/* * Copyright (c) 2013, 2018, Red Hat, Inc. All rights reserved. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shenandoah/shenandoahConcurrentMark.inline.hpp" #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" #include "gc/shenandoah/shenandoahFreeSet.hpp" #include "gc/shenandoah/shenandoahPhaseTimings.hpp" #include "gc/shenandoah/shenandoahHeap.inline.hpp" #include "gc/shenandoah/shenandoahHeuristics.hpp" #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" #include "gc/shenandoah/shenandoahControlThread.hpp" #include "gc/shenandoah/shenandoahTraversalGC.hpp" #include "gc/shenandoah/shenandoahUtils.hpp" #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" #include "gc/shenandoah/vm_operations_shenandoah.hpp" #include "memory/iterator.hpp" #include "memory/universe.hpp" ShenandoahControlThread::ShenandoahControlThread() : ConcurrentGCThread(), _alloc_failure_waiters_lock(Mutex::leaf, "ShenandoahAllocFailureGC_lock", true, Monitor::_safepoint_check_always), _gc_waiters_lock(Mutex::leaf, "ShenandoahRequestedGC_lock", true, Monitor::_safepoint_check_always), _periodic_task(this), _requested_gc_cause(GCCause::_no_cause_specified), _degen_point(ShenandoahHeap::_degenerated_outside_cycle), _allocs_seen(0) { create_and_start(); _periodic_task.enroll(); _periodic_satb_flush_task.enroll(); } ShenandoahControlThread::~ShenandoahControlThread() { // This is here so that super is called. } void ShenandoahPeriodicTask::task() { _thread->handle_force_counters_update(); _thread->handle_counters_update(); } void ShenandoahPeriodicSATBFlushTask::task() { ShenandoahHeap::heap()->force_satb_flush_all_threads(); } void ShenandoahControlThread::run_service() { ShenandoahHeap* heap = ShenandoahHeap::heap(); int sleep = ShenandoahControlIntervalMin; double last_shrink_time = os::elapsedTime(); double last_sleep_adjust_time = os::elapsedTime(); // Shrink period avoids constantly polling regions for shrinking. // Having a period 10x lower than the delay would mean we hit the // shrinking with lag of less than 1/10-th of true delay. // ShenandoahUncommitDelay is in msecs, but shrink_period is in seconds. double shrink_period = (double)ShenandoahUncommitDelay / 1000 / 10; ShenandoahCollectorPolicy* policy = heap->shenandoah_policy(); ShenandoahHeuristics* heuristics = heap->heuristics(); while (!in_graceful_shutdown() && !should_terminate()) { // Figure out if we have pending requests. bool alloc_failure_pending = _alloc_failure_gc.is_set(); bool explicit_gc_requested = _gc_requested.is_set() && is_explicit_gc(_requested_gc_cause); bool implicit_gc_requested = _gc_requested.is_set() && !is_explicit_gc(_requested_gc_cause); // This control loop iteration have seen this much allocations. size_t allocs_seen = Atomic::xchg(0, &_allocs_seen); // Choose which GC mode to run in. The block below should select a single mode. GCMode mode = none; GCCause::Cause cause = GCCause::_last_gc_cause; ShenandoahHeap::ShenandoahDegenPoint degen_point = ShenandoahHeap::_degenerated_unset; if (alloc_failure_pending) { // Allocation failure takes precedence: we have to deal with it first thing log_info(gc)("Trigger: Handle Allocation Failure"); cause = GCCause::_allocation_failure; // Consume the degen point, and seed it with default value degen_point = _degen_point; _degen_point = ShenandoahHeap::_degenerated_outside_cycle; if (ShenandoahDegeneratedGC && heuristics->should_degenerate_cycle()) { heuristics->record_allocation_failure_gc(); policy->record_alloc_failure_to_degenerated(degen_point); mode = stw_degenerated; } else { heuristics->record_allocation_failure_gc(); policy->record_alloc_failure_to_full(); mode = stw_full; } } else if (explicit_gc_requested) { cause = _requested_gc_cause; log_info(gc)("Trigger: Explicit GC request (%s)", GCCause::to_string(cause)); heuristics->record_requested_gc(); if (ExplicitGCInvokesConcurrent) { policy->record_explicit_to_concurrent(); if (heuristics->can_do_traversal_gc()) { mode = concurrent_traversal; } else { mode = concurrent_normal; } // Unload and clean up everything heap->set_process_references(heuristics->can_process_references()); heap->set_unload_classes(heuristics->can_unload_classes()); } else { policy->record_explicit_to_full(); mode = stw_full; } } else if (implicit_gc_requested) { cause = _requested_gc_cause; log_info(gc)("Trigger: Implicit GC request (%s)", GCCause::to_string(cause)); heuristics->record_requested_gc(); if (ShenandoahImplicitGCInvokesConcurrent) { policy->record_implicit_to_concurrent(); if (heuristics->can_do_traversal_gc()) { mode = concurrent_traversal; } else { mode = concurrent_normal; } // Unload and clean up everything heap->set_process_references(heuristics->can_process_references()); heap->set_unload_classes(heuristics->can_unload_classes()); } else { policy->record_implicit_to_full(); mode = stw_full; } } else { // Potential normal cycle: ask heuristics if it wants to act if (heuristics->should_start_traversal_gc()) { mode = concurrent_traversal; cause = GCCause::_shenandoah_traversal_gc; } else if (heuristics->should_start_normal_gc()) { mode = concurrent_normal; cause = GCCause::_shenandoah_concurrent_gc; } // Ask policy if this cycle wants to process references or unload classes heap->set_process_references(heuristics->should_process_references()); heap->set_unload_classes(heuristics->should_unload_classes()); } // Blow all soft references on this cycle, if handling allocation failure, // or we are requested to do so unconditionally. if (alloc_failure_pending || ShenandoahAlwaysClearSoftRefs) { heap->soft_ref_policy()->set_should_clear_all_soft_refs(true); } bool gc_requested = (mode != none); assert (!gc_requested || cause != GCCause::_last_gc_cause, "GC cause should be set"); if (gc_requested) { heap->reset_bytes_allocated_since_gc_start(); // If GC was requested, we are sampling the counters even without actual triggers // from allocation machinery. This captures GC phases more accurately. set_forced_counters_update(true); // If GC was requested, we better dump freeset data for performance debugging { ShenandoahHeapLocker locker(heap->lock()); heap->free_set()->log_status(); } } switch (mode) { case none: break; case concurrent_traversal: service_concurrent_traversal_cycle(cause); break; case concurrent_normal: service_concurrent_normal_cycle(cause); break; case stw_degenerated: service_stw_degenerated_cycle(cause, degen_point); break; case stw_full: service_stw_full_cycle(cause); break; default: ShouldNotReachHere(); } if (gc_requested) { // If this was the requested GC cycle, notify waiters about it if (explicit_gc_requested || implicit_gc_requested) { notify_gc_waiters(); } // If this was the allocation failure GC cycle, notify waiters about it if (alloc_failure_pending) { notify_alloc_failure_waiters(); } // Report current free set state at the end of cycle, whether // it is a normal completion, or the abort. { ShenandoahHeapLocker locker(heap->lock()); heap->free_set()->log_status(); // Notify Universe about new heap usage. This has implications for // global soft refs policy, and we better report it every time heap // usage goes down. Universe::update_heap_info_at_gc(); } // Disable forced counters update, and update counters one more time // to capture the state at the end of GC session. handle_force_counters_update(); set_forced_counters_update(false); // Retract forceful part of soft refs policy heap->soft_ref_policy()->set_should_clear_all_soft_refs(false); // Clear metaspace oom flag, if current cycle unloaded classes if (heap->unload_classes()) { heuristics->clear_metaspace_oom(); } // GC is over, we are at idle now if (ShenandoahPacing) { heap->pacer()->setup_for_idle(); } } else { // Allow allocators to know we have seen this much regions if (ShenandoahPacing && (allocs_seen > 0)) { heap->pacer()->report_alloc(allocs_seen); } } double current = os::elapsedTime(); if (ShenandoahUncommit && (explicit_gc_requested || (current - last_shrink_time > shrink_period))) { // Try to uncommit enough stale regions. Explicit GC tries to uncommit everything. // Regular paths uncommit only occasionally. double shrink_before = explicit_gc_requested ? current : current - (ShenandoahUncommitDelay / 1000.0); service_uncommit(shrink_before); last_shrink_time = current; } // Wait before performing the next action. If allocation happened during this wait, // we exit sooner, to let heuristics re-evaluate new conditions. If we are at idle, // back off exponentially. if (_heap_changed.try_unset()) { sleep = ShenandoahControlIntervalMin; } else if ((current - last_sleep_adjust_time) * 1000 > ShenandoahControlIntervalAdjustPeriod){ sleep = MIN2(ShenandoahControlIntervalMax, MAX2(1, sleep * 2)); last_sleep_adjust_time = current; } os::naked_short_sleep(sleep); } // Wait for the actual stop(), can't leave run_service() earlier. while (!should_terminate()) { os::naked_short_sleep(ShenandoahControlIntervalMin); } } void ShenandoahControlThread::service_concurrent_traversal_cycle(GCCause::Cause cause) { GCIdMark gc_id_mark; ShenandoahGCSession session(cause); ShenandoahHeap* heap = ShenandoahHeap::heap(); TraceCollectorStats tcs(heap->monitoring_support()->concurrent_collection_counters()); // Reset for upcoming cycle heap->entry_reset(); heap->vmop_entry_init_traversal(); if (check_cancellation_or_degen(ShenandoahHeap::_degenerated_traversal)) return; heap->entry_traversal(); if (check_cancellation_or_degen(ShenandoahHeap::_degenerated_traversal)) return; heap->vmop_entry_final_traversal(); heap->entry_cleanup(); heap->heuristics()->record_success_concurrent(); heap->shenandoah_policy()->record_success_concurrent(); } void ShenandoahControlThread::service_concurrent_normal_cycle(GCCause::Cause cause) { // Normal cycle goes via all concurrent phases. If allocation failure (af) happens during // any of the concurrent phases, it first degrades to Degenerated GC and completes GC there. // If second allocation failure happens during Degenerated GC cycle (for example, when GC // tries to evac something and no memory is available), cycle degrades to Full GC. // // There are also two shortcuts through the normal cycle: a) immediate garbage shortcut, when // heuristics says there are no regions to compact, and all the collection comes from immediately // reclaimable regions; b) coalesced UR shortcut, when heuristics decides to coalesce UR with the // mark from the next cycle. // // ................................................................................................ // // (immediate garbage shortcut) Concurrent GC // /-------------------------------------------\ // | (coalesced UR) v // | /----------------------->o // | | | // | | v // [START] ----> Conc Mark ----o----> Conc Evac --o--> Conc Update-Refs ---o----> [END] // | | | ^ // | (af) | (af) | (af) | // ..................|....................|.................|..............|....................... // | | | | // | | | | Degenerated GC // v v v | // STW Mark ----------> STW Evac ----> STW Update-Refs ----->o // | | | ^ // | (af) | (af) | (af) | // ..................|....................|.................|..............|....................... // | | | | // | v | | Full GC // \------------------->o<----------------/ | // | | // v | // Full GC --------------------------/ // ShenandoahHeap* heap = ShenandoahHeap::heap(); if (check_cancellation_or_degen(ShenandoahHeap::_degenerated_outside_cycle)) return; GCIdMark gc_id_mark; ShenandoahGCSession session(cause); TraceCollectorStats tcs(heap->monitoring_support()->concurrent_collection_counters()); // Reset for upcoming marking heap->entry_reset(); // Start initial mark under STW heap->vmop_entry_init_mark(); // Continue concurrent mark heap->entry_mark(); if (check_cancellation_or_degen(ShenandoahHeap::_degenerated_mark)) return; // If not cancelled, can try to concurrently pre-clean heap->entry_preclean(); // Complete marking under STW, and start evacuation heap->vmop_entry_final_mark(); // Continue the cycle with evacuation and optional update-refs. // This may be skipped if there is nothing to evacuate. // If so, evac_in_progress would be unset by collection set preparation code. if (heap->is_evacuation_in_progress()) { // Final mark had reclaimed some immediate garbage, kick cleanup to reclaim the space // for the rest of the cycle, and report current state of free set. heap->entry_cleanup(); { ShenandoahHeapLocker locker(heap->lock()); heap->free_set()->log_status(); } // Concurrently evacuate heap->entry_evac(); if (check_cancellation_or_degen(ShenandoahHeap::_degenerated_evac)) return; // Perform update-refs phase, if required. This phase can be skipped if heuristics // decides to piggy-back the update-refs on the next marking cycle. On either path, // we need to turn off evacuation: either in init-update-refs, or in final-evac. if (heap->heuristics()->should_start_update_refs()) { heap->vmop_entry_init_updaterefs(); heap->entry_updaterefs(); if (check_cancellation_or_degen(ShenandoahHeap::_degenerated_updaterefs)) return; heap->vmop_entry_final_updaterefs(); } else { heap->vmop_entry_final_evac(); } } // Reclaim space after cycle heap->entry_cleanup(); // Cycle is complete heap->heuristics()->record_success_concurrent(); heap->shenandoah_policy()->record_success_concurrent(); } bool ShenandoahControlThread::check_cancellation_or_degen(ShenandoahHeap::ShenandoahDegenPoint point) { ShenandoahHeap* heap = ShenandoahHeap::heap(); if (heap->cancelled_gc()) { assert (is_alloc_failure_gc() || in_graceful_shutdown(), "Cancel GC either for alloc failure GC, or gracefully exiting"); if (!in_graceful_shutdown()) { assert (_degen_point == ShenandoahHeap::_degenerated_outside_cycle, "Should not be set yet: %s", ShenandoahHeap::degen_point_to_string(_degen_point)); _degen_point = point; } return true; } return false; } void ShenandoahControlThread::stop_service() { // Nothing to do here. } void ShenandoahControlThread::service_stw_full_cycle(GCCause::Cause cause) { GCIdMark gc_id_mark; ShenandoahGCSession session(cause); ShenandoahHeap* heap = ShenandoahHeap::heap(); heap->vmop_entry_full(cause); heap->heuristics()->record_success_full(); heap->shenandoah_policy()->record_success_full(); } void ShenandoahControlThread::service_stw_degenerated_cycle(GCCause::Cause cause, ShenandoahHeap::ShenandoahDegenPoint point) { assert (point != ShenandoahHeap::_degenerated_unset, "Degenerated point should be set"); GCIdMark gc_id_mark; ShenandoahGCSession session(cause); ShenandoahHeap* heap = ShenandoahHeap::heap(); heap->vmop_degenerated(point); heap->heuristics()->record_success_degenerated(); heap->shenandoah_policy()->record_success_degenerated(); } void ShenandoahControlThread::service_uncommit(double shrink_before) { ShenandoahHeap* heap = ShenandoahHeap::heap(); // Scan through the heap and determine if there is work to do. This avoids taking // heap lock if there is no work available, avoids spamming logs with superfluous // logging messages, and minimises the amount of work while locks are taken. bool has_work = false; for (size_t i = 0; i < heap->num_regions(); i++) { ShenandoahHeapRegion *r = heap->get_region(i); if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { has_work = true; break; } } if (has_work) { heap->entry_uncommit(shrink_before); } } bool ShenandoahControlThread::is_explicit_gc(GCCause::Cause cause) const { return GCCause::is_user_requested_gc(cause) || GCCause::is_serviceability_requested_gc(cause); } void ShenandoahControlThread::request_gc(GCCause::Cause cause) { assert(GCCause::is_user_requested_gc(cause) || GCCause::is_serviceability_requested_gc(cause) || cause == GCCause::_metadata_GC_clear_soft_refs || cause == GCCause::_full_gc_alot || cause == GCCause::_wb_full_gc || cause == GCCause::_scavenge_alot, "only requested GCs here"); if (is_explicit_gc(cause)) { if (!DisableExplicitGC) { handle_requested_gc(cause); } } else { handle_requested_gc(cause); } } void ShenandoahControlThread::handle_requested_gc(GCCause::Cause cause) { _requested_gc_cause = cause; _gc_requested.set(); MonitorLockerEx ml(&_gc_waiters_lock); while (_gc_requested.is_set()) { ml.wait(); } } void ShenandoahControlThread::handle_alloc_failure(size_t words) { ShenandoahHeap* heap = ShenandoahHeap::heap(); assert(current()->is_Java_thread(), "expect Java thread here"); if (try_set_alloc_failure_gc()) { // Only report the first allocation failure log_info(gc)("Failed to allocate " SIZE_FORMAT "%s", byte_size_in_proper_unit(words * HeapWordSize), proper_unit_for_byte_size(words * HeapWordSize)); // Now that alloc failure GC is scheduled, we can abort everything else heap->cancel_gc(GCCause::_allocation_failure); } MonitorLockerEx ml(&_alloc_failure_waiters_lock); while (is_alloc_failure_gc()) { ml.wait(); } } void ShenandoahControlThread::handle_alloc_failure_evac(size_t words) { ShenandoahHeap* heap = ShenandoahHeap::heap(); if (try_set_alloc_failure_gc()) { // Only report the first allocation failure log_info(gc)("Failed to allocate " SIZE_FORMAT "%s for evacuation", byte_size_in_proper_unit(words * HeapWordSize), proper_unit_for_byte_size(words * HeapWordSize)); } // Forcefully report allocation failure heap->cancel_gc(GCCause::_shenandoah_allocation_failure_evac); } void ShenandoahControlThread::notify_alloc_failure_waiters() { _alloc_failure_gc.unset(); MonitorLockerEx ml(&_alloc_failure_waiters_lock); ml.notify_all(); } bool ShenandoahControlThread::try_set_alloc_failure_gc() { return _alloc_failure_gc.try_set(); } bool ShenandoahControlThread::is_alloc_failure_gc() { return _alloc_failure_gc.is_set(); } void ShenandoahControlThread::notify_gc_waiters() { _gc_requested.unset(); MonitorLockerEx ml(&_gc_waiters_lock); ml.notify_all(); } void ShenandoahControlThread::handle_counters_update() { if (_do_counters_update.is_set()) { _do_counters_update.unset(); ShenandoahHeap::heap()->monitoring_support()->update_counters(); } } void ShenandoahControlThread::handle_force_counters_update() { if (_force_counters_update.is_set()) { _do_counters_update.unset(); // reset these too, we do update now! ShenandoahHeap::heap()->monitoring_support()->update_counters(); } } void ShenandoahControlThread::notify_heap_changed() { // This is called from allocation path, and thus should be fast. // Update monitoring counters when we took a new region. This amortizes the // update costs on slow path. if (_do_counters_update.is_unset()) { _do_counters_update.set(); } // Notify that something had changed. if (_heap_changed.is_unset()) { _heap_changed.set(); } } void ShenandoahControlThread::pacing_notify_alloc(size_t words) { assert(ShenandoahPacing, "should only call when pacing is enabled"); Atomic::add(words, &_allocs_seen); } void ShenandoahControlThread::set_forced_counters_update(bool value) { _force_counters_update.set_cond(value); } void ShenandoahControlThread::print() const { print_on(tty); } void ShenandoahControlThread::print_on(outputStream* st) const { st->print("Shenandoah Concurrent Thread"); Thread::print_on(st); st->cr(); } void ShenandoahControlThread::start() { create_and_start(); } void ShenandoahControlThread::prepare_for_graceful_shutdown() { _graceful_shutdown.set(); } bool ShenandoahControlThread::in_graceful_shutdown() { return _graceful_shutdown.is_set(); }