/* * Copyright (c) 2013, 2018, Red Hat, Inc. All rights reserved. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shenandoah/shenandoahMetrics.hpp" #include "gc/shenandoah/shenandoahHeap.hpp" #include "gc/shenandoah/shenandoahHeap.inline.hpp" #include "gc/shenandoah/shenandoahHeapRegion.hpp" #include "gc/shenandoah/shenandoahFreeSet.hpp" /* * Internal fragmentation metric: describes how fragmented the heap regions are. * * It is derived as: * * sum(used[i]^2, i=0..k) * IF = 1 - ------------------------------ * C * sum(used[i], i=0..k) * * ...where k is the number of regions in computation, C is the region capacity, and * used[i] is the used space in the region. * * The non-linearity causes IF to be lower for the cases where the same total heap * used is densely packed. For example: * a) Heap is completely full => IF = 0 * b) Heap is half full, first 50% regions are completely full => IF = 0 * c) Heap is half full, each region is 50% full => IF = 1/2 * d) Heap is quarter full, first 50% regions are completely full => IF = 0 * e) Heap is quarter full, each region is 25% full => IF = 3/4 * f) Heap has the small object per each region => IF =~ 1 */ double ShenandoahMetrics::internal_fragmentation() { ShenandoahHeap* heap = ShenandoahHeap::heap(); double squared = 0; double linear = 0; int count = 0; for (size_t c = 0; c < heap->num_regions(); c++) { ShenandoahHeapRegion* r = heap->get_region(c); size_t used = r->used(); squared += used * used; linear += used; count++; } if (count > 0) { double s = squared / (ShenandoahHeapRegion::region_size_bytes() * linear); return 1 - s; } else { return 0; } } /* * External fragmentation metric: describes how fragmented the heap is. * * It is derived as: * * EF = 1 - largest_contiguous_free / total_free * * For example: * a) Heap is completely empty => EF = 0 * b) Heap is completely full => EF = 1 * c) Heap is first-half full => EF = 1/2 * d) Heap is half full, full and empty regions interleave => EF =~ 1 */ double ShenandoahMetrics::external_fragmentation() { ShenandoahHeap* heap = ShenandoahHeap::heap(); size_t last_idx = 0; size_t max_contig = 0; size_t empty_contig = 0; size_t free = 0; for (size_t c = 0; c < heap->num_regions(); c++) { ShenandoahHeapRegion* r = heap->get_region(c); if (r->is_empty() && (last_idx + 1 == c)) { empty_contig++; } else { empty_contig = 0; } free += r->free(); max_contig = MAX2(max_contig, empty_contig); last_idx = c; } if (free > 0) { return 1 - (1.0 * max_contig * ShenandoahHeapRegion::region_size_bytes() / free); } else { return 1; } } ShenandoahMetricsSnapshot::ShenandoahMetricsSnapshot() { _heap = ShenandoahHeap::heap(); } void ShenandoahMetricsSnapshot::snap_before() { _used_before = _heap->used(); _if_before = ShenandoahMetrics::internal_fragmentation(); _ef_before = ShenandoahMetrics::external_fragmentation(); } void ShenandoahMetricsSnapshot::snap_after() { _used_after = _heap->used(); _if_after = ShenandoahMetrics::internal_fragmentation(); _ef_after = ShenandoahMetrics::external_fragmentation(); } void ShenandoahMetricsSnapshot::print() { log_info(gc, ergo)("Used: before: " SIZE_FORMAT "M, after: " SIZE_FORMAT "M", _used_before/M, _used_after/M); log_info(gc, ergo)("Internal frag: before: %.1f%%, after: %.1f%%", _if_before * 100, _if_after * 100); log_info(gc, ergo)("External frag: before: %.1f%%, after: %.1f%%", _ef_before * 100, _ef_after * 100); } bool ShenandoahMetricsSnapshot::is_good_progress(const char *label) { // Under the critical threshold? Declare failure. size_t free_actual = _heap->free_set()->available(); size_t free_expected = _heap->max_capacity() / 100 * ShenandoahCriticalFreeThreshold; if (free_actual < free_expected) { log_info(gc, ergo)("Not enough free space (" SIZE_FORMAT "M, need " SIZE_FORMAT "M) after %s", free_actual / M, free_expected / M, label); return false; } // Freed up enough? Good! Declare victory. size_t progress_actual = (_used_before > _used_after) ? _used_before - _used_after : 0; size_t progress_expected = ShenandoahHeapRegion::region_size_bytes(); if (progress_actual >= progress_expected) { return true; } log_info(gc,ergo)("Not enough progress (" SIZE_FORMAT "M, need " SIZE_FORMAT "M) after %s", progress_actual / M, progress_expected / M, label); // Internal fragmentation is down? Good! Declare victory. double if_actual = _if_before - _if_after; double if_expected = 0.01; // 1% should be enough if (if_actual > if_expected) { return true; } log_info(gc,ergo)("Not enough internal fragmentation improvement (%.1f%%, need %.1f%%) after %s", if_actual * 100, if_expected * 100, label); // External fragmentation is down? Good! Declare victory. double ef_actual = _ef_before - _ef_after; double ef_expected = 0.01; // 1% should be enough if (ef_actual > ef_expected) { return true; } log_info(gc,ergo)("Not enough external fragmentation improvement (%.1f%%, need %.1f%%) after %s", if_actual * 100, if_expected * 100, label); // Nothing good had happened. return false; }