1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #ifndef _WINDOWS
  27 #include "alloca.h"
  28 #endif
  29 #include "asm/macroAssembler.hpp"
  30 #include "asm/macroAssembler.inline.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/nativeInst.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "gc/shared/gcLocker.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/compiledICHolder.hpp"
  40 #include "runtime/safepointMechanism.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/vframeArray.hpp"
  43 #include "utilities/align.hpp"
  44 #include "utilities/formatBuffer.hpp"
  45 #include "vm_version_x86.hpp"
  46 #include "vmreg_x86.inline.hpp"
  47 #ifdef COMPILER1
  48 #include "c1/c1_Runtime1.hpp"
  49 #endif
  50 #ifdef COMPILER2
  51 #include "opto/runtime.hpp"
  52 #endif
  53 #if INCLUDE_JVMCI
  54 #include "jvmci/jvmciJavaClasses.hpp"
  55 #endif
  56 
  57 #define __ masm->
  58 
  59 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  60 
  61 class SimpleRuntimeFrame {
  62 
  63   public:
  64 
  65   // Most of the runtime stubs have this simple frame layout.
  66   // This class exists to make the layout shared in one place.
  67   // Offsets are for compiler stack slots, which are jints.
  68   enum layout {
  69     // The frame sender code expects that rbp will be in the "natural" place and
  70     // will override any oopMap setting for it. We must therefore force the layout
  71     // so that it agrees with the frame sender code.
  72     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  73     rbp_off2,
  74     return_off, return_off2,
  75     framesize
  76   };
  77 };
  78 
  79 class RegisterSaver {
  80   // Capture info about frame layout.  Layout offsets are in jint
  81   // units because compiler frame slots are jints.
  82 #define XSAVE_AREA_BEGIN 160
  83 #define XSAVE_AREA_YMM_BEGIN 576
  84 #define XSAVE_AREA_ZMM_BEGIN 1152
  85 #define XSAVE_AREA_UPPERBANK 1664
  86 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  87 #define DEF_YMM_OFFS(regnum) ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off
  88 #define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off
  89   enum layout {
  90     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  91     xmm_off       = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt,            // offset in fxsave save area
  92     DEF_XMM_OFFS(0),
  93     DEF_XMM_OFFS(1),
  94     // 2..15 are implied in range usage
  95     ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
  96     DEF_YMM_OFFS(0),
  97     DEF_YMM_OFFS(1),
  98     // 2..15 are implied in range usage
  99     zmm_high = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
 100     zmm_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt,
 101     DEF_ZMM_OFFS(16),
 102     DEF_ZMM_OFFS(17),
 103     // 18..31 are implied in range usage
 104     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
 105     fpu_stateH_end,
 106     r15_off, r15H_off,
 107     r14_off, r14H_off,
 108     r13_off, r13H_off,
 109     r12_off, r12H_off,
 110     r11_off, r11H_off,
 111     r10_off, r10H_off,
 112     r9_off,  r9H_off,
 113     r8_off,  r8H_off,
 114     rdi_off, rdiH_off,
 115     rsi_off, rsiH_off,
 116     ignore_off, ignoreH_off,  // extra copy of rbp
 117     rsp_off, rspH_off,
 118     rbx_off, rbxH_off,
 119     rdx_off, rdxH_off,
 120     rcx_off, rcxH_off,
 121     rax_off, raxH_off,
 122     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 123     align_off, alignH_off,
 124     flags_off, flagsH_off,
 125     // The frame sender code expects that rbp will be in the "natural" place and
 126     // will override any oopMap setting for it. We must therefore force the layout
 127     // so that it agrees with the frame sender code.
 128     rbp_off, rbpH_off,        // copy of rbp we will restore
 129     return_off, returnH_off,  // slot for return address
 130     reg_save_size             // size in compiler stack slots
 131   };
 132 
 133  public:
 134   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
 135   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 136 
 137   // Offsets into the register save area
 138   // Used by deoptimization when it is managing result register
 139   // values on its own
 140 
 141   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 142   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 143   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 144   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 145   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 146 
 147   // During deoptimization only the result registers need to be restored,
 148   // all the other values have already been extracted.
 149   static void restore_result_registers(MacroAssembler* masm);
 150 };
 151 
 152 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
 153   int off = 0;
 154   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 155   if (UseAVX < 3) {
 156     num_xmm_regs = num_xmm_regs/2;
 157   }
 158 #if COMPILER2_OR_JVMCI
 159   if (save_vectors) {
 160     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 161     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 162   }
 163 #else
 164   assert(!save_vectors, "vectors are generated only by C2 and JVMCI");
 165 #endif
 166 
 167   // Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated
 168   int frame_size_in_bytes = align_up(reg_save_size*BytesPerInt, num_xmm_regs);
 169   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 170   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 171   // CodeBlob frame size is in words.
 172   int frame_size_in_words = frame_size_in_bytes / wordSize;
 173   *total_frame_words = frame_size_in_words;
 174 
 175   // Save registers, fpu state, and flags.
 176   // We assume caller has already pushed the return address onto the
 177   // stack, so rsp is 8-byte aligned here.
 178   // We push rpb twice in this sequence because we want the real rbp
 179   // to be under the return like a normal enter.
 180 
 181   __ enter();          // rsp becomes 16-byte aligned here
 182   __ push_CPU_state(); // Push a multiple of 16 bytes
 183 
 184   // push cpu state handles this on EVEX enabled targets
 185   if (save_vectors) {
 186     // Save upper half of YMM registers(0..15)
 187     int base_addr = XSAVE_AREA_YMM_BEGIN;
 188     for (int n = 0; n < 16; n++) {
 189       __ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n));
 190     }
 191     if (VM_Version::supports_evex()) {
 192       // Save upper half of ZMM registers(0..15)
 193       base_addr = XSAVE_AREA_ZMM_BEGIN;
 194       for (int n = 0; n < 16; n++) {
 195         __ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n));
 196       }
 197       // Save full ZMM registers(16..num_xmm_regs)
 198       base_addr = XSAVE_AREA_UPPERBANK;
 199       off = 0;
 200       int vector_len = Assembler::AVX_512bit;
 201       for (int n = 16; n < num_xmm_regs; n++) {
 202         __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len);
 203       }
 204     }
 205   } else {
 206     if (VM_Version::supports_evex()) {
 207       // Save upper bank of ZMM registers(16..31) for double/float usage
 208       int base_addr = XSAVE_AREA_UPPERBANK;
 209       off = 0;
 210       for (int n = 16; n < num_xmm_regs; n++) {
 211         __ movsd(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n));
 212       }
 213     }
 214   }
 215   __ vzeroupper();
 216   if (frame::arg_reg_save_area_bytes != 0) {
 217     // Allocate argument register save area
 218     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 219   }
 220 
 221   // Set an oopmap for the call site.  This oopmap will map all
 222   // oop-registers and debug-info registers as callee-saved.  This
 223   // will allow deoptimization at this safepoint to find all possible
 224   // debug-info recordings, as well as let GC find all oops.
 225 
 226   OopMapSet *oop_maps = new OopMapSet();
 227   OopMap* map = new OopMap(frame_size_in_slots, 0);
 228 
 229 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x))
 230 
 231   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
 232   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
 233   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
 234   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
 235   // rbp location is known implicitly by the frame sender code, needs no oopmap
 236   // and the location where rbp was saved by is ignored
 237   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
 238   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
 239   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
 240   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
 241   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
 242   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
 243   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
 244   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
 245   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
 246   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
 247   // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 248   // on EVEX enabled targets, we get it included in the xsave area
 249   off = xmm0_off;
 250   int delta = xmm1_off - off;
 251   for (int n = 0; n < 16; n++) {
 252     XMMRegister xmm_name = as_XMMRegister(n);
 253     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 254     off += delta;
 255   }
 256   if(UseAVX > 2) {
 257     // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 258     off = zmm16_off;
 259     delta = zmm17_off - off;
 260     for (int n = 16; n < num_xmm_regs; n++) {
 261       XMMRegister zmm_name = as_XMMRegister(n);
 262       map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg());
 263       off += delta;
 264     }
 265   }
 266 
 267 #if COMPILER2_OR_JVMCI
 268   if (save_vectors) {
 269     off = ymm0_off;
 270     int delta = ymm1_off - off;
 271     for (int n = 0; n < 16; n++) {
 272       XMMRegister ymm_name = as_XMMRegister(n);
 273       map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4));
 274       off += delta;
 275     }
 276   }
 277 #endif // COMPILER2_OR_JVMCI
 278 
 279   // %%% These should all be a waste but we'll keep things as they were for now
 280   if (true) {
 281     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
 282     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
 283     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
 284     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
 285     // rbp location is known implicitly by the frame sender code, needs no oopmap
 286     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
 287     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
 288     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
 289     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
 290     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
 291     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
 292     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
 293     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
 294     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
 295     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
 296     // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 297     // on EVEX enabled targets, we get it included in the xsave area
 298     off = xmm0H_off;
 299     delta = xmm1H_off - off;
 300     for (int n = 0; n < 16; n++) {
 301       XMMRegister xmm_name = as_XMMRegister(n);
 302       map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
 303       off += delta;
 304     }
 305     if (UseAVX > 2) {
 306       // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 307       off = zmm16H_off;
 308       delta = zmm17H_off - off;
 309       for (int n = 16; n < num_xmm_regs; n++) {
 310         XMMRegister zmm_name = as_XMMRegister(n);
 311         map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next());
 312         off += delta;
 313       }
 314     }
 315   }
 316 
 317   return map;
 318 }
 319 
 320 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 321   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 322   if (UseAVX < 3) {
 323     num_xmm_regs = num_xmm_regs/2;
 324   }
 325   if (frame::arg_reg_save_area_bytes != 0) {
 326     // Pop arg register save area
 327     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 328   }
 329 
 330 #if COMPILER2_OR_JVMCI
 331   if (restore_vectors) {
 332     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 333     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 334   }
 335 #else
 336   assert(!restore_vectors, "vectors are generated only by C2");
 337 #endif
 338 
 339   __ vzeroupper();
 340 
 341   // On EVEX enabled targets everything is handled in pop fpu state
 342   if (restore_vectors) {
 343     // Restore upper half of YMM registers (0..15)
 344     int base_addr = XSAVE_AREA_YMM_BEGIN;
 345     for (int n = 0; n < 16; n++) {
 346       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16));
 347     }
 348     if (VM_Version::supports_evex()) {
 349       // Restore upper half of ZMM registers (0..15)
 350       base_addr = XSAVE_AREA_ZMM_BEGIN;
 351       for (int n = 0; n < 16; n++) {
 352         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32));
 353       }
 354       // Restore full ZMM registers(16..num_xmm_regs)
 355       base_addr = XSAVE_AREA_UPPERBANK;
 356       int vector_len = Assembler::AVX_512bit;
 357       int off = 0;
 358       for (int n = 16; n < num_xmm_regs; n++) {
 359         __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len);
 360       }
 361     }
 362   } else {
 363     if (VM_Version::supports_evex()) {
 364       // Restore upper bank of ZMM registers(16..31) for double/float usage
 365       int base_addr = XSAVE_AREA_UPPERBANK;
 366       int off = 0;
 367       for (int n = 16; n < num_xmm_regs; n++) {
 368         __ movsd(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)));
 369       }
 370     }
 371   }
 372 
 373   // Recover CPU state
 374   __ pop_CPU_state();
 375   // Get the rbp described implicitly by the calling convention (no oopMap)
 376   __ pop(rbp);
 377 }
 378 
 379 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 380 
 381   // Just restore result register. Only used by deoptimization. By
 382   // now any callee save register that needs to be restored to a c2
 383   // caller of the deoptee has been extracted into the vframeArray
 384   // and will be stuffed into the c2i adapter we create for later
 385   // restoration so only result registers need to be restored here.
 386 
 387   // Restore fp result register
 388   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 389   // Restore integer result register
 390   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 391   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 392 
 393   // Pop all of the register save are off the stack except the return address
 394   __ addptr(rsp, return_offset_in_bytes());
 395 }
 396 
 397 // Is vector's size (in bytes) bigger than a size saved by default?
 398 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
 399 bool SharedRuntime::is_wide_vector(int size) {
 400   return size > 16;
 401 }
 402 
 403 size_t SharedRuntime::trampoline_size() {
 404   return 16;
 405 }
 406 
 407 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
 408   __ jump(RuntimeAddress(destination));
 409 }
 410 
 411 // The java_calling_convention describes stack locations as ideal slots on
 412 // a frame with no abi restrictions. Since we must observe abi restrictions
 413 // (like the placement of the register window) the slots must be biased by
 414 // the following value.
 415 static int reg2offset_in(VMReg r) {
 416   // Account for saved rbp and return address
 417   // This should really be in_preserve_stack_slots
 418   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 419 }
 420 
 421 static int reg2offset_out(VMReg r) {
 422   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 423 }
 424 
 425 // ---------------------------------------------------------------------------
 426 // Read the array of BasicTypes from a signature, and compute where the
 427 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 428 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 429 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 430 // as framesizes are fixed.
 431 // VMRegImpl::stack0 refers to the first slot 0(sp).
 432 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 433 // up to RegisterImpl::number_of_registers) are the 64-bit
 434 // integer registers.
 435 
 436 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 437 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 438 // units regardless of build. Of course for i486 there is no 64 bit build
 439 
 440 // The Java calling convention is a "shifted" version of the C ABI.
 441 // By skipping the first C ABI register we can call non-static jni methods
 442 // with small numbers of arguments without having to shuffle the arguments
 443 // at all. Since we control the java ABI we ought to at least get some
 444 // advantage out of it.
 445 
 446 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 447                                            VMRegPair *regs,
 448                                            int total_args_passed,
 449                                            int is_outgoing) {
 450 
 451   // Create the mapping between argument positions and
 452   // registers.
 453   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 454     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 455   };
 456   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 457     j_farg0, j_farg1, j_farg2, j_farg3,
 458     j_farg4, j_farg5, j_farg6, j_farg7
 459   };
 460 
 461 
 462   uint int_args = 0;
 463   uint fp_args = 0;
 464   uint stk_args = 0; // inc by 2 each time
 465 
 466   for (int i = 0; i < total_args_passed; i++) {
 467     switch (sig_bt[i]) {
 468     case T_BOOLEAN:
 469     case T_CHAR:
 470     case T_BYTE:
 471     case T_SHORT:
 472     case T_INT:
 473       if (int_args < Argument::n_int_register_parameters_j) {
 474         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 475       } else {
 476         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 477         stk_args += 2;
 478       }
 479       break;
 480     case T_VOID:
 481       // halves of T_LONG or T_DOUBLE
 482       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 483       regs[i].set_bad();
 484       break;
 485     case T_LONG:
 486       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 487       // fall through
 488     case T_OBJECT:
 489     case T_ARRAY:
 490     case T_ADDRESS:
 491       if (int_args < Argument::n_int_register_parameters_j) {
 492         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 493       } else {
 494         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 495         stk_args += 2;
 496       }
 497       break;
 498     case T_FLOAT:
 499       if (fp_args < Argument::n_float_register_parameters_j) {
 500         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 501       } else {
 502         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 503         stk_args += 2;
 504       }
 505       break;
 506     case T_DOUBLE:
 507       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 508       if (fp_args < Argument::n_float_register_parameters_j) {
 509         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 510       } else {
 511         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 512         stk_args += 2;
 513       }
 514       break;
 515     default:
 516       ShouldNotReachHere();
 517       break;
 518     }
 519   }
 520 
 521   return align_up(stk_args, 2);
 522 }
 523 
 524 // Patch the callers callsite with entry to compiled code if it exists.
 525 static void patch_callers_callsite(MacroAssembler *masm) {
 526   Label L;
 527   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 528   __ jcc(Assembler::equal, L);
 529 
 530   // Save the current stack pointer
 531   __ mov(r13, rsp);
 532   // Schedule the branch target address early.
 533   // Call into the VM to patch the caller, then jump to compiled callee
 534   // rax isn't live so capture return address while we easily can
 535   __ movptr(rax, Address(rsp, 0));
 536 
 537   // align stack so push_CPU_state doesn't fault
 538   __ andptr(rsp, -(StackAlignmentInBytes));
 539   __ push_CPU_state();
 540   __ vzeroupper();
 541   // VM needs caller's callsite
 542   // VM needs target method
 543   // This needs to be a long call since we will relocate this adapter to
 544   // the codeBuffer and it may not reach
 545 
 546   // Allocate argument register save area
 547   if (frame::arg_reg_save_area_bytes != 0) {
 548     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 549   }
 550   __ mov(c_rarg0, rbx);
 551   __ mov(c_rarg1, rax);
 552   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 553 
 554   // De-allocate argument register save area
 555   if (frame::arg_reg_save_area_bytes != 0) {
 556     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 557   }
 558 
 559   __ vzeroupper();
 560   __ pop_CPU_state();
 561   // restore sp
 562   __ mov(rsp, r13);
 563   __ bind(L);
 564 }
 565 
 566 
 567 static void gen_c2i_adapter(MacroAssembler *masm,
 568                             int total_args_passed,
 569                             int comp_args_on_stack,
 570                             const BasicType *sig_bt,
 571                             const VMRegPair *regs,
 572                             Label& skip_fixup) {
 573   // Before we get into the guts of the C2I adapter, see if we should be here
 574   // at all.  We've come from compiled code and are attempting to jump to the
 575   // interpreter, which means the caller made a static call to get here
 576   // (vcalls always get a compiled target if there is one).  Check for a
 577   // compiled target.  If there is one, we need to patch the caller's call.
 578   patch_callers_callsite(masm);
 579 
 580   __ bind(skip_fixup);
 581 
 582   // Since all args are passed on the stack, total_args_passed *
 583   // Interpreter::stackElementSize is the space we need. Plus 1 because
 584   // we also account for the return address location since
 585   // we store it first rather than hold it in rax across all the shuffling
 586 
 587   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 588 
 589   // stack is aligned, keep it that way
 590   extraspace = align_up(extraspace, 2*wordSize);
 591 
 592   // Get return address
 593   __ pop(rax);
 594 
 595   // set senderSP value
 596   __ mov(r13, rsp);
 597 
 598   __ subptr(rsp, extraspace);
 599 
 600   // Store the return address in the expected location
 601   __ movptr(Address(rsp, 0), rax);
 602 
 603   // Now write the args into the outgoing interpreter space
 604   for (int i = 0; i < total_args_passed; i++) {
 605     if (sig_bt[i] == T_VOID) {
 606       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 607       continue;
 608     }
 609 
 610     // offset to start parameters
 611     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 612     int next_off = st_off - Interpreter::stackElementSize;
 613 
 614     // Say 4 args:
 615     // i   st_off
 616     // 0   32 T_LONG
 617     // 1   24 T_VOID
 618     // 2   16 T_OBJECT
 619     // 3    8 T_BOOL
 620     // -    0 return address
 621     //
 622     // However to make thing extra confusing. Because we can fit a long/double in
 623     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 624     // leaves one slot empty and only stores to a single slot. In this case the
 625     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 626 
 627     VMReg r_1 = regs[i].first();
 628     VMReg r_2 = regs[i].second();
 629     if (!r_1->is_valid()) {
 630       assert(!r_2->is_valid(), "");
 631       continue;
 632     }
 633     if (r_1->is_stack()) {
 634       // memory to memory use rax
 635       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 636       if (!r_2->is_valid()) {
 637         // sign extend??
 638         __ movl(rax, Address(rsp, ld_off));
 639         __ movptr(Address(rsp, st_off), rax);
 640 
 641       } else {
 642 
 643         __ movq(rax, Address(rsp, ld_off));
 644 
 645         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 646         // T_DOUBLE and T_LONG use two slots in the interpreter
 647         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 648           // ld_off == LSW, ld_off+wordSize == MSW
 649           // st_off == MSW, next_off == LSW
 650           __ movq(Address(rsp, next_off), rax);
 651 #ifdef ASSERT
 652           // Overwrite the unused slot with known junk
 653           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 654           __ movptr(Address(rsp, st_off), rax);
 655 #endif /* ASSERT */
 656         } else {
 657           __ movq(Address(rsp, st_off), rax);
 658         }
 659       }
 660     } else if (r_1->is_Register()) {
 661       Register r = r_1->as_Register();
 662       if (!r_2->is_valid()) {
 663         // must be only an int (or less ) so move only 32bits to slot
 664         // why not sign extend??
 665         __ movl(Address(rsp, st_off), r);
 666       } else {
 667         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 668         // T_DOUBLE and T_LONG use two slots in the interpreter
 669         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 670           // long/double in gpr
 671 #ifdef ASSERT
 672           // Overwrite the unused slot with known junk
 673           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 674           __ movptr(Address(rsp, st_off), rax);
 675 #endif /* ASSERT */
 676           __ movq(Address(rsp, next_off), r);
 677         } else {
 678           __ movptr(Address(rsp, st_off), r);
 679         }
 680       }
 681     } else {
 682       assert(r_1->is_XMMRegister(), "");
 683       if (!r_2->is_valid()) {
 684         // only a float use just part of the slot
 685         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 686       } else {
 687 #ifdef ASSERT
 688         // Overwrite the unused slot with known junk
 689         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 690         __ movptr(Address(rsp, st_off), rax);
 691 #endif /* ASSERT */
 692         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 693       }
 694     }
 695   }
 696 
 697   // Schedule the branch target address early.
 698   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 699   __ jmp(rcx);
 700 }
 701 
 702 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 703                         address code_start, address code_end,
 704                         Label& L_ok) {
 705   Label L_fail;
 706   __ lea(temp_reg, ExternalAddress(code_start));
 707   __ cmpptr(pc_reg, temp_reg);
 708   __ jcc(Assembler::belowEqual, L_fail);
 709   __ lea(temp_reg, ExternalAddress(code_end));
 710   __ cmpptr(pc_reg, temp_reg);
 711   __ jcc(Assembler::below, L_ok);
 712   __ bind(L_fail);
 713 }
 714 
 715 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 716                                     int total_args_passed,
 717                                     int comp_args_on_stack,
 718                                     const BasicType *sig_bt,
 719                                     const VMRegPair *regs) {
 720 
 721   // Note: r13 contains the senderSP on entry. We must preserve it since
 722   // we may do a i2c -> c2i transition if we lose a race where compiled
 723   // code goes non-entrant while we get args ready.
 724   // In addition we use r13 to locate all the interpreter args as
 725   // we must align the stack to 16 bytes on an i2c entry else we
 726   // lose alignment we expect in all compiled code and register
 727   // save code can segv when fxsave instructions find improperly
 728   // aligned stack pointer.
 729 
 730   // Adapters can be frameless because they do not require the caller
 731   // to perform additional cleanup work, such as correcting the stack pointer.
 732   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 733   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 734   // even if a callee has modified the stack pointer.
 735   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 736   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 737   // up via the senderSP register).
 738   // In other words, if *either* the caller or callee is interpreted, we can
 739   // get the stack pointer repaired after a call.
 740   // This is why c2i and i2c adapters cannot be indefinitely composed.
 741   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 742   // both caller and callee would be compiled methods, and neither would
 743   // clean up the stack pointer changes performed by the two adapters.
 744   // If this happens, control eventually transfers back to the compiled
 745   // caller, but with an uncorrected stack, causing delayed havoc.
 746 
 747   // Pick up the return address
 748   __ movptr(rax, Address(rsp, 0));
 749 
 750   if (VerifyAdapterCalls &&
 751       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 752     // So, let's test for cascading c2i/i2c adapters right now.
 753     //  assert(Interpreter::contains($return_addr) ||
 754     //         StubRoutines::contains($return_addr),
 755     //         "i2c adapter must return to an interpreter frame");
 756     __ block_comment("verify_i2c { ");
 757     Label L_ok;
 758     if (Interpreter::code() != NULL)
 759       range_check(masm, rax, r11,
 760                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 761                   L_ok);
 762     if (StubRoutines::code1() != NULL)
 763       range_check(masm, rax, r11,
 764                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 765                   L_ok);
 766     if (StubRoutines::code2() != NULL)
 767       range_check(masm, rax, r11,
 768                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 769                   L_ok);
 770     const char* msg = "i2c adapter must return to an interpreter frame";
 771     __ block_comment(msg);
 772     __ stop(msg);
 773     __ bind(L_ok);
 774     __ block_comment("} verify_i2ce ");
 775   }
 776 
 777   // Must preserve original SP for loading incoming arguments because
 778   // we need to align the outgoing SP for compiled code.
 779   __ movptr(r11, rsp);
 780 
 781   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 782   // in registers, we will occasionally have no stack args.
 783   int comp_words_on_stack = 0;
 784   if (comp_args_on_stack) {
 785     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 786     // registers are below.  By subtracting stack0, we either get a negative
 787     // number (all values in registers) or the maximum stack slot accessed.
 788 
 789     // Convert 4-byte c2 stack slots to words.
 790     comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 791     // Round up to miminum stack alignment, in wordSize
 792     comp_words_on_stack = align_up(comp_words_on_stack, 2);
 793     __ subptr(rsp, comp_words_on_stack * wordSize);
 794   }
 795 
 796 
 797   // Ensure compiled code always sees stack at proper alignment
 798   __ andptr(rsp, -16);
 799 
 800   // push the return address and misalign the stack that youngest frame always sees
 801   // as far as the placement of the call instruction
 802   __ push(rax);
 803 
 804   // Put saved SP in another register
 805   const Register saved_sp = rax;
 806   __ movptr(saved_sp, r11);
 807 
 808   // Will jump to the compiled code just as if compiled code was doing it.
 809   // Pre-load the register-jump target early, to schedule it better.
 810   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
 811 
 812 #if INCLUDE_JVMCI
 813   if (EnableJVMCI || UseAOT) {
 814     // check if this call should be routed towards a specific entry point
 815     __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 816     Label no_alternative_target;
 817     __ jcc(Assembler::equal, no_alternative_target);
 818     __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 819     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 820     __ bind(no_alternative_target);
 821   }
 822 #endif // INCLUDE_JVMCI
 823 
 824   // Now generate the shuffle code.  Pick up all register args and move the
 825   // rest through the floating point stack top.
 826   for (int i = 0; i < total_args_passed; i++) {
 827     if (sig_bt[i] == T_VOID) {
 828       // Longs and doubles are passed in native word order, but misaligned
 829       // in the 32-bit build.
 830       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 831       continue;
 832     }
 833 
 834     // Pick up 0, 1 or 2 words from SP+offset.
 835 
 836     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 837             "scrambled load targets?");
 838     // Load in argument order going down.
 839     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 840     // Point to interpreter value (vs. tag)
 841     int next_off = ld_off - Interpreter::stackElementSize;
 842     //
 843     //
 844     //
 845     VMReg r_1 = regs[i].first();
 846     VMReg r_2 = regs[i].second();
 847     if (!r_1->is_valid()) {
 848       assert(!r_2->is_valid(), "");
 849       continue;
 850     }
 851     if (r_1->is_stack()) {
 852       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 853       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 854 
 855       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 856       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 857       // will be generated.
 858       if (!r_2->is_valid()) {
 859         // sign extend???
 860         __ movl(r13, Address(saved_sp, ld_off));
 861         __ movptr(Address(rsp, st_off), r13);
 862       } else {
 863         //
 864         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 865         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 866         // So we must adjust where to pick up the data to match the interpreter.
 867         //
 868         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 869         // are accessed as negative so LSW is at LOW address
 870 
 871         // ld_off is MSW so get LSW
 872         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 873                            next_off : ld_off;
 874         __ movq(r13, Address(saved_sp, offset));
 875         // st_off is LSW (i.e. reg.first())
 876         __ movq(Address(rsp, st_off), r13);
 877       }
 878     } else if (r_1->is_Register()) {  // Register argument
 879       Register r = r_1->as_Register();
 880       assert(r != rax, "must be different");
 881       if (r_2->is_valid()) {
 882         //
 883         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 884         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 885         // So we must adjust where to pick up the data to match the interpreter.
 886 
 887         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 888                            next_off : ld_off;
 889 
 890         // this can be a misaligned move
 891         __ movq(r, Address(saved_sp, offset));
 892       } else {
 893         // sign extend and use a full word?
 894         __ movl(r, Address(saved_sp, ld_off));
 895       }
 896     } else {
 897       if (!r_2->is_valid()) {
 898         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 899       } else {
 900         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 901       }
 902     }
 903   }
 904 
 905   // 6243940 We might end up in handle_wrong_method if
 906   // the callee is deoptimized as we race thru here. If that
 907   // happens we don't want to take a safepoint because the
 908   // caller frame will look interpreted and arguments are now
 909   // "compiled" so it is much better to make this transition
 910   // invisible to the stack walking code. Unfortunately if
 911   // we try and find the callee by normal means a safepoint
 912   // is possible. So we stash the desired callee in the thread
 913   // and the vm will find there should this case occur.
 914 
 915   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 916 
 917   // put Method* where a c2i would expect should we end up there
 918   // only needed becaus eof c2 resolve stubs return Method* as a result in
 919   // rax
 920   __ mov(rax, rbx);
 921   __ jmp(r11);
 922 }
 923 
 924 // ---------------------------------------------------------------
 925 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 926                                                             int total_args_passed,
 927                                                             int comp_args_on_stack,
 928                                                             const BasicType *sig_bt,
 929                                                             const VMRegPair *regs,
 930                                                             AdapterFingerPrint* fingerprint) {
 931   address i2c_entry = __ pc();
 932 
 933   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 934 
 935   // -------------------------------------------------------------------------
 936   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
 937   // to the interpreter.  The args start out packed in the compiled layout.  They
 938   // need to be unpacked into the interpreter layout.  This will almost always
 939   // require some stack space.  We grow the current (compiled) stack, then repack
 940   // the args.  We  finally end in a jump to the generic interpreter entry point.
 941   // On exit from the interpreter, the interpreter will restore our SP (lest the
 942   // compiled code, which relys solely on SP and not RBP, get sick).
 943 
 944   address c2i_unverified_entry = __ pc();
 945   Label skip_fixup;
 946   Label ok;
 947 
 948   Register holder = rax;
 949   Register receiver = j_rarg0;
 950   Register temp = rbx;
 951 
 952   {
 953     __ load_klass(temp, receiver);
 954     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 955     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
 956     __ jcc(Assembler::equal, ok);
 957     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 958 
 959     __ bind(ok);
 960     // Method might have been compiled since the call site was patched to
 961     // interpreted if that is the case treat it as a miss so we can get
 962     // the call site corrected.
 963     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 964     __ jcc(Assembler::equal, skip_fixup);
 965     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 966   }
 967 
 968   address c2i_entry = __ pc();
 969 
 970   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 971 
 972   __ flush();
 973   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 974 }
 975 
 976 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 977                                          VMRegPair *regs,
 978                                          VMRegPair *regs2,
 979                                          int total_args_passed) {
 980   assert(regs2 == NULL, "not needed on x86");
 981 // We return the amount of VMRegImpl stack slots we need to reserve for all
 982 // the arguments NOT counting out_preserve_stack_slots.
 983 
 984 // NOTE: These arrays will have to change when c1 is ported
 985 #ifdef _WIN64
 986     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 987       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 988     };
 989     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 990       c_farg0, c_farg1, c_farg2, c_farg3
 991     };
 992 #else
 993     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 994       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 995     };
 996     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 997       c_farg0, c_farg1, c_farg2, c_farg3,
 998       c_farg4, c_farg5, c_farg6, c_farg7
 999     };
1000 #endif // _WIN64
1001 
1002 
1003     uint int_args = 0;
1004     uint fp_args = 0;
1005     uint stk_args = 0; // inc by 2 each time
1006 
1007     for (int i = 0; i < total_args_passed; i++) {
1008       switch (sig_bt[i]) {
1009       case T_BOOLEAN:
1010       case T_CHAR:
1011       case T_BYTE:
1012       case T_SHORT:
1013       case T_INT:
1014         if (int_args < Argument::n_int_register_parameters_c) {
1015           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
1016 #ifdef _WIN64
1017           fp_args++;
1018           // Allocate slots for callee to stuff register args the stack.
1019           stk_args += 2;
1020 #endif
1021         } else {
1022           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1023           stk_args += 2;
1024         }
1025         break;
1026       case T_LONG:
1027         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1028         // fall through
1029       case T_OBJECT:
1030       case T_ARRAY:
1031       case T_ADDRESS:
1032       case T_METADATA:
1033         if (int_args < Argument::n_int_register_parameters_c) {
1034           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
1035 #ifdef _WIN64
1036           fp_args++;
1037           stk_args += 2;
1038 #endif
1039         } else {
1040           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1041           stk_args += 2;
1042         }
1043         break;
1044       case T_FLOAT:
1045         if (fp_args < Argument::n_float_register_parameters_c) {
1046           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
1047 #ifdef _WIN64
1048           int_args++;
1049           // Allocate slots for callee to stuff register args the stack.
1050           stk_args += 2;
1051 #endif
1052         } else {
1053           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1054           stk_args += 2;
1055         }
1056         break;
1057       case T_DOUBLE:
1058         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1059         if (fp_args < Argument::n_float_register_parameters_c) {
1060           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
1061 #ifdef _WIN64
1062           int_args++;
1063           // Allocate slots for callee to stuff register args the stack.
1064           stk_args += 2;
1065 #endif
1066         } else {
1067           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1068           stk_args += 2;
1069         }
1070         break;
1071       case T_VOID: // Halves of longs and doubles
1072         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1073         regs[i].set_bad();
1074         break;
1075       default:
1076         ShouldNotReachHere();
1077         break;
1078       }
1079     }
1080 #ifdef _WIN64
1081   // windows abi requires that we always allocate enough stack space
1082   // for 4 64bit registers to be stored down.
1083   if (stk_args < 8) {
1084     stk_args = 8;
1085   }
1086 #endif // _WIN64
1087 
1088   return stk_args;
1089 }
1090 
1091 // On 64 bit we will store integer like items to the stack as
1092 // 64 bits items (sparc abi) even though java would only store
1093 // 32bits for a parameter. On 32bit it will simply be 32 bits
1094 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1095 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1096   if (src.first()->is_stack()) {
1097     if (dst.first()->is_stack()) {
1098       // stack to stack
1099       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1100       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1101     } else {
1102       // stack to reg
1103       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1104     }
1105   } else if (dst.first()->is_stack()) {
1106     // reg to stack
1107     // Do we really have to sign extend???
1108     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1109     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1110   } else {
1111     // Do we really have to sign extend???
1112     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1113     if (dst.first() != src.first()) {
1114       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1115     }
1116   }
1117 }
1118 
1119 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1120   if (src.first()->is_stack()) {
1121     if (dst.first()->is_stack()) {
1122       // stack to stack
1123       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1124       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1125     } else {
1126       // stack to reg
1127       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1128     }
1129   } else if (dst.first()->is_stack()) {
1130     // reg to stack
1131     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1132   } else {
1133     if (dst.first() != src.first()) {
1134       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1135     }
1136   }
1137 }
1138 
1139 // An oop arg. Must pass a handle not the oop itself
1140 static void object_move(MacroAssembler* masm,
1141                         OopMap* map,
1142                         int oop_handle_offset,
1143                         int framesize_in_slots,
1144                         VMRegPair src,
1145                         VMRegPair dst,
1146                         bool is_receiver,
1147                         int* receiver_offset) {
1148 
1149   // must pass a handle. First figure out the location we use as a handle
1150 
1151   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1152 
1153   // See if oop is NULL if it is we need no handle
1154 
1155   if (src.first()->is_stack()) {
1156 
1157     // Oop is already on the stack as an argument
1158     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1159     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1160     if (is_receiver) {
1161       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1162     }
1163 
1164     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1165     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1166     // conditionally move a NULL
1167     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1168   } else {
1169 
1170     // Oop is in an a register we must store it to the space we reserve
1171     // on the stack for oop_handles and pass a handle if oop is non-NULL
1172 
1173     const Register rOop = src.first()->as_Register();
1174     int oop_slot;
1175     if (rOop == j_rarg0)
1176       oop_slot = 0;
1177     else if (rOop == j_rarg1)
1178       oop_slot = 1;
1179     else if (rOop == j_rarg2)
1180       oop_slot = 2;
1181     else if (rOop == j_rarg3)
1182       oop_slot = 3;
1183     else if (rOop == j_rarg4)
1184       oop_slot = 4;
1185     else {
1186       assert(rOop == j_rarg5, "wrong register");
1187       oop_slot = 5;
1188     }
1189 
1190     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1191     int offset = oop_slot*VMRegImpl::stack_slot_size;
1192 
1193     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1194     // Store oop in handle area, may be NULL
1195     __ movptr(Address(rsp, offset), rOop);
1196     if (is_receiver) {
1197       *receiver_offset = offset;
1198     }
1199 
1200     __ cmpptr(rOop, (int32_t)NULL_WORD);
1201     __ lea(rHandle, Address(rsp, offset));
1202     // conditionally move a NULL from the handle area where it was just stored
1203     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1204   }
1205 
1206   // If arg is on the stack then place it otherwise it is already in correct reg.
1207   if (dst.first()->is_stack()) {
1208     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1209   }
1210 }
1211 
1212 // A float arg may have to do float reg int reg conversion
1213 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1214   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1215 
1216   // The calling conventions assures us that each VMregpair is either
1217   // all really one physical register or adjacent stack slots.
1218   // This greatly simplifies the cases here compared to sparc.
1219 
1220   if (src.first()->is_stack()) {
1221     if (dst.first()->is_stack()) {
1222       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1223       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1224     } else {
1225       // stack to reg
1226       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1227       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1228     }
1229   } else if (dst.first()->is_stack()) {
1230     // reg to stack
1231     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1232     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1233   } else {
1234     // reg to reg
1235     // In theory these overlap but the ordering is such that this is likely a nop
1236     if ( src.first() != dst.first()) {
1237       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1238     }
1239   }
1240 }
1241 
1242 // A long move
1243 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1244 
1245   // The calling conventions assures us that each VMregpair is either
1246   // all really one physical register or adjacent stack slots.
1247   // This greatly simplifies the cases here compared to sparc.
1248 
1249   if (src.is_single_phys_reg() ) {
1250     if (dst.is_single_phys_reg()) {
1251       if (dst.first() != src.first()) {
1252         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1253       }
1254     } else {
1255       assert(dst.is_single_reg(), "not a stack pair");
1256       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1257     }
1258   } else if (dst.is_single_phys_reg()) {
1259     assert(src.is_single_reg(),  "not a stack pair");
1260     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1261   } else {
1262     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1263     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1264     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1265   }
1266 }
1267 
1268 // A double move
1269 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1270 
1271   // The calling conventions assures us that each VMregpair is either
1272   // all really one physical register or adjacent stack slots.
1273   // This greatly simplifies the cases here compared to sparc.
1274 
1275   if (src.is_single_phys_reg() ) {
1276     if (dst.is_single_phys_reg()) {
1277       // In theory these overlap but the ordering is such that this is likely a nop
1278       if ( src.first() != dst.first()) {
1279         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1280       }
1281     } else {
1282       assert(dst.is_single_reg(), "not a stack pair");
1283       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1284     }
1285   } else if (dst.is_single_phys_reg()) {
1286     assert(src.is_single_reg(),  "not a stack pair");
1287     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1288   } else {
1289     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1290     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1291     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1292   }
1293 }
1294 
1295 
1296 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1297   // We always ignore the frame_slots arg and just use the space just below frame pointer
1298   // which by this time is free to use
1299   switch (ret_type) {
1300   case T_FLOAT:
1301     __ movflt(Address(rbp, -wordSize), xmm0);
1302     break;
1303   case T_DOUBLE:
1304     __ movdbl(Address(rbp, -wordSize), xmm0);
1305     break;
1306   case T_VOID:  break;
1307   default: {
1308     __ movptr(Address(rbp, -wordSize), rax);
1309     }
1310   }
1311 }
1312 
1313 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1314   // We always ignore the frame_slots arg and just use the space just below frame pointer
1315   // which by this time is free to use
1316   switch (ret_type) {
1317   case T_FLOAT:
1318     __ movflt(xmm0, Address(rbp, -wordSize));
1319     break;
1320   case T_DOUBLE:
1321     __ movdbl(xmm0, Address(rbp, -wordSize));
1322     break;
1323   case T_VOID:  break;
1324   default: {
1325     __ movptr(rax, Address(rbp, -wordSize));
1326     }
1327   }
1328 }
1329 
1330 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1331     for ( int i = first_arg ; i < arg_count ; i++ ) {
1332       if (args[i].first()->is_Register()) {
1333         __ push(args[i].first()->as_Register());
1334       } else if (args[i].first()->is_XMMRegister()) {
1335         __ subptr(rsp, 2*wordSize);
1336         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1337       }
1338     }
1339 }
1340 
1341 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1342     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1343       if (args[i].first()->is_Register()) {
1344         __ pop(args[i].first()->as_Register());
1345       } else if (args[i].first()->is_XMMRegister()) {
1346         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1347         __ addptr(rsp, 2*wordSize);
1348       }
1349     }
1350 }
1351 
1352 
1353 static void save_or_restore_arguments(MacroAssembler* masm,
1354                                       const int stack_slots,
1355                                       const int total_in_args,
1356                                       const int arg_save_area,
1357                                       OopMap* map,
1358                                       VMRegPair* in_regs,
1359                                       BasicType* in_sig_bt) {
1360   // if map is non-NULL then the code should store the values,
1361   // otherwise it should load them.
1362   int slot = arg_save_area;
1363   // Save down double word first
1364   for ( int i = 0; i < total_in_args; i++) {
1365     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1366       int offset = slot * VMRegImpl::stack_slot_size;
1367       slot += VMRegImpl::slots_per_word;
1368       assert(slot <= stack_slots, "overflow");
1369       if (map != NULL) {
1370         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1371       } else {
1372         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1373       }
1374     }
1375     if (in_regs[i].first()->is_Register() &&
1376         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1377       int offset = slot * VMRegImpl::stack_slot_size;
1378       if (map != NULL) {
1379         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1380         if (in_sig_bt[i] == T_ARRAY) {
1381           map->set_oop(VMRegImpl::stack2reg(slot));;
1382         }
1383       } else {
1384         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1385       }
1386       slot += VMRegImpl::slots_per_word;
1387     }
1388   }
1389   // Save or restore single word registers
1390   for ( int i = 0; i < total_in_args; i++) {
1391     if (in_regs[i].first()->is_Register()) {
1392       int offset = slot * VMRegImpl::stack_slot_size;
1393       slot++;
1394       assert(slot <= stack_slots, "overflow");
1395 
1396       // Value is in an input register pass we must flush it to the stack
1397       const Register reg = in_regs[i].first()->as_Register();
1398       switch (in_sig_bt[i]) {
1399         case T_BOOLEAN:
1400         case T_CHAR:
1401         case T_BYTE:
1402         case T_SHORT:
1403         case T_INT:
1404           if (map != NULL) {
1405             __ movl(Address(rsp, offset), reg);
1406           } else {
1407             __ movl(reg, Address(rsp, offset));
1408           }
1409           break;
1410         case T_ARRAY:
1411         case T_LONG:
1412           // handled above
1413           break;
1414         case T_OBJECT:
1415         default: ShouldNotReachHere();
1416       }
1417     } else if (in_regs[i].first()->is_XMMRegister()) {
1418       if (in_sig_bt[i] == T_FLOAT) {
1419         int offset = slot * VMRegImpl::stack_slot_size;
1420         slot++;
1421         assert(slot <= stack_slots, "overflow");
1422         if (map != NULL) {
1423           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1424         } else {
1425           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1426         }
1427       }
1428     } else if (in_regs[i].first()->is_stack()) {
1429       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1430         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1431         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1432       }
1433     }
1434   }
1435 }
1436 
1437 
1438 // Check GCLocker::needs_gc and enter the runtime if it's true.  This
1439 // keeps a new JNI critical region from starting until a GC has been
1440 // forced.  Save down any oops in registers and describe them in an
1441 // OopMap.
1442 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1443                                                int stack_slots,
1444                                                int total_c_args,
1445                                                int total_in_args,
1446                                                int arg_save_area,
1447                                                OopMapSet* oop_maps,
1448                                                VMRegPair* in_regs,
1449                                                BasicType* in_sig_bt) {
1450   __ block_comment("check GCLocker::needs_gc");
1451   Label cont;
1452   __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
1453   __ jcc(Assembler::equal, cont);
1454 
1455   // Save down any incoming oops and call into the runtime to halt for a GC
1456 
1457   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1458   save_or_restore_arguments(masm, stack_slots, total_in_args,
1459                             arg_save_area, map, in_regs, in_sig_bt);
1460 
1461   address the_pc = __ pc();
1462   oop_maps->add_gc_map( __ offset(), map);
1463   __ set_last_Java_frame(rsp, noreg, the_pc);
1464 
1465   __ block_comment("block_for_jni_critical");
1466   __ movptr(c_rarg0, r15_thread);
1467   __ mov(r12, rsp); // remember sp
1468   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1469   __ andptr(rsp, -16); // align stack as required by ABI
1470   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1471   __ mov(rsp, r12); // restore sp
1472   __ reinit_heapbase();
1473 
1474   __ reset_last_Java_frame(false);
1475 
1476   save_or_restore_arguments(masm, stack_slots, total_in_args,
1477                             arg_save_area, NULL, in_regs, in_sig_bt);
1478   __ bind(cont);
1479 #ifdef ASSERT
1480   if (StressCriticalJNINatives) {
1481     // Stress register saving
1482     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1483     save_or_restore_arguments(masm, stack_slots, total_in_args,
1484                               arg_save_area, map, in_regs, in_sig_bt);
1485     // Destroy argument registers
1486     for (int i = 0; i < total_in_args - 1; i++) {
1487       if (in_regs[i].first()->is_Register()) {
1488         const Register reg = in_regs[i].first()->as_Register();
1489         __ xorptr(reg, reg);
1490       } else if (in_regs[i].first()->is_XMMRegister()) {
1491         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1492       } else if (in_regs[i].first()->is_FloatRegister()) {
1493         ShouldNotReachHere();
1494       } else if (in_regs[i].first()->is_stack()) {
1495         // Nothing to do
1496       } else {
1497         ShouldNotReachHere();
1498       }
1499       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1500         i++;
1501       }
1502     }
1503 
1504     save_or_restore_arguments(masm, stack_slots, total_in_args,
1505                               arg_save_area, NULL, in_regs, in_sig_bt);
1506   }
1507 #endif
1508 }
1509 
1510 // Unpack an array argument into a pointer to the body and the length
1511 // if the array is non-null, otherwise pass 0 for both.
1512 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1513   Register tmp_reg = rax;
1514   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1515          "possible collision");
1516   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1517          "possible collision");
1518 
1519   __ block_comment("unpack_array_argument {");
1520 
1521   // Pass the length, ptr pair
1522   Label is_null, done;
1523   VMRegPair tmp;
1524   tmp.set_ptr(tmp_reg->as_VMReg());
1525   if (reg.first()->is_stack()) {
1526     // Load the arg up from the stack
1527     move_ptr(masm, reg, tmp);
1528     reg = tmp;
1529   }
1530   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1531   __ jccb(Assembler::equal, is_null);
1532   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1533   move_ptr(masm, tmp, body_arg);
1534   // load the length relative to the body.
1535   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1536                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1537   move32_64(masm, tmp, length_arg);
1538   __ jmpb(done);
1539   __ bind(is_null);
1540   // Pass zeros
1541   __ xorptr(tmp_reg, tmp_reg);
1542   move_ptr(masm, tmp, body_arg);
1543   move32_64(masm, tmp, length_arg);
1544   __ bind(done);
1545 
1546   __ block_comment("} unpack_array_argument");
1547 }
1548 
1549 
1550 // Different signatures may require very different orders for the move
1551 // to avoid clobbering other arguments.  There's no simple way to
1552 // order them safely.  Compute a safe order for issuing stores and
1553 // break any cycles in those stores.  This code is fairly general but
1554 // it's not necessary on the other platforms so we keep it in the
1555 // platform dependent code instead of moving it into a shared file.
1556 // (See bugs 7013347 & 7145024.)
1557 // Note that this code is specific to LP64.
1558 class ComputeMoveOrder: public StackObj {
1559   class MoveOperation: public ResourceObj {
1560     friend class ComputeMoveOrder;
1561    private:
1562     VMRegPair        _src;
1563     VMRegPair        _dst;
1564     int              _src_index;
1565     int              _dst_index;
1566     bool             _processed;
1567     MoveOperation*  _next;
1568     MoveOperation*  _prev;
1569 
1570     static int get_id(VMRegPair r) {
1571       return r.first()->value();
1572     }
1573 
1574    public:
1575     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1576       _src(src)
1577     , _src_index(src_index)
1578     , _dst(dst)
1579     , _dst_index(dst_index)
1580     , _next(NULL)
1581     , _prev(NULL)
1582     , _processed(false) {
1583     }
1584 
1585     VMRegPair src() const              { return _src; }
1586     int src_id() const                 { return get_id(src()); }
1587     int src_index() const              { return _src_index; }
1588     VMRegPair dst() const              { return _dst; }
1589     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
1590     int dst_index() const              { return _dst_index; }
1591     int dst_id() const                 { return get_id(dst()); }
1592     MoveOperation* next() const       { return _next; }
1593     MoveOperation* prev() const       { return _prev; }
1594     void set_processed()               { _processed = true; }
1595     bool is_processed() const          { return _processed; }
1596 
1597     // insert
1598     void break_cycle(VMRegPair temp_register) {
1599       // create a new store following the last store
1600       // to move from the temp_register to the original
1601       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1602 
1603       // break the cycle of links and insert new_store at the end
1604       // break the reverse link.
1605       MoveOperation* p = prev();
1606       assert(p->next() == this, "must be");
1607       _prev = NULL;
1608       p->_next = new_store;
1609       new_store->_prev = p;
1610 
1611       // change the original store to save it's value in the temp.
1612       set_dst(-1, temp_register);
1613     }
1614 
1615     void link(GrowableArray<MoveOperation*>& killer) {
1616       // link this store in front the store that it depends on
1617       MoveOperation* n = killer.at_grow(src_id(), NULL);
1618       if (n != NULL) {
1619         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1620         _next = n;
1621         n->_prev = this;
1622       }
1623     }
1624   };
1625 
1626  private:
1627   GrowableArray<MoveOperation*> edges;
1628 
1629  public:
1630   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1631                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1632     // Move operations where the dest is the stack can all be
1633     // scheduled first since they can't interfere with the other moves.
1634     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1635       if (in_sig_bt[i] == T_ARRAY) {
1636         c_arg--;
1637         if (out_regs[c_arg].first()->is_stack() &&
1638             out_regs[c_arg + 1].first()->is_stack()) {
1639           arg_order.push(i);
1640           arg_order.push(c_arg);
1641         } else {
1642           if (out_regs[c_arg].first()->is_stack() ||
1643               in_regs[i].first() == out_regs[c_arg].first()) {
1644             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1645           } else {
1646             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1647           }
1648         }
1649       } else if (in_sig_bt[i] == T_VOID) {
1650         arg_order.push(i);
1651         arg_order.push(c_arg);
1652       } else {
1653         if (out_regs[c_arg].first()->is_stack() ||
1654             in_regs[i].first() == out_regs[c_arg].first()) {
1655           arg_order.push(i);
1656           arg_order.push(c_arg);
1657         } else {
1658           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1659         }
1660       }
1661     }
1662     // Break any cycles in the register moves and emit the in the
1663     // proper order.
1664     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1665     for (int i = 0; i < stores->length(); i++) {
1666       arg_order.push(stores->at(i)->src_index());
1667       arg_order.push(stores->at(i)->dst_index());
1668     }
1669  }
1670 
1671   // Collected all the move operations
1672   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
1673     if (src.first() == dst.first()) return;
1674     edges.append(new MoveOperation(src_index, src, dst_index, dst));
1675   }
1676 
1677   // Walk the edges breaking cycles between moves.  The result list
1678   // can be walked in order to produce the proper set of loads
1679   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
1680     // Record which moves kill which values
1681     GrowableArray<MoveOperation*> killer;
1682     for (int i = 0; i < edges.length(); i++) {
1683       MoveOperation* s = edges.at(i);
1684       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
1685       killer.at_put_grow(s->dst_id(), s, NULL);
1686     }
1687     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
1688            "make sure temp isn't in the registers that are killed");
1689 
1690     // create links between loads and stores
1691     for (int i = 0; i < edges.length(); i++) {
1692       edges.at(i)->link(killer);
1693     }
1694 
1695     // at this point, all the move operations are chained together
1696     // in a doubly linked list.  Processing it backwards finds
1697     // the beginning of the chain, forwards finds the end.  If there's
1698     // a cycle it can be broken at any point,  so pick an edge and walk
1699     // backward until the list ends or we end where we started.
1700     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
1701     for (int e = 0; e < edges.length(); e++) {
1702       MoveOperation* s = edges.at(e);
1703       if (!s->is_processed()) {
1704         MoveOperation* start = s;
1705         // search for the beginning of the chain or cycle
1706         while (start->prev() != NULL && start->prev() != s) {
1707           start = start->prev();
1708         }
1709         if (start->prev() == s) {
1710           start->break_cycle(temp_register);
1711         }
1712         // walk the chain forward inserting to store list
1713         while (start != NULL) {
1714           stores->append(start);
1715           start->set_processed();
1716           start = start->next();
1717         }
1718       }
1719     }
1720     return stores;
1721   }
1722 };
1723 
1724 static void verify_oop_args(MacroAssembler* masm,
1725                             const methodHandle& method,
1726                             const BasicType* sig_bt,
1727                             const VMRegPair* regs) {
1728   Register temp_reg = rbx;  // not part of any compiled calling seq
1729   if (VerifyOops) {
1730     for (int i = 0; i < method->size_of_parameters(); i++) {
1731       if (sig_bt[i] == T_OBJECT ||
1732           sig_bt[i] == T_ARRAY) {
1733         VMReg r = regs[i].first();
1734         assert(r->is_valid(), "bad oop arg");
1735         if (r->is_stack()) {
1736           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1737           __ verify_oop(temp_reg);
1738         } else {
1739           __ verify_oop(r->as_Register());
1740         }
1741       }
1742     }
1743   }
1744 }
1745 
1746 static void gen_special_dispatch(MacroAssembler* masm,
1747                                  const methodHandle& method,
1748                                  const BasicType* sig_bt,
1749                                  const VMRegPair* regs) {
1750   verify_oop_args(masm, method, sig_bt, regs);
1751   vmIntrinsics::ID iid = method->intrinsic_id();
1752 
1753   // Now write the args into the outgoing interpreter space
1754   bool     has_receiver   = false;
1755   Register receiver_reg   = noreg;
1756   int      member_arg_pos = -1;
1757   Register member_reg     = noreg;
1758   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1759   if (ref_kind != 0) {
1760     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1761     member_reg = rbx;  // known to be free at this point
1762     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1763   } else if (iid == vmIntrinsics::_invokeBasic) {
1764     has_receiver = true;
1765   } else {
1766     fatal("unexpected intrinsic id %d", iid);
1767   }
1768 
1769   if (member_reg != noreg) {
1770     // Load the member_arg into register, if necessary.
1771     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1772     VMReg r = regs[member_arg_pos].first();
1773     if (r->is_stack()) {
1774       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1775     } else {
1776       // no data motion is needed
1777       member_reg = r->as_Register();
1778     }
1779   }
1780 
1781   if (has_receiver) {
1782     // Make sure the receiver is loaded into a register.
1783     assert(method->size_of_parameters() > 0, "oob");
1784     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1785     VMReg r = regs[0].first();
1786     assert(r->is_valid(), "bad receiver arg");
1787     if (r->is_stack()) {
1788       // Porting note:  This assumes that compiled calling conventions always
1789       // pass the receiver oop in a register.  If this is not true on some
1790       // platform, pick a temp and load the receiver from stack.
1791       fatal("receiver always in a register");
1792       receiver_reg = j_rarg0;  // known to be free at this point
1793       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1794     } else {
1795       // no data motion is needed
1796       receiver_reg = r->as_Register();
1797     }
1798   }
1799 
1800   // Figure out which address we are really jumping to:
1801   MethodHandles::generate_method_handle_dispatch(masm, iid,
1802                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1803 }
1804 
1805 // ---------------------------------------------------------------------------
1806 // Generate a native wrapper for a given method.  The method takes arguments
1807 // in the Java compiled code convention, marshals them to the native
1808 // convention (handlizes oops, etc), transitions to native, makes the call,
1809 // returns to java state (possibly blocking), unhandlizes any result and
1810 // returns.
1811 //
1812 // Critical native functions are a shorthand for the use of
1813 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1814 // functions.  The wrapper is expected to unpack the arguments before
1815 // passing them to the callee and perform checks before and after the
1816 // native call to ensure that they GCLocker
1817 // lock_critical/unlock_critical semantics are followed.  Some other
1818 // parts of JNI setup are skipped like the tear down of the JNI handle
1819 // block and the check for pending exceptions it's impossible for them
1820 // to be thrown.
1821 //
1822 // They are roughly structured like this:
1823 //    if (GCLocker::needs_gc())
1824 //      SharedRuntime::block_for_jni_critical();
1825 //    tranistion to thread_in_native
1826 //    unpack arrray arguments and call native entry point
1827 //    check for safepoint in progress
1828 //    check if any thread suspend flags are set
1829 //      call into JVM and possible unlock the JNI critical
1830 //      if a GC was suppressed while in the critical native.
1831 //    transition back to thread_in_Java
1832 //    return to caller
1833 //
1834 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1835                                                 const methodHandle& method,
1836                                                 int compile_id,
1837                                                 BasicType* in_sig_bt,
1838                                                 VMRegPair* in_regs,
1839                                                 BasicType ret_type,
1840                                                 address critical_entry) {
1841   if (method->is_method_handle_intrinsic()) {
1842     vmIntrinsics::ID iid = method->intrinsic_id();
1843     intptr_t start = (intptr_t)__ pc();
1844     int vep_offset = ((intptr_t)__ pc()) - start;
1845     gen_special_dispatch(masm,
1846                          method,
1847                          in_sig_bt,
1848                          in_regs);
1849     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1850     __ flush();
1851     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1852     return nmethod::new_native_nmethod(method,
1853                                        compile_id,
1854                                        masm->code(),
1855                                        vep_offset,
1856                                        frame_complete,
1857                                        stack_slots / VMRegImpl::slots_per_word,
1858                                        in_ByteSize(-1),
1859                                        in_ByteSize(-1),
1860                                        (OopMapSet*)NULL);
1861   }
1862   bool is_critical_native = true;
1863   address native_func = critical_entry;
1864   if (native_func == NULL) {
1865     native_func = method->native_function();
1866     is_critical_native = false;
1867   }
1868   assert(native_func != NULL, "must have function");
1869 
1870   // An OopMap for lock (and class if static)
1871   OopMapSet *oop_maps = new OopMapSet();
1872   intptr_t start = (intptr_t)__ pc();
1873 
1874   // We have received a description of where all the java arg are located
1875   // on entry to the wrapper. We need to convert these args to where
1876   // the jni function will expect them. To figure out where they go
1877   // we convert the java signature to a C signature by inserting
1878   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1879 
1880   const int total_in_args = method->size_of_parameters();
1881   int total_c_args = total_in_args;
1882   if (!is_critical_native) {
1883     total_c_args += 1;
1884     if (method->is_static()) {
1885       total_c_args++;
1886     }
1887   } else {
1888     for (int i = 0; i < total_in_args; i++) {
1889       if (in_sig_bt[i] == T_ARRAY) {
1890         total_c_args++;
1891       }
1892     }
1893   }
1894 
1895   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1896   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1897   BasicType* in_elem_bt = NULL;
1898 
1899   int argc = 0;
1900   if (!is_critical_native) {
1901     out_sig_bt[argc++] = T_ADDRESS;
1902     if (method->is_static()) {
1903       out_sig_bt[argc++] = T_OBJECT;
1904     }
1905 
1906     for (int i = 0; i < total_in_args ; i++ ) {
1907       out_sig_bt[argc++] = in_sig_bt[i];
1908     }
1909   } else {
1910     Thread* THREAD = Thread::current();
1911     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1912     SignatureStream ss(method->signature());
1913     for (int i = 0; i < total_in_args ; i++ ) {
1914       if (in_sig_bt[i] == T_ARRAY) {
1915         // Arrays are passed as int, elem* pair
1916         out_sig_bt[argc++] = T_INT;
1917         out_sig_bt[argc++] = T_ADDRESS;
1918         Symbol* atype = ss.as_symbol(CHECK_NULL);
1919         const char* at = atype->as_C_string();
1920         if (strlen(at) == 2) {
1921           assert(at[0] == '[', "must be");
1922           switch (at[1]) {
1923             case 'B': in_elem_bt[i]  = T_BYTE; break;
1924             case 'C': in_elem_bt[i]  = T_CHAR; break;
1925             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1926             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1927             case 'I': in_elem_bt[i]  = T_INT; break;
1928             case 'J': in_elem_bt[i]  = T_LONG; break;
1929             case 'S': in_elem_bt[i]  = T_SHORT; break;
1930             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1931             default: ShouldNotReachHere();
1932           }
1933         }
1934       } else {
1935         out_sig_bt[argc++] = in_sig_bt[i];
1936         in_elem_bt[i] = T_VOID;
1937       }
1938       if (in_sig_bt[i] != T_VOID) {
1939         assert(in_sig_bt[i] == ss.type(), "must match");
1940         ss.next();
1941       }
1942     }
1943   }
1944 
1945   // Now figure out where the args must be stored and how much stack space
1946   // they require.
1947   int out_arg_slots;
1948   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1949 
1950   // Compute framesize for the wrapper.  We need to handlize all oops in
1951   // incoming registers
1952 
1953   // Calculate the total number of stack slots we will need.
1954 
1955   // First count the abi requirement plus all of the outgoing args
1956   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1957 
1958   // Now the space for the inbound oop handle area
1959   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1960   if (is_critical_native) {
1961     // Critical natives may have to call out so they need a save area
1962     // for register arguments.
1963     int double_slots = 0;
1964     int single_slots = 0;
1965     for ( int i = 0; i < total_in_args; i++) {
1966       if (in_regs[i].first()->is_Register()) {
1967         const Register reg = in_regs[i].first()->as_Register();
1968         switch (in_sig_bt[i]) {
1969           case T_BOOLEAN:
1970           case T_BYTE:
1971           case T_SHORT:
1972           case T_CHAR:
1973           case T_INT:  single_slots++; break;
1974           case T_ARRAY:  // specific to LP64 (7145024)
1975           case T_LONG: double_slots++; break;
1976           default:  ShouldNotReachHere();
1977         }
1978       } else if (in_regs[i].first()->is_XMMRegister()) {
1979         switch (in_sig_bt[i]) {
1980           case T_FLOAT:  single_slots++; break;
1981           case T_DOUBLE: double_slots++; break;
1982           default:  ShouldNotReachHere();
1983         }
1984       } else if (in_regs[i].first()->is_FloatRegister()) {
1985         ShouldNotReachHere();
1986       }
1987     }
1988     total_save_slots = double_slots * 2 + single_slots;
1989     // align the save area
1990     if (double_slots != 0) {
1991       stack_slots = align_up(stack_slots, 2);
1992     }
1993   }
1994 
1995   int oop_handle_offset = stack_slots;
1996   stack_slots += total_save_slots;
1997 
1998   // Now any space we need for handlizing a klass if static method
1999 
2000   int klass_slot_offset = 0;
2001   int klass_offset = -1;
2002   int lock_slot_offset = 0;
2003   bool is_static = false;
2004 
2005   if (method->is_static()) {
2006     klass_slot_offset = stack_slots;
2007     stack_slots += VMRegImpl::slots_per_word;
2008     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
2009     is_static = true;
2010   }
2011 
2012   // Plus a lock if needed
2013 
2014   if (method->is_synchronized()) {
2015     lock_slot_offset = stack_slots;
2016     stack_slots += VMRegImpl::slots_per_word;
2017   }
2018 
2019   // Now a place (+2) to save return values or temp during shuffling
2020   // + 4 for return address (which we own) and saved rbp
2021   stack_slots += 6;
2022 
2023   // Ok The space we have allocated will look like:
2024   //
2025   //
2026   // FP-> |                     |
2027   //      |---------------------|
2028   //      | 2 slots for moves   |
2029   //      |---------------------|
2030   //      | lock box (if sync)  |
2031   //      |---------------------| <- lock_slot_offset
2032   //      | klass (if static)   |
2033   //      |---------------------| <- klass_slot_offset
2034   //      | oopHandle area      |
2035   //      |---------------------| <- oop_handle_offset (6 java arg registers)
2036   //      | outbound memory     |
2037   //      | based arguments     |
2038   //      |                     |
2039   //      |---------------------|
2040   //      |                     |
2041   // SP-> | out_preserved_slots |
2042   //
2043   //
2044 
2045 
2046   // Now compute actual number of stack words we need rounding to make
2047   // stack properly aligned.
2048   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
2049 
2050   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2051 
2052   // First thing make an ic check to see if we should even be here
2053 
2054   // We are free to use all registers as temps without saving them and
2055   // restoring them except rbp. rbp is the only callee save register
2056   // as far as the interpreter and the compiler(s) are concerned.
2057 
2058 
2059   const Register ic_reg = rax;
2060   const Register receiver = j_rarg0;
2061 
2062   Label hit;
2063   Label exception_pending;
2064 
2065   assert_different_registers(ic_reg, receiver, rscratch1);
2066   __ verify_oop(receiver);
2067   __ load_klass(rscratch1, receiver);
2068   __ cmpq(ic_reg, rscratch1);
2069   __ jcc(Assembler::equal, hit);
2070 
2071   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2072 
2073   // Verified entry point must be aligned
2074   __ align(8);
2075 
2076   __ bind(hit);
2077 
2078   int vep_offset = ((intptr_t)__ pc()) - start;
2079 
2080 #ifdef COMPILER1
2081   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
2082   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
2083     inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/);
2084   }
2085 #endif // COMPILER1
2086 
2087   // The instruction at the verified entry point must be 5 bytes or longer
2088   // because it can be patched on the fly by make_non_entrant. The stack bang
2089   // instruction fits that requirement.
2090 
2091   // Generate stack overflow check
2092 
2093   if (UseStackBanging) {
2094     __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
2095   } else {
2096     // need a 5 byte instruction to allow MT safe patching to non-entrant
2097     __ fat_nop();
2098   }
2099 
2100   // Generate a new frame for the wrapper.
2101   __ enter();
2102   // -2 because return address is already present and so is saved rbp
2103   __ subptr(rsp, stack_size - 2*wordSize);
2104 
2105   // Frame is now completed as far as size and linkage.
2106   int frame_complete = ((intptr_t)__ pc()) - start;
2107 
2108     if (UseRTMLocking) {
2109       // Abort RTM transaction before calling JNI
2110       // because critical section will be large and will be
2111       // aborted anyway. Also nmethod could be deoptimized.
2112       __ xabort(0);
2113     }
2114 
2115 #ifdef ASSERT
2116     {
2117       Label L;
2118       __ mov(rax, rsp);
2119       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
2120       __ cmpptr(rax, rsp);
2121       __ jcc(Assembler::equal, L);
2122       __ stop("improperly aligned stack");
2123       __ bind(L);
2124     }
2125 #endif /* ASSERT */
2126 
2127 
2128   // We use r14 as the oop handle for the receiver/klass
2129   // It is callee save so it survives the call to native
2130 
2131   const Register oop_handle_reg = r14;
2132 
2133   if (is_critical_native) {
2134     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
2135                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2136   }
2137 
2138   //
2139   // We immediately shuffle the arguments so that any vm call we have to
2140   // make from here on out (sync slow path, jvmti, etc.) we will have
2141   // captured the oops from our caller and have a valid oopMap for
2142   // them.
2143 
2144   // -----------------
2145   // The Grand Shuffle
2146 
2147   // The Java calling convention is either equal (linux) or denser (win64) than the
2148   // c calling convention. However the because of the jni_env argument the c calling
2149   // convention always has at least one more (and two for static) arguments than Java.
2150   // Therefore if we move the args from java -> c backwards then we will never have
2151   // a register->register conflict and we don't have to build a dependency graph
2152   // and figure out how to break any cycles.
2153   //
2154 
2155   // Record esp-based slot for receiver on stack for non-static methods
2156   int receiver_offset = -1;
2157 
2158   // This is a trick. We double the stack slots so we can claim
2159   // the oops in the caller's frame. Since we are sure to have
2160   // more args than the caller doubling is enough to make
2161   // sure we can capture all the incoming oop args from the
2162   // caller.
2163   //
2164   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2165 
2166   // Mark location of rbp (someday)
2167   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2168 
2169   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2170   // All inbound args are referenced based on rbp and all outbound args via rsp.
2171 
2172 
2173 #ifdef ASSERT
2174   bool reg_destroyed[RegisterImpl::number_of_registers];
2175   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2176   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2177     reg_destroyed[r] = false;
2178   }
2179   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2180     freg_destroyed[f] = false;
2181   }
2182 
2183 #endif /* ASSERT */
2184 
2185   // This may iterate in two different directions depending on the
2186   // kind of native it is.  The reason is that for regular JNI natives
2187   // the incoming and outgoing registers are offset upwards and for
2188   // critical natives they are offset down.
2189   GrowableArray<int> arg_order(2 * total_in_args);
2190   VMRegPair tmp_vmreg;
2191   tmp_vmreg.set2(rbx->as_VMReg());
2192 
2193   if (!is_critical_native) {
2194     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2195       arg_order.push(i);
2196       arg_order.push(c_arg);
2197     }
2198   } else {
2199     // Compute a valid move order, using tmp_vmreg to break any cycles
2200     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2201   }
2202 
2203   int temploc = -1;
2204   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2205     int i = arg_order.at(ai);
2206     int c_arg = arg_order.at(ai + 1);
2207     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2208     if (c_arg == -1) {
2209       assert(is_critical_native, "should only be required for critical natives");
2210       // This arg needs to be moved to a temporary
2211       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2212       in_regs[i] = tmp_vmreg;
2213       temploc = i;
2214       continue;
2215     } else if (i == -1) {
2216       assert(is_critical_native, "should only be required for critical natives");
2217       // Read from the temporary location
2218       assert(temploc != -1, "must be valid");
2219       i = temploc;
2220       temploc = -1;
2221     }
2222 #ifdef ASSERT
2223     if (in_regs[i].first()->is_Register()) {
2224       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2225     } else if (in_regs[i].first()->is_XMMRegister()) {
2226       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2227     }
2228     if (out_regs[c_arg].first()->is_Register()) {
2229       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2230     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2231       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2232     }
2233 #endif /* ASSERT */
2234     switch (in_sig_bt[i]) {
2235       case T_ARRAY:
2236         if (is_critical_native) {
2237           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2238           c_arg++;
2239 #ifdef ASSERT
2240           if (out_regs[c_arg].first()->is_Register()) {
2241             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2242           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2243             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2244           }
2245 #endif
2246           break;
2247         }
2248       case T_OBJECT:
2249         assert(!is_critical_native, "no oop arguments");
2250         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2251                     ((i == 0) && (!is_static)),
2252                     &receiver_offset);
2253         break;
2254       case T_VOID:
2255         break;
2256 
2257       case T_FLOAT:
2258         float_move(masm, in_regs[i], out_regs[c_arg]);
2259           break;
2260 
2261       case T_DOUBLE:
2262         assert( i + 1 < total_in_args &&
2263                 in_sig_bt[i + 1] == T_VOID &&
2264                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2265         double_move(masm, in_regs[i], out_regs[c_arg]);
2266         break;
2267 
2268       case T_LONG :
2269         long_move(masm, in_regs[i], out_regs[c_arg]);
2270         break;
2271 
2272       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2273 
2274       default:
2275         move32_64(masm, in_regs[i], out_regs[c_arg]);
2276     }
2277   }
2278 
2279   int c_arg;
2280 
2281   // Pre-load a static method's oop into r14.  Used both by locking code and
2282   // the normal JNI call code.
2283   if (!is_critical_native) {
2284     // point c_arg at the first arg that is already loaded in case we
2285     // need to spill before we call out
2286     c_arg = total_c_args - total_in_args;
2287 
2288     if (method->is_static()) {
2289 
2290       //  load oop into a register
2291       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2292 
2293       // Now handlize the static class mirror it's known not-null.
2294       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2295       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2296 
2297       // Now get the handle
2298       __ lea(oop_handle_reg, Address(rsp, klass_offset));
2299       // store the klass handle as second argument
2300       __ movptr(c_rarg1, oop_handle_reg);
2301       // and protect the arg if we must spill
2302       c_arg--;
2303     }
2304   } else {
2305     // For JNI critical methods we need to save all registers in save_args.
2306     c_arg = 0;
2307   }
2308 
2309   // Change state to native (we save the return address in the thread, since it might not
2310   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2311   // points into the right code segment. It does not have to be the correct return pc.
2312   // We use the same pc/oopMap repeatedly when we call out
2313 
2314   intptr_t the_pc = (intptr_t) __ pc();
2315   oop_maps->add_gc_map(the_pc - start, map);
2316 
2317   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2318 
2319 
2320   // We have all of the arguments setup at this point. We must not touch any register
2321   // argument registers at this point (what if we save/restore them there are no oop?
2322 
2323   {
2324     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2325     // protect the args we've loaded
2326     save_args(masm, total_c_args, c_arg, out_regs);
2327     __ mov_metadata(c_rarg1, method());
2328     __ call_VM_leaf(
2329       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2330       r15_thread, c_rarg1);
2331     restore_args(masm, total_c_args, c_arg, out_regs);
2332   }
2333 
2334   // RedefineClasses() tracing support for obsolete method entry
2335   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2336     // protect the args we've loaded
2337     save_args(masm, total_c_args, c_arg, out_regs);
2338     __ mov_metadata(c_rarg1, method());
2339     __ call_VM_leaf(
2340       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2341       r15_thread, c_rarg1);
2342     restore_args(masm, total_c_args, c_arg, out_regs);
2343   }
2344 
2345   // Lock a synchronized method
2346 
2347   // Register definitions used by locking and unlocking
2348 
2349   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2350   const Register obj_reg  = rbx;  // Will contain the oop
2351   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2352   const Register old_hdr  = r13;  // value of old header at unlock time
2353 
2354   Label slow_path_lock;
2355   Label lock_done;
2356 
2357   if (method->is_synchronized()) {
2358     assert(!is_critical_native, "unhandled");
2359 
2360 
2361     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2362 
2363     // Get the handle (the 2nd argument)
2364     __ mov(oop_handle_reg, c_rarg1);
2365 
2366     // Get address of the box
2367 
2368     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2369 
2370     // Load the oop from the handle
2371     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2372 
2373     if (UseBiasedLocking) {
2374       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2375     }
2376 
2377     // Load immediate 1 into swap_reg %rax
2378     __ movl(swap_reg, 1);
2379 
2380     // Load (object->mark() | 1) into swap_reg %rax
2381     __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2382 
2383     // Save (object->mark() | 1) into BasicLock's displaced header
2384     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2385 
2386     if (os::is_MP()) {
2387       __ lock();
2388     }
2389 
2390     // src -> dest iff dest == rax else rax <- dest
2391     __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2392     __ jcc(Assembler::equal, lock_done);
2393 
2394     // Hmm should this move to the slow path code area???
2395 
2396     // Test if the oopMark is an obvious stack pointer, i.e.,
2397     //  1) (mark & 3) == 0, and
2398     //  2) rsp <= mark < mark + os::pagesize()
2399     // These 3 tests can be done by evaluating the following
2400     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2401     // assuming both stack pointer and pagesize have their
2402     // least significant 2 bits clear.
2403     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2404 
2405     __ subptr(swap_reg, rsp);
2406     __ andptr(swap_reg, 3 - os::vm_page_size());
2407 
2408     // Save the test result, for recursive case, the result is zero
2409     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2410     __ jcc(Assembler::notEqual, slow_path_lock);
2411 
2412     // Slow path will re-enter here
2413 
2414     __ bind(lock_done);
2415   }
2416 
2417 
2418   // Finally just about ready to make the JNI call
2419 
2420 
2421   // get JNIEnv* which is first argument to native
2422   if (!is_critical_native) {
2423     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2424   }
2425 
2426   // Now set thread in native
2427   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2428 
2429   __ call(RuntimeAddress(native_func));
2430 
2431   // Verify or restore cpu control state after JNI call
2432   __ restore_cpu_control_state_after_jni();
2433 
2434   // Unpack native results.
2435   switch (ret_type) {
2436   case T_BOOLEAN: __ c2bool(rax);            break;
2437   case T_CHAR   : __ movzwl(rax, rax);      break;
2438   case T_BYTE   : __ sign_extend_byte (rax); break;
2439   case T_SHORT  : __ sign_extend_short(rax); break;
2440   case T_INT    : /* nothing to do */        break;
2441   case T_DOUBLE :
2442   case T_FLOAT  :
2443     // Result is in xmm0 we'll save as needed
2444     break;
2445   case T_ARRAY:                 // Really a handle
2446   case T_OBJECT:                // Really a handle
2447       break; // can't de-handlize until after safepoint check
2448   case T_VOID: break;
2449   case T_LONG: break;
2450   default       : ShouldNotReachHere();
2451   }
2452 
2453   // Switch thread to "native transition" state before reading the synchronization state.
2454   // This additional state is necessary because reading and testing the synchronization
2455   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2456   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2457   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2458   //     Thread A is resumed to finish this native method, but doesn't block here since it
2459   //     didn't see any synchronization is progress, and escapes.
2460   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2461 
2462   if(os::is_MP()) {
2463     if (UseMembar) {
2464       // Force this write out before the read below
2465       __ membar(Assembler::Membar_mask_bits(
2466            Assembler::LoadLoad | Assembler::LoadStore |
2467            Assembler::StoreLoad | Assembler::StoreStore));
2468     } else {
2469       // Write serialization page so VM thread can do a pseudo remote membar.
2470       // We use the current thread pointer to calculate a thread specific
2471       // offset to write to within the page. This minimizes bus traffic
2472       // due to cache line collision.
2473       __ serialize_memory(r15_thread, rcx);
2474     }
2475   }
2476 
2477   Label after_transition;
2478 
2479   // check for safepoint operation in progress and/or pending suspend requests
2480   {
2481     Label Continue;
2482     Label slow_path;
2483 
2484     __ safepoint_poll(slow_path, r15_thread, rscratch1);
2485 
2486     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2487     __ jcc(Assembler::equal, Continue);
2488     __ bind(slow_path);
2489 
2490     // Don't use call_VM as it will see a possible pending exception and forward it
2491     // and never return here preventing us from clearing _last_native_pc down below.
2492     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2493     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2494     // by hand.
2495     //
2496     __ vzeroupper();
2497     save_native_result(masm, ret_type, stack_slots);
2498     __ mov(c_rarg0, r15_thread);
2499     __ mov(r12, rsp); // remember sp
2500     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2501     __ andptr(rsp, -16); // align stack as required by ABI
2502     if (!is_critical_native) {
2503       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2504     } else {
2505       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2506     }
2507     __ mov(rsp, r12); // restore sp
2508     __ reinit_heapbase();
2509     // Restore any method result value
2510     restore_native_result(masm, ret_type, stack_slots);
2511 
2512     if (is_critical_native) {
2513       // The call above performed the transition to thread_in_Java so
2514       // skip the transition logic below.
2515       __ jmpb(after_transition);
2516     }
2517 
2518     __ bind(Continue);
2519   }
2520 
2521   // change thread state
2522   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2523   __ bind(after_transition);
2524 
2525   Label reguard;
2526   Label reguard_done;
2527   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
2528   __ jcc(Assembler::equal, reguard);
2529   __ bind(reguard_done);
2530 
2531   // native result if any is live
2532 
2533   // Unlock
2534   Label unlock_done;
2535   Label slow_path_unlock;
2536   if (method->is_synchronized()) {
2537 
2538     // Get locked oop from the handle we passed to jni
2539     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2540 
2541     Label done;
2542 
2543     if (UseBiasedLocking) {
2544       __ biased_locking_exit(obj_reg, old_hdr, done);
2545     }
2546 
2547     // Simple recursive lock?
2548 
2549     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2550     __ jcc(Assembler::equal, done);
2551 
2552     // Must save rax if if it is live now because cmpxchg must use it
2553     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2554       save_native_result(masm, ret_type, stack_slots);
2555     }
2556 
2557 
2558     // get address of the stack lock
2559     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2560     //  get old displaced header
2561     __ movptr(old_hdr, Address(rax, 0));
2562 
2563     // Atomic swap old header if oop still contains the stack lock
2564     if (os::is_MP()) {
2565       __ lock();
2566     }
2567     __ cmpxchgptr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2568     __ jcc(Assembler::notEqual, slow_path_unlock);
2569 
2570     // slow path re-enters here
2571     __ bind(unlock_done);
2572     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2573       restore_native_result(masm, ret_type, stack_slots);
2574     }
2575 
2576     __ bind(done);
2577 
2578   }
2579   {
2580     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2581     save_native_result(masm, ret_type, stack_slots);
2582     __ mov_metadata(c_rarg1, method());
2583     __ call_VM_leaf(
2584          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2585          r15_thread, c_rarg1);
2586     restore_native_result(masm, ret_type, stack_slots);
2587   }
2588 
2589   __ reset_last_Java_frame(false);
2590 
2591   // Unbox oop result, e.g. JNIHandles::resolve value.
2592   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2593     __ resolve_jobject(rax /* value */,
2594                        r15_thread /* thread */,
2595                        rcx /* tmp */);
2596   }
2597 
2598   if (CheckJNICalls) {
2599     // clear_pending_jni_exception_check
2600     __ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
2601   }
2602 
2603   if (!is_critical_native) {
2604     // reset handle block
2605     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2606     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2607   }
2608 
2609   // pop our frame
2610 
2611   __ leave();
2612 
2613   if (!is_critical_native) {
2614     // Any exception pending?
2615     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2616     __ jcc(Assembler::notEqual, exception_pending);
2617   }
2618 
2619   // Return
2620 
2621   __ ret(0);
2622 
2623   // Unexpected paths are out of line and go here
2624 
2625   if (!is_critical_native) {
2626     // forward the exception
2627     __ bind(exception_pending);
2628 
2629     // and forward the exception
2630     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2631   }
2632 
2633   // Slow path locking & unlocking
2634   if (method->is_synchronized()) {
2635 
2636     // BEGIN Slow path lock
2637     __ bind(slow_path_lock);
2638 
2639     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2640     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2641 
2642     // protect the args we've loaded
2643     save_args(masm, total_c_args, c_arg, out_regs);
2644 
2645     __ mov(c_rarg0, obj_reg);
2646     __ mov(c_rarg1, lock_reg);
2647     __ mov(c_rarg2, r15_thread);
2648 
2649     // Not a leaf but we have last_Java_frame setup as we want
2650     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2651     restore_args(masm, total_c_args, c_arg, out_regs);
2652 
2653 #ifdef ASSERT
2654     { Label L;
2655     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2656     __ jcc(Assembler::equal, L);
2657     __ stop("no pending exception allowed on exit from monitorenter");
2658     __ bind(L);
2659     }
2660 #endif
2661     __ jmp(lock_done);
2662 
2663     // END Slow path lock
2664 
2665     // BEGIN Slow path unlock
2666     __ bind(slow_path_unlock);
2667 
2668     // If we haven't already saved the native result we must save it now as xmm registers
2669     // are still exposed.
2670     __ vzeroupper();
2671     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2672       save_native_result(masm, ret_type, stack_slots);
2673     }
2674 
2675     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2676 
2677     __ mov(c_rarg0, obj_reg);
2678     __ mov(c_rarg2, r15_thread);
2679     __ mov(r12, rsp); // remember sp
2680     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2681     __ andptr(rsp, -16); // align stack as required by ABI
2682 
2683     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2684     // NOTE that obj_reg == rbx currently
2685     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2686     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2687 
2688     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2689     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2690     __ mov(rsp, r12); // restore sp
2691     __ reinit_heapbase();
2692 #ifdef ASSERT
2693     {
2694       Label L;
2695       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2696       __ jcc(Assembler::equal, L);
2697       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2698       __ bind(L);
2699     }
2700 #endif /* ASSERT */
2701 
2702     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2703 
2704     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2705       restore_native_result(masm, ret_type, stack_slots);
2706     }
2707     __ jmp(unlock_done);
2708 
2709     // END Slow path unlock
2710 
2711   } // synchronized
2712 
2713   // SLOW PATH Reguard the stack if needed
2714 
2715   __ bind(reguard);
2716   __ vzeroupper();
2717   save_native_result(masm, ret_type, stack_slots);
2718   __ mov(r12, rsp); // remember sp
2719   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2720   __ andptr(rsp, -16); // align stack as required by ABI
2721   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2722   __ mov(rsp, r12); // restore sp
2723   __ reinit_heapbase();
2724   restore_native_result(masm, ret_type, stack_slots);
2725   // and continue
2726   __ jmp(reguard_done);
2727 
2728 
2729 
2730   __ flush();
2731 
2732   nmethod *nm = nmethod::new_native_nmethod(method,
2733                                             compile_id,
2734                                             masm->code(),
2735                                             vep_offset,
2736                                             frame_complete,
2737                                             stack_slots / VMRegImpl::slots_per_word,
2738                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2739                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2740                                             oop_maps);
2741 
2742   if (is_critical_native) {
2743     nm->set_lazy_critical_native(true);
2744   }
2745 
2746   return nm;
2747 
2748 }
2749 
2750 // this function returns the adjust size (in number of words) to a c2i adapter
2751 // activation for use during deoptimization
2752 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2753   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2754 }
2755 
2756 
2757 uint SharedRuntime::out_preserve_stack_slots() {
2758   return 0;
2759 }
2760 
2761 //------------------------------generate_deopt_blob----------------------------
2762 void SharedRuntime::generate_deopt_blob() {
2763   // Allocate space for the code
2764   ResourceMark rm;
2765   // Setup code generation tools
2766   int pad = 0;
2767 #if INCLUDE_JVMCI
2768   if (EnableJVMCI || UseAOT) {
2769     pad += 512; // Increase the buffer size when compiling for JVMCI
2770   }
2771 #endif
2772   CodeBuffer buffer("deopt_blob", 2048+pad, 1024);
2773   MacroAssembler* masm = new MacroAssembler(&buffer);
2774   int frame_size_in_words;
2775   OopMap* map = NULL;
2776   OopMapSet *oop_maps = new OopMapSet();
2777 
2778   // -------------
2779   // This code enters when returning to a de-optimized nmethod.  A return
2780   // address has been pushed on the the stack, and return values are in
2781   // registers.
2782   // If we are doing a normal deopt then we were called from the patched
2783   // nmethod from the point we returned to the nmethod. So the return
2784   // address on the stack is wrong by NativeCall::instruction_size
2785   // We will adjust the value so it looks like we have the original return
2786   // address on the stack (like when we eagerly deoptimized).
2787   // In the case of an exception pending when deoptimizing, we enter
2788   // with a return address on the stack that points after the call we patched
2789   // into the exception handler. We have the following register state from,
2790   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2791   //    rax: exception oop
2792   //    rbx: exception handler
2793   //    rdx: throwing pc
2794   // So in this case we simply jam rdx into the useless return address and
2795   // the stack looks just like we want.
2796   //
2797   // At this point we need to de-opt.  We save the argument return
2798   // registers.  We call the first C routine, fetch_unroll_info().  This
2799   // routine captures the return values and returns a structure which
2800   // describes the current frame size and the sizes of all replacement frames.
2801   // The current frame is compiled code and may contain many inlined
2802   // functions, each with their own JVM state.  We pop the current frame, then
2803   // push all the new frames.  Then we call the C routine unpack_frames() to
2804   // populate these frames.  Finally unpack_frames() returns us the new target
2805   // address.  Notice that callee-save registers are BLOWN here; they have
2806   // already been captured in the vframeArray at the time the return PC was
2807   // patched.
2808   address start = __ pc();
2809   Label cont;
2810 
2811   // Prolog for non exception case!
2812 
2813   // Save everything in sight.
2814   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2815 
2816   // Normal deoptimization.  Save exec mode for unpack_frames.
2817   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2818   __ jmp(cont);
2819 
2820   int reexecute_offset = __ pc() - start;
2821 #if INCLUDE_JVMCI && !defined(COMPILER1)
2822   if (EnableJVMCI && UseJVMCICompiler) {
2823     // JVMCI does not use this kind of deoptimization
2824     __ should_not_reach_here();
2825   }
2826 #endif
2827 
2828   // Reexecute case
2829   // return address is the pc describes what bci to do re-execute at
2830 
2831   // No need to update map as each call to save_live_registers will produce identical oopmap
2832   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2833 
2834   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2835   __ jmp(cont);
2836 
2837 #if INCLUDE_JVMCI
2838   Label after_fetch_unroll_info_call;
2839   int implicit_exception_uncommon_trap_offset = 0;
2840   int uncommon_trap_offset = 0;
2841 
2842   if (EnableJVMCI || UseAOT) {
2843     implicit_exception_uncommon_trap_offset = __ pc() - start;
2844 
2845     __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2846     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), (int32_t)NULL_WORD);
2847 
2848     uncommon_trap_offset = __ pc() - start;
2849 
2850     // Save everything in sight.
2851     RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2852     // fetch_unroll_info needs to call last_java_frame()
2853     __ set_last_Java_frame(noreg, noreg, NULL);
2854 
2855     __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())));
2856     __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1);
2857 
2858     __ movl(r14, (int32_t)Deoptimization::Unpack_reexecute);
2859     __ mov(c_rarg0, r15_thread);
2860     __ movl(c_rarg2, r14); // exec mode
2861     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2862     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2863 
2864     __ reset_last_Java_frame(false);
2865 
2866     __ jmp(after_fetch_unroll_info_call);
2867   } // EnableJVMCI
2868 #endif // INCLUDE_JVMCI
2869 
2870   int exception_offset = __ pc() - start;
2871 
2872   // Prolog for exception case
2873 
2874   // all registers are dead at this entry point, except for rax, and
2875   // rdx which contain the exception oop and exception pc
2876   // respectively.  Set them in TLS and fall thru to the
2877   // unpack_with_exception_in_tls entry point.
2878 
2879   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
2880   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
2881 
2882   int exception_in_tls_offset = __ pc() - start;
2883 
2884   // new implementation because exception oop is now passed in JavaThread
2885 
2886   // Prolog for exception case
2887   // All registers must be preserved because they might be used by LinearScan
2888   // Exceptiop oop and throwing PC are passed in JavaThread
2889   // tos: stack at point of call to method that threw the exception (i.e. only
2890   // args are on the stack, no return address)
2891 
2892   // make room on stack for the return address
2893   // It will be patched later with the throwing pc. The correct value is not
2894   // available now because loading it from memory would destroy registers.
2895   __ push(0);
2896 
2897   // Save everything in sight.
2898   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2899 
2900   // Now it is safe to overwrite any register
2901 
2902   // Deopt during an exception.  Save exec mode for unpack_frames.
2903   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
2904 
2905   // load throwing pc from JavaThread and patch it as the return address
2906   // of the current frame. Then clear the field in JavaThread
2907 
2908   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2909   __ movptr(Address(rbp, wordSize), rdx);
2910   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2911 
2912 #ifdef ASSERT
2913   // verify that there is really an exception oop in JavaThread
2914   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2915   __ verify_oop(rax);
2916 
2917   // verify that there is no pending exception
2918   Label no_pending_exception;
2919   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
2920   __ testptr(rax, rax);
2921   __ jcc(Assembler::zero, no_pending_exception);
2922   __ stop("must not have pending exception here");
2923   __ bind(no_pending_exception);
2924 #endif
2925 
2926   __ bind(cont);
2927 
2928   // Call C code.  Need thread and this frame, but NOT official VM entry
2929   // crud.  We cannot block on this call, no GC can happen.
2930   //
2931   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2932 
2933   // fetch_unroll_info needs to call last_java_frame().
2934 
2935   __ set_last_Java_frame(noreg, noreg, NULL);
2936 #ifdef ASSERT
2937   { Label L;
2938     __ cmpptr(Address(r15_thread,
2939                     JavaThread::last_Java_fp_offset()),
2940             (int32_t)0);
2941     __ jcc(Assembler::equal, L);
2942     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2943     __ bind(L);
2944   }
2945 #endif // ASSERT
2946   __ mov(c_rarg0, r15_thread);
2947   __ movl(c_rarg1, r14); // exec_mode
2948   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2949 
2950   // Need to have an oopmap that tells fetch_unroll_info where to
2951   // find any register it might need.
2952   oop_maps->add_gc_map(__ pc() - start, map);
2953 
2954   __ reset_last_Java_frame(false);
2955 
2956 #if INCLUDE_JVMCI
2957   if (EnableJVMCI || UseAOT) {
2958     __ bind(after_fetch_unroll_info_call);
2959   }
2960 #endif
2961 
2962   // Load UnrollBlock* into rdi
2963   __ mov(rdi, rax);
2964 
2965   __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
2966    Label noException;
2967   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
2968   __ jcc(Assembler::notEqual, noException);
2969   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2970   // QQQ this is useless it was NULL above
2971   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2972   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
2973   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2974 
2975   __ verify_oop(rax);
2976 
2977   // Overwrite the result registers with the exception results.
2978   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2979   // I think this is useless
2980   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
2981 
2982   __ bind(noException);
2983 
2984   // Only register save data is on the stack.
2985   // Now restore the result registers.  Everything else is either dead
2986   // or captured in the vframeArray.
2987   RegisterSaver::restore_result_registers(masm);
2988 
2989   // All of the register save area has been popped of the stack. Only the
2990   // return address remains.
2991 
2992   // Pop all the frames we must move/replace.
2993   //
2994   // Frame picture (youngest to oldest)
2995   // 1: self-frame (no frame link)
2996   // 2: deopting frame  (no frame link)
2997   // 3: caller of deopting frame (could be compiled/interpreted).
2998   //
2999   // Note: by leaving the return address of self-frame on the stack
3000   // and using the size of frame 2 to adjust the stack
3001   // when we are done the return to frame 3 will still be on the stack.
3002 
3003   // Pop deoptimized frame
3004   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3005   __ addptr(rsp, rcx);
3006 
3007   // rsp should be pointing at the return address to the caller (3)
3008 
3009   // Pick up the initial fp we should save
3010   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3011   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3012 
3013 #ifdef ASSERT
3014   // Compilers generate code that bang the stack by as much as the
3015   // interpreter would need. So this stack banging should never
3016   // trigger a fault. Verify that it does not on non product builds.
3017   if (UseStackBanging) {
3018     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3019     __ bang_stack_size(rbx, rcx);
3020   }
3021 #endif
3022 
3023   // Load address of array of frame pcs into rcx
3024   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3025 
3026   // Trash the old pc
3027   __ addptr(rsp, wordSize);
3028 
3029   // Load address of array of frame sizes into rsi
3030   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3031 
3032   // Load counter into rdx
3033   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3034 
3035   // Now adjust the caller's stack to make up for the extra locals
3036   // but record the original sp so that we can save it in the skeletal interpreter
3037   // frame and the stack walking of interpreter_sender will get the unextended sp
3038   // value and not the "real" sp value.
3039 
3040   const Register sender_sp = r8;
3041 
3042   __ mov(sender_sp, rsp);
3043   __ movl(rbx, Address(rdi,
3044                        Deoptimization::UnrollBlock::
3045                        caller_adjustment_offset_in_bytes()));
3046   __ subptr(rsp, rbx);
3047 
3048   // Push interpreter frames in a loop
3049   Label loop;
3050   __ bind(loop);
3051   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3052   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3053   __ pushptr(Address(rcx, 0));          // Save return address
3054   __ enter();                           // Save old & set new ebp
3055   __ subptr(rsp, rbx);                  // Prolog
3056   // This value is corrected by layout_activation_impl
3057   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3058   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3059   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3060   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3061   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3062   __ decrementl(rdx);                   // Decrement counter
3063   __ jcc(Assembler::notZero, loop);
3064   __ pushptr(Address(rcx, 0));          // Save final return address
3065 
3066   // Re-push self-frame
3067   __ enter();                           // Save old & set new ebp
3068 
3069   // Allocate a full sized register save area.
3070   // Return address and rbp are in place, so we allocate two less words.
3071   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3072 
3073   // Restore frame locals after moving the frame
3074   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3075   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3076 
3077   // Call C code.  Need thread but NOT official VM entry
3078   // crud.  We cannot block on this call, no GC can happen.  Call should
3079   // restore return values to their stack-slots with the new SP.
3080   //
3081   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3082 
3083   // Use rbp because the frames look interpreted now
3084   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3085   // Don't need the precise return PC here, just precise enough to point into this code blob.
3086   address the_pc = __ pc();
3087   __ set_last_Java_frame(noreg, rbp, the_pc);
3088 
3089   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3090   __ mov(c_rarg0, r15_thread);
3091   __ movl(c_rarg1, r14); // second arg: exec_mode
3092   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3093   // Revert SP alignment after call since we're going to do some SP relative addressing below
3094   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3095 
3096   // Set an oopmap for the call site
3097   // Use the same PC we used for the last java frame
3098   oop_maps->add_gc_map(the_pc - start,
3099                        new OopMap( frame_size_in_words, 0 ));
3100 
3101   // Clear fp AND pc
3102   __ reset_last_Java_frame(true);
3103 
3104   // Collect return values
3105   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3106   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3107   // I think this is useless (throwing pc?)
3108   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3109 
3110   // Pop self-frame.
3111   __ leave();                           // Epilog
3112 
3113   // Jump to interpreter
3114   __ ret(0);
3115 
3116   // Make sure all code is generated
3117   masm->flush();
3118 
3119   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3120   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3121 #if INCLUDE_JVMCI
3122   if (EnableJVMCI || UseAOT) {
3123     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
3124     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
3125   }
3126 #endif
3127 }
3128 
3129 #ifdef COMPILER2
3130 //------------------------------generate_uncommon_trap_blob--------------------
3131 void SharedRuntime::generate_uncommon_trap_blob() {
3132   // Allocate space for the code
3133   ResourceMark rm;
3134   // Setup code generation tools
3135   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3136   MacroAssembler* masm = new MacroAssembler(&buffer);
3137 
3138   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3139 
3140   address start = __ pc();
3141 
3142   if (UseRTMLocking) {
3143     // Abort RTM transaction before possible nmethod deoptimization.
3144     __ xabort(0);
3145   }
3146 
3147   // Push self-frame.  We get here with a return address on the
3148   // stack, so rsp is 8-byte aligned until we allocate our frame.
3149   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3150 
3151   // No callee saved registers. rbp is assumed implicitly saved
3152   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3153 
3154   // compiler left unloaded_class_index in j_rarg0 move to where the
3155   // runtime expects it.
3156   __ movl(c_rarg1, j_rarg0);
3157 
3158   __ set_last_Java_frame(noreg, noreg, NULL);
3159 
3160   // Call C code.  Need thread but NOT official VM entry
3161   // crud.  We cannot block on this call, no GC can happen.  Call should
3162   // capture callee-saved registers as well as return values.
3163   // Thread is in rdi already.
3164   //
3165   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3166 
3167   __ mov(c_rarg0, r15_thread);
3168   __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap);
3169   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3170 
3171   // Set an oopmap for the call site
3172   OopMapSet* oop_maps = new OopMapSet();
3173   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3174 
3175   // location of rbp is known implicitly by the frame sender code
3176 
3177   oop_maps->add_gc_map(__ pc() - start, map);
3178 
3179   __ reset_last_Java_frame(false);
3180 
3181   // Load UnrollBlock* into rdi
3182   __ mov(rdi, rax);
3183 
3184 #ifdef ASSERT
3185   { Label L;
3186     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
3187             (int32_t)Deoptimization::Unpack_uncommon_trap);
3188     __ jcc(Assembler::equal, L);
3189     __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
3190     __ bind(L);
3191   }
3192 #endif
3193 
3194   // Pop all the frames we must move/replace.
3195   //
3196   // Frame picture (youngest to oldest)
3197   // 1: self-frame (no frame link)
3198   // 2: deopting frame  (no frame link)
3199   // 3: caller of deopting frame (could be compiled/interpreted).
3200 
3201   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3202   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3203 
3204   // Pop deoptimized frame (int)
3205   __ movl(rcx, Address(rdi,
3206                        Deoptimization::UnrollBlock::
3207                        size_of_deoptimized_frame_offset_in_bytes()));
3208   __ addptr(rsp, rcx);
3209 
3210   // rsp should be pointing at the return address to the caller (3)
3211 
3212   // Pick up the initial fp we should save
3213   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3214   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3215 
3216 #ifdef ASSERT
3217   // Compilers generate code that bang the stack by as much as the
3218   // interpreter would need. So this stack banging should never
3219   // trigger a fault. Verify that it does not on non product builds.
3220   if (UseStackBanging) {
3221     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3222     __ bang_stack_size(rbx, rcx);
3223   }
3224 #endif
3225 
3226   // Load address of array of frame pcs into rcx (address*)
3227   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3228 
3229   // Trash the return pc
3230   __ addptr(rsp, wordSize);
3231 
3232   // Load address of array of frame sizes into rsi (intptr_t*)
3233   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
3234 
3235   // Counter
3236   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
3237 
3238   // Now adjust the caller's stack to make up for the extra locals but
3239   // record the original sp so that we can save it in the skeletal
3240   // interpreter frame and the stack walking of interpreter_sender
3241   // will get the unextended sp value and not the "real" sp value.
3242 
3243   const Register sender_sp = r8;
3244 
3245   __ mov(sender_sp, rsp);
3246   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
3247   __ subptr(rsp, rbx);
3248 
3249   // Push interpreter frames in a loop
3250   Label loop;
3251   __ bind(loop);
3252   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3253   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3254   __ pushptr(Address(rcx, 0));     // Save return address
3255   __ enter();                      // Save old & set new rbp
3256   __ subptr(rsp, rbx);             // Prolog
3257   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3258             sender_sp);            // Make it walkable
3259   // This value is corrected by layout_activation_impl
3260   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3261   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3262   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3263   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3264   __ decrementl(rdx);              // Decrement counter
3265   __ jcc(Assembler::notZero, loop);
3266   __ pushptr(Address(rcx, 0));     // Save final return address
3267 
3268   // Re-push self-frame
3269   __ enter();                 // Save old & set new rbp
3270   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3271                               // Prolog
3272 
3273   // Use rbp because the frames look interpreted now
3274   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3275   // Don't need the precise return PC here, just precise enough to point into this code blob.
3276   address the_pc = __ pc();
3277   __ set_last_Java_frame(noreg, rbp, the_pc);
3278 
3279   // Call C code.  Need thread but NOT official VM entry
3280   // crud.  We cannot block on this call, no GC can happen.  Call should
3281   // restore return values to their stack-slots with the new SP.
3282   // Thread is in rdi already.
3283   //
3284   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3285 
3286   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3287   __ mov(c_rarg0, r15_thread);
3288   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3289   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3290 
3291   // Set an oopmap for the call site
3292   // Use the same PC we used for the last java frame
3293   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3294 
3295   // Clear fp AND pc
3296   __ reset_last_Java_frame(true);
3297 
3298   // Pop self-frame.
3299   __ leave();                 // Epilog
3300 
3301   // Jump to interpreter
3302   __ ret(0);
3303 
3304   // Make sure all code is generated
3305   masm->flush();
3306 
3307   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3308                                                  SimpleRuntimeFrame::framesize >> 1);
3309 }
3310 #endif // COMPILER2
3311 
3312 
3313 //------------------------------generate_handler_blob------
3314 //
3315 // Generate a special Compile2Runtime blob that saves all registers,
3316 // and setup oopmap.
3317 //
3318 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3319   assert(StubRoutines::forward_exception_entry() != NULL,
3320          "must be generated before");
3321 
3322   ResourceMark rm;
3323   OopMapSet *oop_maps = new OopMapSet();
3324   OopMap* map;
3325 
3326   // Allocate space for the code.  Setup code generation tools.
3327   CodeBuffer buffer("handler_blob", 2048, 1024);
3328   MacroAssembler* masm = new MacroAssembler(&buffer);
3329 
3330   address start   = __ pc();
3331   address call_pc = NULL;
3332   int frame_size_in_words;
3333   bool cause_return = (poll_type == POLL_AT_RETURN);
3334   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3335 
3336   if (UseRTMLocking) {
3337     // Abort RTM transaction before calling runtime
3338     // because critical section will be large and will be
3339     // aborted anyway. Also nmethod could be deoptimized.
3340     __ xabort(0);
3341   }
3342 
3343   // Make room for return address (or push it again)
3344   if (!cause_return) {
3345     __ push(rbx);
3346   }
3347 
3348   // Save registers, fpu state, and flags
3349   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3350 
3351   // The following is basically a call_VM.  However, we need the precise
3352   // address of the call in order to generate an oopmap. Hence, we do all the
3353   // work outselves.
3354 
3355   __ set_last_Java_frame(noreg, noreg, NULL);
3356 
3357   // The return address must always be correct so that frame constructor never
3358   // sees an invalid pc.
3359 
3360   if (!cause_return) {
3361     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
3362     // Additionally, rbx is a callee saved register and we can look at it later to determine
3363     // if someone changed the return address for us!
3364     __ movptr(rbx, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3365     __ movptr(Address(rbp, wordSize), rbx);
3366   }
3367 
3368   // Do the call
3369   __ mov(c_rarg0, r15_thread);
3370   __ call(RuntimeAddress(call_ptr));
3371 
3372   // Set an oopmap for the call site.  This oopmap will map all
3373   // oop-registers and debug-info registers as callee-saved.  This
3374   // will allow deoptimization at this safepoint to find all possible
3375   // debug-info recordings, as well as let GC find all oops.
3376 
3377   oop_maps->add_gc_map( __ pc() - start, map);
3378 
3379   Label noException;
3380 
3381   __ reset_last_Java_frame(false);
3382 
3383   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3384   __ jcc(Assembler::equal, noException);
3385 
3386   // Exception pending
3387 
3388   RegisterSaver::restore_live_registers(masm, save_vectors);
3389 
3390   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3391 
3392   // No exception case
3393   __ bind(noException);
3394 
3395   Label no_adjust, bail, no_prefix, not_special;
3396   if (SafepointMechanism::uses_thread_local_poll() && !cause_return) {
3397     // If our stashed return pc was modified by the runtime we avoid touching it
3398     __ cmpptr(rbx, Address(rbp, wordSize));
3399     __ jccb(Assembler::notEqual, no_adjust);
3400 
3401     // Skip over the poll instruction.
3402     // See NativeInstruction::is_safepoint_poll()
3403     // Possible encodings:
3404     //      85 00       test   %eax,(%rax)
3405     //      85 01       test   %eax,(%rcx)
3406     //      85 02       test   %eax,(%rdx)
3407     //      85 03       test   %eax,(%rbx)
3408     //      85 06       test   %eax,(%rsi)
3409     //      85 07       test   %eax,(%rdi)
3410     //
3411     //   41 85 00       test   %eax,(%r8)
3412     //   41 85 01       test   %eax,(%r9)
3413     //   41 85 02       test   %eax,(%r10)
3414     //   41 85 03       test   %eax,(%r11)
3415     //   41 85 06       test   %eax,(%r14)
3416     //   41 85 07       test   %eax,(%r15)
3417     //
3418     //      85 04 24    test   %eax,(%rsp)
3419     //   41 85 04 24    test   %eax,(%r12)
3420     //      85 45 00    test   %eax,0x0(%rbp)
3421     //   41 85 45 00    test   %eax,0x0(%r13)
3422 
3423     __ cmpb(Address(rbx, 0), NativeTstRegMem::instruction_rex_b_prefix);
3424     __ jcc(Assembler::notEqual, no_prefix);
3425     __ addptr(rbx, 1);
3426     __ bind(no_prefix);
3427 #ifdef ASSERT
3428     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
3429 #endif
3430     // r12/r13/rsp/rbp base encoding takes 3 bytes with the following register values:
3431     // r12/rsp 0x04
3432     // r13/rbp 0x05
3433     __ movzbq(rcx, Address(rbx, 1));
3434     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
3435     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
3436     __ cmpptr(rcx, 1);
3437     __ jcc(Assembler::above, not_special);
3438     __ addptr(rbx, 1);
3439     __ bind(not_special);
3440 #ifdef ASSERT
3441     // Verify the correct encoding of the poll we're about to skip.
3442     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
3443     __ jcc(Assembler::notEqual, bail);
3444     // Mask out the modrm bits
3445     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
3446     // rax encodes to 0, so if the bits are nonzero it's incorrect
3447     __ jcc(Assembler::notZero, bail);
3448 #endif
3449     // Adjust return pc forward to step over the safepoint poll instruction
3450     __ addptr(rbx, 2);
3451     __ movptr(Address(rbp, wordSize), rbx);
3452   }
3453 
3454   __ bind(no_adjust);
3455   // Normal exit, restore registers and exit.
3456   RegisterSaver::restore_live_registers(masm, save_vectors);
3457   __ ret(0);
3458 
3459 #ifdef ASSERT
3460   __ bind(bail);
3461   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
3462 #endif
3463 
3464   // Make sure all code is generated
3465   masm->flush();
3466 
3467   // Fill-out other meta info
3468   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3469 }
3470 
3471 //
3472 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3473 //
3474 // Generate a stub that calls into vm to find out the proper destination
3475 // of a java call. All the argument registers are live at this point
3476 // but since this is generic code we don't know what they are and the caller
3477 // must do any gc of the args.
3478 //
3479 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3480   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3481 
3482   // allocate space for the code
3483   ResourceMark rm;
3484 
3485   CodeBuffer buffer(name, 1000, 512);
3486   MacroAssembler* masm                = new MacroAssembler(&buffer);
3487 
3488   int frame_size_in_words;
3489 
3490   OopMapSet *oop_maps = new OopMapSet();
3491   OopMap* map = NULL;
3492 
3493   int start = __ offset();
3494 
3495   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3496 
3497   int frame_complete = __ offset();
3498 
3499   __ set_last_Java_frame(noreg, noreg, NULL);
3500 
3501   __ mov(c_rarg0, r15_thread);
3502 
3503   __ call(RuntimeAddress(destination));
3504 
3505 
3506   // Set an oopmap for the call site.
3507   // We need this not only for callee-saved registers, but also for volatile
3508   // registers that the compiler might be keeping live across a safepoint.
3509 
3510   oop_maps->add_gc_map( __ offset() - start, map);
3511 
3512   // rax contains the address we are going to jump to assuming no exception got installed
3513 
3514   // clear last_Java_sp
3515   __ reset_last_Java_frame(false);
3516   // check for pending exceptions
3517   Label pending;
3518   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3519   __ jcc(Assembler::notEqual, pending);
3520 
3521   // get the returned Method*
3522   __ get_vm_result_2(rbx, r15_thread);
3523   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3524 
3525   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3526 
3527   RegisterSaver::restore_live_registers(masm);
3528 
3529   // We are back the the original state on entry and ready to go.
3530 
3531   __ jmp(rax);
3532 
3533   // Pending exception after the safepoint
3534 
3535   __ bind(pending);
3536 
3537   RegisterSaver::restore_live_registers(masm);
3538 
3539   // exception pending => remove activation and forward to exception handler
3540 
3541   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3542 
3543   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3544   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3545 
3546   // -------------
3547   // make sure all code is generated
3548   masm->flush();
3549 
3550   // return the  blob
3551   // frame_size_words or bytes??
3552   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3553 }
3554 
3555 
3556 //------------------------------Montgomery multiplication------------------------
3557 //
3558 
3559 #ifndef _WINDOWS
3560 
3561 #define ASM_SUBTRACT
3562 
3563 #ifdef ASM_SUBTRACT
3564 // Subtract 0:b from carry:a.  Return carry.
3565 static unsigned long
3566 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
3567   long i = 0, cnt = len;
3568   unsigned long tmp;
3569   asm volatile("clc; "
3570                "0: ; "
3571                "mov (%[b], %[i], 8), %[tmp]; "
3572                "sbb %[tmp], (%[a], %[i], 8); "
3573                "inc %[i]; dec %[cnt]; "
3574                "jne 0b; "
3575                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
3576                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
3577                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
3578                : "memory");
3579   return tmp;
3580 }
3581 #else // ASM_SUBTRACT
3582 typedef int __attribute__((mode(TI))) int128;
3583 
3584 // Subtract 0:b from carry:a.  Return carry.
3585 static unsigned long
3586 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) {
3587   int128 tmp = 0;
3588   int i;
3589   for (i = 0; i < len; i++) {
3590     tmp += a[i];
3591     tmp -= b[i];
3592     a[i] = tmp;
3593     tmp >>= 64;
3594     assert(-1 <= tmp && tmp <= 0, "invariant");
3595   }
3596   return tmp + carry;
3597 }
3598 #endif // ! ASM_SUBTRACT
3599 
3600 // Multiply (unsigned) Long A by Long B, accumulating the double-
3601 // length result into the accumulator formed of T0, T1, and T2.
3602 #define MACC(A, B, T0, T1, T2)                                  \
3603 do {                                                            \
3604   unsigned long hi, lo;                                         \
3605   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
3606            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3607            : "r"(A), "a"(B) : "cc");                            \
3608  } while(0)
3609 
3610 // As above, but add twice the double-length result into the
3611 // accumulator.
3612 #define MACC2(A, B, T0, T1, T2)                                 \
3613 do {                                                            \
3614   unsigned long hi, lo;                                         \
3615   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \
3616            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"           \
3617            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3618            : "r"(A), "a"(B) : "cc");                            \
3619  } while(0)
3620 
3621 // Fast Montgomery multiplication.  The derivation of the algorithm is
3622 // in  A Cryptographic Library for the Motorola DSP56000,
3623 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
3624 
3625 static void __attribute__((noinline))
3626 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
3627                     unsigned long m[], unsigned long inv, int len) {
3628   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3629   int i;
3630 
3631   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3632 
3633   for (i = 0; i < len; i++) {
3634     int j;
3635     for (j = 0; j < i; j++) {
3636       MACC(a[j], b[i-j], t0, t1, t2);
3637       MACC(m[j], n[i-j], t0, t1, t2);
3638     }
3639     MACC(a[i], b[0], t0, t1, t2);
3640     m[i] = t0 * inv;
3641     MACC(m[i], n[0], t0, t1, t2);
3642 
3643     assert(t0 == 0, "broken Montgomery multiply");
3644 
3645     t0 = t1; t1 = t2; t2 = 0;
3646   }
3647 
3648   for (i = len; i < 2*len; i++) {
3649     int j;
3650     for (j = i-len+1; j < len; j++) {
3651       MACC(a[j], b[i-j], t0, t1, t2);
3652       MACC(m[j], n[i-j], t0, t1, t2);
3653     }
3654     m[i-len] = t0;
3655     t0 = t1; t1 = t2; t2 = 0;
3656   }
3657 
3658   while (t0)
3659     t0 = sub(m, n, t0, len);
3660 }
3661 
3662 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
3663 // multiplies so it should be up to 25% faster than Montgomery
3664 // multiplication.  However, its loop control is more complex and it
3665 // may actually run slower on some machines.
3666 
3667 static void __attribute__((noinline))
3668 montgomery_square(unsigned long a[], unsigned long n[],
3669                   unsigned long m[], unsigned long inv, int len) {
3670   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3671   int i;
3672 
3673   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3674 
3675   for (i = 0; i < len; i++) {
3676     int j;
3677     int end = (i+1)/2;
3678     for (j = 0; j < end; j++) {
3679       MACC2(a[j], a[i-j], t0, t1, t2);
3680       MACC(m[j], n[i-j], t0, t1, t2);
3681     }
3682     if ((i & 1) == 0) {
3683       MACC(a[j], a[j], t0, t1, t2);
3684     }
3685     for (; j < i; j++) {
3686       MACC(m[j], n[i-j], t0, t1, t2);
3687     }
3688     m[i] = t0 * inv;
3689     MACC(m[i], n[0], t0, t1, t2);
3690 
3691     assert(t0 == 0, "broken Montgomery square");
3692 
3693     t0 = t1; t1 = t2; t2 = 0;
3694   }
3695 
3696   for (i = len; i < 2*len; i++) {
3697     int start = i-len+1;
3698     int end = start + (len - start)/2;
3699     int j;
3700     for (j = start; j < end; j++) {
3701       MACC2(a[j], a[i-j], t0, t1, t2);
3702       MACC(m[j], n[i-j], t0, t1, t2);
3703     }
3704     if ((i & 1) == 0) {
3705       MACC(a[j], a[j], t0, t1, t2);
3706     }
3707     for (; j < len; j++) {
3708       MACC(m[j], n[i-j], t0, t1, t2);
3709     }
3710     m[i-len] = t0;
3711     t0 = t1; t1 = t2; t2 = 0;
3712   }
3713 
3714   while (t0)
3715     t0 = sub(m, n, t0, len);
3716 }
3717 
3718 // Swap words in a longword.
3719 static unsigned long swap(unsigned long x) {
3720   return (x << 32) | (x >> 32);
3721 }
3722 
3723 // Copy len longwords from s to d, word-swapping as we go.  The
3724 // destination array is reversed.
3725 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
3726   d += len;
3727   while(len-- > 0) {
3728     d--;
3729     *d = swap(*s);
3730     s++;
3731   }
3732 }
3733 
3734 // The threshold at which squaring is advantageous was determined
3735 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
3736 #define MONTGOMERY_SQUARING_THRESHOLD 64
3737 
3738 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
3739                                         jint len, jlong inv,
3740                                         jint *m_ints) {
3741   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
3742   int longwords = len/2;
3743 
3744   // Make very sure we don't use so much space that the stack might
3745   // overflow.  512 jints corresponds to an 16384-bit integer and
3746   // will use here a total of 8k bytes of stack space.
3747   int total_allocation = longwords * sizeof (unsigned long) * 4;
3748   guarantee(total_allocation <= 8192, "must be");
3749   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3750 
3751   // Local scratch arrays
3752   unsigned long
3753     *a = scratch + 0 * longwords,
3754     *b = scratch + 1 * longwords,
3755     *n = scratch + 2 * longwords,
3756     *m = scratch + 3 * longwords;
3757 
3758   reverse_words((unsigned long *)a_ints, a, longwords);
3759   reverse_words((unsigned long *)b_ints, b, longwords);
3760   reverse_words((unsigned long *)n_ints, n, longwords);
3761 
3762   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
3763 
3764   reverse_words(m, (unsigned long *)m_ints, longwords);
3765 }
3766 
3767 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
3768                                       jint len, jlong inv,
3769                                       jint *m_ints) {
3770   assert(len % 2 == 0, "array length in montgomery_square must be even");
3771   int longwords = len/2;
3772 
3773   // Make very sure we don't use so much space that the stack might
3774   // overflow.  512 jints corresponds to an 16384-bit integer and
3775   // will use here a total of 6k bytes of stack space.
3776   int total_allocation = longwords * sizeof (unsigned long) * 3;
3777   guarantee(total_allocation <= 8192, "must be");
3778   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3779 
3780   // Local scratch arrays
3781   unsigned long
3782     *a = scratch + 0 * longwords,
3783     *n = scratch + 1 * longwords,
3784     *m = scratch + 2 * longwords;
3785 
3786   reverse_words((unsigned long *)a_ints, a, longwords);
3787   reverse_words((unsigned long *)n_ints, n, longwords);
3788 
3789   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3790     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
3791   } else {
3792     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
3793   }
3794 
3795   reverse_words(m, (unsigned long *)m_ints, longwords);
3796 }
3797 
3798 #endif // WINDOWS
3799 
3800 #ifdef COMPILER2
3801 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3802 //
3803 //------------------------------generate_exception_blob---------------------------
3804 // creates exception blob at the end
3805 // Using exception blob, this code is jumped from a compiled method.
3806 // (see emit_exception_handler in x86_64.ad file)
3807 //
3808 // Given an exception pc at a call we call into the runtime for the
3809 // handler in this method. This handler might merely restore state
3810 // (i.e. callee save registers) unwind the frame and jump to the
3811 // exception handler for the nmethod if there is no Java level handler
3812 // for the nmethod.
3813 //
3814 // This code is entered with a jmp.
3815 //
3816 // Arguments:
3817 //   rax: exception oop
3818 //   rdx: exception pc
3819 //
3820 // Results:
3821 //   rax: exception oop
3822 //   rdx: exception pc in caller or ???
3823 //   destination: exception handler of caller
3824 //
3825 // Note: the exception pc MUST be at a call (precise debug information)
3826 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3827 //
3828 
3829 void OptoRuntime::generate_exception_blob() {
3830   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3831   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3832   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3833 
3834   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3835 
3836   // Allocate space for the code
3837   ResourceMark rm;
3838   // Setup code generation tools
3839   CodeBuffer buffer("exception_blob", 2048, 1024);
3840   MacroAssembler* masm = new MacroAssembler(&buffer);
3841 
3842 
3843   address start = __ pc();
3844 
3845   // Exception pc is 'return address' for stack walker
3846   __ push(rdx);
3847   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3848 
3849   // Save callee-saved registers.  See x86_64.ad.
3850 
3851   // rbp is an implicitly saved callee saved register (i.e., the calling
3852   // convention will save/restore it in the prolog/epilog). Other than that
3853   // there are no callee save registers now that adapter frames are gone.
3854 
3855   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3856 
3857   // Store exception in Thread object. We cannot pass any arguments to the
3858   // handle_exception call, since we do not want to make any assumption
3859   // about the size of the frame where the exception happened in.
3860   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3861   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3862   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3863 
3864   // This call does all the hard work.  It checks if an exception handler
3865   // exists in the method.
3866   // If so, it returns the handler address.
3867   // If not, it prepares for stack-unwinding, restoring the callee-save
3868   // registers of the frame being removed.
3869   //
3870   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3871 
3872   // At a method handle call, the stack may not be properly aligned
3873   // when returning with an exception.
3874   address the_pc = __ pc();
3875   __ set_last_Java_frame(noreg, noreg, the_pc);
3876   __ mov(c_rarg0, r15_thread);
3877   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
3878   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3879 
3880   // Set an oopmap for the call site.  This oopmap will only be used if we
3881   // are unwinding the stack.  Hence, all locations will be dead.
3882   // Callee-saved registers will be the same as the frame above (i.e.,
3883   // handle_exception_stub), since they were restored when we got the
3884   // exception.
3885 
3886   OopMapSet* oop_maps = new OopMapSet();
3887 
3888   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3889 
3890   __ reset_last_Java_frame(false);
3891 
3892   // Restore callee-saved registers
3893 
3894   // rbp is an implicitly saved callee-saved register (i.e., the calling
3895   // convention will save restore it in prolog/epilog) Other than that
3896   // there are no callee save registers now that adapter frames are gone.
3897 
3898   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3899 
3900   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3901   __ pop(rdx);                  // No need for exception pc anymore
3902 
3903   // rax: exception handler
3904 
3905   // We have a handler in rax (could be deopt blob).
3906   __ mov(r8, rax);
3907 
3908   // Get the exception oop
3909   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3910   // Get the exception pc in case we are deoptimized
3911   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3912 #ifdef ASSERT
3913   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
3914   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
3915 #endif
3916   // Clear the exception oop so GC no longer processes it as a root.
3917   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
3918 
3919   // rax: exception oop
3920   // r8:  exception handler
3921   // rdx: exception pc
3922   // Jump to handler
3923 
3924   __ jmp(r8);
3925 
3926   // Make sure all code is generated
3927   masm->flush();
3928 
3929   // Set exception blob
3930   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3931 }
3932 #endif // COMPILER2