes to fix the memory graph. Update that // memory state as we go. fixer.fix_mem(ctrl, region, init_raw_mem, raw_mem_for_ctrl, raw_mem_phi, uses); } // Done expanding load-reference-barriers. assert(ShenandoahBarrierSetC2::bsc2()->state()->load_reference_barriers_count() == 0, "all load reference barrier nodes should have been replaced"); for (int i = state->enqueue_barriers_count() - 1; i >= 0; i--) { Node* barrier = state->enqueue_barrier(i); Node* pre_val = barrier->in(1); if (phase->igvn().type(pre_val)->higher_equal(TypePtr::NULL_PTR)) { ShouldNotReachHere(); continue; } Node* ctrl = phase->get_ctrl(barrier); if (ctrl->is_Proj() && ctrl->in(0)->is_CallJava()) { assert(is_dominator(phase->get_ctrl(pre_val), ctrl->in(0)->in(0), pre_val, ctrl->in(0), phase), "can't move"); ctrl = ctrl->in(0)->in(0); phase->set_ctrl(barrier, ctrl); } else if (ctrl->is_CallRuntime()) { assert(is_dominator(phase->get_ctrl(pre_val), ctrl->in(0), pre_val, ctrl, phase), "can't move"); ctrl = ctrl->in(0); phase->set_ctrl(barrier, ctrl); } Node* init_ctrl = ctrl; IdealLoopTree* loop = phase->get_loop(ctrl); Node* raw_mem = fixer.find_mem(ctrl, barrier); Node* init_raw_mem = raw_mem; Node* raw_mem_for_ctrl = fixer.find_mem(ctrl, NULL); Node* heap_stable_ctrl = NULL; Node* null_ctrl = NULL; uint last = phase->C->unique(); enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT }; Node* region = new RegionNode(PATH_LIMIT); Node* phi = PhiNode::make(region, raw_mem, Type::MEMORY, TypeRawPtr::BOTTOM); enum { _fast_path = 1, _slow_path, _null_path, PATH_LIMIT2 }; Node* region2 = new RegionNode(PATH_LIMIT2); Node* phi2 = PhiNode::make(region2, raw_mem, Type::MEMORY, TypeRawPtr::BOTTOM); // Stable path. test_heap_stable(ctrl, raw_mem, heap_stable_ctrl, phase); region->init_req(_heap_stable, heap_stable_ctrl); phi->init_req(_heap_stable, raw_mem); // Null path Node* reg2_ctrl = NULL; test_null(ctrl, pre_val, null_ctrl, phase); if (null_ctrl != NULL) { reg2_ctrl = null_ctrl->in(0); region2->init_req(_null_path, null_ctrl); phi2->init_req(_null_path, raw_mem); } else { region2->del_req(_null_path); phi2->del_req(_null_path); } const int index_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset()); const int buffer_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); Node* thread = new ThreadLocalNode(); phase->register_new_node(thread, ctrl); Node* buffer_adr = new AddPNode(phase->C->top(), thread, phase->igvn().MakeConX(buffer_offset)); phase->register_new_node(buffer_adr, ctrl); Node* index_adr = new AddPNode(phase->C->top(), thread, phase->igvn().MakeConX(index_offset)); phase->register_new_node(index_adr, ctrl); BasicType index_bt = TypeX_X->basic_type(); assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size."); const TypePtr* adr_type = TypeRawPtr::BOTTOM; Node* index = new LoadXNode(ctrl, raw_mem, index_adr, adr_type, TypeX_X, MemNode::unordered); phase->register_new_node(index, ctrl); Node* index_cmp = new CmpXNode(index, phase->igvn().MakeConX(0)); phase->register_new_node(index_cmp, ctrl); Node* index_test = new BoolNode(index_cmp, BoolTest::ne); phase->register_new_node(index_test, ctrl); IfNode* queue_full_iff = new IfNode(ctrl, index_test, PROB_LIKELY(0.999), COUNT_UNKNOWN); if (reg2_ctrl == NULL) reg2_ctrl = queue_full_iff; phase->register_control(queue_full_iff, loop, ctrl); Node* not_full = new IfTrueNode(queue_full_iff); phase->register_control(not_full, loop, queue_full_iff); Node* full = new IfFalseNode(queue_full_iff); phase->register_control(full, loop, queue_full_iff); ctrl = not_full; Node* next_index = new SubXNode(index, phase->igvn().MakeConX(sizeof(intptr_t))); phase->register_new_node(next_index, ctrl); Node* buffer = new LoadPNode(ctrl, raw_mem, buffer_adr, adr_type, TypeRawPtr::NOTNULL, MemNode::unordered); phase->register_new_node(buffer, ctrl); Node *log_addr = new AddPNode(phase->C->top(), buffer, next_index); phase->register_new_node(log_addr, ctrl); Node* log_store = new StorePNode(ctrl, raw_mem, log_addr, adr_type, pre_val, MemNode::unordered); phase->register_new_node(log_store, ctrl); // update the index Node* index_update = new StoreXNode(ctrl, log_store, index_adr, adr_type, next_index, MemNode::unordered); phase->register_new_node(index_update, ctrl); // Fast-path case region2->init_req(_fast_path, ctrl); phi2->init_req(_fast_path, index_update); ctrl = full; Node* base = find_bottom_mem(ctrl, phase); MergeMemNode* mm = MergeMemNode::make(base); mm->set_memory_at(Compile::AliasIdxRaw, raw_mem); phase->register_new_node(mm, ctrl); Node* call = new CallLeafNode(ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type(), CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", TypeRawPtr::BOTTOM); call->init_req(TypeFunc::Control, ctrl); call->init_req(TypeFunc::I_O, phase->C->top()); call->init_req(TypeFunc::Memory, mm); call->init_req(TypeFunc::FramePtr, phase->C->top()); call->init_req(TypeFunc::ReturnAdr, phase->C->top()); call->init_req(TypeFunc::Parms, pre_val); call->init_req(TypeFunc::Parms+1, thread); phase->register_control(call, loop, ctrl); Node* ctrl_proj = new ProjNode(call, TypeFunc::Control); phase->register_control(ctrl_proj, loop, call); Node* mem_proj = new ProjNode(call, TypeFunc::Memory); phase->register_new_node(mem_proj, call); // Slow-path case region2->init_req(_slow_path, ctrl_proj); phi2->init_req(_slow_path, mem_proj); phase->register_control(region2, loop, reg2_ctrl); phase->register_new_node(phi2, region2); region->init_req(_heap_unstable, region2); phi->init_req(_heap_unstable, phi2); phase->register_control(region, loop, heap_stable_ctrl->in(0)); phase->register_new_node(phi, region); fix_ctrl(barrier, region, fixer, uses, uses_to_ignore, last, phase); for(uint next = 0; next < uses.size(); next++ ) { Node *n = uses.at(next); assert(phase->get_ctrl(n) == init_ctrl, "bad control"); assert(n != init_raw_mem, "should leave input raw mem above the barrier"); phase->set_ctrl(n, region); follow_barrier_uses(n, init_ctrl, uses, phase); } fixer.fix_mem(init_ctrl, region, init_raw_mem, raw_mem_for_ctrl, phi, uses); phase->igvn().replace_node(barrier, pre_val); } assert(state->enqueue_barriers_count() == 0, "all enqueue barrier nodes should have been replaced"); } Node* ShenandoahBarrierC2Support::get_load_addr(PhaseIdealLoop* phase, VectorSet& visited, Node* in) { if (visited.test_set(in->_idx)) { return NULL; } switch (in->Opcode()) { case Op_Proj: return get_load_addr(phase, visited, in->in(0)); case Op_CastPP: case Op_CheckCastPP: case Op_DecodeN: case Op_EncodeP: return get_load_addr(phase, visited, in->in(1)); case Op_LoadN: case Op_LoadP: return in->in(MemNode::Address); case Op_CompareAndExchangeN: case Op_CompareAndExchangeP: case Op_GetAndSetN: case Op_GetAndSetP: case Op_ShenandoahCompareAndExchangeP: case Op_ShenandoahCompareAndExchangeN: // Those instructions would just have stored a different // value into the field. No use to attempt to fix it at this point. return phase->igvn().zerocon(T_OBJECT); case Op_Phi: { Node* addr = NULL; for (uint i = 1; i < in->req(); i++) { Node* addr1 = get_load_addr(phase, visited, in->in(i)); if (addr == NULL) { addr = addr1; } if (addr != addr1) { return phase->igvn().zerocon(T_OBJECT); } } return addr; } case Op_ShenandoahLoadReferenceBarrier: return get_load_addr(phase, visited, in->in(ShenandoahLoadReferenceBarrierNode::ValueIn)); case Op_ShenandoahEnqueueBarrier: return get_load_addr(phase, visited, in->in(1)); case Op_CallDynamicJava: case Op_CallLeaf: case Op_CallStaticJava: case Op_ConN: case Op_ConP: case Op_Parm: return phase->igvn().zerocon(T_OBJECT); default: #ifdef ASSERT in->dump(); ShouldNotReachHere(); #endif return phase->igvn().zerocon(T_OBJECT); } } void ShenandoahBarrierC2Support::move_heap_stable_test_out_of_loop(IfNode* iff, PhaseIdealLoop* phase) { IdealLoopTree *loop = phase->get_loop(iff); Node* loop_head = loop->_head; Node* entry_c = loop_head->in(LoopNode::EntryControl); Node* bol = iff->in(1); Node* cmp = bol->in(1); Node* andi = cmp->in(1); Node* load = andi->in(1); assert(is_gc_state_load(load), "broken"); if (!phase->is_dominator(load->in(0), entry_c)) { Node* mem_ctrl = NULL; Node* mem = dom_mem(load->in(MemNode::Memory), loop_head, Compile::AliasIdxRaw, mem_ctrl, phase); load = load->clone(); load->set_req(MemNode::Memory, mem); load->set_req(0, entry_c); phase->register_new_node(load, entry_c); andi = andi->clone(); andi->set_req(1, load); phase->register_new_node(andi, entry_c); cmp = cmp->clone(); cmp->set_req(1, andi); phase->register_new_node(cmp, entry_c); bol = bol->clone(); bol->set_req(1, cmp); phase->register_new_node(bol, entry_c); Node* old_bol =iff->in(1); phase->igvn().replace_input_of(iff, 1, bol); } } bool ShenandoahBarrierC2Support::identical_backtoback_ifs(Node* n, PhaseIdealLoop* phase) { if (!n->is_If() || n->is_CountedLoopEnd()) { return false; } Node* region = n->in(0); if (!region->is_Region()) { return false; } Node* dom = phase->idom(region); if (!dom->is_If()) { return false; } if (!is_heap_stable_test(n) || !is_heap_stable_test(dom)) { return false; } IfNode* dom_if = dom->as_If(); Node* proj_true = dom_if->proj_out(1); Node* proj_false = dom_if->proj_out(0); for (uint i = 1; i < region->req(); i++) { if (phase->is_dominator(proj_true, region->in(i))) { continue; } if (phase->is_dominator(proj_false, region->in(i))) { continue; } return false; } return true; } void ShenandoahBarrierC2Support::merge_back_to_back_tests(Node* n, PhaseIdealLoop* phase) { assert(is_heap_stable_test(n), "no other tests"); if (identical_backtoback_ifs(n, phase)) { Node* n_ctrl = n->in(0); if (phase->can_split_if(n_ctrl)) { IfNode* dom_if = phase->idom(n_ctrl)->as_If(); if (is_heap_stable_test(n)) { Node* gc_state_load = n->in(1)->in(1)->in(1)->in(1); assert(is_gc_state_load(gc_state_load), "broken"); Node* dom_gc_state_load = dom_if->in(1)->in(1)->in(1)->in(1); assert(is_gc_state_load(dom_gc_state_load), "broken"); if (gc_state_load != dom_gc_state_load) { phase->igvn().replace_node(gc_state_load, dom_gc_state_load); } } PhiNode* bolphi = PhiNode::make_blank(n_ctrl, n->in(1)); Node* proj_true = dom_if->proj_out(1); Node* proj_false = dom_if->proj_out(0); Node* con_true = phase->igvn().makecon(TypeInt::ONE); Node* con_false = phase->igvn().makecon(TypeInt::ZERO); for (uint i = 1; i < n_ctrl->req(); i++) { if (phase->is_dominator(proj_true, n_ctrl->in(i))) { bolphi->init_req(i, con_true); } else { assert(phase->is_dominator(proj_false, n_ctrl->in(i)), "bad if"); bolphi->init_req(i, con_false); } } phase->register_new_node(bolphi, n_ctrl); phase->igvn().replace_input_of(n, 1, bolphi); phase->do_split_if(n); } } } IfNode* ShenandoahBarrierC2Support::find_unswitching_candidate(const IdealLoopTree* loop, PhaseIdealLoop* phase) { // Find first invariant test that doesn't exit the loop LoopNode *head = loop->_head->as_Loop(); IfNode* unswitch_iff = NULL; Node* n = head->in(LoopNode::LoopBackControl); int loop_has_sfpts = -1; while (n != head) { Node* n_dom = phase->idom(n); if (n->is_Region()) { if (n_dom->is_If()) { IfNode* iff = n_dom->as_If(); if (iff->in(1)->is_Bool()) { BoolNode* bol = iff->in(1)->as_Bool(); if (bol->in(1)->is_Cmp()) { // If condition is invariant and not a loop exit, // then found reason to unswitch. if (is_heap_stable_test(iff) && (loop_has_sfpts == -1 || loop_has_sfpts == 0)) { assert(!loop->is_loop_exit(iff), "both branches should be in the loop"); if (loop_has_sfpts == -1) { for(uint i = 0; i < loop->_body.size(); i++) { Node *m = loop->_body[i]; if (m->is_SafePoint() && !m->is_CallLeaf()) { loop_has_sfpts = 1; break; } } if (loop_has_sfpts == -1) { loop_has_sfpts = 0; } } if (!loop_has_sfpts) { unswitch_iff = iff; } } } } } } n = n_dom; } return unswitch_iff; } void ShenandoahBarrierC2Support::optimize_after_expansion(VectorSet &visited, Node_Stack &stack, Node_List &old_new, PhaseIdealLoop* phase) { Node_List heap_stable_tests; Node_List gc_state_loads; stack.push(phase->C->start(), 0); do { Node* n = stack.node(); uint i = stack.index(); if (i < n->outcnt()) { Node* u = n->raw_out(i); stack.set_index(i+1); if (!visited.test_set(u->_idx)) { stack.push(u, 0); } } else { stack.pop(); if (ShenandoahCommonGCStateLoads && is_gc_state_load(n)) { gc_state_loads.push(n); } if (n->is_If() && is_heap_stable_test(n)) { heap_stable_tests.push(n); } } } while (stack.size() > 0); bool progress; do { progress = false; for (uint i = 0; i < gc_state_loads.size(); i++) { Node* n = gc_state_loads.at(i); if (n->outcnt() != 0) { progress |= try_common_gc_state_load(n, phase); } } } while (progress); for (uint i = 0; i < heap_stable_tests.size(); i++) { Node* n = heap_stable_tests.at(i); assert(is_heap_stable_test(n), "only evacuation test"); merge_back_to_back_tests(n, phase); } if (!phase->C->major_progress()) { VectorSet seen(Thread::current()->resource_area()); for (uint i = 0; i < heap_stable_tests.size(); i++) { Node* n = heap_stable_tests.at(i); IdealLoopTree* loop = phase->get_loop(n); if (loop != phase->ltree_root() && loop->_child == NULL && !loop->_irreducible) { LoopNode* head = loop->_head->as_Loop(); if ((!head->is_CountedLoop() || head->as_CountedLoop()->is_main_loop() || head->as_CountedLoop()->is_normal_loop()) && !seen.test_set(head->_idx)) { IfNode* iff = find_unswitching_candidate(loop, phase); if (iff != NULL) { Node* bol = iff->in(1); if (head->is_strip_mined()) { head->verify_strip_mined(0); } move_heap_stable_test_out_of_loop(iff, phase); AutoNodeBudget node_budget(phase); if (loop->policy_unswitching(phase)) { if (head->is_strip_mined()) { OuterStripMinedLoopNode* outer = head->as_CountedLoop()->outer_loop(); hide_strip_mined_loop(outer, head->as_CountedLoop(), phase); } phase->do_unswitching(loop, old_new); } else { // Not proceeding with unswitching. Move load back in // the loop. phase->igvn().replace_input_of(iff, 1, bol); } } } } } } } #ifdef ASSERT void ShenandoahBarrierC2Support::verify_raw_mem(RootNode* root) { const bool trace = false; ResourceMark rm; Unique_Node_List nodes; Unique_Node_List controls; Unique_Node_List memories; nodes.push(root); for (uint next = 0; next < nodes.size(); next++) { Node *n = nodes.at(next); if (ShenandoahBarrierSetC2::is_shenandoah_lrb_call(n)) { controls.push(n); if (trace) { tty->print("XXXXXX verifying"); n->dump(); } for (uint next2 = 0; next2 < controls.size(); next2++) { Node *m = controls.at(next2); for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { Node* u = m->fast_out(i); if (u->is_CFG() && !u->is_Root() && !(u->Opcode() == Op_CProj && u->in(0)->Opcode() == Op_NeverBranch && u->as_Proj()->_con == 1) && !(u->is_Region() && u->unique_ctrl_out()->Opcode() == Op_Halt)) { if (trace) { tty->print("XXXXXX pushing control"); u->dump(); } controls.push(u); } } } memories.push(n->as_Call()->proj_out(TypeFunc::Memory)); for (uint next2 = 0; next2 < memories.size(); next2++) { Node *m = memories.at(next2); assert(m->bottom_type() == Type::MEMORY, ""); for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { Node* u = m->fast_out(i); if (u->bottom_type() == Type::MEMORY && (u->is_Mem() || u->is_ClearArray())) { if (trace) { tty->print("XXXXXX pushing memory"); u->dump(); } memories.push(u); } else if (u->is_LoadStore()) { if (trace) { tty->print("XXXXXX pushing memory"); u->find_out_with(Op_SCMemProj)->dump(); } memories.push(u->find_out_with(Op_SCMemProj)); } else if (u->is_MergeMem() && u->as_MergeMem()->memory_at(Compile::AliasIdxRaw) == m) { if (trace) { tty->print("XXXXXX pushing memory"); u->dump(); } memories.push(u); } else if (u->is_Phi()) { assert(u->bottom_type() == Type::MEMORY, ""); if (u->adr_type() == TypeRawPtr::BOTTOM || u->adr_type() == TypePtr::BOTTOM) { assert(controls.member(u->in(0)), ""); if (trace) { tty->print("XXXXXX pushing memory"); u->dump(); } memories.push(u); } } else if (u->is_SafePoint() || u->is_MemBar()) { for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) { Node* uu = u->fast_out(j); if (uu->bottom_type() == Type::MEMORY) { if (trace) { tty->print("XXXXXX pushing memory"); uu->dump(); } memories.push(uu); } } } } } for (uint next2 = 0; next2 < controls.size(); next2++) { Node *m = controls.at(next2); if (m->is_Region()) { bool all_in = true; for (uint i = 1; i < m->req(); i++) { if (!controls.member(m->in(i))) { all_in = false; break; } } if (trace) { tty->print("XXX verifying %s", all_in ? "all in" : ""); m->dump(); } bool found_phi = false; for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax && !found_phi; j++) { Node* u = m->fast_out(j); if (u->is_Phi() && memories.member(u)) { found_phi = true; for (uint i = 1; i < u->req() && found_phi; i++) { Node* k = u->in(i); if (memories.member(k) != controls.member(m->in(i))) { found_phi = false; } } } } assert(found_phi || all_in, ""); } } controls.clear(); memories.clear(); } for( uint i = 0; i < n->len(); ++i ) { Node *m = n->in(i); if (m != NULL) { nodes.push(m); } } } } #endif ShenandoahEnqueueBarrierNode::ShenandoahEnqueueBarrierNode(Node* val) : Node(NULL, val) { ShenandoahBarrierSetC2::bsc2()->state()->add_enqueue_barrier(this); } const Type* ShenandoahEnqueueBarrierNode::bottom_type() const { if (in(1) == NULL || in(1)->is_top()) { return Type::TOP; } const Type* t = in(1)->bottom_type(); if (t == TypePtr::NULL_PTR) { return t; } return t->is_oopptr()->cast_to_nonconst(); } const Type* ShenandoahEnqueueBarrierNode::Value(PhaseGVN* phase) const { if (in(1) == NULL) { return Type::TOP; } const Type* t = phase->type(in(1)); if (t == Type::TOP) { return Type::TOP; } if (t == TypePtr::NULL_PTR) { return t; } return t->is_oopptr()->cast_to_nonconst(); } int ShenandoahEnqueueBarrierNode::needed(Node* n) { if (n == NULL || n->is_Allocate() || n->Opcode() == Op_ShenandoahEnqueueBarrier || n->bottom_type() == TypePtr::NULL_PTR || (n->bottom_type()->make_oopptr() != NULL && n->bottom_type()->make_oopptr()->const_oop() != NULL)) { return NotNeeded; } if (n->is_Phi() || n->is_CMove()) { return MaybeNeeded; } return Needed; } Node* ShenandoahEnqueueBarrierNode::next(Node* n) { for (;;) { if (n == NULL) { return n; } else if (n->bottom_type() == TypePtr::NULL_PTR) { return n; } else if (n->bottom_type()->make_oopptr() != NULL && n->bottom_type()->make_oopptr()->const_oop() != NULL) { return n; } else if (n->is_ConstraintCast() || n->Opcode() == Op_DecodeN || n->Opcode() == Op_EncodeP) { n = n->in(1); } else if (n->is_Proj()) { n = n->in(0); } else { return n; } } ShouldNotReachHere(); return NULL; } Node* ShenandoahEnqueueBarrierNode::Identity(PhaseGVN* phase) { PhaseIterGVN* igvn = phase->is_IterGVN(); Node* n = next(in(1)); int cont = needed(n); if (cont == NotNeeded) { return in(1); } else if (cont == MaybeNeeded) { if (igvn == NULL) { phase->record_for_igvn(this); return this; } else { ResourceMark rm; Unique_Node_List wq; uint wq_i = 0; for (;;) { if (n->is_Phi()) { for (uint i = 1; i < n->req(); i++) { Node* m = n->in(i); if (m != NULL) { wq.push(m); } } } else { assert(n->is_CMove(), "nothing else here"); Node* m = n->in(CMoveNode::IfFalse); wq.push(m); m = n->in(CMoveNode::IfTrue); wq.push(m); } Node* orig_n = NULL; do { if (wq_i >= wq.size()) { return in(1); } n = wq.at(wq_i); wq_i++; orig_n = n; n = next(n); cont = needed(n); if (cont == Needed) { return this; } } while (cont != MaybeNeeded || (orig_n != n && wq.member(n))); } } } return this; } #ifdef ASSERT static bool has_never_branch(Node* root) { for (uint i = 1; i < root->req(); i++) { Node* in = root->in(i); if (in != NULL && in->Opcode() == Op_Halt && in->in(0)->is_Proj() && in->in(0)->in(0)->Opcode() == Op_NeverBranch) { return true; } } return false; } #endif void MemoryGraphFixer::collect_memory_nodes() { Node_Stack stack(0); VectorSet visited(Thread::current()->resource_area()); Node_List regions; // Walk the raw memory graph and create a mapping from CFG node to // memory node. Exclude phis for now. stack.push(_phase->C->root(), 1); do { Node* n = stack.node(); int opc = n->Opcode(); uint i = stack.index(); if (i < n->req()) { Node* mem = NULL; if (opc == Op_Root) { Node* in = n->in(i); int in_opc = in->Opcode(); if (in_opc == Op_Return || in_opc == Op_Rethrow) { mem = in->in(TypeFunc::Memory); } else if (in_opc == Op_Halt) { if (!in->in(0)->is_Region()) { Node* proj = in->in(0); assert(proj->is_Proj(), ""); Node* in = proj->in(0); assert(in->is_CallStaticJava() || in->Opcode() == Op_NeverBranch || in->Opcode() == Op_Catch || proj->is_IfProj(), ""); if (in->is_CallStaticJava()) { mem = in->in(TypeFunc::Memory); } else if (in->Opcode() == Op_Catch) { Node* call = in->in(0)->in(0); assert(call->is_Call(), ""); mem = call->in(TypeFunc::Memory); } else if (in->Opcode() == Op_NeverBranch) { ResourceMark rm; Unique_Node_List wq; wq.push(in); wq.push(in->as_Multi()->proj_out(0)); for (uint j = 1; j < wq.size(); j++) { Node* c = wq.at(j); assert(!c->is_Root(), "shouldn't leave loop"); if (c->is_SafePoint()) { assert(mem == NULL, "only one safepoint"); mem = c->in(TypeFunc::Memory); } for (DUIterator_Fast kmax, k = c->fast_outs(kmax); k < kmax; k++) { Node* u = c->fast_out(k); if (u->is_CFG()) { wq.push(u); } } } assert(mem != NULL, "should have found safepoint"); } } } else { #ifdef ASSERT n->dump(); in->dump(); #endif ShouldNotReachHere(); } } else { assert(n->is_Phi() && n->bottom_type() == Type::MEMORY, ""); assert(n->adr_type() == TypePtr::BOTTOM || _phase->C->get_alias_index(n->adr_type()) == _alias, ""); mem = n->in(i); } i++; stack.set_index(i); if (mem == NULL) { continue; } for (;;) { if (visited.test_set(mem->_idx) || mem->is_Start()) { break; } if (mem->is_Phi()) { stack.push(mem, 2); mem = mem->in(1); } else if (mem->is_Proj()) { stack.push(mem, mem->req()); mem = mem->in(0); } else if (mem->is_SafePoint() || mem->is_MemBar()) { mem = mem->in(TypeFunc::Memory); } else if (mem->is_MergeMem()) { MergeMemNode* mm = mem->as_MergeMem(); mem = mm->memory_at(_alias); } else if (mem->is_Store() || mem->is_LoadStore() || mem->is_ClearArray()) { assert(_alias == Compile::AliasIdxRaw, ""); stack.push(mem, mem->req()); mem = mem->in(MemNode::Memory); } else { #ifdef ASSERT mem->dump(); #endif ShouldNotReachHere(); } } } else { if (n->is_Phi()) { // Nothing } else if (!n->is_Root()) { Node* c = get_ctrl(n); _memory_nodes.map(c->_idx, n); } stack.pop(); } } while(stack.is_nonempty()); // Iterate over CFG nodes in rpo and propagate memory state to // compute memory state at regions, creating new phis if needed. Node_List rpo_list; visited.Clear(); _phase->rpo(_phase->C->root(), stack, visited, rpo_list); Node* root = rpo_list.pop(); assert(root == _phase->C->root(), ""); const bool trace = false; #ifdef ASSERT if (trace) { for (int i = rpo_list.size() - 1; i >= 0; i--) { Node* c = rpo_list.at(i); if (_memory_nodes[c->_idx] != NULL) { tty->print("X %d", c->_idx); _memory_nodes[c->_idx]->dump(); } } } #endif uint last = _phase->C->unique(); #ifdef ASSERT uint8_t max_depth = 0; for (LoopTreeIterator iter(_phase->ltree_root()); !iter.done(); iter.next()) { IdealLoopTree* lpt = iter.current(); max_depth = MAX2(max_depth, lpt->_nest); } #endif bool progress = true; int iteration = 0; Node_List dead_phis; while (progress) { progress = false; iteration++; assert(iteration <= 2+max_depth || _phase->C->has_irreducible_loop() || has_never_branch(_phase->C->root()), ""); if (trace) { tty->print_cr("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"); } IdealLoopTree* last_updated_ilt = NULL; for (int i = rpo_list.size() - 1; i >= 0; i--) { Node* c = rpo_list.at(i); Node* prev_mem = _memory_nodes[c->_idx]; if (c->is_Region() && (_include_lsm || !c->is_OuterStripMinedLoop())) { Node* prev_region = regions[c->_idx]; Node* unique = NULL; for (uint j = 1; j < c->req() && unique != NodeSentinel; j++) { Node* m = _memory_nodes[c->in(j)->_idx]; assert(m != NULL || (c->is_Loop() && j == LoopNode::LoopBackControl && iteration == 1) || _phase->C->has_irreducible_loop() || has_never_branch(_phase->C->root()), "expect memory state"); if (m != NULL) { if (m == prev_region && ((c->is_Loop() && j == LoopNode::LoopBackControl) || (prev_region->is_Phi() && prev_region->in(0) == c))) { assert(c->is_Loop() && j == LoopNode::LoopBackControl || _phase->C->has_irreducible_loop(), ""); // continue } else if (unique == NULL) { unique = m; } else if (m == unique) { // continue } else { unique = NodeSentinel; } } } assert(unique != NULL, "empty phi???"); if (unique != NodeSentinel) { if (prev_region != NULL && prev_region->is_Phi() && prev_region->in(0) == c) { dead_phis.push(prev_region); } regions.map(c->_idx, unique); } else { Node* phi = NULL; if (prev_region != NULL && prev_region->is_Phi() && prev_region->in(0) == c && prev_region->_idx >= last) { phi = prev_region; for (uint k = 1; k < c->req(); k++) { Node* m = _memory_nodes[c->in(k)->_idx]; assert(m != NULL, "expect memory state"); phi->set_req(k, m); } } else { for (DUIterator_Fast jmax, j = c->fast_outs(jmax); j < jmax && phi == NULL; j++) { Node* u = c->fast_out(j); if (u->is_Phi() && u->bottom_type() == Type::MEMORY && (u->adr_type() == TypePtr::BOTTOM || _phase->C->get_alias_index(u->adr_type()) == _alias)) { phi = u; for (uint k = 1; k < c->req() && phi != NULL; k++) { Node* m = _memory_nodes[c->in(k)->_idx]; assert(m != NULL, "expect memory state"); if (u->in(k) != m) { phi = NULL; } } } } if (phi == NULL) { phi = new PhiNode(c, Type::MEMORY, _phase->C->get_adr_type(_alias)); for (uint k = 1; k < c->req(); k++) { Node* m = _memory_nodes[c->in(k)->_idx]; assert(m != NULL, "expect memory state"); phi->init_req(k, m); } } } assert(phi != NULL, ""); regions.map(c->_idx, phi); } Node* current_region = regions[c->_idx]; if (current_region != prev_region) { progress = true; if (prev_region == prev_mem) { _memory_nodes.map(c->_idx, current_region); } } } else if (prev_mem == NULL || prev_mem->is_Phi() || ctrl_or_self(prev_mem) != c) { Node* m = _memory_nodes[_phase->idom(c)->_idx]; assert(m != NULL, "expect memory state"); if (m != prev_mem) { _memory_nodes.map(c->_idx, m); progress = true; } } #ifdef ASSERT if (trace) { tty->print("X %d", c->_idx); _memory_nodes[c->_idx]->dump(); } #endif } } // Replace existing phi with computed memory state for that region // if different (could be a new phi or a dominating memory node if // that phi was found to be useless). while (dead_phis.size() > 0) { Node* n = dead_phis.pop(); n->replace_by(_phase->C->top()); n->destruct(); } for (int i = rpo_list.size() - 1; i >= 0; i--) { Node* c = rpo_list.at(i); if (c->is_Region() && (_include_lsm || !c->is_OuterStripMinedLoop())) { Node* n = regions[c->_idx]; if (n->is_Phi() && n->_idx >= last && n->in(0) == c) { _phase->register_new_node(n, c); } } } for (int i = rpo_list.size() - 1; i >= 0; i--) { Node* c = rpo_list.at(i); if (c->is_Region() && (_include_lsm || !c->is_OuterStripMinedLoop())) { Node* n = regions[c->_idx]; for (DUIterator_Fast imax, i = c->fast_outs(imax); i < imax; i++) { Node* u = c->fast_out(i); if (u->is_Phi() && u->bottom_type() == Type::MEMORY && u != n) { if (u->adr_type() == TypePtr::BOTTOM) { fix_memory_uses(u, n, n, c); } else if (_phase->C->get_alias_index(u->adr_type()) == _alias) { _phase->lazy_replace(u, n); --i; --imax; } } } } } } Node* MemoryGraphFixer::get_ctrl(Node* n) const { Node* c = _phase->get_ctrl(n); if (n->is_Proj() && n->in(0) != NULL && n->in(0)->is_Call()) { assert(c == n->in(0), ""); CallNode* call = c->as_Call(); CallProjections projs; call->extract_projections(&projs, true, false); if (projs.catchall_memproj != NULL) { if (projs.fallthrough_memproj == n) { c = projs.fallthrough_catchproj; } else { assert(projs.catchall_memproj == n, ""); c = projs.catchall_catchproj; } } } return c; } Node* MemoryGraphFixer::ctrl_or_self(Node* n) const { if (_phase->has_ctrl(n)) return get_ctrl(n); else { assert (n->is_CFG(), "must be a CFG node"); return n; } } bool MemoryGraphFixer::mem_is_valid(Node* m, Node* c) const { return m != NULL && get_ctrl(m) == c; } Node* MemoryGraphFixer::find_mem(Node* ctrl, Node* n) const { assert(n == NULL || _phase->ctrl_or_self(n) == ctrl, ""); Node* mem = _memory_nodes[ctrl->_idx]; Node* c = ctrl; while (!mem_is_valid(mem, c) && (!c->is_CatchProj() || mem == NULL || c->in(0)->in(0)->in(0) != get_ctrl(mem))) { c = _phase->idom(c); mem = _memory_nodes[c->_idx]; } if (n != NULL && mem_is_valid(mem, c)) { while (!ShenandoahBarrierC2Support::is_dominator_same_ctrl(c, mem, n, _phase) && _phase->ctrl_or_self(mem) == ctrl) { mem = next_mem(mem, _alias); } if (mem->is_MergeMem()) { mem = mem->as_MergeMem()->memory_at(_alias); } if (!mem_is_valid(mem, c)) { do { c = _phase->idom(c); mem = _memory_nodes[c->_idx]; } while (!mem_is_valid(mem, c) && (!c->is_CatchProj() || mem == NULL || c->in(0)->in(0)->in(0) != get_ctrl(mem))); } } assert(mem->bottom_type() == Type::MEMORY, ""); return mem; } bool MemoryGraphFixer::has_mem_phi(Node* region) const { for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { Node* use = region->fast_out(i); if (use->is_Phi() && use->bottom_type() == Type::MEMORY && (_phase->C->get_alias_index(use->adr_type()) == _alias)) { return true; } } return false; } void MemoryGraphFixer::fix_mem(Node* ctrl, Node* new_ctrl, Node* mem, Node* mem_for_ctrl, Node* new_mem, Unique_Node_List& uses) { assert(_phase->ctrl_or_self(new_mem) == new_ctrl, ""); const bool trace = false; DEBUG_ONLY(if (trace) { tty->print("ZZZ control is"); ctrl->dump(); }); DEBUG_ONLY(if (trace) { tty->print("ZZZ mem is"); mem->dump(); }); GrowableArray phis; if (mem_for_ctrl != mem) { Node* old = mem_for_ctrl; Node* prev = NULL; while (old != mem) { prev = old; if (old->is_Store() || old->is_ClearArray() || old->is_LoadStore()) { assert(_alias == Compile::AliasIdxRaw, ""); old = old->in(MemNode::Memory); } else if (old->Opcode() == Op_SCMemProj) { assert(_alias == Compile::AliasIdxRaw, ""); old = old->in(0); } else { ShouldNotReachHere(); } } assert(prev != NULL, ""); if (new_ctrl != ctrl) { _memory_nodes.map(ctrl->_idx, mem); _memory_nodes.map(new_ctrl->_idx, mem_for_ctrl); } uint input = (uint)MemNode::Memory; _phase->igvn().replace_input_of(prev, input, new_mem); } else { uses.clear(); _memory_nodes.map(new_ctrl->_idx, new_mem); uses.push(new_ctrl); for(uint next = 0; next < uses.size(); next++ ) { Node *n = uses.at(next); assert(n->is_CFG(), ""); DEBUG_ONLY(if (trace) { tty->print("ZZZ ctrl"); n->dump(); }); for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { Node* u = n->fast_out(i); if (!u->is_Root() && u->is_CFG() && u != n) { Node* m = _memory_nodes[u->_idx]; if (u->is_Region() && (!u->is_OuterStripMinedLoop() || _include_lsm) && !has_mem_phi(u) && u->unique_ctrl_out()->Opcode() != Op_Halt) { DEBUG_ONLY(if (trace) { tty->print("ZZZ region"); u->dump(); }); DEBUG_ONLY(if (trace && m != NULL) { tty->print("ZZZ mem"); m->dump(); }); if (!mem_is_valid(m, u) || !m->is_Phi()) { bool push = true; bool create_phi = true; if (_phase->is_dominator(new_ctrl, u)) { create_phi = false; } else if (!_phase->C->has_irreducible_loop()) { IdealLoopTree* loop = _phase->get_loop(ctrl); bool do_check = true; IdealLoopTree* l = loop; create_phi = false; while (l != _phase->ltree_root()) { Node* head = l->_head; if (head->in(0) == NULL) { head = _phase->get_ctrl(head); } if (_phase->is_dominator(head, u) && _phase->is_dominator(_phase->idom(u), head)) { create_phi = true; do_check = false; break; } l = l->_parent; } if (do_check) { assert(!create_phi, ""); IdealLoopTree* u_loop = _phase->get_loop(u); if (u_loop != _phase->ltree_root() && u_loop->is_member(loop)) { Node* c = ctrl; while (!_phase->is_dominator(c, u_loop->tail())) { c = _phase->idom(c); } if (!_phase->is_dominator(c, u)) { do_check = false; } } } if (do_check && _phase->is_dominator(_phase->idom(u), new_ctrl)) { create_phi = true; } } if (create_phi) { Node* phi = new PhiNode(u, Type::MEMORY, _phase->C->get_adr_type(_alias)); _phase->register_new_node(phi, u); phis.push(phi); DEBUG_ONLY(if (trace) { tty->print("ZZZ new phi"); phi->dump(); }); if (!mem_is_valid(m, u)) { DEBUG_ONLY(if (trace) { tty->print("ZZZ setting mem"); phi->dump(); }); _memory_nodes.map(u->_idx, phi); } else { DEBUG_ONLY(if (trace) { tty->print("ZZZ NOT setting mem"); m->dump(); }); for (;;) { assert(m->is_Mem() || m->is_LoadStore() || m->is_Proj(), ""); Node* next = NULL; if (m->is_Proj()) { next = m->in(0); } else { assert(m->is_Mem() || m->is_LoadStore(), ""); assert(_alias == Compile::AliasIdxRaw, ""); next = m->in(MemNode::Memory); } if (_phase->get_ctrl(next) != u) { break; } if (next->is_MergeMem()) { assert(_phase->get_ctrl(next->as_MergeMem()->memory_at(_alias)) != u, ""); break; } if (next->is_Phi()) { assert(next->adr_type() == TypePtr::BOTTOM && next->in(0) == u, ""); break; } m = next; } DEBUG_ONLY(if (trace) { tty->print("ZZZ setting to phi"); m->dump(); }); assert(m->is_Mem() || m->is_LoadStore(), ""); uint input = (uint)MemNode::Memory; _phase->igvn().replace_input_of(m, input, phi); push = false; } } else { DEBUG_ONLY(if (trace) { tty->print("ZZZ skipping region"); u->dump(); }); } if (push) { uses.push(u); } } } else if (!mem_is_valid(m, u) && !(u->Opcode() == Op_CProj && u->in(0)->Opcode() == Op_NeverBranch && u->as_Proj()->_con == 1)) { uses.push(u); } } } } for (int i = 0; i < phis.length(); i++) { Node* n = phis.at(i); Node* r = n->in(0); DEBUG_ONLY(if (trace) { tty->print("ZZZ fixing new phi"); n->dump(); }); for (uint j = 1; j < n->req(); j++) { Node* m = find_mem(r->in(j), NULL); _phase->igvn().replace_input_of(n, j, m); DEBUG_ONLY(if (trace) { tty->print("ZZZ fixing new phi: %d", j); m->dump(); }); } } } uint last = _phase->C->unique(); MergeMemNode* mm = NULL; int alias = _alias; DEBUG_ONLY(if (trace) { tty->print("ZZZ raw mem is"); mem->dump(); }); for (DUIterator i = mem->outs(); mem->has_out(i); i++) { Node* u = mem->out(i); if (u->_idx < last) { if (u->is_Mem()) { if (_phase->C->get_alias_index(u->adr_type()) == alias) { Node* m = find_mem(_phase->get_ctrl(u), u); if (m != mem) { DEBUG_ONLY(if (trace) { tty->print("ZZZ setting memory of use"); u->dump(); }); _phase->igvn().replace_input_of(u, MemNode::Memory, m); --i; } } } else if (u->is_MergeMem()) { MergeMemNode* u_mm = u->as_MergeMem(); if (u_mm->memory_at(alias) == mem) { MergeMemNode* newmm = NULL; for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) { Node* uu = u->fast_out(j); assert(!uu->is_MergeMem(), "chain of MergeMems?"); if (uu->is_Phi()) { assert(uu->adr_type() == TypePtr::BOTTOM, ""); Node* region = uu->in(0); int nb = 0; for (uint k = 1; k < uu->req(); k++) { if (uu->in(k) == u) { Node* m = find_mem(region->in(k), NULL); if (m != mem) { DEBUG_ONLY(if (trace) { tty->print("ZZZ setting memory of phi %d", k); uu->dump(); }); newmm = clone_merge_mem(u, mem, m, _phase->ctrl_or_self(m), i); if (newmm != u) { _phase->igvn().replace_input_of(uu, k, newmm); nb++; --jmax; } } } } if (nb > 0) { --j; } } else { Node* m = find_mem(_phase->ctrl_or_self(uu), uu); if (m != mem) { DEBUG_ONLY(if (trace) { tty->print("ZZZ setting memory of use"); uu->dump(); }); newmm = clone_merge_mem(u, mem, m, _phase->ctrl_or_self(m), i); if (newmm != u) { _phase->igvn().replace_input_of(uu, uu->find_edge(u), newmm); --j, --jmax; } } } } } } else if (u->is_Phi()) { assert(u->bottom_type() == Type::MEMORY, "what else?"); if (_phase->C->get_alias_index(u->adr_type()) == alias || u->adr_type() == TypePtr::BOTTOM) { Node* region = u->in(0); bool replaced = false; for (uint j = 1; j < u->req(); j++) { if (u->in(j) == mem) { Node* m = find_mem(region->in(j), NULL); Node* nnew = m; if (m != mem) { if (u->adr_type() == TypePtr::BOTTOM) { mm = allocate_merge_mem(mem, m, _phase->ctrl_or_self(m)); nnew = mm; } DEBUG_ONLY(if (trace) { tty->print("ZZZ setting memory of phi %d", j); u->dump(); }); _phase->igvn().replace_input_of(u, j, nnew); replaced = true; } } } if (replaced) { --i; } } } else if ((u->adr_type() == TypePtr::BOTTOM && u->Opcode() != Op_StrInflatedCopy) || u->adr_type() == NULL) { assert(u->adr_type() != NULL || u->Opcode() == Op_Rethrow || u->Opcode() == Op_Return || u->Opcode() == Op_SafePoint || (u->is_CallStaticJava() && u->as_CallStaticJava()->uncommon_trap_request() != 0) || (u->is_CallStaticJava() && u->as_CallStaticJava()->_entry_point == OptoRuntime::rethrow_stub()) || u->Opcode() == Op_CallLeaf, ""); Node* m = find_mem(_phase->ctrl_or_self(u), u); if (m != mem) { mm = allocate_merge_mem(mem, m, _phase->get_ctrl(m)); _phase->igvn().replace_input_of(u, u->find_edge(mem), mm); --i; } } else if (_phase->C->get_alias_index(u->adr_type()) == alias) { Node* m = find_mem(_phase->ctrl_or_self(u), u); if (m != mem) { DEBUG_ONLY(if (trace) { tty->print("ZZZ setting memory of use"); u->dump(); }); _phase->igvn().replace_input_of(u, u->find_edge(mem), m); --i; } } else if (u->adr_type() != TypePtr::BOTTOM && _memory_nodes[_phase->ctrl_or_self(u)->_idx] == u) { Node* m = find_mem(_phase->ctrl_or_self(u), u); assert(m != mem, ""); // u is on the wrong slice... assert(u->is_ClearArray(), ""); DEBUG_ONLY(if (trace) { tty->print("ZZZ setting memory of use"); u->dump(); }); _phase->igvn().replace_input_of(u, u->find_edge(mem), m); --i; } } } #ifdef ASSERT assert(new_mem->outcnt() > 0, ""); for (int i = 0; i < phis.length(); i++) { Node* n = phis.at(i); assert(n->outcnt() > 0, "new phi must have uses now"); } #endif } MergeMemNode* MemoryGraphFixer::allocate_merge_mem(Node* mem, Node* rep_proj, Node* rep_ctrl) const { MergeMemNode* mm = MergeMemNode::make(mem); mm->set_memory_at(_alias, rep_proj); _phase->register_new_node(mm, rep_ctrl); return mm; } MergeMemNode* MemoryGraphFixer::clone_merge_mem(Node* u, Node* mem, Node* rep_proj, Node* rep_ctrl, DUIterator& i) const { MergeMemNode* newmm = NULL; MergeMemNode* u_mm = u->as_MergeMem(); Node* c = _phase->get_ctrl(u); if (_phase->is_dominator(c, rep_ctrl)) { c = rep_ctrl; } else { assert(_phase->is_dominator(rep_ctrl, c), "one must dominate the other"); } if (u->outcnt() == 1) { if (u->req() > (uint)_alias && u->in(_alias) == mem) { _phase->igvn().replace_input_of(u, _alias, rep_proj); --i; } else { _phase->igvn().rehash_node_delayed(u); u_mm->set_memory_at(_alias, rep_proj); } newmm = u_mm; _phase->set_ctrl_and_loop(u, c); } else { // can't simply clone u and then change one of its input because // it adds and then removes an edge which messes with the // DUIterator newmm = MergeMemNode::make(u_mm->base_memory()); for (uint j = 0; j < u->req(); j++) { if (j < newmm->req()) { if (j == (uint)_alias) { newmm->set_req(j, rep_proj); } else if (newmm->in(j) != u->in(j)) { newmm->set_req(j, u->in(j)); } } else if (j == (uint)_alias) { newmm->add_req(rep_proj); } else { newmm->add_req(u->in(j)); } } if ((uint)_alias >= u->req()) { newmm->set_memory_at(_alias, rep_proj); } _phase->register_new_node(newmm, c); } return newmm; } bool MemoryGraphFixer::should_process_phi(Node* phi) const { if (phi->adr_type() == TypePtr::BOTTOM) { Node* region = phi->in(0); for (DUIterator_Fast jmax, j = region->fast_outs(jmax); j < jmax; j++) { Node* uu = region->fast_out(j); if (uu->is_Phi() && uu != phi && uu->bottom_type() == Type::MEMORY && _phase->C->get_alias_index(uu->adr_type()) == _alias) { return false; } } return true; } return _phase->C->get_alias_index(phi->adr_type()) == _alias; } void MemoryGraphFixer::fix_memory_uses(Node* mem, Node* replacement, Node* rep_proj, Node* rep_ctrl) const { uint last = _phase-> C->unique(); MergeMemNode* mm = NULL; assert(mem->bottom_type() == Type::MEMORY, ""); for (DUIterator i = mem->outs(); mem->has_out(i); i++) { Node* u = mem->out(i); if (u != replacement && u->_idx < last) { if (u->is_MergeMem()) { MergeMemNode* u_mm = u->as_MergeMem(); if (u_mm->memory_at(_alias) == mem) { MergeMemNode* newmm = NULL; for (DUIterator_Fast jmax, j = u->fast_outs(jmax); j < jmax; j++) { Node* uu = u->fast_out(j); assert(!uu->is_MergeMem(), "chain of MergeMems?"); if (uu->is_Phi()) { if (should_process_phi(uu)) { Node* region = uu->in(0); int nb = 0; for (uint k = 1; k < uu->req(); k++) { if (uu->in(k) == u && _phase->is_dominator(rep_ctrl, region->in(k))) { if (newmm == NULL) { newmm = clone_merge_mem(u, mem, rep_proj, rep_ctrl, i); } if (newmm != u) { _phase->igvn().replace_input_of(uu, k, newmm); nb++; --jmax; } } } if (nb > 0) { --j; } } } else { if (rep_ctrl != uu && ShenandoahBarrierC2Support::is_dominator(rep_ctrl, _phase->ctrl_or_self(uu), replacement, uu, _phase)) { if (newmm == NULL) { newmm = clone_merge_mem(u, mem, rep_proj, rep_ctrl, i); } if (newmm != u) { _phase->igvn().replace_input_of(uu, uu->find_edge(u), newmm); --j, --jmax; } } } } } } else if (u->is_Phi()) { assert(u->bottom_type() == Type::MEMORY, "what else?"); Node* region = u->in(0); if (should_process_phi(u)) { bool replaced = false; for (uint j = 1; j < u->req(); j++) { if (u->in(j) == mem && _phase->is_dominator(rep_ctrl, region->in(j))) { Node* nnew = rep_proj; if (u->adr_type() == TypePtr::BOTTOM) { if (mm == NULL) { mm = allocate_merge_mem(mem, rep_proj, rep_ctrl); } nnew = mm; } _phase->igvn().replace_input_of(u, j, nnew); replaced = true; } } if (replaced) { --i; } } } else if ((u->adr_type() == TypePtr::BOTTOM && u->Opcode() != Op_StrInflatedCopy) || u->adr_type() == NULL) { assert(u->adr_type() != NULL || u->Opcode() == Op_Rethrow || u->Opcode() == Op_Return || u->Opcode() == Op_SafePoint || u->Opcode() == Op_StoreIConditional || u->Opcode() == Op_StoreLConditional || (u->is_CallStaticJava() && u->as_CallStaticJava()->uncommon_trap_request() != 0) || (u->is_CallStaticJava() && u->as_CallStaticJava()->_entry_point == OptoRuntime::rethrow_stub()) || u->Opcode() == Op_CallLeaf, "%s", u->Name()); if (ShenandoahBarrierC2Support::is_dominator(rep_ctrl, _phase->ctrl_or_self(u), replacement, u, _phase)) { if (mm == NULL) { mm = allocate_merge_mem(mem, rep_proj, rep_ctrl); } _phase->igvn().replace_input_of(u, u->find_edge(mem), mm); --i; } } else if (_phase->C->get_alias_index(u->adr_type()) == _alias) { if (ShenandoahBarrierC2Support::is_dominator(rep_ctrl, _phase->ctrl_or_self(u), replacement, u, _phase)) { _phase->igvn().replace_input_of(u, u->find_edge(mem), rep_proj); --i; } } } } } ShenandoahLoadReferenceBarrierNode::ShenandoahLoadReferenceBarrierNode(Node* ctrl, Node* obj) : Node(ctrl, obj) { ShenandoahBarrierSetC2::bsc2()->state()->add_load_reference_barrier(this); } const Type* ShenandoahLoadReferenceBarrierNode::bottom_type() const { if (in(ValueIn) == NULL || in(ValueIn)->is_top()) { return Type::TOP; } const Type* t = in(ValueIn)->bottom_type(); if (t == TypePtr::NULL_PTR) { return t; } return t->is_oopptr(); } const Type* ShenandoahLoadReferenceBarrierNode::Value(PhaseGVN* phase) const { // Either input is TOP ==> the result is TOP const Type *t2 = phase->type(in(ValueIn)); if( t2 == Type::TOP ) return Type::TOP; if (t2 == TypePtr::NULL_PTR) { return t2; } const Type* type = t2->is_oopptr()/*->cast_to_nonconst()*/; return type; } Node* ShenandoahLoadReferenceBarrierNode::Identity(PhaseGVN* phase) { Node* value = in(ValueIn); if (!needs_barrier(phase, value)) { return value; } return this; } bool ShenandoahLoadReferenceBarrierNode::needs_barrier(PhaseGVN* phase, Node* n) { Unique_Node_List visited; return needs_barrier_impl(phase, n, visited); } bool ShenandoahLoadReferenceBarrierNode::needs_barrier_impl(PhaseGVN* phase, Node* n, Unique_Node_List &visited) { if (n == NULL) return false; if (visited.member(n)) { return false; // Been there. } visited.push(n); if (n->is_Allocate()) { // tty->print_cr("optimize barrier on alloc"); return false; } if (n->is_Call()) { // tty->print_cr("optimize barrier on call"); return false; } const Type* type = phase->type(n); if (type == Type::TOP) { return false; } if (type->make_ptr()->higher_equal(TypePtr::NULL_PTR)) { // tty->print_cr("optimize barrier on null"); return false; } if (type->make_oopptr() && type->make_oopptr()->const_oop() != NULL) { // tty->print_cr("optimize barrier on constant"); return false; } switch (n->Opcode()) { case Op_AddP: return true; // TODO: Can refine? case Op_LoadP: case Op_ShenandoahCompareAndExchangeN: case Op_ShenandoahCompareAndExchangeP: case Op_CompareAndExchangeN: case Op_CompareAndExchangeP: case Op_GetAndSetN: case Op_GetAndSetP: return true; case Op_Phi: { for (uint i = 1; i < n->req(); i++) { if (needs_barrier_impl(phase, n->in(i), visited)) return true; } return false; } case Op_CheckCastPP: case Op_CastPP: return needs_barrier_impl(phase, n->in(1), visited); case Op_Proj: return needs_barrier_impl(phase, n->in(0), visited); case Op_ShenandoahLoadReferenceBarrier: // tty->print_cr("optimize barrier on barrier"); return false; case Op_Parm: // tty->print_cr("optimize barrier on input arg"); return false; case Op_DecodeN: case Op_EncodeP: return needs_barrier_impl(phase, n->in(1), visited); case Op_LoadN: return true; case Op_CMoveP: return needs_barrier_impl(phase, n->in(2), visited) || needs_barrier_impl(phase, n->in(3), visited); case Op_ShenandoahEnqueueBarrier: return needs_barrier_impl(phase, n->in(1), visited); default: break; } #ifdef ASSERT tty->print("need barrier on?: "); tty->print_cr("ins:"); n->dump(2); tty->print_cr("outs:"); n->dump(-2); ShouldNotReachHere(); #endif return true; } ShenandoahLoadReferenceBarrierNode::Strength ShenandoahLoadReferenceBarrierNode::get_barrier_strength() { Unique_Node_List visited; Node_Stack stack(0); stack.push(this, 0); Strength strength = NONE; while (strength != STRONG && stack.size() > 0) { Node* n = stack.node(); if (visited.member(n)) { stack.pop(); continue; } visited.push(n); bool visit_users = false; switch (n->Opcode()) { case Op_StoreN: case Op_StoreP: { strength = STRONG; break; } case Op_CmpP: { if (!n->in(1)->bottom_type()->higher_equal(TypePtr::NULL_PTR) && !n->in(2)->bottom_type()->higher_equal(TypePtr::NULL_PTR)) { strength = STRONG; } break; } case Op_CallStaticJava: { strength = STRONG; break; } case Op_CallDynamicJava: case Op_CallLeaf: case Op_CallLeafNoFP: case Op_CompareAndSwapL: case Op_CompareAndSwapI: case Op_CompareAndSwapB: case Op_CompareAndSwapS: case Op_CompareAndSwapN: case Op_CompareAndSwapP: case Op_CompareAndExchangeL: case Op_CompareAndExchangeI: case Op_CompareAndExchangeB: case Op_CompareAndExchangeS: case Op_CompareAndExchangeN: case Op_CompareAndExchangeP: case Op_WeakCompareAndSwapL: case Op_WeakCompareAndSwapI: case Op_WeakCompareAndSwapB: case Op_WeakCompareAndSwapS: case Op_WeakCompareAndSwapN: case Op_WeakCompareAndSwapP: case Op_ShenandoahCompareAndSwapN: case Op_ShenandoahCompareAndSwapP: case Op_ShenandoahWeakCompareAndSwapN: case Op_ShenandoahWeakCompareAndSwapP: case Op_ShenandoahCompareAndExchangeN: case Op_ShenandoahCompareAndExchangeP: case Op_GetAndSetL: case Op_GetAndSetI: case Op_GetAndSetB: case Op_GetAndSetS: case Op_GetAndSetP: case Op_GetAndSetN: case Op_GetAndAddL: case Op_GetAndAddI: case Op_GetAndAddB: case Op_GetAndAddS: case Op_ShenandoahEnqueueBarrier: case Op_FastLock: case Op_FastUnlock: case Op_Rethrow: case Op_Return: case Op_StoreB: case Op_StoreC: case Op_StoreD: case Op_StoreF: case Op_StoreL: case Op_StoreLConditional: case Op_StoreI: case Op_StoreIConditional: case Op_StoreVector: case Op_StrInflatedCopy: case Op_StrCompressedCopy: case Op_EncodeP: case Op_CastP2X: case Op_SafePoint: case Op_EncodeISOArray: strength = STRONG; break; case Op_LoadB: case Op_LoadUB: case Op_LoadUS: case Op_LoadD: case Op_LoadF: case Op_LoadL: case Op_LoadI: case Op_LoadS: case Op_LoadN: case Op_LoadP: case Op_LoadVector: { const TypePtr* adr_type = n->adr_type(); int alias_idx = Compile::current()->get_alias_index(adr_type); Compile::AliasType* alias_type = Compile::current()->alias_type(alias_idx); ciField* field = alias_type->field(); bool is_static = field != NULL && field->is_static(); bool is_final = field != NULL && field->is_final(); bool is_stable = field != NULL && field->is_stable(); if (ShenandoahOptimizeStaticFinals && is_static && is_final) { // Leave strength as is. } else if (ShenandoahOptimizeInstanceFinals && !is_static && is_final) { // Leave strength as is. } else if (ShenandoahOptimizeStableFinals && (is_stable || (adr_type->isa_aryptr() && adr_type->isa_aryptr()->is_stable()))) { // Leave strength as is. } else { strength = WEAK; } break; } case Op_AryEq: { Node* n1 = n->in(2); Node* n2 = n->in(3); if (!ShenandoahOptimizeStableFinals || !n1->bottom_type()->isa_aryptr() || !n1->bottom_type()->isa_aryptr()->is_stable() || !n2->bottom_type()->isa_aryptr() || !n2->bottom_type()->isa_aryptr()->is_stable()) { strength = WEAK; } break; } case Op_StrEquals: case Op_StrComp: case Op_StrIndexOf: case Op_StrIndexOfChar: if (!ShenandoahOptimizeStableFinals) { strength = WEAK; } break; case Op_Conv2B: case Op_LoadRange: case Op_LoadKlass: case Op_LoadNKlass: // NONE, i.e. leave current strength as is break; case Op_AddP: case Op_CheckCastPP: case Op_CastPP: case Op_CMoveP: case Op_Phi: case Op_ShenandoahLoadReferenceBarrier: visit_users = true; break; default: { #ifdef ASSERT tty->print_cr("Unknown node in get_barrier_strength:"); n->dump(1); ShouldNotReachHere(); #else strength = STRONG; #endif } } #ifdef ASSERT /* if (strength == STRONG) { tty->print("strengthening node: "); n->dump(); } */ #endif stack.pop(); if (visit_users) { for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { Node* user = n->fast_out(i); if (user != NULL) { stack.push(user, 0); } } } } return strength; } CallStaticJavaNode* ShenandoahLoadReferenceBarrierNode::pin_and_expand_null_check(PhaseIterGVN& igvn) { Node* val = in(ValueIn); const Type* val_t = igvn.type(val); if (val_t->meet(TypePtr::NULL_PTR) != val_t && val->Opcode() == Op_CastPP && val->in(0) != NULL && val->in(0)->Opcode() == Op_IfTrue && val->in(0)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none) && val->in(0)->in(0)->is_If() && val->in(0)->in(0)->in(1)->Opcode() == Op_Bool && val->in(0)->in(0)->in(1)->as_Bool()->_test._test == BoolTest::ne && val->in(0)->in(0)->in(1)->in(1)->Opcode() == Op_CmpP && val->in(0)->in(0)->in(1)->in(1)->in(1) == val->in(1) && val->in(0)->in(0)->in(1)->in(1)->in(2)->bottom_type() == TypePtr::NULL_PTR) { assert(val->in(0)->in(0)->in(1)->in(1)->in(1) == val->in(1), ""); CallStaticJavaNode* unc = val->in(0)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none); return unc; } return NULL; }