1 /*
   2  * Copyright (c) 2018, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "gc/shenandoah/shenandoahHeap.hpp"
  26 #include "gc/shenandoah/shenandoahHeuristics.hpp"
  27 #include "gc/shenandoah/shenandoahRuntime.hpp"
  28 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  29 #include "gc/shenandoah/c2/shenandoahSupport.hpp"
  30 #include "opto/arraycopynode.hpp"
  31 #include "opto/escape.hpp"
  32 #include "opto/graphKit.hpp"
  33 #include "opto/idealKit.hpp"
  34 #include "opto/macro.hpp"
  35 #include "opto/movenode.hpp"
  36 #include "opto/narrowptrnode.hpp"
  37 #include "opto/rootnode.hpp"
  38 
  39 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() {
  40   return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2());
  41 }
  42 
  43 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena)
  44   : _shenandoah_barriers(new (comp_arena) GrowableArray<ShenandoahWriteBarrierNode*>(comp_arena, 8,  0, NULL)) {
  45 }
  46 
  47 int ShenandoahBarrierSetC2State::shenandoah_barriers_count() const {
  48   return _shenandoah_barriers->length();
  49 }
  50 
  51 ShenandoahWriteBarrierNode* ShenandoahBarrierSetC2State::shenandoah_barrier(int idx) const {
  52   return _shenandoah_barriers->at(idx);
  53 }
  54 
  55 void ShenandoahBarrierSetC2State::add_shenandoah_barrier(ShenandoahWriteBarrierNode * n) {
  56   assert(!_shenandoah_barriers->contains(n), "duplicate entry in barrier list");
  57   _shenandoah_barriers->append(n);
  58 }
  59 
  60 void ShenandoahBarrierSetC2State::remove_shenandoah_barrier(ShenandoahWriteBarrierNode * n) {
  61   if (_shenandoah_barriers->contains(n)) {
  62     _shenandoah_barriers->remove(n);
  63   }
  64 }
  65 
  66 #define __ kit->
  67 
  68 Node* ShenandoahBarrierSetC2::shenandoah_read_barrier(GraphKit* kit, Node* obj) const {
  69   if (ShenandoahReadBarrier) {
  70     obj = shenandoah_read_barrier_impl(kit, obj, false, true, true);
  71   }
  72   return obj;
  73 }
  74 
  75 Node* ShenandoahBarrierSetC2::shenandoah_storeval_barrier(GraphKit* kit, Node* obj) const {
  76   if (ShenandoahStoreValEnqueueBarrier) {
  77     obj = shenandoah_write_barrier(kit, obj);
  78     obj = shenandoah_enqueue_barrier(kit, obj);
  79   }
  80   if (ShenandoahStoreValReadBarrier) {
  81     obj = shenandoah_read_barrier_impl(kit, obj, true, false, false);
  82   }
  83   return obj;
  84 }
  85 
  86 Node* ShenandoahBarrierSetC2::shenandoah_read_barrier_acmp(GraphKit* kit, Node* obj) {
  87   return shenandoah_read_barrier_impl(kit, obj, true, true, false);
  88 }
  89 
  90 Node* ShenandoahBarrierSetC2::shenandoah_read_barrier_impl(GraphKit* kit, Node* obj, bool use_ctrl, bool use_mem, bool allow_fromspace) const {
  91   const Type* obj_type = obj->bottom_type();
  92   if (obj_type->higher_equal(TypePtr::NULL_PTR)) {
  93     return obj;
  94   }
  95   const TypePtr* adr_type = ShenandoahBarrierNode::brooks_pointer_type(obj_type);
  96   Node* mem = use_mem ? __ memory(adr_type) : __ immutable_memory();
  97 
  98   if (! ShenandoahBarrierNode::needs_barrier(&__ gvn(), NULL, obj, mem, allow_fromspace)) {
  99     // We know it is null, no barrier needed.
 100     return obj;
 101   }
 102 
 103   if (obj_type->meet(TypePtr::NULL_PTR) == obj_type->remove_speculative()) {
 104 
 105     // We don't know if it's null or not. Need null-check.
 106     enum { _not_null_path = 1, _null_path, PATH_LIMIT };
 107     RegionNode* region = new RegionNode(PATH_LIMIT);
 108     Node*       phi    = new PhiNode(region, obj_type);
 109     Node* null_ctrl = __ top();
 110     Node* not_null_obj = __ null_check_oop(obj, &null_ctrl);
 111 
 112     region->init_req(_null_path, null_ctrl);
 113     phi   ->init_req(_null_path, __ zerocon(T_OBJECT));
 114 
 115     Node* ctrl = use_ctrl ? __ control() : NULL;
 116     ShenandoahReadBarrierNode* rb = new ShenandoahReadBarrierNode(ctrl, mem, not_null_obj, allow_fromspace);
 117     Node* n = __ gvn().transform(rb);
 118 
 119     region->init_req(_not_null_path, __ control());
 120     phi   ->init_req(_not_null_path, n);
 121 
 122     __ set_control(__ gvn().transform(region));
 123     __ record_for_igvn(region);
 124     return __ gvn().transform(phi);
 125 
 126   } else {
 127     // We know it is not null. Simple barrier is sufficient.
 128     Node* ctrl = use_ctrl ? __ control() : NULL;
 129     ShenandoahReadBarrierNode* rb = new ShenandoahReadBarrierNode(ctrl, mem, obj, allow_fromspace);
 130     Node* n = __ gvn().transform(rb);
 131     __ record_for_igvn(n);
 132     return n;
 133   }
 134 }
 135 
 136 Node* ShenandoahBarrierSetC2::shenandoah_write_barrier_helper(GraphKit* kit, Node* obj, const TypePtr* adr_type) const {
 137   ShenandoahWriteBarrierNode* wb = new ShenandoahWriteBarrierNode(kit->C, kit->control(), kit->memory(adr_type), obj);
 138   Node* n = __ gvn().transform(wb);
 139   if (n == wb) { // New barrier needs memory projection.
 140     Node* proj = __ gvn().transform(new ShenandoahWBMemProjNode(n));
 141     __ set_memory(proj, adr_type);
 142   }
 143   return n;
 144 }
 145 
 146 Node* ShenandoahBarrierSetC2::shenandoah_write_barrier(GraphKit* kit, Node* obj) const {
 147   if (ShenandoahWriteBarrier) {
 148     obj = shenandoah_write_barrier_impl(kit, obj);
 149   }
 150   return obj;
 151 }
 152 
 153 Node* ShenandoahBarrierSetC2::shenandoah_write_barrier_impl(GraphKit* kit, Node* obj) const {
 154   if (! ShenandoahBarrierNode::needs_barrier(&__ gvn(), NULL, obj, NULL, true)) {
 155     return obj;
 156   }
 157   const Type* obj_type = obj->bottom_type();
 158   const TypePtr* adr_type = ShenandoahBarrierNode::brooks_pointer_type(obj_type);
 159   Node* n = shenandoah_write_barrier_helper(kit, obj, adr_type);
 160   __ record_for_igvn(n);
 161   return n;
 162 }
 163 
 164 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseTransform* phase, Node* adr,
 165                                                          BasicType bt, uint adr_idx) const {
 166   intptr_t offset = 0;
 167   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 168   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
 169 
 170   if (offset == Type::OffsetBot) {
 171     return false; // cannot unalias unless there are precise offsets
 172   }
 173 
 174   if (alloc == NULL) {
 175     return false; // No allocation found
 176   }
 177 
 178   intptr_t size_in_bytes = type2aelembytes(bt);
 179 
 180   Node* mem = __ memory(adr_idx); // start searching here...
 181 
 182   for (int cnt = 0; cnt < 50; cnt++) {
 183 
 184     if (mem->is_Store()) {
 185 
 186       Node* st_adr = mem->in(MemNode::Address);
 187       intptr_t st_offset = 0;
 188       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 189 
 190       if (st_base == NULL) {
 191         break; // inscrutable pointer
 192       }
 193 
 194       // Break we have found a store with same base and offset as ours so break
 195       if (st_base == base && st_offset == offset) {
 196         break;
 197       }
 198 
 199       if (st_offset != offset && st_offset != Type::OffsetBot) {
 200         const int MAX_STORE = BytesPerLong;
 201         if (st_offset >= offset + size_in_bytes ||
 202             st_offset <= offset - MAX_STORE ||
 203             st_offset <= offset - mem->as_Store()->memory_size()) {
 204           // Success:  The offsets are provably independent.
 205           // (You may ask, why not just test st_offset != offset and be done?
 206           // The answer is that stores of different sizes can co-exist
 207           // in the same sequence of RawMem effects.  We sometimes initialize
 208           // a whole 'tile' of array elements with a single jint or jlong.)
 209           mem = mem->in(MemNode::Memory);
 210           continue; // advance through independent store memory
 211         }
 212       }
 213 
 214       if (st_base != base
 215           && MemNode::detect_ptr_independence(base, alloc, st_base,
 216                                               AllocateNode::Ideal_allocation(st_base, phase),
 217                                               phase)) {
 218         // Success:  The bases are provably independent.
 219         mem = mem->in(MemNode::Memory);
 220         continue; // advance through independent store memory
 221       }
 222     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 223 
 224       InitializeNode* st_init = mem->in(0)->as_Initialize();
 225       AllocateNode* st_alloc = st_init->allocation();
 226 
 227       // Make sure that we are looking at the same allocation site.
 228       // The alloc variable is guaranteed to not be null here from earlier check.
 229       if (alloc == st_alloc) {
 230         // Check that the initialization is storing NULL so that no previous store
 231         // has been moved up and directly write a reference
 232         Node* captured_store = st_init->find_captured_store(offset,
 233                                                             type2aelembytes(T_OBJECT),
 234                                                             phase);
 235         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
 236           return true;
 237         }
 238       }
 239     }
 240 
 241     // Unless there is an explicit 'continue', we must bail out here,
 242     // because 'mem' is an inscrutable memory state (e.g., a call).
 243     break;
 244   }
 245 
 246   return false;
 247 }
 248 
 249 #undef __
 250 #define __ ideal.
 251 
 252 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit,
 253                                                     bool do_load,
 254                                                     Node* obj,
 255                                                     Node* adr,
 256                                                     uint alias_idx,
 257                                                     Node* val,
 258                                                     const TypeOopPtr* val_type,
 259                                                     Node* pre_val,
 260                                                     BasicType bt) const {
 261   // Some sanity checks
 262   // Note: val is unused in this routine.
 263 
 264   if (do_load) {
 265     // We need to generate the load of the previous value
 266     assert(obj != NULL, "must have a base");
 267     assert(adr != NULL, "where are loading from?");
 268     assert(pre_val == NULL, "loaded already?");
 269     assert(val_type != NULL, "need a type");
 270 
 271     if (ReduceInitialCardMarks
 272         && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
 273       return;
 274     }
 275 
 276   } else {
 277     // In this case both val_type and alias_idx are unused.
 278     assert(pre_val != NULL, "must be loaded already");
 279     // Nothing to be done if pre_val is null.
 280     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
 281     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
 282   }
 283   assert(bt == T_OBJECT, "or we shouldn't be here");
 284 
 285   IdealKit ideal(kit, true);
 286 
 287   Node* tls = __ thread(); // ThreadLocalStorage
 288 
 289   Node* no_base = __ top();
 290   Node* zero  = __ ConI(0);
 291   Node* zeroX = __ ConX(0);
 292 
 293   float likely  = PROB_LIKELY(0.999);
 294   float unlikely  = PROB_UNLIKELY(0.999);
 295 
 296   // Offsets into the thread
 297   const int index_offset   = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset());
 298   const int buffer_offset  = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
 299 
 300   // Now the actual pointers into the thread
 301   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
 302   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
 303 
 304   // Now some of the values
 305   Node* marking;
 306   Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())));
 307   Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw);
 308   marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING));
 309   assert(ShenandoahWriteBarrierNode::is_gc_state_load(ld), "Should match the shape");
 310 
 311   // if (!marking)
 312   __ if_then(marking, BoolTest::ne, zero, unlikely); {
 313     BasicType index_bt = TypeX_X->basic_type();
 314     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
 315     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
 316 
 317     if (do_load) {
 318       // load original value
 319       // alias_idx correct??
 320       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
 321     }
 322 
 323     // if (pre_val != NULL)
 324     __ if_then(pre_val, BoolTest::ne, kit->null()); {
 325       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 326 
 327       // is the queue for this thread full?
 328       __ if_then(index, BoolTest::ne, zeroX, likely); {
 329 
 330         // decrement the index
 331         Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
 332 
 333         // Now get the buffer location we will log the previous value into and store it
 334         Node *log_addr = __ AddP(no_base, buffer, next_index);
 335         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
 336         // update the index
 337         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
 338 
 339       } __ else_(); {
 340 
 341         // logging buffer is full, call the runtime
 342         const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type();
 343         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", pre_val, tls);
 344       } __ end_if();  // (!index)
 345     } __ end_if();  // (pre_val != NULL)
 346   } __ end_if();  // (!marking)
 347 
 348   // Final sync IdealKit and GraphKit.
 349   kit->final_sync(ideal);
 350 
 351   if (ShenandoahSATBBarrier && adr != NULL) {
 352     Node* c = kit->control();
 353     Node* call = c->in(1)->in(1)->in(1)->in(0);
 354     assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected");
 355     call->add_req(adr);
 356   }
 357 }
 358 
 359 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) {
 360   return call->is_CallLeaf() &&
 361          call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry);
 362 }
 363 
 364 bool ShenandoahBarrierSetC2::is_shenandoah_wb_call(Node* call) {
 365   return call->is_CallLeaf() &&
 366          call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_barrier_JRT);
 367 }
 368 
 369 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseTransform *phase, Node* n) {
 370   if (n->Opcode() != Op_If) {
 371     return false;
 372   }
 373 
 374   Node* bol = n->in(1);
 375   assert(bol->is_Bool(), "");
 376   Node* cmpx = bol->in(1);
 377   if (bol->as_Bool()->_test._test == BoolTest::ne &&
 378       cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) &&
 379       is_shenandoah_state_load(cmpx->in(1)->in(1)) &&
 380       cmpx->in(1)->in(2)->is_Con() &&
 381       cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) {
 382     return true;
 383   }
 384 
 385   return false;
 386 }
 387 
 388 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) {
 389   if (!n->is_Load()) return false;
 390   const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset());
 391   return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal
 392          && n->in(2)->in(3)->is_Con()
 393          && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset;
 394 }
 395 
 396 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit,
 397                                                           bool do_load,
 398                                                           Node* obj,
 399                                                           Node* adr,
 400                                                           uint alias_idx,
 401                                                           Node* val,
 402                                                           const TypeOopPtr* val_type,
 403                                                           Node* pre_val,
 404                                                           BasicType bt) const {
 405   if (ShenandoahSATBBarrier) {
 406     IdealKit ideal(kit);
 407     kit->sync_kit(ideal);
 408 
 409     satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
 410 
 411     ideal.sync_kit(kit);
 412     kit->final_sync(ideal);
 413   }
 414 }
 415 
 416 Node* ShenandoahBarrierSetC2::shenandoah_enqueue_barrier(GraphKit* kit, Node* pre_val) const {
 417   return kit->gvn().transform(new ShenandoahEnqueueBarrierNode(pre_val));
 418 }
 419 
 420 // Helper that guards and inserts a pre-barrier.
 421 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
 422                                                 Node* pre_val, bool need_mem_bar) const {
 423   // We could be accessing the referent field of a reference object. If so, when G1
 424   // is enabled, we need to log the value in the referent field in an SATB buffer.
 425   // This routine performs some compile time filters and generates suitable
 426   // runtime filters that guard the pre-barrier code.
 427   // Also add memory barrier for non volatile load from the referent field
 428   // to prevent commoning of loads across safepoint.
 429 
 430   // Some compile time checks.
 431 
 432   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
 433   const TypeX* otype = offset->find_intptr_t_type();
 434   if (otype != NULL && otype->is_con() &&
 435       otype->get_con() != java_lang_ref_Reference::referent_offset) {
 436     // Constant offset but not the reference_offset so just return
 437     return;
 438   }
 439 
 440   // We only need to generate the runtime guards for instances.
 441   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
 442   if (btype != NULL) {
 443     if (btype->isa_aryptr()) {
 444       // Array type so nothing to do
 445       return;
 446     }
 447 
 448     const TypeInstPtr* itype = btype->isa_instptr();
 449     if (itype != NULL) {
 450       // Can the klass of base_oop be statically determined to be
 451       // _not_ a sub-class of Reference and _not_ Object?
 452       ciKlass* klass = itype->klass();
 453       if ( klass->is_loaded() &&
 454           !klass->is_subtype_of(kit->env()->Reference_klass()) &&
 455           !kit->env()->Object_klass()->is_subtype_of(klass)) {
 456         return;
 457       }
 458     }
 459   }
 460 
 461   // The compile time filters did not reject base_oop/offset so
 462   // we need to generate the following runtime filters
 463   //
 464   // if (offset == java_lang_ref_Reference::_reference_offset) {
 465   //   if (instance_of(base, java.lang.ref.Reference)) {
 466   //     pre_barrier(_, pre_val, ...);
 467   //   }
 468   // }
 469 
 470   float likely   = PROB_LIKELY(  0.999);
 471   float unlikely = PROB_UNLIKELY(0.999);
 472 
 473   IdealKit ideal(kit);
 474 
 475   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
 476 
 477   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
 478       // Update graphKit memory and control from IdealKit.
 479       kit->sync_kit(ideal);
 480 
 481       Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
 482       Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
 483 
 484       // Update IdealKit memory and control from graphKit.
 485       __ sync_kit(kit);
 486 
 487       Node* one = __ ConI(1);
 488       // is_instof == 0 if base_oop == NULL
 489       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
 490 
 491         // Update graphKit from IdeakKit.
 492         kit->sync_kit(ideal);
 493 
 494         // Use the pre-barrier to record the value in the referent field
 495         satb_write_barrier_pre(kit, false /* do_load */,
 496                                NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
 497                                pre_val /* pre_val */,
 498                                T_OBJECT);
 499         if (need_mem_bar) {
 500           // Add memory barrier to prevent commoning reads from this field
 501           // across safepoint since GC can change its value.
 502           kit->insert_mem_bar(Op_MemBarCPUOrder);
 503         }
 504         // Update IdealKit from graphKit.
 505         __ sync_kit(kit);
 506 
 507       } __ end_if(); // _ref_type != ref_none
 508   } __ end_if(); // offset == referent_offset
 509 
 510   // Final sync IdealKit and GraphKit.
 511   kit->final_sync(ideal);
 512 }
 513 
 514 #undef __
 515 
 516 const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type() {
 517   const Type **fields = TypeTuple::fields(2);
 518   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 519   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 520   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 521 
 522   // create result type (range)
 523   fields = TypeTuple::fields(0);
 524   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 525 
 526   return TypeFunc::make(domain, range);
 527 }
 528 
 529 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type() {
 530   const Type **fields = TypeTuple::fields(1);
 531   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 532   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 533 
 534   // create result type (range)
 535   fields = TypeTuple::fields(0);
 536   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 537 
 538   return TypeFunc::make(domain, range);
 539 }
 540 
 541 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_write_barrier_Type() {
 542   const Type **fields = TypeTuple::fields(1);
 543   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 544   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 545 
 546   // create result type (range)
 547   fields = TypeTuple::fields(1);
 548   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
 549   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 550 
 551   return TypeFunc::make(domain, range);
 552 }
 553 
 554 void ShenandoahBarrierSetC2::resolve_address(C2Access& access) const {
 555   const TypePtr* adr_type = access.addr().type();
 556 
 557   if ((access.decorators() & IN_NATIVE) == 0 && (adr_type->isa_instptr() || adr_type->isa_aryptr())) {
 558     int off = adr_type->is_ptr()->offset();
 559     int base_off = adr_type->isa_instptr() ? instanceOopDesc::base_offset_in_bytes() :
 560       arrayOopDesc::base_offset_in_bytes(adr_type->is_aryptr()->elem()->array_element_basic_type());
 561     assert(off != Type::OffsetTop, "unexpected offset");
 562     if (off == Type::OffsetBot || off >= base_off) {
 563       DecoratorSet decorators = access.decorators();
 564       bool is_write = (decorators & C2_WRITE_ACCESS) != 0;
 565       GraphKit* kit = NULL;
 566       if (access.is_parse_access()) {
 567         C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 568         kit = parse_access.kit();
 569       }
 570       Node* adr = access.addr().node();
 571       assert(adr->is_AddP(), "unexpected address shape");
 572       Node* base = adr->in(AddPNode::Base);
 573 
 574       if (is_write) {
 575         if (kit != NULL) {
 576           base = shenandoah_write_barrier(kit, base);
 577         } else {
 578           assert(access.is_opt_access(), "either parse or opt access");
 579           assert((access.decorators() & C2_ARRAY_COPY) != 0, "can be skipped for clone");
 580         }
 581       } else {
 582         if (adr_type->isa_instptr()) {
 583           Compile* C = access.gvn().C;
 584           ciField* field = C->alias_type(adr_type)->field();
 585 
 586           // Insert read barrier for Shenandoah.
 587           if (field != NULL &&
 588               ((ShenandoahOptimizeStaticFinals   && field->is_static()  && field->is_final()) ||
 589                (ShenandoahOptimizeInstanceFinals && !field->is_static() && field->is_final()) ||
 590                (ShenandoahOptimizeStableFinals   && field->is_stable()))) {
 591             // Skip the barrier for special fields
 592           } else {
 593             if (kit != NULL) {
 594               base = shenandoah_read_barrier(kit, base);
 595             } else {
 596               assert(access.is_opt_access(), "either parse or opt access");
 597               assert((access.decorators() & C2_ARRAY_COPY) != 0, "can be skipped for arraycopy");
 598             }
 599           }
 600         } else {
 601           if (kit != NULL) {
 602             base = shenandoah_read_barrier(kit, base);
 603           } else {
 604             assert(access.is_opt_access(), "either parse or opt access");
 605             assert((access.decorators() & C2_ARRAY_COPY) != 0, "can be skipped for arraycopy");
 606           }
 607         }
 608       }
 609       if (base != adr->in(AddPNode::Base)) {
 610         assert(kit != NULL, "no barrier should have been added");
 611 
 612         Node* address = adr->in(AddPNode::Address);
 613 
 614         if (address->is_AddP()) {
 615           assert(address->in(AddPNode::Base) == adr->in(AddPNode::Base), "unexpected address shape");
 616           assert(!address->in(AddPNode::Address)->is_AddP(), "unexpected address shape");
 617           assert(address->in(AddPNode::Address) == adr->in(AddPNode::Base), "unexpected address shape");
 618           address = address->clone();
 619           address->set_req(AddPNode::Base, base);
 620           address->set_req(AddPNode::Address, base);
 621           address = kit->gvn().transform(address);
 622         } else {
 623           assert(address == adr->in(AddPNode::Base), "unexpected address shape");
 624           address = base;
 625         }
 626         adr = adr->clone();
 627         adr->set_req(AddPNode::Base, base);
 628         adr->set_req(AddPNode::Address, address);
 629         adr = kit->gvn().transform(adr);
 630         access.addr().set_node(adr);
 631       }
 632     }
 633   }
 634 }
 635 
 636 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
 637   DecoratorSet decorators = access.decorators();
 638 
 639   const TypePtr* adr_type = access.addr().type();
 640   Node* adr = access.addr().node();
 641 
 642   bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 643   bool on_heap = (decorators & IN_HEAP) != 0;
 644 
 645   if (!access.is_oop() || (!on_heap && !anonymous)) {
 646     return BarrierSetC2::store_at_resolved(access, val);
 647   }
 648 
 649   if (access.is_parse_access()) {
 650     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 651     GraphKit* kit = parse_access.kit();
 652 
 653     uint adr_idx = kit->C->get_alias_index(adr_type);
 654     assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
 655     Node* value = val.node();
 656     value = shenandoah_storeval_barrier(kit, value);
 657     val.set_node(value);
 658     shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(),
 659                                  static_cast<const TypeOopPtr*>(val.type()), NULL /* pre_val */, access.type());
 660   } else {
 661     assert(access.is_opt_access(), "only for optimization passes");
 662     assert(((decorators & C2_TIGHLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code");
 663     C2OptAccess& opt_access = static_cast<C2OptAccess&>(access);
 664     PhaseGVN& gvn =  opt_access.gvn();
 665     MergeMemNode* mm = opt_access.mem();
 666 
 667     if (ShenandoahStoreValReadBarrier) {
 668       RegionNode* region = new RegionNode(3);
 669       const Type* v_t = gvn.type(val.node());
 670       Node* phi = new PhiNode(region, v_t->isa_oopptr() ? v_t->is_oopptr()->cast_to_nonconst() : v_t);
 671       Node* cmp = gvn.transform(new CmpPNode(val.node(), gvn.zerocon(T_OBJECT)));
 672       Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::ne));
 673       IfNode* iff = new IfNode(opt_access.ctl(), bol, PROB_LIKELY_MAG(3), COUNT_UNKNOWN);
 674 
 675       gvn.transform(iff);
 676       if (gvn.is_IterGVN()) {
 677         gvn.is_IterGVN()->_worklist.push(iff);
 678       } else {
 679         gvn.record_for_igvn(iff);
 680       }
 681 
 682       Node* null_true = gvn.transform(new IfFalseNode(iff));
 683       Node* null_false = gvn.transform(new IfTrueNode(iff));
 684       region->init_req(1, null_true);
 685       region->init_req(2, null_false);
 686       phi->init_req(1, gvn.zerocon(T_OBJECT));
 687       Node* cast = new CastPPNode(val.node(), gvn.type(val.node())->join_speculative(TypePtr::NOTNULL));
 688       cast->set_req(0, null_false);
 689       cast = gvn.transform(cast);
 690       Node* rb = gvn.transform(new ShenandoahReadBarrierNode(null_false, gvn.C->immutable_memory(), cast, false));
 691       phi->init_req(2, rb);
 692       opt_access.set_ctl(gvn.transform(region));
 693       val.set_node(gvn.transform(phi));
 694     }
 695     if (ShenandoahStoreValEnqueueBarrier) {
 696       const TypePtr* adr_type = ShenandoahBarrierNode::brooks_pointer_type(gvn.type(val.node()));
 697       int alias = gvn.C->get_alias_index(adr_type);
 698       Node* wb = new ShenandoahWriteBarrierNode(gvn.C, opt_access.ctl(), mm->memory_at(alias), val.node());
 699       Node* wb_transformed = gvn.transform(wb);
 700       Node* enqueue = gvn.transform(new ShenandoahEnqueueBarrierNode(wb_transformed));
 701       if (wb_transformed == wb) {
 702         Node* proj = gvn.transform(new ShenandoahWBMemProjNode(wb));
 703         mm->set_memory_at(alias, proj);
 704       }
 705       val.set_node(enqueue);
 706     }
 707   }
 708   return BarrierSetC2::store_at_resolved(access, val);
 709 }
 710 
 711 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
 712   DecoratorSet decorators = access.decorators();
 713 
 714   Node* adr = access.addr().node();
 715   Node* obj = access.base();
 716 
 717   bool mismatched = (decorators & C2_MISMATCHED) != 0;
 718   bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 719   bool on_heap = (decorators & IN_HEAP) != 0;
 720   bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
 721   bool is_unordered = (decorators & MO_UNORDERED) != 0;
 722   bool need_cpu_mem_bar = !is_unordered || mismatched || !on_heap;
 723 
 724   Node* top = Compile::current()->top();
 725 
 726   Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top;
 727   Node* load = BarrierSetC2::load_at_resolved(access, val_type);
 728 
 729   // If we are reading the value of the referent field of a Reference
 730   // object (either by using Unsafe directly or through reflection)
 731   // then, if SATB is enabled, we need to record the referent in an
 732   // SATB log buffer using the pre-barrier mechanism.
 733   // Also we need to add memory barrier to prevent commoning reads
 734   // from this field across safepoint since GC can change its value.
 735   bool need_read_barrier = ShenandoahKeepAliveBarrier &&
 736     (on_heap && (on_weak || (unknown && offset != top && obj != top)));
 737 
 738   if (!access.is_oop() || !need_read_barrier) {
 739     return load;
 740   }
 741 
 742   assert(access.is_parse_access(), "entry not supported at optimization time");
 743   C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 744   GraphKit* kit = parse_access.kit();
 745 
 746   if (on_weak) {
 747     // Use the pre-barrier to record the value in the referent field
 748     satb_write_barrier_pre(kit, false /* do_load */,
 749                            NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
 750                            load /* pre_val */, T_OBJECT);
 751     // Add memory barrier to prevent commoning reads from this field
 752     // across safepoint since GC can change its value.
 753     kit->insert_mem_bar(Op_MemBarCPUOrder);
 754   } else if (unknown) {
 755     // We do not require a mem bar inside pre_barrier if need_mem_bar
 756     // is set: the barriers would be emitted by us.
 757     insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
 758   }
 759 
 760   return load;
 761 }
 762 
 763 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 764                                                    Node* new_val, const Type* value_type) const {
 765   GraphKit* kit = access.kit();
 766   if (access.is_oop()) {
 767     new_val = shenandoah_storeval_barrier(kit, new_val);
 768     shenandoah_write_barrier_pre(kit, false /* do_load */,
 769                                  NULL, NULL, max_juint, NULL, NULL,
 770                                  expected_val /* pre_val */, T_OBJECT);
 771 
 772     MemNode::MemOrd mo = access.mem_node_mo();
 773     Node* mem = access.memory();
 774     Node* adr = access.addr().node();
 775     const TypePtr* adr_type = access.addr().type();
 776     Node* load_store = NULL;
 777 
 778 #ifdef _LP64
 779     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 780       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 781       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 782       load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 783     } else
 784 #endif
 785     {
 786       load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 787     }
 788 
 789     access.set_raw_access(load_store);
 790     pin_atomic_op(access);
 791 
 792 #ifdef _LP64
 793     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 794       return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
 795     }
 796 #endif
 797     return load_store;
 798   }
 799   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
 800 }
 801 
 802 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 803                                                               Node* new_val, const Type* value_type) const {
 804   GraphKit* kit = access.kit();
 805   if (access.is_oop()) {
 806     new_val = shenandoah_storeval_barrier(kit, new_val);
 807     shenandoah_write_barrier_pre(kit, false /* do_load */,
 808                                  NULL, NULL, max_juint, NULL, NULL,
 809                                  expected_val /* pre_val */, T_OBJECT);
 810     DecoratorSet decorators = access.decorators();
 811     MemNode::MemOrd mo = access.mem_node_mo();
 812     Node* mem = access.memory();
 813     bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
 814     Node* load_store = NULL;
 815     Node* adr = access.addr().node();
 816 #ifdef _LP64
 817     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 818       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 819       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 820       if (is_weak_cas) {
 821         load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 822       } else {
 823         load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 824       }
 825     } else
 826 #endif
 827     {
 828       if (is_weak_cas) {
 829         load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 830       } else {
 831         load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 832       }
 833     }
 834     access.set_raw_access(load_store);
 835     pin_atomic_op(access);
 836     return load_store;
 837   }
 838   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
 839 }
 840 
 841 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const {
 842   GraphKit* kit = access.kit();
 843   if (access.is_oop()) {
 844     val = shenandoah_storeval_barrier(kit, val);
 845   }
 846   Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type);
 847   if (access.is_oop()) {
 848     shenandoah_write_barrier_pre(kit, false /* do_load */,
 849                                  NULL, NULL, max_juint, NULL, NULL,
 850                                  result /* pre_val */, T_OBJECT);
 851   }
 852   return result;
 853 }
 854 
 855 void ShenandoahBarrierSetC2::clone(GraphKit* kit, Node* src, Node* dst, Node* size, bool is_array) const {
 856   assert(!src->is_AddP(), "unexpected input");
 857   src = shenandoah_read_barrier(kit, src);
 858   BarrierSetC2::clone(kit, src, dst, size, is_array);
 859 }
 860 
 861 Node* ShenandoahBarrierSetC2::resolve(GraphKit* kit, Node* n, DecoratorSet decorators) const {
 862   bool is_write = decorators & ACCESS_WRITE;
 863   if (is_write) {
 864     return shenandoah_write_barrier(kit, n);
 865   } else {
 866   return shenandoah_read_barrier(kit, n);
 867   }
 868 }
 869 
 870 Node* ShenandoahBarrierSetC2::obj_allocate(PhaseMacroExpand* macro, Node* ctrl, Node* mem, Node* toobig_false, Node* size_in_bytes,
 871                                            Node*& i_o, Node*& needgc_ctrl,
 872                                            Node*& fast_oop_ctrl, Node*& fast_oop_rawmem,
 873                                            intx prefetch_lines) const {
 874   PhaseIterGVN& igvn = macro->igvn();
 875 
 876   // Allocate several words more for the Shenandoah brooks pointer.
 877   size_in_bytes = new AddXNode(size_in_bytes, igvn.MakeConX(ShenandoahBrooksPointer::byte_size()));
 878   macro->transform_later(size_in_bytes);
 879 
 880   Node* fast_oop = BarrierSetC2::obj_allocate(macro, ctrl, mem, toobig_false, size_in_bytes,
 881                                               i_o, needgc_ctrl, fast_oop_ctrl, fast_oop_rawmem,
 882                                               prefetch_lines);
 883 
 884   // Bump up object for Shenandoah brooks pointer.
 885   fast_oop = new AddPNode(macro->top(), fast_oop, igvn.MakeConX(ShenandoahBrooksPointer::byte_size()));
 886   macro->transform_later(fast_oop);
 887 
 888   // Initialize Shenandoah brooks pointer to point to the object itself.
 889   fast_oop_rawmem = macro->make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, ShenandoahBrooksPointer::byte_offset(), fast_oop, T_OBJECT);
 890 
 891   return fast_oop;
 892 }
 893 
 894 // Support for GC barriers emitted during parsing
 895 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const {
 896   if (node->Opcode() != Op_CallLeaf && node->Opcode() != Op_CallLeafNoFP) {
 897     return false;
 898   }
 899   CallLeafNode *call = node->as_CallLeaf();
 900   if (call->_name == NULL) {
 901     return false;
 902   }
 903 
 904   return strcmp(call->_name, "shenandoah_clone_barrier") == 0 ||
 905          strcmp(call->_name, "shenandoah_cas_obj") == 0 ||
 906          strcmp(call->_name, "shenandoah_wb_pre") == 0;
 907 }
 908 
 909 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const {
 910   return ShenandoahBarrierNode::skip_through_barrier(c);
 911 }
 912 
 913 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const {
 914   return !ShenandoahWriteBarrierNode::expand(C, igvn);
 915 }
 916 
 917 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const {
 918   if (mode == LoopOptsShenandoahExpand) {
 919     assert(UseShenandoahGC, "only for shenandoah");
 920     ShenandoahWriteBarrierNode::pin_and_expand(phase);
 921     return true;
 922   } else if (mode == LoopOptsShenandoahPostExpand) {
 923     assert(UseShenandoahGC, "only for shenandoah");
 924     visited.Clear();
 925     ShenandoahWriteBarrierNode::optimize_after_expansion(visited, nstack, worklist, phase);
 926     return true;
 927   }
 928   GrowableArray<MemoryGraphFixer*> memory_graph_fixers;
 929   ShenandoahWriteBarrierNode::optimize_before_expansion(phase, memory_graph_fixers, false);
 930   return false;
 931 }
 932 
 933 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, ArrayCopyPhase phase) const {
 934   bool is_oop = type == T_OBJECT || type == T_ARRAY;
 935   if (!is_oop) {
 936     return false;
 937   }
 938 
 939   if (tightly_coupled_alloc) {
 940     if (phase == Optimization) {
 941       return false;
 942     }
 943     return !is_clone;
 944   }
 945   if (phase == Optimization) {
 946     return !ShenandoahStoreValEnqueueBarrier;
 947   }
 948   return true;
 949 }
 950 
 951 bool ShenandoahBarrierSetC2::clone_needs_postbarrier(ArrayCopyNode *ac, PhaseIterGVN& igvn) {
 952   Node* src = ac->in(ArrayCopyNode::Src);
 953   const TypeOopPtr* src_type = igvn.type(src)->is_oopptr();
 954   if (src_type->isa_instptr() != NULL) {
 955     ciInstanceKlass* ik = src_type->klass()->as_instance_klass();
 956     if ((src_type->klass_is_exact() || (!ik->is_interface() && !ik->has_subklass())) && !ik->has_injected_fields()) {
 957       if (ik->has_object_fields()) {
 958         return true;
 959       } else {
 960         if (!src_type->klass_is_exact()) {
 961           igvn.C->dependencies()->assert_leaf_type(ik);
 962         }
 963       }
 964     } else {
 965       return true;
 966     }
 967   } else if (src_type->isa_aryptr()) {
 968     BasicType src_elem  = src_type->klass()->as_array_klass()->element_type()->basic_type();
 969     if (src_elem == T_OBJECT || src_elem == T_ARRAY) {
 970       return true;
 971     }
 972   } else {
 973     return true;
 974   }
 975   return false;
 976 }
 977 
 978 void ShenandoahBarrierSetC2::clone_barrier_at_expansion(ArrayCopyNode* ac, Node* call, PhaseIterGVN& igvn) const {
 979   assert(ac->is_clonebasic(), "no other kind of arraycopy here");
 980 
 981   if (!clone_needs_postbarrier(ac, igvn)) {
 982     BarrierSetC2::clone_barrier_at_expansion(ac, call, igvn);
 983     return;
 984   }
 985 
 986   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
 987   Node* c = new ProjNode(call,TypeFunc::Control);
 988   c = igvn.transform(c);
 989   Node* m = new ProjNode(call, TypeFunc::Memory);
 990   c = igvn.transform(m);
 991 
 992   Node* dest = ac->in(ArrayCopyNode::Dest);
 993   assert(dest->is_AddP(), "bad input");
 994   Node* barrier_call = new CallLeafNode(ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type(),
 995                                         CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier),
 996                                         "shenandoah_clone_barrier", raw_adr_type);
 997   barrier_call->init_req(TypeFunc::Control, c);
 998   barrier_call->init_req(TypeFunc::I_O    , igvn.C->top());
 999   barrier_call->init_req(TypeFunc::Memory , m);
1000   barrier_call->init_req(TypeFunc::ReturnAdr, igvn.C->top());
1001   barrier_call->init_req(TypeFunc::FramePtr, igvn.C->top());
1002   barrier_call->init_req(TypeFunc::Parms+0, dest->in(AddPNode::Base));
1003 
1004   barrier_call = igvn.transform(barrier_call);
1005   c = new ProjNode(barrier_call,TypeFunc::Control);
1006   c = igvn.transform(c);
1007   m = new ProjNode(barrier_call, TypeFunc::Memory);
1008   m = igvn.transform(m);
1009 
1010   Node* out_c = ac->proj_out(TypeFunc::Control);
1011   Node* out_m = ac->proj_out(TypeFunc::Memory);
1012   igvn.replace_node(out_c, c);
1013   igvn.replace_node(out_m, m);
1014 }
1015 
1016 
1017 // Support for macro expanded GC barriers
1018 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const {
1019   if (node->Opcode() == Op_ShenandoahWriteBarrier) {
1020     state()->add_shenandoah_barrier((ShenandoahWriteBarrierNode*) node);
1021   }
1022 }
1023 
1024 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const {
1025   if (node->Opcode() == Op_ShenandoahWriteBarrier) {
1026     state()->remove_shenandoah_barrier((ShenandoahWriteBarrierNode*) node);
1027   }
1028 }
1029 
1030 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* n) const {
1031   if (is_shenandoah_wb_pre_call(n)) {
1032     shenandoah_eliminate_wb_pre(n, &macro->igvn());
1033   }
1034 }
1035 
1036 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const {
1037   assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), "");
1038   Node* c = call->as_Call()->proj_out(TypeFunc::Control);
1039   c = c->unique_ctrl_out();
1040   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
1041   c = c->unique_ctrl_out();
1042   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
1043   Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
1044   assert(iff->is_If(), "expect test");
1045   if (!is_shenandoah_marking_if(igvn, iff)) {
1046     c = c->unique_ctrl_out();
1047     assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
1048     iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
1049     assert(is_shenandoah_marking_if(igvn, iff), "expect marking test");
1050   }
1051   Node* cmpx = iff->in(1)->in(1);
1052   igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ));
1053   igvn->rehash_node_delayed(call);
1054   call->del_req(call->req()-1);
1055 }
1056 
1057 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const {
1058   if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) {
1059     igvn->add_users_to_worklist(node);
1060   }
1061 }
1062 
1063 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const {
1064   for (uint i = 0; i < useful.size(); i++) {
1065     Node* n = useful.at(i);
1066     if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) {
1067       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1068         C->record_for_igvn(n->fast_out(i));
1069       }
1070     }
1071   }
1072   for (int i = state()->shenandoah_barriers_count()-1; i >= 0; i--) {
1073     ShenandoahWriteBarrierNode* n = state()->shenandoah_barrier(i);
1074     if (!useful.member(n)) {
1075       state()->remove_shenandoah_barrier(n);
1076     }
1077   }
1078 
1079 }
1080 
1081 bool ShenandoahBarrierSetC2::has_special_unique_user(const Node* node) const {
1082   assert(node->outcnt() == 1, "match only for unique out");
1083   Node* n = node->unique_out();
1084   return node->Opcode() == Op_ShenandoahWriteBarrier && n->Opcode() == Op_ShenandoahWBMemProj;
1085 }
1086 
1087 void ShenandoahBarrierSetC2::add_users_to_worklist(Unique_Node_List* worklist) const {}
1088 
1089 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
1090   return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena);
1091 }
1092 
1093 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const {
1094   return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state());
1095 }
1096 
1097 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be
1098 // expanded later, then now is the time to do so.
1099 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; }
1100 
1101 #ifdef ASSERT
1102 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const {
1103   if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeExpand) {
1104     ShenandoahBarrierNode::verify(Compile::current()->root());
1105   } else if (phase == BarrierSetC2::BeforeCodeGen) {
1106     // Verify G1 pre-barriers
1107     const int marking_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset());
1108 
1109     ResourceArea *area = Thread::current()->resource_area();
1110     Unique_Node_List visited(area);
1111     Node_List worklist(area);
1112     // We're going to walk control flow backwards starting from the Root
1113     worklist.push(compile->root());
1114     while (worklist.size() > 0) {
1115       Node *x = worklist.pop();
1116       if (x == NULL || x == compile->top()) continue;
1117       if (visited.member(x)) {
1118         continue;
1119       } else {
1120         visited.push(x);
1121       }
1122 
1123       if (x->is_Region()) {
1124         for (uint i = 1; i < x->req(); i++) {
1125           worklist.push(x->in(i));
1126         }
1127       } else {
1128         worklist.push(x->in(0));
1129         // We are looking for the pattern:
1130         //                            /->ThreadLocal
1131         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
1132         //              \->ConI(0)
1133         // We want to verify that the If and the LoadB have the same control
1134         // See GraphKit::g1_write_barrier_pre()
1135         if (x->is_If()) {
1136           IfNode *iff = x->as_If();
1137           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
1138             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
1139             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
1140                 && cmp->in(1)->is_Load()) {
1141               LoadNode *load = cmp->in(1)->as_Load();
1142               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
1143                   && load->in(2)->in(3)->is_Con()
1144                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
1145 
1146                 Node *if_ctrl = iff->in(0);
1147                 Node *load_ctrl = load->in(0);
1148 
1149                 if (if_ctrl != load_ctrl) {
1150                   // Skip possible CProj->NeverBranch in infinite loops
1151                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
1152                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
1153                     if_ctrl = if_ctrl->in(0)->in(0);
1154                   }
1155                 }
1156                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
1157               }
1158             }
1159           }
1160         }
1161       }
1162     }
1163   }
1164 }
1165 #endif
1166 
1167 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const {
1168   if (is_shenandoah_wb_pre_call(n)) {
1169     uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
1170     if (n->req() > cnt) {
1171       Node* addp = n->in(cnt);
1172       if (has_only_shenandoah_wb_pre_uses(addp)) {
1173         n->del_req(cnt);
1174         if (can_reshape) {
1175           phase->is_IterGVN()->_worklist.push(addp);
1176         }
1177         return n;
1178       }
1179     }
1180   }
1181   if (n->Opcode() == Op_CmpP) {
1182     Node* in1 = n->in(1);
1183     Node* in2 = n->in(2);
1184     if (in1->bottom_type() == TypePtr::NULL_PTR) {
1185       in2 = step_over_gc_barrier(in2);
1186     }
1187     if (in2->bottom_type() == TypePtr::NULL_PTR) {
1188       in1 = step_over_gc_barrier(in1);
1189     }
1190     PhaseIterGVN* igvn = phase->is_IterGVN();
1191     if (in1 != n->in(1)) {
1192       if (igvn != NULL) {
1193         n->set_req_X(1, in1, igvn);
1194       } else {
1195         n->set_req(1, in1);
1196       }
1197       assert(in2 == n->in(2), "only one change");
1198       return n;
1199     }
1200     if (in2 != n->in(2)) {
1201       if (igvn != NULL) {
1202         n->set_req_X(2, in2, igvn);
1203       } else {
1204         n->set_req(2, in2);
1205       }
1206       return n;
1207     }
1208   } else if (can_reshape &&
1209              n->Opcode() == Op_If &&
1210              ShenandoahWriteBarrierNode::is_heap_stable_test(n) &&
1211              n->in(0) != NULL) {
1212     Node* dom = n->in(0);
1213     Node* prev_dom = n;
1214     int op = n->Opcode();
1215     int dist = 16;
1216     // Search up the dominator tree for another heap stable test
1217     while (dom->Opcode() != op    ||  // Not same opcode?
1218            !ShenandoahWriteBarrierNode::is_heap_stable_test(dom) ||  // Not same input 1?
1219            prev_dom->in(0) != dom) {  // One path of test does not dominate?
1220       if (dist < 0) return NULL;
1221 
1222       dist--;
1223       prev_dom = dom;
1224       dom = IfNode::up_one_dom(dom);
1225       if (!dom) return NULL;
1226     }
1227 
1228     // Check that we did not follow a loop back to ourselves
1229     if (n == dom) {
1230       return NULL;
1231     }
1232 
1233     return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN());
1234   }
1235 
1236   return NULL;
1237 }
1238 
1239 Node* ShenandoahBarrierSetC2::identity_node(PhaseGVN* phase, Node* n) const {
1240   if (n->is_Load()) {
1241     Node *mem = n->in(MemNode::Memory);
1242     Node *value = n->as_Load()->can_see_stored_value(mem, phase);
1243     if (value) {
1244       PhaseIterGVN *igvn = phase->is_IterGVN();
1245       if (igvn != NULL &&
1246           value->is_Phi() &&
1247           value->req() > 2 &&
1248           value->in(1) != NULL &&
1249           value->in(1)->is_ShenandoahBarrier()) {
1250         if (igvn->_worklist.member(value) ||
1251             igvn->_worklist.member(value->in(0)) ||
1252             (value->in(0)->in(1) != NULL &&
1253              value->in(0)->in(1)->is_IfProj() &&
1254              (igvn->_worklist.member(value->in(0)->in(1)) ||
1255               (value->in(0)->in(1)->in(0) != NULL &&
1256                igvn->_worklist.member(value->in(0)->in(1)->in(0)))))) {
1257           igvn->_worklist.push(n);
1258           return n;
1259         }
1260       }
1261       // (This works even when value is a Con, but LoadNode::Value
1262       // usually runs first, producing the singleton type of the Con.)
1263       Node *value_no_barrier = step_over_gc_barrier(value->Opcode() == Op_EncodeP ? value->in(1) : value);
1264       if (value->Opcode() == Op_EncodeP) {
1265         if (value_no_barrier != value->in(1)) {
1266           Node *encode = value->clone();
1267           encode->set_req(1, value_no_barrier);
1268           encode = phase->transform(encode);
1269           return encode;
1270         }
1271       } else {
1272         return value_no_barrier;
1273       }
1274     }
1275   }
1276   return n;
1277 }
1278 
1279 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) {
1280   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1281     Node* u = n->fast_out(i);
1282     if (!is_shenandoah_wb_pre_call(u)) {
1283       return false;
1284     }
1285   }
1286   return n->outcnt() > 0;
1287 }
1288 
1289 bool ShenandoahBarrierSetC2::flatten_gc_alias_type(const TypePtr*& adr_type) const {
1290   int offset = adr_type->offset();
1291   if (offset == ShenandoahBrooksPointer::byte_offset()) {
1292     if (adr_type->isa_aryptr()) {
1293       adr_type = TypeAryPtr::make(adr_type->ptr(), adr_type->isa_aryptr()->ary(), adr_type->isa_aryptr()->klass(), false, offset);
1294     } else if (adr_type->isa_instptr()) {
1295       adr_type = TypeInstPtr::make(adr_type->ptr(), ciEnv::current()->Object_klass(), false, NULL, offset);
1296     }
1297     return true;
1298   } else {
1299     return false;
1300   }
1301 }
1302 
1303 bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode) const {
1304   switch (opcode) {
1305     case Op_CallLeaf:
1306     case Op_CallLeafNoFP: {
1307       assert (n->is_Call(), "");
1308       CallNode *call = n->as_Call();
1309       if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) {
1310         uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
1311         if (call->req() > cnt) {
1312           assert(call->req() == cnt + 1, "only one extra input");
1313           Node *addp = call->in(cnt);
1314           assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?");
1315           call->del_req(cnt);
1316         }
1317       }
1318       return false;
1319     }
1320     case Op_ShenandoahCompareAndSwapP:
1321     case Op_ShenandoahCompareAndSwapN:
1322     case Op_ShenandoahWeakCompareAndSwapN:
1323     case Op_ShenandoahWeakCompareAndSwapP:
1324     case Op_ShenandoahCompareAndExchangeP:
1325     case Op_ShenandoahCompareAndExchangeN:
1326 #ifdef ASSERT
1327       if( VerifyOptoOopOffsets ) {
1328         MemNode* mem  = n->as_Mem();
1329         // Check to see if address types have grounded out somehow.
1330         const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
1331         ciInstanceKlass *k = tp->klass()->as_instance_klass();
1332         bool oop_offset_is_sane = k->contains_field_offset(tp->offset());
1333         assert( !tp || oop_offset_is_sane, "" );
1334       }
1335 #endif
1336       return true;
1337     case Op_ShenandoahReadBarrier:
1338       return true;
1339     case Op_ShenandoahWriteBarrier:
1340       assert(false, "should have been expanded already");
1341       return true;
1342     default:
1343       return false;
1344   }
1345 }
1346 
1347 #ifdef ASSERT
1348 bool ShenandoahBarrierSetC2::verify_gc_alias_type(const TypePtr* adr_type, int offset) const {
1349   if (offset == ShenandoahBrooksPointer::byte_offset() &&
1350       (adr_type->base() == Type::AryPtr || adr_type->base() == Type::OopPtr)) {
1351     return true;
1352   } else {
1353     return false;
1354   }
1355 }
1356 #endif
1357 
1358 bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const {
1359   switch (opcode) {
1360     case Op_ShenandoahCompareAndExchangeP:
1361     case Op_ShenandoahCompareAndExchangeN:
1362       conn_graph->add_objload_to_connection_graph(n, delayed_worklist);
1363       // fallthrough
1364     case Op_ShenandoahWeakCompareAndSwapP:
1365     case Op_ShenandoahWeakCompareAndSwapN:
1366     case Op_ShenandoahCompareAndSwapP:
1367     case Op_ShenandoahCompareAndSwapN:
1368       conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1369       return true;
1370     case Op_StoreP: {
1371       Node* adr = n->in(MemNode::Address);
1372       const Type* adr_type = gvn->type(adr);
1373       // Pointer stores in G1 barriers looks like unsafe access.
1374       // Ignore such stores to be able scalar replace non-escaping
1375       // allocations.
1376       if (adr_type->isa_rawptr() && adr->is_AddP()) {
1377         Node* base = conn_graph->get_addp_base(adr);
1378         if (base->Opcode() == Op_LoadP &&
1379           base->in(MemNode::Address)->is_AddP()) {
1380           adr = base->in(MemNode::Address);
1381           Node* tls = conn_graph->get_addp_base(adr);
1382           if (tls->Opcode() == Op_ThreadLocal) {
1383              int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1384              const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
1385              if (offs == buf_offset) {
1386                return true; // Pre barrier previous oop value store.
1387              }
1388           }
1389         }
1390       }
1391       return false;
1392     }
1393     case Op_ShenandoahReadBarrier:
1394     case Op_ShenandoahWriteBarrier:
1395       // Barriers 'pass through' its arguments. I.e. what goes in, comes out.
1396       // It doesn't escape.
1397       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahBarrierNode::ValueIn), delayed_worklist);
1398       break;
1399     case Op_ShenandoahEnqueueBarrier:
1400       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1401       break;
1402     default:
1403       // Nothing
1404       break;
1405   }
1406   return false;
1407 }
1408 
1409 bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const {
1410   switch (opcode) {
1411     case Op_ShenandoahCompareAndExchangeP:
1412     case Op_ShenandoahCompareAndExchangeN: {
1413       Node *adr = n->in(MemNode::Address);
1414       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
1415       // fallthrough
1416     }
1417     case Op_ShenandoahCompareAndSwapP:
1418     case Op_ShenandoahCompareAndSwapN:
1419     case Op_ShenandoahWeakCompareAndSwapP:
1420     case Op_ShenandoahWeakCompareAndSwapN:
1421       return conn_graph->add_final_edges_unsafe_access(n, opcode);
1422     case Op_ShenandoahReadBarrier:
1423     case Op_ShenandoahWriteBarrier:
1424       // Barriers 'pass through' its arguments. I.e. what goes in, comes out.
1425       // It doesn't escape.
1426       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahBarrierNode::ValueIn), NULL);
1427       return true;
1428     case Op_ShenandoahEnqueueBarrier:
1429       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), NULL);
1430       return true;
1431     default:
1432       // Nothing
1433       break;
1434   }
1435   return false;
1436 }
1437 
1438 bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const {
1439   return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) ||
1440          n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN);
1441 
1442 }
1443 
1444 bool ShenandoahBarrierSetC2::escape_is_barrier_node(Node* n) const {
1445   return n->is_ShenandoahBarrier();
1446 }
1447 
1448 bool ShenandoahBarrierSetC2::matcher_find_shared_visit(Matcher* matcher, Matcher::MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) const {
1449   switch (opcode) {
1450     case Op_ShenandoahReadBarrier:
1451       if (n->in(ShenandoahBarrierNode::ValueIn)->is_DecodeNarrowPtr()) {
1452         matcher->set_shared(n->in(ShenandoahBarrierNode::ValueIn)->in(1));
1453       }
1454       matcher->set_shared(n);
1455       return true;
1456     default:
1457       break;
1458   }
1459   return false;
1460 }
1461 
1462 bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const {
1463   switch (opcode) {
1464     case Op_ShenandoahCompareAndExchangeP:
1465     case Op_ShenandoahCompareAndExchangeN:
1466     case Op_ShenandoahWeakCompareAndSwapP:
1467     case Op_ShenandoahWeakCompareAndSwapN:
1468     case Op_ShenandoahCompareAndSwapP:
1469     case Op_ShenandoahCompareAndSwapN: {   // Convert trinary to binary-tree
1470       Node* newval = n->in(MemNode::ValueIn);
1471       Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
1472       Node* pair = new BinaryNode(oldval, newval);
1473       n->set_req(MemNode::ValueIn,pair);
1474       n->del_req(LoadStoreConditionalNode::ExpectedIn);
1475       return true;
1476     }
1477     default:
1478       break;
1479   }
1480   return false;
1481 }
1482 
1483 bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const {
1484   return xop == Op_ShenandoahCompareAndExchangeP ||
1485          xop == Op_ShenandoahCompareAndExchangeN ||
1486          xop == Op_ShenandoahWeakCompareAndSwapP ||
1487          xop == Op_ShenandoahWeakCompareAndSwapN ||
1488          xop == Op_ShenandoahCompareAndSwapN ||
1489          xop == Op_ShenandoahCompareAndSwapP;
1490 }
1491 
1492 void ShenandoahBarrierSetC2::igvn_add_users_to_worklist(PhaseIterGVN* igvn, Node* use) const {
1493   if (use->is_ShenandoahBarrier()) {
1494     for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1495       Node* u = use->fast_out(i2);
1496       Node* cmp = use->find_out_with(Op_CmpP);
1497       if (u->Opcode() == Op_CmpP) {
1498         igvn->_worklist.push(cmp);
1499       }
1500     }
1501   }
1502 }
1503 
1504 void ShenandoahBarrierSetC2::ccp_analyze(PhaseCCP* ccp, Unique_Node_List& worklist, Node* use) const {
1505   if (use->is_ShenandoahBarrier()) {
1506     for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1507       Node* p = use->fast_out(i2);
1508       if (p->Opcode() == Op_AddP) {
1509         for (DUIterator_Fast i3max, i3 = p->fast_outs(i3max); i3 < i3max; i3++) {
1510           Node* q = p->fast_out(i3);
1511           if (q->is_Load()) {
1512             if(q->bottom_type() != ccp->type(q)) {
1513               worklist.push(q);
1514             }
1515           }
1516         }
1517       }
1518     }
1519   }
1520 }
1521 
1522 Node* ShenandoahBarrierSetC2::split_if_pre(PhaseIdealLoop* phase, Node* n) const {
1523   if (n->Opcode() == Op_ShenandoahReadBarrier) {
1524     ((ShenandoahReadBarrierNode*)n)->try_move(phase);
1525   } else if (n->Opcode() == Op_ShenandoahWriteBarrier) {
1526     return ((ShenandoahWriteBarrierNode*)n)->try_split_thru_phi(phase);
1527   }
1528 
1529   return NULL;
1530 }
1531 
1532 bool ShenandoahBarrierSetC2::build_loop_late_post(PhaseIdealLoop* phase, Node* n) const {
1533   return ShenandoahBarrierNode::build_loop_late_post(phase, n);
1534 }
1535 
1536 bool ShenandoahBarrierSetC2::sink_node(PhaseIdealLoop* phase, Node* n, Node* x, Node* x_ctrl, Node* n_ctrl) const {
1537   if (n->is_ShenandoahBarrier()) {
1538     return x->as_ShenandoahBarrier()->sink_node(phase, x_ctrl, n_ctrl);
1539   }
1540   return false;
1541 }