1 /*
   2  * Copyright (c) 2015, 2018, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #ifndef SHARE_VM_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP
  25 #define SHARE_VM_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP
  26 
  27 #include "classfile/javaClasses.inline.hpp"
  28 #include "gc/shared/markBitMap.inline.hpp"
  29 #include "gc/shared/threadLocalAllocBuffer.inline.hpp"
  30 #include "gc/shared/suspendibleThreadSet.hpp"
  31 #include "gc/shenandoah/shenandoahAsserts.hpp"
  32 #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp"
  33 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  34 #include "gc/shenandoah/shenandoahCollectionSet.inline.hpp"
  35 #include "gc/shenandoah/shenandoahForwarding.inline.hpp"
  36 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  37 #include "gc/shenandoah/shenandoahHeap.hpp"
  38 #include "gc/shenandoah/shenandoahHeapRegionSet.inline.hpp"
  39 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  40 #include "gc/shenandoah/shenandoahControlThread.hpp"
  41 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  42 #include "gc/shenandoah/shenandoahThreadLocalData.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/atomic.hpp"
  45 #include "runtime/interfaceSupport.inline.hpp"
  46 #include "runtime/prefetch.hpp"
  47 #include "runtime/prefetch.inline.hpp"
  48 #include "runtime/thread.hpp"
  49 #include "utilities/copy.hpp"
  50 #include "utilities/globalDefinitions.hpp"
  51 
  52 
  53 inline ShenandoahHeapRegion* ShenandoahRegionIterator::next() {
  54   size_t new_index = Atomic::add((size_t) 1, &_index);
  55   // get_region() provides the bounds-check and returns NULL on OOB.
  56   return _heap->get_region(new_index - 1);
  57 }
  58 
  59 inline bool ShenandoahHeap::has_forwarded_objects() const {
  60   return _gc_state.is_set(HAS_FORWARDED);
  61 }
  62 
  63 inline WorkGang* ShenandoahHeap::workers() const {
  64   return _workers;
  65 }
  66 
  67 inline WorkGang* ShenandoahHeap::get_safepoint_workers() {
  68   return _safepoint_workers;
  69 }
  70 
  71 inline size_t ShenandoahHeap::heap_region_index_containing(const void* addr) const {
  72   uintptr_t region_start = ((uintptr_t) addr);
  73   uintptr_t index = (region_start - (uintptr_t) base()) >> ShenandoahHeapRegion::region_size_bytes_shift();
  74   assert(index < num_regions(), "Region index is in bounds: " PTR_FORMAT, p2i(addr));
  75   return index;
  76 }
  77 
  78 inline ShenandoahHeapRegion* const ShenandoahHeap::heap_region_containing(const void* addr) const {
  79   size_t index = heap_region_index_containing(addr);
  80   ShenandoahHeapRegion* const result = get_region(index);
  81   assert(addr >= result->bottom() && addr < result->end(), "Heap region contains the address: " PTR_FORMAT, p2i(addr));
  82   return result;
  83 }
  84 
  85 template <class T>
  86 inline oop ShenandoahHeap::update_with_forwarded_not_null(T* p, oop obj) {
  87   if (in_collection_set(obj)) {
  88     shenandoah_assert_forwarded_except(p, obj, is_full_gc_in_progress() || cancelled_gc() || is_degenerated_gc_in_progress());
  89     obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
  90     RawAccess<IS_NOT_NULL>::oop_store(p, obj);
  91   }
  92 #ifdef ASSERT
  93   else {
  94     shenandoah_assert_not_forwarded(p, obj);
  95   }
  96 #endif
  97   return obj;
  98 }
  99 
 100 template <class T>
 101 inline oop ShenandoahHeap::maybe_update_with_forwarded(T* p) {
 102   T o = RawAccess<>::oop_load(p);
 103   if (!CompressedOops::is_null(o)) {
 104     oop obj = CompressedOops::decode_not_null(o);
 105     return maybe_update_with_forwarded_not_null(p, obj);
 106   } else {
 107     return NULL;
 108   }
 109 }
 110 
 111 template <class T>
 112 inline oop ShenandoahHeap::evac_update_with_forwarded(T* p) {
 113   T o = RawAccess<>::oop_load(p);
 114   if (!CompressedOops::is_null(o)) {
 115     oop heap_oop = CompressedOops::decode_not_null(o);
 116     if (in_collection_set(heap_oop)) {
 117       oop forwarded_oop = ShenandoahBarrierSet::resolve_forwarded_not_null(heap_oop);
 118       if (forwarded_oop == heap_oop) {
 119         forwarded_oop = evacuate_object(heap_oop, Thread::current());
 120       }
 121       oop prev = cas_oop(forwarded_oop, p, heap_oop);
 122       if (prev == heap_oop) {
 123         return forwarded_oop;
 124       } else {
 125         return NULL;
 126       }
 127     }
 128     return heap_oop;
 129   } else {
 130     return NULL;
 131   }
 132 }
 133 
 134 inline oop ShenandoahHeap::cas_oop(oop n, oop* addr, oop c) {
 135   assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr));
 136   return (oop) Atomic::cmpxchg(n, addr, c);
 137 }
 138 
 139 inline oop ShenandoahHeap::cas_oop(oop n, narrowOop* addr, narrowOop c) {
 140   narrowOop val = CompressedOops::encode(n);
 141   return CompressedOops::decode((narrowOop) Atomic::cmpxchg(val, addr, c));
 142 }
 143 
 144 inline oop ShenandoahHeap::cas_oop(oop n, narrowOop* addr, oop c) {
 145   assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr));
 146   narrowOop cmp = CompressedOops::encode(c);
 147   narrowOop val = CompressedOops::encode(n);
 148   return CompressedOops::decode((narrowOop) Atomic::cmpxchg(val, addr, cmp));
 149 }
 150 
 151 template <class T>
 152 inline oop ShenandoahHeap::maybe_update_with_forwarded_not_null(T* p, oop heap_oop) {
 153   shenandoah_assert_not_in_cset_loc_except(p, !is_in(p) || is_full_gc_in_progress() || is_degenerated_gc_in_progress());
 154   shenandoah_assert_correct(p, heap_oop);
 155 
 156   if (in_collection_set(heap_oop)) {
 157     oop forwarded_oop = ShenandoahBarrierSet::resolve_forwarded_not_null(heap_oop);
 158     if (forwarded_oop == heap_oop) {
 159       // E.g. during evacuation.
 160       return forwarded_oop;
 161     }
 162 
 163     shenandoah_assert_forwarded_except(p, heap_oop, is_full_gc_in_progress() || is_degenerated_gc_in_progress());
 164     shenandoah_assert_not_forwarded(p, forwarded_oop);
 165     shenandoah_assert_not_in_cset_except(p, forwarded_oop, cancelled_gc());
 166 
 167     // If this fails, another thread wrote to p before us, it will be logged in SATB and the
 168     // reference be updated later.
 169     oop witness = cas_oop(forwarded_oop, p, heap_oop);
 170 
 171     if (witness != heap_oop) {
 172       // CAS failed, someone had beat us to it. Normally, we would return the failure witness,
 173       // because that would be the proper write of to-space object, enforced by strong barriers.
 174       // However, there is a corner case with arraycopy. It can happen that a Java thread
 175       // beats us with an arraycopy, which first copies the array, which potentially contains
 176       // from-space refs, and only afterwards updates all from-space refs to to-space refs,
 177       // which leaves a short window where the new array elements can be from-space.
 178       // In this case, we can just resolve the result again. As we resolve, we need to consider
 179       // the contended write might have been NULL.
 180       oop result = ShenandoahBarrierSet::resolve_forwarded(witness);
 181       shenandoah_assert_not_forwarded_except(p, result, (result == NULL));
 182       shenandoah_assert_not_in_cset_except(p, result, (result == NULL) || cancelled_gc());
 183       return result;
 184     } else {
 185       // Success! We have updated with known to-space copy. We have already asserted it is sane.
 186       return forwarded_oop;
 187     }
 188   } else {
 189     shenandoah_assert_not_forwarded(p, heap_oop);
 190     return heap_oop;
 191   }
 192 }
 193 
 194 inline bool ShenandoahHeap::cancelled_gc() const {
 195   return _cancelled_gc.get() == CANCELLED;
 196 }
 197 
 198 inline bool ShenandoahHeap::check_cancelled_gc_and_yield(bool sts_active) {
 199   if (! (sts_active && ShenandoahSuspendibleWorkers)) {
 200     return cancelled_gc();
 201   }
 202 
 203   jbyte prev = _cancelled_gc.cmpxchg(NOT_CANCELLED, CANCELLABLE);
 204   if (prev == CANCELLABLE || prev == NOT_CANCELLED) {
 205     if (SuspendibleThreadSet::should_yield()) {
 206       SuspendibleThreadSet::yield();
 207     }
 208 
 209     // Back to CANCELLABLE. The thread that poked NOT_CANCELLED first gets
 210     // to restore to CANCELLABLE.
 211     if (prev == CANCELLABLE) {
 212       _cancelled_gc.set(CANCELLABLE);
 213     }
 214     return false;
 215   } else {
 216     return true;
 217   }
 218 }
 219 
 220 inline bool ShenandoahHeap::try_cancel_gc() {
 221   while (true) {
 222     jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
 223     if (prev == CANCELLABLE) return true;
 224     else if (prev == CANCELLED) return false;
 225     assert(ShenandoahSuspendibleWorkers, "should not get here when not using suspendible workers");
 226     assert(prev == NOT_CANCELLED, "must be NOT_CANCELLED");
 227     {
 228       // We need to provide a safepoint here, otherwise we might
 229       // spin forever if a SP is pending.
 230       ThreadBlockInVM sp(JavaThread::current());
 231       SpinPause();
 232     }
 233   }
 234 }
 235 
 236 inline void ShenandoahHeap::clear_cancelled_gc() {
 237   _cancelled_gc.set(CANCELLABLE);
 238   _oom_evac_handler.clear();
 239 }
 240 
 241 inline HeapWord* ShenandoahHeap::allocate_from_gclab(Thread* thread, size_t size) {
 242   assert(UseTLAB, "TLABs should be enabled");
 243 
 244   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 245   if (gclab == NULL) {
 246     assert(!thread->is_Java_thread() && !thread->is_Worker_thread(),
 247            "Performance: thread should have GCLAB: %s", thread->name());
 248     // No GCLABs in this thread, fallback to shared allocation
 249     return NULL;
 250   }
 251   HeapWord* obj = gclab->allocate(size);
 252   if (obj != NULL) {
 253     return obj;
 254   }
 255   // Otherwise...
 256   return allocate_from_gclab_slow(thread, size);
 257 }
 258 
 259 inline oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
 260   if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) {
 261     // This thread went through the OOM during evac protocol and it is safe to return
 262     // the forward pointer. It must not attempt to evacuate any more.
 263     return ShenandoahBarrierSet::resolve_forwarded(p);
 264   }
 265 
 266   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
 267 
 268   size_t size = p->size();
 269 
 270   assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects");
 271 
 272   bool alloc_from_gclab = true;
 273   HeapWord* copy = NULL;
 274 
 275 #ifdef ASSERT
 276   if (ShenandoahOOMDuringEvacALot &&
 277       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
 278         copy = NULL;
 279   } else {
 280 #endif
 281     if (UseTLAB) {
 282       copy = allocate_from_gclab(thread, size);
 283     }
 284     if (copy == NULL) {
 285       ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size);
 286       copy = allocate_memory(req);
 287       alloc_from_gclab = false;
 288     }
 289 #ifdef ASSERT
 290   }
 291 #endif
 292 
 293   if (copy == NULL) {
 294     control_thread()->handle_alloc_failure_evac(size);
 295 
 296     _oom_evac_handler.handle_out_of_memory_during_evacuation();
 297 
 298     return ShenandoahBarrierSet::resolve_forwarded(p);
 299   }
 300 
 301   // Copy the object:
 302   Copy::aligned_disjoint_words((HeapWord*) p, copy, size);
 303 
 304   // Try to install the new forwarding pointer.
 305   oop copy_val = oop(copy);
 306   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
 307   if (result == copy_val) {
 308     // Successfully evacuated. Our copy is now the public one!
 309     shenandoah_assert_correct(NULL, copy_val);
 310     return copy_val;
 311   }  else {
 312     // Failed to evacuate. We need to deal with the object that is left behind. Since this
 313     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
 314     // But if it happens to contain references to evacuated regions, those references would
 315     // not get updated for this stale copy during this cycle, and we will crash while scanning
 316     // it the next cycle.
 317     //
 318     // For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next
 319     // object will overwrite this stale copy, or the filler object on LAB retirement will
 320     // do this. For non-GCLAB allocations, we have no way to retract the allocation, and
 321     // have to explicitly overwrite the copy with the filler object. With that overwrite,
 322     // we have to keep the fwdptr initialized and pointing to our (stale) copy.
 323     if (alloc_from_gclab) {
 324       ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
 325     } else {
 326       fill_with_object(copy, size);
 327       shenandoah_assert_correct(NULL, copy_val);
 328     }
 329     shenandoah_assert_correct(NULL, result);
 330     return result;
 331   }
 332 }
 333 
 334 inline bool ShenandoahHeap::requires_marking(const void* entry) const {
 335   return !_marking_context->is_marked(oop(entry));
 336 }
 337 
 338 template <class T>
 339 inline bool ShenandoahHeap::in_collection_set(T p) const {
 340   HeapWord* obj = (HeapWord*) p;
 341   assert(collection_set() != NULL, "Sanity");
 342   assert(is_in(obj), "should be in heap");
 343 
 344   return collection_set()->is_in(obj);
 345 }
 346 
 347 inline bool ShenandoahHeap::is_stable() const {
 348   return _gc_state.is_clear();
 349 }
 350 
 351 inline bool ShenandoahHeap::is_idle() const {
 352   return _gc_state.is_unset(MARKING | EVACUATION | UPDATEREFS | TRAVERSAL);
 353 }
 354 
 355 inline bool ShenandoahHeap::is_concurrent_mark_in_progress() const {
 356   return _gc_state.is_set(MARKING);
 357 }
 358 
 359 inline bool ShenandoahHeap::is_concurrent_traversal_in_progress() const {
 360   return _gc_state.is_set(TRAVERSAL);
 361 }
 362 
 363 inline bool ShenandoahHeap::is_evacuation_in_progress() const {
 364   return _gc_state.is_set(EVACUATION);
 365 }
 366 
 367 inline bool ShenandoahHeap::is_gc_in_progress_mask(uint mask) const {
 368   return _gc_state.is_set(mask);
 369 }
 370 
 371 inline bool ShenandoahHeap::is_degenerated_gc_in_progress() const {
 372   return _degenerated_gc_in_progress.is_set();
 373 }
 374 
 375 inline bool ShenandoahHeap::is_full_gc_in_progress() const {
 376   return _full_gc_in_progress.is_set();
 377 }
 378 
 379 inline bool ShenandoahHeap::is_full_gc_move_in_progress() const {
 380   return _full_gc_move_in_progress.is_set();
 381 }
 382 
 383 inline bool ShenandoahHeap::is_update_refs_in_progress() const {
 384   return _gc_state.is_set(UPDATEREFS);
 385 }
 386 
 387 template<class T>
 388 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl) {
 389   marked_object_iterate(region, cl, region->top());
 390 }
 391 
 392 template<class T>
 393 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* limit) {
 394   assert(! region->is_humongous_continuation(), "no humongous continuation regions here");
 395 
 396   ShenandoahMarkingContext* const ctx = complete_marking_context();
 397   assert(ctx->is_complete(), "sanity");
 398 
 399   MarkBitMap* mark_bit_map = ctx->mark_bit_map();
 400   HeapWord* tams = ctx->top_at_mark_start(region);
 401 
 402   size_t skip_bitmap_delta = 1;
 403   HeapWord* start = region->bottom();
 404   HeapWord* end = MIN2(tams, region->end());
 405 
 406   // Step 1. Scan below the TAMS based on bitmap data.
 407   HeapWord* limit_bitmap = MIN2(limit, tams);
 408 
 409   // Try to scan the initial candidate. If the candidate is above the TAMS, it would
 410   // fail the subsequent "< limit_bitmap" checks, and fall through to Step 2.
 411   HeapWord* cb = mark_bit_map->getNextMarkedWordAddress(start, end);
 412 
 413   intx dist = ShenandoahMarkScanPrefetch;
 414   if (dist > 0) {
 415     // Batched scan that prefetches the oop data, anticipating the access to
 416     // either header, oop field, or forwarding pointer. Not that we cannot
 417     // touch anything in oop, while it still being prefetched to get enough
 418     // time for prefetch to work. This is why we try to scan the bitmap linearly,
 419     // disregarding the object size. However, since we know forwarding pointer
 420     // preceeds the object, we can skip over it. Once we cannot trust the bitmap,
 421     // there is no point for prefetching the oop contents, as oop->size() will
 422     // touch it prematurely.
 423 
 424     // No variable-length arrays in standard C++, have enough slots to fit
 425     // the prefetch distance.
 426     static const int SLOT_COUNT = 256;
 427     guarantee(dist <= SLOT_COUNT, "adjust slot count");
 428     HeapWord* slots[SLOT_COUNT];
 429 
 430     int avail;
 431     do {
 432       avail = 0;
 433       for (int c = 0; (c < dist) && (cb < limit_bitmap); c++) {
 434         Prefetch::read(cb, oopDesc::mark_offset_in_bytes());
 435         slots[avail++] = cb;
 436         cb += skip_bitmap_delta;
 437         if (cb < limit_bitmap) {
 438           cb = mark_bit_map->getNextMarkedWordAddress(cb, limit_bitmap);
 439         }
 440       }
 441 
 442       for (int c = 0; c < avail; c++) {
 443         assert (slots[c] < tams,  "only objects below TAMS here: "  PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(tams));
 444         assert (slots[c] < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(limit));
 445         oop obj = oop(slots[c]);
 446         assert(oopDesc::is_oop(obj), "sanity");
 447         assert(ctx->is_marked(obj), "object expected to be marked");
 448         cl->do_object(obj);
 449       }
 450     } while (avail > 0);
 451   } else {
 452     while (cb < limit_bitmap) {
 453       assert (cb < tams,  "only objects below TAMS here: "  PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(tams));
 454       assert (cb < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(limit));
 455       oop obj = oop(cb);
 456       assert(oopDesc::is_oop(obj), "sanity");
 457       assert(ctx->is_marked(obj), "object expected to be marked");
 458       cl->do_object(obj);
 459       cb += skip_bitmap_delta;
 460       if (cb < limit_bitmap) {
 461         cb = mark_bit_map->getNextMarkedWordAddress(cb, limit_bitmap);
 462       }
 463     }
 464   }
 465 
 466   // Step 2. Accurate size-based traversal, happens past the TAMS.
 467   // This restarts the scan at TAMS, which makes sure we traverse all objects,
 468   // regardless of what happened at Step 1.
 469   HeapWord* cs = tams;
 470   while (cs < limit) {
 471     assert (cs >= tams, "only objects past TAMS here: "   PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(tams));
 472     assert (cs < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(limit));
 473     oop obj = oop(cs);
 474     assert(oopDesc::is_oop(obj), "sanity");
 475     assert(ctx->is_marked(obj), "object expected to be marked");
 476     int size = obj->size();
 477     cl->do_object(obj);
 478     cs += size;
 479   }
 480 }
 481 
 482 template <class T>
 483 class ShenandoahObjectToOopClosure : public ObjectClosure {
 484   T* _cl;
 485 public:
 486   ShenandoahObjectToOopClosure(T* cl) : _cl(cl) {}
 487 
 488   void do_object(oop obj) {
 489     obj->oop_iterate(_cl);
 490   }
 491 };
 492 
 493 template <class T>
 494 class ShenandoahObjectToOopBoundedClosure : public ObjectClosure {
 495   T* _cl;
 496   MemRegion _bounds;
 497 public:
 498   ShenandoahObjectToOopBoundedClosure(T* cl, HeapWord* bottom, HeapWord* top) :
 499     _cl(cl), _bounds(bottom, top) {}
 500 
 501   void do_object(oop obj) {
 502     obj->oop_iterate(_cl, _bounds);
 503   }
 504 };
 505 
 506 template<class T>
 507 inline void ShenandoahHeap::marked_object_oop_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* top) {
 508   if (region->is_humongous()) {
 509     HeapWord* bottom = region->bottom();
 510     if (top > bottom) {
 511       region = region->humongous_start_region();
 512       ShenandoahObjectToOopBoundedClosure<T> objs(cl, bottom, top);
 513       marked_object_iterate(region, &objs);
 514     }
 515   } else {
 516     ShenandoahObjectToOopClosure<T> objs(cl);
 517     marked_object_iterate(region, &objs, top);
 518   }
 519 }
 520 
 521 inline ShenandoahHeapRegion* const ShenandoahHeap::get_region(size_t region_idx) const {
 522   if (region_idx < _num_regions) {
 523     return _regions[region_idx];
 524   } else {
 525     return NULL;
 526   }
 527 }
 528 
 529 inline void ShenandoahHeap::mark_complete_marking_context() {
 530   _marking_context->mark_complete();
 531 }
 532 
 533 inline void ShenandoahHeap::mark_incomplete_marking_context() {
 534   _marking_context->mark_incomplete();
 535 }
 536 
 537 inline ShenandoahMarkingContext* ShenandoahHeap::complete_marking_context() const {
 538   assert (_marking_context->is_complete()," sanity");
 539   return _marking_context;
 540 }
 541 
 542 inline ShenandoahMarkingContext* ShenandoahHeap::marking_context() const {
 543   return _marking_context;
 544 }
 545 
 546 #endif // SHARE_VM_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP