1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "opto/addnode.hpp"
  40 #include "opto/block.hpp"
  41 #include "opto/c2compiler.hpp"
  42 #include "opto/callGenerator.hpp"
  43 #include "opto/callnode.hpp"
  44 #include "opto/castnode.hpp"
  45 #include "opto/cfgnode.hpp"
  46 #include "opto/chaitin.hpp"
  47 #include "opto/compile.hpp"
  48 #include "opto/connode.hpp"
  49 #include "opto/convertnode.hpp"
  50 #include "opto/divnode.hpp"
  51 #include "opto/escape.hpp"
  52 #include "opto/idealGraphPrinter.hpp"
  53 #include "opto/loopnode.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/macro.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/mathexactnode.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/narrowptrnode.hpp"
  61 #include "opto/node.hpp"
  62 #include "opto/opcodes.hpp"
  63 #include "opto/output.hpp"
  64 #include "opto/parse.hpp"
  65 #include "opto/phaseX.hpp"
  66 #include "opto/rootnode.hpp"
  67 #include "opto/runtime.hpp"
  68 #include "opto/stringopts.hpp"
  69 #include "opto/type.hpp"
  70 #include "opto/vectornode.hpp"
  71 #include "runtime/arguments.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/signature.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/timer.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/copy.hpp"
  78 #include "utilities/macros.hpp"
  79 #if INCLUDE_ZGC
  80 #include "gc/z/c2/zBarrierSetC2.hpp"
  81 #endif
  82 #if INCLUDE_SHENANDOAHGC
  83 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  84 #endif
  85 
  86 
  87 // -------------------- Compile::mach_constant_base_node -----------------------
  88 // Constant table base node singleton.
  89 MachConstantBaseNode* Compile::mach_constant_base_node() {
  90   if (_mach_constant_base_node == NULL) {
  91     _mach_constant_base_node = new MachConstantBaseNode();
  92     _mach_constant_base_node->add_req(C->root());
  93   }
  94   return _mach_constant_base_node;
  95 }
  96 
  97 
  98 /// Support for intrinsics.
  99 
 100 // Return the index at which m must be inserted (or already exists).
 101 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 102 class IntrinsicDescPair {
 103  private:
 104   ciMethod* _m;
 105   bool _is_virtual;
 106  public:
 107   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 108   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 109     ciMethod* m= elt->method();
 110     ciMethod* key_m = key->_m;
 111     if (key_m < m)      return -1;
 112     else if (key_m > m) return 1;
 113     else {
 114       bool is_virtual = elt->is_virtual();
 115       bool key_virtual = key->_is_virtual;
 116       if (key_virtual < is_virtual)      return -1;
 117       else if (key_virtual > is_virtual) return 1;
 118       else                               return 0;
 119     }
 120   }
 121 };
 122 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 123 #ifdef ASSERT
 124   for (int i = 1; i < _intrinsics->length(); i++) {
 125     CallGenerator* cg1 = _intrinsics->at(i-1);
 126     CallGenerator* cg2 = _intrinsics->at(i);
 127     assert(cg1->method() != cg2->method()
 128            ? cg1->method()     < cg2->method()
 129            : cg1->is_virtual() < cg2->is_virtual(),
 130            "compiler intrinsics list must stay sorted");
 131   }
 132 #endif
 133   IntrinsicDescPair pair(m, is_virtual);
 134   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 135 }
 136 
 137 void Compile::register_intrinsic(CallGenerator* cg) {
 138   if (_intrinsics == NULL) {
 139     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 140   }
 141   int len = _intrinsics->length();
 142   bool found = false;
 143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 144   assert(!found, "registering twice");
 145   _intrinsics->insert_before(index, cg);
 146   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 147 }
 148 
 149 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 150   assert(m->is_loaded(), "don't try this on unloaded methods");
 151   if (_intrinsics != NULL) {
 152     bool found = false;
 153     int index = intrinsic_insertion_index(m, is_virtual, found);
 154      if (found) {
 155       return _intrinsics->at(index);
 156     }
 157   }
 158   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 159   if (m->intrinsic_id() != vmIntrinsics::_none &&
 160       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 161     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 162     if (cg != NULL) {
 163       // Save it for next time:
 164       register_intrinsic(cg);
 165       return cg;
 166     } else {
 167       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 168     }
 169   }
 170   return NULL;
 171 }
 172 
 173 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 174 // in library_call.cpp.
 175 
 176 
 177 #ifndef PRODUCT
 178 // statistics gathering...
 179 
 180 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 181 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 182 
 183 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 184   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 185   int oflags = _intrinsic_hist_flags[id];
 186   assert(flags != 0, "what happened?");
 187   if (is_virtual) {
 188     flags |= _intrinsic_virtual;
 189   }
 190   bool changed = (flags != oflags);
 191   if ((flags & _intrinsic_worked) != 0) {
 192     juint count = (_intrinsic_hist_count[id] += 1);
 193     if (count == 1) {
 194       changed = true;           // first time
 195     }
 196     // increment the overall count also:
 197     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 198   }
 199   if (changed) {
 200     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 201       // Something changed about the intrinsic's virtuality.
 202       if ((flags & _intrinsic_virtual) != 0) {
 203         // This is the first use of this intrinsic as a virtual call.
 204         if (oflags != 0) {
 205           // We already saw it as a non-virtual, so note both cases.
 206           flags |= _intrinsic_both;
 207         }
 208       } else if ((oflags & _intrinsic_both) == 0) {
 209         // This is the first use of this intrinsic as a non-virtual
 210         flags |= _intrinsic_both;
 211       }
 212     }
 213     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 214   }
 215   // update the overall flags also:
 216   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 217   return changed;
 218 }
 219 
 220 static char* format_flags(int flags, char* buf) {
 221   buf[0] = 0;
 222   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 223   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 224   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 225   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 226   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 227   if (buf[0] == 0)  strcat(buf, ",");
 228   assert(buf[0] == ',', "must be");
 229   return &buf[1];
 230 }
 231 
 232 void Compile::print_intrinsic_statistics() {
 233   char flagsbuf[100];
 234   ttyLocker ttyl;
 235   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 236   tty->print_cr("Compiler intrinsic usage:");
 237   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 238   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 239   #define PRINT_STAT_LINE(name, c, f) \
 240     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 241   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 242     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 243     int   flags = _intrinsic_hist_flags[id];
 244     juint count = _intrinsic_hist_count[id];
 245     if ((flags | count) != 0) {
 246       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 247     }
 248   }
 249   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 250   if (xtty != NULL)  xtty->tail("statistics");
 251 }
 252 
 253 void Compile::print_statistics() {
 254   { ttyLocker ttyl;
 255     if (xtty != NULL)  xtty->head("statistics type='opto'");
 256     Parse::print_statistics();
 257     PhaseCCP::print_statistics();
 258     PhaseRegAlloc::print_statistics();
 259     Scheduling::print_statistics();
 260     PhasePeephole::print_statistics();
 261     PhaseIdealLoop::print_statistics();
 262     if (xtty != NULL)  xtty->tail("statistics");
 263   }
 264   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 265     // put this under its own <statistics> element.
 266     print_intrinsic_statistics();
 267   }
 268 }
 269 #endif //PRODUCT
 270 
 271 // Support for bundling info
 272 Bundle* Compile::node_bundling(const Node *n) {
 273   assert(valid_bundle_info(n), "oob");
 274   return &_node_bundling_base[n->_idx];
 275 }
 276 
 277 bool Compile::valid_bundle_info(const Node *n) {
 278   return (_node_bundling_limit > n->_idx);
 279 }
 280 
 281 
 282 void Compile::gvn_replace_by(Node* n, Node* nn) {
 283   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 284     Node* use = n->last_out(i);
 285     bool is_in_table = initial_gvn()->hash_delete(use);
 286     uint uses_found = 0;
 287     for (uint j = 0; j < use->len(); j++) {
 288       if (use->in(j) == n) {
 289         if (j < use->req())
 290           use->set_req(j, nn);
 291         else
 292           use->set_prec(j, nn);
 293         uses_found++;
 294       }
 295     }
 296     if (is_in_table) {
 297       // reinsert into table
 298       initial_gvn()->hash_find_insert(use);
 299     }
 300     record_for_igvn(use);
 301     i -= uses_found;    // we deleted 1 or more copies of this edge
 302   }
 303 }
 304 
 305 
 306 static inline bool not_a_node(const Node* n) {
 307   if (n == NULL)                   return true;
 308   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 309   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 310   return false;
 311 }
 312 
 313 // Identify all nodes that are reachable from below, useful.
 314 // Use breadth-first pass that records state in a Unique_Node_List,
 315 // recursive traversal is slower.
 316 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 317   int estimated_worklist_size = live_nodes();
 318   useful.map( estimated_worklist_size, NULL );  // preallocate space
 319 
 320   // Initialize worklist
 321   if (root() != NULL)     { useful.push(root()); }
 322   // If 'top' is cached, declare it useful to preserve cached node
 323   if( cached_top_node() ) { useful.push(cached_top_node()); }
 324 
 325   // Push all useful nodes onto the list, breadthfirst
 326   for( uint next = 0; next < useful.size(); ++next ) {
 327     assert( next < unique(), "Unique useful nodes < total nodes");
 328     Node *n  = useful.at(next);
 329     uint max = n->len();
 330     for( uint i = 0; i < max; ++i ) {
 331       Node *m = n->in(i);
 332       if (not_a_node(m))  continue;
 333       useful.push(m);
 334     }
 335   }
 336 }
 337 
 338 // Update dead_node_list with any missing dead nodes using useful
 339 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 340 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 341   uint max_idx = unique();
 342   VectorSet& useful_node_set = useful.member_set();
 343 
 344   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 345     // If node with index node_idx is not in useful set,
 346     // mark it as dead in dead node list.
 347     if (! useful_node_set.test(node_idx) ) {
 348       record_dead_node(node_idx);
 349     }
 350   }
 351 }
 352 
 353 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 354   int shift = 0;
 355   for (int i = 0; i < inlines->length(); i++) {
 356     CallGenerator* cg = inlines->at(i);
 357     CallNode* call = cg->call_node();
 358     if (shift > 0) {
 359       inlines->at_put(i-shift, cg);
 360     }
 361     if (!useful.member(call)) {
 362       shift++;
 363     }
 364   }
 365   inlines->trunc_to(inlines->length()-shift);
 366 }
 367 
 368 // Disconnect all useless nodes by disconnecting those at the boundary.
 369 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 370   uint next = 0;
 371   while (next < useful.size()) {
 372     Node *n = useful.at(next++);
 373     if (n->is_SafePoint()) {
 374       // We're done with a parsing phase. Replaced nodes are not valid
 375       // beyond that point.
 376       n->as_SafePoint()->delete_replaced_nodes();
 377     }
 378     // Use raw traversal of out edges since this code removes out edges
 379     int max = n->outcnt();
 380     for (int j = 0; j < max; ++j) {
 381       Node* child = n->raw_out(j);
 382       if (! useful.member(child)) {
 383         assert(!child->is_top() || child != top(),
 384                "If top is cached in Compile object it is in useful list");
 385         // Only need to remove this out-edge to the useless node
 386         n->raw_del_out(j);
 387         --j;
 388         --max;
 389       }
 390     }
 391     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 392       record_for_igvn(n->unique_out());
 393     }
 394   }
 395   // Remove useless macro and predicate opaq nodes
 396   for (int i = C->macro_count()-1; i >= 0; i--) {
 397     Node* n = C->macro_node(i);
 398     if (!useful.member(n)) {
 399       remove_macro_node(n);
 400     }
 401   }
 402   // Remove useless CastII nodes with range check dependency
 403   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 404     Node* cast = range_check_cast_node(i);
 405     if (!useful.member(cast)) {
 406       remove_range_check_cast(cast);
 407     }
 408   }
 409   // Remove useless expensive nodes
 410   for (int i = C->expensive_count()-1; i >= 0; i--) {
 411     Node* n = C->expensive_node(i);
 412     if (!useful.member(n)) {
 413       remove_expensive_node(n);
 414     }
 415   }
 416   // Remove useless Opaque4 nodes
 417   for (int i = opaque4_count() - 1; i >= 0; i--) {
 418     Node* opaq = opaque4_node(i);
 419     if (!useful.member(opaq)) {
 420       remove_opaque4_node(opaq);
 421     }
 422   }
 423   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 424   bs->eliminate_useless_gc_barriers(useful, this);
 425   // clean up the late inline lists
 426   remove_useless_late_inlines(&_string_late_inlines, useful);
 427   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 428   remove_useless_late_inlines(&_late_inlines, useful);
 429   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 430 }
 431 
 432 //------------------------------frame_size_in_words-----------------------------
 433 // frame_slots in units of words
 434 int Compile::frame_size_in_words() const {
 435   // shift is 0 in LP32 and 1 in LP64
 436   const int shift = (LogBytesPerWord - LogBytesPerInt);
 437   int words = _frame_slots >> shift;
 438   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 439   return words;
 440 }
 441 
 442 // To bang the stack of this compiled method we use the stack size
 443 // that the interpreter would need in case of a deoptimization. This
 444 // removes the need to bang the stack in the deoptimization blob which
 445 // in turn simplifies stack overflow handling.
 446 int Compile::bang_size_in_bytes() const {
 447   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 448 }
 449 
 450 // ============================================================================
 451 //------------------------------CompileWrapper---------------------------------
 452 class CompileWrapper : public StackObj {
 453   Compile *const _compile;
 454  public:
 455   CompileWrapper(Compile* compile);
 456 
 457   ~CompileWrapper();
 458 };
 459 
 460 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 461   // the Compile* pointer is stored in the current ciEnv:
 462   ciEnv* env = compile->env();
 463   assert(env == ciEnv::current(), "must already be a ciEnv active");
 464   assert(env->compiler_data() == NULL, "compile already active?");
 465   env->set_compiler_data(compile);
 466   assert(compile == Compile::current(), "sanity");
 467 
 468   compile->set_type_dict(NULL);
 469   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 470   compile->clone_map().set_clone_idx(0);
 471   compile->set_type_hwm(NULL);
 472   compile->set_type_last_size(0);
 473   compile->set_last_tf(NULL, NULL);
 474   compile->set_indexSet_arena(NULL);
 475   compile->set_indexSet_free_block_list(NULL);
 476   compile->init_type_arena();
 477   Type::Initialize(compile);
 478   _compile->set_scratch_buffer_blob(NULL);
 479   _compile->begin_method();
 480   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 481 }
 482 CompileWrapper::~CompileWrapper() {
 483   _compile->end_method();
 484   if (_compile->scratch_buffer_blob() != NULL)
 485     BufferBlob::free(_compile->scratch_buffer_blob());
 486   _compile->env()->set_compiler_data(NULL);
 487 }
 488 
 489 
 490 //----------------------------print_compile_messages---------------------------
 491 void Compile::print_compile_messages() {
 492 #ifndef PRODUCT
 493   // Check if recompiling
 494   if (_subsume_loads == false && PrintOpto) {
 495     // Recompiling without allowing machine instructions to subsume loads
 496     tty->print_cr("*********************************************************");
 497     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 498     tty->print_cr("*********************************************************");
 499   }
 500   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 501     // Recompiling without escape analysis
 502     tty->print_cr("*********************************************************");
 503     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 504     tty->print_cr("*********************************************************");
 505   }
 506   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 507     // Recompiling without boxing elimination
 508     tty->print_cr("*********************************************************");
 509     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 510     tty->print_cr("*********************************************************");
 511   }
 512   if (C->directive()->BreakAtCompileOption) {
 513     // Open the debugger when compiling this method.
 514     tty->print("### Breaking when compiling: ");
 515     method()->print_short_name();
 516     tty->cr();
 517     BREAKPOINT;
 518   }
 519 
 520   if( PrintOpto ) {
 521     if (is_osr_compilation()) {
 522       tty->print("[OSR]%3d", _compile_id);
 523     } else {
 524       tty->print("%3d", _compile_id);
 525     }
 526   }
 527 #endif
 528 }
 529 
 530 
 531 //-----------------------init_scratch_buffer_blob------------------------------
 532 // Construct a temporary BufferBlob and cache it for this compile.
 533 void Compile::init_scratch_buffer_blob(int const_size) {
 534   // If there is already a scratch buffer blob allocated and the
 535   // constant section is big enough, use it.  Otherwise free the
 536   // current and allocate a new one.
 537   BufferBlob* blob = scratch_buffer_blob();
 538   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 539     // Use the current blob.
 540   } else {
 541     if (blob != NULL) {
 542       BufferBlob::free(blob);
 543     }
 544 
 545     ResourceMark rm;
 546     _scratch_const_size = const_size;
 547     int size = C2Compiler::initial_code_buffer_size(const_size);
 548     blob = BufferBlob::create("Compile::scratch_buffer", size);
 549     // Record the buffer blob for next time.
 550     set_scratch_buffer_blob(blob);
 551     // Have we run out of code space?
 552     if (scratch_buffer_blob() == NULL) {
 553       // Let CompilerBroker disable further compilations.
 554       record_failure("Not enough space for scratch buffer in CodeCache");
 555       return;
 556     }
 557   }
 558 
 559   // Initialize the relocation buffers
 560   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 561   set_scratch_locs_memory(locs_buf);
 562 }
 563 
 564 
 565 //-----------------------scratch_emit_size-------------------------------------
 566 // Helper function that computes size by emitting code
 567 uint Compile::scratch_emit_size(const Node* n) {
 568   // Start scratch_emit_size section.
 569   set_in_scratch_emit_size(true);
 570 
 571   // Emit into a trash buffer and count bytes emitted.
 572   // This is a pretty expensive way to compute a size,
 573   // but it works well enough if seldom used.
 574   // All common fixed-size instructions are given a size
 575   // method by the AD file.
 576   // Note that the scratch buffer blob and locs memory are
 577   // allocated at the beginning of the compile task, and
 578   // may be shared by several calls to scratch_emit_size.
 579   // The allocation of the scratch buffer blob is particularly
 580   // expensive, since it has to grab the code cache lock.
 581   BufferBlob* blob = this->scratch_buffer_blob();
 582   assert(blob != NULL, "Initialize BufferBlob at start");
 583   assert(blob->size() > MAX_inst_size, "sanity");
 584   relocInfo* locs_buf = scratch_locs_memory();
 585   address blob_begin = blob->content_begin();
 586   address blob_end   = (address)locs_buf;
 587   assert(blob->contains(blob_end), "sanity");
 588   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 589   buf.initialize_consts_size(_scratch_const_size);
 590   buf.initialize_stubs_size(MAX_stubs_size);
 591   assert(locs_buf != NULL, "sanity");
 592   int lsize = MAX_locs_size / 3;
 593   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 594   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 595   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 596   // Mark as scratch buffer.
 597   buf.consts()->set_scratch_emit();
 598   buf.insts()->set_scratch_emit();
 599   buf.stubs()->set_scratch_emit();
 600 
 601   // Do the emission.
 602 
 603   Label fakeL; // Fake label for branch instructions.
 604   Label*   saveL = NULL;
 605   uint save_bnum = 0;
 606   bool is_branch = n->is_MachBranch();
 607   if (is_branch) {
 608     MacroAssembler masm(&buf);
 609     masm.bind(fakeL);
 610     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 611     n->as_MachBranch()->label_set(&fakeL, 0);
 612   }
 613   n->emit(buf, this->regalloc());
 614 
 615   // Emitting into the scratch buffer should not fail
 616   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 617 
 618   if (is_branch) // Restore label.
 619     n->as_MachBranch()->label_set(saveL, save_bnum);
 620 
 621   // End scratch_emit_size section.
 622   set_in_scratch_emit_size(false);
 623 
 624   return buf.insts_size();
 625 }
 626 
 627 
 628 // ============================================================================
 629 //------------------------------Compile standard-------------------------------
 630 debug_only( int Compile::_debug_idx = 100000; )
 631 
 632 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 633 // the continuation bci for on stack replacement.
 634 
 635 
 636 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 637                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 638                 : Phase(Compiler),
 639                   _compile_id(ci_env->compile_id()),
 640                   _save_argument_registers(false),
 641                   _subsume_loads(subsume_loads),
 642                   _do_escape_analysis(do_escape_analysis),
 643                   _eliminate_boxing(eliminate_boxing),
 644                   _method(target),
 645                   _entry_bci(osr_bci),
 646                   _stub_function(NULL),
 647                   _stub_name(NULL),
 648                   _stub_entry_point(NULL),
 649                   _max_node_limit(MaxNodeLimit),
 650                   _orig_pc_slot(0),
 651                   _orig_pc_slot_offset_in_bytes(0),
 652                   _inlining_progress(false),
 653                   _inlining_incrementally(false),
 654                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 655 #ifndef PRODUCT
 656                   _trace_opto_output(directive->TraceOptoOutputOption),
 657 #endif
 658                   _has_method_handle_invokes(false),
 659                   _comp_arena(mtCompiler),
 660                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 661                   _env(ci_env),
 662                   _directive(directive),
 663                   _log(ci_env->log()),
 664                   _failure_reason(NULL),
 665                   _congraph(NULL),
 666 #ifndef PRODUCT
 667                   _printer(IdealGraphPrinter::printer()),
 668 #endif
 669                   _dead_node_list(comp_arena()),
 670                   _dead_node_count(0),
 671                   _node_arena(mtCompiler),
 672                   _old_arena(mtCompiler),
 673                   _mach_constant_base_node(NULL),
 674                   _Compile_types(mtCompiler),
 675                   _initial_gvn(NULL),
 676                   _for_igvn(NULL),
 677                   _warm_calls(NULL),
 678                   _late_inlines(comp_arena(), 2, 0, NULL),
 679                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 680                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 681                   _late_inlines_pos(0),
 682                   _number_of_mh_late_inlines(0),
 683                   _print_inlining_stream(NULL),
 684                   _print_inlining_list(NULL),
 685                   _print_inlining_idx(0),
 686                   _print_inlining_output(NULL),
 687                   _replay_inline_data(NULL),
 688                   _java_calls(0),
 689                   _inner_loops(0),
 690                   _interpreter_frame_size(0),
 691                   _node_bundling_limit(0),
 692                   _node_bundling_base(NULL),
 693                   _code_buffer("Compile::Fill_buffer"),
 694                   _scratch_const_size(-1),
 695                   _in_scratch_emit_size(false)
 696 #ifndef PRODUCT
 697                   , _in_dump_cnt(0)
 698 #endif
 699 {
 700   C = this;
 701 #ifndef PRODUCT
 702   if (_printer != NULL) {
 703     _printer->set_compile(this);
 704   }
 705 #endif
 706   CompileWrapper cw(this);
 707 
 708   if (CITimeVerbose) {
 709     tty->print(" ");
 710     target->holder()->name()->print();
 711     tty->print(".");
 712     target->print_short_name();
 713     tty->print("  ");
 714   }
 715   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 716   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 717 
 718 #ifndef PRODUCT
 719   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 720   if (!print_opto_assembly) {
 721     bool print_assembly = directive->PrintAssemblyOption;
 722     if (print_assembly && !Disassembler::can_decode()) {
 723       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 724       print_opto_assembly = true;
 725     }
 726   }
 727   set_print_assembly(print_opto_assembly);
 728   set_parsed_irreducible_loop(false);
 729 
 730   if (directive->ReplayInlineOption) {
 731     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 732   }
 733 #endif
 734   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 735   set_print_intrinsics(directive->PrintIntrinsicsOption);
 736   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 737 
 738   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 739     // Make sure the method being compiled gets its own MDO,
 740     // so we can at least track the decompile_count().
 741     // Need MDO to record RTM code generation state.
 742     method()->ensure_method_data();
 743   }
 744 
 745   Init(::AliasLevel);
 746 
 747 
 748   print_compile_messages();
 749 
 750   _ilt = InlineTree::build_inline_tree_root();
 751 
 752   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 753   assert(num_alias_types() >= AliasIdxRaw, "");
 754 
 755 #define MINIMUM_NODE_HASH  1023
 756   // Node list that Iterative GVN will start with
 757   Unique_Node_List for_igvn(comp_arena());
 758   set_for_igvn(&for_igvn);
 759 
 760   // GVN that will be run immediately on new nodes
 761   uint estimated_size = method()->code_size()*4+64;
 762   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 763   PhaseGVN gvn(node_arena(), estimated_size);
 764   set_initial_gvn(&gvn);
 765 
 766   print_inlining_init();
 767   { // Scope for timing the parser
 768     TracePhase tp("parse", &timers[_t_parser]);
 769 
 770     // Put top into the hash table ASAP.
 771     initial_gvn()->transform_no_reclaim(top());
 772 
 773     // Set up tf(), start(), and find a CallGenerator.
 774     CallGenerator* cg = NULL;
 775     if (is_osr_compilation()) {
 776       const TypeTuple *domain = StartOSRNode::osr_domain();
 777       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 778       init_tf(TypeFunc::make(domain, range));
 779       StartNode* s = new StartOSRNode(root(), domain);
 780       initial_gvn()->set_type_bottom(s);
 781       init_start(s);
 782       cg = CallGenerator::for_osr(method(), entry_bci());
 783     } else {
 784       // Normal case.
 785       init_tf(TypeFunc::make(method()));
 786       StartNode* s = new StartNode(root(), tf()->domain());
 787       initial_gvn()->set_type_bottom(s);
 788       init_start(s);
 789       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 790         // With java.lang.ref.reference.get() we must go through the
 791         // intrinsic - even when get() is the root
 792         // method of the compile - so that, if necessary, the value in
 793         // the referent field of the reference object gets recorded by
 794         // the pre-barrier code.
 795         cg = find_intrinsic(method(), false);
 796       }
 797       if (cg == NULL) {
 798         float past_uses = method()->interpreter_invocation_count();
 799         float expected_uses = past_uses;
 800         cg = CallGenerator::for_inline(method(), expected_uses);
 801       }
 802     }
 803     if (failing())  return;
 804     if (cg == NULL) {
 805       record_method_not_compilable("cannot parse method");
 806       return;
 807     }
 808     JVMState* jvms = build_start_state(start(), tf());
 809     if ((jvms = cg->generate(jvms)) == NULL) {
 810       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 811         record_method_not_compilable("method parse failed");
 812       }
 813       return;
 814     }
 815     GraphKit kit(jvms);
 816 
 817     if (!kit.stopped()) {
 818       // Accept return values, and transfer control we know not where.
 819       // This is done by a special, unique ReturnNode bound to root.
 820       return_values(kit.jvms());
 821     }
 822 
 823     if (kit.has_exceptions()) {
 824       // Any exceptions that escape from this call must be rethrown
 825       // to whatever caller is dynamically above us on the stack.
 826       // This is done by a special, unique RethrowNode bound to root.
 827       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 828     }
 829 
 830     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 831 
 832     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 833       inline_string_calls(true);
 834     }
 835 
 836     if (failing())  return;
 837 
 838     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 839 
 840     // Remove clutter produced by parsing.
 841     if (!failing()) {
 842       ResourceMark rm;
 843       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 844     }
 845   }
 846 
 847   // Note:  Large methods are capped off in do_one_bytecode().
 848   if (failing())  return;
 849 
 850   // After parsing, node notes are no longer automagic.
 851   // They must be propagated by register_new_node_with_optimizer(),
 852   // clone(), or the like.
 853   set_default_node_notes(NULL);
 854 
 855   for (;;) {
 856     int successes = Inline_Warm();
 857     if (failing())  return;
 858     if (successes == 0)  break;
 859   }
 860 
 861   // Drain the list.
 862   Finish_Warm();
 863 #ifndef PRODUCT
 864   if (_printer && _printer->should_print(1)) {
 865     _printer->print_inlining();
 866   }
 867 #endif
 868 
 869   if (failing())  return;
 870   NOT_PRODUCT( verify_graph_edges(); )
 871 
 872   // Now optimize
 873   Optimize();
 874   if (failing())  return;
 875   NOT_PRODUCT( verify_graph_edges(); )
 876 
 877 #ifndef PRODUCT
 878   if (PrintIdeal) {
 879     ttyLocker ttyl;  // keep the following output all in one block
 880     // This output goes directly to the tty, not the compiler log.
 881     // To enable tools to match it up with the compilation activity,
 882     // be sure to tag this tty output with the compile ID.
 883     if (xtty != NULL) {
 884       xtty->head("ideal compile_id='%d'%s", compile_id(),
 885                  is_osr_compilation()    ? " compile_kind='osr'" :
 886                  "");
 887     }
 888     root()->dump(9999);
 889     if (xtty != NULL) {
 890       xtty->tail("ideal");
 891     }
 892   }
 893 #endif
 894 
 895 #ifdef ASSERT
 896   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 897   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 898 #endif
 899 
 900   // Dump compilation data to replay it.
 901   if (directive->DumpReplayOption) {
 902     env()->dump_replay_data(_compile_id);
 903   }
 904   if (directive->DumpInlineOption && (ilt() != NULL)) {
 905     env()->dump_inline_data(_compile_id);
 906   }
 907 
 908   // Now that we know the size of all the monitors we can add a fixed slot
 909   // for the original deopt pc.
 910 
 911   _orig_pc_slot =  fixed_slots();
 912   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 913   set_fixed_slots(next_slot);
 914 
 915   // Compute when to use implicit null checks. Used by matching trap based
 916   // nodes and NullCheck optimization.
 917   set_allowed_deopt_reasons();
 918 
 919   // Now generate code
 920   Code_Gen();
 921   if (failing())  return;
 922 
 923   // Check if we want to skip execution of all compiled code.
 924   {
 925 #ifndef PRODUCT
 926     if (OptoNoExecute) {
 927       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 928       return;
 929     }
 930 #endif
 931     TracePhase tp("install_code", &timers[_t_registerMethod]);
 932 
 933     if (is_osr_compilation()) {
 934       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 935       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 936     } else {
 937       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 938       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 939     }
 940 
 941     env()->register_method(_method, _entry_bci,
 942                            &_code_offsets,
 943                            _orig_pc_slot_offset_in_bytes,
 944                            code_buffer(),
 945                            frame_size_in_words(), _oop_map_set,
 946                            &_handler_table, &_inc_table,
 947                            compiler,
 948                            has_unsafe_access(),
 949                            SharedRuntime::is_wide_vector(max_vector_size()),
 950                            rtm_state()
 951                            );
 952 
 953     if (log() != NULL) // Print code cache state into compiler log
 954       log()->code_cache_state();
 955   }
 956 }
 957 
 958 //------------------------------Compile----------------------------------------
 959 // Compile a runtime stub
 960 Compile::Compile( ciEnv* ci_env,
 961                   TypeFunc_generator generator,
 962                   address stub_function,
 963                   const char *stub_name,
 964                   int is_fancy_jump,
 965                   bool pass_tls,
 966                   bool save_arg_registers,
 967                   bool return_pc,
 968                   DirectiveSet* directive)
 969   : Phase(Compiler),
 970     _compile_id(0),
 971     _save_argument_registers(save_arg_registers),
 972     _subsume_loads(true),
 973     _do_escape_analysis(false),
 974     _eliminate_boxing(false),
 975     _method(NULL),
 976     _entry_bci(InvocationEntryBci),
 977     _stub_function(stub_function),
 978     _stub_name(stub_name),
 979     _stub_entry_point(NULL),
 980     _max_node_limit(MaxNodeLimit),
 981     _orig_pc_slot(0),
 982     _orig_pc_slot_offset_in_bytes(0),
 983     _inlining_progress(false),
 984     _inlining_incrementally(false),
 985     _has_reserved_stack_access(false),
 986 #ifndef PRODUCT
 987     _trace_opto_output(directive->TraceOptoOutputOption),
 988 #endif
 989     _has_method_handle_invokes(false),
 990     _comp_arena(mtCompiler),
 991     _env(ci_env),
 992     _directive(directive),
 993     _log(ci_env->log()),
 994     _failure_reason(NULL),
 995     _congraph(NULL),
 996 #ifndef PRODUCT
 997     _printer(NULL),
 998 #endif
 999     _dead_node_list(comp_arena()),
1000     _dead_node_count(0),
1001     _node_arena(mtCompiler),
1002     _old_arena(mtCompiler),
1003     _mach_constant_base_node(NULL),
1004     _Compile_types(mtCompiler),
1005     _initial_gvn(NULL),
1006     _for_igvn(NULL),
1007     _warm_calls(NULL),
1008     _number_of_mh_late_inlines(0),
1009     _print_inlining_stream(NULL),
1010     _print_inlining_list(NULL),
1011     _print_inlining_idx(0),
1012     _print_inlining_output(NULL),
1013     _replay_inline_data(NULL),
1014     _java_calls(0),
1015     _inner_loops(0),
1016     _interpreter_frame_size(0),
1017     _node_bundling_limit(0),
1018     _node_bundling_base(NULL),
1019     _code_buffer("Compile::Fill_buffer"),
1020 #ifndef PRODUCT
1021     _in_dump_cnt(0),
1022 #endif
1023     _allowed_reasons(0) {
1024   C = this;
1025 
1026   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1027   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1028 
1029 #ifndef PRODUCT
1030   set_print_assembly(PrintFrameConverterAssembly);
1031   set_parsed_irreducible_loop(false);
1032 #endif
1033   set_has_irreducible_loop(false); // no loops
1034 
1035   CompileWrapper cw(this);
1036   Init(/*AliasLevel=*/ 0);
1037   init_tf((*generator)());
1038 
1039   {
1040     // The following is a dummy for the sake of GraphKit::gen_stub
1041     Unique_Node_List for_igvn(comp_arena());
1042     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1043     PhaseGVN gvn(Thread::current()->resource_area(),255);
1044     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1045     gvn.transform_no_reclaim(top());
1046 
1047     GraphKit kit;
1048     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1049   }
1050 
1051   NOT_PRODUCT( verify_graph_edges(); )
1052   Code_Gen();
1053   if (failing())  return;
1054 
1055 
1056   // Entry point will be accessed using compile->stub_entry_point();
1057   if (code_buffer() == NULL) {
1058     Matcher::soft_match_failure();
1059   } else {
1060     if (PrintAssembly && (WizardMode || Verbose))
1061       tty->print_cr("### Stub::%s", stub_name);
1062 
1063     if (!failing()) {
1064       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1065 
1066       // Make the NMethod
1067       // For now we mark the frame as never safe for profile stackwalking
1068       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1069                                                       code_buffer(),
1070                                                       CodeOffsets::frame_never_safe,
1071                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1072                                                       frame_size_in_words(),
1073                                                       _oop_map_set,
1074                                                       save_arg_registers);
1075       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1076 
1077       _stub_entry_point = rs->entry_point();
1078     }
1079   }
1080 }
1081 
1082 //------------------------------Init-------------------------------------------
1083 // Prepare for a single compilation
1084 void Compile::Init(int aliaslevel) {
1085   _unique  = 0;
1086   _regalloc = NULL;
1087 
1088   _tf      = NULL;  // filled in later
1089   _top     = NULL;  // cached later
1090   _matcher = NULL;  // filled in later
1091   _cfg     = NULL;  // filled in later
1092 
1093   set_24_bit_selection_and_mode(Use24BitFP, false);
1094 
1095   _node_note_array = NULL;
1096   _default_node_notes = NULL;
1097   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1098 
1099   _immutable_memory = NULL; // filled in at first inquiry
1100 
1101   // Globally visible Nodes
1102   // First set TOP to NULL to give safe behavior during creation of RootNode
1103   set_cached_top_node(NULL);
1104   set_root(new RootNode());
1105   // Now that you have a Root to point to, create the real TOP
1106   set_cached_top_node( new ConNode(Type::TOP) );
1107   set_recent_alloc(NULL, NULL);
1108 
1109   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1110   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1111   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1112   env()->set_dependencies(new Dependencies(env()));
1113 
1114   _fixed_slots = 0;
1115   set_has_split_ifs(false);
1116   set_has_loops(has_method() && method()->has_loops()); // first approximation
1117   set_has_stringbuilder(false);
1118   set_has_boxed_value(false);
1119   _trap_can_recompile = false;  // no traps emitted yet
1120   _major_progress = true; // start out assuming good things will happen
1121   set_has_unsafe_access(false);
1122   set_max_vector_size(0);
1123   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1124   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1125   set_decompile_count(0);
1126 
1127   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1128   set_num_loop_opts(LoopOptsCount);
1129   set_do_inlining(Inline);
1130   set_max_inline_size(MaxInlineSize);
1131   set_freq_inline_size(FreqInlineSize);
1132   set_do_scheduling(OptoScheduling);
1133   set_do_count_invocations(false);
1134   set_do_method_data_update(false);
1135 
1136   set_do_vector_loop(false);
1137 
1138   if (AllowVectorizeOnDemand) {
1139     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1140       set_do_vector_loop(true);
1141       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1142     } else if (has_method() && method()->name() != 0 &&
1143                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1144       set_do_vector_loop(true);
1145     }
1146   }
1147   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1148   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1149 
1150   set_age_code(has_method() && method()->profile_aging());
1151   set_rtm_state(NoRTM); // No RTM lock eliding by default
1152   _max_node_limit = _directive->MaxNodeLimitOption;
1153 
1154 #if INCLUDE_RTM_OPT
1155   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1156     int rtm_state = method()->method_data()->rtm_state();
1157     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1158       // Don't generate RTM lock eliding code.
1159       set_rtm_state(NoRTM);
1160     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1161       // Generate RTM lock eliding code without abort ratio calculation code.
1162       set_rtm_state(UseRTM);
1163     } else if (UseRTMDeopt) {
1164       // Generate RTM lock eliding code and include abort ratio calculation
1165       // code if UseRTMDeopt is on.
1166       set_rtm_state(ProfileRTM);
1167     }
1168   }
1169 #endif
1170   if (debug_info()->recording_non_safepoints()) {
1171     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1172                         (comp_arena(), 8, 0, NULL));
1173     set_default_node_notes(Node_Notes::make(this));
1174   }
1175 
1176   // // -- Initialize types before each compile --
1177   // // Update cached type information
1178   // if( _method && _method->constants() )
1179   //   Type::update_loaded_types(_method, _method->constants());
1180 
1181   // Init alias_type map.
1182   if (!_do_escape_analysis && aliaslevel == 3)
1183     aliaslevel = 2;  // No unique types without escape analysis
1184   _AliasLevel = aliaslevel;
1185   const int grow_ats = 16;
1186   _max_alias_types = grow_ats;
1187   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1188   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1189   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1190   {
1191     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1192   }
1193   // Initialize the first few types.
1194   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1195   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1196   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1197   _num_alias_types = AliasIdxRaw+1;
1198   // Zero out the alias type cache.
1199   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1200   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1201   probe_alias_cache(NULL)->_index = AliasIdxTop;
1202 
1203   _intrinsics = NULL;
1204   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1205   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1206   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1207   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1208   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1209   register_library_intrinsics();
1210 }
1211 
1212 //---------------------------init_start----------------------------------------
1213 // Install the StartNode on this compile object.
1214 void Compile::init_start(StartNode* s) {
1215   if (failing())
1216     return; // already failing
1217   assert(s == start(), "");
1218 }
1219 
1220 /**
1221  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1222  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1223  * the ideal graph.
1224  */
1225 StartNode* Compile::start() const {
1226   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1227   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1228     Node* start = root()->fast_out(i);
1229     if (start->is_Start()) {
1230       return start->as_Start();
1231     }
1232   }
1233   fatal("Did not find Start node!");
1234   return NULL;
1235 }
1236 
1237 //-------------------------------immutable_memory-------------------------------------
1238 // Access immutable memory
1239 Node* Compile::immutable_memory() {
1240   if (_immutable_memory != NULL) {
1241     return _immutable_memory;
1242   }
1243   StartNode* s = start();
1244   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1245     Node *p = s->fast_out(i);
1246     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1247       _immutable_memory = p;
1248       return _immutable_memory;
1249     }
1250   }
1251   ShouldNotReachHere();
1252   return NULL;
1253 }
1254 
1255 //----------------------set_cached_top_node------------------------------------
1256 // Install the cached top node, and make sure Node::is_top works correctly.
1257 void Compile::set_cached_top_node(Node* tn) {
1258   if (tn != NULL)  verify_top(tn);
1259   Node* old_top = _top;
1260   _top = tn;
1261   // Calling Node::setup_is_top allows the nodes the chance to adjust
1262   // their _out arrays.
1263   if (_top != NULL)     _top->setup_is_top();
1264   if (old_top != NULL)  old_top->setup_is_top();
1265   assert(_top == NULL || top()->is_top(), "");
1266 }
1267 
1268 #ifdef ASSERT
1269 uint Compile::count_live_nodes_by_graph_walk() {
1270   Unique_Node_List useful(comp_arena());
1271   // Get useful node list by walking the graph.
1272   identify_useful_nodes(useful);
1273   return useful.size();
1274 }
1275 
1276 void Compile::print_missing_nodes() {
1277 
1278   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1279   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1280     return;
1281   }
1282 
1283   // This is an expensive function. It is executed only when the user
1284   // specifies VerifyIdealNodeCount option or otherwise knows the
1285   // additional work that needs to be done to identify reachable nodes
1286   // by walking the flow graph and find the missing ones using
1287   // _dead_node_list.
1288 
1289   Unique_Node_List useful(comp_arena());
1290   // Get useful node list by walking the graph.
1291   identify_useful_nodes(useful);
1292 
1293   uint l_nodes = C->live_nodes();
1294   uint l_nodes_by_walk = useful.size();
1295 
1296   if (l_nodes != l_nodes_by_walk) {
1297     if (_log != NULL) {
1298       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1299       _log->stamp();
1300       _log->end_head();
1301     }
1302     VectorSet& useful_member_set = useful.member_set();
1303     int last_idx = l_nodes_by_walk;
1304     for (int i = 0; i < last_idx; i++) {
1305       if (useful_member_set.test(i)) {
1306         if (_dead_node_list.test(i)) {
1307           if (_log != NULL) {
1308             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1309           }
1310           if (PrintIdealNodeCount) {
1311             // Print the log message to tty
1312               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1313               useful.at(i)->dump();
1314           }
1315         }
1316       }
1317       else if (! _dead_node_list.test(i)) {
1318         if (_log != NULL) {
1319           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1320         }
1321         if (PrintIdealNodeCount) {
1322           // Print the log message to tty
1323           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1324         }
1325       }
1326     }
1327     if (_log != NULL) {
1328       _log->tail("mismatched_nodes");
1329     }
1330   }
1331 }
1332 void Compile::record_modified_node(Node* n) {
1333   if (_modified_nodes != NULL && !_inlining_incrementally &&
1334       n->outcnt() != 0 && !n->is_Con()) {
1335     _modified_nodes->push(n);
1336   }
1337 }
1338 
1339 void Compile::remove_modified_node(Node* n) {
1340   if (_modified_nodes != NULL) {
1341     _modified_nodes->remove(n);
1342   }
1343 }
1344 #endif
1345 
1346 #ifndef PRODUCT
1347 void Compile::verify_top(Node* tn) const {
1348   if (tn != NULL) {
1349     assert(tn->is_Con(), "top node must be a constant");
1350     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1351     assert(tn->in(0) != NULL, "must have live top node");
1352   }
1353 }
1354 #endif
1355 
1356 
1357 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1358 
1359 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1360   guarantee(arr != NULL, "");
1361   int num_blocks = arr->length();
1362   if (grow_by < num_blocks)  grow_by = num_blocks;
1363   int num_notes = grow_by * _node_notes_block_size;
1364   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1365   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1366   while (num_notes > 0) {
1367     arr->append(notes);
1368     notes     += _node_notes_block_size;
1369     num_notes -= _node_notes_block_size;
1370   }
1371   assert(num_notes == 0, "exact multiple, please");
1372 }
1373 
1374 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1375   if (source == NULL || dest == NULL)  return false;
1376 
1377   if (dest->is_Con())
1378     return false;               // Do not push debug info onto constants.
1379 
1380 #ifdef ASSERT
1381   // Leave a bread crumb trail pointing to the original node:
1382   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1383     dest->set_debug_orig(source);
1384   }
1385 #endif
1386 
1387   if (node_note_array() == NULL)
1388     return false;               // Not collecting any notes now.
1389 
1390   // This is a copy onto a pre-existing node, which may already have notes.
1391   // If both nodes have notes, do not overwrite any pre-existing notes.
1392   Node_Notes* source_notes = node_notes_at(source->_idx);
1393   if (source_notes == NULL || source_notes->is_clear())  return false;
1394   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1395   if (dest_notes == NULL || dest_notes->is_clear()) {
1396     return set_node_notes_at(dest->_idx, source_notes);
1397   }
1398 
1399   Node_Notes merged_notes = (*source_notes);
1400   // The order of operations here ensures that dest notes will win...
1401   merged_notes.update_from(dest_notes);
1402   return set_node_notes_at(dest->_idx, &merged_notes);
1403 }
1404 
1405 
1406 //--------------------------allow_range_check_smearing-------------------------
1407 // Gating condition for coalescing similar range checks.
1408 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1409 // single covering check that is at least as strong as any of them.
1410 // If the optimization succeeds, the simplified (strengthened) range check
1411 // will always succeed.  If it fails, we will deopt, and then give up
1412 // on the optimization.
1413 bool Compile::allow_range_check_smearing() const {
1414   // If this method has already thrown a range-check,
1415   // assume it was because we already tried range smearing
1416   // and it failed.
1417   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1418   return !already_trapped;
1419 }
1420 
1421 
1422 //------------------------------flatten_alias_type-----------------------------
1423 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1424   int offset = tj->offset();
1425   TypePtr::PTR ptr = tj->ptr();
1426 
1427   // Known instance (scalarizable allocation) alias only with itself.
1428   bool is_known_inst = tj->isa_oopptr() != NULL &&
1429                        tj->is_oopptr()->is_known_instance();
1430 
1431   // Process weird unsafe references.
1432   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1433     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1434     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1435     tj = TypeOopPtr::BOTTOM;
1436     ptr = tj->ptr();
1437     offset = tj->offset();
1438   }
1439 
1440   // Array pointers need some flattening
1441   const TypeAryPtr *ta = tj->isa_aryptr();
1442   if (ta && ta->is_stable()) {
1443     // Erase stability property for alias analysis.
1444     tj = ta = ta->cast_to_stable(false);
1445   }
1446   if( ta && is_known_inst ) {
1447     if ( offset != Type::OffsetBot &&
1448          offset > arrayOopDesc::length_offset_in_bytes() ) {
1449       offset = Type::OffsetBot; // Flatten constant access into array body only
1450       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1451     }
1452   } else if( ta && _AliasLevel >= 2 ) {
1453     // For arrays indexed by constant indices, we flatten the alias
1454     // space to include all of the array body.  Only the header, klass
1455     // and array length can be accessed un-aliased.
1456     if( offset != Type::OffsetBot ) {
1457       if( ta->const_oop() ) { // MethodData* or Method*
1458         offset = Type::OffsetBot;   // Flatten constant access into array body
1459         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1460       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1461         // range is OK as-is.
1462         tj = ta = TypeAryPtr::RANGE;
1463       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1464         tj = TypeInstPtr::KLASS; // all klass loads look alike
1465         ta = TypeAryPtr::RANGE; // generic ignored junk
1466         ptr = TypePtr::BotPTR;
1467       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1468         tj = TypeInstPtr::MARK;
1469         ta = TypeAryPtr::RANGE; // generic ignored junk
1470         ptr = TypePtr::BotPTR;
1471       } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1472         ta = tj->isa_aryptr();
1473       } else {                  // Random constant offset into array body
1474         offset = Type::OffsetBot;   // Flatten constant access into array body
1475         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1476       }
1477     }
1478     // Arrays of fixed size alias with arrays of unknown size.
1479     if (ta->size() != TypeInt::POS) {
1480       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1481       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1482     }
1483     // Arrays of known objects become arrays of unknown objects.
1484     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1485       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1486       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1487     }
1488     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1489       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1490       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1491     }
1492     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1493     // cannot be distinguished by bytecode alone.
1494     if (ta->elem() == TypeInt::BOOL) {
1495       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1496       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1497       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1498     }
1499     // During the 2nd round of IterGVN, NotNull castings are removed.
1500     // Make sure the Bottom and NotNull variants alias the same.
1501     // Also, make sure exact and non-exact variants alias the same.
1502     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1503       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1504     }
1505   }
1506 
1507   // Oop pointers need some flattening
1508   const TypeInstPtr *to = tj->isa_instptr();
1509   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1510     ciInstanceKlass *k = to->klass()->as_instance_klass();
1511     if( ptr == TypePtr::Constant ) {
1512       if (to->klass() != ciEnv::current()->Class_klass() ||
1513           offset < k->size_helper() * wordSize) {
1514         // No constant oop pointers (such as Strings); they alias with
1515         // unknown strings.
1516         assert(!is_known_inst, "not scalarizable allocation");
1517         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1518       }
1519     } else if( is_known_inst ) {
1520       tj = to; // Keep NotNull and klass_is_exact for instance type
1521     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1522       // During the 2nd round of IterGVN, NotNull castings are removed.
1523       // Make sure the Bottom and NotNull variants alias the same.
1524       // Also, make sure exact and non-exact variants alias the same.
1525       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1526     }
1527     if (to->speculative() != NULL) {
1528       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1529     }
1530     // Canonicalize the holder of this field
1531     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1532       // First handle header references such as a LoadKlassNode, even if the
1533       // object's klass is unloaded at compile time (4965979).
1534       if (!is_known_inst) { // Do it only for non-instance types
1535         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1536       }
1537     } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1538       to = tj->is_instptr();
1539     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1540       // Static fields are in the space above the normal instance
1541       // fields in the java.lang.Class instance.
1542       if (to->klass() != ciEnv::current()->Class_klass()) {
1543         to = NULL;
1544         tj = TypeOopPtr::BOTTOM;
1545         offset = tj->offset();
1546       }
1547     } else {
1548       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1549       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1550         if( is_known_inst ) {
1551           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1552         } else {
1553           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1554         }
1555       }
1556     }
1557   }
1558 
1559   // Klass pointers to object array klasses need some flattening
1560   const TypeKlassPtr *tk = tj->isa_klassptr();
1561   if( tk ) {
1562     // If we are referencing a field within a Klass, we need
1563     // to assume the worst case of an Object.  Both exact and
1564     // inexact types must flatten to the same alias class so
1565     // use NotNull as the PTR.
1566     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1567 
1568       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1569                                    TypeKlassPtr::OBJECT->klass(),
1570                                    offset);
1571     }
1572 
1573     ciKlass* klass = tk->klass();
1574     if( klass->is_obj_array_klass() ) {
1575       ciKlass* k = TypeAryPtr::OOPS->klass();
1576       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1577         k = TypeInstPtr::BOTTOM->klass();
1578       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1579     }
1580 
1581     // Check for precise loads from the primary supertype array and force them
1582     // to the supertype cache alias index.  Check for generic array loads from
1583     // the primary supertype array and also force them to the supertype cache
1584     // alias index.  Since the same load can reach both, we need to merge
1585     // these 2 disparate memories into the same alias class.  Since the
1586     // primary supertype array is read-only, there's no chance of confusion
1587     // where we bypass an array load and an array store.
1588     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1589     if (offset == Type::OffsetBot ||
1590         (offset >= primary_supers_offset &&
1591          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1592         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1593       offset = in_bytes(Klass::secondary_super_cache_offset());
1594       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1595     }
1596   }
1597 
1598   // Flatten all Raw pointers together.
1599   if (tj->base() == Type::RawPtr)
1600     tj = TypeRawPtr::BOTTOM;
1601 
1602   if (tj->base() == Type::AnyPtr)
1603     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1604 
1605   // Flatten all to bottom for now
1606   switch( _AliasLevel ) {
1607   case 0:
1608     tj = TypePtr::BOTTOM;
1609     break;
1610   case 1:                       // Flatten to: oop, static, field or array
1611     switch (tj->base()) {
1612     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1613     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1614     case Type::AryPtr:   // do not distinguish arrays at all
1615     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1616     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1617     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1618     default: ShouldNotReachHere();
1619     }
1620     break;
1621   case 2:                       // No collapsing at level 2; keep all splits
1622   case 3:                       // No collapsing at level 3; keep all splits
1623     break;
1624   default:
1625     Unimplemented();
1626   }
1627 
1628   offset = tj->offset();
1629   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1630 
1631   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1632           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1633           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1634           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1635           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1636           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1637           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1638           (BarrierSet::barrier_set()->barrier_set_c2()->verify_gc_alias_type(tj, offset)),
1639           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1640   assert( tj->ptr() != TypePtr::TopPTR &&
1641           tj->ptr() != TypePtr::AnyNull &&
1642           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1643 //    assert( tj->ptr() != TypePtr::Constant ||
1644 //            tj->base() == Type::RawPtr ||
1645 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1646 
1647   return tj;
1648 }
1649 
1650 void Compile::AliasType::Init(int i, const TypePtr* at) {
1651   _index = i;
1652   _adr_type = at;
1653   _field = NULL;
1654   _element = NULL;
1655   _is_rewritable = true; // default
1656   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1657   if (atoop != NULL && atoop->is_known_instance()) {
1658     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1659     _general_index = Compile::current()->get_alias_index(gt);
1660   } else {
1661     _general_index = 0;
1662   }
1663 }
1664 
1665 BasicType Compile::AliasType::basic_type() const {
1666   if (element() != NULL) {
1667     const Type* element = adr_type()->is_aryptr()->elem();
1668     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1669   } if (field() != NULL) {
1670     return field()->layout_type();
1671   } else {
1672     return T_ILLEGAL; // unknown
1673   }
1674 }
1675 
1676 //---------------------------------print_on------------------------------------
1677 #ifndef PRODUCT
1678 void Compile::AliasType::print_on(outputStream* st) {
1679   if (index() < 10)
1680         st->print("@ <%d> ", index());
1681   else  st->print("@ <%d>",  index());
1682   st->print(is_rewritable() ? "   " : " RO");
1683   int offset = adr_type()->offset();
1684   if (offset == Type::OffsetBot)
1685         st->print(" +any");
1686   else  st->print(" +%-3d", offset);
1687   st->print(" in ");
1688   adr_type()->dump_on(st);
1689   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1690   if (field() != NULL && tjp) {
1691     if (tjp->klass()  != field()->holder() ||
1692         tjp->offset() != field()->offset_in_bytes()) {
1693       st->print(" != ");
1694       field()->print();
1695       st->print(" ***");
1696     }
1697   }
1698 }
1699 
1700 void print_alias_types() {
1701   Compile* C = Compile::current();
1702   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1703   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1704     C->alias_type(idx)->print_on(tty);
1705     tty->cr();
1706   }
1707 }
1708 #endif
1709 
1710 
1711 //----------------------------probe_alias_cache--------------------------------
1712 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1713   intptr_t key = (intptr_t) adr_type;
1714   key ^= key >> logAliasCacheSize;
1715   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1716 }
1717 
1718 
1719 //-----------------------------grow_alias_types--------------------------------
1720 void Compile::grow_alias_types() {
1721   const int old_ats  = _max_alias_types; // how many before?
1722   const int new_ats  = old_ats;          // how many more?
1723   const int grow_ats = old_ats+new_ats;  // how many now?
1724   _max_alias_types = grow_ats;
1725   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1726   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1727   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1728   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1729 }
1730 
1731 
1732 //--------------------------------find_alias_type------------------------------
1733 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1734   if (_AliasLevel == 0)
1735     return alias_type(AliasIdxBot);
1736 
1737   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1738   if (ace->_adr_type == adr_type) {
1739     return alias_type(ace->_index);
1740   }
1741 
1742   // Handle special cases.
1743   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1744   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1745 
1746   // Do it the slow way.
1747   const TypePtr* flat = flatten_alias_type(adr_type);
1748 
1749 #ifdef ASSERT
1750   {
1751     ResourceMark rm;
1752     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1753            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1754     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1755            Type::str(adr_type));
1756     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1757       const TypeOopPtr* foop = flat->is_oopptr();
1758       // Scalarizable allocations have exact klass always.
1759       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1760       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1761       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1762              Type::str(foop), Type::str(xoop));
1763     }
1764   }
1765 #endif
1766 
1767   int idx = AliasIdxTop;
1768   for (int i = 0; i < num_alias_types(); i++) {
1769     if (alias_type(i)->adr_type() == flat) {
1770       idx = i;
1771       break;
1772     }
1773   }
1774 
1775   if (idx == AliasIdxTop) {
1776     if (no_create)  return NULL;
1777     // Grow the array if necessary.
1778     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1779     // Add a new alias type.
1780     idx = _num_alias_types++;
1781     _alias_types[idx]->Init(idx, flat);
1782     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1783     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1784     if (flat->isa_instptr()) {
1785       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1786           && flat->is_instptr()->klass() == env()->Class_klass())
1787         alias_type(idx)->set_rewritable(false);
1788     }
1789     if (flat->isa_aryptr()) {
1790 #ifdef ASSERT
1791       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1792       // (T_BYTE has the weakest alignment and size restrictions...)
1793       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1794 #endif
1795       if (flat->offset() == TypePtr::OffsetBot) {
1796         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1797       }
1798     }
1799     if (flat->isa_klassptr()) {
1800       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1801         alias_type(idx)->set_rewritable(false);
1802       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1803         alias_type(idx)->set_rewritable(false);
1804       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1805         alias_type(idx)->set_rewritable(false);
1806       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1807         alias_type(idx)->set_rewritable(false);
1808     }
1809     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1810     // but the base pointer type is not distinctive enough to identify
1811     // references into JavaThread.)
1812 
1813     // Check for final fields.
1814     const TypeInstPtr* tinst = flat->isa_instptr();
1815     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1816       ciField* field;
1817       if (tinst->const_oop() != NULL &&
1818           tinst->klass() == ciEnv::current()->Class_klass() &&
1819           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1820         // static field
1821         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1822         field = k->get_field_by_offset(tinst->offset(), true);
1823       } else {
1824         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1825         field = k->get_field_by_offset(tinst->offset(), false);
1826       }
1827       assert(field == NULL ||
1828              original_field == NULL ||
1829              (field->holder() == original_field->holder() &&
1830               field->offset() == original_field->offset() &&
1831               field->is_static() == original_field->is_static()), "wrong field?");
1832       // Set field() and is_rewritable() attributes.
1833       if (field != NULL)  alias_type(idx)->set_field(field);
1834     }
1835   }
1836 
1837   // Fill the cache for next time.
1838   ace->_adr_type = adr_type;
1839   ace->_index    = idx;
1840   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1841 
1842   // Might as well try to fill the cache for the flattened version, too.
1843   AliasCacheEntry* face = probe_alias_cache(flat);
1844   if (face->_adr_type == NULL) {
1845     face->_adr_type = flat;
1846     face->_index    = idx;
1847     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1848   }
1849 
1850   return alias_type(idx);
1851 }
1852 
1853 
1854 Compile::AliasType* Compile::alias_type(ciField* field) {
1855   const TypeOopPtr* t;
1856   if (field->is_static())
1857     t = TypeInstPtr::make(field->holder()->java_mirror());
1858   else
1859     t = TypeOopPtr::make_from_klass_raw(field->holder());
1860   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1861   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1862   return atp;
1863 }
1864 
1865 
1866 //------------------------------have_alias_type--------------------------------
1867 bool Compile::have_alias_type(const TypePtr* adr_type) {
1868   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1869   if (ace->_adr_type == adr_type) {
1870     return true;
1871   }
1872 
1873   // Handle special cases.
1874   if (adr_type == NULL)             return true;
1875   if (adr_type == TypePtr::BOTTOM)  return true;
1876 
1877   return find_alias_type(adr_type, true, NULL) != NULL;
1878 }
1879 
1880 //-----------------------------must_alias--------------------------------------
1881 // True if all values of the given address type are in the given alias category.
1882 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1883   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1884   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1885   if (alias_idx == AliasIdxTop)         return false; // the empty category
1886   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1887 
1888   // the only remaining possible overlap is identity
1889   int adr_idx = get_alias_index(adr_type);
1890   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1891   assert(adr_idx == alias_idx ||
1892          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1893           && adr_type                       != TypeOopPtr::BOTTOM),
1894          "should not be testing for overlap with an unsafe pointer");
1895   return adr_idx == alias_idx;
1896 }
1897 
1898 //------------------------------can_alias--------------------------------------
1899 // True if any values of the given address type are in the given alias category.
1900 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1901   if (alias_idx == AliasIdxTop)         return false; // the empty category
1902   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1903   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1904   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1905 
1906   // the only remaining possible overlap is identity
1907   int adr_idx = get_alias_index(adr_type);
1908   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1909   return adr_idx == alias_idx;
1910 }
1911 
1912 
1913 
1914 //---------------------------pop_warm_call-------------------------------------
1915 WarmCallInfo* Compile::pop_warm_call() {
1916   WarmCallInfo* wci = _warm_calls;
1917   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1918   return wci;
1919 }
1920 
1921 //----------------------------Inline_Warm--------------------------------------
1922 int Compile::Inline_Warm() {
1923   // If there is room, try to inline some more warm call sites.
1924   // %%% Do a graph index compaction pass when we think we're out of space?
1925   if (!InlineWarmCalls)  return 0;
1926 
1927   int calls_made_hot = 0;
1928   int room_to_grow   = NodeCountInliningCutoff - unique();
1929   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1930   int amount_grown   = 0;
1931   WarmCallInfo* call;
1932   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1933     int est_size = (int)call->size();
1934     if (est_size > (room_to_grow - amount_grown)) {
1935       // This one won't fit anyway.  Get rid of it.
1936       call->make_cold();
1937       continue;
1938     }
1939     call->make_hot();
1940     calls_made_hot++;
1941     amount_grown   += est_size;
1942     amount_to_grow -= est_size;
1943   }
1944 
1945   if (calls_made_hot > 0)  set_major_progress();
1946   return calls_made_hot;
1947 }
1948 
1949 
1950 //----------------------------Finish_Warm--------------------------------------
1951 void Compile::Finish_Warm() {
1952   if (!InlineWarmCalls)  return;
1953   if (failing())  return;
1954   if (warm_calls() == NULL)  return;
1955 
1956   // Clean up loose ends, if we are out of space for inlining.
1957   WarmCallInfo* call;
1958   while ((call = pop_warm_call()) != NULL) {
1959     call->make_cold();
1960   }
1961 }
1962 
1963 //---------------------cleanup_loop_predicates-----------------------
1964 // Remove the opaque nodes that protect the predicates so that all unused
1965 // checks and uncommon_traps will be eliminated from the ideal graph
1966 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1967   if (predicate_count()==0) return;
1968   for (int i = predicate_count(); i > 0; i--) {
1969     Node * n = predicate_opaque1_node(i-1);
1970     assert(n->Opcode() == Op_Opaque1, "must be");
1971     igvn.replace_node(n, n->in(1));
1972   }
1973   assert(predicate_count()==0, "should be clean!");
1974 }
1975 
1976 void Compile::add_range_check_cast(Node* n) {
1977   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1978   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1979   _range_check_casts->append(n);
1980 }
1981 
1982 // Remove all range check dependent CastIINodes.
1983 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1984   for (int i = range_check_cast_count(); i > 0; i--) {
1985     Node* cast = range_check_cast_node(i-1);
1986     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1987     igvn.replace_node(cast, cast->in(1));
1988   }
1989   assert(range_check_cast_count() == 0, "should be empty");
1990 }
1991 
1992 void Compile::add_opaque4_node(Node* n) {
1993   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
1994   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
1995   _opaque4_nodes->append(n);
1996 }
1997 
1998 // Remove all Opaque4 nodes.
1999 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
2000   for (int i = opaque4_count(); i > 0; i--) {
2001     Node* opaq = opaque4_node(i-1);
2002     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
2003     igvn.replace_node(opaq, opaq->in(2));
2004   }
2005   assert(opaque4_count() == 0, "should be empty");
2006 }
2007 
2008 // StringOpts and late inlining of string methods
2009 void Compile::inline_string_calls(bool parse_time) {
2010   {
2011     // remove useless nodes to make the usage analysis simpler
2012     ResourceMark rm;
2013     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2014   }
2015 
2016   {
2017     ResourceMark rm;
2018     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2019     PhaseStringOpts pso(initial_gvn(), for_igvn());
2020     print_method(PHASE_AFTER_STRINGOPTS, 3);
2021   }
2022 
2023   // now inline anything that we skipped the first time around
2024   if (!parse_time) {
2025     _late_inlines_pos = _late_inlines.length();
2026   }
2027 
2028   while (_string_late_inlines.length() > 0) {
2029     CallGenerator* cg = _string_late_inlines.pop();
2030     cg->do_late_inline();
2031     if (failing())  return;
2032   }
2033   _string_late_inlines.trunc_to(0);
2034 }
2035 
2036 // Late inlining of boxing methods
2037 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2038   if (_boxing_late_inlines.length() > 0) {
2039     assert(has_boxed_value(), "inconsistent");
2040 
2041     PhaseGVN* gvn = initial_gvn();
2042     set_inlining_incrementally(true);
2043 
2044     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2045     for_igvn()->clear();
2046     gvn->replace_with(&igvn);
2047 
2048     _late_inlines_pos = _late_inlines.length();
2049 
2050     while (_boxing_late_inlines.length() > 0) {
2051       CallGenerator* cg = _boxing_late_inlines.pop();
2052       cg->do_late_inline();
2053       if (failing())  return;
2054     }
2055     _boxing_late_inlines.trunc_to(0);
2056 
2057     {
2058       ResourceMark rm;
2059       PhaseRemoveUseless pru(gvn, for_igvn());
2060     }
2061 
2062     igvn = PhaseIterGVN(gvn);
2063     igvn.optimize();
2064 
2065     set_inlining_progress(false);
2066     set_inlining_incrementally(false);
2067   }
2068 }
2069 
2070 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2071   assert(IncrementalInline, "incremental inlining should be on");
2072   PhaseGVN* gvn = initial_gvn();
2073 
2074   set_inlining_progress(false);
2075   for_igvn()->clear();
2076   gvn->replace_with(&igvn);
2077 
2078   {
2079     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2080     int i = 0;
2081     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2082       CallGenerator* cg = _late_inlines.at(i);
2083       _late_inlines_pos = i+1;
2084       cg->do_late_inline();
2085       if (failing())  return;
2086     }
2087     int j = 0;
2088     for (; i < _late_inlines.length(); i++, j++) {
2089       _late_inlines.at_put(j, _late_inlines.at(i));
2090     }
2091     _late_inlines.trunc_to(j);
2092   }
2093 
2094   {
2095     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2096     ResourceMark rm;
2097     PhaseRemoveUseless pru(gvn, for_igvn());
2098   }
2099 
2100   {
2101     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2102     igvn = PhaseIterGVN(gvn);
2103   }
2104 }
2105 
2106 // Perform incremental inlining until bound on number of live nodes is reached
2107 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2108   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2109 
2110   PhaseGVN* gvn = initial_gvn();
2111 
2112   set_inlining_incrementally(true);
2113   set_inlining_progress(true);
2114   uint low_live_nodes = 0;
2115 
2116   while(inlining_progress() && _late_inlines.length() > 0) {
2117 
2118     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2119       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2120         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2121         // PhaseIdealLoop is expensive so we only try it once we are
2122         // out of live nodes and we only try it again if the previous
2123         // helped got the number of nodes down significantly
2124         PhaseIdealLoop ideal_loop(igvn, LoopOptsNone);
2125         if (failing())  return;
2126         low_live_nodes = live_nodes();
2127         _major_progress = true;
2128       }
2129 
2130       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2131         break;
2132       }
2133     }
2134 
2135     inline_incrementally_one(igvn);
2136 
2137     if (failing())  return;
2138 
2139     {
2140       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2141       igvn.optimize();
2142     }
2143 
2144     if (failing())  return;
2145   }
2146 
2147   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2148 
2149   if (_string_late_inlines.length() > 0) {
2150     assert(has_stringbuilder(), "inconsistent");
2151     for_igvn()->clear();
2152     initial_gvn()->replace_with(&igvn);
2153 
2154     inline_string_calls(false);
2155 
2156     if (failing())  return;
2157 
2158     {
2159       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2160       ResourceMark rm;
2161       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2162     }
2163 
2164     {
2165       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2166       igvn = PhaseIterGVN(gvn);
2167       igvn.optimize();
2168     }
2169   }
2170 
2171   set_inlining_incrementally(false);
2172 }
2173 
2174 
2175 bool Compile::optimize_loops(int& loop_opts_cnt, PhaseIterGVN& igvn, LoopOptsMode mode) {
2176   if(loop_opts_cnt > 0) {
2177     debug_only( int cnt = 0; );
2178     while(major_progress() && (loop_opts_cnt > 0)) {
2179       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2180       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2181       PhaseIdealLoop ideal_loop(igvn, mode);
2182       loop_opts_cnt--;
2183       if (failing())  return false;
2184       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2185     }
2186   }
2187   return true;
2188 }
2189 
2190 //------------------------------Optimize---------------------------------------
2191 // Given a graph, optimize it.
2192 void Compile::Optimize() {
2193   TracePhase tp("optimizer", &timers[_t_optimizer]);
2194 
2195 #ifndef PRODUCT
2196   if (_directive->BreakAtCompileOption) {
2197     BREAKPOINT;
2198   }
2199 
2200 #endif
2201 
2202 #ifdef ASSERT
2203   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2204   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2205 #endif
2206 
2207   ResourceMark rm;
2208   int          loop_opts_cnt;
2209 
2210   print_inlining_reinit();
2211 
2212   NOT_PRODUCT( verify_graph_edges(); )
2213 
2214   print_method(PHASE_AFTER_PARSING);
2215 
2216  {
2217   // Iterative Global Value Numbering, including ideal transforms
2218   // Initialize IterGVN with types and values from parse-time GVN
2219   PhaseIterGVN igvn(initial_gvn());
2220 #ifdef ASSERT
2221   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2222 #endif
2223   {
2224     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2225     igvn.optimize();
2226   }
2227 
2228   if (failing())  return;
2229 
2230   print_method(PHASE_ITER_GVN1, 2);
2231 
2232   inline_incrementally(igvn);
2233 
2234   print_method(PHASE_INCREMENTAL_INLINE, 2);
2235 
2236   if (failing())  return;
2237 
2238   if (eliminate_boxing()) {
2239     // Inline valueOf() methods now.
2240     inline_boxing_calls(igvn);
2241 
2242     if (AlwaysIncrementalInline) {
2243       inline_incrementally(igvn);
2244     }
2245 
2246     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2247 
2248     if (failing())  return;
2249   }
2250 
2251   // Remove the speculative part of types and clean up the graph from
2252   // the extra CastPP nodes whose only purpose is to carry them. Do
2253   // that early so that optimizations are not disrupted by the extra
2254   // CastPP nodes.
2255   remove_speculative_types(igvn);
2256 
2257   // No more new expensive nodes will be added to the list from here
2258   // so keep only the actual candidates for optimizations.
2259   cleanup_expensive_nodes(igvn);
2260 
2261   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2262     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2263     initial_gvn()->replace_with(&igvn);
2264     for_igvn()->clear();
2265     Unique_Node_List new_worklist(C->comp_arena());
2266     {
2267       ResourceMark rm;
2268       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2269     }
2270     set_for_igvn(&new_worklist);
2271     igvn = PhaseIterGVN(initial_gvn());
2272     igvn.optimize();
2273   }
2274 
2275   // Perform escape analysis
2276   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2277     if (has_loops()) {
2278       // Cleanup graph (remove dead nodes).
2279       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2280       PhaseIdealLoop ideal_loop(igvn, LoopOptsNone);
2281       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2282       if (failing())  return;
2283     }
2284     ConnectionGraph::do_analysis(this, &igvn);
2285 
2286     if (failing())  return;
2287 
2288     // Optimize out fields loads from scalar replaceable allocations.
2289     igvn.optimize();
2290     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2291 
2292     if (failing())  return;
2293 
2294     if (congraph() != NULL && macro_count() > 0) {
2295       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2296       PhaseMacroExpand mexp(igvn);
2297       mexp.eliminate_macro_nodes();
2298       igvn.set_delay_transform(false);
2299 
2300       igvn.optimize();
2301       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2302 
2303       if (failing())  return;
2304     }
2305   }
2306 
2307   // Loop transforms on the ideal graph.  Range Check Elimination,
2308   // peeling, unrolling, etc.
2309 
2310   // Set loop opts counter
2311   loop_opts_cnt = num_loop_opts();
2312   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2313     {
2314       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2315       PhaseIdealLoop ideal_loop(igvn, LoopOptsDefault);
2316       loop_opts_cnt--;
2317       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2318       if (failing())  return;
2319     }
2320     // Loop opts pass if partial peeling occurred in previous pass
2321     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2322       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2323       PhaseIdealLoop ideal_loop(igvn, LoopOptsSkipSplitIf);
2324       loop_opts_cnt--;
2325       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2326       if (failing())  return;
2327     }
2328     // Loop opts pass for loop-unrolling before CCP
2329     if(major_progress() && (loop_opts_cnt > 0)) {
2330       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2331       PhaseIdealLoop ideal_loop(igvn, LoopOptsSkipSplitIf);
2332       loop_opts_cnt--;
2333       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2334     }
2335     if (!failing()) {
2336       // Verify that last round of loop opts produced a valid graph
2337       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2338       PhaseIdealLoop::verify(igvn);
2339     }
2340   }
2341   if (failing())  return;
2342 
2343   // Conditional Constant Propagation;
2344   PhaseCCP ccp( &igvn );
2345   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2346   {
2347     TracePhase tp("ccp", &timers[_t_ccp]);
2348     ccp.do_transform();
2349   }
2350   print_method(PHASE_CPP1, 2);
2351 
2352   assert( true, "Break here to ccp.dump_old2new_map()");
2353 
2354   // Iterative Global Value Numbering, including ideal transforms
2355   {
2356     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2357     igvn = ccp;
2358     igvn.optimize();
2359   }
2360 
2361   print_method(PHASE_ITER_GVN2, 2);
2362 
2363   if (failing())  return;
2364 
2365   // Loop transforms on the ideal graph.  Range Check Elimination,
2366   // peeling, unrolling, etc.
2367   if (!optimize_loops(loop_opts_cnt, igvn, LoopOptsDefault)) {
2368     return;
2369   }
2370 
2371 #if INCLUDE_ZGC
2372   if (UseZGC) {
2373     ZBarrierSetC2::find_dominating_barriers(igvn);
2374   }
2375 #endif
2376 
2377   if (failing())  return;
2378 
2379   // Ensure that major progress is now clear
2380   C->clear_major_progress();
2381 
2382   {
2383     // Verify that all previous optimizations produced a valid graph
2384     // at least to this point, even if no loop optimizations were done.
2385     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2386     PhaseIdealLoop::verify(igvn);
2387   }
2388 
2389   if (range_check_cast_count() > 0) {
2390     // No more loop optimizations. Remove all range check dependent CastIINodes.
2391     C->remove_range_check_casts(igvn);
2392     igvn.optimize();
2393   }
2394 
2395 #ifdef ASSERT
2396   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2397   bs->verify_gc_barriers(this, BarrierSetC2::BeforeExpand);
2398 #endif
2399 
2400   {
2401     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2402     PhaseMacroExpand  mex(igvn);
2403     print_method(PHASE_BEFORE_MACRO_EXPANSION, 2);
2404     if (mex.expand_macro_nodes()) {
2405       assert(failing(), "must bail out w/ explicit message");
2406       return;
2407     }
2408   }
2409 
2410   print_method(PHASE_BEFORE_BARRIER_EXPAND, 2);
2411 
2412 #if INCLUDE_SHENANDOAHGC
2413   if (!ShenandoahWriteBarrierNode::expand(this, igvn, loop_opts_cnt)) {
2414     assert(failing(), "must bail out w/ explicit message");
2415     return;
2416   }
2417 #endif
2418 
2419   if (opaque4_count() > 0) {
2420     C->remove_opaque4_nodes(igvn);
2421     igvn.optimize();
2422   }
2423 
2424   DEBUG_ONLY( _modified_nodes = NULL; )
2425  } // (End scope of igvn; run destructor if necessary for asserts.)
2426 
2427  process_print_inlining();
2428  // A method with only infinite loops has no edges entering loops from root
2429  {
2430    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2431    if (final_graph_reshaping()) {
2432      assert(failing(), "must bail out w/ explicit message");
2433      return;
2434    }
2435  }
2436 
2437  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2438 }
2439 
2440 
2441 //------------------------------Code_Gen---------------------------------------
2442 // Given a graph, generate code for it
2443 void Compile::Code_Gen() {
2444   if (failing()) {
2445     return;
2446   }
2447 
2448   // Perform instruction selection.  You might think we could reclaim Matcher
2449   // memory PDQ, but actually the Matcher is used in generating spill code.
2450   // Internals of the Matcher (including some VectorSets) must remain live
2451   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2452   // set a bit in reclaimed memory.
2453 
2454   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2455   // nodes.  Mapping is only valid at the root of each matched subtree.
2456   NOT_PRODUCT( verify_graph_edges(); )
2457 
2458   Matcher matcher;
2459   _matcher = &matcher;
2460   {
2461     TracePhase tp("matcher", &timers[_t_matcher]);
2462     matcher.match();
2463   }
2464   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2465   // nodes.  Mapping is only valid at the root of each matched subtree.
2466   NOT_PRODUCT( verify_graph_edges(); )
2467 
2468   // If you have too many nodes, or if matching has failed, bail out
2469   check_node_count(0, "out of nodes matching instructions");
2470   if (failing()) {
2471     return;
2472   }
2473 
2474   print_method(PHASE_MATCHING, 2);
2475 
2476   // Build a proper-looking CFG
2477   PhaseCFG cfg(node_arena(), root(), matcher);
2478   _cfg = &cfg;
2479   {
2480     TracePhase tp("scheduler", &timers[_t_scheduler]);
2481     bool success = cfg.do_global_code_motion();
2482     if (!success) {
2483       return;
2484     }
2485 
2486     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2487     NOT_PRODUCT( verify_graph_edges(); )
2488     debug_only( cfg.verify(); )
2489   }
2490 
2491   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2492   _regalloc = &regalloc;
2493   {
2494     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2495     // Perform register allocation.  After Chaitin, use-def chains are
2496     // no longer accurate (at spill code) and so must be ignored.
2497     // Node->LRG->reg mappings are still accurate.
2498     _regalloc->Register_Allocate();
2499 
2500     // Bail out if the allocator builds too many nodes
2501     if (failing()) {
2502       return;
2503     }
2504   }
2505 
2506   // Prior to register allocation we kept empty basic blocks in case the
2507   // the allocator needed a place to spill.  After register allocation we
2508   // are not adding any new instructions.  If any basic block is empty, we
2509   // can now safely remove it.
2510   {
2511     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2512     cfg.remove_empty_blocks();
2513     if (do_freq_based_layout()) {
2514       PhaseBlockLayout layout(cfg);
2515     } else {
2516       cfg.set_loop_alignment();
2517     }
2518     cfg.fixup_flow();
2519   }
2520 
2521   // Apply peephole optimizations
2522   if( OptoPeephole ) {
2523     TracePhase tp("peephole", &timers[_t_peephole]);
2524     PhasePeephole peep( _regalloc, cfg);
2525     peep.do_transform();
2526   }
2527 
2528   // Do late expand if CPU requires this.
2529   if (Matcher::require_postalloc_expand) {
2530     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2531     cfg.postalloc_expand(_regalloc);
2532   }
2533 
2534   // Convert Nodes to instruction bits in a buffer
2535   {
2536     TraceTime tp("output", &timers[_t_output], CITime);
2537     Output();
2538   }
2539 
2540   print_method(PHASE_FINAL_CODE);
2541 
2542   // He's dead, Jim.
2543   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2544   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2545 }
2546 
2547 
2548 //------------------------------dump_asm---------------------------------------
2549 // Dump formatted assembly
2550 #ifndef PRODUCT
2551 void Compile::dump_asm(int *pcs, uint pc_limit) {
2552   bool cut_short = false;
2553   tty->print_cr("#");
2554   tty->print("#  ");  _tf->dump();  tty->cr();
2555   tty->print_cr("#");
2556 
2557   // For all blocks
2558   int pc = 0x0;                 // Program counter
2559   char starts_bundle = ' ';
2560   _regalloc->dump_frame();
2561 
2562   Node *n = NULL;
2563   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2564     if (VMThread::should_terminate()) {
2565       cut_short = true;
2566       break;
2567     }
2568     Block* block = _cfg->get_block(i);
2569     if (block->is_connector() && !Verbose) {
2570       continue;
2571     }
2572     n = block->head();
2573     if (pcs && n->_idx < pc_limit) {
2574       tty->print("%3.3x   ", pcs[n->_idx]);
2575     } else {
2576       tty->print("      ");
2577     }
2578     block->dump_head(_cfg);
2579     if (block->is_connector()) {
2580       tty->print_cr("        # Empty connector block");
2581     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2582       tty->print_cr("        # Block is sole successor of call");
2583     }
2584 
2585     // For all instructions
2586     Node *delay = NULL;
2587     for (uint j = 0; j < block->number_of_nodes(); j++) {
2588       if (VMThread::should_terminate()) {
2589         cut_short = true;
2590         break;
2591       }
2592       n = block->get_node(j);
2593       if (valid_bundle_info(n)) {
2594         Bundle* bundle = node_bundling(n);
2595         if (bundle->used_in_unconditional_delay()) {
2596           delay = n;
2597           continue;
2598         }
2599         if (bundle->starts_bundle()) {
2600           starts_bundle = '+';
2601         }
2602       }
2603 
2604       if (WizardMode) {
2605         n->dump();
2606       }
2607 
2608       if( !n->is_Region() &&    // Dont print in the Assembly
2609           !n->is_Phi() &&       // a few noisely useless nodes
2610           !n->is_Proj() &&
2611           !n->is_MachTemp() &&
2612           !n->is_SafePointScalarObject() &&
2613           !n->is_Catch() &&     // Would be nice to print exception table targets
2614           !n->is_MergeMem() &&  // Not very interesting
2615           !n->is_top() &&       // Debug info table constants
2616           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2617           ) {
2618         if (pcs && n->_idx < pc_limit)
2619           tty->print("%3.3x", pcs[n->_idx]);
2620         else
2621           tty->print("   ");
2622         tty->print(" %c ", starts_bundle);
2623         starts_bundle = ' ';
2624         tty->print("\t");
2625         n->format(_regalloc, tty);
2626         tty->cr();
2627       }
2628 
2629       // If we have an instruction with a delay slot, and have seen a delay,
2630       // then back up and print it
2631       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2632         assert(delay != NULL, "no unconditional delay instruction");
2633         if (WizardMode) delay->dump();
2634 
2635         if (node_bundling(delay)->starts_bundle())
2636           starts_bundle = '+';
2637         if (pcs && n->_idx < pc_limit)
2638           tty->print("%3.3x", pcs[n->_idx]);
2639         else
2640           tty->print("   ");
2641         tty->print(" %c ", starts_bundle);
2642         starts_bundle = ' ';
2643         tty->print("\t");
2644         delay->format(_regalloc, tty);
2645         tty->cr();
2646         delay = NULL;
2647       }
2648 
2649       // Dump the exception table as well
2650       if( n->is_Catch() && (Verbose || WizardMode) ) {
2651         // Print the exception table for this offset
2652         _handler_table.print_subtable_for(pc);
2653       }
2654     }
2655 
2656     if (pcs && n->_idx < pc_limit)
2657       tty->print_cr("%3.3x", pcs[n->_idx]);
2658     else
2659       tty->cr();
2660 
2661     assert(cut_short || delay == NULL, "no unconditional delay branch");
2662 
2663   } // End of per-block dump
2664   tty->cr();
2665 
2666   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2667 }
2668 #endif
2669 
2670 //------------------------------Final_Reshape_Counts---------------------------
2671 // This class defines counters to help identify when a method
2672 // may/must be executed using hardware with only 24-bit precision.
2673 struct Final_Reshape_Counts : public StackObj {
2674   int  _call_count;             // count non-inlined 'common' calls
2675   int  _float_count;            // count float ops requiring 24-bit precision
2676   int  _double_count;           // count double ops requiring more precision
2677   int  _java_call_count;        // count non-inlined 'java' calls
2678   int  _inner_loop_count;       // count loops which need alignment
2679   VectorSet _visited;           // Visitation flags
2680   Node_List _tests;             // Set of IfNodes & PCTableNodes
2681 
2682   Final_Reshape_Counts() :
2683     _call_count(0), _float_count(0), _double_count(0),
2684     _java_call_count(0), _inner_loop_count(0),
2685     _visited( Thread::current()->resource_area() ) { }
2686 
2687   void inc_call_count  () { _call_count  ++; }
2688   void inc_float_count () { _float_count ++; }
2689   void inc_double_count() { _double_count++; }
2690   void inc_java_call_count() { _java_call_count++; }
2691   void inc_inner_loop_count() { _inner_loop_count++; }
2692 
2693   int  get_call_count  () const { return _call_count  ; }
2694   int  get_float_count () const { return _float_count ; }
2695   int  get_double_count() const { return _double_count; }
2696   int  get_java_call_count() const { return _java_call_count; }
2697   int  get_inner_loop_count() const { return _inner_loop_count; }
2698 };
2699 
2700 #ifdef ASSERT
2701 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2702   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2703   // Make sure the offset goes inside the instance layout.
2704   return k->contains_field_offset(tp->offset());
2705   // Note that OffsetBot and OffsetTop are very negative.
2706 }
2707 #endif
2708 
2709 // Eliminate trivially redundant StoreCMs and accumulate their
2710 // precedence edges.
2711 void Compile::eliminate_redundant_card_marks(Node* n) {
2712   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2713   if (n->in(MemNode::Address)->outcnt() > 1) {
2714     // There are multiple users of the same address so it might be
2715     // possible to eliminate some of the StoreCMs
2716     Node* mem = n->in(MemNode::Memory);
2717     Node* adr = n->in(MemNode::Address);
2718     Node* val = n->in(MemNode::ValueIn);
2719     Node* prev = n;
2720     bool done = false;
2721     // Walk the chain of StoreCMs eliminating ones that match.  As
2722     // long as it's a chain of single users then the optimization is
2723     // safe.  Eliminating partially redundant StoreCMs would require
2724     // cloning copies down the other paths.
2725     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2726       if (adr == mem->in(MemNode::Address) &&
2727           val == mem->in(MemNode::ValueIn)) {
2728         // redundant StoreCM
2729         if (mem->req() > MemNode::OopStore) {
2730           // Hasn't been processed by this code yet.
2731           n->add_prec(mem->in(MemNode::OopStore));
2732         } else {
2733           // Already converted to precedence edge
2734           for (uint i = mem->req(); i < mem->len(); i++) {
2735             // Accumulate any precedence edges
2736             if (mem->in(i) != NULL) {
2737               n->add_prec(mem->in(i));
2738             }
2739           }
2740           // Everything above this point has been processed.
2741           done = true;
2742         }
2743         // Eliminate the previous StoreCM
2744         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2745         assert(mem->outcnt() == 0, "should be dead");
2746         mem->disconnect_inputs(NULL, this);
2747       } else {
2748         prev = mem;
2749       }
2750       mem = prev->in(MemNode::Memory);
2751     }
2752   }
2753 }
2754 
2755 //------------------------------final_graph_reshaping_impl----------------------
2756 // Implement items 1-5 from final_graph_reshaping below.
2757 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2758 
2759   if ( n->outcnt() == 0 ) return; // dead node
2760   uint nop = n->Opcode();
2761 
2762   // Check for 2-input instruction with "last use" on right input.
2763   // Swap to left input.  Implements item (2).
2764   if( n->req() == 3 &&          // two-input instruction
2765       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2766       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2767       n->in(2)->outcnt() == 1 &&// right use IS a last use
2768       !n->in(2)->is_Con() ) {   // right use is not a constant
2769     // Check for commutative opcode
2770     switch( nop ) {
2771     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2772     case Op_MaxI:  case Op_MinI:
2773     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2774     case Op_AndL:  case Op_XorL:  case Op_OrL:
2775     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2776       // Move "last use" input to left by swapping inputs
2777       n->swap_edges(1, 2);
2778       break;
2779     }
2780     default:
2781       break;
2782     }
2783   }
2784 
2785 #ifdef ASSERT
2786   if( n->is_Mem() ) {
2787     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2788     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2789             // oop will be recorded in oop map if load crosses safepoint
2790             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2791                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2792             "raw memory operations should have control edge");
2793   }
2794   if (n->is_MemBar()) {
2795     MemBarNode* mb = n->as_MemBar();
2796     if (mb->trailing_store() || mb->trailing_load_store()) {
2797       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2798       Node* mem = mb->in(MemBarNode::Precedent);
2799       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2800              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2801     } else if (mb->leading()) {
2802       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2803     }
2804   }
2805 #endif
2806   // Count FPU ops and common calls, implements item (3)
2807   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop);
2808   if (!gc_handled) {
2809     final_graph_reshaping_main_switch(n, frc, nop);
2810   }
2811 
2812   // Collect CFG split points
2813   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
2814     frc._tests.push(n);
2815   }
2816 }
2817 
2818 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) {
2819   switch( nop ) {
2820   // Count all float operations that may use FPU
2821   case Op_AddF:
2822   case Op_SubF:
2823   case Op_MulF:
2824   case Op_DivF:
2825   case Op_NegF:
2826   case Op_ModF:
2827   case Op_ConvI2F:
2828   case Op_ConF:
2829   case Op_CmpF:
2830   case Op_CmpF3:
2831   // case Op_ConvL2F: // longs are split into 32-bit halves
2832     frc.inc_float_count();
2833     break;
2834 
2835   case Op_ConvF2D:
2836   case Op_ConvD2F:
2837     frc.inc_float_count();
2838     frc.inc_double_count();
2839     break;
2840 
2841   // Count all double operations that may use FPU
2842   case Op_AddD:
2843   case Op_SubD:
2844   case Op_MulD:
2845   case Op_DivD:
2846   case Op_NegD:
2847   case Op_ModD:
2848   case Op_ConvI2D:
2849   case Op_ConvD2I:
2850   // case Op_ConvL2D: // handled by leaf call
2851   // case Op_ConvD2L: // handled by leaf call
2852   case Op_ConD:
2853   case Op_CmpD:
2854   case Op_CmpD3:
2855     frc.inc_double_count();
2856     break;
2857   case Op_Opaque1:              // Remove Opaque Nodes before matching
2858   case Op_Opaque2:              // Remove Opaque Nodes before matching
2859   case Op_Opaque3:
2860     n->subsume_by(n->in(1), this);
2861     break;
2862   case Op_CallStaticJava:
2863   case Op_CallJava:
2864   case Op_CallDynamicJava:
2865     frc.inc_java_call_count(); // Count java call site;
2866   case Op_CallRuntime:
2867   case Op_CallLeaf:
2868   case Op_CallLeafNoFP: {
2869     assert (n->is_Call(), "");
2870     CallNode *call = n->as_Call();
2871     // Count call sites where the FP mode bit would have to be flipped.
2872     // Do not count uncommon runtime calls:
2873     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2874     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2875     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2876       frc.inc_call_count();   // Count the call site
2877     } else {                  // See if uncommon argument is shared
2878       Node *n = call->in(TypeFunc::Parms);
2879       int nop = n->Opcode();
2880       // Clone shared simple arguments to uncommon calls, item (1).
2881       if (n->outcnt() > 1 &&
2882           !n->is_Proj() &&
2883           nop != Op_CreateEx &&
2884           nop != Op_CheckCastPP &&
2885           nop != Op_DecodeN &&
2886           nop != Op_DecodeNKlass &&
2887           !n->is_Mem() &&
2888           !n->is_Phi()) {
2889         Node *x = n->clone();
2890         call->set_req(TypeFunc::Parms, x);
2891       }
2892     }
2893     break;
2894   }
2895 
2896   case Op_StoreD:
2897   case Op_LoadD:
2898   case Op_LoadD_unaligned:
2899     frc.inc_double_count();
2900     goto handle_mem;
2901   case Op_StoreF:
2902   case Op_LoadF:
2903     frc.inc_float_count();
2904     goto handle_mem;
2905 
2906   case Op_StoreCM:
2907     {
2908       // Convert OopStore dependence into precedence edge
2909       Node* prec = n->in(MemNode::OopStore);
2910       n->del_req(MemNode::OopStore);
2911       n->add_prec(prec);
2912       eliminate_redundant_card_marks(n);
2913     }
2914 
2915     // fall through
2916 
2917   case Op_StoreB:
2918   case Op_StoreC:
2919   case Op_StorePConditional:
2920   case Op_StoreI:
2921   case Op_StoreL:
2922   case Op_StoreIConditional:
2923   case Op_StoreLConditional:
2924   case Op_CompareAndSwapB:
2925   case Op_CompareAndSwapS:
2926   case Op_CompareAndSwapI:
2927   case Op_CompareAndSwapL:
2928   case Op_CompareAndSwapP:
2929   case Op_CompareAndSwapN:
2930   case Op_WeakCompareAndSwapB:
2931   case Op_WeakCompareAndSwapS:
2932   case Op_WeakCompareAndSwapI:
2933   case Op_WeakCompareAndSwapL:
2934   case Op_WeakCompareAndSwapP:
2935   case Op_WeakCompareAndSwapN:
2936   case Op_CompareAndExchangeB:
2937   case Op_CompareAndExchangeS:
2938   case Op_CompareAndExchangeI:
2939   case Op_CompareAndExchangeL:
2940   case Op_CompareAndExchangeP:
2941   case Op_CompareAndExchangeN:
2942   case Op_GetAndAddS:
2943   case Op_GetAndAddB:
2944   case Op_GetAndAddI:
2945   case Op_GetAndAddL:
2946   case Op_GetAndSetS:
2947   case Op_GetAndSetB:
2948   case Op_GetAndSetI:
2949   case Op_GetAndSetL:
2950   case Op_GetAndSetP:
2951   case Op_GetAndSetN:
2952   case Op_StoreP:
2953   case Op_StoreN:
2954   case Op_StoreNKlass:
2955   case Op_LoadB:
2956   case Op_LoadUB:
2957   case Op_LoadUS:
2958   case Op_LoadI:
2959   case Op_LoadKlass:
2960   case Op_LoadNKlass:
2961   case Op_LoadL:
2962   case Op_LoadL_unaligned:
2963   case Op_LoadPLocked:
2964   case Op_LoadP:
2965   case Op_LoadN:
2966   case Op_LoadRange:
2967   case Op_LoadS: {
2968   handle_mem:
2969 #ifdef ASSERT
2970     if( VerifyOptoOopOffsets ) {
2971       MemNode* mem  = n->as_Mem();
2972       // Check to see if address types have grounded out somehow.
2973       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2974       assert( !tp || oop_offset_is_sane(tp), "" );
2975     }
2976 #endif
2977     break;
2978   }
2979 
2980   case Op_AddP: {               // Assert sane base pointers
2981     Node *addp = n->in(AddPNode::Address);
2982     assert( !addp->is_AddP() ||
2983             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2984             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2985             "Base pointers must match (addp %u)", addp->_idx );
2986 #ifdef _LP64
2987     if ((UseCompressedOops || UseCompressedClassPointers) &&
2988         addp->Opcode() == Op_ConP &&
2989         addp == n->in(AddPNode::Base) &&
2990         n->in(AddPNode::Offset)->is_Con()) {
2991       // If the transformation of ConP to ConN+DecodeN is beneficial depends
2992       // on the platform and on the compressed oops mode.
2993       // Use addressing with narrow klass to load with offset on x86.
2994       // Some platforms can use the constant pool to load ConP.
2995       // Do this transformation here since IGVN will convert ConN back to ConP.
2996       const Type* t = addp->bottom_type();
2997       bool is_oop   = t->isa_oopptr() != NULL;
2998       bool is_klass = t->isa_klassptr() != NULL;
2999 
3000       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3001           (is_klass && Matcher::const_klass_prefer_decode())) {
3002         Node* nn = NULL;
3003 
3004         int op = is_oop ? Op_ConN : Op_ConNKlass;
3005 
3006         // Look for existing ConN node of the same exact type.
3007         Node* r  = root();
3008         uint cnt = r->outcnt();
3009         for (uint i = 0; i < cnt; i++) {
3010           Node* m = r->raw_out(i);
3011           if (m!= NULL && m->Opcode() == op &&
3012               m->bottom_type()->make_ptr() == t) {
3013             nn = m;
3014             break;
3015           }
3016         }
3017         if (nn != NULL) {
3018           // Decode a narrow oop to match address
3019           // [R12 + narrow_oop_reg<<3 + offset]
3020           if (is_oop) {
3021             nn = new DecodeNNode(nn, t);
3022           } else {
3023             nn = new DecodeNKlassNode(nn, t);
3024           }
3025           // Check for succeeding AddP which uses the same Base.
3026           // Otherwise we will run into the assertion above when visiting that guy.
3027           for (uint i = 0; i < n->outcnt(); ++i) {
3028             Node *out_i = n->raw_out(i);
3029             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3030               out_i->set_req(AddPNode::Base, nn);
3031 #ifdef ASSERT
3032               for (uint j = 0; j < out_i->outcnt(); ++j) {
3033                 Node *out_j = out_i->raw_out(j);
3034                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3035                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3036               }
3037 #endif
3038             }
3039           }
3040           n->set_req(AddPNode::Base, nn);
3041           n->set_req(AddPNode::Address, nn);
3042           if (addp->outcnt() == 0) {
3043             addp->disconnect_inputs(NULL, this);
3044           }
3045         }
3046       }
3047     }
3048 #endif
3049     // platform dependent reshaping of the address expression
3050     reshape_address(n->as_AddP());
3051     break;
3052   }
3053 
3054   case Op_CastPP: {
3055     // Remove CastPP nodes to gain more freedom during scheduling but
3056     // keep the dependency they encode as control or precedence edges
3057     // (if control is set already) on memory operations. Some CastPP
3058     // nodes don't have a control (don't carry a dependency): skip
3059     // those.
3060     if (n->in(0) != NULL) {
3061       ResourceMark rm;
3062       Unique_Node_List wq;
3063       wq.push(n);
3064       for (uint next = 0; next < wq.size(); ++next) {
3065         Node *m = wq.at(next);
3066         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3067           Node* use = m->fast_out(i);
3068           if (use->is_Mem() || use->is_EncodeNarrowPtr() || use->is_ShenandoahBarrier()) {
3069             use->ensure_control_or_add_prec(n->in(0));
3070           } else {
3071             switch(use->Opcode()) {
3072             case Op_AddP:
3073             case Op_DecodeN:
3074             case Op_DecodeNKlass:
3075             case Op_CheckCastPP:
3076             case Op_CastPP:
3077               wq.push(use);
3078               break;
3079             }
3080           }
3081         }
3082       }
3083     }
3084     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3085     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3086       Node* in1 = n->in(1);
3087       const Type* t = n->bottom_type();
3088       Node* new_in1 = in1->clone();
3089       new_in1->as_DecodeN()->set_type(t);
3090 
3091       if (!Matcher::narrow_oop_use_complex_address()) {
3092         //
3093         // x86, ARM and friends can handle 2 adds in addressing mode
3094         // and Matcher can fold a DecodeN node into address by using
3095         // a narrow oop directly and do implicit NULL check in address:
3096         //
3097         // [R12 + narrow_oop_reg<<3 + offset]
3098         // NullCheck narrow_oop_reg
3099         //
3100         // On other platforms (Sparc) we have to keep new DecodeN node and
3101         // use it to do implicit NULL check in address:
3102         //
3103         // decode_not_null narrow_oop_reg, base_reg
3104         // [base_reg + offset]
3105         // NullCheck base_reg
3106         //
3107         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3108         // to keep the information to which NULL check the new DecodeN node
3109         // corresponds to use it as value in implicit_null_check().
3110         //
3111         new_in1->set_req(0, n->in(0));
3112       }
3113 
3114       n->subsume_by(new_in1, this);
3115       if (in1->outcnt() == 0) {
3116         in1->disconnect_inputs(NULL, this);
3117       }
3118     } else {
3119       n->subsume_by(n->in(1), this);
3120       if (n->outcnt() == 0) {
3121         n->disconnect_inputs(NULL, this);
3122       }
3123     }
3124     break;
3125   }
3126 #ifdef _LP64
3127   case Op_CmpP:
3128     // Do this transformation here to preserve CmpPNode::sub() and
3129     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3130     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3131       Node* in1 = n->in(1);
3132       Node* in2 = n->in(2);
3133       if (!in1->is_DecodeNarrowPtr()) {
3134         in2 = in1;
3135         in1 = n->in(2);
3136       }
3137       assert(in1->is_DecodeNarrowPtr(), "sanity");
3138 
3139       Node* new_in2 = NULL;
3140       if (in2->is_DecodeNarrowPtr()) {
3141         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3142         new_in2 = in2->in(1);
3143       } else if (in2->Opcode() == Op_ConP) {
3144         const Type* t = in2->bottom_type();
3145         if (t == TypePtr::NULL_PTR) {
3146           assert(in1->is_DecodeN(), "compare klass to null?");
3147           // Don't convert CmpP null check into CmpN if compressed
3148           // oops implicit null check is not generated.
3149           // This will allow to generate normal oop implicit null check.
3150           if (Matcher::gen_narrow_oop_implicit_null_checks())
3151             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3152           //
3153           // This transformation together with CastPP transformation above
3154           // will generated code for implicit NULL checks for compressed oops.
3155           //
3156           // The original code after Optimize()
3157           //
3158           //    LoadN memory, narrow_oop_reg
3159           //    decode narrow_oop_reg, base_reg
3160           //    CmpP base_reg, NULL
3161           //    CastPP base_reg // NotNull
3162           //    Load [base_reg + offset], val_reg
3163           //
3164           // after these transformations will be
3165           //
3166           //    LoadN memory, narrow_oop_reg
3167           //    CmpN narrow_oop_reg, NULL
3168           //    decode_not_null narrow_oop_reg, base_reg
3169           //    Load [base_reg + offset], val_reg
3170           //
3171           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3172           // since narrow oops can be used in debug info now (see the code in
3173           // final_graph_reshaping_walk()).
3174           //
3175           // At the end the code will be matched to
3176           // on x86:
3177           //
3178           //    Load_narrow_oop memory, narrow_oop_reg
3179           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3180           //    NullCheck narrow_oop_reg
3181           //
3182           // and on sparc:
3183           //
3184           //    Load_narrow_oop memory, narrow_oop_reg
3185           //    decode_not_null narrow_oop_reg, base_reg
3186           //    Load [base_reg + offset], val_reg
3187           //    NullCheck base_reg
3188           //
3189         } else if (t->isa_oopptr()) {
3190           new_in2 = ConNode::make(t->make_narrowoop());
3191         } else if (t->isa_klassptr()) {
3192           new_in2 = ConNode::make(t->make_narrowklass());
3193         }
3194       }
3195       if (new_in2 != NULL) {
3196         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3197         n->subsume_by(cmpN, this);
3198         if (in1->outcnt() == 0) {
3199           in1->disconnect_inputs(NULL, this);
3200         }
3201         if (in2->outcnt() == 0) {
3202           in2->disconnect_inputs(NULL, this);
3203         }
3204       }
3205     }
3206     break;
3207 
3208   case Op_DecodeN:
3209   case Op_DecodeNKlass:
3210     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3211     // DecodeN could be pinned when it can't be fold into
3212     // an address expression, see the code for Op_CastPP above.
3213     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3214     break;
3215 
3216   case Op_EncodeP:
3217   case Op_EncodePKlass: {
3218     Node* in1 = n->in(1);
3219     if (in1->is_DecodeNarrowPtr()) {
3220       n->subsume_by(in1->in(1), this);
3221     } else if (in1->Opcode() == Op_ConP) {
3222       const Type* t = in1->bottom_type();
3223       if (t == TypePtr::NULL_PTR) {
3224         assert(t->isa_oopptr(), "null klass?");
3225         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3226       } else if (t->isa_oopptr()) {
3227         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3228       } else if (t->isa_klassptr()) {
3229         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3230       }
3231     }
3232     if (in1->outcnt() == 0) {
3233       in1->disconnect_inputs(NULL, this);
3234     }
3235     break;
3236   }
3237 
3238   case Op_Proj: {
3239     if (OptimizeStringConcat) {
3240       ProjNode* p = n->as_Proj();
3241       if (p->_is_io_use) {
3242         // Separate projections were used for the exception path which
3243         // are normally removed by a late inline.  If it wasn't inlined
3244         // then they will hang around and should just be replaced with
3245         // the original one.
3246         Node* proj = NULL;
3247         // Replace with just one
3248         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3249           Node *use = i.get();
3250           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3251             proj = use;
3252             break;
3253           }
3254         }
3255         assert(proj != NULL, "must be found");
3256         p->subsume_by(proj, this);
3257       }
3258     }
3259     break;
3260   }
3261 
3262   case Op_Phi:
3263     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3264       // The EncodeP optimization may create Phi with the same edges
3265       // for all paths. It is not handled well by Register Allocator.
3266       Node* unique_in = n->in(1);
3267       assert(unique_in != NULL, "");
3268       uint cnt = n->req();
3269       for (uint i = 2; i < cnt; i++) {
3270         Node* m = n->in(i);
3271         assert(m != NULL, "");
3272         if (unique_in != m)
3273           unique_in = NULL;
3274       }
3275       if (unique_in != NULL) {
3276         n->subsume_by(unique_in, this);
3277       }
3278     }
3279     break;
3280 
3281 #endif
3282 
3283 #ifdef ASSERT
3284   case Op_CastII:
3285     // Verify that all range check dependent CastII nodes were removed.
3286     if (n->isa_CastII()->has_range_check()) {
3287       n->dump(3);
3288       assert(false, "Range check dependent CastII node was not removed");
3289     }
3290     break;
3291 #endif
3292 
3293   case Op_ModI:
3294     if (UseDivMod) {
3295       // Check if a%b and a/b both exist
3296       Node* d = n->find_similar(Op_DivI);
3297       if (d) {
3298         // Replace them with a fused divmod if supported
3299         if (Matcher::has_match_rule(Op_DivModI)) {
3300           DivModINode* divmod = DivModINode::make(n);
3301           d->subsume_by(divmod->div_proj(), this);
3302           n->subsume_by(divmod->mod_proj(), this);
3303         } else {
3304           // replace a%b with a-((a/b)*b)
3305           Node* mult = new MulINode(d, d->in(2));
3306           Node* sub  = new SubINode(d->in(1), mult);
3307           n->subsume_by(sub, this);
3308         }
3309       }
3310     }
3311     break;
3312 
3313   case Op_ModL:
3314     if (UseDivMod) {
3315       // Check if a%b and a/b both exist
3316       Node* d = n->find_similar(Op_DivL);
3317       if (d) {
3318         // Replace them with a fused divmod if supported
3319         if (Matcher::has_match_rule(Op_DivModL)) {
3320           DivModLNode* divmod = DivModLNode::make(n);
3321           d->subsume_by(divmod->div_proj(), this);
3322           n->subsume_by(divmod->mod_proj(), this);
3323         } else {
3324           // replace a%b with a-((a/b)*b)
3325           Node* mult = new MulLNode(d, d->in(2));
3326           Node* sub  = new SubLNode(d->in(1), mult);
3327           n->subsume_by(sub, this);
3328         }
3329       }
3330     }
3331     break;
3332 
3333   case Op_LoadVector:
3334   case Op_StoreVector:
3335     break;
3336 
3337   case Op_AddReductionVI:
3338   case Op_AddReductionVL:
3339   case Op_AddReductionVF:
3340   case Op_AddReductionVD:
3341   case Op_MulReductionVI:
3342   case Op_MulReductionVL:
3343   case Op_MulReductionVF:
3344   case Op_MulReductionVD:
3345     break;
3346 
3347   case Op_PackB:
3348   case Op_PackS:
3349   case Op_PackI:
3350   case Op_PackF:
3351   case Op_PackL:
3352   case Op_PackD:
3353     if (n->req()-1 > 2) {
3354       // Replace many operand PackNodes with a binary tree for matching
3355       PackNode* p = (PackNode*) n;
3356       Node* btp = p->binary_tree_pack(1, n->req());
3357       n->subsume_by(btp, this);
3358     }
3359     break;
3360   case Op_Loop:
3361   case Op_CountedLoop:
3362   case Op_OuterStripMinedLoop:
3363     if (n->as_Loop()->is_inner_loop()) {
3364       frc.inc_inner_loop_count();
3365     }
3366     n->as_Loop()->verify_strip_mined(0);
3367     break;
3368   case Op_LShiftI:
3369   case Op_RShiftI:
3370   case Op_URShiftI:
3371   case Op_LShiftL:
3372   case Op_RShiftL:
3373   case Op_URShiftL:
3374     if (Matcher::need_masked_shift_count) {
3375       // The cpu's shift instructions don't restrict the count to the
3376       // lower 5/6 bits. We need to do the masking ourselves.
3377       Node* in2 = n->in(2);
3378       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3379       const TypeInt* t = in2->find_int_type();
3380       if (t != NULL && t->is_con()) {
3381         juint shift = t->get_con();
3382         if (shift > mask) { // Unsigned cmp
3383           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3384         }
3385       } else {
3386         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3387           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3388           n->set_req(2, shift);
3389         }
3390       }
3391       if (in2->outcnt() == 0) { // Remove dead node
3392         in2->disconnect_inputs(NULL, this);
3393       }
3394     }
3395     break;
3396   case Op_MemBarStoreStore:
3397   case Op_MemBarRelease:
3398     // Break the link with AllocateNode: it is no longer useful and
3399     // confuses register allocation.
3400     if (n->req() > MemBarNode::Precedent) {
3401       n->set_req(MemBarNode::Precedent, top());
3402     }
3403     break;
3404   case Op_MemBarAcquire: {
3405     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3406       // At parse time, the trailing MemBarAcquire for a volatile load
3407       // is created with an edge to the load. After optimizations,
3408       // that input may be a chain of Phis. If those phis have no
3409       // other use, then the MemBarAcquire keeps them alive and
3410       // register allocation can be confused.
3411       ResourceMark rm;
3412       Unique_Node_List wq;
3413       wq.push(n->in(MemBarNode::Precedent));
3414       n->set_req(MemBarNode::Precedent, top());
3415       while (wq.size() > 0) {
3416         Node* m = wq.pop();
3417         if (m->outcnt() == 0) {
3418           for (uint j = 0; j < m->req(); j++) {
3419             Node* in = m->in(j);
3420             if (in != NULL) {
3421               wq.push(in);
3422             }
3423           }
3424           m->disconnect_inputs(NULL, this);
3425         }
3426       }
3427     }
3428     break;
3429   }
3430   case Op_RangeCheck: {
3431     RangeCheckNode* rc = n->as_RangeCheck();
3432     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3433     n->subsume_by(iff, this);
3434     frc._tests.push(iff);
3435     break;
3436   }
3437   case Op_ConvI2L: {
3438     if (!Matcher::convi2l_type_required) {
3439       // Code generation on some platforms doesn't need accurate
3440       // ConvI2L types. Widening the type can help remove redundant
3441       // address computations.
3442       n->as_Type()->set_type(TypeLong::INT);
3443       ResourceMark rm;
3444       Node_List wq;
3445       wq.push(n);
3446       for (uint next = 0; next < wq.size(); next++) {
3447         Node *m = wq.at(next);
3448 
3449         for(;;) {
3450           // Loop over all nodes with identical inputs edges as m
3451           Node* k = m->find_similar(m->Opcode());
3452           if (k == NULL) {
3453             break;
3454           }
3455           // Push their uses so we get a chance to remove node made
3456           // redundant
3457           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3458             Node* u = k->fast_out(i);
3459             assert(!wq.contains(u), "shouldn't process one node several times");
3460             if (u->Opcode() == Op_LShiftL ||
3461                 u->Opcode() == Op_AddL ||
3462                 u->Opcode() == Op_SubL ||
3463                 u->Opcode() == Op_AddP) {
3464               wq.push(u);
3465             }
3466           }
3467           // Replace all nodes with identical edges as m with m
3468           k->subsume_by(m, this);
3469         }
3470       }
3471     }
3472     break;
3473   }
3474   case Op_CmpUL: {
3475     if (!Matcher::has_match_rule(Op_CmpUL)) {
3476       // We don't support unsigned long comparisons. Set 'max_idx_expr'
3477       // to max_julong if < 0 to make the signed comparison fail.
3478       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3479       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3480       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3481       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3482       Node* andl = new AndLNode(orl, remove_sign_mask);
3483       Node* cmp = new CmpLNode(andl, n->in(2));
3484       n->subsume_by(cmp, this);
3485     }
3486     break;
3487   }
3488   default:
3489     assert(!n->is_Call(), "");
3490     assert(!n->is_Mem(), "");
3491     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3492     break;
3493   }
3494 }
3495 
3496 //------------------------------final_graph_reshaping_walk---------------------
3497 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3498 // requires that the walk visits a node's inputs before visiting the node.
3499 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3500   ResourceArea *area = Thread::current()->resource_area();
3501   Unique_Node_List sfpt(area);
3502 
3503   frc._visited.set(root->_idx); // first, mark node as visited
3504   uint cnt = root->req();
3505   Node *n = root;
3506   uint  i = 0;
3507   while (true) {
3508     if (i < cnt) {
3509       // Place all non-visited non-null inputs onto stack
3510       Node* m = n->in(i);
3511       ++i;
3512       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3513         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3514           // compute worst case interpreter size in case of a deoptimization
3515           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3516 
3517           sfpt.push(m);
3518         }
3519         cnt = m->req();
3520         nstack.push(n, i); // put on stack parent and next input's index
3521         n = m;
3522         i = 0;
3523       }
3524     } else {
3525       // Now do post-visit work
3526       final_graph_reshaping_impl( n, frc );
3527       if (nstack.is_empty())
3528         break;             // finished
3529       n = nstack.node();   // Get node from stack
3530       cnt = n->req();
3531       i = nstack.index();
3532       nstack.pop();        // Shift to the next node on stack
3533     }
3534   }
3535 
3536   // Skip next transformation if compressed oops are not used.
3537   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3538       (!UseCompressedOops && !UseCompressedClassPointers))
3539     return;
3540 
3541   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3542   // It could be done for an uncommon traps or any safepoints/calls
3543   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3544   while (sfpt.size() > 0) {
3545     n = sfpt.pop();
3546     JVMState *jvms = n->as_SafePoint()->jvms();
3547     assert(jvms != NULL, "sanity");
3548     int start = jvms->debug_start();
3549     int end   = n->req();
3550     bool is_uncommon = (n->is_CallStaticJava() &&
3551                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3552     for (int j = start; j < end; j++) {
3553       Node* in = n->in(j);
3554       if (in->is_DecodeNarrowPtr()) {
3555         bool safe_to_skip = true;
3556         if (!is_uncommon ) {
3557           // Is it safe to skip?
3558           for (uint i = 0; i < in->outcnt(); i++) {
3559             Node* u = in->raw_out(i);
3560             if (!u->is_SafePoint() ||
3561                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3562               safe_to_skip = false;
3563             }
3564           }
3565         }
3566         if (safe_to_skip) {
3567           n->set_req(j, in->in(1));
3568         }
3569         if (in->outcnt() == 0) {
3570           in->disconnect_inputs(NULL, this);
3571         }
3572       }
3573     }
3574   }
3575 }
3576 
3577 //------------------------------final_graph_reshaping--------------------------
3578 // Final Graph Reshaping.
3579 //
3580 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3581 //     and not commoned up and forced early.  Must come after regular
3582 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3583 //     inputs to Loop Phis; these will be split by the allocator anyways.
3584 //     Remove Opaque nodes.
3585 // (2) Move last-uses by commutative operations to the left input to encourage
3586 //     Intel update-in-place two-address operations and better register usage
3587 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3588 //     calls canonicalizing them back.
3589 // (3) Count the number of double-precision FP ops, single-precision FP ops
3590 //     and call sites.  On Intel, we can get correct rounding either by
3591 //     forcing singles to memory (requires extra stores and loads after each
3592 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3593 //     clearing the mode bit around call sites).  The mode bit is only used
3594 //     if the relative frequency of single FP ops to calls is low enough.
3595 //     This is a key transform for SPEC mpeg_audio.
3596 // (4) Detect infinite loops; blobs of code reachable from above but not
3597 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3598 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3599 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3600 //     Detection is by looking for IfNodes where only 1 projection is
3601 //     reachable from below or CatchNodes missing some targets.
3602 // (5) Assert for insane oop offsets in debug mode.
3603 
3604 bool Compile::final_graph_reshaping() {
3605   // an infinite loop may have been eliminated by the optimizer,
3606   // in which case the graph will be empty.
3607   if (root()->req() == 1) {
3608     record_method_not_compilable("trivial infinite loop");
3609     return true;
3610   }
3611 
3612   // Expensive nodes have their control input set to prevent the GVN
3613   // from freely commoning them. There's no GVN beyond this point so
3614   // no need to keep the control input. We want the expensive nodes to
3615   // be freely moved to the least frequent code path by gcm.
3616   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3617   for (int i = 0; i < expensive_count(); i++) {
3618     _expensive_nodes->at(i)->set_req(0, NULL);
3619   }
3620 
3621   Final_Reshape_Counts frc;
3622 
3623   // Visit everybody reachable!
3624   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3625   Node_Stack nstack(live_nodes() >> 1);
3626   final_graph_reshaping_walk(nstack, root(), frc);
3627 
3628   // Check for unreachable (from below) code (i.e., infinite loops).
3629   for( uint i = 0; i < frc._tests.size(); i++ ) {
3630     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3631     // Get number of CFG targets.
3632     // Note that PCTables include exception targets after calls.
3633     uint required_outcnt = n->required_outcnt();
3634     if (n->outcnt() != required_outcnt) {
3635       // Check for a few special cases.  Rethrow Nodes never take the
3636       // 'fall-thru' path, so expected kids is 1 less.
3637       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3638         if (n->in(0)->in(0)->is_Call()) {
3639           CallNode *call = n->in(0)->in(0)->as_Call();
3640           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3641             required_outcnt--;      // Rethrow always has 1 less kid
3642           } else if (call->req() > TypeFunc::Parms &&
3643                      call->is_CallDynamicJava()) {
3644             // Check for null receiver. In such case, the optimizer has
3645             // detected that the virtual call will always result in a null
3646             // pointer exception. The fall-through projection of this CatchNode
3647             // will not be populated.
3648             Node *arg0 = call->in(TypeFunc::Parms);
3649             if (arg0->is_Type() &&
3650                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3651               required_outcnt--;
3652             }
3653           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3654                      call->req() > TypeFunc::Parms+1 &&
3655                      call->is_CallStaticJava()) {
3656             // Check for negative array length. In such case, the optimizer has
3657             // detected that the allocation attempt will always result in an
3658             // exception. There is no fall-through projection of this CatchNode .
3659             Node *arg1 = call->in(TypeFunc::Parms+1);
3660             if (arg1->is_Type() &&
3661                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3662               required_outcnt--;
3663             }
3664           }
3665         }
3666       }
3667       // Recheck with a better notion of 'required_outcnt'
3668       if (n->outcnt() != required_outcnt) {
3669         record_method_not_compilable("malformed control flow");
3670         return true;            // Not all targets reachable!
3671       }
3672     }
3673     // Check that I actually visited all kids.  Unreached kids
3674     // must be infinite loops.
3675     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3676       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3677         record_method_not_compilable("infinite loop");
3678         return true;            // Found unvisited kid; must be unreach
3679       }
3680 
3681     // Here so verification code in final_graph_reshaping_walk()
3682     // always see an OuterStripMinedLoopEnd
3683     if (n->is_OuterStripMinedLoopEnd()) {
3684       IfNode* init_iff = n->as_If();
3685       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3686       n->subsume_by(iff, this);
3687     }
3688   }
3689 
3690   // If original bytecodes contained a mixture of floats and doubles
3691   // check if the optimizer has made it homogenous, item (3).
3692   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3693       frc.get_float_count() > 32 &&
3694       frc.get_double_count() == 0 &&
3695       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3696     set_24_bit_selection_and_mode( false,  true );
3697   }
3698 
3699   set_java_calls(frc.get_java_call_count());
3700   set_inner_loops(frc.get_inner_loop_count());
3701 
3702   // No infinite loops, no reason to bail out.
3703   return false;
3704 }
3705 
3706 //-----------------------------too_many_traps----------------------------------
3707 // Report if there are too many traps at the current method and bci.
3708 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3709 bool Compile::too_many_traps(ciMethod* method,
3710                              int bci,
3711                              Deoptimization::DeoptReason reason) {
3712   ciMethodData* md = method->method_data();
3713   if (md->is_empty()) {
3714     // Assume the trap has not occurred, or that it occurred only
3715     // because of a transient condition during start-up in the interpreter.
3716     return false;
3717   }
3718   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3719   if (md->has_trap_at(bci, m, reason) != 0) {
3720     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3721     // Also, if there are multiple reasons, or if there is no per-BCI record,
3722     // assume the worst.
3723     if (log())
3724       log()->elem("observe trap='%s' count='%d'",
3725                   Deoptimization::trap_reason_name(reason),
3726                   md->trap_count(reason));
3727     return true;
3728   } else {
3729     // Ignore method/bci and see if there have been too many globally.
3730     return too_many_traps(reason, md);
3731   }
3732 }
3733 
3734 // Less-accurate variant which does not require a method and bci.
3735 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3736                              ciMethodData* logmd) {
3737   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3738     // Too many traps globally.
3739     // Note that we use cumulative trap_count, not just md->trap_count.
3740     if (log()) {
3741       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3742       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3743                   Deoptimization::trap_reason_name(reason),
3744                   mcount, trap_count(reason));
3745     }
3746     return true;
3747   } else {
3748     // The coast is clear.
3749     return false;
3750   }
3751 }
3752 
3753 //--------------------------too_many_recompiles--------------------------------
3754 // Report if there are too many recompiles at the current method and bci.
3755 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3756 // Is not eager to return true, since this will cause the compiler to use
3757 // Action_none for a trap point, to avoid too many recompilations.
3758 bool Compile::too_many_recompiles(ciMethod* method,
3759                                   int bci,
3760                                   Deoptimization::DeoptReason reason) {
3761   ciMethodData* md = method->method_data();
3762   if (md->is_empty()) {
3763     // Assume the trap has not occurred, or that it occurred only
3764     // because of a transient condition during start-up in the interpreter.
3765     return false;
3766   }
3767   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3768   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3769   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3770   Deoptimization::DeoptReason per_bc_reason
3771     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3772   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3773   if ((per_bc_reason == Deoptimization::Reason_none
3774        || md->has_trap_at(bci, m, reason) != 0)
3775       // The trap frequency measure we care about is the recompile count:
3776       && md->trap_recompiled_at(bci, m)
3777       && md->overflow_recompile_count() >= bc_cutoff) {
3778     // Do not emit a trap here if it has already caused recompilations.
3779     // Also, if there are multiple reasons, or if there is no per-BCI record,
3780     // assume the worst.
3781     if (log())
3782       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3783                   Deoptimization::trap_reason_name(reason),
3784                   md->trap_count(reason),
3785                   md->overflow_recompile_count());
3786     return true;
3787   } else if (trap_count(reason) != 0
3788              && decompile_count() >= m_cutoff) {
3789     // Too many recompiles globally, and we have seen this sort of trap.
3790     // Use cumulative decompile_count, not just md->decompile_count.
3791     if (log())
3792       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3793                   Deoptimization::trap_reason_name(reason),
3794                   md->trap_count(reason), trap_count(reason),
3795                   md->decompile_count(), decompile_count());
3796     return true;
3797   } else {
3798     // The coast is clear.
3799     return false;
3800   }
3801 }
3802 
3803 // Compute when not to trap. Used by matching trap based nodes and
3804 // NullCheck optimization.
3805 void Compile::set_allowed_deopt_reasons() {
3806   _allowed_reasons = 0;
3807   if (is_method_compilation()) {
3808     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3809       assert(rs < BitsPerInt, "recode bit map");
3810       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3811         _allowed_reasons |= nth_bit(rs);
3812       }
3813     }
3814   }
3815 }
3816 
3817 #ifndef PRODUCT
3818 //------------------------------verify_graph_edges---------------------------
3819 // Walk the Graph and verify that there is a one-to-one correspondence
3820 // between Use-Def edges and Def-Use edges in the graph.
3821 void Compile::verify_graph_edges(bool no_dead_code) {
3822   if (VerifyGraphEdges) {
3823     ResourceArea *area = Thread::current()->resource_area();
3824     Unique_Node_List visited(area);
3825     // Call recursive graph walk to check edges
3826     _root->verify_edges(visited);
3827     if (no_dead_code) {
3828       // Now make sure that no visited node is used by an unvisited node.
3829       bool dead_nodes = false;
3830       Unique_Node_List checked(area);
3831       while (visited.size() > 0) {
3832         Node* n = visited.pop();
3833         checked.push(n);
3834         for (uint i = 0; i < n->outcnt(); i++) {
3835           Node* use = n->raw_out(i);
3836           if (checked.member(use))  continue;  // already checked
3837           if (visited.member(use))  continue;  // already in the graph
3838           if (use->is_Con())        continue;  // a dead ConNode is OK
3839           // At this point, we have found a dead node which is DU-reachable.
3840           if (!dead_nodes) {
3841             tty->print_cr("*** Dead nodes reachable via DU edges:");
3842             dead_nodes = true;
3843           }
3844           use->dump(2);
3845           tty->print_cr("---");
3846           checked.push(use);  // No repeats; pretend it is now checked.
3847         }
3848       }
3849       assert(!dead_nodes, "using nodes must be reachable from root");
3850     }
3851   }
3852 }
3853 #endif
3854 
3855 // The Compile object keeps track of failure reasons separately from the ciEnv.
3856 // This is required because there is not quite a 1-1 relation between the
3857 // ciEnv and its compilation task and the Compile object.  Note that one
3858 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3859 // to backtrack and retry without subsuming loads.  Other than this backtracking
3860 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3861 // by the logic in C2Compiler.
3862 void Compile::record_failure(const char* reason) {
3863   if (log() != NULL) {
3864     log()->elem("failure reason='%s' phase='compile'", reason);
3865   }
3866   if (_failure_reason == NULL) {
3867     // Record the first failure reason.
3868     _failure_reason = reason;
3869   }
3870 
3871   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3872     C->print_method(PHASE_FAILURE);
3873   }
3874   _root = NULL;  // flush the graph, too
3875 }
3876 
3877 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3878   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3879     _phase_name(name), _dolog(CITimeVerbose)
3880 {
3881   if (_dolog) {
3882     C = Compile::current();
3883     _log = C->log();
3884   } else {
3885     C = NULL;
3886     _log = NULL;
3887   }
3888   if (_log != NULL) {
3889     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3890     _log->stamp();
3891     _log->end_head();
3892   }
3893 }
3894 
3895 Compile::TracePhase::~TracePhase() {
3896 
3897   C = Compile::current();
3898   if (_dolog) {
3899     _log = C->log();
3900   } else {
3901     _log = NULL;
3902   }
3903 
3904 #ifdef ASSERT
3905   if (PrintIdealNodeCount) {
3906     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3907                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3908   }
3909 
3910   if (VerifyIdealNodeCount) {
3911     Compile::current()->print_missing_nodes();
3912   }
3913 #endif
3914 
3915   if (_log != NULL) {
3916     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3917   }
3918 }
3919 
3920 //=============================================================================
3921 // Two Constant's are equal when the type and the value are equal.
3922 bool Compile::Constant::operator==(const Constant& other) {
3923   if (type()          != other.type()         )  return false;
3924   if (can_be_reused() != other.can_be_reused())  return false;
3925   // For floating point values we compare the bit pattern.
3926   switch (type()) {
3927   case T_INT:
3928   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3929   case T_LONG:
3930   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3931   case T_OBJECT:
3932   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3933   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3934   case T_METADATA: return (_v._metadata == other._v._metadata);
3935   default: ShouldNotReachHere(); return false;
3936   }
3937 }
3938 
3939 static int type_to_size_in_bytes(BasicType t) {
3940   switch (t) {
3941   case T_INT:     return sizeof(jint   );
3942   case T_LONG:    return sizeof(jlong  );
3943   case T_FLOAT:   return sizeof(jfloat );
3944   case T_DOUBLE:  return sizeof(jdouble);
3945   case T_METADATA: return sizeof(Metadata*);
3946     // We use T_VOID as marker for jump-table entries (labels) which
3947     // need an internal word relocation.
3948   case T_VOID:
3949   case T_ADDRESS:
3950   case T_OBJECT:  return sizeof(jobject);
3951   default:
3952     ShouldNotReachHere();
3953     return -1;
3954   }
3955 }
3956 
3957 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3958   // sort descending
3959   if (a->freq() > b->freq())  return -1;
3960   if (a->freq() < b->freq())  return  1;
3961   return 0;
3962 }
3963 
3964 void Compile::ConstantTable::calculate_offsets_and_size() {
3965   // First, sort the array by frequencies.
3966   _constants.sort(qsort_comparator);
3967 
3968 #ifdef ASSERT
3969   // Make sure all jump-table entries were sorted to the end of the
3970   // array (they have a negative frequency).
3971   bool found_void = false;
3972   for (int i = 0; i < _constants.length(); i++) {
3973     Constant con = _constants.at(i);
3974     if (con.type() == T_VOID)
3975       found_void = true;  // jump-tables
3976     else
3977       assert(!found_void, "wrong sorting");
3978   }
3979 #endif
3980 
3981   int offset = 0;
3982   for (int i = 0; i < _constants.length(); i++) {
3983     Constant* con = _constants.adr_at(i);
3984 
3985     // Align offset for type.
3986     int typesize = type_to_size_in_bytes(con->type());
3987     offset = align_up(offset, typesize);
3988     con->set_offset(offset);   // set constant's offset
3989 
3990     if (con->type() == T_VOID) {
3991       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3992       offset = offset + typesize * n->outcnt();  // expand jump-table
3993     } else {
3994       offset = offset + typesize;
3995     }
3996   }
3997 
3998   // Align size up to the next section start (which is insts; see
3999   // CodeBuffer::align_at_start).
4000   assert(_size == -1, "already set?");
4001   _size = align_up(offset, (int)CodeEntryAlignment);
4002 }
4003 
4004 void Compile::ConstantTable::emit(CodeBuffer& cb) {
4005   MacroAssembler _masm(&cb);
4006   for (int i = 0; i < _constants.length(); i++) {
4007     Constant con = _constants.at(i);
4008     address constant_addr = NULL;
4009     switch (con.type()) {
4010     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
4011     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
4012     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4013     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4014     case T_OBJECT: {
4015       jobject obj = con.get_jobject();
4016       int oop_index = _masm.oop_recorder()->find_index(obj);
4017       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4018       break;
4019     }
4020     case T_ADDRESS: {
4021       address addr = (address) con.get_jobject();
4022       constant_addr = _masm.address_constant(addr);
4023       break;
4024     }
4025     // We use T_VOID as marker for jump-table entries (labels) which
4026     // need an internal word relocation.
4027     case T_VOID: {
4028       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4029       // Fill the jump-table with a dummy word.  The real value is
4030       // filled in later in fill_jump_table.
4031       address dummy = (address) n;
4032       constant_addr = _masm.address_constant(dummy);
4033       // Expand jump-table
4034       for (uint i = 1; i < n->outcnt(); i++) {
4035         address temp_addr = _masm.address_constant(dummy + i);
4036         assert(temp_addr, "consts section too small");
4037       }
4038       break;
4039     }
4040     case T_METADATA: {
4041       Metadata* obj = con.get_metadata();
4042       int metadata_index = _masm.oop_recorder()->find_index(obj);
4043       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4044       break;
4045     }
4046     default: ShouldNotReachHere();
4047     }
4048     assert(constant_addr, "consts section too small");
4049     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4050             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4051   }
4052 }
4053 
4054 int Compile::ConstantTable::find_offset(Constant& con) const {
4055   int idx = _constants.find(con);
4056   guarantee(idx != -1, "constant must be in constant table");
4057   int offset = _constants.at(idx).offset();
4058   guarantee(offset != -1, "constant table not emitted yet?");
4059   return offset;
4060 }
4061 
4062 void Compile::ConstantTable::add(Constant& con) {
4063   if (con.can_be_reused()) {
4064     int idx = _constants.find(con);
4065     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4066       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4067       return;
4068     }
4069   }
4070   (void) _constants.append(con);
4071 }
4072 
4073 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4074   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4075   Constant con(type, value, b->_freq);
4076   add(con);
4077   return con;
4078 }
4079 
4080 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4081   Constant con(metadata);
4082   add(con);
4083   return con;
4084 }
4085 
4086 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4087   jvalue value;
4088   BasicType type = oper->type()->basic_type();
4089   switch (type) {
4090   case T_LONG:    value.j = oper->constantL(); break;
4091   case T_FLOAT:   value.f = oper->constantF(); break;
4092   case T_DOUBLE:  value.d = oper->constantD(); break;
4093   case T_OBJECT:
4094   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4095   case T_METADATA: return add((Metadata*)oper->constant()); break;
4096   default: guarantee(false, "unhandled type: %s", type2name(type));
4097   }
4098   return add(n, type, value);
4099 }
4100 
4101 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4102   jvalue value;
4103   // We can use the node pointer here to identify the right jump-table
4104   // as this method is called from Compile::Fill_buffer right before
4105   // the MachNodes are emitted and the jump-table is filled (means the
4106   // MachNode pointers do not change anymore).
4107   value.l = (jobject) n;
4108   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4109   add(con);
4110   return con;
4111 }
4112 
4113 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4114   // If called from Compile::scratch_emit_size do nothing.
4115   if (Compile::current()->in_scratch_emit_size())  return;
4116 
4117   assert(labels.is_nonempty(), "must be");
4118   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4119 
4120   // Since MachConstantNode::constant_offset() also contains
4121   // table_base_offset() we need to subtract the table_base_offset()
4122   // to get the plain offset into the constant table.
4123   int offset = n->constant_offset() - table_base_offset();
4124 
4125   MacroAssembler _masm(&cb);
4126   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4127 
4128   for (uint i = 0; i < n->outcnt(); i++) {
4129     address* constant_addr = &jump_table_base[i];
4130     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4131     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4132     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4133   }
4134 }
4135 
4136 //----------------------------static_subtype_check-----------------------------
4137 // Shortcut important common cases when superklass is exact:
4138 // (0) superklass is java.lang.Object (can occur in reflective code)
4139 // (1) subklass is already limited to a subtype of superklass => always ok
4140 // (2) subklass does not overlap with superklass => always fail
4141 // (3) superklass has NO subtypes and we can check with a simple compare.
4142 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4143   if (StressReflectiveCode) {
4144     return SSC_full_test;       // Let caller generate the general case.
4145   }
4146 
4147   if (superk == env()->Object_klass()) {
4148     return SSC_always_true;     // (0) this test cannot fail
4149   }
4150 
4151   ciType* superelem = superk;
4152   if (superelem->is_array_klass())
4153     superelem = superelem->as_array_klass()->base_element_type();
4154 
4155   if (!subk->is_interface()) {  // cannot trust static interface types yet
4156     if (subk->is_subtype_of(superk)) {
4157       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4158     }
4159     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4160         !superk->is_subtype_of(subk)) {
4161       return SSC_always_false;
4162     }
4163   }
4164 
4165   // If casting to an instance klass, it must have no subtypes
4166   if (superk->is_interface()) {
4167     // Cannot trust interfaces yet.
4168     // %%% S.B. superk->nof_implementors() == 1
4169   } else if (superelem->is_instance_klass()) {
4170     ciInstanceKlass* ik = superelem->as_instance_klass();
4171     if (!ik->has_subklass() && !ik->is_interface()) {
4172       if (!ik->is_final()) {
4173         // Add a dependency if there is a chance of a later subclass.
4174         dependencies()->assert_leaf_type(ik);
4175       }
4176       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4177     }
4178   } else {
4179     // A primitive array type has no subtypes.
4180     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4181   }
4182 
4183   return SSC_full_test;
4184 }
4185 
4186 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4187 #ifdef _LP64
4188   // The scaled index operand to AddP must be a clean 64-bit value.
4189   // Java allows a 32-bit int to be incremented to a negative
4190   // value, which appears in a 64-bit register as a large
4191   // positive number.  Using that large positive number as an
4192   // operand in pointer arithmetic has bad consequences.
4193   // On the other hand, 32-bit overflow is rare, and the possibility
4194   // can often be excluded, if we annotate the ConvI2L node with
4195   // a type assertion that its value is known to be a small positive
4196   // number.  (The prior range check has ensured this.)
4197   // This assertion is used by ConvI2LNode::Ideal.
4198   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4199   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4200   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4201   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4202 #endif
4203   return idx;
4204 }
4205 
4206 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4207 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4208   if (ctrl != NULL) {
4209     // Express control dependency by a CastII node with a narrow type.
4210     value = new CastIINode(value, itype, false, true /* range check dependency */);
4211     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4212     // node from floating above the range check during loop optimizations. Otherwise, the
4213     // ConvI2L node may be eliminated independently of the range check, causing the data path
4214     // to become TOP while the control path is still there (although it's unreachable).
4215     value->set_req(0, ctrl);
4216     // Save CastII node to remove it after loop optimizations.
4217     phase->C->add_range_check_cast(value);
4218     value = phase->transform(value);
4219   }
4220   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4221   return phase->transform(new ConvI2LNode(value, ltype));
4222 }
4223 
4224 // The message about the current inlining is accumulated in
4225 // _print_inlining_stream and transfered into the _print_inlining_list
4226 // once we know whether inlining succeeds or not. For regular
4227 // inlining, messages are appended to the buffer pointed by
4228 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4229 // a new buffer is added after _print_inlining_idx in the list. This
4230 // way we can update the inlining message for late inlining call site
4231 // when the inlining is attempted again.
4232 void Compile::print_inlining_init() {
4233   if (print_inlining() || print_intrinsics()) {
4234     _print_inlining_stream = new stringStream();
4235     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4236   }
4237 }
4238 
4239 void Compile::print_inlining_reinit() {
4240   if (print_inlining() || print_intrinsics()) {
4241     // Re allocate buffer when we change ResourceMark
4242     _print_inlining_stream = new stringStream();
4243   }
4244 }
4245 
4246 void Compile::print_inlining_reset() {
4247   _print_inlining_stream->reset();
4248 }
4249 
4250 void Compile::print_inlining_commit() {
4251   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4252   // Transfer the message from _print_inlining_stream to the current
4253   // _print_inlining_list buffer and clear _print_inlining_stream.
4254   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4255   print_inlining_reset();
4256 }
4257 
4258 void Compile::print_inlining_push() {
4259   // Add new buffer to the _print_inlining_list at current position
4260   _print_inlining_idx++;
4261   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4262 }
4263 
4264 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4265   return _print_inlining_list->at(_print_inlining_idx);
4266 }
4267 
4268 void Compile::print_inlining_update(CallGenerator* cg) {
4269   if (print_inlining() || print_intrinsics()) {
4270     if (!cg->is_late_inline()) {
4271       if (print_inlining_current().cg() != NULL) {
4272         print_inlining_push();
4273       }
4274       print_inlining_commit();
4275     } else {
4276       if (print_inlining_current().cg() != cg &&
4277           (print_inlining_current().cg() != NULL ||
4278            print_inlining_current().ss()->size() != 0)) {
4279         print_inlining_push();
4280       }
4281       print_inlining_commit();
4282       print_inlining_current().set_cg(cg);
4283     }
4284   }
4285 }
4286 
4287 void Compile::print_inlining_move_to(CallGenerator* cg) {
4288   // We resume inlining at a late inlining call site. Locate the
4289   // corresponding inlining buffer so that we can update it.
4290   if (print_inlining()) {
4291     for (int i = 0; i < _print_inlining_list->length(); i++) {
4292       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4293         _print_inlining_idx = i;
4294         return;
4295       }
4296     }
4297     ShouldNotReachHere();
4298   }
4299 }
4300 
4301 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4302   if (print_inlining()) {
4303     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4304     assert(print_inlining_current().cg() == cg, "wrong entry");
4305     // replace message with new message
4306     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4307     print_inlining_commit();
4308     print_inlining_current().set_cg(cg);
4309   }
4310 }
4311 
4312 void Compile::print_inlining_assert_ready() {
4313   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4314 }
4315 
4316 void Compile::process_print_inlining() {
4317   bool do_print_inlining = print_inlining() || print_intrinsics();
4318   if (do_print_inlining || log() != NULL) {
4319     // Print inlining message for candidates that we couldn't inline
4320     // for lack of space
4321     for (int i = 0; i < _late_inlines.length(); i++) {
4322       CallGenerator* cg = _late_inlines.at(i);
4323       if (!cg->is_mh_late_inline()) {
4324         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4325         if (do_print_inlining) {
4326           cg->print_inlining_late(msg);
4327         }
4328         log_late_inline_failure(cg, msg);
4329       }
4330     }
4331   }
4332   if (do_print_inlining) {
4333     ResourceMark rm;
4334     stringStream ss;
4335     for (int i = 0; i < _print_inlining_list->length(); i++) {
4336       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4337     }
4338     size_t end = ss.size();
4339     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4340     strncpy(_print_inlining_output, ss.base(), end+1);
4341     _print_inlining_output[end] = 0;
4342   }
4343 }
4344 
4345 void Compile::dump_print_inlining() {
4346   if (_print_inlining_output != NULL) {
4347     tty->print_raw(_print_inlining_output);
4348   }
4349 }
4350 
4351 void Compile::log_late_inline(CallGenerator* cg) {
4352   if (log() != NULL) {
4353     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4354                 cg->unique_id());
4355     JVMState* p = cg->call_node()->jvms();
4356     while (p != NULL) {
4357       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4358       p = p->caller();
4359     }
4360     log()->tail("late_inline");
4361   }
4362 }
4363 
4364 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4365   log_late_inline(cg);
4366   if (log() != NULL) {
4367     log()->inline_fail(msg);
4368   }
4369 }
4370 
4371 void Compile::log_inline_id(CallGenerator* cg) {
4372   if (log() != NULL) {
4373     // The LogCompilation tool needs a unique way to identify late
4374     // inline call sites. This id must be unique for this call site in
4375     // this compilation. Try to have it unique across compilations as
4376     // well because it can be convenient when grepping through the log
4377     // file.
4378     // Distinguish OSR compilations from others in case CICountOSR is
4379     // on.
4380     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4381     cg->set_unique_id(id);
4382     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4383   }
4384 }
4385 
4386 void Compile::log_inline_failure(const char* msg) {
4387   if (C->log() != NULL) {
4388     C->log()->inline_fail(msg);
4389   }
4390 }
4391 
4392 
4393 // Dump inlining replay data to the stream.
4394 // Don't change thread state and acquire any locks.
4395 void Compile::dump_inline_data(outputStream* out) {
4396   InlineTree* inl_tree = ilt();
4397   if (inl_tree != NULL) {
4398     out->print(" inline %d", inl_tree->count());
4399     inl_tree->dump_replay_data(out);
4400   }
4401 }
4402 
4403 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4404   if (n1->Opcode() < n2->Opcode())      return -1;
4405   else if (n1->Opcode() > n2->Opcode()) return 1;
4406 
4407   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4408   for (uint i = 1; i < n1->req(); i++) {
4409     if (n1->in(i) < n2->in(i))      return -1;
4410     else if (n1->in(i) > n2->in(i)) return 1;
4411   }
4412 
4413   return 0;
4414 }
4415 
4416 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4417   Node* n1 = *n1p;
4418   Node* n2 = *n2p;
4419 
4420   return cmp_expensive_nodes(n1, n2);
4421 }
4422 
4423 void Compile::sort_expensive_nodes() {
4424   if (!expensive_nodes_sorted()) {
4425     _expensive_nodes->sort(cmp_expensive_nodes);
4426   }
4427 }
4428 
4429 bool Compile::expensive_nodes_sorted() const {
4430   for (int i = 1; i < _expensive_nodes->length(); i++) {
4431     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4432       return false;
4433     }
4434   }
4435   return true;
4436 }
4437 
4438 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4439   if (_expensive_nodes->length() == 0) {
4440     return false;
4441   }
4442 
4443   assert(OptimizeExpensiveOps, "optimization off?");
4444 
4445   // Take this opportunity to remove dead nodes from the list
4446   int j = 0;
4447   for (int i = 0; i < _expensive_nodes->length(); i++) {
4448     Node* n = _expensive_nodes->at(i);
4449     if (!n->is_unreachable(igvn)) {
4450       assert(n->is_expensive(), "should be expensive");
4451       _expensive_nodes->at_put(j, n);
4452       j++;
4453     }
4454   }
4455   _expensive_nodes->trunc_to(j);
4456 
4457   // Then sort the list so that similar nodes are next to each other
4458   // and check for at least two nodes of identical kind with same data
4459   // inputs.
4460   sort_expensive_nodes();
4461 
4462   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4463     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4464       return true;
4465     }
4466   }
4467 
4468   return false;
4469 }
4470 
4471 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4472   if (_expensive_nodes->length() == 0) {
4473     return;
4474   }
4475 
4476   assert(OptimizeExpensiveOps, "optimization off?");
4477 
4478   // Sort to bring similar nodes next to each other and clear the
4479   // control input of nodes for which there's only a single copy.
4480   sort_expensive_nodes();
4481 
4482   int j = 0;
4483   int identical = 0;
4484   int i = 0;
4485   bool modified = false;
4486   for (; i < _expensive_nodes->length()-1; i++) {
4487     assert(j <= i, "can't write beyond current index");
4488     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4489       identical++;
4490       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4491       continue;
4492     }
4493     if (identical > 0) {
4494       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4495       identical = 0;
4496     } else {
4497       Node* n = _expensive_nodes->at(i);
4498       igvn.replace_input_of(n, 0, NULL);
4499       igvn.hash_insert(n);
4500       modified = true;
4501     }
4502   }
4503   if (identical > 0) {
4504     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4505   } else if (_expensive_nodes->length() >= 1) {
4506     Node* n = _expensive_nodes->at(i);
4507     igvn.replace_input_of(n, 0, NULL);
4508     igvn.hash_insert(n);
4509     modified = true;
4510   }
4511   _expensive_nodes->trunc_to(j);
4512   if (modified) {
4513     igvn.optimize();
4514   }
4515 }
4516 
4517 void Compile::add_expensive_node(Node * n) {
4518   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4519   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4520   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4521   if (OptimizeExpensiveOps) {
4522     _expensive_nodes->append(n);
4523   } else {
4524     // Clear control input and let IGVN optimize expensive nodes if
4525     // OptimizeExpensiveOps is off.
4526     n->set_req(0, NULL);
4527   }
4528 }
4529 
4530 /**
4531  * Remove the speculative part of types and clean up the graph
4532  */
4533 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4534   if (UseTypeSpeculation) {
4535     Unique_Node_List worklist;
4536     worklist.push(root());
4537     int modified = 0;
4538     // Go over all type nodes that carry a speculative type, drop the
4539     // speculative part of the type and enqueue the node for an igvn
4540     // which may optimize it out.
4541     for (uint next = 0; next < worklist.size(); ++next) {
4542       Node *n  = worklist.at(next);
4543       if (n->is_Type()) {
4544         TypeNode* tn = n->as_Type();
4545         const Type* t = tn->type();
4546         const Type* t_no_spec = t->remove_speculative();
4547         if (t_no_spec != t) {
4548           bool in_hash = igvn.hash_delete(n);
4549           assert(in_hash, "node should be in igvn hash table");
4550           tn->set_type(t_no_spec);
4551           igvn.hash_insert(n);
4552           igvn._worklist.push(n); // give it a chance to go away
4553           modified++;
4554         }
4555       }
4556       uint max = n->len();
4557       for( uint i = 0; i < max; ++i ) {
4558         Node *m = n->in(i);
4559         if (not_a_node(m))  continue;
4560         worklist.push(m);
4561       }
4562     }
4563     // Drop the speculative part of all types in the igvn's type table
4564     igvn.remove_speculative_types();
4565     if (modified > 0) {
4566       igvn.optimize();
4567     }
4568 #ifdef ASSERT
4569     // Verify that after the IGVN is over no speculative type has resurfaced
4570     worklist.clear();
4571     worklist.push(root());
4572     for (uint next = 0; next < worklist.size(); ++next) {
4573       Node *n  = worklist.at(next);
4574       const Type* t = igvn.type_or_null(n);
4575       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4576       if (n->is_Type()) {
4577         t = n->as_Type()->type();
4578         assert(t == t->remove_speculative(), "no more speculative types");
4579       }
4580       uint max = n->len();
4581       for( uint i = 0; i < max; ++i ) {
4582         Node *m = n->in(i);
4583         if (not_a_node(m))  continue;
4584         worklist.push(m);
4585       }
4586     }
4587     igvn.check_no_speculative_types();
4588 #endif
4589   }
4590 }
4591 
4592 // Auxiliary method to support randomized stressing/fuzzing.
4593 //
4594 // This method can be called the arbitrary number of times, with current count
4595 // as the argument. The logic allows selecting a single candidate from the
4596 // running list of candidates as follows:
4597 //    int count = 0;
4598 //    Cand* selected = null;
4599 //    while(cand = cand->next()) {
4600 //      if (randomized_select(++count)) {
4601 //        selected = cand;
4602 //      }
4603 //    }
4604 //
4605 // Including count equalizes the chances any candidate is "selected".
4606 // This is useful when we don't have the complete list of candidates to choose
4607 // from uniformly. In this case, we need to adjust the randomicity of the
4608 // selection, or else we will end up biasing the selection towards the latter
4609 // candidates.
4610 //
4611 // Quick back-envelope calculation shows that for the list of n candidates
4612 // the equal probability for the candidate to persist as "best" can be
4613 // achieved by replacing it with "next" k-th candidate with the probability
4614 // of 1/k. It can be easily shown that by the end of the run, the
4615 // probability for any candidate is converged to 1/n, thus giving the
4616 // uniform distribution among all the candidates.
4617 //
4618 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4619 #define RANDOMIZED_DOMAIN_POW 29
4620 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4621 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4622 bool Compile::randomized_select(int count) {
4623   assert(count > 0, "only positive");
4624   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4625 }
4626 
4627 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4628 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4629 
4630 void NodeCloneInfo::dump() const {
4631   tty->print(" {%d:%d} ", idx(), gen());
4632 }
4633 
4634 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4635   uint64_t val = value(old->_idx);
4636   NodeCloneInfo cio(val);
4637   assert(val != 0, "old node should be in the map");
4638   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4639   insert(nnn->_idx, cin.get());
4640 #ifndef PRODUCT
4641   if (is_debug()) {
4642     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4643   }
4644 #endif
4645 }
4646 
4647 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4648   NodeCloneInfo cio(value(old->_idx));
4649   if (cio.get() == 0) {
4650     cio.set(old->_idx, 0);
4651     insert(old->_idx, cio.get());
4652 #ifndef PRODUCT
4653     if (is_debug()) {
4654       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4655     }
4656 #endif
4657   }
4658   clone(old, nnn, gen);
4659 }
4660 
4661 int CloneMap::max_gen() const {
4662   int g = 0;
4663   DictI di(_dict);
4664   for(; di.test(); ++di) {
4665     int t = gen(di._key);
4666     if (g < t) {
4667       g = t;
4668 #ifndef PRODUCT
4669       if (is_debug()) {
4670         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4671       }
4672 #endif
4673     }
4674   }
4675   return g;
4676 }
4677 
4678 void CloneMap::dump(node_idx_t key) const {
4679   uint64_t val = value(key);
4680   if (val != 0) {
4681     NodeCloneInfo ni(val);
4682     ni.dump();
4683   }
4684 }