1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include COMPILER_HEADER(utilities/globalDefinitions)
  33 
  34 // Defaults for macros that might be defined per compiler.
  35 #ifndef NOINLINE
  36 #define NOINLINE
  37 #endif
  38 #ifndef ALWAYSINLINE
  39 #define ALWAYSINLINE inline
  40 #endif
  41 
  42 #ifndef ATTRIBUTE_ALIGNED
  43 #define ATTRIBUTE_ALIGNED(x)
  44 #endif
  45 
  46 // This file holds all globally used constants & types, class (forward)
  47 // declarations and a few frequently used utility functions.
  48 
  49 //----------------------------------------------------------------------------------------------------
  50 // Printf-style formatters for fixed- and variable-width types as pointers and
  51 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  52 // doesn't provide appropriate definitions, they should be provided in
  53 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  54 
  55 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  56 
  57 // Format 32-bit quantities.
  58 #define INT32_FORMAT           "%" PRId32
  59 #define UINT32_FORMAT          "%" PRIu32
  60 #define INT32_FORMAT_W(width)  "%" #width PRId32
  61 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  62 
  63 #define PTR32_FORMAT           "0x%08" PRIx32
  64 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
  65 
  66 // Format 64-bit quantities.
  67 #define INT64_FORMAT           "%" PRId64
  68 #define UINT64_FORMAT          "%" PRIu64
  69 #define UINT64_FORMAT_X        "%" PRIx64
  70 #define INT64_FORMAT_W(width)  "%" #width PRId64
  71 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  72 #define UINT64_FORMAT_X_W(width) "%" #width PRIx64
  73 
  74 #define PTR64_FORMAT           "0x%016" PRIx64
  75 
  76 // Format jlong, if necessary
  77 #ifndef JLONG_FORMAT
  78 #define JLONG_FORMAT           INT64_FORMAT
  79 #endif
  80 #ifndef JULONG_FORMAT
  81 #define JULONG_FORMAT          UINT64_FORMAT
  82 #endif
  83 #ifndef JULONG_FORMAT_X
  84 #define JULONG_FORMAT_X        UINT64_FORMAT_X
  85 #endif
  86 
  87 // Format pointers which change size between 32- and 64-bit.
  88 #ifdef  _LP64
  89 #define INTPTR_FORMAT "0x%016" PRIxPTR
  90 #define PTR_FORMAT    "0x%016" PRIxPTR
  91 #else   // !_LP64
  92 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  93 #define PTR_FORMAT    "0x%08"  PRIxPTR
  94 #endif  // _LP64
  95 
  96 // Format pointers without leading zeros
  97 #define INTPTRNZ_FORMAT "0x%"  PRIxPTR
  98 
  99 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
 100 
 101 #define SSIZE_FORMAT             "%"   PRIdPTR
 102 #define SIZE_FORMAT              "%"   PRIuPTR
 103 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
 104 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 105 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 106 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
 107 
 108 #define INTX_FORMAT           "%" PRIdPTR
 109 #define UINTX_FORMAT          "%" PRIuPTR
 110 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 111 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 112 
 113 //----------------------------------------------------------------------------------------------------
 114 // Constants
 115 
 116 const int LogBytesPerShort   = 1;
 117 const int LogBytesPerInt     = 2;
 118 #ifdef _LP64
 119 const int LogBytesPerWord    = 3;
 120 #else
 121 const int LogBytesPerWord    = 2;
 122 #endif
 123 const int LogBytesPerLong    = 3;
 124 
 125 const int BytesPerShort      = 1 << LogBytesPerShort;
 126 const int BytesPerInt        = 1 << LogBytesPerInt;
 127 const int BytesPerWord       = 1 << LogBytesPerWord;
 128 const int BytesPerLong       = 1 << LogBytesPerLong;
 129 
 130 const int LogBitsPerByte     = 3;
 131 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 132 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 133 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 134 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 135 
 136 const int BitsPerByte        = 1 << LogBitsPerByte;
 137 const int BitsPerShort       = 1 << LogBitsPerShort;
 138 const int BitsPerInt         = 1 << LogBitsPerInt;
 139 const int BitsPerWord        = 1 << LogBitsPerWord;
 140 const int BitsPerLong        = 1 << LogBitsPerLong;
 141 
 142 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 143 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 144 
 145 const int WordsPerLong       = 2;       // Number of stack entries for longs
 146 
 147 const int oopSize            = sizeof(char*); // Full-width oop
 148 extern int heapOopSize;                       // Oop within a java object
 149 const int wordSize           = sizeof(char*);
 150 const int longSize           = sizeof(jlong);
 151 const int jintSize           = sizeof(jint);
 152 const int size_tSize         = sizeof(size_t);
 153 
 154 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 155 
 156 extern int LogBytesPerHeapOop;                // Oop within a java object
 157 extern int LogBitsPerHeapOop;
 158 extern int BytesPerHeapOop;
 159 extern int BitsPerHeapOop;
 160 
 161 const int BitsPerJavaInteger = 32;
 162 const int BitsPerJavaLong    = 64;
 163 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 164 
 165 // Size of a char[] needed to represent a jint as a string in decimal.
 166 const int jintAsStringSize = 12;
 167 
 168 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 169 // pointer into the heap.  We require that object sizes be measured in
 170 // units of heap words, so that that
 171 //   HeapWord* hw;
 172 //   hw += oop(hw)->foo();
 173 // works, where foo is a method (like size or scavenge) that returns the
 174 // object size.
 175 class HeapWord {
 176   friend class VMStructs;
 177  private:
 178   char* i;
 179 #ifndef PRODUCT
 180  public:
 181   char* value() { return i; }
 182 #endif
 183 };
 184 
 185 // Analogous opaque struct for metadata allocated from
 186 // metaspaces.
 187 class MetaWord {
 188  private:
 189   char* i;
 190 };
 191 
 192 // HeapWordSize must be 2^LogHeapWordSize.
 193 const int HeapWordSize        = sizeof(HeapWord);
 194 #ifdef _LP64
 195 const int LogHeapWordSize     = 3;
 196 #else
 197 const int LogHeapWordSize     = 2;
 198 #endif
 199 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 200 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 201 
 202 // The minimum number of native machine words necessary to contain "byte_size"
 203 // bytes.
 204 inline size_t heap_word_size(size_t byte_size) {
 205   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 206 }
 207 
 208 //-------------------------------------------
 209 // Constant for jlong (standardized by C++11)
 210 
 211 // Build a 64bit integer constant
 212 #define CONST64(x)  (x ## LL)
 213 #define UCONST64(x) (x ## ULL)
 214 
 215 const jlong min_jlong = CONST64(0x8000000000000000);
 216 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 217 
 218 const size_t K                  = 1024;
 219 const size_t M                  = K*K;
 220 const size_t G                  = M*K;
 221 const size_t HWperKB            = K / sizeof(HeapWord);
 222 
 223 // Constants for converting from a base unit to milli-base units.  For
 224 // example from seconds to milliseconds and microseconds
 225 
 226 const int MILLIUNITS    = 1000;         // milli units per base unit
 227 const int MICROUNITS    = 1000000;      // micro units per base unit
 228 const int NANOUNITS     = 1000000000;   // nano units per base unit
 229 
 230 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 231 const jint  NANOSECS_PER_MILLISEC = 1000000;
 232 
 233 inline const char* proper_unit_for_byte_size(size_t s) {
 234 #ifdef _LP64
 235   if (s >= 10*G) {
 236     return "G";
 237   }
 238 #endif
 239   if (s >= 10*M) {
 240     return "M";
 241   } else if (s >= 10*K) {
 242     return "K";
 243   } else {
 244     return "B";
 245   }
 246 }
 247 
 248 template <class T>
 249 inline T byte_size_in_proper_unit(T s) {
 250 #ifdef _LP64
 251   if (s >= 10*G) {
 252     return (T)(s/G);
 253   }
 254 #endif
 255   if (s >= 10*M) {
 256     return (T)(s/M);
 257   } else if (s >= 10*K) {
 258     return (T)(s/K);
 259   } else {
 260     return s;
 261   }
 262 }
 263 
 264 inline const char* exact_unit_for_byte_size(size_t s) {
 265 #ifdef _LP64
 266   if (s >= G && (s % G) == 0) {
 267     return "G";
 268   }
 269 #endif
 270   if (s >= M && (s % M) == 0) {
 271     return "M";
 272   }
 273   if (s >= K && (s % K) == 0) {
 274     return "K";
 275   }
 276   return "B";
 277 }
 278 
 279 inline size_t byte_size_in_exact_unit(size_t s) {
 280 #ifdef _LP64
 281   if (s >= G && (s % G) == 0) {
 282     return s / G;
 283   }
 284 #endif
 285   if (s >= M && (s % M) == 0) {
 286     return s / M;
 287   }
 288   if (s >= K && (s % K) == 0) {
 289     return s / K;
 290   }
 291   return s;
 292 }
 293 
 294 //----------------------------------------------------------------------------------------------------
 295 // VM type definitions
 296 
 297 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 298 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 299 
 300 typedef intptr_t  intx;
 301 typedef uintptr_t uintx;
 302 
 303 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 304 const intx  max_intx  = (uintx)min_intx - 1;
 305 const uintx max_uintx = (uintx)-1;
 306 
 307 // Table of values:
 308 //      sizeof intx         4               8
 309 // min_intx             0x80000000      0x8000000000000000
 310 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 311 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 312 
 313 typedef unsigned int uint;   NEEDS_CLEANUP
 314 
 315 
 316 //----------------------------------------------------------------------------------------------------
 317 // Java type definitions
 318 
 319 // All kinds of 'plain' byte addresses
 320 typedef   signed char s_char;
 321 typedef unsigned char u_char;
 322 typedef u_char*       address;
 323 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 324                                     // except for some implementations of a C++
 325                                     // linkage pointer to function. Should never
 326                                     // need one of those to be placed in this
 327                                     // type anyway.
 328 
 329 //  Utility functions to "portably" (?) bit twiddle pointers
 330 //  Where portable means keep ANSI C++ compilers quiet
 331 
 332 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 333 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 334 
 335 //  Utility functions to "portably" make cast to/from function pointers.
 336 
 337 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 338 inline address_word  castable_address(address x)              { return address_word(x) ; }
 339 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 340 
 341 // Pointer subtraction.
 342 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 343 // the range we might need to find differences from one end of the heap
 344 // to the other.
 345 // A typical use might be:
 346 //     if (pointer_delta(end(), top()) >= size) {
 347 //       // enough room for an object of size
 348 //       ...
 349 // and then additions like
 350 //       ... top() + size ...
 351 // are safe because we know that top() is at least size below end().
 352 inline size_t pointer_delta(const volatile void* left,
 353                             const volatile void* right,
 354                             size_t element_size) {
 355   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 356 }
 357 
 358 // A version specialized for HeapWord*'s.
 359 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 360   return pointer_delta(left, right, sizeof(HeapWord));
 361 }
 362 // A version specialized for MetaWord*'s.
 363 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 364   return pointer_delta(left, right, sizeof(MetaWord));
 365 }
 366 
 367 //
 368 // ANSI C++ does not allow casting from one pointer type to a function pointer
 369 // directly without at best a warning. This macro accomplishes it silently
 370 // In every case that is present at this point the value be cast is a pointer
 371 // to a C linkage function. In some case the type used for the cast reflects
 372 // that linkage and a picky compiler would not complain. In other cases because
 373 // there is no convenient place to place a typedef with extern C linkage (i.e
 374 // a platform dependent header file) it doesn't. At this point no compiler seems
 375 // picky enough to catch these instances (which are few). It is possible that
 376 // using templates could fix these for all cases. This use of templates is likely
 377 // so far from the middle of the road that it is likely to be problematic in
 378 // many C++ compilers.
 379 //
 380 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 381 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 382 
 383 // Unsigned byte types for os and stream.hpp
 384 
 385 // Unsigned one, two, four and eigth byte quantities used for describing
 386 // the .class file format. See JVM book chapter 4.
 387 
 388 typedef jubyte  u1;
 389 typedef jushort u2;
 390 typedef juint   u4;
 391 typedef julong  u8;
 392 
 393 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 394 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 395 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 396 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 397 
 398 typedef jbyte  s1;
 399 typedef jshort s2;
 400 typedef jint   s4;
 401 typedef jlong  s8;
 402 
 403 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 404 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 405 const jshort min_jshort = -(1 << 15);    // smallest jshort
 406 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 407 
 408 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 409 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 410 
 411 //----------------------------------------------------------------------------------------------------
 412 // JVM spec restrictions
 413 
 414 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 415 
 416 //----------------------------------------------------------------------------------------------------
 417 // Default and minimum StringTable and SymbolTable size values
 418 // Must be a power of 2
 419 
 420 const size_t defaultStringTableSize = NOT_LP64(1024) LP64_ONLY(65536);
 421 const size_t minimumStringTableSize = 128;
 422 
 423 const size_t defaultSymbolTableSize = 32768; // 2^15
 424 const size_t minimumSymbolTableSize = 1024;
 425 
 426 
 427 //----------------------------------------------------------------------------------------------------
 428 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 429 //
 430 // Determines whether on-the-fly class replacement and frame popping are enabled.
 431 
 432 #define HOTSWAP
 433 
 434 //----------------------------------------------------------------------------------------------------
 435 // Object alignment, in units of HeapWords.
 436 //
 437 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 438 // reference fields can be naturally aligned.
 439 
 440 extern int MinObjAlignment;
 441 extern int MinObjAlignmentInBytes;
 442 extern int MinObjAlignmentInBytesMask;
 443 
 444 extern int LogMinObjAlignment;
 445 extern int LogMinObjAlignmentInBytes;
 446 
 447 const int LogKlassAlignmentInBytes = 3;
 448 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 449 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 450 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 451 
 452 // Maximal size of heap where unscaled compression can be used. Also upper bound
 453 // for heap placement: 4GB.
 454 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 455 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 456 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 457 extern uint64_t OopEncodingHeapMax;
 458 
 459 // Maximal size of compressed class space. Above this limit compression is not possible.
 460 // Also upper bound for placement of zero based class space. (Class space is further limited
 461 // to be < 3G, see arguments.cpp.)
 462 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 463 
 464 // Machine dependent stuff
 465 
 466 // The maximum size of the code cache.  Can be overridden by targets.
 467 #define CODE_CACHE_SIZE_LIMIT (2*G)
 468 // Allow targets to reduce the default size of the code cache.
 469 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 470 
 471 #include CPU_HEADER(globalDefinitions)
 472 
 473 // To assure the IRIW property on processors that are not multiple copy
 474 // atomic, sync instructions must be issued between volatile reads to
 475 // assure their ordering, instead of after volatile stores.
 476 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 477 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 478 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 479 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 480 #else
 481 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 482 #endif
 483 
 484 // The expected size in bytes of a cache line, used to pad data structures.
 485 #ifndef DEFAULT_CACHE_LINE_SIZE
 486   #define DEFAULT_CACHE_LINE_SIZE 64
 487 #endif
 488 
 489 
 490 //----------------------------------------------------------------------------------------------------
 491 // Utility macros for compilers
 492 // used to silence compiler warnings
 493 
 494 #define Unused_Variable(var) var
 495 
 496 
 497 //----------------------------------------------------------------------------------------------------
 498 // Miscellaneous
 499 
 500 // 6302670 Eliminate Hotspot __fabsf dependency
 501 // All fabs() callers should call this function instead, which will implicitly
 502 // convert the operand to double, avoiding a dependency on __fabsf which
 503 // doesn't exist in early versions of Solaris 8.
 504 inline double fabsd(double value) {
 505   return fabs(value);
 506 }
 507 
 508 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 509 // is zero, return 0.0.
 510 template<typename T>
 511 inline double percent_of(T numerator, T denominator) {
 512   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 513 }
 514 
 515 //----------------------------------------------------------------------------------------------------
 516 // Special casts
 517 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 518 typedef union {
 519   jfloat f;
 520   jint i;
 521 } FloatIntConv;
 522 
 523 typedef union {
 524   jdouble d;
 525   jlong l;
 526   julong ul;
 527 } DoubleLongConv;
 528 
 529 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 530 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 531 
 532 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 533 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 534 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 535 
 536 inline jint low (jlong value)                    { return jint(value); }
 537 inline jint high(jlong value)                    { return jint(value >> 32); }
 538 
 539 // the fancy casts are a hopefully portable way
 540 // to do unsigned 32 to 64 bit type conversion
 541 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 542                                                    *value |= (jlong)(julong)(juint)low; }
 543 
 544 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 545                                                    *value |= (jlong)high       << 32; }
 546 
 547 inline jlong jlong_from(jint h, jint l) {
 548   jlong result = 0; // initialization to avoid warning
 549   set_high(&result, h);
 550   set_low(&result,  l);
 551   return result;
 552 }
 553 
 554 union jlong_accessor {
 555   jint  words[2];
 556   jlong long_value;
 557 };
 558 
 559 void basic_types_init(); // cannot define here; uses assert
 560 
 561 
 562 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 563 enum BasicType {
 564   T_BOOLEAN     =  4,
 565   T_CHAR        =  5,
 566   T_FLOAT       =  6,
 567   T_DOUBLE      =  7,
 568   T_BYTE        =  8,
 569   T_SHORT       =  9,
 570   T_INT         = 10,
 571   T_LONG        = 11,
 572   T_OBJECT      = 12,
 573   T_ARRAY       = 13,
 574   T_VOID        = 14,
 575   T_ADDRESS     = 15,
 576   T_NARROWOOP   = 16,
 577   T_METADATA    = 17,
 578   T_NARROWKLASS = 18,
 579   T_CONFLICT    = 19, // for stack value type with conflicting contents
 580   T_ILLEGAL     = 99
 581 };
 582 
 583 inline bool is_java_primitive(BasicType t) {
 584   return T_BOOLEAN <= t && t <= T_LONG;
 585 }
 586 
 587 inline bool is_subword_type(BasicType t) {
 588   // these guys are processed exactly like T_INT in calling sequences:
 589   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 590 }
 591 
 592 inline bool is_signed_subword_type(BasicType t) {
 593   return (t == T_BYTE || t == T_SHORT);
 594 }
 595 
 596 inline bool is_reference_type(BasicType t) {
 597   return (t == T_OBJECT || t == T_ARRAY);
 598 }
 599 
 600 // Convert a char from a classfile signature to a BasicType
 601 inline BasicType char2type(char c) {
 602   switch( c ) {
 603   case 'B': return T_BYTE;
 604   case 'C': return T_CHAR;
 605   case 'D': return T_DOUBLE;
 606   case 'F': return T_FLOAT;
 607   case 'I': return T_INT;
 608   case 'J': return T_LONG;
 609   case 'S': return T_SHORT;
 610   case 'Z': return T_BOOLEAN;
 611   case 'V': return T_VOID;
 612   case 'L': return T_OBJECT;
 613   case '[': return T_ARRAY;
 614   }
 615   return T_ILLEGAL;
 616 }
 617 
 618 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 619 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 620 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 621 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 622 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 623 extern BasicType name2type(const char* name);
 624 
 625 // Auxiliary math routines
 626 // least common multiple
 627 extern size_t lcm(size_t a, size_t b);
 628 
 629 
 630 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 631 enum BasicTypeSize {
 632   T_BOOLEAN_size     = 1,
 633   T_CHAR_size        = 1,
 634   T_FLOAT_size       = 1,
 635   T_DOUBLE_size      = 2,
 636   T_BYTE_size        = 1,
 637   T_SHORT_size       = 1,
 638   T_INT_size         = 1,
 639   T_LONG_size        = 2,
 640   T_OBJECT_size      = 1,
 641   T_ARRAY_size       = 1,
 642   T_NARROWOOP_size   = 1,
 643   T_NARROWKLASS_size = 1,
 644   T_VOID_size        = 0
 645 };
 646 
 647 
 648 // maps a BasicType to its instance field storage type:
 649 // all sub-word integral types are widened to T_INT
 650 extern BasicType type2field[T_CONFLICT+1];
 651 extern BasicType type2wfield[T_CONFLICT+1];
 652 
 653 
 654 // size in bytes
 655 enum ArrayElementSize {
 656   T_BOOLEAN_aelem_bytes     = 1,
 657   T_CHAR_aelem_bytes        = 2,
 658   T_FLOAT_aelem_bytes       = 4,
 659   T_DOUBLE_aelem_bytes      = 8,
 660   T_BYTE_aelem_bytes        = 1,
 661   T_SHORT_aelem_bytes       = 2,
 662   T_INT_aelem_bytes         = 4,
 663   T_LONG_aelem_bytes        = 8,
 664 #ifdef _LP64
 665   T_OBJECT_aelem_bytes      = 8,
 666   T_ARRAY_aelem_bytes       = 8,
 667 #else
 668   T_OBJECT_aelem_bytes      = 4,
 669   T_ARRAY_aelem_bytes       = 4,
 670 #endif
 671   T_NARROWOOP_aelem_bytes   = 4,
 672   T_NARROWKLASS_aelem_bytes = 4,
 673   T_VOID_aelem_bytes        = 0
 674 };
 675 
 676 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 677 #ifdef ASSERT
 678 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 679 #else
 680 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 681 #endif
 682 
 683 
 684 // JavaValue serves as a container for arbitrary Java values.
 685 
 686 class JavaValue {
 687 
 688  public:
 689   typedef union JavaCallValue {
 690     jfloat   f;
 691     jdouble  d;
 692     jint     i;
 693     jlong    l;
 694     jobject  h;
 695   } JavaCallValue;
 696 
 697  private:
 698   BasicType _type;
 699   JavaCallValue _value;
 700 
 701  public:
 702   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 703 
 704   JavaValue(jfloat value) {
 705     _type    = T_FLOAT;
 706     _value.f = value;
 707   }
 708 
 709   JavaValue(jdouble value) {
 710     _type    = T_DOUBLE;
 711     _value.d = value;
 712   }
 713 
 714  jfloat get_jfloat() const { return _value.f; }
 715  jdouble get_jdouble() const { return _value.d; }
 716  jint get_jint() const { return _value.i; }
 717  jlong get_jlong() const { return _value.l; }
 718  jobject get_jobject() const { return _value.h; }
 719  JavaCallValue* get_value_addr() { return &_value; }
 720  BasicType get_type() const { return _type; }
 721 
 722  void set_jfloat(jfloat f) { _value.f = f;}
 723  void set_jdouble(jdouble d) { _value.d = d;}
 724  void set_jint(jint i) { _value.i = i;}
 725  void set_jlong(jlong l) { _value.l = l;}
 726  void set_jobject(jobject h) { _value.h = h;}
 727  void set_type(BasicType t) { _type = t; }
 728 
 729  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 730  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 731  jchar get_jchar() const { return (jchar) (_value.i);}
 732  jshort get_jshort() const { return (jshort) (_value.i);}
 733 
 734 };
 735 
 736 
 737 #define STACK_BIAS      0
 738 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 739 // in order to extend the reach of the stack pointer.
 740 #if defined(SPARC) && defined(_LP64)
 741 #undef STACK_BIAS
 742 #define STACK_BIAS      0x7ff
 743 #endif
 744 
 745 
 746 // TosState describes the top-of-stack state before and after the execution of
 747 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 748 // registers. The TosState corresponds to the 'machine representation' of this cached
 749 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 750 // as well as a 5th state in case the top-of-stack value is actually on the top
 751 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 752 // state when it comes to machine representation but is used separately for (oop)
 753 // type specific operations (e.g. verification code).
 754 
 755 enum TosState {         // describes the tos cache contents
 756   btos = 0,             // byte, bool tos cached
 757   ztos = 1,             // byte, bool tos cached
 758   ctos = 2,             // char tos cached
 759   stos = 3,             // short tos cached
 760   itos = 4,             // int tos cached
 761   ltos = 5,             // long tos cached
 762   ftos = 6,             // float tos cached
 763   dtos = 7,             // double tos cached
 764   atos = 8,             // object cached
 765   vtos = 9,             // tos not cached
 766   number_of_states,
 767   ilgl                  // illegal state: should not occur
 768 };
 769 
 770 
 771 inline TosState as_TosState(BasicType type) {
 772   switch (type) {
 773     case T_BYTE   : return btos;
 774     case T_BOOLEAN: return ztos;
 775     case T_CHAR   : return ctos;
 776     case T_SHORT  : return stos;
 777     case T_INT    : return itos;
 778     case T_LONG   : return ltos;
 779     case T_FLOAT  : return ftos;
 780     case T_DOUBLE : return dtos;
 781     case T_VOID   : return vtos;
 782     case T_ARRAY  : // fall through
 783     case T_OBJECT : return atos;
 784     default       : return ilgl;
 785   }
 786 }
 787 
 788 inline BasicType as_BasicType(TosState state) {
 789   switch (state) {
 790     case btos : return T_BYTE;
 791     case ztos : return T_BOOLEAN;
 792     case ctos : return T_CHAR;
 793     case stos : return T_SHORT;
 794     case itos : return T_INT;
 795     case ltos : return T_LONG;
 796     case ftos : return T_FLOAT;
 797     case dtos : return T_DOUBLE;
 798     case atos : return T_OBJECT;
 799     case vtos : return T_VOID;
 800     default   : return T_ILLEGAL;
 801   }
 802 }
 803 
 804 
 805 // Helper function to convert BasicType info into TosState
 806 // Note: Cannot define here as it uses global constant at the time being.
 807 TosState as_TosState(BasicType type);
 808 
 809 
 810 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 811 // information is needed by the safepoint code.
 812 //
 813 // There are 4 essential states:
 814 //
 815 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 816 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 817 //  _thread_in_vm       : Executing in the vm
 818 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 819 //
 820 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 821 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 822 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 823 //
 824 // Given a state, the xxxx_trans state can always be found by adding 1.
 825 //
 826 enum JavaThreadState {
 827   _thread_uninitialized     =  0, // should never happen (missing initialization)
 828   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 829   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 830   _thread_in_native         =  4, // running in native code
 831   _thread_in_native_trans   =  5, // corresponding transition state
 832   _thread_in_vm             =  6, // running in VM
 833   _thread_in_vm_trans       =  7, // corresponding transition state
 834   _thread_in_Java           =  8, // running in Java or in stub code
 835   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 836   _thread_blocked           = 10, // blocked in vm
 837   _thread_blocked_trans     = 11, // corresponding transition state
 838   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 839 };
 840 
 841 
 842 
 843 //----------------------------------------------------------------------------------------------------
 844 // 'Forward' declarations of frequently used classes
 845 // (in order to reduce interface dependencies & reduce
 846 // number of unnecessary compilations after changes)
 847 
 848 class ClassFileStream;
 849 
 850 class Event;
 851 
 852 class Thread;
 853 class  VMThread;
 854 class  JavaThread;
 855 class Threads;
 856 
 857 class VM_Operation;
 858 class VMOperationQueue;
 859 
 860 class CodeBlob;
 861 class  CompiledMethod;
 862 class   nmethod;
 863 class RuntimeBlob;
 864 class  OSRAdapter;
 865 class  I2CAdapter;
 866 class  C2IAdapter;
 867 class CompiledIC;
 868 class relocInfo;
 869 class ScopeDesc;
 870 class PcDesc;
 871 
 872 class Recompiler;
 873 class Recompilee;
 874 class RecompilationPolicy;
 875 class RFrame;
 876 class  CompiledRFrame;
 877 class  InterpretedRFrame;
 878 
 879 class vframe;
 880 class   javaVFrame;
 881 class     interpretedVFrame;
 882 class     compiledVFrame;
 883 class     deoptimizedVFrame;
 884 class   externalVFrame;
 885 class     entryVFrame;
 886 
 887 class RegisterMap;
 888 
 889 class Mutex;
 890 class Monitor;
 891 class BasicLock;
 892 class BasicObjectLock;
 893 
 894 class PeriodicTask;
 895 
 896 class JavaCallWrapper;
 897 
 898 class   oopDesc;
 899 class   metaDataOopDesc;
 900 
 901 class NativeCall;
 902 
 903 class zone;
 904 
 905 class StubQueue;
 906 
 907 class outputStream;
 908 
 909 class ResourceArea;
 910 
 911 class DebugInformationRecorder;
 912 class ScopeValue;
 913 class CompressedStream;
 914 class   DebugInfoReadStream;
 915 class   DebugInfoWriteStream;
 916 class LocationValue;
 917 class ConstantValue;
 918 class IllegalValue;
 919 
 920 class MonitorArray;
 921 
 922 class MonitorInfo;
 923 
 924 class OffsetClosure;
 925 class OopMapCache;
 926 class InterpreterOopMap;
 927 class OopMapCacheEntry;
 928 class OSThread;
 929 
 930 typedef int (*OSThreadStartFunc)(void*);
 931 
 932 class Space;
 933 
 934 class JavaValue;
 935 class methodHandle;
 936 class JavaCallArguments;
 937 
 938 //----------------------------------------------------------------------------------------------------
 939 // Special constants for debugging
 940 
 941 const jint     badInt           = -3;                       // generic "bad int" value
 942 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
 943 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
 944 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 945 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
 946 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 947 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 948 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 949 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 950 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
 951 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 952 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 953 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 954 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 955 
 956 
 957 // (These must be implemented as #defines because C++ compilers are
 958 // not obligated to inline non-integral constants!)
 959 #define       badAddress        ((address)::badAddressVal)
 960 #define       badOop            (cast_to_oop(::badOopVal))
 961 #define       badHeapWord       (::badHeapWordVal)
 962 
 963 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 964 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 965 
 966 //----------------------------------------------------------------------------------------------------
 967 // Utility functions for bitfield manipulations
 968 
 969 const intptr_t AllBits    = ~0; // all bits set in a word
 970 const intptr_t NoBits     =  0; // no bits set in a word
 971 const jlong    NoLongBits =  0; // no bits set in a long
 972 const intptr_t OneBit     =  1; // only right_most bit set in a word
 973 
 974 // get a word with the n.th or the right-most or left-most n bits set
 975 // (note: #define used only so that they can be used in enum constant definitions)
 976 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
 977 #define right_n_bits(n)   (nth_bit(n) - 1)
 978 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
 979 
 980 // bit-operations using a mask m
 981 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 982 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 983 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 984 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 985 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 986 
 987 // bit-operations using the n.th bit
 988 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 989 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 990 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
 991 
 992 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
 993 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
 994   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
 995 }
 996 
 997 
 998 //----------------------------------------------------------------------------------------------------
 999 // Utility functions for integers
1000 
1001 // Avoid use of global min/max macros which may cause unwanted double
1002 // evaluation of arguments.
1003 #ifdef max
1004 #undef max
1005 #endif
1006 
1007 #ifdef min
1008 #undef min
1009 #endif
1010 
1011 // It is necessary to use templates here. Having normal overloaded
1012 // functions does not work because it is necessary to provide both 32-
1013 // and 64-bit overloaded functions, which does not work, and having
1014 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1015 // will be even more error-prone than macros.
1016 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1017 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1018 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1019 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1020 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1021 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1022 
1023 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1024 
1025 // true if x is a power of 2, false otherwise
1026 inline bool is_power_of_2(intptr_t x) {
1027   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1028 }
1029 
1030 // long version of is_power_of_2
1031 inline bool is_power_of_2_long(jlong x) {
1032   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1033 }
1034 
1035 // Returns largest i such that 2^i <= x.
1036 // If x == 0, the function returns -1.
1037 inline int log2_intptr(uintptr_t x) {
1038   int i = -1;
1039   uintptr_t p = 1;
1040   while (p != 0 && p <= x) {
1041     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1042     i++; p *= 2;
1043   }
1044   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1045   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1046   return i;
1047 }
1048 
1049 //* largest i such that 2^i <= x
1050 inline int log2_long(julong x) {
1051   int i = -1;
1052   julong p =  1;
1053   while (p != 0 && p <= x) {
1054     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1055     i++; p *= 2;
1056   }
1057   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1058   // (if p = 0 then overflow occurred and i = 63)
1059   return i;
1060 }
1061 
1062 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1063 inline int log2_intptr(intptr_t x) {
1064   return log2_intptr((uintptr_t)x);
1065 }
1066 
1067 inline int log2_int(int x) {
1068   STATIC_ASSERT(sizeof(int) <= sizeof(uintptr_t));
1069   return log2_intptr((uintptr_t)x);
1070 }
1071 
1072 inline int log2_jint(jint x) {
1073   STATIC_ASSERT(sizeof(jint) <= sizeof(uintptr_t));
1074   return log2_intptr((uintptr_t)x);
1075 }
1076 
1077 inline int log2_uint(uint x) {
1078   STATIC_ASSERT(sizeof(uint) <= sizeof(uintptr_t));
1079   return log2_intptr((uintptr_t)x);
1080 }
1081 
1082 //  A negative value of 'x' will return '63'
1083 inline int log2_jlong(jlong x) {
1084   STATIC_ASSERT(sizeof(jlong) <= sizeof(julong));
1085   return log2_long((julong)x);
1086 }
1087 
1088 //* the argument must be exactly a power of 2
1089 inline int exact_log2(intptr_t x) {
1090   assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
1091   return log2_intptr(x);
1092 }
1093 
1094 //* the argument must be exactly a power of 2
1095 inline int exact_log2_long(jlong x) {
1096   assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
1097   return log2_long(x);
1098 }
1099 
1100 inline bool is_odd (intx x) { return x & 1;      }
1101 inline bool is_even(intx x) { return !is_odd(x); }
1102 
1103 // abs methods which cannot overflow and so are well-defined across
1104 // the entire domain of integer types.
1105 static inline unsigned int uabs(unsigned int n) {
1106   union {
1107     unsigned int result;
1108     int value;
1109   };
1110   result = n;
1111   if (value < 0) result = 0-result;
1112   return result;
1113 }
1114 static inline julong uabs(julong n) {
1115   union {
1116     julong result;
1117     jlong value;
1118   };
1119   result = n;
1120   if (value < 0) result = 0-result;
1121   return result;
1122 }
1123 static inline julong uabs(jlong n) { return uabs((julong)n); }
1124 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1125 
1126 // "to" should be greater than "from."
1127 inline intx byte_size(void* from, void* to) {
1128   return (address)to - (address)from;
1129 }
1130 
1131 //----------------------------------------------------------------------------------------------------
1132 // Avoid non-portable casts with these routines (DEPRECATED)
1133 
1134 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1135 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1136 
1137 // Given sequence of four bytes, build into a 32-bit word
1138 // following the conventions used in class files.
1139 // On the 386, this could be realized with a simple address cast.
1140 //
1141 
1142 // This routine takes eight bytes:
1143 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1144   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1145        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1146        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1147        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1148        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1149        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1150        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1151        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1152 }
1153 
1154 // This routine takes four bytes:
1155 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1156   return  (( u4(c1) << 24 )  &  0xff000000)
1157        |  (( u4(c2) << 16 )  &  0x00ff0000)
1158        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1159        |  (( u4(c4) <<  0 )  &  0x000000ff);
1160 }
1161 
1162 // And this one works if the four bytes are contiguous in memory:
1163 inline u4 build_u4_from( u1* p ) {
1164   return  build_u4_from( p[0], p[1], p[2], p[3] );
1165 }
1166 
1167 // Ditto for two-byte ints:
1168 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1169   return  u2((( u2(c1) <<  8 )  &  0xff00)
1170           |  (( u2(c2) <<  0 )  &  0x00ff));
1171 }
1172 
1173 // And this one works if the two bytes are contiguous in memory:
1174 inline u2 build_u2_from( u1* p ) {
1175   return  build_u2_from( p[0], p[1] );
1176 }
1177 
1178 // Ditto for floats:
1179 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1180   u4 u = build_u4_from( c1, c2, c3, c4 );
1181   return  *(jfloat*)&u;
1182 }
1183 
1184 inline jfloat build_float_from( u1* p ) {
1185   u4 u = build_u4_from( p );
1186   return  *(jfloat*)&u;
1187 }
1188 
1189 
1190 // now (64-bit) longs
1191 
1192 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1193   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1194        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1195        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1196        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1197        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1198        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1199        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1200        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1201 }
1202 
1203 inline jlong build_long_from( u1* p ) {
1204   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1205 }
1206 
1207 
1208 // Doubles, too!
1209 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1210   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1211   return  *(jdouble*)&u;
1212 }
1213 
1214 inline jdouble build_double_from( u1* p ) {
1215   jlong u = build_long_from( p );
1216   return  *(jdouble*)&u;
1217 }
1218 
1219 
1220 // Portable routines to go the other way:
1221 
1222 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1223   c1 = u1(x >> 8);
1224   c2 = u1(x);
1225 }
1226 
1227 inline void explode_short_to( u2 x, u1* p ) {
1228   explode_short_to( x, p[0], p[1]);
1229 }
1230 
1231 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1232   c1 = u1(x >> 24);
1233   c2 = u1(x >> 16);
1234   c3 = u1(x >>  8);
1235   c4 = u1(x);
1236 }
1237 
1238 inline void explode_int_to( u4 x, u1* p ) {
1239   explode_int_to( x, p[0], p[1], p[2], p[3]);
1240 }
1241 
1242 
1243 // Pack and extract shorts to/from ints:
1244 
1245 inline int extract_low_short_from_int(jint x) {
1246   return x & 0xffff;
1247 }
1248 
1249 inline int extract_high_short_from_int(jint x) {
1250   return (x >> 16) & 0xffff;
1251 }
1252 
1253 inline int build_int_from_shorts( jushort low, jushort high ) {
1254   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1255 }
1256 
1257 // Convert pointer to intptr_t, for use in printing pointers.
1258 inline intptr_t p2i(const void * p) {
1259   return (intptr_t) p;
1260 }
1261 
1262 // swap a & b
1263 template<class T> static void swap(T& a, T& b) {
1264   T tmp = a;
1265   a = b;
1266   b = tmp;
1267 }
1268 
1269 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1270 
1271 //----------------------------------------------------------------------------------------------------
1272 // Sum and product which can never overflow: they wrap, just like the
1273 // Java operations.  Note that we don't intend these to be used for
1274 // general-purpose arithmetic: their purpose is to emulate Java
1275 // operations.
1276 
1277 // The goal of this code to avoid undefined or implementation-defined
1278 // behavior.  The use of an lvalue to reference cast is explicitly
1279 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1280 // 15 in C++03]
1281 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1282 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1283   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1284   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1285   return reinterpret_cast<TYPE&>(ures);                 \
1286 }
1287 
1288 JAVA_INTEGER_OP(+, java_add, jint, juint)
1289 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1290 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1291 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1292 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1293 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1294 
1295 #undef JAVA_INTEGER_OP
1296 
1297 // Dereference vptr
1298 // All C++ compilers that we know of have the vtbl pointer in the first
1299 // word.  If there are exceptions, this function needs to be made compiler
1300 // specific.
1301 static inline void* dereference_vptr(const void* addr) {
1302   return *(void**)addr;
1303 }
1304 
1305 //----------------------------------------------------------------------------------------------------
1306 // String type aliases used by command line flag declarations and
1307 // processing utilities.
1308 
1309 typedef const char* ccstr;
1310 typedef const char* ccstrlist;   // represents string arguments which accumulate
1311 
1312 //----------------------------------------------------------------------------------------------------
1313 // Default hash/equals functions used by ResourceHashtable and KVHashtable
1314 
1315 template<typename K> unsigned primitive_hash(const K& k) {
1316   unsigned hash = (unsigned)((uintptr_t)k);
1317   return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
1318 }
1319 
1320 template<typename K> bool primitive_equals(const K& k0, const K& k1) {
1321   return k0 == k1;
1322 }
1323 
1324 
1325 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP