1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
  26 #include "adlc.hpp"
  27 
  28 //==============================Instructions===================================
  29 //------------------------------InstructForm-----------------------------------
  30 InstructForm::InstructForm(const char *id, bool ideal_only)
  31   : _ident(id), _ideal_only(ideal_only),
  32     _localNames(cmpstr, hashstr, Form::arena),
  33     _effects(cmpstr, hashstr, Form::arena),
  34     _is_mach_constant(false),
  35     _needs_constant_base(false),
  36     _has_call(false)
  37 {
  38       _ftype = Form::INS;
  39 
  40       _matrule              = NULL;
  41       _insencode            = NULL;
  42       _constant             = NULL;
  43       _is_postalloc_expand  = false;
  44       _opcode               = NULL;
  45       _size                 = NULL;
  46       _attribs              = NULL;
  47       _predicate            = NULL;
  48       _exprule              = NULL;
  49       _rewrule              = NULL;
  50       _format               = NULL;
  51       _peephole             = NULL;
  52       _ins_pipe             = NULL;
  53       _uniq_idx             = NULL;
  54       _num_uniq             = 0;
  55       _cisc_spill_operand   = Not_cisc_spillable;// Which operand may cisc-spill
  56       _cisc_spill_alternate = NULL;            // possible cisc replacement
  57       _cisc_reg_mask_name   = NULL;
  58       _is_cisc_alternate    = false;
  59       _is_short_branch      = false;
  60       _short_branch_form    = NULL;
  61       _alignment            = 1;
  62 }
  63 
  64 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
  65   : _ident(id), _ideal_only(false),
  66     _localNames(instr->_localNames),
  67     _effects(instr->_effects),
  68     _is_mach_constant(false),
  69     _needs_constant_base(false),
  70     _has_call(false)
  71 {
  72       _ftype = Form::INS;
  73 
  74       _matrule               = rule;
  75       _insencode             = instr->_insencode;
  76       _constant              = instr->_constant;
  77       _is_postalloc_expand   = instr->_is_postalloc_expand;
  78       _opcode                = instr->_opcode;
  79       _size                  = instr->_size;
  80       _attribs               = instr->_attribs;
  81       _predicate             = instr->_predicate;
  82       _exprule               = instr->_exprule;
  83       _rewrule               = instr->_rewrule;
  84       _format                = instr->_format;
  85       _peephole              = instr->_peephole;
  86       _ins_pipe              = instr->_ins_pipe;
  87       _uniq_idx              = instr->_uniq_idx;
  88       _num_uniq              = instr->_num_uniq;
  89       _cisc_spill_operand    = Not_cisc_spillable; // Which operand may cisc-spill
  90       _cisc_spill_alternate  = NULL;               // possible cisc replacement
  91       _cisc_reg_mask_name    = NULL;
  92       _is_cisc_alternate     = false;
  93       _is_short_branch       = false;
  94       _short_branch_form     = NULL;
  95       _alignment             = 1;
  96      // Copy parameters
  97      const char *name;
  98      instr->_parameters.reset();
  99      for (; (name = instr->_parameters.iter()) != NULL;)
 100        _parameters.addName(name);
 101 }
 102 
 103 InstructForm::~InstructForm() {
 104 }
 105 
 106 InstructForm *InstructForm::is_instruction() const {
 107   return (InstructForm*)this;
 108 }
 109 
 110 bool InstructForm::ideal_only() const {
 111   return _ideal_only;
 112 }
 113 
 114 bool InstructForm::sets_result() const {
 115   return (_matrule != NULL && _matrule->sets_result());
 116 }
 117 
 118 bool InstructForm::needs_projections() {
 119   _components.reset();
 120   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 121     if (comp->isa(Component::KILL)) {
 122       return true;
 123     }
 124   }
 125   return false;
 126 }
 127 
 128 
 129 bool InstructForm::has_temps() {
 130   if (_matrule) {
 131     // Examine each component to see if it is a TEMP
 132     _components.reset();
 133     // Skip the first component, if already handled as (SET dst (...))
 134     Component *comp = NULL;
 135     if (sets_result())  comp = _components.iter();
 136     while ((comp = _components.iter()) != NULL) {
 137       if (comp->isa(Component::TEMP)) {
 138         return true;
 139       }
 140     }
 141   }
 142 
 143   return false;
 144 }
 145 
 146 uint InstructForm::num_defs_or_kills() {
 147   uint   defs_or_kills = 0;
 148 
 149   _components.reset();
 150   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 151     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
 152       ++defs_or_kills;
 153     }
 154   }
 155 
 156   return  defs_or_kills;
 157 }
 158 
 159 // This instruction has an expand rule?
 160 bool InstructForm::expands() const {
 161   return ( _exprule != NULL );
 162 }
 163 
 164 // This instruction has a late expand rule?
 165 bool InstructForm::postalloc_expands() const {
 166   return _is_postalloc_expand;
 167 }
 168 
 169 // This instruction has a peephole rule?
 170 Peephole *InstructForm::peepholes() const {
 171   return _peephole;
 172 }
 173 
 174 // This instruction has a peephole rule?
 175 void InstructForm::append_peephole(Peephole *peephole) {
 176   if( _peephole == NULL ) {
 177     _peephole = peephole;
 178   } else {
 179     _peephole->append_peephole(peephole);
 180   }
 181 }
 182 
 183 
 184 // ideal opcode enumeration
 185 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
 186   if( !_matrule ) return "Node"; // Something weird
 187   // Chain rules do not really have ideal Opcodes; use their source
 188   // operand ideal Opcode instead.
 189   if( is_simple_chain_rule(globalNames) ) {
 190     const char *src = _matrule->_rChild->_opType;
 191     OperandForm *src_op = globalNames[src]->is_operand();
 192     assert( src_op, "Not operand class of chain rule" );
 193     if( !src_op->_matrule ) return "Node";
 194     return src_op->_matrule->_opType;
 195   }
 196   // Operand chain rules do not really have ideal Opcodes
 197   if( _matrule->is_chain_rule(globalNames) )
 198     return "Node";
 199   return strcmp(_matrule->_opType,"Set")
 200     ? _matrule->_opType
 201     : _matrule->_rChild->_opType;
 202 }
 203 
 204 // Recursive check on all operands' match rules in my match rule
 205 bool InstructForm::is_pinned(FormDict &globals) {
 206   if ( ! _matrule)  return false;
 207 
 208   int  index   = 0;
 209   if (_matrule->find_type("Goto",          index)) return true;
 210   if (_matrule->find_type("If",            index)) return true;
 211   if (_matrule->find_type("CountedLoopEnd",index)) return true;
 212   if (_matrule->find_type("Return",        index)) return true;
 213   if (_matrule->find_type("Rethrow",       index)) return true;
 214   if (_matrule->find_type("TailCall",      index)) return true;
 215   if (_matrule->find_type("TailJump",      index)) return true;
 216   if (_matrule->find_type("Halt",          index)) return true;
 217   if (_matrule->find_type("Jump",          index)) return true;
 218 
 219   return is_parm(globals);
 220 }
 221 
 222 // Recursive check on all operands' match rules in my match rule
 223 bool InstructForm::is_projection(FormDict &globals) {
 224   if ( ! _matrule)  return false;
 225 
 226   int  index   = 0;
 227   if (_matrule->find_type("Goto",    index)) return true;
 228   if (_matrule->find_type("Return",  index)) return true;
 229   if (_matrule->find_type("Rethrow", index)) return true;
 230   if (_matrule->find_type("TailCall",index)) return true;
 231   if (_matrule->find_type("TailJump",index)) return true;
 232   if (_matrule->find_type("Halt",    index)) return true;
 233 
 234   return false;
 235 }
 236 
 237 // Recursive check on all operands' match rules in my match rule
 238 bool InstructForm::is_parm(FormDict &globals) {
 239   if ( ! _matrule)  return false;
 240 
 241   int  index   = 0;
 242   if (_matrule->find_type("Parm",index)) return true;
 243 
 244   return false;
 245 }
 246 
 247 bool InstructForm::is_ideal_negD() const {
 248   return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
 249 }
 250 
 251 // Return 'true' if this instruction matches an ideal 'Copy*' node
 252 int InstructForm::is_ideal_copy() const {
 253   return _matrule ? _matrule->is_ideal_copy() : 0;
 254 }
 255 
 256 // Return 'true' if this instruction is too complex to rematerialize.
 257 int InstructForm::is_expensive() const {
 258   // We can prove it is cheap if it has an empty encoding.
 259   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
 260   if (is_empty_encoding())
 261     return 0;
 262 
 263   if (is_tls_instruction())
 264     return 1;
 265 
 266   if (_matrule == NULL)  return 0;
 267 
 268   return _matrule->is_expensive();
 269 }
 270 
 271 // Has an empty encoding if _size is a constant zero or there
 272 // are no ins_encode tokens.
 273 int InstructForm::is_empty_encoding() const {
 274   if (_insencode != NULL) {
 275     _insencode->reset();
 276     if (_insencode->encode_class_iter() == NULL) {
 277       return 1;
 278     }
 279   }
 280   if (_size != NULL && strcmp(_size, "0") == 0) {
 281     return 1;
 282   }
 283   return 0;
 284 }
 285 
 286 int InstructForm::is_tls_instruction() const {
 287   if (_ident != NULL &&
 288       ( ! strcmp( _ident,"tlsLoadP") ||
 289         ! strncmp(_ident,"tlsLoadP_",9)) ) {
 290     return 1;
 291   }
 292 
 293   if (_matrule != NULL && _insencode != NULL) {
 294     const char* opType = _matrule->_opType;
 295     if (strcmp(opType, "Set")==0)
 296       opType = _matrule->_rChild->_opType;
 297     if (strcmp(opType,"ThreadLocal")==0) {
 298       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
 299               (_ident == NULL ? "NULL" : _ident));
 300       return 1;
 301     }
 302   }
 303 
 304   return 0;
 305 }
 306 
 307 
 308 // Return 'true' if this instruction matches an ideal 'If' node
 309 bool InstructForm::is_ideal_if() const {
 310   if( _matrule == NULL ) return false;
 311 
 312   return _matrule->is_ideal_if();
 313 }
 314 
 315 // Return 'true' if this instruction matches an ideal 'FastLock' node
 316 bool InstructForm::is_ideal_fastlock() const {
 317   if( _matrule == NULL ) return false;
 318 
 319   return _matrule->is_ideal_fastlock();
 320 }
 321 
 322 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
 323 bool InstructForm::is_ideal_membar() const {
 324   if( _matrule == NULL ) return false;
 325 
 326   return _matrule->is_ideal_membar();
 327 }
 328 
 329 // Return 'true' if this instruction matches an ideal 'LoadPC' node
 330 bool InstructForm::is_ideal_loadPC() const {
 331   if( _matrule == NULL ) return false;
 332 
 333   return _matrule->is_ideal_loadPC();
 334 }
 335 
 336 // Return 'true' if this instruction matches an ideal 'Box' node
 337 bool InstructForm::is_ideal_box() const {
 338   if( _matrule == NULL ) return false;
 339 
 340   return _matrule->is_ideal_box();
 341 }
 342 
 343 // Return 'true' if this instruction matches an ideal 'Goto' node
 344 bool InstructForm::is_ideal_goto() const {
 345   if( _matrule == NULL ) return false;
 346 
 347   return _matrule->is_ideal_goto();
 348 }
 349 
 350 // Return 'true' if this instruction matches an ideal 'Jump' node
 351 bool InstructForm::is_ideal_jump() const {
 352   if( _matrule == NULL ) return false;
 353 
 354   return _matrule->is_ideal_jump();
 355 }
 356 
 357 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
 358 bool InstructForm::is_ideal_branch() const {
 359   if( _matrule == NULL ) return false;
 360 
 361   return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
 362 }
 363 
 364 
 365 // Return 'true' if this instruction matches an ideal 'Return' node
 366 bool InstructForm::is_ideal_return() const {
 367   if( _matrule == NULL ) return false;
 368 
 369   // Check MatchRule to see if the first entry is the ideal "Return" node
 370   int  index   = 0;
 371   if (_matrule->find_type("Return",index)) return true;
 372   if (_matrule->find_type("Rethrow",index)) return true;
 373   if (_matrule->find_type("TailCall",index)) return true;
 374   if (_matrule->find_type("TailJump",index)) return true;
 375 
 376   return false;
 377 }
 378 
 379 // Return 'true' if this instruction matches an ideal 'Halt' node
 380 bool InstructForm::is_ideal_halt() const {
 381   int  index   = 0;
 382   return _matrule && _matrule->find_type("Halt",index);
 383 }
 384 
 385 // Return 'true' if this instruction matches an ideal 'SafePoint' node
 386 bool InstructForm::is_ideal_safepoint() const {
 387   int  index   = 0;
 388   return _matrule && _matrule->find_type("SafePoint",index);
 389 }
 390 
 391 // Return 'true' if this instruction matches an ideal 'Nop' node
 392 bool InstructForm::is_ideal_nop() const {
 393   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
 394 }
 395 
 396 bool InstructForm::is_ideal_control() const {
 397   if ( ! _matrule)  return false;
 398 
 399   return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
 400 }
 401 
 402 // Return 'true' if this instruction matches an ideal 'Call' node
 403 Form::CallType InstructForm::is_ideal_call() const {
 404   if( _matrule == NULL ) return Form::invalid_type;
 405 
 406   // Check MatchRule to see if the first entry is the ideal "Call" node
 407   int  idx   = 0;
 408   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
 409   idx = 0;
 410   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
 411   idx = 0;
 412   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
 413   idx = 0;
 414   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
 415   idx = 0;
 416   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
 417   idx = 0;
 418   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
 419   idx = 0;
 420   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
 421   idx = 0;
 422 
 423   return Form::invalid_type;
 424 }
 425 
 426 // Return 'true' if this instruction matches an ideal 'Load?' node
 427 Form::DataType InstructForm::is_ideal_load() const {
 428   if( _matrule == NULL ) return Form::none;
 429 
 430   return  _matrule->is_ideal_load();
 431 }
 432 
 433 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
 434 bool InstructForm::skip_antidep_check() const {
 435   if( _matrule == NULL ) return false;
 436 
 437   return  _matrule->skip_antidep_check();
 438 }
 439 
 440 // Return 'true' if this instruction matches an ideal 'Load?' node
 441 Form::DataType InstructForm::is_ideal_store() const {
 442   if( _matrule == NULL ) return Form::none;
 443 
 444   return  _matrule->is_ideal_store();
 445 }
 446 
 447 // Return 'true' if this instruction matches an ideal vector node
 448 bool InstructForm::is_vector() const {
 449   if( _matrule == NULL ) return false;
 450 
 451   return _matrule->is_vector();
 452 }
 453 
 454 
 455 // Return the input register that must match the output register
 456 // If this is not required, return 0
 457 uint InstructForm::two_address(FormDict &globals) {
 458   uint  matching_input = 0;
 459   if(_components.count() == 0) return 0;
 460 
 461   _components.reset();
 462   Component *comp = _components.iter();
 463   // Check if there is a DEF
 464   if( comp->isa(Component::DEF) ) {
 465     // Check that this is a register
 466     const char  *def_type = comp->_type;
 467     const Form  *form     = globals[def_type];
 468     OperandForm *op       = form->is_operand();
 469     if( op ) {
 470       if( op->constrained_reg_class() != NULL &&
 471           op->interface_type(globals) == Form::register_interface ) {
 472         // Remember the local name for equality test later
 473         const char *def_name = comp->_name;
 474         // Check if a component has the same name and is a USE
 475         do {
 476           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
 477             return operand_position_format(def_name);
 478           }
 479         } while( (comp = _components.iter()) != NULL);
 480       }
 481     }
 482   }
 483 
 484   return 0;
 485 }
 486 
 487 
 488 // when chaining a constant to an instruction, returns 'true' and sets opType
 489 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
 490   const char *dummy  = NULL;
 491   const char *dummy2 = NULL;
 492   return is_chain_of_constant(globals, dummy, dummy2);
 493 }
 494 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
 495                 const char * &opTypeParam) {
 496   const char *result = NULL;
 497 
 498   return is_chain_of_constant(globals, opTypeParam, result);
 499 }
 500 
 501 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
 502                 const char * &opTypeParam, const char * &resultParam) {
 503   Form::DataType  data_type = Form::none;
 504   if ( ! _matrule)  return data_type;
 505 
 506   // !!!!!
 507   // The source of the chain rule is 'position = 1'
 508   uint         position = 1;
 509   const char  *result   = NULL;
 510   const char  *name     = NULL;
 511   const char  *opType   = NULL;
 512   // Here base_operand is looking for an ideal type to be returned (opType).
 513   if ( _matrule->is_chain_rule(globals)
 514        && _matrule->base_operand(position, globals, result, name, opType) ) {
 515     data_type = ideal_to_const_type(opType);
 516 
 517     // if it isn't an ideal constant type, just return
 518     if ( data_type == Form::none ) return data_type;
 519 
 520     // Ideal constant types also adjust the opType parameter.
 521     resultParam = result;
 522     opTypeParam = opType;
 523     return data_type;
 524   }
 525 
 526   return data_type;
 527 }
 528 
 529 // Check if a simple chain rule
 530 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
 531   if( _matrule && _matrule->sets_result()
 532       && _matrule->_rChild->_lChild == NULL
 533       && globals[_matrule->_rChild->_opType]
 534       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
 535     return true;
 536   }
 537   return false;
 538 }
 539 
 540 // check for structural rematerialization
 541 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
 542   bool   rematerialize = false;
 543 
 544   Form::DataType data_type = is_chain_of_constant(globals);
 545   if( data_type != Form::none )
 546     rematerialize = true;
 547 
 548   // Constants
 549   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
 550     rematerialize = true;
 551 
 552   // Pseudo-constants (values easily available to the runtime)
 553   if (is_empty_encoding() && is_tls_instruction())
 554     rematerialize = true;
 555 
 556   // 1-input, 1-output, such as copies or increments.
 557   if( _components.count() == 2 &&
 558       _components[0]->is(Component::DEF) &&
 559       _components[1]->isa(Component::USE) )
 560     rematerialize = true;
 561 
 562   // Check for an ideal 'Load?' and eliminate rematerialize option
 563   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
 564        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
 565        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
 566     rematerialize = false;
 567   }
 568 
 569   // Always rematerialize the flags.  They are more expensive to save &
 570   // restore than to recompute (and possibly spill the compare's inputs).
 571   if( _components.count() >= 1 ) {
 572     Component *c = _components[0];
 573     const Form *form = globals[c->_type];
 574     OperandForm *opform = form->is_operand();
 575     if( opform ) {
 576       // Avoid the special stack_slots register classes
 577       const char *rc_name = opform->constrained_reg_class();
 578       if( rc_name ) {
 579         if( strcmp(rc_name,"stack_slots") ) {
 580           // Check for ideal_type of RegFlags
 581           const char *type = opform->ideal_type( globals, registers );
 582           if( (type != NULL) && !strcmp(type, "RegFlags") )
 583             rematerialize = true;
 584         } else
 585           rematerialize = false; // Do not rematerialize things target stk
 586       }
 587     }
 588   }
 589 
 590   return rematerialize;
 591 }
 592 
 593 // loads from memory, so must check for anti-dependence
 594 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
 595   if ( skip_antidep_check() ) return false;
 596 
 597   // Machine independent loads must be checked for anti-dependences
 598   if( is_ideal_load() != Form::none )  return true;
 599 
 600   // !!!!! !!!!! !!!!!
 601   // TEMPORARY
 602   // if( is_simple_chain_rule(globals) )  return false;
 603 
 604   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
 605   // but writes none
 606   if( _matrule && _matrule->_rChild &&
 607       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
 608         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
 609         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
 610         strcmp(_matrule->_rChild->_opType,"StrIndexOfChar" )==0 ||
 611         strcmp(_matrule->_rChild->_opType,"HasNegatives" )==0 ||
 612         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
 613     return true;
 614 
 615   // Check if instruction has a USE of a memory operand class, but no defs
 616   bool USE_of_memory  = false;
 617   bool DEF_of_memory  = false;
 618   Component     *comp = NULL;
 619   ComponentList &components = (ComponentList &)_components;
 620 
 621   components.reset();
 622   while( (comp = components.iter()) != NULL ) {
 623     const Form  *form = globals[comp->_type];
 624     if( !form ) continue;
 625     OpClassForm *op   = form->is_opclass();
 626     if( !op ) continue;
 627     if( form->interface_type(globals) == Form::memory_interface ) {
 628       if( comp->isa(Component::USE) ) USE_of_memory = true;
 629       if( comp->isa(Component::DEF) ) {
 630         OperandForm *oper = form->is_operand();
 631         if( oper && oper->is_user_name_for_sReg() ) {
 632           // Stack slots are unaliased memory handled by allocator
 633           oper = oper;  // debug stopping point !!!!!
 634         } else {
 635           DEF_of_memory = true;
 636         }
 637       }
 638     }
 639   }
 640   return (USE_of_memory && !DEF_of_memory);
 641 }
 642 
 643 
 644 int InstructForm::memory_operand(FormDict &globals) const {
 645   // Machine independent loads must be checked for anti-dependences
 646   // Check if instruction has a USE of a memory operand class, or a def.
 647   int USE_of_memory  = 0;
 648   int DEF_of_memory  = 0;
 649   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
 650   const char*    last_memory_USE = NULL;
 651   Component     *unique          = NULL;
 652   Component     *comp            = NULL;
 653   ComponentList &components      = (ComponentList &)_components;
 654 
 655   components.reset();
 656   while( (comp = components.iter()) != NULL ) {
 657     const Form  *form = globals[comp->_type];
 658     if( !form ) continue;
 659     OpClassForm *op   = form->is_opclass();
 660     if( !op ) continue;
 661     if( op->stack_slots_only(globals) )  continue;
 662     if( form->interface_type(globals) == Form::memory_interface ) {
 663       if( comp->isa(Component::DEF) ) {
 664         last_memory_DEF = comp->_name;
 665         DEF_of_memory++;
 666         unique = comp;
 667       } else if( comp->isa(Component::USE) ) {
 668         if( last_memory_DEF != NULL ) {
 669           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
 670           last_memory_DEF = NULL;
 671         }
 672         // Handles same memory being used multiple times in the case of BMI1 instructions.
 673         if (last_memory_USE != NULL) {
 674           if (strcmp(comp->_name, last_memory_USE) != 0) {
 675             USE_of_memory++;
 676           }
 677         } else {
 678           USE_of_memory++;
 679         }
 680         last_memory_USE = comp->_name;
 681 
 682         if (DEF_of_memory == 0)  // defs take precedence
 683           unique = comp;
 684       } else {
 685         assert(last_memory_DEF == NULL, "unpaired memory DEF");
 686       }
 687     }
 688   }
 689   assert(last_memory_DEF == NULL, "unpaired memory DEF");
 690   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
 691   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
 692   if( (USE_of_memory + DEF_of_memory) > 0 ) {
 693     if( is_simple_chain_rule(globals) ) {
 694       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
 695       //((InstructForm*)this)->dump();
 696       // Preceding code prints nothing on sparc and these insns on intel:
 697       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
 698       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
 699       return NO_MEMORY_OPERAND;
 700     }
 701 
 702     if( DEF_of_memory == 1 ) {
 703       assert(unique != NULL, "");
 704       if( USE_of_memory == 0 ) {
 705         // unique def, no uses
 706       } else {
 707         // // unique def, some uses
 708         // // must return bottom unless all uses match def
 709         // unique = NULL;
 710 #ifdef S390
 711         // This case is important for move instructions on s390x.
 712         // On other platforms (e.g. x86), all uses always match the def.
 713         unique = NULL;
 714 #endif
 715       }
 716     } else if( DEF_of_memory > 0 ) {
 717       // multiple defs, don't care about uses
 718       unique = NULL;
 719     } else if( USE_of_memory == 1) {
 720       // unique use, no defs
 721       assert(unique != NULL, "");
 722     } else if( USE_of_memory > 0 ) {
 723       // multiple uses, no defs
 724       unique = NULL;
 725     } else {
 726       assert(false, "bad case analysis");
 727     }
 728     // process the unique DEF or USE, if there is one
 729     if( unique == NULL ) {
 730       return MANY_MEMORY_OPERANDS;
 731     } else {
 732       int pos = components.operand_position(unique->_name);
 733       if( unique->isa(Component::DEF) ) {
 734         pos += 1;                // get corresponding USE from DEF
 735       }
 736       assert(pos >= 1, "I was just looking at it!");
 737       return pos;
 738     }
 739   }
 740 
 741   // missed the memory op??
 742   if( true ) {  // %%% should not be necessary
 743     if( is_ideal_store() != Form::none ) {
 744       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 745       ((InstructForm*)this)->dump();
 746       // pretend it has multiple defs and uses
 747       return MANY_MEMORY_OPERANDS;
 748     }
 749     if( is_ideal_load()  != Form::none ) {
 750       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 751       ((InstructForm*)this)->dump();
 752       // pretend it has multiple uses and no defs
 753       return MANY_MEMORY_OPERANDS;
 754     }
 755   }
 756 
 757   return NO_MEMORY_OPERAND;
 758 }
 759 
 760 
 761 // This instruction captures the machine-independent bottom_type
 762 // Expected use is for pointer vs oop determination for LoadP
 763 bool InstructForm::captures_bottom_type(FormDict &globals) const {
 764   if (_matrule && _matrule->_rChild &&
 765       (!strcmp(_matrule->_rChild->_opType,"CastPP")       ||  // new result type
 766        !strcmp(_matrule->_rChild->_opType,"CastX2P")      ||  // new result type
 767        !strcmp(_matrule->_rChild->_opType,"DecodeN")      ||
 768        !strcmp(_matrule->_rChild->_opType,"EncodeP")      ||
 769        !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
 770        !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
 771        !strcmp(_matrule->_rChild->_opType,"LoadN")        ||
 772        !strcmp(_matrule->_rChild->_opType,"LoadNKlass")   ||
 773        !strcmp(_matrule->_rChild->_opType,"CreateEx")     ||  // type of exception
 774        !strcmp(_matrule->_rChild->_opType,"CheckCastPP")  ||
 775        !strcmp(_matrule->_rChild->_opType,"GetAndSetP")   ||
 776        !strcmp(_matrule->_rChild->_opType,"GetAndSetN")   ||
 777        !strcmp(_matrule->_rChild->_opType,"CompareAndExchangeP") ||
 778        !strcmp(_matrule->_rChild->_opType,"CompareAndExchangeN")))  return true;
 779   else if ( is_ideal_load() == Form::idealP )                return true;
 780   else if ( is_ideal_store() != Form::none  )                return true;
 781 
 782   if (needs_base_oop_edge(globals)) return true;
 783 
 784   if (is_vector()) return true;
 785   if (is_mach_constant()) return true;
 786 
 787   return  false;
 788 }
 789 
 790 
 791 // Access instr_cost attribute or return NULL.
 792 const char* InstructForm::cost() {
 793   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
 794     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
 795       return cur->_val;
 796     }
 797   }
 798   return NULL;
 799 }
 800 
 801 // Return count of top-level operands.
 802 uint InstructForm::num_opnds() {
 803   int  num_opnds = _components.num_operands();
 804 
 805   // Need special handling for matching some ideal nodes
 806   // i.e. Matching a return node
 807   /*
 808   if( _matrule ) {
 809     if( strcmp(_matrule->_opType,"Return"   )==0 ||
 810         strcmp(_matrule->_opType,"Halt"     )==0 )
 811       return 3;
 812   }
 813     */
 814   return num_opnds;
 815 }
 816 
 817 const char* InstructForm::opnd_ident(int idx) {
 818   return _components.at(idx)->_name;
 819 }
 820 
 821 const char* InstructForm::unique_opnd_ident(uint idx) {
 822   uint i;
 823   for (i = 1; i < num_opnds(); ++i) {
 824     if (unique_opnds_idx(i) == idx) {
 825       break;
 826     }
 827   }
 828   return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
 829 }
 830 
 831 // Return count of unmatched operands.
 832 uint InstructForm::num_post_match_opnds() {
 833   uint  num_post_match_opnds = _components.count();
 834   uint  num_match_opnds = _components.match_count();
 835   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
 836 
 837   return num_post_match_opnds;
 838 }
 839 
 840 // Return the number of leaves below this complex operand
 841 uint InstructForm::num_consts(FormDict &globals) const {
 842   if ( ! _matrule) return 0;
 843 
 844   // This is a recursive invocation on all operands in the matchrule
 845   return _matrule->num_consts(globals);
 846 }
 847 
 848 // Constants in match rule with specified type
 849 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
 850   if ( ! _matrule) return 0;
 851 
 852   // This is a recursive invocation on all operands in the matchrule
 853   return _matrule->num_consts(globals, type);
 854 }
 855 
 856 
 857 // Return the register class associated with 'leaf'.
 858 const char *InstructForm::out_reg_class(FormDict &globals) {
 859   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
 860 
 861   return NULL;
 862 }
 863 
 864 
 865 
 866 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
 867 uint InstructForm::oper_input_base(FormDict &globals) {
 868   if( !_matrule ) return 1;     // Skip control for most nodes
 869 
 870   // Need special handling for matching some ideal nodes
 871   // i.e. Matching a return node
 872   if( strcmp(_matrule->_opType,"Return"    )==0 ||
 873       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
 874       strcmp(_matrule->_opType,"TailCall"  )==0 ||
 875       strcmp(_matrule->_opType,"TailJump"  )==0 ||
 876       strcmp(_matrule->_opType,"SafePoint" )==0 ||
 877       strcmp(_matrule->_opType,"Halt"      )==0 )
 878     return AdlcVMDeps::Parms;   // Skip the machine-state edges
 879 
 880   if( _matrule->_rChild &&
 881       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
 882         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
 883         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
 884         strcmp(_matrule->_rChild->_opType,"StrInflatedCopy"   )==0 ||
 885         strcmp(_matrule->_rChild->_opType,"StrCompressedCopy" )==0 ||
 886         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
 887         strcmp(_matrule->_rChild->_opType,"StrIndexOfChar")==0 ||
 888         strcmp(_matrule->_rChild->_opType,"HasNegatives")==0 ||
 889         strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
 890         // String.(compareTo/equals/indexOf) and Arrays.equals
 891         // and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
 892         // take 1 control and 1 memory edges.
 893         // Also String.(compressedCopy/inflatedCopy).
 894     return 2;
 895   }
 896 
 897   // Check for handling of 'Memory' input/edge in the ideal world.
 898   // The AD file writer is shielded from knowledge of these edges.
 899   int base = 1;                 // Skip control
 900   base += _matrule->needs_ideal_memory_edge(globals);
 901 
 902   // Also skip the base-oop value for uses of derived oops.
 903   // The AD file writer is shielded from knowledge of these edges.
 904   base += needs_base_oop_edge(globals);
 905 
 906   return base;
 907 }
 908 
 909 // This function determines the order of the MachOper in _opnds[]
 910 // by writing the operand names into the _components list.
 911 //
 912 // Implementation does not modify state of internal structures
 913 void InstructForm::build_components() {
 914   // Add top-level operands to the components
 915   if (_matrule)  _matrule->append_components(_localNames, _components);
 916 
 917   // Add parameters that "do not appear in match rule".
 918   bool has_temp = false;
 919   const char *name;
 920   const char *kill_name = NULL;
 921   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
 922     OpClassForm *opForm = _localNames[name]->is_opclass();
 923     assert(opForm != NULL, "sanity");
 924 
 925     Effect* e = NULL;
 926     {
 927       const Form* form = _effects[name];
 928       e = form ? form->is_effect() : NULL;
 929     }
 930 
 931     if (e != NULL) {
 932       has_temp |= e->is(Component::TEMP);
 933 
 934       // KILLs must be declared after any TEMPs because TEMPs are real
 935       // uses so their operand numbering must directly follow the real
 936       // inputs from the match rule.  Fixing the numbering seems
 937       // complex so simply enforce the restriction during parse.
 938       if (kill_name != NULL &&
 939           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
 940         OpClassForm* kill = _localNames[kill_name]->is_opclass();
 941         assert(kill != NULL, "sanity");
 942         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
 943                              _ident, kill->_ident, kill_name);
 944       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
 945         kill_name = name;
 946       }
 947     }
 948 
 949     const Component *component  = _components.search(name);
 950     if ( component  == NULL ) {
 951       if (e) {
 952         _components.insert(name, opForm->_ident, e->_use_def, false);
 953         component = _components.search(name);
 954         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
 955           const Form *form = globalAD->globalNames()[component->_type];
 956           assert( form, "component type must be a defined form");
 957           OperandForm *op   = form->is_operand();
 958           if (op->_interface && op->_interface->is_RegInterface()) {
 959             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 960                                  _ident, opForm->_ident, name);
 961           }
 962         }
 963       } else {
 964         // This would be a nice warning but it triggers in a few places in a benign way
 965         // if (_matrule != NULL && !expands()) {
 966         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
 967         //                        _ident, opForm->_ident, name);
 968         // }
 969         _components.insert(name, opForm->_ident, Component::INVALID, false);
 970       }
 971     }
 972     else if (e) {
 973       // Component was found in the list
 974       // Check if there is a new effect that requires an extra component.
 975       // This happens when adding 'USE' to a component that is not yet one.
 976       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
 977         if (component->isa(Component::USE) && _matrule) {
 978           const Form *form = globalAD->globalNames()[component->_type];
 979           assert( form, "component type must be a defined form");
 980           OperandForm *op   = form->is_operand();
 981           if (op->_interface && op->_interface->is_RegInterface()) {
 982             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 983                                  _ident, opForm->_ident, name);
 984           }
 985         }
 986         _components.insert(name, opForm->_ident, e->_use_def, false);
 987       } else {
 988         Component  *comp = (Component*)component;
 989         comp->promote_use_def_info(e->_use_def);
 990       }
 991       // Component positions are zero based.
 992       int  pos  = _components.operand_position(name);
 993       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
 994               "Component::DEF can only occur in the first position");
 995     }
 996   }
 997 
 998   // Resolving the interactions between expand rules and TEMPs would
 999   // be complex so simply disallow it.
1000   if (_matrule == NULL && has_temp) {
1001     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
1002   }
1003 
1004   return;
1005 }
1006 
1007 // Return zero-based position in component list;  -1 if not in list.
1008 int   InstructForm::operand_position(const char *name, int usedef) {
1009   return unique_opnds_idx(_components.operand_position(name, usedef, this));
1010 }
1011 
1012 int   InstructForm::operand_position_format(const char *name) {
1013   return unique_opnds_idx(_components.operand_position_format(name, this));
1014 }
1015 
1016 // Return zero-based position in component list; -1 if not in list.
1017 int   InstructForm::label_position() {
1018   return unique_opnds_idx(_components.label_position());
1019 }
1020 
1021 int   InstructForm::method_position() {
1022   return unique_opnds_idx(_components.method_position());
1023 }
1024 
1025 // Return number of relocation entries needed for this instruction.
1026 uint  InstructForm::reloc(FormDict &globals) {
1027   uint reloc_entries  = 0;
1028   // Check for "Call" nodes
1029   if ( is_ideal_call() )      ++reloc_entries;
1030   if ( is_ideal_return() )    ++reloc_entries;
1031   if ( is_ideal_safepoint() ) ++reloc_entries;
1032 
1033 
1034   // Check if operands MAYBE oop pointers, by checking for ConP elements
1035   // Proceed through the leaves of the match-tree and check for ConPs
1036   if ( _matrule != NULL ) {
1037     uint         position = 0;
1038     const char  *result   = NULL;
1039     const char  *name     = NULL;
1040     const char  *opType   = NULL;
1041     while (_matrule->base_operand(position, globals, result, name, opType)) {
1042       if ( strcmp(opType,"ConP") == 0 ) {
1043 #ifdef SPARC
1044         reloc_entries += 2; // 1 for sethi + 1 for setlo
1045 #else
1046         ++reloc_entries;
1047 #endif
1048       }
1049       ++position;
1050     }
1051   }
1052 
1053   // Above is only a conservative estimate
1054   // because it did not check contents of operand classes.
1055   // !!!!! !!!!!
1056   // Add 1 to reloc info for each operand class in the component list.
1057   Component  *comp;
1058   _components.reset();
1059   while ( (comp = _components.iter()) != NULL ) {
1060     const Form        *form = globals[comp->_type];
1061     assert( form, "Did not find component's type in global names");
1062     const OpClassForm *opc  = form->is_opclass();
1063     const OperandForm *oper = form->is_operand();
1064     if ( opc && (oper == NULL) ) {
1065       ++reloc_entries;
1066     } else if ( oper ) {
1067       // floats and doubles loaded out of method's constant pool require reloc info
1068       Form::DataType type = oper->is_base_constant(globals);
1069       if ( (type == Form::idealF) || (type == Form::idealD) ) {
1070         ++reloc_entries;
1071       }
1072     }
1073   }
1074 
1075   // Float and Double constants may come from the CodeBuffer table
1076   // and require relocatable addresses for access
1077   // !!!!!
1078   // Check for any component being an immediate float or double.
1079   Form::DataType data_type = is_chain_of_constant(globals);
1080   if( data_type==idealD || data_type==idealF ) {
1081 #ifdef SPARC
1082     // sparc required more relocation entries for floating constants
1083     // (expires 9/98)
1084     reloc_entries += 6;
1085 #else
1086     reloc_entries++;
1087 #endif
1088   }
1089 
1090   return reloc_entries;
1091 }
1092 
1093 // Utility function defined in archDesc.cpp
1094 extern bool is_def(int usedef);
1095 
1096 // Return the result of reducing an instruction
1097 const char *InstructForm::reduce_result() {
1098   const char* result = "Universe";  // default
1099   _components.reset();
1100   Component *comp = _components.iter();
1101   if (comp != NULL && comp->isa(Component::DEF)) {
1102     result = comp->_type;
1103     // Override this if the rule is a store operation:
1104     if (_matrule && _matrule->_rChild &&
1105         is_store_to_memory(_matrule->_rChild->_opType))
1106       result = "Universe";
1107   }
1108   return result;
1109 }
1110 
1111 // Return the name of the operand on the right hand side of the binary match
1112 // Return NULL if there is no right hand side
1113 const char *InstructForm::reduce_right(FormDict &globals)  const {
1114   if( _matrule == NULL ) return NULL;
1115   return  _matrule->reduce_right(globals);
1116 }
1117 
1118 // Similar for left
1119 const char *InstructForm::reduce_left(FormDict &globals)   const {
1120   if( _matrule == NULL ) return NULL;
1121   return  _matrule->reduce_left(globals);
1122 }
1123 
1124 
1125 // Base class for this instruction, MachNode except for calls
1126 const char *InstructForm::mach_base_class(FormDict &globals)  const {
1127   if( is_ideal_call() == Form::JAVA_STATIC ) {
1128     return "MachCallStaticJavaNode";
1129   }
1130   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
1131     return "MachCallDynamicJavaNode";
1132   }
1133   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
1134     return "MachCallRuntimeNode";
1135   }
1136   else if( is_ideal_call() == Form::JAVA_LEAF ) {
1137     return "MachCallLeafNode";
1138   }
1139   else if (is_ideal_return()) {
1140     return "MachReturnNode";
1141   }
1142   else if (is_ideal_halt()) {
1143     return "MachHaltNode";
1144   }
1145   else if (is_ideal_safepoint()) {
1146     return "MachSafePointNode";
1147   }
1148   else if (is_ideal_if()) {
1149     return "MachIfNode";
1150   }
1151   else if (is_ideal_goto()) {
1152     return "MachGotoNode";
1153   }
1154   else if (is_ideal_fastlock()) {
1155     return "MachFastLockNode";
1156   }
1157   else if (is_ideal_nop()) {
1158     return "MachNopNode";
1159   }
1160   else if( is_ideal_membar()) {
1161     return "MachMemBarNode";
1162   }
1163   else if (is_ideal_jump()) {
1164     return "MachJumpNode";
1165   }
1166   else if (is_mach_constant()) {
1167     return "MachConstantNode";
1168   }
1169   else if (captures_bottom_type(globals)) {
1170     return "MachTypeNode";
1171   } else {
1172     return "MachNode";
1173   }
1174   assert( false, "ShouldNotReachHere()");
1175   return NULL;
1176 }
1177 
1178 // Compare the instruction predicates for textual equality
1179 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
1180   const Predicate *pred1  = instr1->_predicate;
1181   const Predicate *pred2  = instr2->_predicate;
1182   if( pred1 == NULL && pred2 == NULL ) {
1183     // no predicates means they are identical
1184     return true;
1185   }
1186   if( pred1 != NULL && pred2 != NULL ) {
1187     // compare the predicates
1188     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
1189       return true;
1190     }
1191   }
1192 
1193   return false;
1194 }
1195 
1196 // Check if this instruction can cisc-spill to 'alternate'
1197 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
1198   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
1199   // Do not replace if a cisc-version has been found.
1200   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
1201 
1202   int         cisc_spill_operand = Maybe_cisc_spillable;
1203   char       *result             = NULL;
1204   char       *result2            = NULL;
1205   const char *op_name            = NULL;
1206   const char *reg_type           = NULL;
1207   FormDict   &globals            = AD.globalNames();
1208   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
1209   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
1210     cisc_spill_operand = operand_position(op_name, Component::USE);
1211     int def_oper  = operand_position(op_name, Component::DEF);
1212     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
1213       // Do not support cisc-spilling for destination operands and
1214       // make sure they have the same number of operands.
1215       _cisc_spill_alternate = instr;
1216       instr->set_cisc_alternate(true);
1217       if( AD._cisc_spill_debug ) {
1218         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
1219         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
1220       }
1221       // Record that a stack-version of the reg_mask is needed
1222       // !!!!!
1223       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
1224       assert( oper != NULL, "cisc-spilling non operand");
1225       const char *reg_class_name = oper->constrained_reg_class();
1226       AD.set_stack_or_reg(reg_class_name);
1227       const char *reg_mask_name  = AD.reg_mask(*oper);
1228       set_cisc_reg_mask_name(reg_mask_name);
1229       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
1230     } else {
1231       cisc_spill_operand = Not_cisc_spillable;
1232     }
1233   } else {
1234     cisc_spill_operand = Not_cisc_spillable;
1235   }
1236 
1237   set_cisc_spill_operand(cisc_spill_operand);
1238   return (cisc_spill_operand != Not_cisc_spillable);
1239 }
1240 
1241 // Check to see if this instruction can be replaced with the short branch
1242 // instruction `short-branch'
1243 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
1244   if (_matrule != NULL &&
1245       this != short_branch &&   // Don't match myself
1246       !is_short_branch() &&     // Don't match another short branch variant
1247       reduce_result() != NULL &&
1248       strstr(_ident, "restoreMask") == NULL && // Don't match side effects
1249       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
1250       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
1251     // The instructions are equivalent.
1252 
1253     // Now verify that both instructions have the same parameters and
1254     // the same effects. Both branch forms should have the same inputs
1255     // and resulting projections to correctly replace a long branch node
1256     // with corresponding short branch node during code generation.
1257 
1258     bool different = false;
1259     if (short_branch->_components.count() != _components.count()) {
1260        different = true;
1261     } else if (_components.count() > 0) {
1262       short_branch->_components.reset();
1263       _components.reset();
1264       Component *comp;
1265       while ((comp = _components.iter()) != NULL) {
1266         Component *short_comp = short_branch->_components.iter();
1267         if (short_comp == NULL ||
1268             short_comp->_type != comp->_type ||
1269             short_comp->_usedef != comp->_usedef) {
1270           different = true;
1271           break;
1272         }
1273       }
1274       if (short_branch->_components.iter() != NULL)
1275         different = true;
1276     }
1277     if (different) {
1278       globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
1279     }
1280     if (AD._adl_debug > 1 || AD._short_branch_debug) {
1281       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
1282     }
1283     _short_branch_form = short_branch;
1284     return true;
1285   }
1286   return false;
1287 }
1288 
1289 
1290 // --------------------------- FILE *output_routines
1291 //
1292 // Generate the format call for the replacement variable
1293 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
1294   // Handle special constant table variables.
1295   if (strcmp(rep_var, "constanttablebase") == 0) {
1296     fprintf(fp, "char reg[128];  ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
1297     fprintf(fp, "    st->print(\"%%s\", reg);\n");
1298     return;
1299   }
1300   if (strcmp(rep_var, "constantoffset") == 0) {
1301     fprintf(fp, "st->print(\"#%%d\", constant_offset_unchecked());\n");
1302     return;
1303   }
1304   if (strcmp(rep_var, "constantaddress") == 0) {
1305     fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset_unchecked());\n");
1306     return;
1307   }
1308 
1309   // Find replacement variable's type
1310   const Form *form   = _localNames[rep_var];
1311   if (form == NULL) {
1312     globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
1313                          rep_var, _ident);
1314     return;
1315   }
1316   OpClassForm *opc   = form->is_opclass();
1317   assert( opc, "replacement variable was not found in local names");
1318   // Lookup the index position of the replacement variable
1319   int idx  = operand_position_format(rep_var);
1320   if ( idx == -1 ) {
1321     globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
1322                          rep_var, _ident);
1323     assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
1324     return;
1325   }
1326 
1327   if (is_noninput_operand(idx)) {
1328     // This component isn't in the input array.  Print out the static
1329     // name of the register.
1330     OperandForm* oper = form->is_operand();
1331     if (oper != NULL && oper->is_bound_register()) {
1332       const RegDef* first = oper->get_RegClass()->find_first_elem();
1333       fprintf(fp, "    st->print_raw(\"%s\");\n", first->_regname);
1334     } else {
1335       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
1336     }
1337   } else {
1338     // Output the format call for this operand
1339     fprintf(fp,"opnd_array(%d)->",idx);
1340     if (idx == 0)
1341       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
1342     else
1343       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
1344   }
1345 }
1346 
1347 // Seach through operands to determine parameters unique positions.
1348 void InstructForm::set_unique_opnds() {
1349   uint* uniq_idx = NULL;
1350   uint  nopnds = num_opnds();
1351   uint  num_uniq = nopnds;
1352   uint i;
1353   _uniq_idx_length = 0;
1354   if (nopnds > 0) {
1355     // Allocate index array.  Worst case we're mapping from each
1356     // component back to an index and any DEF always goes at 0 so the
1357     // length of the array has to be the number of components + 1.
1358     _uniq_idx_length = _components.count() + 1;
1359     uniq_idx = (uint*) AllocateHeap(sizeof(uint) * _uniq_idx_length);
1360     for (i = 0; i < _uniq_idx_length; i++) {
1361       uniq_idx[i] = i;
1362     }
1363   }
1364   // Do it only if there is a match rule and no expand rule.  With an
1365   // expand rule it is done by creating new mach node in Expand()
1366   // method.
1367   if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
1368     const char *name;
1369     uint count;
1370     bool has_dupl_use = false;
1371 
1372     _parameters.reset();
1373     while ((name = _parameters.iter()) != NULL) {
1374       count = 0;
1375       uint position = 0;
1376       uint uniq_position = 0;
1377       _components.reset();
1378       Component *comp = NULL;
1379       if (sets_result()) {
1380         comp = _components.iter();
1381         position++;
1382       }
1383       // The next code is copied from the method operand_position().
1384       for (; (comp = _components.iter()) != NULL; ++position) {
1385         // When the first component is not a DEF,
1386         // leave space for the result operand!
1387         if (position==0 && (!comp->isa(Component::DEF))) {
1388           ++position;
1389         }
1390         if (strcmp(name, comp->_name) == 0) {
1391           if (++count > 1) {
1392             assert(position < _uniq_idx_length, "out of bounds");
1393             uniq_idx[position] = uniq_position;
1394             has_dupl_use = true;
1395           } else {
1396             uniq_position = position;
1397           }
1398         }
1399         if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
1400           ++position;
1401           if (position != 1)
1402             --position;   // only use two slots for the 1st USE_DEF
1403         }
1404       }
1405     }
1406     if (has_dupl_use) {
1407       for (i = 1; i < nopnds; i++) {
1408         if (i != uniq_idx[i]) {
1409           break;
1410         }
1411       }
1412       uint j = i;
1413       for (; i < nopnds; i++) {
1414         if (i == uniq_idx[i]) {
1415           uniq_idx[i] = j++;
1416         }
1417       }
1418       num_uniq = j;
1419     }
1420   }
1421   _uniq_idx = uniq_idx;
1422   _num_uniq = num_uniq;
1423 }
1424 
1425 // Generate index values needed for determining the operand position
1426 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
1427   uint  idx = 0;                  // position of operand in match rule
1428   int   cur_num_opnds = num_opnds();
1429 
1430   // Compute the index into vector of operand pointers:
1431   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
1432   // idx1 starts at oper_input_base()
1433   if ( cur_num_opnds >= 1 ) {
1434     fprintf(fp,"  // Start at oper_input_base() and count operands\n");
1435     fprintf(fp,"  unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
1436     fprintf(fp,"  unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
1437     fprintf(fp," \t// %s\n", unique_opnd_ident(1));
1438 
1439     // Generate starting points for other unique operands if they exist
1440     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
1441       if( *receiver == 0 ) {
1442         fprintf(fp,"  unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
1443                 prefix, idx, prefix, idx-1, idx-1 );
1444       } else {
1445         fprintf(fp,"  unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
1446                 prefix, idx, prefix, idx-1, receiver, idx-1 );
1447       }
1448       fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
1449     }
1450   }
1451   if( *receiver != 0 ) {
1452     // This value is used by generate_peepreplace when copying a node.
1453     // Don't emit it in other cases since it can hide bugs with the
1454     // use invalid idx's.
1455     fprintf(fp,"  unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
1456   }
1457 
1458 }
1459 
1460 // ---------------------------
1461 bool InstructForm::verify() {
1462   // !!!!! !!!!!
1463   // Check that a "label" operand occurs last in the operand list, if present
1464   return true;
1465 }
1466 
1467 void InstructForm::dump() {
1468   output(stderr);
1469 }
1470 
1471 void InstructForm::output(FILE *fp) {
1472   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
1473   if (_matrule)   _matrule->output(fp);
1474   if (_insencode) _insencode->output(fp);
1475   if (_constant)  _constant->output(fp);
1476   if (_opcode)    _opcode->output(fp);
1477   if (_attribs)   _attribs->output(fp);
1478   if (_predicate) _predicate->output(fp);
1479   if (_effects.Size()) {
1480     fprintf(fp,"Effects\n");
1481     _effects.dump();
1482   }
1483   if (_exprule)   _exprule->output(fp);
1484   if (_rewrule)   _rewrule->output(fp);
1485   if (_format)    _format->output(fp);
1486   if (_peephole)  _peephole->output(fp);
1487 }
1488 
1489 void MachNodeForm::dump() {
1490   output(stderr);
1491 }
1492 
1493 void MachNodeForm::output(FILE *fp) {
1494   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
1495 }
1496 
1497 //------------------------------build_predicate--------------------------------
1498 // Build instruction predicates.  If the user uses the same operand name
1499 // twice, we need to check that the operands are pointer-eequivalent in
1500 // the DFA during the labeling process.
1501 Predicate *InstructForm::build_predicate() {
1502   const int buflen = 1024;
1503   char buf[buflen], *s=buf;
1504   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
1505 
1506   MatchNode *mnode =
1507     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
1508   mnode->count_instr_names(names);
1509 
1510   uint first = 1;
1511   // Start with the predicate supplied in the .ad file.
1512   if (_predicate) {
1513     if (first) first = 0;
1514     strcpy(s, "("); s += strlen(s);
1515     strncpy(s, _predicate->_pred, buflen - strlen(s) - 1);
1516     s += strlen(s);
1517     strcpy(s, ")"); s += strlen(s);
1518   }
1519   for( DictI i(&names); i.test(); ++i ) {
1520     uintptr_t cnt = (uintptr_t)i._value;
1521     if( cnt > 1 ) {             // Need a predicate at all?
1522       assert( cnt == 2, "Unimplemented" );
1523       // Handle many pairs
1524       if( first ) first=0;
1525       else {                    // All tests must pass, so use '&&'
1526         strcpy(s," && ");
1527         s += strlen(s);
1528       }
1529       // Add predicate to working buffer
1530       sprintf(s,"/*%s*/(",(char*)i._key);
1531       s += strlen(s);
1532       mnode->build_instr_pred(s,(char*)i._key,0);
1533       s += strlen(s);
1534       strcpy(s," == "); s += strlen(s);
1535       mnode->build_instr_pred(s,(char*)i._key,1);
1536       s += strlen(s);
1537       strcpy(s,")"); s += strlen(s);
1538     }
1539   }
1540   if( s == buf ) s = NULL;
1541   else {
1542     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
1543     s = strdup(buf);
1544   }
1545   return new Predicate(s);
1546 }
1547 
1548 //------------------------------EncodeForm-------------------------------------
1549 // Constructor
1550 EncodeForm::EncodeForm()
1551   : _encClass(cmpstr,hashstr, Form::arena) {
1552 }
1553 EncodeForm::~EncodeForm() {
1554 }
1555 
1556 // record a new register class
1557 EncClass *EncodeForm::add_EncClass(const char *className) {
1558   EncClass *encClass = new EncClass(className);
1559   _eclasses.addName(className);
1560   _encClass.Insert(className,encClass);
1561   return encClass;
1562 }
1563 
1564 // Lookup the function body for an encoding class
1565 EncClass  *EncodeForm::encClass(const char *className) {
1566   assert( className != NULL, "Must provide a defined encoding name");
1567 
1568   EncClass *encClass = (EncClass*)_encClass[className];
1569   return encClass;
1570 }
1571 
1572 // Lookup the function body for an encoding class
1573 const char *EncodeForm::encClassBody(const char *className) {
1574   if( className == NULL ) return NULL;
1575 
1576   EncClass *encClass = (EncClass*)_encClass[className];
1577   assert( encClass != NULL, "Encode Class is missing.");
1578   encClass->_code.reset();
1579   const char *code = (const char*)encClass->_code.iter();
1580   assert( code != NULL, "Found an empty encode class body.");
1581 
1582   return code;
1583 }
1584 
1585 // Lookup the function body for an encoding class
1586 const char *EncodeForm::encClassPrototype(const char *className) {
1587   assert( className != NULL, "Encode class name must be non NULL.");
1588 
1589   return className;
1590 }
1591 
1592 void EncodeForm::dump() {                  // Debug printer
1593   output(stderr);
1594 }
1595 
1596 void EncodeForm::output(FILE *fp) {          // Write info to output files
1597   const char *name;
1598   fprintf(fp,"\n");
1599   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
1600   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
1601     ((EncClass*)_encClass[name])->output(fp);
1602   }
1603   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
1604 }
1605 //------------------------------EncClass---------------------------------------
1606 EncClass::EncClass(const char *name)
1607   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
1608 }
1609 EncClass::~EncClass() {
1610 }
1611 
1612 // Add a parameter <type,name> pair
1613 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
1614   _parameter_type.addName( parameter_type );
1615   _parameter_name.addName( parameter_name );
1616 }
1617 
1618 // Verify operand types in parameter list
1619 bool EncClass::check_parameter_types(FormDict &globals) {
1620   // !!!!!
1621   return false;
1622 }
1623 
1624 // Add the decomposed "code" sections of an encoding's code-block
1625 void EncClass::add_code(const char *code) {
1626   _code.addName(code);
1627 }
1628 
1629 // Add the decomposed "replacement variables" of an encoding's code-block
1630 void EncClass::add_rep_var(char *replacement_var) {
1631   _code.addName(NameList::_signal);
1632   _rep_vars.addName(replacement_var);
1633 }
1634 
1635 // Lookup the function body for an encoding class
1636 int EncClass::rep_var_index(const char *rep_var) {
1637   uint        position = 0;
1638   const char *name     = NULL;
1639 
1640   _parameter_name.reset();
1641   while ( (name = _parameter_name.iter()) != NULL ) {
1642     if ( strcmp(rep_var,name) == 0 ) return position;
1643     ++position;
1644   }
1645 
1646   return -1;
1647 }
1648 
1649 // Check after parsing
1650 bool EncClass::verify() {
1651   // 1!!!!
1652   // Check that each replacement variable, '$name' in architecture description
1653   // is actually a local variable for this encode class, or a reserved name
1654   // "primary, secondary, tertiary"
1655   return true;
1656 }
1657 
1658 void EncClass::dump() {
1659   output(stderr);
1660 }
1661 
1662 // Write info to output files
1663 void EncClass::output(FILE *fp) {
1664   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
1665 
1666   // Output the parameter list
1667   _parameter_type.reset();
1668   _parameter_name.reset();
1669   const char *type = _parameter_type.iter();
1670   const char *name = _parameter_name.iter();
1671   fprintf(fp, " ( ");
1672   for ( ; (type != NULL) && (name != NULL);
1673         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
1674     fprintf(fp, " %s %s,", type, name);
1675   }
1676   fprintf(fp, " ) ");
1677 
1678   // Output the code block
1679   _code.reset();
1680   _rep_vars.reset();
1681   const char *code;
1682   while ( (code = _code.iter()) != NULL ) {
1683     if ( _code.is_signal(code) ) {
1684       // A replacement variable
1685       const char *rep_var = _rep_vars.iter();
1686       fprintf(fp,"($%s)", rep_var);
1687     } else {
1688       // A section of code
1689       fprintf(fp,"%s", code);
1690     }
1691   }
1692 
1693 }
1694 
1695 //------------------------------Opcode-----------------------------------------
1696 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
1697   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
1698 }
1699 
1700 Opcode::~Opcode() {
1701 }
1702 
1703 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
1704   if( strcmp(param,"primary") == 0 ) {
1705     return Opcode::PRIMARY;
1706   }
1707   else if( strcmp(param,"secondary") == 0 ) {
1708     return Opcode::SECONDARY;
1709   }
1710   else if( strcmp(param,"tertiary") == 0 ) {
1711     return Opcode::TERTIARY;
1712   }
1713   return Opcode::NOT_AN_OPCODE;
1714 }
1715 
1716 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
1717   // Default values previously provided by MachNode::primary()...
1718   const char *description = NULL;
1719   const char *value       = NULL;
1720   // Check if user provided any opcode definitions
1721   if( this != NULL ) {
1722     // Update 'value' if user provided a definition in the instruction
1723     switch (desired_opcode) {
1724     case PRIMARY:
1725       description = "primary()";
1726       if( _primary   != NULL)  { value = _primary;     }
1727       break;
1728     case SECONDARY:
1729       description = "secondary()";
1730       if( _secondary != NULL ) { value = _secondary;   }
1731       break;
1732     case TERTIARY:
1733       description = "tertiary()";
1734       if( _tertiary  != NULL ) { value = _tertiary;    }
1735       break;
1736     default:
1737       assert( false, "ShouldNotReachHere();");
1738       break;
1739     }
1740   }
1741   if (value != NULL) {
1742     fprintf(fp, "(%s /*%s*/)", value, description);
1743   }
1744   return value != NULL;
1745 }
1746 
1747 void Opcode::dump() {
1748   output(stderr);
1749 }
1750 
1751 // Write info to output files
1752 void Opcode::output(FILE *fp) {
1753   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
1754   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
1755   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
1756 }
1757 
1758 //------------------------------InsEncode--------------------------------------
1759 InsEncode::InsEncode() {
1760 }
1761 InsEncode::~InsEncode() {
1762 }
1763 
1764 // Add "encode class name" and its parameters
1765 NameAndList *InsEncode::add_encode(char *encoding) {
1766   assert( encoding != NULL, "Must provide name for encoding");
1767 
1768   // add_parameter(NameList::_signal);
1769   NameAndList *encode = new NameAndList(encoding);
1770   _encoding.addName((char*)encode);
1771 
1772   return encode;
1773 }
1774 
1775 // Access the list of encodings
1776 void InsEncode::reset() {
1777   _encoding.reset();
1778   // _parameter.reset();
1779 }
1780 const char* InsEncode::encode_class_iter() {
1781   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
1782   return  ( encode_class != NULL ? encode_class->name() : NULL );
1783 }
1784 // Obtain parameter name from zero based index
1785 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
1786   NameAndList *params = (NameAndList*)_encoding.current();
1787   assert( params != NULL, "Internal Error");
1788   const char *param = (*params)[param_no];
1789 
1790   // Remove '$' if parser placed it there.
1791   return ( param != NULL && *param == '$') ? (param+1) : param;
1792 }
1793 
1794 void InsEncode::dump() {
1795   output(stderr);
1796 }
1797 
1798 // Write info to output files
1799 void InsEncode::output(FILE *fp) {
1800   NameAndList *encoding  = NULL;
1801   const char  *parameter = NULL;
1802 
1803   fprintf(fp,"InsEncode: ");
1804   _encoding.reset();
1805 
1806   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
1807     // Output the encoding being used
1808     fprintf(fp,"%s(", encoding->name() );
1809 
1810     // Output its parameter list, if any
1811     bool first_param = true;
1812     encoding->reset();
1813     while (  (parameter = encoding->iter()) != 0 ) {
1814       // Output the ',' between parameters
1815       if ( ! first_param )  fprintf(fp,", ");
1816       first_param = false;
1817       // Output the parameter
1818       fprintf(fp,"%s", parameter);
1819     } // done with parameters
1820     fprintf(fp,")  ");
1821   } // done with encodings
1822 
1823   fprintf(fp,"\n");
1824 }
1825 
1826 //------------------------------Effect-----------------------------------------
1827 static int effect_lookup(const char *name) {
1828   if (!strcmp(name, "USE")) return Component::USE;
1829   if (!strcmp(name, "DEF")) return Component::DEF;
1830   if (!strcmp(name, "USE_DEF")) return Component::USE_DEF;
1831   if (!strcmp(name, "KILL")) return Component::KILL;
1832   if (!strcmp(name, "USE_KILL")) return Component::USE_KILL;
1833   if (!strcmp(name, "TEMP")) return Component::TEMP;
1834   if (!strcmp(name, "TEMP_DEF")) return Component::TEMP_DEF;
1835   if (!strcmp(name, "INVALID")) return Component::INVALID;
1836   if (!strcmp(name, "CALL")) return Component::CALL;
1837   assert(false,"Invalid effect name specified\n");
1838   return Component::INVALID;
1839 }
1840 
1841 const char *Component::getUsedefName() {
1842   switch (_usedef) {
1843     case Component::INVALID:  return "INVALID";  break;
1844     case Component::USE:      return "USE";      break;
1845     case Component::USE_DEF:  return "USE_DEF";  break;
1846     case Component::USE_KILL: return "USE_KILL"; break;
1847     case Component::KILL:     return "KILL";     break;
1848     case Component::TEMP:     return "TEMP";     break;
1849     case Component::TEMP_DEF: return "TEMP_DEF"; break;
1850     case Component::DEF:      return "DEF";      break;
1851     case Component::CALL:     return "CALL";     break;
1852     default: assert(false, "unknown effect");
1853   }
1854   return "Undefined Use/Def info";
1855 }
1856 
1857 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
1858   _ftype = Form::EFF;
1859 }
1860 
1861 Effect::~Effect() {
1862 }
1863 
1864 // Dynamic type check
1865 Effect *Effect::is_effect() const {
1866   return (Effect*)this;
1867 }
1868 
1869 
1870 // True if this component is equal to the parameter.
1871 bool Effect::is(int use_def_kill_enum) const {
1872   return (_use_def == use_def_kill_enum ? true : false);
1873 }
1874 // True if this component is used/def'd/kill'd as the parameter suggests.
1875 bool Effect::isa(int use_def_kill_enum) const {
1876   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
1877 }
1878 
1879 void Effect::dump() {
1880   output(stderr);
1881 }
1882 
1883 void Effect::output(FILE *fp) {          // Write info to output files
1884   fprintf(fp,"Effect: %s\n", (_name?_name:""));
1885 }
1886 
1887 //------------------------------ExpandRule-------------------------------------
1888 ExpandRule::ExpandRule() : _expand_instrs(),
1889                            _newopconst(cmpstr, hashstr, Form::arena) {
1890   _ftype = Form::EXP;
1891 }
1892 
1893 ExpandRule::~ExpandRule() {                  // Destructor
1894 }
1895 
1896 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
1897   _expand_instrs.addName((char*)instruction_name_and_operand_list);
1898 }
1899 
1900 void ExpandRule::reset_instructions() {
1901   _expand_instrs.reset();
1902 }
1903 
1904 NameAndList* ExpandRule::iter_instructions() {
1905   return (NameAndList*)_expand_instrs.iter();
1906 }
1907 
1908 
1909 void ExpandRule::dump() {
1910   output(stderr);
1911 }
1912 
1913 void ExpandRule::output(FILE *fp) {         // Write info to output files
1914   NameAndList *expand_instr = NULL;
1915   const char *opid = NULL;
1916 
1917   fprintf(fp,"\nExpand Rule:\n");
1918 
1919   // Iterate over the instructions 'node' expands into
1920   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
1921     fprintf(fp,"%s(", expand_instr->name());
1922 
1923     // iterate over the operand list
1924     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1925       fprintf(fp,"%s ", opid);
1926     }
1927     fprintf(fp,");\n");
1928   }
1929 }
1930 
1931 //------------------------------RewriteRule------------------------------------
1932 RewriteRule::RewriteRule(char* params, char* block)
1933   : _tempParams(params), _tempBlock(block) { };  // Constructor
1934 RewriteRule::~RewriteRule() {                 // Destructor
1935 }
1936 
1937 void RewriteRule::dump() {
1938   output(stderr);
1939 }
1940 
1941 void RewriteRule::output(FILE *fp) {         // Write info to output files
1942   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
1943           (_tempParams?_tempParams:""),
1944           (_tempBlock?_tempBlock:""));
1945 }
1946 
1947 
1948 //==============================MachNodes======================================
1949 //------------------------------MachNodeForm-----------------------------------
1950 MachNodeForm::MachNodeForm(char *id)
1951   : _ident(id) {
1952 }
1953 
1954 MachNodeForm::~MachNodeForm() {
1955 }
1956 
1957 MachNodeForm *MachNodeForm::is_machnode() const {
1958   return (MachNodeForm*)this;
1959 }
1960 
1961 //==============================Operand Classes================================
1962 //------------------------------OpClassForm------------------------------------
1963 OpClassForm::OpClassForm(const char* id) : _ident(id) {
1964   _ftype = Form::OPCLASS;
1965 }
1966 
1967 OpClassForm::~OpClassForm() {
1968 }
1969 
1970 bool OpClassForm::ideal_only() const { return 0; }
1971 
1972 OpClassForm *OpClassForm::is_opclass() const {
1973   return (OpClassForm*)this;
1974 }
1975 
1976 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
1977   if( _oplst.count() == 0 ) return Form::no_interface;
1978 
1979   // Check that my operands have the same interface type
1980   Form::InterfaceType  interface;
1981   bool  first = true;
1982   NameList &op_list = (NameList &)_oplst;
1983   op_list.reset();
1984   const char *op_name;
1985   while( (op_name = op_list.iter()) != NULL ) {
1986     const Form  *form    = globals[op_name];
1987     OperandForm *operand = form->is_operand();
1988     assert( operand, "Entry in operand class that is not an operand");
1989     if( first ) {
1990       first     = false;
1991       interface = operand->interface_type(globals);
1992     } else {
1993       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
1994     }
1995   }
1996   return interface;
1997 }
1998 
1999 bool OpClassForm::stack_slots_only(FormDict &globals) const {
2000   if( _oplst.count() == 0 ) return false;  // how?
2001 
2002   NameList &op_list = (NameList &)_oplst;
2003   op_list.reset();
2004   const char *op_name;
2005   while( (op_name = op_list.iter()) != NULL ) {
2006     const Form  *form    = globals[op_name];
2007     OperandForm *operand = form->is_operand();
2008     assert( operand, "Entry in operand class that is not an operand");
2009     if( !operand->stack_slots_only(globals) )  return false;
2010   }
2011   return true;
2012 }
2013 
2014 
2015 void OpClassForm::dump() {
2016   output(stderr);
2017 }
2018 
2019 void OpClassForm::output(FILE *fp) {
2020   const char *name;
2021   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
2022   fprintf(fp,"\nCount = %d\n", _oplst.count());
2023   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
2024     fprintf(fp,"%s, ",name);
2025   }
2026   fprintf(fp,"\n");
2027 }
2028 
2029 
2030 //==============================Operands=======================================
2031 //------------------------------OperandForm------------------------------------
2032 OperandForm::OperandForm(const char* id)
2033   : OpClassForm(id), _ideal_only(false),
2034     _localNames(cmpstr, hashstr, Form::arena) {
2035       _ftype = Form::OPER;
2036 
2037       _matrule   = NULL;
2038       _interface = NULL;
2039       _attribs   = NULL;
2040       _predicate = NULL;
2041       _constraint= NULL;
2042       _construct = NULL;
2043       _format    = NULL;
2044 }
2045 OperandForm::OperandForm(const char* id, bool ideal_only)
2046   : OpClassForm(id), _ideal_only(ideal_only),
2047     _localNames(cmpstr, hashstr, Form::arena) {
2048       _ftype = Form::OPER;
2049 
2050       _matrule   = NULL;
2051       _interface = NULL;
2052       _attribs   = NULL;
2053       _predicate = NULL;
2054       _constraint= NULL;
2055       _construct = NULL;
2056       _format    = NULL;
2057 }
2058 OperandForm::~OperandForm() {
2059 }
2060 
2061 
2062 OperandForm *OperandForm::is_operand() const {
2063   return (OperandForm*)this;
2064 }
2065 
2066 bool OperandForm::ideal_only() const {
2067   return _ideal_only;
2068 }
2069 
2070 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
2071   if( _interface == NULL )  return Form::no_interface;
2072 
2073   return _interface->interface_type(globals);
2074 }
2075 
2076 
2077 bool OperandForm::stack_slots_only(FormDict &globals) const {
2078   if( _constraint == NULL )  return false;
2079   return _constraint->stack_slots_only();
2080 }
2081 
2082 
2083 // Access op_cost attribute or return NULL.
2084 const char* OperandForm::cost() {
2085   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
2086     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
2087       return cur->_val;
2088     }
2089   }
2090   return NULL;
2091 }
2092 
2093 // Return the number of leaves below this complex operand
2094 uint OperandForm::num_leaves() const {
2095   if ( ! _matrule) return 0;
2096 
2097   int num_leaves = _matrule->_numleaves;
2098   return num_leaves;
2099 }
2100 
2101 // Return the number of constants contained within this complex operand
2102 uint OperandForm::num_consts(FormDict &globals) const {
2103   if ( ! _matrule) return 0;
2104 
2105   // This is a recursive invocation on all operands in the matchrule
2106   return _matrule->num_consts(globals);
2107 }
2108 
2109 // Return the number of constants in match rule with specified type
2110 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
2111   if ( ! _matrule) return 0;
2112 
2113   // This is a recursive invocation on all operands in the matchrule
2114   return _matrule->num_consts(globals, type);
2115 }
2116 
2117 // Return the number of pointer constants contained within this complex operand
2118 uint OperandForm::num_const_ptrs(FormDict &globals) const {
2119   if ( ! _matrule) return 0;
2120 
2121   // This is a recursive invocation on all operands in the matchrule
2122   return _matrule->num_const_ptrs(globals);
2123 }
2124 
2125 uint OperandForm::num_edges(FormDict &globals) const {
2126   uint edges  = 0;
2127   uint leaves = num_leaves();
2128   uint consts = num_consts(globals);
2129 
2130   // If we are matching a constant directly, there are no leaves.
2131   edges = ( leaves > consts ) ? leaves - consts : 0;
2132 
2133   // !!!!!
2134   // Special case operands that do not have a corresponding ideal node.
2135   if( (edges == 0) && (consts == 0) ) {
2136     if( constrained_reg_class() != NULL ) {
2137       edges = 1;
2138     } else {
2139       if( _matrule
2140           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
2141         const Form *form = globals[_matrule->_opType];
2142         OperandForm *oper = form ? form->is_operand() : NULL;
2143         if( oper ) {
2144           return oper->num_edges(globals);
2145         }
2146       }
2147     }
2148   }
2149 
2150   return edges;
2151 }
2152 
2153 
2154 // Check if this operand is usable for cisc-spilling
2155 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
2156   const char *ideal = ideal_type(globals);
2157   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
2158   return is_cisc_reg;
2159 }
2160 
2161 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
2162   Form::InterfaceType my_interface = interface_type(globals);
2163   return (my_interface == memory_interface);
2164 }
2165 
2166 
2167 // node matches ideal 'Bool'
2168 bool OperandForm::is_ideal_bool() const {
2169   if( _matrule == NULL ) return false;
2170 
2171   return _matrule->is_ideal_bool();
2172 }
2173 
2174 // Require user's name for an sRegX to be stackSlotX
2175 Form::DataType OperandForm::is_user_name_for_sReg() const {
2176   DataType data_type = none;
2177   if( _ident != NULL ) {
2178     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
2179     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
2180     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
2181     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
2182     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
2183   }
2184   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
2185 
2186   return data_type;
2187 }
2188 
2189 
2190 // Return ideal type, if there is a single ideal type for this operand
2191 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
2192   const char *type = NULL;
2193   if (ideal_only()) type = _ident;
2194   else if( _matrule == NULL ) {
2195     // Check for condition code register
2196     const char *rc_name = constrained_reg_class();
2197     // !!!!!
2198     if (rc_name == NULL) return NULL;
2199     // !!!!! !!!!!
2200     // Check constraints on result's register class
2201     if( registers ) {
2202       RegClass *reg_class  = registers->getRegClass(rc_name);
2203       assert( reg_class != NULL, "Register class is not defined");
2204 
2205       // Check for ideal type of entries in register class, all are the same type
2206       reg_class->reset();
2207       RegDef *reg_def = reg_class->RegDef_iter();
2208       assert( reg_def != NULL, "No entries in register class");
2209       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
2210       // Return substring that names the register's ideal type
2211       type = reg_def->_idealtype + 3;
2212       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
2213       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
2214       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
2215     }
2216   }
2217   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
2218     // This operand matches a single type, at the top level.
2219     // Check for ideal type
2220     type = _matrule->_opType;
2221     if( strcmp(type,"Bool") == 0 )
2222       return "Bool";
2223     // transitive lookup
2224     const Form *frm = globals[type];
2225     OperandForm *op = frm->is_operand();
2226     type = op->ideal_type(globals, registers);
2227   }
2228   return type;
2229 }
2230 
2231 
2232 // If there is a single ideal type for this interface field, return it.
2233 const char *OperandForm::interface_ideal_type(FormDict &globals,
2234                                               const char *field) const {
2235   const char  *ideal_type = NULL;
2236   const char  *value      = NULL;
2237 
2238   // Check if "field" is valid for this operand's interface
2239   if ( ! is_interface_field(field, value) )   return ideal_type;
2240 
2241   // !!!!! !!!!! !!!!!
2242   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
2243 
2244   // Else, lookup type of field's replacement variable
2245 
2246   return ideal_type;
2247 }
2248 
2249 
2250 RegClass* OperandForm::get_RegClass() const {
2251   if (_interface && !_interface->is_RegInterface()) return NULL;
2252   return globalAD->get_registers()->getRegClass(constrained_reg_class());
2253 }
2254 
2255 
2256 bool OperandForm::is_bound_register() const {
2257   RegClass* reg_class = get_RegClass();
2258   if (reg_class == NULL) {
2259     return false;
2260   }
2261 
2262   const char* name = ideal_type(globalAD->globalNames());
2263   if (name == NULL) {
2264     return false;
2265   }
2266 
2267   uint size = 0;
2268   if (strcmp(name, "RegFlags") == 0) size = 1;
2269   if (strcmp(name, "RegI") == 0) size = 1;
2270   if (strcmp(name, "RegF") == 0) size = 1;
2271   if (strcmp(name, "RegD") == 0) size = 2;
2272   if (strcmp(name, "RegL") == 0) size = 2;
2273   if (strcmp(name, "RegN") == 0) size = 1;
2274   if (strcmp(name, "VecX") == 0) size = 4;
2275   if (strcmp(name, "VecY") == 0) size = 8;
2276   if (strcmp(name, "VecZ") == 0) size = 16;
2277   if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
2278   if (size == 0) {
2279     return false;
2280   }
2281   return size == reg_class->size();
2282 }
2283 
2284 
2285 // Check if this is a valid field for this operand,
2286 // Return 'true' if valid, and set the value to the string the user provided.
2287 bool  OperandForm::is_interface_field(const char *field,
2288                                       const char * &value) const {
2289   return false;
2290 }
2291 
2292 
2293 // Return register class name if a constraint specifies the register class.
2294 const char *OperandForm::constrained_reg_class() const {
2295   const char *reg_class  = NULL;
2296   if ( _constraint ) {
2297     // !!!!!
2298     Constraint *constraint = _constraint;
2299     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
2300       reg_class = _constraint->_arg;
2301     }
2302   }
2303 
2304   return reg_class;
2305 }
2306 
2307 
2308 // Return the register class associated with 'leaf'.
2309 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
2310   const char *reg_class = NULL; // "RegMask::Empty";
2311 
2312   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
2313     reg_class = constrained_reg_class();
2314     return reg_class;
2315   }
2316   const char *result   = NULL;
2317   const char *name     = NULL;
2318   const char *type     = NULL;
2319   // iterate through all base operands
2320   // until we reach the register that corresponds to "leaf"
2321   // This function is not looking for an ideal type.  It needs the first
2322   // level user type associated with the leaf.
2323   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
2324     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
2325     OperandForm *oper = form ? form->is_operand() : NULL;
2326     if( oper ) {
2327       reg_class = oper->constrained_reg_class();
2328       if( reg_class ) {
2329         reg_class = reg_class;
2330       } else {
2331         // ShouldNotReachHere();
2332       }
2333     } else {
2334       // ShouldNotReachHere();
2335     }
2336 
2337     // Increment our target leaf position if current leaf is not a candidate.
2338     if( reg_class == NULL)    ++leaf;
2339     // Exit the loop with the value of reg_class when at the correct index
2340     if( idx == leaf )         break;
2341     // May iterate through all base operands if reg_class for 'leaf' is NULL
2342   }
2343   return reg_class;
2344 }
2345 
2346 
2347 // Recursive call to construct list of top-level operands.
2348 // Implementation does not modify state of internal structures
2349 void OperandForm::build_components() {
2350   if (_matrule)  _matrule->append_components(_localNames, _components);
2351 
2352   // Add parameters that "do not appear in match rule".
2353   const char *name;
2354   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
2355     OpClassForm *opForm = _localNames[name]->is_opclass();
2356     assert(opForm != NULL, "sanity");
2357 
2358     if ( _components.operand_position(name) == -1 ) {
2359       _components.insert(name, opForm->_ident, Component::INVALID, false);
2360     }
2361   }
2362 
2363   return;
2364 }
2365 
2366 int OperandForm::operand_position(const char *name, int usedef) {
2367   return _components.operand_position(name, usedef, this);
2368 }
2369 
2370 
2371 // Return zero-based position in component list, only counting constants;
2372 // Return -1 if not in list.
2373 int OperandForm::constant_position(FormDict &globals, const Component *last) {
2374   // Iterate through components and count constants preceding 'constant'
2375   int position = 0;
2376   Component *comp;
2377   _components.reset();
2378   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
2379     // Special case for operands that take a single user-defined operand
2380     // Skip the initial definition in the component list.
2381     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2382 
2383     const char *type = comp->_type;
2384     // Lookup operand form for replacement variable's type
2385     const Form *form = globals[type];
2386     assert( form != NULL, "Component's type not found");
2387     OperandForm *oper = form ? form->is_operand() : NULL;
2388     if( oper ) {
2389       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
2390         ++position;
2391       }
2392     }
2393   }
2394 
2395   // Check for being passed a component that was not in the list
2396   if( comp != last )  position = -1;
2397 
2398   return position;
2399 }
2400 // Provide position of constant by "name"
2401 int OperandForm::constant_position(FormDict &globals, const char *name) {
2402   const Component *comp = _components.search(name);
2403   int idx = constant_position( globals, comp );
2404 
2405   return idx;
2406 }
2407 
2408 
2409 // Return zero-based position in component list, only counting constants;
2410 // Return -1 if not in list.
2411 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
2412   // Iterate through components and count registers preceding 'last'
2413   uint  position = 0;
2414   Component *comp;
2415   _components.reset();
2416   while( (comp = _components.iter()) != NULL
2417          && (strcmp(comp->_name,reg_name) != 0) ) {
2418     // Special case for operands that take a single user-defined operand
2419     // Skip the initial definition in the component list.
2420     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2421 
2422     const char *type = comp->_type;
2423     // Lookup operand form for component's type
2424     const Form *form = globals[type];
2425     assert( form != NULL, "Component's type not found");
2426     OperandForm *oper = form ? form->is_operand() : NULL;
2427     if( oper ) {
2428       if( oper->_matrule->is_base_register(globals) ) {
2429         ++position;
2430       }
2431     }
2432   }
2433 
2434   return position;
2435 }
2436 
2437 
2438 const char *OperandForm::reduce_result()  const {
2439   return _ident;
2440 }
2441 // Return the name of the operand on the right hand side of the binary match
2442 // Return NULL if there is no right hand side
2443 const char *OperandForm::reduce_right(FormDict &globals)  const {
2444   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
2445 }
2446 
2447 // Similar for left
2448 const char *OperandForm::reduce_left(FormDict &globals)   const {
2449   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
2450 }
2451 
2452 
2453 // --------------------------- FILE *output_routines
2454 //
2455 // Output code for disp_is_oop, if true.
2456 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
2457   //  Check it is a memory interface with a non-user-constant disp field
2458   if ( this->_interface == NULL ) return;
2459   MemInterface *mem_interface = this->_interface->is_MemInterface();
2460   if ( mem_interface == NULL )    return;
2461   const char   *disp  = mem_interface->_disp;
2462   if ( *disp != '$' )             return;
2463 
2464   // Lookup replacement variable in operand's component list
2465   const char   *rep_var = disp + 1;
2466   const Component *comp = this->_components.search(rep_var);
2467   assert( comp != NULL, "Replacement variable not found in components");
2468   // Lookup operand form for replacement variable's type
2469   const char      *type = comp->_type;
2470   Form            *form = (Form*)globals[type];
2471   assert( form != NULL, "Replacement variable's type not found");
2472   OperandForm     *op   = form->is_operand();
2473   assert( op, "Memory Interface 'disp' can only emit an operand form");
2474   // Check if this is a ConP, which may require relocation
2475   if ( op->is_base_constant(globals) == Form::idealP ) {
2476     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
2477     uint idx  = op->constant_position( globals, rep_var);
2478     fprintf(fp,"  virtual relocInfo::relocType disp_reloc() const {");
2479     fprintf(fp,  "  return _c%d->reloc();", idx);
2480     fprintf(fp, " }\n");
2481   }
2482 }
2483 
2484 // Generate code for internal and external format methods
2485 //
2486 // internal access to reg# node->_idx
2487 // access to subsumed constant _c0, _c1,
2488 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
2489   Form::DataType dtype;
2490   if (_matrule && (_matrule->is_base_register(globals) ||
2491                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2492     // !!!!! !!!!!
2493     fprintf(fp,"  { char reg_str[128];\n");
2494     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
2495     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2496     fprintf(fp,"  }\n");
2497   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2498     format_constant( fp, index, dtype );
2499   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2500     // Special format for Stack Slot Register
2501     fprintf(fp,"  { char reg_str[128];\n");
2502     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
2503     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2504     fprintf(fp,"  }\n");
2505   } else {
2506     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
2507     fflush(fp);
2508     fprintf(stderr,"No format defined for %s\n", _ident);
2509     dump();
2510     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
2511   }
2512 }
2513 
2514 // Similar to "int_format" but for cases where data is external to operand
2515 // external access to reg# node->in(idx)->_idx,
2516 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
2517   Form::DataType dtype;
2518   if (_matrule && (_matrule->is_base_register(globals) ||
2519                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2520     fprintf(fp,"  { char reg_str[128];\n");
2521     fprintf(fp,"    ra->dump_register(node->in(idx");
2522     if ( index != 0 ) fprintf(fp,              "+%d",index);
2523     fprintf(fp,                                      "),reg_str);\n");
2524     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2525     fprintf(fp,"  }\n");
2526   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2527     format_constant( fp, index, dtype );
2528   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2529     // Special format for Stack Slot Register
2530     fprintf(fp,"  { char reg_str[128];\n");
2531     fprintf(fp,"    ra->dump_register(node->in(idx");
2532     if ( index != 0 ) fprintf(fp,                  "+%d",index);
2533     fprintf(fp,                                       "),reg_str);\n");
2534     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2535     fprintf(fp,"  }\n");
2536   } else {
2537     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
2538     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
2539   }
2540 }
2541 
2542 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
2543   switch(const_type) {
2544   case Form::idealI: fprintf(fp,"  st->print(\"#%%d\", _c%d);\n", const_index); break;
2545   case Form::idealP: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
2546   case Form::idealNKlass:
2547   case Form::idealN: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
2548   case Form::idealL: fprintf(fp,"  st->print(\"#\" INT64_FORMAT, (int64_t)_c%d);\n", const_index); break;
2549   case Form::idealF: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
2550   case Form::idealD: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
2551   default:
2552     assert( false, "ShouldNotReachHere()");
2553   }
2554 }
2555 
2556 // Return the operand form corresponding to the given index, else NULL.
2557 OperandForm *OperandForm::constant_operand(FormDict &globals,
2558                                            uint      index) {
2559   // !!!!!
2560   // Check behavior on complex operands
2561   uint n_consts = num_consts(globals);
2562   if( n_consts > 0 ) {
2563     uint i = 0;
2564     const char *type;
2565     Component  *comp;
2566     _components.reset();
2567     if ((comp = _components.iter()) == NULL) {
2568       assert(n_consts == 1, "Bad component list detected.\n");
2569       // Current operand is THE operand
2570       if ( index == 0 ) {
2571         return this;
2572       }
2573     } // end if NULL
2574     else {
2575       // Skip the first component, it can not be a DEF of a constant
2576       do {
2577         type = comp->base_type(globals);
2578         // Check that "type" is a 'ConI', 'ConP', ...
2579         if ( ideal_to_const_type(type) != Form::none ) {
2580           // When at correct component, get corresponding Operand
2581           if ( index == 0 ) {
2582             return globals[comp->_type]->is_operand();
2583           }
2584           // Decrement number of constants to go
2585           --index;
2586         }
2587       } while((comp = _components.iter()) != NULL);
2588     }
2589   }
2590 
2591   // Did not find a constant for this index.
2592   return NULL;
2593 }
2594 
2595 // If this operand has a single ideal type, return its type
2596 Form::DataType OperandForm::simple_type(FormDict &globals) const {
2597   const char *type_name = ideal_type(globals);
2598   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
2599                                     : Form::none;
2600   return type;
2601 }
2602 
2603 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
2604   if ( _matrule == NULL )    return Form::none;
2605 
2606   return _matrule->is_base_constant(globals);
2607 }
2608 
2609 // "true" if this operand is a simple type that is swallowed
2610 bool  OperandForm::swallowed(FormDict &globals) const {
2611   Form::DataType type   = simple_type(globals);
2612   if( type != Form::none ) {
2613     return true;
2614   }
2615 
2616   return false;
2617 }
2618 
2619 // Output code to access the value of the index'th constant
2620 void OperandForm::access_constant(FILE *fp, FormDict &globals,
2621                                   uint const_index) {
2622   OperandForm *oper = constant_operand(globals, const_index);
2623   assert( oper, "Index exceeds number of constants in operand");
2624   Form::DataType dtype = oper->is_base_constant(globals);
2625 
2626   switch(dtype) {
2627   case idealI: fprintf(fp,"_c%d",           const_index); break;
2628   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
2629   case idealL: fprintf(fp,"_c%d",           const_index); break;
2630   case idealF: fprintf(fp,"_c%d",           const_index); break;
2631   case idealD: fprintf(fp,"_c%d",           const_index); break;
2632   default:
2633     assert( false, "ShouldNotReachHere()");
2634   }
2635 }
2636 
2637 
2638 void OperandForm::dump() {
2639   output(stderr);
2640 }
2641 
2642 void OperandForm::output(FILE *fp) {
2643   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
2644   if (_matrule)    _matrule->dump();
2645   if (_interface)  _interface->dump();
2646   if (_attribs)    _attribs->dump();
2647   if (_predicate)  _predicate->dump();
2648   if (_constraint) _constraint->dump();
2649   if (_construct)  _construct->dump();
2650   if (_format)     _format->dump();
2651 }
2652 
2653 //------------------------------Constraint-------------------------------------
2654 Constraint::Constraint(const char *func, const char *arg)
2655   : _func(func), _arg(arg) {
2656 }
2657 Constraint::~Constraint() { /* not owner of char* */
2658 }
2659 
2660 bool Constraint::stack_slots_only() const {
2661   return strcmp(_func, "ALLOC_IN_RC") == 0
2662       && strcmp(_arg,  "stack_slots") == 0;
2663 }
2664 
2665 void Constraint::dump() {
2666   output(stderr);
2667 }
2668 
2669 void Constraint::output(FILE *fp) {           // Write info to output files
2670   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
2671   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
2672 }
2673 
2674 //------------------------------Predicate--------------------------------------
2675 Predicate::Predicate(char *pr)
2676   : _pred(pr) {
2677 }
2678 Predicate::~Predicate() {
2679 }
2680 
2681 void Predicate::dump() {
2682   output(stderr);
2683 }
2684 
2685 void Predicate::output(FILE *fp) {
2686   fprintf(fp,"Predicate");  // Write to output files
2687 }
2688 //------------------------------Interface--------------------------------------
2689 Interface::Interface(const char *name) : _name(name) {
2690 }
2691 Interface::~Interface() {
2692 }
2693 
2694 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
2695   Interface *thsi = (Interface*)this;
2696   if ( thsi->is_RegInterface()   ) return Form::register_interface;
2697   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
2698   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
2699   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
2700 
2701   return Form::no_interface;
2702 }
2703 
2704 RegInterface   *Interface::is_RegInterface() {
2705   if ( strcmp(_name,"REG_INTER") != 0 )
2706     return NULL;
2707   return (RegInterface*)this;
2708 }
2709 MemInterface   *Interface::is_MemInterface() {
2710   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
2711   return (MemInterface*)this;
2712 }
2713 ConstInterface *Interface::is_ConstInterface() {
2714   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
2715   return (ConstInterface*)this;
2716 }
2717 CondInterface  *Interface::is_CondInterface() {
2718   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
2719   return (CondInterface*)this;
2720 }
2721 
2722 
2723 void Interface::dump() {
2724   output(stderr);
2725 }
2726 
2727 // Write info to output files
2728 void Interface::output(FILE *fp) {
2729   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
2730 }
2731 
2732 //------------------------------RegInterface-----------------------------------
2733 RegInterface::RegInterface() : Interface("REG_INTER") {
2734 }
2735 RegInterface::~RegInterface() {
2736 }
2737 
2738 void RegInterface::dump() {
2739   output(stderr);
2740 }
2741 
2742 // Write info to output files
2743 void RegInterface::output(FILE *fp) {
2744   Interface::output(fp);
2745 }
2746 
2747 //------------------------------ConstInterface---------------------------------
2748 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
2749 }
2750 ConstInterface::~ConstInterface() {
2751 }
2752 
2753 void ConstInterface::dump() {
2754   output(stderr);
2755 }
2756 
2757 // Write info to output files
2758 void ConstInterface::output(FILE *fp) {
2759   Interface::output(fp);
2760 }
2761 
2762 //------------------------------MemInterface-----------------------------------
2763 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
2764   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
2765 }
2766 MemInterface::~MemInterface() {
2767   // not owner of any character arrays
2768 }
2769 
2770 void MemInterface::dump() {
2771   output(stderr);
2772 }
2773 
2774 // Write info to output files
2775 void MemInterface::output(FILE *fp) {
2776   Interface::output(fp);
2777   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
2778   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
2779   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
2780   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
2781   // fprintf(fp,"\n");
2782 }
2783 
2784 //------------------------------CondInterface----------------------------------
2785 CondInterface::CondInterface(const char* equal,         const char* equal_format,
2786                              const char* not_equal,     const char* not_equal_format,
2787                              const char* less,          const char* less_format,
2788                              const char* greater_equal, const char* greater_equal_format,
2789                              const char* less_equal,    const char* less_equal_format,
2790                              const char* greater,       const char* greater_format,
2791                              const char* overflow,      const char* overflow_format,
2792                              const char* no_overflow,   const char* no_overflow_format)
2793   : Interface("COND_INTER"),
2794     _equal(equal),                 _equal_format(equal_format),
2795     _not_equal(not_equal),         _not_equal_format(not_equal_format),
2796     _less(less),                   _less_format(less_format),
2797     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
2798     _less_equal(less_equal),       _less_equal_format(less_equal_format),
2799     _greater(greater),             _greater_format(greater_format),
2800     _overflow(overflow),           _overflow_format(overflow_format),
2801     _no_overflow(no_overflow),     _no_overflow_format(no_overflow_format) {
2802 }
2803 CondInterface::~CondInterface() {
2804   // not owner of any character arrays
2805 }
2806 
2807 void CondInterface::dump() {
2808   output(stderr);
2809 }
2810 
2811 // Write info to output files
2812 void CondInterface::output(FILE *fp) {
2813   Interface::output(fp);
2814   if ( _equal  != NULL )     fprintf(fp," equal        == %s\n", _equal);
2815   if ( _not_equal  != NULL ) fprintf(fp," not_equal    == %s\n", _not_equal);
2816   if ( _less  != NULL )      fprintf(fp," less         == %s\n", _less);
2817   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal    == %s\n", _greater_equal);
2818   if ( _less_equal  != NULL ) fprintf(fp," less_equal   == %s\n", _less_equal);
2819   if ( _greater  != NULL )    fprintf(fp," greater      == %s\n", _greater);
2820   if ( _overflow != NULL )    fprintf(fp," overflow     == %s\n", _overflow);
2821   if ( _no_overflow != NULL ) fprintf(fp," no_overflow  == %s\n", _no_overflow);
2822   // fprintf(fp,"\n");
2823 }
2824 
2825 //------------------------------ConstructRule----------------------------------
2826 ConstructRule::ConstructRule(char *cnstr)
2827   : _construct(cnstr) {
2828 }
2829 ConstructRule::~ConstructRule() {
2830 }
2831 
2832 void ConstructRule::dump() {
2833   output(stderr);
2834 }
2835 
2836 void ConstructRule::output(FILE *fp) {
2837   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
2838 }
2839 
2840 
2841 //==============================Shared Forms===================================
2842 //------------------------------AttributeForm----------------------------------
2843 int         AttributeForm::_insId   = 0;           // start counter at 0
2844 int         AttributeForm::_opId    = 0;           // start counter at 0
2845 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
2846 const char* AttributeForm::_op_cost  = "op_cost";  // required name
2847 
2848 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
2849   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
2850     if (type==OP_ATTR) {
2851       id = ++_opId;
2852     }
2853     else if (type==INS_ATTR) {
2854       id = ++_insId;
2855     }
2856     else assert( false,"");
2857 }
2858 AttributeForm::~AttributeForm() {
2859 }
2860 
2861 // Dynamic type check
2862 AttributeForm *AttributeForm::is_attribute() const {
2863   return (AttributeForm*)this;
2864 }
2865 
2866 
2867 // inlined  // int  AttributeForm::type() { return id;}
2868 
2869 void AttributeForm::dump() {
2870   output(stderr);
2871 }
2872 
2873 void AttributeForm::output(FILE *fp) {
2874   if( _attrname && _attrdef ) {
2875     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
2876             _attrname, _attrdef);
2877   }
2878   else {
2879     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
2880             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
2881   }
2882 }
2883 
2884 //------------------------------Component--------------------------------------
2885 Component::Component(const char *name, const char *type, int usedef)
2886   : _name(name), _type(type), _usedef(usedef) {
2887     _ftype = Form::COMP;
2888 }
2889 Component::~Component() {
2890 }
2891 
2892 // True if this component is equal to the parameter.
2893 bool Component::is(int use_def_kill_enum) const {
2894   return (_usedef == use_def_kill_enum ? true : false);
2895 }
2896 // True if this component is used/def'd/kill'd as the parameter suggests.
2897 bool Component::isa(int use_def_kill_enum) const {
2898   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
2899 }
2900 
2901 // Extend this component with additional use/def/kill behavior
2902 int Component::promote_use_def_info(int new_use_def) {
2903   _usedef |= new_use_def;
2904 
2905   return _usedef;
2906 }
2907 
2908 // Check the base type of this component, if it has one
2909 const char *Component::base_type(FormDict &globals) {
2910   const Form *frm = globals[_type];
2911   if (frm == NULL) return NULL;
2912   OperandForm *op = frm->is_operand();
2913   if (op == NULL) return NULL;
2914   if (op->ideal_only()) return op->_ident;
2915   return (char *)op->ideal_type(globals);
2916 }
2917 
2918 void Component::dump() {
2919   output(stderr);
2920 }
2921 
2922 void Component::output(FILE *fp) {
2923   fprintf(fp,"Component:");  // Write to output files
2924   fprintf(fp, "  name = %s", _name);
2925   fprintf(fp, ", type = %s", _type);
2926   assert(_usedef != 0, "unknown effect");
2927   fprintf(fp, ", use/def = %s\n", getUsedefName());
2928 }
2929 
2930 
2931 //------------------------------ComponentList---------------------------------
2932 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
2933 }
2934 ComponentList::~ComponentList() {
2935   // // This list may not own its elements if copied via assignment
2936   // Component *component;
2937   // for (reset(); (component = iter()) != NULL;) {
2938   //   delete component;
2939   // }
2940 }
2941 
2942 void   ComponentList::insert(Component *component, bool mflag) {
2943   NameList::addName((char *)component);
2944   if(mflag) _matchcnt++;
2945 }
2946 void   ComponentList::insert(const char *name, const char *opType, int usedef,
2947                              bool mflag) {
2948   Component * component = new Component(name, opType, usedef);
2949   insert(component, mflag);
2950 }
2951 Component *ComponentList::current() { return (Component*)NameList::current(); }
2952 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
2953 Component *ComponentList::match_iter() {
2954   if(_iter < _matchcnt) return (Component*)NameList::iter();
2955   return NULL;
2956 }
2957 Component *ComponentList::post_match_iter() {
2958   Component *comp = iter();
2959   // At end of list?
2960   if ( comp == NULL ) {
2961     return comp;
2962   }
2963   // In post-match components?
2964   if (_iter > match_count()-1) {
2965     return comp;
2966   }
2967 
2968   return post_match_iter();
2969 }
2970 
2971 void       ComponentList::reset()   { NameList::reset(); }
2972 int        ComponentList::count()   { return NameList::count(); }
2973 
2974 Component *ComponentList::operator[](int position) {
2975   // Shortcut complete iteration if there are not enough entries
2976   if (position >= count()) return NULL;
2977 
2978   int        index     = 0;
2979   Component *component = NULL;
2980   for (reset(); (component = iter()) != NULL;) {
2981     if (index == position) {
2982       return component;
2983     }
2984     ++index;
2985   }
2986 
2987   return NULL;
2988 }
2989 
2990 const Component *ComponentList::search(const char *name) {
2991   PreserveIter pi(this);
2992   reset();
2993   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
2994     if( strcmp(comp->_name,name) == 0 ) return comp;
2995   }
2996 
2997   return NULL;
2998 }
2999 
3000 // Return number of USEs + number of DEFs
3001 // When there are no components, or the first component is a USE,
3002 // then we add '1' to hold a space for the 'result' operand.
3003 int ComponentList::num_operands() {
3004   PreserveIter pi(this);
3005   uint       count = 1;           // result operand
3006   uint       position = 0;
3007 
3008   Component *component  = NULL;
3009   for( reset(); (component = iter()) != NULL; ++position ) {
3010     if( component->isa(Component::USE) ||
3011         ( position == 0 && (! component->isa(Component::DEF))) ) {
3012       ++count;
3013     }
3014   }
3015 
3016   return count;
3017 }
3018 
3019 // Return zero-based position of operand 'name' in list;  -1 if not in list.
3020 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
3021 int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
3022   PreserveIter pi(this);
3023   int position = 0;
3024   int num_opnds = num_operands();
3025   Component *component;
3026   Component* preceding_non_use = NULL;
3027   Component* first_def = NULL;
3028   for (reset(); (component = iter()) != NULL; ++position) {
3029     // When the first component is not a DEF,
3030     // leave space for the result operand!
3031     if ( position==0 && (! component->isa(Component::DEF)) ) {
3032       ++position;
3033       ++num_opnds;
3034     }
3035     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
3036       // When the first entry in the component list is a DEF and a USE
3037       // Treat them as being separate, a DEF first, then a USE
3038       if( position==0
3039           && usedef==Component::USE && component->isa(Component::DEF) ) {
3040         assert(position+1 < num_opnds, "advertised index in bounds");
3041         return position+1;
3042       } else {
3043         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
3044           fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
3045                   preceding_non_use->_name, preceding_non_use->getUsedefName(),
3046                   name, component->getUsedefName());
3047           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
3048           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
3049           fprintf(stderr,  "\n");
3050         }
3051         if( position >= num_opnds ) {
3052           fprintf(stderr, "the name '%s' is too late in its name list", name);
3053           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
3054           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
3055           fprintf(stderr,  "\n");
3056         }
3057         assert(position < num_opnds, "advertised index in bounds");
3058         return position;
3059       }
3060     }
3061     if( component->isa(Component::DEF)
3062         && component->isa(Component::USE) ) {
3063       ++position;
3064       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3065     }
3066     if( component->isa(Component::DEF) && !first_def ) {
3067       first_def = component;
3068     }
3069     if( !component->isa(Component::USE) && component != first_def ) {
3070       preceding_non_use = component;
3071     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
3072       preceding_non_use = NULL;
3073     }
3074   }
3075   return Not_in_list;
3076 }
3077 
3078 // Find position for this name, regardless of use/def information
3079 int ComponentList::operand_position(const char *name) {
3080   PreserveIter pi(this);
3081   int position = 0;
3082   Component *component;
3083   for (reset(); (component = iter()) != NULL; ++position) {
3084     // When the first component is not a DEF,
3085     // leave space for the result operand!
3086     if ( position==0 && (! component->isa(Component::DEF)) ) {
3087       ++position;
3088     }
3089     if (strcmp(name, component->_name)==0) {
3090       return position;
3091     }
3092     if( component->isa(Component::DEF)
3093         && component->isa(Component::USE) ) {
3094       ++position;
3095       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3096     }
3097   }
3098   return Not_in_list;
3099 }
3100 
3101 int ComponentList::operand_position_format(const char *name, Form *fm) {
3102   PreserveIter pi(this);
3103   int  first_position = operand_position(name);
3104   int  use_position   = operand_position(name, Component::USE, fm);
3105 
3106   return ((first_position < use_position) ? use_position : first_position);
3107 }
3108 
3109 int ComponentList::label_position() {
3110   PreserveIter pi(this);
3111   int position = 0;
3112   reset();
3113   for( Component *comp; (comp = iter()) != NULL; ++position) {
3114     // When the first component is not a DEF,
3115     // leave space for the result operand!
3116     if ( position==0 && (! comp->isa(Component::DEF)) ) {
3117       ++position;
3118     }
3119     if (strcmp(comp->_type, "label")==0) {
3120       return position;
3121     }
3122     if( comp->isa(Component::DEF)
3123         && comp->isa(Component::USE) ) {
3124       ++position;
3125       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3126     }
3127   }
3128 
3129   return -1;
3130 }
3131 
3132 int ComponentList::method_position() {
3133   PreserveIter pi(this);
3134   int position = 0;
3135   reset();
3136   for( Component *comp; (comp = iter()) != NULL; ++position) {
3137     // When the first component is not a DEF,
3138     // leave space for the result operand!
3139     if ( position==0 && (! comp->isa(Component::DEF)) ) {
3140       ++position;
3141     }
3142     if (strcmp(comp->_type, "method")==0) {
3143       return position;
3144     }
3145     if( comp->isa(Component::DEF)
3146         && comp->isa(Component::USE) ) {
3147       ++position;
3148       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3149     }
3150   }
3151 
3152   return -1;
3153 }
3154 
3155 void ComponentList::dump() { output(stderr); }
3156 
3157 void ComponentList::output(FILE *fp) {
3158   PreserveIter pi(this);
3159   fprintf(fp, "\n");
3160   Component *component;
3161   for (reset(); (component = iter()) != NULL;) {
3162     component->output(fp);
3163   }
3164   fprintf(fp, "\n");
3165 }
3166 
3167 //------------------------------MatchNode--------------------------------------
3168 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
3169                      const char *opType, MatchNode *lChild, MatchNode *rChild)
3170   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
3171     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
3172     _commutative_id(0) {
3173   _numleaves = (lChild ? lChild->_numleaves : 0)
3174                + (rChild ? rChild->_numleaves : 0);
3175 }
3176 
3177 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
3178   : _AD(ad), _result(mnode._result), _name(mnode._name),
3179     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
3180     _internalop(0), _numleaves(mnode._numleaves),
3181     _commutative_id(mnode._commutative_id) {
3182 }
3183 
3184 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
3185   : _AD(ad), _result(mnode._result), _name(mnode._name),
3186     _opType(mnode._opType),
3187     _internalop(0), _numleaves(mnode._numleaves),
3188     _commutative_id(mnode._commutative_id) {
3189   if (mnode._lChild) {
3190     _lChild = new MatchNode(ad, *mnode._lChild, clone);
3191   } else {
3192     _lChild = NULL;
3193   }
3194   if (mnode._rChild) {
3195     _rChild = new MatchNode(ad, *mnode._rChild, clone);
3196   } else {
3197     _rChild = NULL;
3198   }
3199 }
3200 
3201 MatchNode::~MatchNode() {
3202   // // This node may not own its children if copied via assignment
3203   // if( _lChild ) delete _lChild;
3204   // if( _rChild ) delete _rChild;
3205 }
3206 
3207 bool  MatchNode::find_type(const char *type, int &position) const {
3208   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
3209   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
3210 
3211   if (strcmp(type,_opType)==0)  {
3212     return true;
3213   } else {
3214     ++position;
3215   }
3216   return false;
3217 }
3218 
3219 // Recursive call collecting info on top-level operands, not transitive.
3220 // Implementation does not modify state of internal structures.
3221 void MatchNode::append_components(FormDict& locals, ComponentList& components,
3222                                   bool def_flag) const {
3223   int usedef = def_flag ? Component::DEF : Component::USE;
3224   FormDict &globals = _AD.globalNames();
3225 
3226   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3227   // Base case
3228   if (_lChild==NULL && _rChild==NULL) {
3229     // If _opType is not an operation, do not build a component for it #####
3230     const Form *f = globals[_opType];
3231     if( f != NULL ) {
3232       // Add non-ideals that are operands, operand-classes,
3233       if( ! f->ideal_only()
3234           && (f->is_opclass() || f->is_operand()) ) {
3235         components.insert(_name, _opType, usedef, true);
3236       }
3237     }
3238     return;
3239   }
3240   // Promote results of "Set" to DEF
3241   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
3242   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
3243   tmpdef_flag = false;   // only applies to component immediately following 'Set'
3244   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
3245 }
3246 
3247 // Find the n'th base-operand in the match node,
3248 // recursively investigates match rules of user-defined operands.
3249 //
3250 // Implementation does not modify state of internal structures since they
3251 // can be shared.
3252 bool MatchNode::base_operand(uint &position, FormDict &globals,
3253                              const char * &result, const char * &name,
3254                              const char * &opType) const {
3255   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
3256   // Base case
3257   if (_lChild==NULL && _rChild==NULL) {
3258     // Check for special case: "Universe", "label"
3259     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
3260       if (position == 0) {
3261         result = _result;
3262         name   = _name;
3263         opType = _opType;
3264         return 1;
3265       } else {
3266         -- position;
3267         return 0;
3268       }
3269     }
3270 
3271     const Form *form = globals[_opType];
3272     MatchNode *matchNode = NULL;
3273     // Check for user-defined type
3274     if (form) {
3275       // User operand or instruction?
3276       OperandForm  *opForm = form->is_operand();
3277       InstructForm *inForm = form->is_instruction();
3278       if ( opForm ) {
3279         matchNode = (MatchNode*)opForm->_matrule;
3280       } else if ( inForm ) {
3281         matchNode = (MatchNode*)inForm->_matrule;
3282       }
3283     }
3284     // if this is user-defined, recurse on match rule
3285     // User-defined operand and instruction forms have a match-rule.
3286     if (matchNode) {
3287       return (matchNode->base_operand(position,globals,result,name,opType));
3288     } else {
3289       // Either not a form, or a system-defined form (no match rule).
3290       if (position==0) {
3291         result = _result;
3292         name   = _name;
3293         opType = _opType;
3294         return 1;
3295       } else {
3296         --position;
3297         return 0;
3298       }
3299     }
3300 
3301   } else {
3302     // Examine the left child and right child as well
3303     if (_lChild) {
3304       if (_lChild->base_operand(position, globals, result, name, opType))
3305         return 1;
3306     }
3307 
3308     if (_rChild) {
3309       if (_rChild->base_operand(position, globals, result, name, opType))
3310         return 1;
3311     }
3312   }
3313 
3314   return 0;
3315 }
3316 
3317 // Recursive call on all operands' match rules in my match rule.
3318 uint  MatchNode::num_consts(FormDict &globals) const {
3319   uint        index      = 0;
3320   uint        num_consts = 0;
3321   const char *result;
3322   const char *name;
3323   const char *opType;
3324 
3325   for (uint position = index;
3326        base_operand(position,globals,result,name,opType); position = index) {
3327     ++index;
3328     if( ideal_to_const_type(opType) )        num_consts++;
3329   }
3330 
3331   return num_consts;
3332 }
3333 
3334 // Recursive call on all operands' match rules in my match rule.
3335 // Constants in match rule subtree with specified type
3336 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
3337   uint        index      = 0;
3338   uint        num_consts = 0;
3339   const char *result;
3340   const char *name;
3341   const char *opType;
3342 
3343   for (uint position = index;
3344        base_operand(position,globals,result,name,opType); position = index) {
3345     ++index;
3346     if( ideal_to_const_type(opType) == type ) num_consts++;
3347   }
3348 
3349   return num_consts;
3350 }
3351 
3352 // Recursive call on all operands' match rules in my match rule.
3353 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
3354   return  num_consts( globals, Form::idealP );
3355 }
3356 
3357 bool  MatchNode::sets_result() const {
3358   return   ( (strcmp(_name,"Set") == 0) ? true : false );
3359 }
3360 
3361 const char *MatchNode::reduce_right(FormDict &globals) const {
3362   // If there is no right reduction, return NULL.
3363   const char      *rightStr    = NULL;
3364 
3365   // If we are a "Set", start from the right child.
3366   const MatchNode *const mnode = sets_result() ?
3367     (const MatchNode *)this->_rChild :
3368     (const MatchNode *)this;
3369 
3370   // If our right child exists, it is the right reduction
3371   if ( mnode->_rChild ) {
3372     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
3373       : mnode->_rChild->_opType;
3374   }
3375   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
3376   return rightStr;
3377 }
3378 
3379 const char *MatchNode::reduce_left(FormDict &globals) const {
3380   // If there is no left reduction, return NULL.
3381   const char  *leftStr  = NULL;
3382 
3383   // If we are a "Set", start from the right child.
3384   const MatchNode *const mnode = sets_result() ?
3385     (const MatchNode *)this->_rChild :
3386     (const MatchNode *)this;
3387 
3388   // If our left child exists, it is the left reduction
3389   if ( mnode->_lChild ) {
3390     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
3391       : mnode->_lChild->_opType;
3392   } else {
3393     // May be simple chain rule: (Set dst operand_form_source)
3394     if ( sets_result() ) {
3395       OperandForm *oper = globals[mnode->_opType]->is_operand();
3396       if( oper ) {
3397         leftStr = mnode->_opType;
3398       }
3399     }
3400   }
3401   return leftStr;
3402 }
3403 
3404 //------------------------------count_instr_names------------------------------
3405 // Count occurrences of operands names in the leaves of the instruction
3406 // match rule.
3407 void MatchNode::count_instr_names( Dict &names ) {
3408   if( this == NULL ) return;
3409   if( _lChild ) _lChild->count_instr_names(names);
3410   if( _rChild ) _rChild->count_instr_names(names);
3411   if( !_lChild && !_rChild ) {
3412     uintptr_t cnt = (uintptr_t)names[_name];
3413     cnt++;                      // One more name found
3414     names.Insert(_name,(void*)cnt);
3415   }
3416 }
3417 
3418 //------------------------------build_instr_pred-------------------------------
3419 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
3420 // can skip some leading instances of 'name'.
3421 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
3422   if( _lChild ) {
3423     if( !cnt ) strcpy( buf, "_kids[0]->" );
3424     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
3425     if( cnt < 0 ) return cnt;   // Found it, all done
3426   }
3427   if( _rChild ) {
3428     if( !cnt ) strcpy( buf, "_kids[1]->" );
3429     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
3430     if( cnt < 0 ) return cnt;   // Found it, all done
3431   }
3432   if( !_lChild && !_rChild ) {  // Found a leaf
3433     // Wrong name?  Give up...
3434     if( strcmp(name,_name) ) return cnt;
3435     if( !cnt ) strcpy(buf,"_leaf");
3436     return cnt-1;
3437   }
3438   return cnt;
3439 }
3440 
3441 
3442 //------------------------------build_internalop-------------------------------
3443 // Build string representation of subtree
3444 void MatchNode::build_internalop( ) {
3445   char *iop, *subtree;
3446   const char *lstr, *rstr;
3447   // Build string representation of subtree
3448   // Operation lchildType rchildType
3449   int len = (int)strlen(_opType) + 4;
3450   lstr = (_lChild) ? ((_lChild->_internalop) ?
3451                        _lChild->_internalop : _lChild->_opType) : "";
3452   rstr = (_rChild) ? ((_rChild->_internalop) ?
3453                        _rChild->_internalop : _rChild->_opType) : "";
3454   len += (int)strlen(lstr) + (int)strlen(rstr);
3455   subtree = (char *)AllocateHeap(len);
3456   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
3457   // Hash the subtree string in _internalOps; if a name exists, use it
3458   iop = (char *)_AD._internalOps[subtree];
3459   // Else create a unique name, and add it to the hash table
3460   if (iop == NULL) {
3461     iop = subtree;
3462     _AD._internalOps.Insert(subtree, iop);
3463     _AD._internalOpNames.addName(iop);
3464     _AD._internalMatch.Insert(iop, this);
3465   }
3466   // Add the internal operand name to the MatchNode
3467   _internalop = iop;
3468   _result = iop;
3469 }
3470 
3471 
3472 void MatchNode::dump() {
3473   output(stderr);
3474 }
3475 
3476 void MatchNode::output(FILE *fp) {
3477   if (_lChild==0 && _rChild==0) {
3478     fprintf(fp," %s",_name);    // operand
3479   }
3480   else {
3481     fprintf(fp," (%s ",_name);  // " (opcodeName "
3482     if(_lChild) _lChild->output(fp); //               left operand
3483     if(_rChild) _rChild->output(fp); //                    right operand
3484     fprintf(fp,")");                 //                                 ")"
3485   }
3486 }
3487 
3488 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
3489   static const char *needs_ideal_memory_list[] = {
3490     "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
3491     "StoreB","StoreC","Store" ,"StoreFP",
3492     "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
3493     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
3494     "StoreVector", "LoadVector",
3495     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
3496     "LoadPLocked",
3497     "StorePConditional", "StoreIConditional", "StoreLConditional",
3498     "CompareAndSwapB", "CompareAndSwapS", "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
3499     "WeakCompareAndSwapB", "WeakCompareAndSwapS", "WeakCompareAndSwapI", "WeakCompareAndSwapL", "WeakCompareAndSwapP", "WeakCompareAndSwapN",
3500     "CompareAndExchangeB", "CompareAndExchangeS", "CompareAndExchangeI", "CompareAndExchangeL", "CompareAndExchangeP", "CompareAndExchangeN",
3501     "StoreCM",
3502     "ClearArray",
3503     "GetAndSetB", "GetAndSetS", "GetAndAddI", "GetAndSetI", "GetAndSetP",
3504     "GetAndAddB", "GetAndAddS", "GetAndAddL", "GetAndSetL", "GetAndSetN",
3505     "LoadBarrierSlowReg", "LoadBarrierWeakSlowReg"
3506   };
3507   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
3508   if( strcmp(_opType,"PrefetchAllocation")==0 )
3509     return 1;
3510   if( _lChild ) {
3511     const char *opType = _lChild->_opType;
3512     for( int i=0; i<cnt; i++ )
3513       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3514         return 1;
3515     if( _lChild->needs_ideal_memory_edge(globals) )
3516       return 1;
3517   }
3518   if( _rChild ) {
3519     const char *opType = _rChild->_opType;
3520     for( int i=0; i<cnt; i++ )
3521       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3522         return 1;
3523     if( _rChild->needs_ideal_memory_edge(globals) )
3524       return 1;
3525   }
3526 
3527   return 0;
3528 }
3529 
3530 // TRUE if defines a derived oop, and so needs a base oop edge present
3531 // post-matching.
3532 int MatchNode::needs_base_oop_edge() const {
3533   if( !strcmp(_opType,"AddP") ) return 1;
3534   if( strcmp(_opType,"Set") ) return 0;
3535   return !strcmp(_rChild->_opType,"AddP");
3536 }
3537 
3538 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
3539   if( is_simple_chain_rule(globals) ) {
3540     const char *src = _matrule->_rChild->_opType;
3541     OperandForm *src_op = globals[src]->is_operand();
3542     assert( src_op, "Not operand class of chain rule" );
3543     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
3544   }                             // Else check instruction
3545 
3546   return _matrule ? _matrule->needs_base_oop_edge() : 0;
3547 }
3548 
3549 
3550 //-------------------------cisc spilling methods-------------------------------
3551 // helper routines and methods for detecting cisc-spilling instructions
3552 //-------------------------cisc_spill_merge------------------------------------
3553 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
3554   int cisc_spillable  = Maybe_cisc_spillable;
3555 
3556   // Combine results of left and right checks
3557   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
3558     // neither side is spillable, nor prevents cisc spilling
3559     cisc_spillable = Maybe_cisc_spillable;
3560   }
3561   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
3562     // right side is spillable
3563     cisc_spillable = right_spillable;
3564   }
3565   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
3566     // left side is spillable
3567     cisc_spillable = left_spillable;
3568   }
3569   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
3570     // left or right prevents cisc spilling this instruction
3571     cisc_spillable = Not_cisc_spillable;
3572   }
3573   else {
3574     // Only allow one to spill
3575     cisc_spillable = Not_cisc_spillable;
3576   }
3577 
3578   return cisc_spillable;
3579 }
3580 
3581 //-------------------------root_ops_match--------------------------------------
3582 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
3583   // Base Case: check that the current operands/operations match
3584   assert( op1, "Must have op's name");
3585   assert( op2, "Must have op's name");
3586   const Form *form1 = globals[op1];
3587   const Form *form2 = globals[op2];
3588 
3589   return (form1 == form2);
3590 }
3591 
3592 //-------------------------cisc_spill_match_node-------------------------------
3593 // Recursively check two MatchRules for legal conversion via cisc-spilling
3594 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
3595   int cisc_spillable  = Maybe_cisc_spillable;
3596   int left_spillable  = Maybe_cisc_spillable;
3597   int right_spillable = Maybe_cisc_spillable;
3598 
3599   // Check that each has same number of operands at this level
3600   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
3601     return Not_cisc_spillable;
3602 
3603   // Base Case: check that the current operands/operations match
3604   // or are CISC spillable
3605   assert( _opType, "Must have _opType");
3606   assert( mRule2->_opType, "Must have _opType");
3607   const Form *form  = globals[_opType];
3608   const Form *form2 = globals[mRule2->_opType];
3609   if( form == form2 ) {
3610     cisc_spillable = Maybe_cisc_spillable;
3611   } else {
3612     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
3613     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
3614     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
3615     DataType data_type = Form::none;
3616     if (form->is_operand()) {
3617       // Make sure the loadX matches the type of the reg
3618       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
3619     }
3620     // Detect reg vs (loadX memory)
3621     if( form->is_cisc_reg(globals)
3622         && form2_inst
3623         && data_type != Form::none
3624         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
3625         && (name_left != NULL)       // NOT (load)
3626         && (name_right == NULL) ) {  // NOT (load memory foo)
3627       const Form *form2_left = globals[name_left];
3628       if( form2_left && form2_left->is_cisc_mem(globals) ) {
3629         cisc_spillable = Is_cisc_spillable;
3630         operand        = _name;
3631         reg_type       = _result;
3632         return Is_cisc_spillable;
3633       } else {
3634         cisc_spillable = Not_cisc_spillable;
3635       }
3636     }
3637     // Detect reg vs memory
3638     else if (form->is_cisc_reg(globals) && form2 != NULL && form2->is_cisc_mem(globals)) {
3639       cisc_spillable = Is_cisc_spillable;
3640       operand        = _name;
3641       reg_type       = _result;
3642       return Is_cisc_spillable;
3643     } else {
3644       cisc_spillable = Not_cisc_spillable;
3645     }
3646   }
3647 
3648   // If cisc is still possible, check rest of tree
3649   if( cisc_spillable == Maybe_cisc_spillable ) {
3650     // Check that each has same number of operands at this level
3651     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3652 
3653     // Check left operands
3654     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
3655       left_spillable = Maybe_cisc_spillable;
3656     } else  if (_lChild != NULL) {
3657       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
3658     }
3659 
3660     // Check right operands
3661     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3662       right_spillable =  Maybe_cisc_spillable;
3663     } else if (_rChild != NULL) {
3664       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3665     }
3666 
3667     // Combine results of left and right checks
3668     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3669   }
3670 
3671   return cisc_spillable;
3672 }
3673 
3674 //---------------------------cisc_spill_match_rule------------------------------
3675 // Recursively check two MatchRules for legal conversion via cisc-spilling
3676 // This method handles the root of Match tree,
3677 // general recursive checks done in MatchNode
3678 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
3679                                            MatchRule* mRule2, const char* &operand,
3680                                            const char* &reg_type) {
3681   int cisc_spillable  = Maybe_cisc_spillable;
3682   int left_spillable  = Maybe_cisc_spillable;
3683   int right_spillable = Maybe_cisc_spillable;
3684 
3685   // Check that each sets a result
3686   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
3687   // Check that each has same number of operands at this level
3688   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3689 
3690   // Check left operands: at root, must be target of 'Set'
3691   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
3692     left_spillable = Not_cisc_spillable;
3693   } else {
3694     // Do not support cisc-spilling instruction's target location
3695     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
3696       left_spillable = Maybe_cisc_spillable;
3697     } else {
3698       left_spillable = Not_cisc_spillable;
3699     }
3700   }
3701 
3702   // Check right operands: recursive walk to identify reg->mem operand
3703   if (_rChild == NULL) {
3704     if (mRule2->_rChild == NULL) {
3705       right_spillable =  Maybe_cisc_spillable;
3706     } else {
3707       assert(0, "_rChild should not be NULL");
3708     }
3709   } else {
3710     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3711   }
3712 
3713   // Combine results of left and right checks
3714   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3715 
3716   return cisc_spillable;
3717 }
3718 
3719 //----------------------------- equivalent ------------------------------------
3720 // Recursively check to see if two match rules are equivalent.
3721 // This rule handles the root.
3722 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
3723   // Check that each sets a result
3724   if (sets_result() != mRule2->sets_result()) {
3725     return false;
3726   }
3727 
3728   // Check that the current operands/operations match
3729   assert( _opType, "Must have _opType");
3730   assert( mRule2->_opType, "Must have _opType");
3731   const Form *form  = globals[_opType];
3732   const Form *form2 = globals[mRule2->_opType];
3733   if( form != form2 ) {
3734     return false;
3735   }
3736 
3737   if (_lChild ) {
3738     if( !_lChild->equivalent(globals, mRule2->_lChild) )
3739       return false;
3740   } else if (mRule2->_lChild) {
3741     return false; // I have NULL left child, mRule2 has non-NULL left child.
3742   }
3743 
3744   if (_rChild ) {
3745     if( !_rChild->equivalent(globals, mRule2->_rChild) )
3746       return false;
3747   } else if (mRule2->_rChild) {
3748     return false; // I have NULL right child, mRule2 has non-NULL right child.
3749   }
3750 
3751   // We've made it through the gauntlet.
3752   return true;
3753 }
3754 
3755 //----------------------------- equivalent ------------------------------------
3756 // Recursively check to see if two match rules are equivalent.
3757 // This rule handles the operands.
3758 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
3759   if( !mNode2 )
3760     return false;
3761 
3762   // Check that the current operands/operations match
3763   assert( _opType, "Must have _opType");
3764   assert( mNode2->_opType, "Must have _opType");
3765   const Form *form  = globals[_opType];
3766   const Form *form2 = globals[mNode2->_opType];
3767   if( form != form2 ) {
3768     return false;
3769   }
3770 
3771   // Check that their children also match
3772   if (_lChild ) {
3773     if( !_lChild->equivalent(globals, mNode2->_lChild) )
3774       return false;
3775   } else if (mNode2->_lChild) {
3776     return false; // I have NULL left child, mNode2 has non-NULL left child.
3777   }
3778 
3779   if (_rChild ) {
3780     if( !_rChild->equivalent(globals, mNode2->_rChild) )
3781       return false;
3782   } else if (mNode2->_rChild) {
3783     return false; // I have NULL right child, mNode2 has non-NULL right child.
3784   }
3785 
3786   // We've made it through the gauntlet.
3787   return true;
3788 }
3789 
3790 //-------------------------- has_commutative_op -------------------------------
3791 // Recursively check for commutative operations with subtree operands
3792 // which could be swapped.
3793 void MatchNode::count_commutative_op(int& count) {
3794   static const char *commut_op_list[] = {
3795     "AddI","AddL","AddF","AddD",
3796     "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
3797     "AndI","AndL",
3798     "AndV",
3799     "MaxI","MinI",
3800     "MulI","MulL","MulF","MulD",
3801     "MulVS","MulVI","MulVL","MulVF","MulVD",
3802     "OrI","OrL",
3803     "OrV",
3804     "XorI","XorL",
3805     "XorV"
3806   };
3807   int cnt = sizeof(commut_op_list)/sizeof(char*);
3808 
3809   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
3810     // Don't swap if right operand is an immediate constant.
3811     bool is_const = false;
3812     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
3813       FormDict &globals = _AD.globalNames();
3814       const Form *form = globals[_rChild->_opType];
3815       if ( form ) {
3816         OperandForm  *oper = form->is_operand();
3817         if( oper && oper->interface_type(globals) == Form::constant_interface )
3818           is_const = true;
3819       }
3820     }
3821     if( !is_const ) {
3822       for( int i=0; i<cnt; i++ ) {
3823         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
3824           count++;
3825           _commutative_id = count; // id should be > 0
3826           break;
3827         }
3828       }
3829     }
3830   }
3831   if( _lChild )
3832     _lChild->count_commutative_op(count);
3833   if( _rChild )
3834     _rChild->count_commutative_op(count);
3835 }
3836 
3837 //-------------------------- swap_commutative_op ------------------------------
3838 // Recursively swap specified commutative operation with subtree operands.
3839 void MatchNode::swap_commutative_op(bool atroot, int id) {
3840   if( _commutative_id == id ) { // id should be > 0
3841     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
3842             "not swappable operation");
3843     MatchNode* tmp = _lChild;
3844     _lChild = _rChild;
3845     _rChild = tmp;
3846     // Don't exit here since we need to build internalop.
3847   }
3848 
3849   bool is_set = ( strcmp(_opType, "Set") == 0 );
3850   if( _lChild )
3851     _lChild->swap_commutative_op(is_set, id);
3852   if( _rChild )
3853     _rChild->swap_commutative_op(is_set, id);
3854 
3855   // If not the root, reduce this subtree to an internal operand
3856   if( !atroot && (_lChild || _rChild) ) {
3857     build_internalop();
3858   }
3859 }
3860 
3861 //-------------------------- swap_commutative_op ------------------------------
3862 // Recursively swap specified commutative operation with subtree operands.
3863 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
3864   assert(match_rules_cnt < 100," too many match rule clones");
3865   // Clone
3866   MatchRule* clone = new MatchRule(_AD, this);
3867   // Swap operands of commutative operation
3868   ((MatchNode*)clone)->swap_commutative_op(true, count);
3869   char* buf = (char*) AllocateHeap(strlen(instr_ident) + 4);
3870   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
3871   clone->_result = buf;
3872 
3873   clone->_next = this->_next;
3874   this-> _next = clone;
3875   if( (--count) > 0 ) {
3876     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3877     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3878   }
3879 }
3880 
3881 //------------------------------MatchRule--------------------------------------
3882 MatchRule::MatchRule(ArchDesc &ad)
3883   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
3884     _next = NULL;
3885 }
3886 
3887 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
3888   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
3889     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
3890     _next = NULL;
3891 }
3892 
3893 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
3894                      int numleaves)
3895   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
3896     _numchilds(0) {
3897       _next = NULL;
3898       mroot->_lChild = NULL;
3899       mroot->_rChild = NULL;
3900       delete mroot;
3901       _numleaves = numleaves;
3902       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
3903 }
3904 MatchRule::~MatchRule() {
3905 }
3906 
3907 // Recursive call collecting info on top-level operands, not transitive.
3908 // Implementation does not modify state of internal structures.
3909 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
3910   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3911 
3912   MatchNode::append_components(locals, components,
3913                                false /* not necessarily a def */);
3914 }
3915 
3916 // Recursive call on all operands' match rules in my match rule.
3917 // Implementation does not modify state of internal structures  since they
3918 // can be shared.
3919 // The MatchNode that is called first treats its
3920 bool MatchRule::base_operand(uint &position0, FormDict &globals,
3921                              const char *&result, const char * &name,
3922                              const char * &opType)const{
3923   uint position = position0;
3924 
3925   return (MatchNode::base_operand( position, globals, result, name, opType));
3926 }
3927 
3928 
3929 bool MatchRule::is_base_register(FormDict &globals) const {
3930   uint   position = 1;
3931   const char  *result   = NULL;
3932   const char  *name     = NULL;
3933   const char  *opType   = NULL;
3934   if (!base_operand(position, globals, result, name, opType)) {
3935     position = 0;
3936     if( base_operand(position, globals, result, name, opType) &&
3937         (strcmp(opType,"RegI")==0 ||
3938          strcmp(opType,"RegP")==0 ||
3939          strcmp(opType,"RegN")==0 ||
3940          strcmp(opType,"RegL")==0 ||
3941          strcmp(opType,"RegF")==0 ||
3942          strcmp(opType,"RegD")==0 ||
3943          strcmp(opType,"VecS")==0 ||
3944          strcmp(opType,"VecD")==0 ||
3945          strcmp(opType,"VecX")==0 ||
3946          strcmp(opType,"VecY")==0 ||
3947          strcmp(opType,"VecZ")==0 ||
3948          strcmp(opType,"Reg" )==0) ) {
3949       return 1;
3950     }
3951   }
3952   return 0;
3953 }
3954 
3955 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
3956   uint         position = 1;
3957   const char  *result   = NULL;
3958   const char  *name     = NULL;
3959   const char  *opType   = NULL;
3960   if (!base_operand(position, globals, result, name, opType)) {
3961     position = 0;
3962     if (base_operand(position, globals, result, name, opType)) {
3963       return ideal_to_const_type(opType);
3964     }
3965   }
3966   return Form::none;
3967 }
3968 
3969 bool MatchRule::is_chain_rule(FormDict &globals) const {
3970 
3971   // Check for chain rule, and do not generate a match list for it
3972   if ((_lChild == NULL) && (_rChild == NULL) ) {
3973     const Form *form = globals[_opType];
3974     // If this is ideal, then it is a base match, not a chain rule.
3975     if ( form && form->is_operand() && (!form->ideal_only())) {
3976       return true;
3977     }
3978   }
3979   // Check for "Set" form of chain rule, and do not generate a match list
3980   if (_rChild) {
3981     const char *rch = _rChild->_opType;
3982     const Form *form = globals[rch];
3983     if ((!strcmp(_opType,"Set") &&
3984          ((form) && form->is_operand()))) {
3985       return true;
3986     }
3987   }
3988   return false;
3989 }
3990 
3991 int MatchRule::is_ideal_copy() const {
3992   if( _rChild ) {
3993     const char  *opType = _rChild->_opType;
3994 #if 1
3995     if( strcmp(opType,"CastIP")==0 )
3996       return 1;
3997 #else
3998     if( strcmp(opType,"CastII")==0 )
3999       return 1;
4000     // Do not treat *CastPP this way, because it
4001     // may transfer a raw pointer to an oop.
4002     // If the register allocator were to coalesce this
4003     // into a single LRG, the GC maps would be incorrect.
4004     //if( strcmp(opType,"CastPP")==0 )
4005     //  return 1;
4006     //if( strcmp(opType,"CheckCastPP")==0 )
4007     //  return 1;
4008     //
4009     // Do not treat CastX2P or CastP2X this way, because
4010     // raw pointers and int types are treated differently
4011     // when saving local & stack info for safepoints in
4012     // Output().
4013     //if( strcmp(opType,"CastX2P")==0 )
4014     //  return 1;
4015     //if( strcmp(opType,"CastP2X")==0 )
4016     //  return 1;
4017 #endif
4018   }
4019   if( is_chain_rule(_AD.globalNames()) &&
4020       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
4021     return 1;
4022   return 0;
4023 }
4024 
4025 
4026 int MatchRule::is_expensive() const {
4027   if( _rChild ) {
4028     const char  *opType = _rChild->_opType;
4029     if( strcmp(opType,"AtanD")==0 ||
4030         strcmp(opType,"DivD")==0 ||
4031         strcmp(opType,"DivF")==0 ||
4032         strcmp(opType,"DivI")==0 ||
4033         strcmp(opType,"Log10D")==0 ||
4034         strcmp(opType,"ModD")==0 ||
4035         strcmp(opType,"ModF")==0 ||
4036         strcmp(opType,"ModI")==0 ||
4037         strcmp(opType,"SqrtD")==0 ||
4038         strcmp(opType,"SqrtF")==0 ||
4039         strcmp(opType,"TanD")==0 ||
4040         strcmp(opType,"ConvD2F")==0 ||
4041         strcmp(opType,"ConvD2I")==0 ||
4042         strcmp(opType,"ConvD2L")==0 ||
4043         strcmp(opType,"ConvF2D")==0 ||
4044         strcmp(opType,"ConvF2I")==0 ||
4045         strcmp(opType,"ConvF2L")==0 ||
4046         strcmp(opType,"ConvI2D")==0 ||
4047         strcmp(opType,"ConvI2F")==0 ||
4048         strcmp(opType,"ConvI2L")==0 ||
4049         strcmp(opType,"ConvL2D")==0 ||
4050         strcmp(opType,"ConvL2F")==0 ||
4051         strcmp(opType,"ConvL2I")==0 ||
4052         strcmp(opType,"DecodeN")==0 ||
4053         strcmp(opType,"EncodeP")==0 ||
4054         strcmp(opType,"EncodePKlass")==0 ||
4055         strcmp(opType,"DecodeNKlass")==0 ||
4056         strcmp(opType,"FmaD") == 0 ||
4057         strcmp(opType,"FmaF") == 0 ||
4058         strcmp(opType,"RoundDouble")==0 ||
4059         strcmp(opType,"RoundFloat")==0 ||
4060         strcmp(opType,"ReverseBytesI")==0 ||
4061         strcmp(opType,"ReverseBytesL")==0 ||
4062         strcmp(opType,"ReverseBytesUS")==0 ||
4063         strcmp(opType,"ReverseBytesS")==0 ||
4064         strcmp(opType,"ReplicateB")==0 ||
4065         strcmp(opType,"ReplicateS")==0 ||
4066         strcmp(opType,"ReplicateI")==0 ||
4067         strcmp(opType,"ReplicateL")==0 ||
4068         strcmp(opType,"ReplicateF")==0 ||
4069         strcmp(opType,"ReplicateD")==0 ||
4070         strcmp(opType,"AddReductionVI")==0 ||
4071         strcmp(opType,"AddReductionVL")==0 ||
4072         strcmp(opType,"AddReductionVF")==0 ||
4073         strcmp(opType,"AddReductionVD")==0 ||
4074         strcmp(opType,"MulReductionVI")==0 ||
4075         strcmp(opType,"MulReductionVL")==0 ||
4076         strcmp(opType,"MulReductionVF")==0 ||
4077         strcmp(opType,"MulReductionVD")==0 ||
4078         0 /* 0 to line up columns nicely */ )
4079       return 1;
4080   }
4081   return 0;
4082 }
4083 
4084 bool MatchRule::is_ideal_if() const {
4085   if( !_opType ) return false;
4086   return
4087     !strcmp(_opType,"If"            ) ||
4088     !strcmp(_opType,"CountedLoopEnd");
4089 }
4090 
4091 bool MatchRule::is_ideal_fastlock() const {
4092   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4093     return (strcmp(_rChild->_opType,"FastLock") == 0);
4094   }
4095   return false;
4096 }
4097 
4098 bool MatchRule::is_ideal_membar() const {
4099   if( !_opType ) return false;
4100   return
4101     !strcmp(_opType,"MemBarAcquire") ||
4102     !strcmp(_opType,"MemBarRelease") ||
4103     !strcmp(_opType,"MemBarAcquireLock") ||
4104     !strcmp(_opType,"MemBarReleaseLock") ||
4105     !strcmp(_opType,"LoadFence" ) ||
4106     !strcmp(_opType,"StoreFence") ||
4107     !strcmp(_opType,"MemBarVolatile") ||
4108     !strcmp(_opType,"MemBarCPUOrder") ||
4109     !strcmp(_opType,"MemBarStoreStore") ||
4110     !strcmp(_opType,"OnSpinWait");
4111 }
4112 
4113 bool MatchRule::is_ideal_loadPC() const {
4114   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4115     return (strcmp(_rChild->_opType,"LoadPC") == 0);
4116   }
4117   return false;
4118 }
4119 
4120 bool MatchRule::is_ideal_box() const {
4121   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4122     return (strcmp(_rChild->_opType,"Box") == 0);
4123   }
4124   return false;
4125 }
4126 
4127 bool MatchRule::is_ideal_goto() const {
4128   bool   ideal_goto = false;
4129 
4130   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
4131     ideal_goto = true;
4132   }
4133   return ideal_goto;
4134 }
4135 
4136 bool MatchRule::is_ideal_jump() const {
4137   if( _opType ) {
4138     if( !strcmp(_opType,"Jump") )
4139       return true;
4140   }
4141   return false;
4142 }
4143 
4144 bool MatchRule::is_ideal_bool() const {
4145   if( _opType ) {
4146     if( !strcmp(_opType,"Bool") )
4147       return true;
4148   }
4149   return false;
4150 }
4151 
4152 
4153 Form::DataType MatchRule::is_ideal_load() const {
4154   Form::DataType ideal_load = Form::none;
4155 
4156   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4157     const char *opType = _rChild->_opType;
4158     ideal_load = is_load_from_memory(opType);
4159   }
4160 
4161   return ideal_load;
4162 }
4163 
4164 bool MatchRule::is_vector() const {
4165   static const char *vector_list[] = {
4166     "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
4167     "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
4168     "MulVS","MulVI","MulVL","MulVF","MulVD",
4169     "CMoveVD", "CMoveVF",
4170     "DivVF","DivVD",
4171     "AbsVF","AbsVD",
4172     "NegVF","NegVD",
4173     "SqrtVD","SqrtVF",
4174     "AndV" ,"XorV" ,"OrV",
4175     "AddReductionVI", "AddReductionVL",
4176     "AddReductionVF", "AddReductionVD",
4177     "MulReductionVI", "MulReductionVL",
4178     "MulReductionVF", "MulReductionVD",
4179     "LShiftCntV","RShiftCntV",
4180     "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
4181     "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
4182     "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
4183     "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
4184     "LoadVector","StoreVector",
4185     "FmaVD", "FmaVF","PopCountVI",
4186     // Next are not supported currently.
4187     "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
4188     "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
4189   };
4190   int cnt = sizeof(vector_list)/sizeof(char*);
4191   if (_rChild) {
4192     const char  *opType = _rChild->_opType;
4193     for (int i=0; i<cnt; i++)
4194       if (strcmp(opType,vector_list[i]) == 0)
4195         return true;
4196   }
4197   return false;
4198 }
4199 
4200 
4201 bool MatchRule::skip_antidep_check() const {
4202   // Some loads operate on what is effectively immutable memory so we
4203   // should skip the anti dep computations.  For some of these nodes
4204   // the rewritable field keeps the anti dep logic from triggering but
4205   // for certain kinds of LoadKlass it does not since they are
4206   // actually reading memory which could be rewritten by the runtime,
4207   // though never by generated code.  This disables it uniformly for
4208   // the nodes that behave like this: LoadKlass, LoadNKlass and
4209   // LoadRange.
4210   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4211     const char *opType = _rChild->_opType;
4212     if (strcmp("LoadKlass", opType) == 0 ||
4213         strcmp("LoadNKlass", opType) == 0 ||
4214         strcmp("LoadRange", opType) == 0) {
4215       return true;
4216     }
4217   }
4218 
4219   return false;
4220 }
4221 
4222 
4223 Form::DataType MatchRule::is_ideal_store() const {
4224   Form::DataType ideal_store = Form::none;
4225 
4226   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4227     const char *opType = _rChild->_opType;
4228     ideal_store = is_store_to_memory(opType);
4229   }
4230 
4231   return ideal_store;
4232 }
4233 
4234 
4235 void MatchRule::dump() {
4236   output(stderr);
4237 }
4238 
4239 // Write just one line.
4240 void MatchRule::output_short(FILE *fp) {
4241   fprintf(fp,"MatchRule: ( %s",_name);
4242   if (_lChild) _lChild->output(fp);
4243   if (_rChild) _rChild->output(fp);
4244   fprintf(fp," )");
4245 }
4246 
4247 void MatchRule::output(FILE *fp) {
4248   output_short(fp);
4249   fprintf(fp,"\n   nesting depth = %d\n", _depth);
4250   if (_result) fprintf(fp,"   Result Type = %s", _result);
4251   fprintf(fp,"\n");
4252 }
4253 
4254 //------------------------------Attribute--------------------------------------
4255 Attribute::Attribute(char *id, char* val, int type)
4256   : _ident(id), _val(val), _atype(type) {
4257 }
4258 Attribute::~Attribute() {
4259 }
4260 
4261 int Attribute::int_val(ArchDesc &ad) {
4262   // Make sure it is an integer constant:
4263   int result = 0;
4264   if (!_val || !ADLParser::is_int_token(_val, result)) {
4265     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
4266                   _ident, _val ? _val : "");
4267   }
4268   return result;
4269 }
4270 
4271 void Attribute::dump() {
4272   output(stderr);
4273 } // Debug printer
4274 
4275 // Write to output files
4276 void Attribute::output(FILE *fp) {
4277   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
4278 }
4279 
4280 //------------------------------FormatRule----------------------------------
4281 FormatRule::FormatRule(char *temp)
4282   : _temp(temp) {
4283 }
4284 FormatRule::~FormatRule() {
4285 }
4286 
4287 void FormatRule::dump() {
4288   output(stderr);
4289 }
4290 
4291 // Write to output files
4292 void FormatRule::output(FILE *fp) {
4293   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
4294   fprintf(fp,"\n");
4295 }