1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_SPACE_INLINE_HPP
  26 #define SHARE_VM_GC_SHARED_SPACE_INLINE_HPP
  27 
  28 #include "gc/serial/markSweep.inline.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/generation.hpp"
  31 #include "gc/shared/liveRange.hpp"
  32 #include "gc/shared/space.hpp"
  33 #include "gc/shared/spaceDecorator.hpp"
  34 #include "memory/universe.hpp"
  35 #include "runtime/prefetch.inline.hpp"
  36 #include "runtime/safepoint.hpp"
  37 
  38 inline HeapWord* Space::block_start(const void* p) {
  39   return block_start_const(p);
  40 }
  41 
  42 inline HeapWord* OffsetTableContigSpace::allocate(size_t size) {
  43   HeapWord* res = ContiguousSpace::allocate(size);
  44   if (res != NULL) {
  45     _offsets.alloc_block(res, size);
  46   }
  47   return res;
  48 }
  49 
  50 // Because of the requirement of keeping "_offsets" up to date with the
  51 // allocations, we sequentialize these with a lock.  Therefore, best if
  52 // this is used for larger LAB allocations only.
  53 inline HeapWord* OffsetTableContigSpace::par_allocate(size_t size) {
  54   MutexLocker x(&_par_alloc_lock);
  55   // This ought to be just "allocate", because of the lock above, but that
  56   // ContiguousSpace::allocate asserts that either the allocating thread
  57   // holds the heap lock or it is the VM thread and we're at a safepoint.
  58   // The best I (dld) could figure was to put a field in ContiguousSpace
  59   // meaning "locking at safepoint taken care of", and set/reset that
  60   // here.  But this will do for now, especially in light of the comment
  61   // above.  Perhaps in the future some lock-free manner of keeping the
  62   // coordination.
  63   HeapWord* res = ContiguousSpace::par_allocate(size);
  64   if (res != NULL) {
  65     _offsets.alloc_block(res, size);
  66   }
  67   return res;
  68 }
  69 
  70 inline HeapWord*
  71 OffsetTableContigSpace::block_start_const(const void* p) const {
  72   return _offsets.block_start(p);
  73 }
  74 
  75 template <class SpaceType>
  76 inline void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp) {
  77   // Compute the new addresses for the live objects and store it in the mark
  78   // Used by universe::mark_sweep_phase2()
  79   HeapWord* compact_top; // This is where we are currently compacting to.
  80 
  81   // We're sure to be here before any objects are compacted into this
  82   // space, so this is a good time to initialize this:
  83   space->set_compaction_top(space->bottom());
  84 
  85   if (cp->space == NULL) {
  86     assert(cp->gen != NULL, "need a generation");
  87     assert(cp->threshold == NULL, "just checking");
  88     assert(cp->gen->first_compaction_space() == space, "just checking");
  89     cp->space = cp->gen->first_compaction_space();
  90     compact_top = cp->space->bottom();
  91     cp->space->set_compaction_top(compact_top);
  92     cp->threshold = cp->space->initialize_threshold();
  93   } else {
  94     compact_top = cp->space->compaction_top();
  95   }
  96 
  97   // We allow some amount of garbage towards the bottom of the space, so
  98   // we don't start compacting before there is a significant gain to be made.
  99   // Occasionally, we want to ensure a full compaction, which is determined
 100   // by the MarkSweepAlwaysCompactCount parameter.
 101   uint invocations = MarkSweep::total_invocations();
 102   bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0);
 103 
 104   size_t allowed_deadspace = 0;
 105   if (skip_dead) {
 106     const size_t ratio = space->allowed_dead_ratio();
 107     allowed_deadspace = (space->capacity() * ratio / 100) / HeapWordSize;
 108   }
 109 
 110   HeapWord* q = space->bottom();
 111   HeapWord* t = space->scan_limit();
 112 
 113   HeapWord*  end_of_live= q;            // One byte beyond the last byte of the last
 114                                         // live object.
 115   HeapWord*  first_dead = space->end(); // The first dead object.
 116   LiveRange* liveRange  = NULL;         // The current live range, recorded in the
 117                                         // first header of preceding free area.
 118   space->_first_dead = first_dead;
 119 
 120   const intx interval = PrefetchScanIntervalInBytes;
 121 
 122   while (q < t) {
 123     assert(!space->scanned_block_is_obj(q) ||
 124            oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() ||
 125            oop(q)->mark()->has_bias_pattern(),
 126            "these are the only valid states during a mark sweep");
 127     if (space->scanned_block_is_obj(q) && oop(q)->is_gc_marked()) {
 128       // prefetch beyond q
 129       Prefetch::write(q, interval);
 130       size_t size = space->scanned_block_size(q);
 131       compact_top = cp->space->forward(oop(q), size, cp, compact_top);
 132       q += size;
 133       end_of_live = q;
 134     } else {
 135       // run over all the contiguous dead objects
 136       HeapWord* end = q;
 137       do {
 138         // prefetch beyond end
 139         Prefetch::write(end, interval);
 140         end += space->scanned_block_size(end);
 141       } while (end < t && (!space->scanned_block_is_obj(end) || !oop(end)->is_gc_marked()));
 142 
 143       // see if we might want to pretend this object is alive so that
 144       // we don't have to compact quite as often.
 145       if (allowed_deadspace > 0 && q == compact_top) {
 146         size_t sz = pointer_delta(end, q);
 147         if (space->insert_deadspace(allowed_deadspace, q, sz)) {
 148           compact_top = cp->space->forward(oop(q), sz, cp, compact_top);
 149           q = end;
 150           end_of_live = end;
 151           continue;
 152         }
 153       }
 154 
 155       // otherwise, it really is a free region.
 156 
 157       // for the previous LiveRange, record the end of the live objects.
 158       if (liveRange) {
 159         liveRange->set_end(q);
 160       }
 161 
 162       // record the current LiveRange object.
 163       // liveRange->start() is overlaid on the mark word.
 164       liveRange = (LiveRange*)q;
 165       liveRange->set_start(end);
 166       liveRange->set_end(end);
 167 
 168       // see if this is the first dead region.
 169       if (q < first_dead) {
 170         first_dead = q;
 171       }
 172 
 173       // move on to the next object
 174       q = end;
 175     }
 176   }
 177 
 178   assert(q == t, "just checking");
 179   if (liveRange != NULL) {
 180     liveRange->set_end(q);
 181   }
 182   space->_end_of_live = end_of_live;
 183   if (end_of_live < first_dead) {
 184     first_dead = end_of_live;
 185   }
 186   space->_first_dead = first_dead;
 187 
 188   // save the compaction_top of the compaction space.
 189   cp->space->set_compaction_top(compact_top);
 190 }
 191 
 192 template <class SpaceType>
 193 inline void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space) {
 194   // adjust all the interior pointers to point at the new locations of objects
 195   // Used by MarkSweep::mark_sweep_phase3()
 196 
 197   HeapWord* q = space->bottom();
 198   HeapWord* t = space->_end_of_live;  // Established by "prepare_for_compaction".
 199 
 200   assert(space->_first_dead <= space->_end_of_live, "Stands to reason, no?");
 201 
 202   if (q < t && space->_first_dead > q && !oop(q)->is_gc_marked()) {
 203     // we have a chunk of the space which hasn't moved and we've
 204     // reinitialized the mark word during the previous pass, so we can't
 205     // use is_gc_marked for the traversal.
 206     HeapWord* end = space->_first_dead;
 207 
 208     while (q < end) {
 209       // I originally tried to conjoin "block_start(q) == q" to the
 210       // assertion below, but that doesn't work, because you can't
 211       // accurately traverse previous objects to get to the current one
 212       // after their pointers have been
 213       // updated, until the actual compaction is done.  dld, 4/00
 214       assert(space->block_is_obj(q), "should be at block boundaries, and should be looking at objs");
 215 
 216       // point all the oops to the new location
 217       size_t size = MarkSweep::adjust_pointers(oop(q));
 218       size = space->adjust_obj_size(size);
 219 
 220       q += size;
 221     }
 222 
 223     if (space->_first_dead == t) {
 224       q = t;
 225     } else {
 226       // $$$ This is funky.  Using this to read the previously written
 227       // LiveRange.  See also use below.
 228       q = (HeapWord*)oop(space->_first_dead)->mark()->decode_pointer();
 229     }
 230   }
 231 
 232   const intx interval = PrefetchScanIntervalInBytes;
 233 
 234   debug_only(HeapWord* prev_q = NULL);
 235   while (q < t) {
 236     // prefetch beyond q
 237     Prefetch::write(q, interval);
 238     if (oop(q)->is_gc_marked()) {
 239       // q is alive
 240       // point all the oops to the new location
 241       size_t size = MarkSweep::adjust_pointers(oop(q));
 242       size = space->adjust_obj_size(size);
 243       debug_only(prev_q = q);
 244       q += size;
 245     } else {
 246       // q is not a live object, so its mark should point at the next
 247       // live object
 248       debug_only(prev_q = q);
 249       q = (HeapWord*) oop(q)->mark()->decode_pointer();
 250       assert(q > prev_q, "we should be moving forward through memory");
 251     }
 252   }
 253 
 254   assert(q == t, "just checking");
 255 }
 256 
 257 template <class SpaceType>
 258 inline void CompactibleSpace::scan_and_compact(SpaceType* space) {
 259   // Copy all live objects to their new location
 260   // Used by MarkSweep::mark_sweep_phase4()
 261 
 262   HeapWord*       q = space->bottom();
 263   HeapWord* const t = space->_end_of_live;
 264   debug_only(HeapWord* prev_q = NULL);
 265 
 266   if (q < t && space->_first_dead > q && !oop(q)->is_gc_marked()) {
 267     #ifdef ASSERT // Debug only
 268       // we have a chunk of the space which hasn't moved and we've reinitialized
 269       // the mark word during the previous pass, so we can't use is_gc_marked for
 270       // the traversal.
 271       HeapWord* const end = space->_first_dead;
 272 
 273       while (q < end) {
 274         size_t size = space->obj_size(q);
 275         assert(!oop(q)->is_gc_marked(), "should be unmarked (special dense prefix handling)");
 276         prev_q = q;
 277         q += size;
 278       }
 279     #endif
 280 
 281     if (space->_first_dead == t) {
 282       q = t;
 283     } else {
 284       // $$$ Funky
 285       q = (HeapWord*) oop(space->_first_dead)->mark()->decode_pointer();
 286     }
 287   }
 288 
 289   const intx scan_interval = PrefetchScanIntervalInBytes;
 290   const intx copy_interval = PrefetchCopyIntervalInBytes;
 291   while (q < t) {
 292     if (!oop(q)->is_gc_marked()) {
 293       // mark is pointer to next marked oop
 294       debug_only(prev_q = q);
 295       q = (HeapWord*) oop(q)->mark()->decode_pointer();
 296       assert(q > prev_q, "we should be moving forward through memory");
 297     } else {
 298       // prefetch beyond q
 299       Prefetch::read(q, scan_interval);
 300 
 301       // size and destination
 302       size_t size = space->obj_size(q);
 303       HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee();
 304 
 305       // prefetch beyond compaction_top
 306       Prefetch::write(compaction_top, copy_interval);
 307 
 308       // copy object and reinit its mark
 309       assert(q != compaction_top, "everything in this pass should be moving");
 310       Copy::aligned_conjoint_words(q, compaction_top, size);
 311       oop(compaction_top)->init_mark();
 312       assert(oop(compaction_top)->klass() != NULL, "should have a class");
 313 
 314       debug_only(prev_q = q);
 315       q += size;
 316     }
 317   }
 318 
 319   // Let's remember if we were empty before we did the compaction.
 320   bool was_empty = space->used_region().is_empty();
 321   // Reset space after compaction is complete
 322   space->reset_after_compaction();
 323   // We do this clear, below, since it has overloaded meanings for some
 324   // space subtypes.  For example, OffsetTableContigSpace's that were
 325   // compacted into will have had their offset table thresholds updated
 326   // continuously, but those that weren't need to have their thresholds
 327   // re-initialized.  Also mangles unused area for debugging.
 328   if (space->used_region().is_empty()) {
 329     if (!was_empty) space->clear(SpaceDecorator::Mangle);
 330   } else {
 331     if (ZapUnusedHeapArea) space->mangle_unused_area();
 332   }
 333 }
 334 #endif // SHARE_VM_GC_SHARED_SPACE_INLINE_HPP