1 /*
   2  * Copyright (c) 2018, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #include "precompiled.hpp"
  25 
  26 #include "gc/shenandoah/heuristics/shenandoahTraversalHeuristics.hpp"
  27 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  28 #include "gc/shenandoah/shenandoahHeuristics.hpp"
  29 #include "gc/shenandoah/shenandoahTraversalGC.hpp"
  30 #include "logging/log.hpp"
  31 #include "logging/logTag.hpp"
  32 #include "utilities/quickSort.hpp"
  33 
  34 ShenandoahTraversalHeuristics::ShenandoahTraversalHeuristics() : ShenandoahHeuristics(),
  35   _last_cset_select(0)
  36  {
  37   FLAG_SET_DEFAULT(ShenandoahSATBBarrier,            false);
  38   FLAG_SET_DEFAULT(ShenandoahStoreValReadBarrier,    false);
  39   FLAG_SET_DEFAULT(ShenandoahStoreValEnqueueBarrier, true);
  40   FLAG_SET_DEFAULT(ShenandoahKeepAliveBarrier,       false);
  41   FLAG_SET_DEFAULT(ShenandoahAllowMixedAllocs,       false);
  42 
  43   SHENANDOAH_ERGO_OVERRIDE_DEFAULT(ShenandoahRefProcFrequency, 1);
  44 
  45   // Adjust class unloading settings only if globally enabled.
  46   if (ClassUnloadingWithConcurrentMark) {
  47     SHENANDOAH_ERGO_OVERRIDE_DEFAULT(ShenandoahUnloadClassesFrequency, 1);
  48   }
  49 
  50   SHENANDOAH_ERGO_ENABLE_FLAG(ExplicitGCInvokesConcurrent);
  51   SHENANDOAH_ERGO_ENABLE_FLAG(ShenandoahImplicitGCInvokesConcurrent);
  52 }
  53 
  54 bool ShenandoahTraversalHeuristics::should_start_normal_gc() const {
  55   return false;
  56 }
  57 
  58 bool ShenandoahTraversalHeuristics::is_experimental() {
  59   return true;
  60 }
  61 
  62 bool ShenandoahTraversalHeuristics::is_diagnostic() {
  63   return false;
  64 }
  65 
  66 bool ShenandoahTraversalHeuristics::can_do_traversal_gc() {
  67   return true;
  68 }
  69 
  70 const char* ShenandoahTraversalHeuristics::name() {
  71   return "traversal";
  72 }
  73 
  74 void ShenandoahTraversalHeuristics::choose_collection_set(ShenandoahCollectionSet* collection_set) {
  75   ShenandoahHeap* heap = ShenandoahHeap::heap();
  76 
  77   ShenandoahTraversalGC* traversal_gc = heap->traversal_gc();
  78 
  79   ShenandoahHeapRegionSet* traversal_set = traversal_gc->traversal_set();
  80   traversal_set->clear();
  81 
  82   RegionData *data = get_region_data_cache(heap->num_regions());
  83   size_t cnt = 0;
  84 
  85   // Step 0. Prepare all regions
  86 
  87   for (size_t i = 0; i < heap->num_regions(); i++) {
  88     ShenandoahHeapRegion* r = heap->get_region(i);
  89     if (r->used() > 0) {
  90       if (r->is_regular()) {
  91         data[cnt]._region = r;
  92         data[cnt]._garbage = r->garbage();
  93         data[cnt]._seqnum_last_alloc = r->seqnum_last_alloc_mutator();
  94         cnt++;
  95       }
  96       traversal_set->add_region(r);
  97     }
  98   }
  99 
 100   // The logic for cset selection is similar to that of adaptive:
 101   //
 102   //   1. We cannot get cset larger than available free space. Otherwise we guarantee OOME
 103   //      during evacuation, and thus guarantee full GC. In practice, we also want to let
 104   //      application to allocate something. This is why we limit CSet to some fraction of
 105   //      available space. In non-overloaded heap, max_cset would contain all plausible candidates
 106   //      over garbage threshold.
 107   //
 108   //   2. We should not get cset too low so that free threshold would not be met right
 109   //      after the cycle. Otherwise we get back-to-back cycles for no reason if heap is
 110   //      too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero.
 111   //
 112   // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates
 113   // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before
 114   // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme,
 115   // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit.
 116   //
 117   // The significant complication is that liveness data was collected at the previous cycle, and only
 118   // for those regions that were allocated before previous cycle started.
 119 
 120   size_t capacity    = heap->capacity();
 121   size_t actual_free = heap->free_set()->available();
 122   size_t free_target = ShenandoahMinFreeThreshold * capacity / 100;
 123   size_t min_garbage = free_target > actual_free ? (free_target - actual_free) : 0;
 124   size_t max_cset    = (size_t)(1.0 * ShenandoahEvacReserve * capacity / 100 / ShenandoahEvacWaste);
 125 
 126   log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "M, Actual Free: "
 127                      SIZE_FORMAT "M, Max CSet: " SIZE_FORMAT "M, Min Garbage: " SIZE_FORMAT "M",
 128                      free_target / M, actual_free / M, max_cset / M, min_garbage / M);
 129 
 130   // Better select garbage-first regions, and then older ones
 131   QuickSort::sort<RegionData>(data, (int) cnt, compare_by_garbage_then_alloc_seq_ascending, false);
 132 
 133   size_t cur_cset = 0;
 134   size_t cur_garbage = 0;
 135 
 136   size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() / 100 * ShenandoahGarbageThreshold;
 137 
 138   // Step 1. Add trustworthy regions to collection set.
 139   //
 140   // We can trust live/garbage data from regions that were fully traversed during
 141   // previous cycle. Even if actual liveness is different now, we can only have _less_
 142   // live objects, because dead objects are not resurrected. Which means we can undershoot
 143   // the collection set, but not overshoot it.
 144 
 145   for (size_t i = 0; i < cnt; i++) {
 146     if (data[i]._seqnum_last_alloc > _last_cset_select) continue;
 147 
 148     ShenandoahHeapRegion* r = data[i]._region;
 149     assert (r->is_regular(), "should have been filtered before");
 150 
 151     size_t new_garbage = cur_garbage + r->garbage();
 152     size_t new_cset    = cur_cset    + r->get_live_data_bytes();
 153 
 154     if (new_cset > max_cset) {
 155       break;
 156     }
 157 
 158     if ((new_garbage < min_garbage) || (r->garbage() > garbage_threshold)) {
 159       assert(!collection_set->is_in(r), "must not yet be in cset");
 160       collection_set->add_region(r);
 161       cur_cset = new_cset;
 162       cur_garbage = new_garbage;
 163     }
 164   }
 165 
 166   // Step 2. Try to catch some recently allocated regions for evacuation ride.
 167   //
 168   // Pessimistically assume we are going to evacuate the entire region. While this
 169   // is very pessimistic and in most cases undershoots the collection set when regions
 170   // are mostly dead, it also provides more safety against running into allocation
 171   // failure when newly allocated regions are fully live.
 172 
 173   for (size_t i = 0; i < cnt; i++) {
 174     if (data[i]._seqnum_last_alloc <= _last_cset_select) continue;
 175 
 176     ShenandoahHeapRegion* r = data[i]._region;
 177     assert (r->is_regular(), "should have been filtered before");
 178 
 179     // size_t new_garbage = cur_garbage + 0; (implied)
 180     size_t new_cset = cur_cset + r->used();
 181 
 182     if (new_cset > max_cset) {
 183       break;
 184     }
 185 
 186     assert(!collection_set->is_in(r), "must not yet be in cset");
 187     collection_set->add_region(r);
 188     cur_cset = new_cset;
 189   }
 190 
 191   // Step 3. Clear liveness data
 192   // TODO: Merge it with step 0, but save live data in RegionData before.
 193   for (size_t i = 0; i < heap->num_regions(); i++) {
 194     ShenandoahHeapRegion* r = heap->get_region(i);
 195     if (r->used() > 0) {
 196       r->clear_live_data();
 197     }
 198   }
 199 
 200   collection_set->update_region_status();
 201 
 202   _last_cset_select = ShenandoahHeapRegion::seqnum_current_alloc();
 203 }
 204 
 205 bool ShenandoahTraversalHeuristics::should_start_traversal_gc() {
 206   ShenandoahHeap* heap = ShenandoahHeap::heap();
 207   assert(!heap->has_forwarded_objects(), "no forwarded objects here");
 208 
 209   size_t capacity = heap->capacity();
 210   size_t available = heap->free_set()->available();
 211 
 212   // Check if we are falling below the worst limit, time to trigger the GC, regardless of
 213   // anything else.
 214   size_t min_threshold = ShenandoahMinFreeThreshold * heap->capacity() / 100;
 215   if (available < min_threshold) {
 216     log_info(gc)("Trigger: Free (" SIZE_FORMAT "M) is below minimum threshold (" SIZE_FORMAT "M)",
 217                  available / M, min_threshold / M);
 218     return true;
 219   }
 220 
 221   // Check if are need to learn a bit about the application
 222   const size_t max_learn = ShenandoahLearningSteps;
 223   if (_gc_times_learned < max_learn) {
 224     size_t init_threshold = ShenandoahInitFreeThreshold * heap->capacity() / 100;
 225     if (available < init_threshold) {
 226       log_info(gc)("Trigger: Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "M) is below initial threshold (" SIZE_FORMAT "M)",
 227                    _gc_times_learned + 1, max_learn, available / M, init_threshold / M);
 228       return true;
 229     }
 230   }
 231 
 232   // Check if allocation headroom is still okay. This also factors in:
 233   //   1. Some space to absorb allocation spikes
 234   //   2. Accumulated penalties from Degenerated and Full GC
 235 
 236   size_t allocation_headroom = available;
 237 
 238   size_t spike_headroom = ShenandoahAllocSpikeFactor * capacity / 100;
 239   size_t penalties      = _gc_time_penalties         * capacity / 100;
 240 
 241   allocation_headroom -= MIN2(allocation_headroom, spike_headroom);
 242   allocation_headroom -= MIN2(allocation_headroom, penalties);
 243 
 244   double average_gc = _gc_time_history->avg();
 245   double time_since_last = time_since_last_gc();
 246   double allocation_rate = heap->bytes_allocated_since_gc_start() / time_since_last;
 247 
 248   if (average_gc > allocation_headroom / allocation_rate) {
 249     log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for allocation rate (%.2f MB/s) to deplete free headroom (" SIZE_FORMAT "M)",
 250                  average_gc * 1000, allocation_rate / M, allocation_headroom / M);
 251     log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "M (free) - " SIZE_FORMAT "M (spike) - " SIZE_FORMAT "M (penalties) = " SIZE_FORMAT "M",
 252                        available / M, spike_headroom / M, penalties / M, allocation_headroom / M);
 253     return true;
 254   } else if (ShenandoahHeuristics::should_start_normal_gc()) {
 255     return true;
 256   }
 257 
 258   return false;
 259 }
 260 
 261 void ShenandoahTraversalHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* set,
 262                                                                           RegionData* data, size_t data_size,
 263                                                                           size_t free) {
 264   ShouldNotReachHere();
 265 }