1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include COMPILER_HEADER(utilities/globalDefinitions)
  33 
  34 // Defaults for macros that might be defined per compiler.
  35 #ifndef NOINLINE
  36 #define NOINLINE
  37 #endif
  38 #ifndef ALWAYSINLINE
  39 #define ALWAYSINLINE inline
  40 #endif
  41 
  42 #ifndef ATTRIBUTE_ALIGNED
  43 #define ATTRIBUTE_ALIGNED(x)
  44 #endif
  45 
  46 // This file holds all globally used constants & types, class (forward)
  47 // declarations and a few frequently used utility functions.
  48 
  49 //----------------------------------------------------------------------------------------------------
  50 // Printf-style formatters for fixed- and variable-width types as pointers and
  51 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  52 // doesn't provide appropriate definitions, they should be provided in
  53 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  54 
  55 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  56 
  57 // Format 32-bit quantities.
  58 #define INT32_FORMAT           "%" PRId32
  59 #define UINT32_FORMAT          "%" PRIu32
  60 #define INT32_FORMAT_W(width)  "%" #width PRId32
  61 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  62 
  63 #define PTR32_FORMAT           "0x%08" PRIx32
  64 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
  65 
  66 // Format 64-bit quantities.
  67 #define INT64_FORMAT           "%" PRId64
  68 #define UINT64_FORMAT          "%" PRIu64
  69 #define UINT64_FORMAT_X        "%" PRIx64
  70 #define INT64_FORMAT_W(width)  "%" #width PRId64
  71 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  72 #define UINT64_FORMAT_X_W(width) "%" #width PRIx64
  73 
  74 #define PTR64_FORMAT           "0x%016" PRIx64
  75 
  76 // Format jlong, if necessary
  77 #ifndef JLONG_FORMAT
  78 #define JLONG_FORMAT           INT64_FORMAT
  79 #endif
  80 #ifndef JULONG_FORMAT
  81 #define JULONG_FORMAT          UINT64_FORMAT
  82 #endif
  83 #ifndef JULONG_FORMAT_X
  84 #define JULONG_FORMAT_X        UINT64_FORMAT_X
  85 #endif
  86 
  87 // Format pointers which change size between 32- and 64-bit.
  88 #ifdef  _LP64
  89 #define INTPTR_FORMAT "0x%016" PRIxPTR
  90 #define PTR_FORMAT    "0x%016" PRIxPTR
  91 #else   // !_LP64
  92 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  93 #define PTR_FORMAT    "0x%08"  PRIxPTR
  94 #endif  // _LP64
  95 
  96 // Format pointers without leading zeros
  97 #define INTPTRNZ_FORMAT "0x%"  PRIxPTR
  98 
  99 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
 100 
 101 #define SSIZE_FORMAT             "%"   PRIdPTR
 102 #define SIZE_FORMAT              "%"   PRIuPTR
 103 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
 104 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 105 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 106 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
 107 
 108 #define INTX_FORMAT           "%" PRIdPTR
 109 #define UINTX_FORMAT          "%" PRIuPTR
 110 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 111 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 112 
 113 //----------------------------------------------------------------------------------------------------
 114 // Constants
 115 
 116 const int LogBytesPerShort   = 1;
 117 const int LogBytesPerInt     = 2;
 118 #ifdef _LP64
 119 const int LogBytesPerWord    = 3;
 120 #else
 121 const int LogBytesPerWord    = 2;
 122 #endif
 123 const int LogBytesPerLong    = 3;
 124 
 125 const int BytesPerShort      = 1 << LogBytesPerShort;
 126 const int BytesPerInt        = 1 << LogBytesPerInt;
 127 const int BytesPerWord       = 1 << LogBytesPerWord;
 128 const int BytesPerLong       = 1 << LogBytesPerLong;
 129 
 130 const int LogBitsPerByte     = 3;
 131 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 132 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 133 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 134 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 135 
 136 const int BitsPerByte        = 1 << LogBitsPerByte;
 137 const int BitsPerShort       = 1 << LogBitsPerShort;
 138 const int BitsPerInt         = 1 << LogBitsPerInt;
 139 const int BitsPerWord        = 1 << LogBitsPerWord;
 140 const int BitsPerLong        = 1 << LogBitsPerLong;
 141 
 142 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 143 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 144 
 145 const int WordsPerLong       = 2;       // Number of stack entries for longs
 146 
 147 const int oopSize            = sizeof(char*); // Full-width oop
 148 extern int heapOopSize;                       // Oop within a java object
 149 const int wordSize           = sizeof(char*);
 150 const int longSize           = sizeof(jlong);
 151 const int jintSize           = sizeof(jint);
 152 const int size_tSize         = sizeof(size_t);
 153 
 154 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 155 
 156 extern int LogBytesPerHeapOop;                // Oop within a java object
 157 extern int LogBitsPerHeapOop;
 158 extern int BytesPerHeapOop;
 159 extern int BitsPerHeapOop;
 160 
 161 const int BitsPerJavaInteger = 32;
 162 const int BitsPerJavaLong    = 64;
 163 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 164 
 165 // Size of a char[] needed to represent a jint as a string in decimal.
 166 const int jintAsStringSize = 12;
 167 
 168 // In fact this should be
 169 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 170 // see os::set_memory_serialize_page()
 171 #ifdef _LP64
 172 const int SerializePageShiftCount = 4;
 173 #else
 174 const int SerializePageShiftCount = 3;
 175 #endif
 176 
 177 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 178 // pointer into the heap.  We require that object sizes be measured in
 179 // units of heap words, so that that
 180 //   HeapWord* hw;
 181 //   hw += oop(hw)->foo();
 182 // works, where foo is a method (like size or scavenge) that returns the
 183 // object size.
 184 class HeapWord {
 185   friend class VMStructs;
 186  private:
 187   char* i;
 188 #ifndef PRODUCT
 189  public:
 190   char* value() { return i; }
 191 #endif
 192 };
 193 
 194 // Analogous opaque struct for metadata allocated from
 195 // metaspaces.
 196 class MetaWord {
 197  private:
 198   char* i;
 199 };
 200 
 201 // HeapWordSize must be 2^LogHeapWordSize.
 202 const int HeapWordSize        = sizeof(HeapWord);
 203 #ifdef _LP64
 204 const int LogHeapWordSize     = 3;
 205 #else
 206 const int LogHeapWordSize     = 2;
 207 #endif
 208 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 209 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 210 
 211 // The minimum number of native machine words necessary to contain "byte_size"
 212 // bytes.
 213 inline size_t heap_word_size(size_t byte_size) {
 214   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 215 }
 216 
 217 //-------------------------------------------
 218 // Constant for jlong (standardized by C++11)
 219 
 220 // Build a 64bit integer constant
 221 #define CONST64(x)  (x ## LL)
 222 #define UCONST64(x) (x ## ULL)
 223 
 224 const jlong min_jlong = CONST64(0x8000000000000000);
 225 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 226 
 227 const size_t K                  = 1024;
 228 const size_t M                  = K*K;
 229 const size_t G                  = M*K;
 230 const size_t HWperKB            = K / sizeof(HeapWord);
 231 
 232 // Constants for converting from a base unit to milli-base units.  For
 233 // example from seconds to milliseconds and microseconds
 234 
 235 const int MILLIUNITS    = 1000;         // milli units per base unit
 236 const int MICROUNITS    = 1000000;      // micro units per base unit
 237 const int NANOUNITS     = 1000000000;   // nano units per base unit
 238 
 239 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 240 const jint  NANOSECS_PER_MILLISEC = 1000000;
 241 
 242 // Proper units routines try to maintain at least three significant digits.
 243 // In worst case, it would print five significant digits with lower prefix.
 244 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 245 // and therefore we need to be careful.
 246 
 247 inline const char* proper_unit_for_byte_size(size_t s) {
 248 #ifdef _LP64
 249   if (s >= 100*G) {
 250     return "G";
 251   }
 252 #endif
 253   if (s >= 100*M) {
 254     return "M";
 255   } else if (s >= 100*K) {
 256     return "K";
 257   } else {
 258     return "B";
 259   }
 260 }
 261 
 262 template <class T>
 263 inline T byte_size_in_proper_unit(T s) {
 264 #ifdef _LP64
 265   if (s >= 100*G) {
 266     return (T)(s/G);
 267   }
 268 #endif
 269   if (s >= 100*M) {
 270     return (T)(s/M);
 271   } else if (s >= 100*K) {
 272     return (T)(s/K);
 273   } else {
 274     return s;
 275   }
 276 }
 277 
 278 inline const char* exact_unit_for_byte_size(size_t s) {
 279 #ifdef _LP64
 280   if (s >= G && (s % G) == 0) {
 281     return "G";
 282   }
 283 #endif
 284   if (s >= M && (s % M) == 0) {
 285     return "M";
 286   }
 287   if (s >= K && (s % K) == 0) {
 288     return "K";
 289   }
 290   return "B";
 291 }
 292 
 293 inline size_t byte_size_in_exact_unit(size_t s) {
 294 #ifdef _LP64
 295   if (s >= G && (s % G) == 0) {
 296     return s / G;
 297   }
 298 #endif
 299   if (s >= M && (s % M) == 0) {
 300     return s / M;
 301   }
 302   if (s >= K && (s % K) == 0) {
 303     return s / K;
 304   }
 305   return s;
 306 }
 307 
 308 //----------------------------------------------------------------------------------------------------
 309 // VM type definitions
 310 
 311 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 312 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 313 
 314 typedef intptr_t  intx;
 315 typedef uintptr_t uintx;
 316 
 317 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 318 const intx  max_intx  = (uintx)min_intx - 1;
 319 const uintx max_uintx = (uintx)-1;
 320 
 321 // Table of values:
 322 //      sizeof intx         4               8
 323 // min_intx             0x80000000      0x8000000000000000
 324 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 325 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 326 
 327 typedef unsigned int uint;   NEEDS_CLEANUP
 328 
 329 
 330 //----------------------------------------------------------------------------------------------------
 331 // Java type definitions
 332 
 333 // All kinds of 'plain' byte addresses
 334 typedef   signed char s_char;
 335 typedef unsigned char u_char;
 336 typedef u_char*       address;
 337 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 338                                     // except for some implementations of a C++
 339                                     // linkage pointer to function. Should never
 340                                     // need one of those to be placed in this
 341                                     // type anyway.
 342 
 343 //  Utility functions to "portably" (?) bit twiddle pointers
 344 //  Where portable means keep ANSI C++ compilers quiet
 345 
 346 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 347 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 348 
 349 //  Utility functions to "portably" make cast to/from function pointers.
 350 
 351 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 352 inline address_word  castable_address(address x)              { return address_word(x) ; }
 353 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 354 
 355 // Pointer subtraction.
 356 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 357 // the range we might need to find differences from one end of the heap
 358 // to the other.
 359 // A typical use might be:
 360 //     if (pointer_delta(end(), top()) >= size) {
 361 //       // enough room for an object of size
 362 //       ...
 363 // and then additions like
 364 //       ... top() + size ...
 365 // are safe because we know that top() is at least size below end().
 366 inline size_t pointer_delta(const volatile void* left,
 367                             const volatile void* right,
 368                             size_t element_size) {
 369   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 370 }
 371 
 372 // A version specialized for HeapWord*'s.
 373 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 374   return pointer_delta(left, right, sizeof(HeapWord));
 375 }
 376 // A version specialized for MetaWord*'s.
 377 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 378   return pointer_delta(left, right, sizeof(MetaWord));
 379 }
 380 
 381 //
 382 // ANSI C++ does not allow casting from one pointer type to a function pointer
 383 // directly without at best a warning. This macro accomplishes it silently
 384 // In every case that is present at this point the value be cast is a pointer
 385 // to a C linkage function. In some case the type used for the cast reflects
 386 // that linkage and a picky compiler would not complain. In other cases because
 387 // there is no convenient place to place a typedef with extern C linkage (i.e
 388 // a platform dependent header file) it doesn't. At this point no compiler seems
 389 // picky enough to catch these instances (which are few). It is possible that
 390 // using templates could fix these for all cases. This use of templates is likely
 391 // so far from the middle of the road that it is likely to be problematic in
 392 // many C++ compilers.
 393 //
 394 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 395 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 396 
 397 // Unsigned byte types for os and stream.hpp
 398 
 399 // Unsigned one, two, four and eigth byte quantities used for describing
 400 // the .class file format. See JVM book chapter 4.
 401 
 402 typedef jubyte  u1;
 403 typedef jushort u2;
 404 typedef juint   u4;
 405 typedef julong  u8;
 406 
 407 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 408 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 409 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 410 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 411 
 412 typedef jbyte  s1;
 413 typedef jshort s2;
 414 typedef jint   s4;
 415 typedef jlong  s8;
 416 
 417 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 418 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 419 const jshort min_jshort = -(1 << 15);    // smallest jshort
 420 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 421 
 422 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 423 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 424 
 425 //----------------------------------------------------------------------------------------------------
 426 // JVM spec restrictions
 427 
 428 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 429 
 430 //----------------------------------------------------------------------------------------------------
 431 // Default and minimum StringTableSize values
 432 
 433 const int defaultStringTableSize = NOT_LP64(1024) LP64_ONLY(65536);
 434 const int minimumStringTableSize = 128;
 435 
 436 const int defaultSymbolTableSize = 20011;
 437 const int minimumSymbolTableSize = 1009;
 438 
 439 
 440 //----------------------------------------------------------------------------------------------------
 441 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 442 //
 443 // Determines whether on-the-fly class replacement and frame popping are enabled.
 444 
 445 #define HOTSWAP
 446 
 447 //----------------------------------------------------------------------------------------------------
 448 // Object alignment, in units of HeapWords.
 449 //
 450 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 451 // reference fields can be naturally aligned.
 452 
 453 extern int MinObjAlignment;
 454 extern int MinObjAlignmentInBytes;
 455 extern int MinObjAlignmentInBytesMask;
 456 
 457 extern int LogMinObjAlignment;
 458 extern int LogMinObjAlignmentInBytes;
 459 
 460 const int LogKlassAlignmentInBytes = 3;
 461 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 462 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 463 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 464 
 465 // Maximal size of heap where unscaled compression can be used. Also upper bound
 466 // for heap placement: 4GB.
 467 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 468 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 469 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 470 extern uint64_t OopEncodingHeapMax;
 471 
 472 // Maximal size of compressed class space. Above this limit compression is not possible.
 473 // Also upper bound for placement of zero based class space. (Class space is further limited
 474 // to be < 3G, see arguments.cpp.)
 475 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 476 
 477 // Machine dependent stuff
 478 
 479 // The maximum size of the code cache.  Can be overridden by targets.
 480 #define CODE_CACHE_SIZE_LIMIT (2*G)
 481 // Allow targets to reduce the default size of the code cache.
 482 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 483 
 484 #include CPU_HEADER(globalDefinitions)
 485 
 486 // To assure the IRIW property on processors that are not multiple copy
 487 // atomic, sync instructions must be issued between volatile reads to
 488 // assure their ordering, instead of after volatile stores.
 489 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 490 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 491 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 492 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 493 #else
 494 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 495 #endif
 496 
 497 // The expected size in bytes of a cache line, used to pad data structures.
 498 #ifndef DEFAULT_CACHE_LINE_SIZE
 499   #define DEFAULT_CACHE_LINE_SIZE 64
 500 #endif
 501 
 502 
 503 //----------------------------------------------------------------------------------------------------
 504 // Utility macros for compilers
 505 // used to silence compiler warnings
 506 
 507 #define Unused_Variable(var) var
 508 
 509 
 510 //----------------------------------------------------------------------------------------------------
 511 // Miscellaneous
 512 
 513 // 6302670 Eliminate Hotspot __fabsf dependency
 514 // All fabs() callers should call this function instead, which will implicitly
 515 // convert the operand to double, avoiding a dependency on __fabsf which
 516 // doesn't exist in early versions of Solaris 8.
 517 inline double fabsd(double value) {
 518   return fabs(value);
 519 }
 520 
 521 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 522 // is zero, return 0.0.
 523 template<typename T>
 524 inline double percent_of(T numerator, T denominator) {
 525   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 526 }
 527 
 528 //----------------------------------------------------------------------------------------------------
 529 // Special casts
 530 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 531 typedef union {
 532   jfloat f;
 533   jint i;
 534 } FloatIntConv;
 535 
 536 typedef union {
 537   jdouble d;
 538   jlong l;
 539   julong ul;
 540 } DoubleLongConv;
 541 
 542 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 543 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 544 
 545 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 546 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 547 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 548 
 549 inline jint low (jlong value)                    { return jint(value); }
 550 inline jint high(jlong value)                    { return jint(value >> 32); }
 551 
 552 // the fancy casts are a hopefully portable way
 553 // to do unsigned 32 to 64 bit type conversion
 554 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 555                                                    *value |= (jlong)(julong)(juint)low; }
 556 
 557 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 558                                                    *value |= (jlong)high       << 32; }
 559 
 560 inline jlong jlong_from(jint h, jint l) {
 561   jlong result = 0; // initialization to avoid warning
 562   set_high(&result, h);
 563   set_low(&result,  l);
 564   return result;
 565 }
 566 
 567 union jlong_accessor {
 568   jint  words[2];
 569   jlong long_value;
 570 };
 571 
 572 void basic_types_init(); // cannot define here; uses assert
 573 
 574 
 575 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 576 enum BasicType {
 577   T_BOOLEAN     =  4,
 578   T_CHAR        =  5,
 579   T_FLOAT       =  6,
 580   T_DOUBLE      =  7,
 581   T_BYTE        =  8,
 582   T_SHORT       =  9,
 583   T_INT         = 10,
 584   T_LONG        = 11,
 585   T_OBJECT      = 12,
 586   T_ARRAY       = 13,
 587   T_VOID        = 14,
 588   T_ADDRESS     = 15,
 589   T_NARROWOOP   = 16,
 590   T_METADATA    = 17,
 591   T_NARROWKLASS = 18,
 592   T_CONFLICT    = 19, // for stack value type with conflicting contents
 593   T_ILLEGAL     = 99
 594 };
 595 
 596 inline bool is_java_primitive(BasicType t) {
 597   return T_BOOLEAN <= t && t <= T_LONG;
 598 }
 599 
 600 inline bool is_subword_type(BasicType t) {
 601   // these guys are processed exactly like T_INT in calling sequences:
 602   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 603 }
 604 
 605 inline bool is_signed_subword_type(BasicType t) {
 606   return (t == T_BYTE || t == T_SHORT);
 607 }
 608 
 609 inline bool is_reference_type(BasicType t) {
 610   return (t == T_OBJECT || t == T_ARRAY);
 611 }
 612 
 613 // Convert a char from a classfile signature to a BasicType
 614 inline BasicType char2type(char c) {
 615   switch( c ) {
 616   case 'B': return T_BYTE;
 617   case 'C': return T_CHAR;
 618   case 'D': return T_DOUBLE;
 619   case 'F': return T_FLOAT;
 620   case 'I': return T_INT;
 621   case 'J': return T_LONG;
 622   case 'S': return T_SHORT;
 623   case 'Z': return T_BOOLEAN;
 624   case 'V': return T_VOID;
 625   case 'L': return T_OBJECT;
 626   case '[': return T_ARRAY;
 627   }
 628   return T_ILLEGAL;
 629 }
 630 
 631 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 632 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 633 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 634 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 635 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 636 extern BasicType name2type(const char* name);
 637 
 638 // Auxiliary math routines
 639 // least common multiple
 640 extern size_t lcm(size_t a, size_t b);
 641 
 642 
 643 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 644 enum BasicTypeSize {
 645   T_BOOLEAN_size     = 1,
 646   T_CHAR_size        = 1,
 647   T_FLOAT_size       = 1,
 648   T_DOUBLE_size      = 2,
 649   T_BYTE_size        = 1,
 650   T_SHORT_size       = 1,
 651   T_INT_size         = 1,
 652   T_LONG_size        = 2,
 653   T_OBJECT_size      = 1,
 654   T_ARRAY_size       = 1,
 655   T_NARROWOOP_size   = 1,
 656   T_NARROWKLASS_size = 1,
 657   T_VOID_size        = 0
 658 };
 659 
 660 
 661 // maps a BasicType to its instance field storage type:
 662 // all sub-word integral types are widened to T_INT
 663 extern BasicType type2field[T_CONFLICT+1];
 664 extern BasicType type2wfield[T_CONFLICT+1];
 665 
 666 
 667 // size in bytes
 668 enum ArrayElementSize {
 669   T_BOOLEAN_aelem_bytes     = 1,
 670   T_CHAR_aelem_bytes        = 2,
 671   T_FLOAT_aelem_bytes       = 4,
 672   T_DOUBLE_aelem_bytes      = 8,
 673   T_BYTE_aelem_bytes        = 1,
 674   T_SHORT_aelem_bytes       = 2,
 675   T_INT_aelem_bytes         = 4,
 676   T_LONG_aelem_bytes        = 8,
 677 #ifdef _LP64
 678   T_OBJECT_aelem_bytes      = 8,
 679   T_ARRAY_aelem_bytes       = 8,
 680 #else
 681   T_OBJECT_aelem_bytes      = 4,
 682   T_ARRAY_aelem_bytes       = 4,
 683 #endif
 684   T_NARROWOOP_aelem_bytes   = 4,
 685   T_NARROWKLASS_aelem_bytes = 4,
 686   T_VOID_aelem_bytes        = 0
 687 };
 688 
 689 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 690 #ifdef ASSERT
 691 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 692 #else
 693 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 694 #endif
 695 
 696 
 697 // JavaValue serves as a container for arbitrary Java values.
 698 
 699 class JavaValue {
 700 
 701  public:
 702   typedef union JavaCallValue {
 703     jfloat   f;
 704     jdouble  d;
 705     jint     i;
 706     jlong    l;
 707     jobject  h;
 708   } JavaCallValue;
 709 
 710  private:
 711   BasicType _type;
 712   JavaCallValue _value;
 713 
 714  public:
 715   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 716 
 717   JavaValue(jfloat value) {
 718     _type    = T_FLOAT;
 719     _value.f = value;
 720   }
 721 
 722   JavaValue(jdouble value) {
 723     _type    = T_DOUBLE;
 724     _value.d = value;
 725   }
 726 
 727  jfloat get_jfloat() const { return _value.f; }
 728  jdouble get_jdouble() const { return _value.d; }
 729  jint get_jint() const { return _value.i; }
 730  jlong get_jlong() const { return _value.l; }
 731  jobject get_jobject() const { return _value.h; }
 732  JavaCallValue* get_value_addr() { return &_value; }
 733  BasicType get_type() const { return _type; }
 734 
 735  void set_jfloat(jfloat f) { _value.f = f;}
 736  void set_jdouble(jdouble d) { _value.d = d;}
 737  void set_jint(jint i) { _value.i = i;}
 738  void set_jlong(jlong l) { _value.l = l;}
 739  void set_jobject(jobject h) { _value.h = h;}
 740  void set_type(BasicType t) { _type = t; }
 741 
 742  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 743  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 744  jchar get_jchar() const { return (jchar) (_value.i);}
 745  jshort get_jshort() const { return (jshort) (_value.i);}
 746 
 747 };
 748 
 749 
 750 #define STACK_BIAS      0
 751 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 752 // in order to extend the reach of the stack pointer.
 753 #if defined(SPARC) && defined(_LP64)
 754 #undef STACK_BIAS
 755 #define STACK_BIAS      0x7ff
 756 #endif
 757 
 758 
 759 // TosState describes the top-of-stack state before and after the execution of
 760 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 761 // registers. The TosState corresponds to the 'machine representation' of this cached
 762 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 763 // as well as a 5th state in case the top-of-stack value is actually on the top
 764 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 765 // state when it comes to machine representation but is used separately for (oop)
 766 // type specific operations (e.g. verification code).
 767 
 768 enum TosState {         // describes the tos cache contents
 769   btos = 0,             // byte, bool tos cached
 770   ztos = 1,             // byte, bool tos cached
 771   ctos = 2,             // char tos cached
 772   stos = 3,             // short tos cached
 773   itos = 4,             // int tos cached
 774   ltos = 5,             // long tos cached
 775   ftos = 6,             // float tos cached
 776   dtos = 7,             // double tos cached
 777   atos = 8,             // object cached
 778   vtos = 9,             // tos not cached
 779   number_of_states,
 780   ilgl                  // illegal state: should not occur
 781 };
 782 
 783 
 784 inline TosState as_TosState(BasicType type) {
 785   switch (type) {
 786     case T_BYTE   : return btos;
 787     case T_BOOLEAN: return ztos;
 788     case T_CHAR   : return ctos;
 789     case T_SHORT  : return stos;
 790     case T_INT    : return itos;
 791     case T_LONG   : return ltos;
 792     case T_FLOAT  : return ftos;
 793     case T_DOUBLE : return dtos;
 794     case T_VOID   : return vtos;
 795     case T_ARRAY  : // fall through
 796     case T_OBJECT : return atos;
 797     default       : return ilgl;
 798   }
 799 }
 800 
 801 inline BasicType as_BasicType(TosState state) {
 802   switch (state) {
 803     case btos : return T_BYTE;
 804     case ztos : return T_BOOLEAN;
 805     case ctos : return T_CHAR;
 806     case stos : return T_SHORT;
 807     case itos : return T_INT;
 808     case ltos : return T_LONG;
 809     case ftos : return T_FLOAT;
 810     case dtos : return T_DOUBLE;
 811     case atos : return T_OBJECT;
 812     case vtos : return T_VOID;
 813     default   : return T_ILLEGAL;
 814   }
 815 }
 816 
 817 
 818 // Helper function to convert BasicType info into TosState
 819 // Note: Cannot define here as it uses global constant at the time being.
 820 TosState as_TosState(BasicType type);
 821 
 822 
 823 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 824 // information is needed by the safepoint code.
 825 //
 826 // There are 4 essential states:
 827 //
 828 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 829 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 830 //  _thread_in_vm       : Executing in the vm
 831 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 832 //
 833 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 834 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 835 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 836 //
 837 // Given a state, the xxxx_trans state can always be found by adding 1.
 838 //
 839 enum JavaThreadState {
 840   _thread_uninitialized     =  0, // should never happen (missing initialization)
 841   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 842   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 843   _thread_in_native         =  4, // running in native code
 844   _thread_in_native_trans   =  5, // corresponding transition state
 845   _thread_in_vm             =  6, // running in VM
 846   _thread_in_vm_trans       =  7, // corresponding transition state
 847   _thread_in_Java           =  8, // running in Java or in stub code
 848   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 849   _thread_blocked           = 10, // blocked in vm
 850   _thread_blocked_trans     = 11, // corresponding transition state
 851   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 852 };
 853 
 854 
 855 
 856 //----------------------------------------------------------------------------------------------------
 857 // 'Forward' declarations of frequently used classes
 858 // (in order to reduce interface dependencies & reduce
 859 // number of unnecessary compilations after changes)
 860 
 861 class ClassFileStream;
 862 
 863 class Event;
 864 
 865 class Thread;
 866 class  VMThread;
 867 class  JavaThread;
 868 class Threads;
 869 
 870 class VM_Operation;
 871 class VMOperationQueue;
 872 
 873 class CodeBlob;
 874 class  CompiledMethod;
 875 class   nmethod;
 876 class RuntimeBlob;
 877 class  OSRAdapter;
 878 class  I2CAdapter;
 879 class  C2IAdapter;
 880 class CompiledIC;
 881 class relocInfo;
 882 class ScopeDesc;
 883 class PcDesc;
 884 
 885 class Recompiler;
 886 class Recompilee;
 887 class RecompilationPolicy;
 888 class RFrame;
 889 class  CompiledRFrame;
 890 class  InterpretedRFrame;
 891 
 892 class vframe;
 893 class   javaVFrame;
 894 class     interpretedVFrame;
 895 class     compiledVFrame;
 896 class     deoptimizedVFrame;
 897 class   externalVFrame;
 898 class     entryVFrame;
 899 
 900 class RegisterMap;
 901 
 902 class Mutex;
 903 class Monitor;
 904 class BasicLock;
 905 class BasicObjectLock;
 906 
 907 class PeriodicTask;
 908 
 909 class JavaCallWrapper;
 910 
 911 class   oopDesc;
 912 class   metaDataOopDesc;
 913 
 914 class NativeCall;
 915 
 916 class zone;
 917 
 918 class StubQueue;
 919 
 920 class outputStream;
 921 
 922 class ResourceArea;
 923 
 924 class DebugInformationRecorder;
 925 class ScopeValue;
 926 class CompressedStream;
 927 class   DebugInfoReadStream;
 928 class   DebugInfoWriteStream;
 929 class LocationValue;
 930 class ConstantValue;
 931 class IllegalValue;
 932 
 933 class PrivilegedElement;
 934 class MonitorArray;
 935 
 936 class MonitorInfo;
 937 
 938 class OffsetClosure;
 939 class OopMapCache;
 940 class InterpreterOopMap;
 941 class OopMapCacheEntry;
 942 class OSThread;
 943 
 944 typedef int (*OSThreadStartFunc)(void*);
 945 
 946 class Space;
 947 
 948 class JavaValue;
 949 class methodHandle;
 950 class JavaCallArguments;
 951 
 952 //----------------------------------------------------------------------------------------------------
 953 // Special constants for debugging
 954 
 955 const jint     badInt           = -3;                       // generic "bad int" value
 956 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
 957 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
 958 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 959 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
 960 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 961 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 962 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 963 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 964 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
 965 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 966 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 967 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 968 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 969 
 970 
 971 // (These must be implemented as #defines because C++ compilers are
 972 // not obligated to inline non-integral constants!)
 973 #define       badAddress        ((address)::badAddressVal)
 974 #define       badOop            (cast_to_oop(::badOopVal))
 975 #define       badHeapWord       (::badHeapWordVal)
 976 
 977 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 978 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 979 
 980 //----------------------------------------------------------------------------------------------------
 981 // Utility functions for bitfield manipulations
 982 
 983 const intptr_t AllBits    = ~0; // all bits set in a word
 984 const intptr_t NoBits     =  0; // no bits set in a word
 985 const jlong    NoLongBits =  0; // no bits set in a long
 986 const intptr_t OneBit     =  1; // only right_most bit set in a word
 987 
 988 // get a word with the n.th or the right-most or left-most n bits set
 989 // (note: #define used only so that they can be used in enum constant definitions)
 990 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
 991 #define right_n_bits(n)   (nth_bit(n) - 1)
 992 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
 993 
 994 // bit-operations using a mask m
 995 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 996 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 997 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 998 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 999 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1000 
1001 // bit-operations using the n.th bit
1002 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1003 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1004 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1005 
1006 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1007 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1008   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1009 }
1010 
1011 
1012 //----------------------------------------------------------------------------------------------------
1013 // Utility functions for integers
1014 
1015 // Avoid use of global min/max macros which may cause unwanted double
1016 // evaluation of arguments.
1017 #ifdef max
1018 #undef max
1019 #endif
1020 
1021 #ifdef min
1022 #undef min
1023 #endif
1024 
1025 // It is necessary to use templates here. Having normal overloaded
1026 // functions does not work because it is necessary to provide both 32-
1027 // and 64-bit overloaded functions, which does not work, and having
1028 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1029 // will be even more error-prone than macros.
1030 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1031 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1032 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1033 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1034 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1035 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1036 
1037 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1038 
1039 // true if x is a power of 2, false otherwise
1040 inline bool is_power_of_2(intptr_t x) {
1041   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1042 }
1043 
1044 // long version of is_power_of_2
1045 inline bool is_power_of_2_long(jlong x) {
1046   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1047 }
1048 
1049 // Returns largest i such that 2^i <= x.
1050 // If x == 0, the function returns -1.
1051 inline int log2_intptr(uintptr_t x) {
1052   int i = -1;
1053   uintptr_t p = 1;
1054   while (p != 0 && p <= x) {
1055     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1056     i++; p *= 2;
1057   }
1058   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1059   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1060   return i;
1061 }
1062 
1063 //* largest i such that 2^i <= x
1064 inline int log2_long(julong x) {
1065   int i = -1;
1066   julong p =  1;
1067   while (p != 0 && p <= x) {
1068     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1069     i++; p *= 2;
1070   }
1071   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1072   // (if p = 0 then overflow occurred and i = 63)
1073   return i;
1074 }
1075 
1076 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1077 inline int log2_intptr(intptr_t x) {
1078   return log2_intptr((uintptr_t)x);
1079 }
1080 
1081 inline int log2_int(int x) {
1082   STATIC_ASSERT(sizeof(int) <= sizeof(uintptr_t));
1083   return log2_intptr((uintptr_t)x);
1084 }
1085 
1086 inline int log2_jint(jint x) {
1087   STATIC_ASSERT(sizeof(jint) <= sizeof(uintptr_t));
1088   return log2_intptr((uintptr_t)x);
1089 }
1090 
1091 inline int log2_uint(uint x) {
1092   STATIC_ASSERT(sizeof(uint) <= sizeof(uintptr_t));
1093   return log2_intptr((uintptr_t)x);
1094 }
1095 
1096 //  A negative value of 'x' will return '63'
1097 inline int log2_jlong(jlong x) {
1098   STATIC_ASSERT(sizeof(jlong) <= sizeof(julong));
1099   return log2_long((julong)x);
1100 }
1101 
1102 //* the argument must be exactly a power of 2
1103 inline int exact_log2(intptr_t x) {
1104   assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
1105   return log2_intptr(x);
1106 }
1107 
1108 //* the argument must be exactly a power of 2
1109 inline int exact_log2_long(jlong x) {
1110   assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
1111   return log2_long(x);
1112 }
1113 
1114 inline bool is_odd (intx x) { return x & 1;      }
1115 inline bool is_even(intx x) { return !is_odd(x); }
1116 
1117 // abs methods which cannot overflow and so are well-defined across
1118 // the entire domain of integer types.
1119 static inline unsigned int uabs(unsigned int n) {
1120   union {
1121     unsigned int result;
1122     int value;
1123   };
1124   result = n;
1125   if (value < 0) result = 0-result;
1126   return result;
1127 }
1128 static inline julong uabs(julong n) {
1129   union {
1130     julong result;
1131     jlong value;
1132   };
1133   result = n;
1134   if (value < 0) result = 0-result;
1135   return result;
1136 }
1137 static inline julong uabs(jlong n) { return uabs((julong)n); }
1138 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1139 
1140 // "to" should be greater than "from."
1141 inline intx byte_size(void* from, void* to) {
1142   return (address)to - (address)from;
1143 }
1144 
1145 //----------------------------------------------------------------------------------------------------
1146 // Avoid non-portable casts with these routines (DEPRECATED)
1147 
1148 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1149 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1150 
1151 // Given sequence of four bytes, build into a 32-bit word
1152 // following the conventions used in class files.
1153 // On the 386, this could be realized with a simple address cast.
1154 //
1155 
1156 // This routine takes eight bytes:
1157 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1158   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1159        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1160        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1161        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1162        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1163        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1164        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1165        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1166 }
1167 
1168 // This routine takes four bytes:
1169 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1170   return  (( u4(c1) << 24 )  &  0xff000000)
1171        |  (( u4(c2) << 16 )  &  0x00ff0000)
1172        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1173        |  (( u4(c4) <<  0 )  &  0x000000ff);
1174 }
1175 
1176 // And this one works if the four bytes are contiguous in memory:
1177 inline u4 build_u4_from( u1* p ) {
1178   return  build_u4_from( p[0], p[1], p[2], p[3] );
1179 }
1180 
1181 // Ditto for two-byte ints:
1182 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1183   return  u2((( u2(c1) <<  8 )  &  0xff00)
1184           |  (( u2(c2) <<  0 )  &  0x00ff));
1185 }
1186 
1187 // And this one works if the two bytes are contiguous in memory:
1188 inline u2 build_u2_from( u1* p ) {
1189   return  build_u2_from( p[0], p[1] );
1190 }
1191 
1192 // Ditto for floats:
1193 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1194   u4 u = build_u4_from( c1, c2, c3, c4 );
1195   return  *(jfloat*)&u;
1196 }
1197 
1198 inline jfloat build_float_from( u1* p ) {
1199   u4 u = build_u4_from( p );
1200   return  *(jfloat*)&u;
1201 }
1202 
1203 
1204 // now (64-bit) longs
1205 
1206 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1207   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1208        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1209        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1210        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1211        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1212        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1213        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1214        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1215 }
1216 
1217 inline jlong build_long_from( u1* p ) {
1218   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1219 }
1220 
1221 
1222 // Doubles, too!
1223 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1224   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1225   return  *(jdouble*)&u;
1226 }
1227 
1228 inline jdouble build_double_from( u1* p ) {
1229   jlong u = build_long_from( p );
1230   return  *(jdouble*)&u;
1231 }
1232 
1233 
1234 // Portable routines to go the other way:
1235 
1236 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1237   c1 = u1(x >> 8);
1238   c2 = u1(x);
1239 }
1240 
1241 inline void explode_short_to( u2 x, u1* p ) {
1242   explode_short_to( x, p[0], p[1]);
1243 }
1244 
1245 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1246   c1 = u1(x >> 24);
1247   c2 = u1(x >> 16);
1248   c3 = u1(x >>  8);
1249   c4 = u1(x);
1250 }
1251 
1252 inline void explode_int_to( u4 x, u1* p ) {
1253   explode_int_to( x, p[0], p[1], p[2], p[3]);
1254 }
1255 
1256 
1257 // Pack and extract shorts to/from ints:
1258 
1259 inline int extract_low_short_from_int(jint x) {
1260   return x & 0xffff;
1261 }
1262 
1263 inline int extract_high_short_from_int(jint x) {
1264   return (x >> 16) & 0xffff;
1265 }
1266 
1267 inline int build_int_from_shorts( jushort low, jushort high ) {
1268   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1269 }
1270 
1271 // Convert pointer to intptr_t, for use in printing pointers.
1272 inline intptr_t p2i(const void * p) {
1273   return (intptr_t) p;
1274 }
1275 
1276 // swap a & b
1277 template<class T> static void swap(T& a, T& b) {
1278   T tmp = a;
1279   a = b;
1280   b = tmp;
1281 }
1282 
1283 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1284 
1285 //----------------------------------------------------------------------------------------------------
1286 // Sum and product which can never overflow: they wrap, just like the
1287 // Java operations.  Note that we don't intend these to be used for
1288 // general-purpose arithmetic: their purpose is to emulate Java
1289 // operations.
1290 
1291 // The goal of this code to avoid undefined or implementation-defined
1292 // behavior.  The use of an lvalue to reference cast is explicitly
1293 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1294 // 15 in C++03]
1295 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1296 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1297   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1298   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1299   return reinterpret_cast<TYPE&>(ures);                 \
1300 }
1301 
1302 JAVA_INTEGER_OP(+, java_add, jint, juint)
1303 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1304 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1305 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1306 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1307 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1308 
1309 #undef JAVA_INTEGER_OP
1310 
1311 // Dereference vptr
1312 // All C++ compilers that we know of have the vtbl pointer in the first
1313 // word.  If there are exceptions, this function needs to be made compiler
1314 // specific.
1315 static inline void* dereference_vptr(const void* addr) {
1316   return *(void**)addr;
1317 }
1318 
1319 //----------------------------------------------------------------------------------------------------
1320 // String type aliases used by command line flag declarations and
1321 // processing utilities.
1322 
1323 typedef const char* ccstr;
1324 typedef const char* ccstrlist;   // represents string arguments which accumulate
1325 
1326 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP