1 /*
   2  * Copyright (c) 2018, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #include "precompiled.hpp"
  25 
  26 #include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp"
  27 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  28 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  29 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
  30 #include "logging/log.hpp"
  31 #include "logging/logTag.hpp"
  32 #include "utilities/quickSort.hpp"
  33 
  34 ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics() :
  35   ShenandoahHeuristics(),
  36   _cycle_gap_history(new TruncatedSeq(5)),
  37   _conc_mark_duration_history(new TruncatedSeq(5)),
  38   _conc_uprefs_duration_history(new TruncatedSeq(5)) {}
  39 
  40 ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {}
  41 
  42 void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
  43                                                                          RegionData* data, size_t size,
  44                                                                          size_t actual_free) {
  45   size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100;
  46 
  47   // The logic for cset selection in adaptive is as follows:
  48   //
  49   //   1. We cannot get cset larger than available free space. Otherwise we guarantee OOME
  50   //      during evacuation, and thus guarantee full GC. In practice, we also want to let
  51   //      application to allocate something. This is why we limit CSet to some fraction of
  52   //      available space. In non-overloaded heap, max_cset would contain all plausible candidates
  53   //      over garbage threshold.
  54   //
  55   //   2. We should not get cset too low so that free threshold would not be met right
  56   //      after the cycle. Otherwise we get back-to-back cycles for no reason if heap is
  57   //      too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero.
  58   //
  59   // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates
  60   // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before
  61   // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme,
  62   // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit.
  63 
  64   size_t capacity    = ShenandoahHeap::heap()->max_capacity();
  65   size_t free_target = capacity / 100 * ShenandoahMinFreeThreshold;
  66   size_t min_garbage = free_target > actual_free ? (free_target - actual_free) : 0;
  67   size_t max_cset    = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste);
  68 
  69   log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "%s, Actual Free: "
  70                      SIZE_FORMAT "%s, Max CSet: " SIZE_FORMAT "%s, Min Garbage: " SIZE_FORMAT "%s",
  71                      byte_size_in_proper_unit(free_target), proper_unit_for_byte_size(free_target),
  72                      byte_size_in_proper_unit(actual_free), proper_unit_for_byte_size(actual_free),
  73                      byte_size_in_proper_unit(max_cset),    proper_unit_for_byte_size(max_cset),
  74                      byte_size_in_proper_unit(min_garbage), proper_unit_for_byte_size(min_garbage));
  75 
  76   // Better select garbage-first regions
  77   QuickSort::sort<RegionData>(data, (int)size, compare_by_garbage, false);
  78 
  79   size_t cur_cset = 0;
  80   size_t cur_garbage = 0;
  81   _bytes_in_cset = 0;
  82 
  83   for (size_t idx = 0; idx < size; idx++) {
  84     ShenandoahHeapRegion* r = data[idx]._region;
  85 
  86     size_t new_cset    = cur_cset + r->get_live_data_bytes();
  87     size_t new_garbage = cur_garbage + r->garbage();
  88 
  89     if (new_cset > max_cset) {
  90       break;
  91     }
  92 
  93     if ((new_garbage < min_garbage) || (r->garbage() > garbage_threshold)) {
  94       cset->add_region(r);
  95       _bytes_in_cset += r->used();
  96       cur_cset = new_cset;
  97       cur_garbage = new_garbage;
  98     }
  99   }
 100 }
 101 
 102 void ShenandoahAdaptiveHeuristics::record_cycle_start() {
 103   ShenandoahHeuristics::record_cycle_start();
 104   double last_cycle_gap = (_cycle_start - _last_cycle_end);
 105   _cycle_gap_history->add(last_cycle_gap);
 106 }
 107 
 108 void ShenandoahAdaptiveHeuristics::record_phase_time(ShenandoahPhaseTimings::Phase phase, double secs) {
 109   if (phase == ShenandoahPhaseTimings::conc_mark) {
 110     _conc_mark_duration_history->add(secs);
 111   } else if (phase == ShenandoahPhaseTimings::conc_update_refs) {
 112     _conc_uprefs_duration_history->add(secs);
 113   } // Else ignore
 114 }
 115 
 116 bool ShenandoahAdaptiveHeuristics::should_start_gc() const {
 117   ShenandoahHeap* heap = ShenandoahHeap::heap();
 118   size_t capacity = heap->max_capacity();
 119   size_t available = heap->free_set()->available();
 120 
 121   // Check if we are falling below the worst limit, time to trigger the GC, regardless of
 122   // anything else.
 123   size_t min_threshold = capacity / 100 * ShenandoahMinFreeThreshold;
 124   if (available < min_threshold) {
 125     log_info(gc)("Trigger: Free (" SIZE_FORMAT "%s) is below minimum threshold (" SIZE_FORMAT "%s)",
 126                  byte_size_in_proper_unit(available),     proper_unit_for_byte_size(available),
 127                  byte_size_in_proper_unit(min_threshold), proper_unit_for_byte_size(min_threshold));
 128     return true;
 129   }
 130 
 131   // Check if are need to learn a bit about the application
 132   const size_t max_learn = ShenandoahLearningSteps;
 133   if (_gc_times_learned < max_learn) {
 134     size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold;
 135     if (available < init_threshold) {
 136       log_info(gc)("Trigger: Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "%s) is below initial threshold (" SIZE_FORMAT "%s)",
 137                    _gc_times_learned + 1, max_learn,
 138                    byte_size_in_proper_unit(available),      proper_unit_for_byte_size(available),
 139                    byte_size_in_proper_unit(init_threshold), proper_unit_for_byte_size(init_threshold));
 140       return true;
 141     }
 142   }
 143 
 144   // Check if allocation headroom is still okay. This also factors in:
 145   //   1. Some space to absorb allocation spikes
 146   //   2. Accumulated penalties from Degenerated and Full GC
 147 
 148   size_t allocation_headroom = available;
 149 
 150   size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor;
 151   size_t penalties      = capacity / 100 * _gc_time_penalties;
 152 
 153   allocation_headroom -= MIN2(allocation_headroom, spike_headroom);
 154   allocation_headroom -= MIN2(allocation_headroom, penalties);
 155 
 156   // TODO: Allocation rate is way too averaged to be useful during state changes
 157 
 158   double average_gc = _gc_time_history->avg();
 159   double time_since_last = time_since_last_gc();
 160   double allocation_rate = heap->bytes_allocated_since_gc_start() / time_since_last;
 161 
 162   if (average_gc > allocation_headroom / allocation_rate) {
 163     log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s)",
 164                  average_gc * 1000,
 165                  byte_size_in_proper_unit(allocation_rate),     proper_unit_for_byte_size(allocation_rate),
 166                  byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom));
 167     log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "%s (free) - " SIZE_FORMAT "%s (spike) - " SIZE_FORMAT "%s (penalties) = " SIZE_FORMAT "%s",
 168                  byte_size_in_proper_unit(available),           proper_unit_for_byte_size(available),
 169                  byte_size_in_proper_unit(spike_headroom),      proper_unit_for_byte_size(spike_headroom),
 170                  byte_size_in_proper_unit(penalties),           proper_unit_for_byte_size(penalties),
 171                  byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom));
 172     return true;
 173   }
 174 
 175   return ShenandoahHeuristics::should_start_gc();
 176 }
 177 
 178 bool ShenandoahAdaptiveHeuristics::should_start_update_refs() {
 179   if (! _update_refs_adaptive) {
 180     return _update_refs_early;
 181   }
 182 
 183   double cycle_gap_avg = _cycle_gap_history->avg();
 184   double conc_mark_avg = _conc_mark_duration_history->avg();
 185   double conc_uprefs_avg = _conc_uprefs_duration_history->avg();
 186 
 187   if (_update_refs_early) {
 188     double threshold = ShenandoahMergeUpdateRefsMinGap / 100.0;
 189     if (conc_mark_avg + conc_uprefs_avg > cycle_gap_avg * threshold) {
 190       _update_refs_early = false;
 191     }
 192   } else {
 193     double threshold = ShenandoahMergeUpdateRefsMaxGap / 100.0;
 194     if (conc_mark_avg + conc_uprefs_avg < cycle_gap_avg * threshold) {
 195       _update_refs_early = true;
 196     }
 197   }
 198   return _update_refs_early;
 199 }
 200 
 201 const char* ShenandoahAdaptiveHeuristics::name() {
 202   return "adaptive";
 203 }
 204 
 205 bool ShenandoahAdaptiveHeuristics::is_diagnostic() {
 206   return false;
 207 }
 208 
 209 bool ShenandoahAdaptiveHeuristics::is_experimental() {
 210   return false;
 211 }