--- /dev/null 2018-11-30 10:10:44.238550338 +0100 +++ new/src/hotspot/share/gc/shenandoah/c2/shenandoahBarrierSetC2.cpp 2018-11-30 10:23:36.740891246 +0100 @@ -0,0 +1,1541 @@ +/* + * Copyright (c) 2018, Red Hat, Inc. All rights reserved. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#include "precompiled.hpp" +#include "gc/shenandoah/shenandoahHeap.hpp" +#include "gc/shenandoah/shenandoahHeuristics.hpp" +#include "gc/shenandoah/shenandoahRuntime.hpp" +#include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp" +#include "gc/shenandoah/c2/shenandoahSupport.hpp" +#include "opto/arraycopynode.hpp" +#include "opto/escape.hpp" +#include "opto/graphKit.hpp" +#include "opto/idealKit.hpp" +#include "opto/macro.hpp" +#include "opto/movenode.hpp" +#include "opto/narrowptrnode.hpp" +#include "opto/rootnode.hpp" + +ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() { + return reinterpret_cast(BarrierSet::barrier_set()->barrier_set_c2()); +} + +ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena) + : _shenandoah_barriers(new (comp_arena) GrowableArray(comp_arena, 8, 0, NULL)) { +} + +int ShenandoahBarrierSetC2State::shenandoah_barriers_count() const { + return _shenandoah_barriers->length(); +} + +ShenandoahWriteBarrierNode* ShenandoahBarrierSetC2State::shenandoah_barrier(int idx) const { + return _shenandoah_barriers->at(idx); +} + +void ShenandoahBarrierSetC2State::add_shenandoah_barrier(ShenandoahWriteBarrierNode * n) { + assert(!_shenandoah_barriers->contains(n), "duplicate entry in barrier list"); + _shenandoah_barriers->append(n); +} + +void ShenandoahBarrierSetC2State::remove_shenandoah_barrier(ShenandoahWriteBarrierNode * n) { + if (_shenandoah_barriers->contains(n)) { + _shenandoah_barriers->remove(n); + } +} + +#define __ kit-> + +Node* ShenandoahBarrierSetC2::shenandoah_read_barrier(GraphKit* kit, Node* obj) const { + if (ShenandoahReadBarrier) { + obj = shenandoah_read_barrier_impl(kit, obj, false, true, true); + } + return obj; +} + +Node* ShenandoahBarrierSetC2::shenandoah_storeval_barrier(GraphKit* kit, Node* obj) const { + if (ShenandoahStoreValEnqueueBarrier) { + obj = shenandoah_write_barrier(kit, obj); + obj = shenandoah_enqueue_barrier(kit, obj); + } + if (ShenandoahStoreValReadBarrier) { + obj = shenandoah_read_barrier_impl(kit, obj, true, false, false); + } + return obj; +} + +Node* ShenandoahBarrierSetC2::shenandoah_read_barrier_acmp(GraphKit* kit, Node* obj) { + return shenandoah_read_barrier_impl(kit, obj, true, true, false); +} + +Node* ShenandoahBarrierSetC2::shenandoah_read_barrier_impl(GraphKit* kit, Node* obj, bool use_ctrl, bool use_mem, bool allow_fromspace) const { + const Type* obj_type = obj->bottom_type(); + if (obj_type->higher_equal(TypePtr::NULL_PTR)) { + return obj; + } + const TypePtr* adr_type = ShenandoahBarrierNode::brooks_pointer_type(obj_type); + Node* mem = use_mem ? __ memory(adr_type) : __ immutable_memory(); + + if (! ShenandoahBarrierNode::needs_barrier(&__ gvn(), NULL, obj, mem, allow_fromspace)) { + // We know it is null, no barrier needed. + return obj; + } + + if (obj_type->meet(TypePtr::NULL_PTR) == obj_type->remove_speculative()) { + + // We don't know if it's null or not. Need null-check. + enum { _not_null_path = 1, _null_path, PATH_LIMIT }; + RegionNode* region = new RegionNode(PATH_LIMIT); + Node* phi = new PhiNode(region, obj_type); + Node* null_ctrl = __ top(); + Node* not_null_obj = __ null_check_oop(obj, &null_ctrl); + + region->init_req(_null_path, null_ctrl); + phi ->init_req(_null_path, __ zerocon(T_OBJECT)); + + Node* ctrl = use_ctrl ? __ control() : NULL; + ShenandoahReadBarrierNode* rb = new ShenandoahReadBarrierNode(ctrl, mem, not_null_obj, allow_fromspace); + Node* n = __ gvn().transform(rb); + + region->init_req(_not_null_path, __ control()); + phi ->init_req(_not_null_path, n); + + __ set_control(__ gvn().transform(region)); + __ record_for_igvn(region); + return __ gvn().transform(phi); + + } else { + // We know it is not null. Simple barrier is sufficient. + Node* ctrl = use_ctrl ? __ control() : NULL; + ShenandoahReadBarrierNode* rb = new ShenandoahReadBarrierNode(ctrl, mem, obj, allow_fromspace); + Node* n = __ gvn().transform(rb); + __ record_for_igvn(n); + return n; + } +} + +Node* ShenandoahBarrierSetC2::shenandoah_write_barrier_helper(GraphKit* kit, Node* obj, const TypePtr* adr_type) const { + ShenandoahWriteBarrierNode* wb = new ShenandoahWriteBarrierNode(kit->C, kit->control(), kit->memory(adr_type), obj); + Node* n = __ gvn().transform(wb); + if (n == wb) { // New barrier needs memory projection. + Node* proj = __ gvn().transform(new ShenandoahWBMemProjNode(n)); + __ set_memory(proj, adr_type); + } + return n; +} + +Node* ShenandoahBarrierSetC2::shenandoah_write_barrier(GraphKit* kit, Node* obj) const { + if (ShenandoahWriteBarrier) { + obj = shenandoah_write_barrier_impl(kit, obj); + } + return obj; +} + +Node* ShenandoahBarrierSetC2::shenandoah_write_barrier_impl(GraphKit* kit, Node* obj) const { + if (! ShenandoahBarrierNode::needs_barrier(&__ gvn(), NULL, obj, NULL, true)) { + return obj; + } + const Type* obj_type = obj->bottom_type(); + const TypePtr* adr_type = ShenandoahBarrierNode::brooks_pointer_type(obj_type); + Node* n = shenandoah_write_barrier_helper(kit, obj, adr_type); + __ record_for_igvn(n); + return n; +} + +bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseTransform* phase, Node* adr, + BasicType bt, uint adr_idx) const { + intptr_t offset = 0; + Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); + AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); + + if (offset == Type::OffsetBot) { + return false; // cannot unalias unless there are precise offsets + } + + if (alloc == NULL) { + return false; // No allocation found + } + + intptr_t size_in_bytes = type2aelembytes(bt); + + Node* mem = __ memory(adr_idx); // start searching here... + + for (int cnt = 0; cnt < 50; cnt++) { + + if (mem->is_Store()) { + + Node* st_adr = mem->in(MemNode::Address); + intptr_t st_offset = 0; + Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); + + if (st_base == NULL) { + break; // inscrutable pointer + } + + // Break we have found a store with same base and offset as ours so break + if (st_base == base && st_offset == offset) { + break; + } + + if (st_offset != offset && st_offset != Type::OffsetBot) { + const int MAX_STORE = BytesPerLong; + if (st_offset >= offset + size_in_bytes || + st_offset <= offset - MAX_STORE || + st_offset <= offset - mem->as_Store()->memory_size()) { + // Success: The offsets are provably independent. + // (You may ask, why not just test st_offset != offset and be done? + // The answer is that stores of different sizes can co-exist + // in the same sequence of RawMem effects. We sometimes initialize + // a whole 'tile' of array elements with a single jint or jlong.) + mem = mem->in(MemNode::Memory); + continue; // advance through independent store memory + } + } + + if (st_base != base + && MemNode::detect_ptr_independence(base, alloc, st_base, + AllocateNode::Ideal_allocation(st_base, phase), + phase)) { + // Success: The bases are provably independent. + mem = mem->in(MemNode::Memory); + continue; // advance through independent store memory + } + } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { + + InitializeNode* st_init = mem->in(0)->as_Initialize(); + AllocateNode* st_alloc = st_init->allocation(); + + // Make sure that we are looking at the same allocation site. + // The alloc variable is guaranteed to not be null here from earlier check. + if (alloc == st_alloc) { + // Check that the initialization is storing NULL so that no previous store + // has been moved up and directly write a reference + Node* captured_store = st_init->find_captured_store(offset, + type2aelembytes(T_OBJECT), + phase); + if (captured_store == NULL || captured_store == st_init->zero_memory()) { + return true; + } + } + } + + // Unless there is an explicit 'continue', we must bail out here, + // because 'mem' is an inscrutable memory state (e.g., a call). + break; + } + + return false; +} + +#undef __ +#define __ ideal. + +void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit, + bool do_load, + Node* obj, + Node* adr, + uint alias_idx, + Node* val, + const TypeOopPtr* val_type, + Node* pre_val, + BasicType bt) const { + // Some sanity checks + // Note: val is unused in this routine. + + if (do_load) { + // We need to generate the load of the previous value + assert(obj != NULL, "must have a base"); + assert(adr != NULL, "where are loading from?"); + assert(pre_val == NULL, "loaded already?"); + assert(val_type != NULL, "need a type"); + + if (ReduceInitialCardMarks + && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) { + return; + } + + } else { + // In this case both val_type and alias_idx are unused. + assert(pre_val != NULL, "must be loaded already"); + // Nothing to be done if pre_val is null. + if (pre_val->bottom_type() == TypePtr::NULL_PTR) return; + assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here"); + } + assert(bt == T_OBJECT, "or we shouldn't be here"); + + IdealKit ideal(kit, true); + + Node* tls = __ thread(); // ThreadLocalStorage + + Node* no_base = __ top(); + Node* zero = __ ConI(0); + Node* zeroX = __ ConX(0); + + float likely = PROB_LIKELY(0.999); + float unlikely = PROB_UNLIKELY(0.999); + + // Offsets into the thread + const int index_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset()); + const int buffer_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); + + // Now the actual pointers into the thread + Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); + Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); + + // Now some of the values + Node* marking; + Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()))); + Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw); + marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING)); + assert(ShenandoahWriteBarrierNode::is_gc_state_load(ld), "Should match the shape"); + + // if (!marking) + __ if_then(marking, BoolTest::ne, zero, unlikely); { + BasicType index_bt = TypeX_X->basic_type(); + assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size."); + Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw); + + if (do_load) { + // load original value + // alias_idx correct?? + pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx); + } + + // if (pre_val != NULL) + __ if_then(pre_val, BoolTest::ne, kit->null()); { + Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); + + // is the queue for this thread full? + __ if_then(index, BoolTest::ne, zeroX, likely); { + + // decrement the index + Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); + + // Now get the buffer location we will log the previous value into and store it + Node *log_addr = __ AddP(no_base, buffer, next_index); + __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered); + // update the index + __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered); + + } __ else_(); { + + // logging buffer is full, call the runtime + const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type(); + __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", pre_val, tls); + } __ end_if(); // (!index) + } __ end_if(); // (pre_val != NULL) + } __ end_if(); // (!marking) + + // Final sync IdealKit and GraphKit. + kit->final_sync(ideal); + + if (ShenandoahSATBBarrier && adr != NULL) { + Node* c = kit->control(); + Node* call = c->in(1)->in(1)->in(1)->in(0); + assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected"); + call->add_req(adr); + } +} + +bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) { + return call->is_CallLeaf() && + call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry); +} + +bool ShenandoahBarrierSetC2::is_shenandoah_wb_call(Node* call) { + return call->is_CallLeaf() && + call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_barrier_JRT); +} + +bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseTransform *phase, Node* n) { + if (n->Opcode() != Op_If) { + return false; + } + + Node* bol = n->in(1); + assert(bol->is_Bool(), ""); + Node* cmpx = bol->in(1); + if (bol->as_Bool()->_test._test == BoolTest::ne && + cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) && + is_shenandoah_state_load(cmpx->in(1)->in(1)) && + cmpx->in(1)->in(2)->is_Con() && + cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) { + return true; + } + + return false; +} + +bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) { + if (!n->is_Load()) return false; + const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset()); + return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal + && n->in(2)->in(3)->is_Con() + && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset; +} + +void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit, + bool do_load, + Node* obj, + Node* adr, + uint alias_idx, + Node* val, + const TypeOopPtr* val_type, + Node* pre_val, + BasicType bt) const { + if (ShenandoahSATBBarrier) { + IdealKit ideal(kit); + kit->sync_kit(ideal); + + satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt); + + ideal.sync_kit(kit); + kit->final_sync(ideal); + } +} + +Node* ShenandoahBarrierSetC2::shenandoah_enqueue_barrier(GraphKit* kit, Node* pre_val) const { + return kit->gvn().transform(new ShenandoahEnqueueBarrierNode(pre_val)); +} + +// Helper that guards and inserts a pre-barrier. +void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset, + Node* pre_val, bool need_mem_bar) const { + // We could be accessing the referent field of a reference object. If so, when G1 + // is enabled, we need to log the value in the referent field in an SATB buffer. + // This routine performs some compile time filters and generates suitable + // runtime filters that guard the pre-barrier code. + // Also add memory barrier for non volatile load from the referent field + // to prevent commoning of loads across safepoint. + + // Some compile time checks. + + // If offset is a constant, is it java_lang_ref_Reference::_reference_offset? + const TypeX* otype = offset->find_intptr_t_type(); + if (otype != NULL && otype->is_con() && + otype->get_con() != java_lang_ref_Reference::referent_offset) { + // Constant offset but not the reference_offset so just return + return; + } + + // We only need to generate the runtime guards for instances. + const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr(); + if (btype != NULL) { + if (btype->isa_aryptr()) { + // Array type so nothing to do + return; + } + + const TypeInstPtr* itype = btype->isa_instptr(); + if (itype != NULL) { + // Can the klass of base_oop be statically determined to be + // _not_ a sub-class of Reference and _not_ Object? + ciKlass* klass = itype->klass(); + if ( klass->is_loaded() && + !klass->is_subtype_of(kit->env()->Reference_klass()) && + !kit->env()->Object_klass()->is_subtype_of(klass)) { + return; + } + } + } + + // The compile time filters did not reject base_oop/offset so + // we need to generate the following runtime filters + // + // if (offset == java_lang_ref_Reference::_reference_offset) { + // if (instance_of(base, java.lang.ref.Reference)) { + // pre_barrier(_, pre_val, ...); + // } + // } + + float likely = PROB_LIKELY( 0.999); + float unlikely = PROB_UNLIKELY(0.999); + + IdealKit ideal(kit); + + Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset); + + __ if_then(offset, BoolTest::eq, referent_off, unlikely); { + // Update graphKit memory and control from IdealKit. + kit->sync_kit(ideal); + + Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass())); + Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con); + + // Update IdealKit memory and control from graphKit. + __ sync_kit(kit); + + Node* one = __ ConI(1); + // is_instof == 0 if base_oop == NULL + __ if_then(is_instof, BoolTest::eq, one, unlikely); { + + // Update graphKit from IdeakKit. + kit->sync_kit(ideal); + + // Use the pre-barrier to record the value in the referent field + satb_write_barrier_pre(kit, false /* do_load */, + NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */, + pre_val /* pre_val */, + T_OBJECT); + if (need_mem_bar) { + // Add memory barrier to prevent commoning reads from this field + // across safepoint since GC can change its value. + kit->insert_mem_bar(Op_MemBarCPUOrder); + } + // Update IdealKit from graphKit. + __ sync_kit(kit); + + } __ end_if(); // _ref_type != ref_none + } __ end_if(); // offset == referent_offset + + // Final sync IdealKit and GraphKit. + kit->final_sync(ideal); +} + +#undef __ + +const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type() { + const Type **fields = TypeTuple::fields(2); + fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value + fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread + const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); + + // create result type (range) + fields = TypeTuple::fields(0); + const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); + + return TypeFunc::make(domain, range); +} + +const TypeFunc* ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type() { + const Type **fields = TypeTuple::fields(1); + fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value + const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); + + // create result type (range) + fields = TypeTuple::fields(0); + const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); + + return TypeFunc::make(domain, range); +} + +const TypeFunc* ShenandoahBarrierSetC2::shenandoah_write_barrier_Type() { + const Type **fields = TypeTuple::fields(1); + fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value + const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); + + // create result type (range) + fields = TypeTuple::fields(1); + fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; + const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); + + return TypeFunc::make(domain, range); +} + +void ShenandoahBarrierSetC2::resolve_address(C2Access& access) const { + const TypePtr* adr_type = access.addr().type(); + + if ((access.decorators() & IN_NATIVE) == 0 && (adr_type->isa_instptr() || adr_type->isa_aryptr())) { + int off = adr_type->is_ptr()->offset(); + int base_off = adr_type->isa_instptr() ? instanceOopDesc::base_offset_in_bytes() : + arrayOopDesc::base_offset_in_bytes(adr_type->is_aryptr()->elem()->array_element_basic_type()); + assert(off != Type::OffsetTop, "unexpected offset"); + if (off == Type::OffsetBot || off >= base_off) { + DecoratorSet decorators = access.decorators(); + bool is_write = (decorators & C2_WRITE_ACCESS) != 0; + GraphKit* kit = NULL; + if (access.is_parse_access()) { + C2ParseAccess& parse_access = static_cast(access); + kit = parse_access.kit(); + } + Node* adr = access.addr().node(); + assert(adr->is_AddP(), "unexpected address shape"); + Node* base = adr->in(AddPNode::Base); + + if (is_write) { + if (kit != NULL) { + base = shenandoah_write_barrier(kit, base); + } else { + assert(access.is_opt_access(), "either parse or opt access"); + assert((access.decorators() & C2_ARRAY_COPY) != 0, "can be skipped for clone"); + } + } else { + if (adr_type->isa_instptr()) { + Compile* C = access.gvn().C; + ciField* field = C->alias_type(adr_type)->field(); + + // Insert read barrier for Shenandoah. + if (field != NULL && + ((ShenandoahOptimizeStaticFinals && field->is_static() && field->is_final()) || + (ShenandoahOptimizeInstanceFinals && !field->is_static() && field->is_final()) || + (ShenandoahOptimizeStableFinals && field->is_stable()))) { + // Skip the barrier for special fields + } else { + if (kit != NULL) { + base = shenandoah_read_barrier(kit, base); + } else { + assert(access.is_opt_access(), "either parse or opt access"); + assert((access.decorators() & C2_ARRAY_COPY) != 0, "can be skipped for arraycopy"); + } + } + } else { + if (kit != NULL) { + base = shenandoah_read_barrier(kit, base); + } else { + assert(access.is_opt_access(), "either parse or opt access"); + assert((access.decorators() & C2_ARRAY_COPY) != 0, "can be skipped for arraycopy"); + } + } + } + if (base != adr->in(AddPNode::Base)) { + assert(kit != NULL, "no barrier should have been added"); + + Node* address = adr->in(AddPNode::Address); + + if (address->is_AddP()) { + assert(address->in(AddPNode::Base) == adr->in(AddPNode::Base), "unexpected address shape"); + assert(!address->in(AddPNode::Address)->is_AddP(), "unexpected address shape"); + assert(address->in(AddPNode::Address) == adr->in(AddPNode::Base), "unexpected address shape"); + address = address->clone(); + address->set_req(AddPNode::Base, base); + address->set_req(AddPNode::Address, base); + address = kit->gvn().transform(address); + } else { + assert(address == adr->in(AddPNode::Base), "unexpected address shape"); + address = base; + } + adr = adr->clone(); + adr->set_req(AddPNode::Base, base); + adr->set_req(AddPNode::Address, address); + adr = kit->gvn().transform(adr); + access.addr().set_node(adr); + } + } + } +} + +Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const { + DecoratorSet decorators = access.decorators(); + + const TypePtr* adr_type = access.addr().type(); + Node* adr = access.addr().node(); + + bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0; + bool on_heap = (decorators & IN_HEAP) != 0; + + if (!access.is_oop() || (!on_heap && !anonymous)) { + return BarrierSetC2::store_at_resolved(access, val); + } + + if (access.is_parse_access()) { + C2ParseAccess& parse_access = static_cast(access); + GraphKit* kit = parse_access.kit(); + + uint adr_idx = kit->C->get_alias_index(adr_type); + assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); + Node* value = val.node(); + value = shenandoah_storeval_barrier(kit, value); + val.set_node(value); + shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(), + static_cast(val.type()), NULL /* pre_val */, access.type()); + } else { + assert(access.is_opt_access(), "only for optimization passes"); + assert(((decorators & C2_TIGHLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code"); + C2OptAccess& opt_access = static_cast(access); + PhaseGVN& gvn = opt_access.gvn(); + MergeMemNode* mm = opt_access.mem(); + + if (ShenandoahStoreValReadBarrier) { + RegionNode* region = new RegionNode(3); + const Type* v_t = gvn.type(val.node()); + Node* phi = new PhiNode(region, v_t->isa_oopptr() ? v_t->is_oopptr()->cast_to_nonconst() : v_t); + Node* cmp = gvn.transform(new CmpPNode(val.node(), gvn.zerocon(T_OBJECT))); + Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::ne)); + IfNode* iff = new IfNode(opt_access.ctl(), bol, PROB_LIKELY_MAG(3), COUNT_UNKNOWN); + + gvn.transform(iff); + if (gvn.is_IterGVN()) { + gvn.is_IterGVN()->_worklist.push(iff); + } else { + gvn.record_for_igvn(iff); + } + + Node* null_true = gvn.transform(new IfFalseNode(iff)); + Node* null_false = gvn.transform(new IfTrueNode(iff)); + region->init_req(1, null_true); + region->init_req(2, null_false); + phi->init_req(1, gvn.zerocon(T_OBJECT)); + Node* cast = new CastPPNode(val.node(), gvn.type(val.node())->join_speculative(TypePtr::NOTNULL)); + cast->set_req(0, null_false); + cast = gvn.transform(cast); + Node* rb = gvn.transform(new ShenandoahReadBarrierNode(null_false, gvn.C->immutable_memory(), cast, false)); + phi->init_req(2, rb); + opt_access.set_ctl(gvn.transform(region)); + val.set_node(gvn.transform(phi)); + } + if (ShenandoahStoreValEnqueueBarrier) { + const TypePtr* adr_type = ShenandoahBarrierNode::brooks_pointer_type(gvn.type(val.node())); + int alias = gvn.C->get_alias_index(adr_type); + Node* wb = new ShenandoahWriteBarrierNode(gvn.C, opt_access.ctl(), mm->memory_at(alias), val.node()); + Node* wb_transformed = gvn.transform(wb); + Node* enqueue = gvn.transform(new ShenandoahEnqueueBarrierNode(wb_transformed)); + if (wb_transformed == wb) { + Node* proj = gvn.transform(new ShenandoahWBMemProjNode(wb)); + mm->set_memory_at(alias, proj); + } + val.set_node(enqueue); + } + } + return BarrierSetC2::store_at_resolved(access, val); +} + +Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const { + DecoratorSet decorators = access.decorators(); + + Node* adr = access.addr().node(); + Node* obj = access.base(); + + bool mismatched = (decorators & C2_MISMATCHED) != 0; + bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0; + bool on_heap = (decorators & IN_HEAP) != 0; + bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0; + bool is_unordered = (decorators & MO_UNORDERED) != 0; + bool need_cpu_mem_bar = !is_unordered || mismatched || !on_heap; + + Node* top = Compile::current()->top(); + + Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top; + Node* load = BarrierSetC2::load_at_resolved(access, val_type); + + // If we are reading the value of the referent field of a Reference + // object (either by using Unsafe directly or through reflection) + // then, if SATB is enabled, we need to record the referent in an + // SATB log buffer using the pre-barrier mechanism. + // Also we need to add memory barrier to prevent commoning reads + // from this field across safepoint since GC can change its value. + bool need_read_barrier = ShenandoahKeepAliveBarrier && + (on_heap && (on_weak || (unknown && offset != top && obj != top))); + + if (!access.is_oop() || !need_read_barrier) { + return load; + } + + assert(access.is_parse_access(), "entry not supported at optimization time"); + C2ParseAccess& parse_access = static_cast(access); + GraphKit* kit = parse_access.kit(); + + if (on_weak) { + // Use the pre-barrier to record the value in the referent field + satb_write_barrier_pre(kit, false /* do_load */, + NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */, + load /* pre_val */, T_OBJECT); + // Add memory barrier to prevent commoning reads from this field + // across safepoint since GC can change its value. + kit->insert_mem_bar(Op_MemBarCPUOrder); + } else if (unknown) { + // We do not require a mem bar inside pre_barrier if need_mem_bar + // is set: the barriers would be emitted by us. + insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar); + } + + return load; +} + +Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val, + Node* new_val, const Type* value_type) const { + GraphKit* kit = access.kit(); + if (access.is_oop()) { + new_val = shenandoah_storeval_barrier(kit, new_val); + shenandoah_write_barrier_pre(kit, false /* do_load */, + NULL, NULL, max_juint, NULL, NULL, + expected_val /* pre_val */, T_OBJECT); + + MemNode::MemOrd mo = access.mem_node_mo(); + Node* mem = access.memory(); + Node* adr = access.addr().node(); + const TypePtr* adr_type = access.addr().type(); + Node* load_store = NULL; + +#ifdef _LP64 + if (adr->bottom_type()->is_ptr_to_narrowoop()) { + Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); + Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); + load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); + } else +#endif + { + load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); + } + + access.set_raw_access(load_store); + pin_atomic_op(access); + +#ifdef _LP64 + if (adr->bottom_type()->is_ptr_to_narrowoop()) { + return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type())); + } +#endif + return load_store; + } + return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type); +} + +Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val, + Node* new_val, const Type* value_type) const { + GraphKit* kit = access.kit(); + if (access.is_oop()) { + new_val = shenandoah_storeval_barrier(kit, new_val); + shenandoah_write_barrier_pre(kit, false /* do_load */, + NULL, NULL, max_juint, NULL, NULL, + expected_val /* pre_val */, T_OBJECT); + DecoratorSet decorators = access.decorators(); + MemNode::MemOrd mo = access.mem_node_mo(); + Node* mem = access.memory(); + bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0; + Node* load_store = NULL; + Node* adr = access.addr().node(); +#ifdef _LP64 + if (adr->bottom_type()->is_ptr_to_narrowoop()) { + Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); + Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); + if (is_weak_cas) { + load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); + } else { + load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); + } + } else +#endif + { + if (is_weak_cas) { + load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); + } else { + load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); + } + } + access.set_raw_access(load_store); + pin_atomic_op(access); + return load_store; + } + return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); +} + +Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const { + GraphKit* kit = access.kit(); + if (access.is_oop()) { + val = shenandoah_storeval_barrier(kit, val); + } + Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type); + if (access.is_oop()) { + shenandoah_write_barrier_pre(kit, false /* do_load */, + NULL, NULL, max_juint, NULL, NULL, + result /* pre_val */, T_OBJECT); + } + return result; +} + +void ShenandoahBarrierSetC2::clone(GraphKit* kit, Node* src, Node* dst, Node* size, bool is_array) const { + assert(!src->is_AddP(), "unexpected input"); + src = shenandoah_read_barrier(kit, src); + BarrierSetC2::clone(kit, src, dst, size, is_array); +} + +Node* ShenandoahBarrierSetC2::resolve(GraphKit* kit, Node* n, DecoratorSet decorators) const { + bool is_write = decorators & ACCESS_WRITE; + if (is_write) { + return shenandoah_write_barrier(kit, n); + } else { + return shenandoah_read_barrier(kit, n); + } +} + +Node* ShenandoahBarrierSetC2::obj_allocate(PhaseMacroExpand* macro, Node* ctrl, Node* mem, Node* toobig_false, Node* size_in_bytes, + Node*& i_o, Node*& needgc_ctrl, + Node*& fast_oop_ctrl, Node*& fast_oop_rawmem, + intx prefetch_lines) const { + PhaseIterGVN& igvn = macro->igvn(); + + // Allocate several words more for the Shenandoah brooks pointer. + size_in_bytes = new AddXNode(size_in_bytes, igvn.MakeConX(ShenandoahBrooksPointer::byte_size())); + macro->transform_later(size_in_bytes); + + Node* fast_oop = BarrierSetC2::obj_allocate(macro, ctrl, mem, toobig_false, size_in_bytes, + i_o, needgc_ctrl, fast_oop_ctrl, fast_oop_rawmem, + prefetch_lines); + + // Bump up object for Shenandoah brooks pointer. + fast_oop = new AddPNode(macro->top(), fast_oop, igvn.MakeConX(ShenandoahBrooksPointer::byte_size())); + macro->transform_later(fast_oop); + + // Initialize Shenandoah brooks pointer to point to the object itself. + fast_oop_rawmem = macro->make_store(fast_oop_ctrl, fast_oop_rawmem, fast_oop, ShenandoahBrooksPointer::byte_offset(), fast_oop, T_OBJECT); + + return fast_oop; +} + +// Support for GC barriers emitted during parsing +bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const { + if (node->Opcode() != Op_CallLeaf && node->Opcode() != Op_CallLeafNoFP) { + return false; + } + CallLeafNode *call = node->as_CallLeaf(); + if (call->_name == NULL) { + return false; + } + + return strcmp(call->_name, "shenandoah_clone_barrier") == 0 || + strcmp(call->_name, "shenandoah_cas_obj") == 0 || + strcmp(call->_name, "shenandoah_wb_pre") == 0; +} + +Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const { + return ShenandoahBarrierNode::skip_through_barrier(c); +} + +bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const { + return !ShenandoahWriteBarrierNode::expand(C, igvn); +} + +bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const { + if (mode == LoopOptsShenandoahExpand) { + assert(UseShenandoahGC, "only for shenandoah"); + ShenandoahWriteBarrierNode::pin_and_expand(phase); + return true; + } else if (mode == LoopOptsShenandoahPostExpand) { + assert(UseShenandoahGC, "only for shenandoah"); + visited.Clear(); + ShenandoahWriteBarrierNode::optimize_after_expansion(visited, nstack, worklist, phase); + return true; + } + GrowableArray memory_graph_fixers; + ShenandoahWriteBarrierNode::optimize_before_expansion(phase, memory_graph_fixers, false); + return false; +} + +bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, ArrayCopyPhase phase) const { + bool is_oop = type == T_OBJECT || type == T_ARRAY; + if (!is_oop) { + return false; + } + + if (tightly_coupled_alloc) { + if (phase == Optimization) { + return false; + } + return !is_clone; + } + if (phase == Optimization) { + return !ShenandoahStoreValEnqueueBarrier; + } + return true; +} + +bool ShenandoahBarrierSetC2::clone_needs_postbarrier(ArrayCopyNode *ac, PhaseIterGVN& igvn) { + Node* src = ac->in(ArrayCopyNode::Src); + const TypeOopPtr* src_type = igvn.type(src)->is_oopptr(); + if (src_type->isa_instptr() != NULL) { + ciInstanceKlass* ik = src_type->klass()->as_instance_klass(); + if ((src_type->klass_is_exact() || (!ik->is_interface() && !ik->has_subklass())) && !ik->has_injected_fields()) { + if (ik->has_object_fields()) { + return true; + } else { + if (!src_type->klass_is_exact()) { + igvn.C->dependencies()->assert_leaf_type(ik); + } + } + } else { + return true; + } + } else if (src_type->isa_aryptr()) { + BasicType src_elem = src_type->klass()->as_array_klass()->element_type()->basic_type(); + if (src_elem == T_OBJECT || src_elem == T_ARRAY) { + return true; + } + } else { + return true; + } + return false; +} + +void ShenandoahBarrierSetC2::clone_barrier_at_expansion(ArrayCopyNode* ac, Node* call, PhaseIterGVN& igvn) const { + assert(ac->is_clonebasic(), "no other kind of arraycopy here"); + + if (!clone_needs_postbarrier(ac, igvn)) { + BarrierSetC2::clone_barrier_at_expansion(ac, call, igvn); + return; + } + + const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM; + Node* c = new ProjNode(call,TypeFunc::Control); + c = igvn.transform(c); + Node* m = new ProjNode(call, TypeFunc::Memory); + c = igvn.transform(m); + + Node* dest = ac->in(ArrayCopyNode::Dest); + assert(dest->is_AddP(), "bad input"); + Node* barrier_call = new CallLeafNode(ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type(), + CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier), + "shenandoah_clone_barrier", raw_adr_type); + barrier_call->init_req(TypeFunc::Control, c); + barrier_call->init_req(TypeFunc::I_O , igvn.C->top()); + barrier_call->init_req(TypeFunc::Memory , m); + barrier_call->init_req(TypeFunc::ReturnAdr, igvn.C->top()); + barrier_call->init_req(TypeFunc::FramePtr, igvn.C->top()); + barrier_call->init_req(TypeFunc::Parms+0, dest->in(AddPNode::Base)); + + barrier_call = igvn.transform(barrier_call); + c = new ProjNode(barrier_call,TypeFunc::Control); + c = igvn.transform(c); + m = new ProjNode(barrier_call, TypeFunc::Memory); + m = igvn.transform(m); + + Node* out_c = ac->proj_out(TypeFunc::Control); + Node* out_m = ac->proj_out(TypeFunc::Memory); + igvn.replace_node(out_c, c); + igvn.replace_node(out_m, m); +} + + +// Support for macro expanded GC barriers +void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const { + if (node->Opcode() == Op_ShenandoahWriteBarrier) { + state()->add_shenandoah_barrier((ShenandoahWriteBarrierNode*) node); + } +} + +void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const { + if (node->Opcode() == Op_ShenandoahWriteBarrier) { + state()->remove_shenandoah_barrier((ShenandoahWriteBarrierNode*) node); + } +} + +void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* n) const { + if (is_shenandoah_wb_pre_call(n)) { + shenandoah_eliminate_wb_pre(n, ¯o->igvn()); + } +} + +void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const { + assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), ""); + Node* c = call->as_Call()->proj_out(TypeFunc::Control); + c = c->unique_ctrl_out(); + assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); + c = c->unique_ctrl_out(); + assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); + Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); + assert(iff->is_If(), "expect test"); + if (!is_shenandoah_marking_if(igvn, iff)) { + c = c->unique_ctrl_out(); + assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); + iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); + assert(is_shenandoah_marking_if(igvn, iff), "expect marking test"); + } + Node* cmpx = iff->in(1)->in(1); + igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ)); + igvn->rehash_node_delayed(call); + call->del_req(call->req()-1); +} + +void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const { + if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) { + igvn->add_users_to_worklist(node); + } +} + +void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const { + for (uint i = 0; i < useful.size(); i++) { + Node* n = useful.at(i); + if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) { + for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { + C->record_for_igvn(n->fast_out(i)); + } + } + } + for (int i = state()->shenandoah_barriers_count()-1; i >= 0; i--) { + ShenandoahWriteBarrierNode* n = state()->shenandoah_barrier(i); + if (!useful.member(n)) { + state()->remove_shenandoah_barrier(n); + } + } + +} + +bool ShenandoahBarrierSetC2::has_special_unique_user(const Node* node) const { + assert(node->outcnt() == 1, "match only for unique out"); + Node* n = node->unique_out(); + return node->Opcode() == Op_ShenandoahWriteBarrier && n->Opcode() == Op_ShenandoahWBMemProj; +} + +void ShenandoahBarrierSetC2::add_users_to_worklist(Unique_Node_List* worklist) const {} + +void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const { + return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena); +} + +ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const { + return reinterpret_cast(Compile::current()->barrier_set_state()); +} + +// If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be +// expanded later, then now is the time to do so. +bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; } + +#ifdef ASSERT +void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const { + if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeExpand) { + ShenandoahBarrierNode::verify(Compile::current()->root()); + } else if (phase == BarrierSetC2::BeforeCodeGen) { + // Verify G1 pre-barriers + const int marking_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset()); + + ResourceArea *area = Thread::current()->resource_area(); + Unique_Node_List visited(area); + Node_List worklist(area); + // We're going to walk control flow backwards starting from the Root + worklist.push(compile->root()); + while (worklist.size() > 0) { + Node *x = worklist.pop(); + if (x == NULL || x == compile->top()) continue; + if (visited.member(x)) { + continue; + } else { + visited.push(x); + } + + if (x->is_Region()) { + for (uint i = 1; i < x->req(); i++) { + worklist.push(x->in(i)); + } + } else { + worklist.push(x->in(0)); + // We are looking for the pattern: + // /->ThreadLocal + // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset) + // \->ConI(0) + // We want to verify that the If and the LoadB have the same control + // See GraphKit::g1_write_barrier_pre() + if (x->is_If()) { + IfNode *iff = x->as_If(); + if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) { + CmpNode *cmp = iff->in(1)->in(1)->as_Cmp(); + if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0 + && cmp->in(1)->is_Load()) { + LoadNode *load = cmp->in(1)->as_Load(); + if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal + && load->in(2)->in(3)->is_Con() + && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) { + + Node *if_ctrl = iff->in(0); + Node *load_ctrl = load->in(0); + + if (if_ctrl != load_ctrl) { + // Skip possible CProj->NeverBranch in infinite loops + if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj) + && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) { + if_ctrl = if_ctrl->in(0)->in(0); + } + } + assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match"); + } + } + } + } + } + } + } +} +#endif + +Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const { + if (is_shenandoah_wb_pre_call(n)) { + uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt(); + if (n->req() > cnt) { + Node* addp = n->in(cnt); + if (has_only_shenandoah_wb_pre_uses(addp)) { + n->del_req(cnt); + if (can_reshape) { + phase->is_IterGVN()->_worklist.push(addp); + } + return n; + } + } + } + if (n->Opcode() == Op_CmpP) { + Node* in1 = n->in(1); + Node* in2 = n->in(2); + if (in1->bottom_type() == TypePtr::NULL_PTR) { + in2 = step_over_gc_barrier(in2); + } + if (in2->bottom_type() == TypePtr::NULL_PTR) { + in1 = step_over_gc_barrier(in1); + } + PhaseIterGVN* igvn = phase->is_IterGVN(); + if (in1 != n->in(1)) { + if (igvn != NULL) { + n->set_req_X(1, in1, igvn); + } else { + n->set_req(1, in1); + } + assert(in2 == n->in(2), "only one change"); + return n; + } + if (in2 != n->in(2)) { + if (igvn != NULL) { + n->set_req_X(2, in2, igvn); + } else { + n->set_req(2, in2); + } + return n; + } + } else if (can_reshape && + n->Opcode() == Op_If && + ShenandoahWriteBarrierNode::is_heap_stable_test(n) && + n->in(0) != NULL) { + Node* dom = n->in(0); + Node* prev_dom = n; + int op = n->Opcode(); + int dist = 16; + // Search up the dominator tree for another heap stable test + while (dom->Opcode() != op || // Not same opcode? + !ShenandoahWriteBarrierNode::is_heap_stable_test(dom) || // Not same input 1? + prev_dom->in(0) != dom) { // One path of test does not dominate? + if (dist < 0) return NULL; + + dist--; + prev_dom = dom; + dom = IfNode::up_one_dom(dom); + if (!dom) return NULL; + } + + // Check that we did not follow a loop back to ourselves + if (n == dom) { + return NULL; + } + + return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN()); + } + + return NULL; +} + +Node* ShenandoahBarrierSetC2::identity_node(PhaseGVN* phase, Node* n) const { + if (n->is_Load()) { + Node *mem = n->in(MemNode::Memory); + Node *value = n->as_Load()->can_see_stored_value(mem, phase); + if (value) { + PhaseIterGVN *igvn = phase->is_IterGVN(); + if (igvn != NULL && + value->is_Phi() && + value->req() > 2 && + value->in(1) != NULL && + value->in(1)->is_ShenandoahBarrier()) { + if (igvn->_worklist.member(value) || + igvn->_worklist.member(value->in(0)) || + (value->in(0)->in(1) != NULL && + value->in(0)->in(1)->is_IfProj() && + (igvn->_worklist.member(value->in(0)->in(1)) || + (value->in(0)->in(1)->in(0) != NULL && + igvn->_worklist.member(value->in(0)->in(1)->in(0)))))) { + igvn->_worklist.push(n); + return n; + } + } + // (This works even when value is a Con, but LoadNode::Value + // usually runs first, producing the singleton type of the Con.) + Node *value_no_barrier = step_over_gc_barrier(value->Opcode() == Op_EncodeP ? value->in(1) : value); + if (value->Opcode() == Op_EncodeP) { + if (value_no_barrier != value->in(1)) { + Node *encode = value->clone(); + encode->set_req(1, value_no_barrier); + encode = phase->transform(encode); + return encode; + } + } else { + return value_no_barrier; + } + } + } + return n; +} + +bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) { + for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { + Node* u = n->fast_out(i); + if (!is_shenandoah_wb_pre_call(u)) { + return false; + } + } + return n->outcnt() > 0; +} + +bool ShenandoahBarrierSetC2::flatten_gc_alias_type(const TypePtr*& adr_type) const { + int offset = adr_type->offset(); + if (offset == ShenandoahBrooksPointer::byte_offset()) { + if (adr_type->isa_aryptr()) { + adr_type = TypeAryPtr::make(adr_type->ptr(), adr_type->isa_aryptr()->ary(), adr_type->isa_aryptr()->klass(), false, offset); + } else if (adr_type->isa_instptr()) { + adr_type = TypeInstPtr::make(adr_type->ptr(), ciEnv::current()->Object_klass(), false, NULL, offset); + } + return true; + } else { + return false; + } +} + +bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode) const { + switch (opcode) { + case Op_CallLeaf: + case Op_CallLeafNoFP: { + assert (n->is_Call(), ""); + CallNode *call = n->as_Call(); + if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) { + uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt(); + if (call->req() > cnt) { + assert(call->req() == cnt + 1, "only one extra input"); + Node *addp = call->in(cnt); + assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?"); + call->del_req(cnt); + } + } + return false; + } + case Op_ShenandoahCompareAndSwapP: + case Op_ShenandoahCompareAndSwapN: + case Op_ShenandoahWeakCompareAndSwapN: + case Op_ShenandoahWeakCompareAndSwapP: + case Op_ShenandoahCompareAndExchangeP: + case Op_ShenandoahCompareAndExchangeN: +#ifdef ASSERT + if( VerifyOptoOopOffsets ) { + MemNode* mem = n->as_Mem(); + // Check to see if address types have grounded out somehow. + const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr(); + ciInstanceKlass *k = tp->klass()->as_instance_klass(); + bool oop_offset_is_sane = k->contains_field_offset(tp->offset()); + assert( !tp || oop_offset_is_sane, "" ); + } +#endif + return true; + case Op_ShenandoahReadBarrier: + return true; + case Op_ShenandoahWriteBarrier: + assert(false, "should have been expanded already"); + return true; + default: + return false; + } +} + +#ifdef ASSERT +bool ShenandoahBarrierSetC2::verify_gc_alias_type(const TypePtr* adr_type, int offset) const { + if (offset == ShenandoahBrooksPointer::byte_offset() && + (adr_type->base() == Type::AryPtr || adr_type->base() == Type::OopPtr)) { + return true; + } else { + return false; + } +} +#endif + +bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const { + switch (opcode) { + case Op_ShenandoahCompareAndExchangeP: + case Op_ShenandoahCompareAndExchangeN: + conn_graph->add_objload_to_connection_graph(n, delayed_worklist); + // fallthrough + case Op_ShenandoahWeakCompareAndSwapP: + case Op_ShenandoahWeakCompareAndSwapN: + case Op_ShenandoahCompareAndSwapP: + case Op_ShenandoahCompareAndSwapN: + conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist); + return true; + case Op_StoreP: { + Node* adr = n->in(MemNode::Address); + const Type* adr_type = gvn->type(adr); + // Pointer stores in G1 barriers looks like unsafe access. + // Ignore such stores to be able scalar replace non-escaping + // allocations. + if (adr_type->isa_rawptr() && adr->is_AddP()) { + Node* base = conn_graph->get_addp_base(adr); + if (base->Opcode() == Op_LoadP && + base->in(MemNode::Address)->is_AddP()) { + adr = base->in(MemNode::Address); + Node* tls = conn_graph->get_addp_base(adr); + if (tls->Opcode() == Op_ThreadLocal) { + int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); + const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); + if (offs == buf_offset) { + return true; // Pre barrier previous oop value store. + } + } + } + } + return false; + } + case Op_ShenandoahReadBarrier: + case Op_ShenandoahWriteBarrier: + // Barriers 'pass through' its arguments. I.e. what goes in, comes out. + // It doesn't escape. + conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahBarrierNode::ValueIn), delayed_worklist); + break; + case Op_ShenandoahEnqueueBarrier: + conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist); + break; + default: + // Nothing + break; + } + return false; +} + +bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const { + switch (opcode) { + case Op_ShenandoahCompareAndExchangeP: + case Op_ShenandoahCompareAndExchangeN: { + Node *adr = n->in(MemNode::Address); + conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL); + // fallthrough + } + case Op_ShenandoahCompareAndSwapP: + case Op_ShenandoahCompareAndSwapN: + case Op_ShenandoahWeakCompareAndSwapP: + case Op_ShenandoahWeakCompareAndSwapN: + return conn_graph->add_final_edges_unsafe_access(n, opcode); + case Op_ShenandoahReadBarrier: + case Op_ShenandoahWriteBarrier: + // Barriers 'pass through' its arguments. I.e. what goes in, comes out. + // It doesn't escape. + conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahBarrierNode::ValueIn), NULL); + return true; + case Op_ShenandoahEnqueueBarrier: + conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), NULL); + return true; + default: + // Nothing + break; + } + return false; +} + +bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const { + return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) || + n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN); + +} + +bool ShenandoahBarrierSetC2::escape_is_barrier_node(Node* n) const { + return n->is_ShenandoahBarrier(); +} + +bool ShenandoahBarrierSetC2::matcher_find_shared_visit(Matcher* matcher, Matcher::MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) const { + switch (opcode) { + case Op_ShenandoahReadBarrier: + if (n->in(ShenandoahBarrierNode::ValueIn)->is_DecodeNarrowPtr()) { + matcher->set_shared(n->in(ShenandoahBarrierNode::ValueIn)->in(1)); + } + matcher->set_shared(n); + return true; + default: + break; + } + return false; +} + +bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const { + switch (opcode) { + case Op_ShenandoahCompareAndExchangeP: + case Op_ShenandoahCompareAndExchangeN: + case Op_ShenandoahWeakCompareAndSwapP: + case Op_ShenandoahWeakCompareAndSwapN: + case Op_ShenandoahCompareAndSwapP: + case Op_ShenandoahCompareAndSwapN: { // Convert trinary to binary-tree + Node* newval = n->in(MemNode::ValueIn); + Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn); + Node* pair = new BinaryNode(oldval, newval); + n->set_req(MemNode::ValueIn,pair); + n->del_req(LoadStoreConditionalNode::ExpectedIn); + return true; + } + default: + break; + } + return false; +} + +bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const { + return xop == Op_ShenandoahCompareAndExchangeP || + xop == Op_ShenandoahCompareAndExchangeN || + xop == Op_ShenandoahWeakCompareAndSwapP || + xop == Op_ShenandoahWeakCompareAndSwapN || + xop == Op_ShenandoahCompareAndSwapN || + xop == Op_ShenandoahCompareAndSwapP; +} + +void ShenandoahBarrierSetC2::igvn_add_users_to_worklist(PhaseIterGVN* igvn, Node* use) const { + if (use->is_ShenandoahBarrier()) { + for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { + Node* u = use->fast_out(i2); + Node* cmp = use->find_out_with(Op_CmpP); + if (u->Opcode() == Op_CmpP) { + igvn->_worklist.push(cmp); + } + } + } +} + +void ShenandoahBarrierSetC2::ccp_analyze(PhaseCCP* ccp, Unique_Node_List& worklist, Node* use) const { + if (use->is_ShenandoahBarrier()) { + for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { + Node* p = use->fast_out(i2); + if (p->Opcode() == Op_AddP) { + for (DUIterator_Fast i3max, i3 = p->fast_outs(i3max); i3 < i3max; i3++) { + Node* q = p->fast_out(i3); + if (q->is_Load()) { + if(q->bottom_type() != ccp->type(q)) { + worklist.push(q); + } + } + } + } + } + } +} + +Node* ShenandoahBarrierSetC2::split_if_pre(PhaseIdealLoop* phase, Node* n) const { + if (n->Opcode() == Op_ShenandoahReadBarrier) { + ((ShenandoahReadBarrierNode*)n)->try_move(phase); + } else if (n->Opcode() == Op_ShenandoahWriteBarrier) { + return ((ShenandoahWriteBarrierNode*)n)->try_split_thru_phi(phase); + } + + return NULL; +} + +bool ShenandoahBarrierSetC2::build_loop_late_post(PhaseIdealLoop* phase, Node* n) const { + return ShenandoahBarrierNode::build_loop_late_post(phase, n); +} + +bool ShenandoahBarrierSetC2::sink_node(PhaseIdealLoop* phase, Node* n, Node* x, Node* x_ctrl, Node* n_ctrl) const { + if (n->is_ShenandoahBarrier()) { + return x->as_ShenandoahBarrier()->sink_node(phase, x_ctrl, n_ctrl); + } + return false; +}