< prev index next >

src/share/vm/gc/shared/space.inline.hpp

Print this page
rev 8961 : [mq]: diff-shenandoah.patch


 104   size_t allowed_deadspace = 0;
 105   if (skip_dead) {
 106     const size_t ratio = space->allowed_dead_ratio();
 107     allowed_deadspace = (space->capacity() * ratio / 100) / HeapWordSize;
 108   }
 109 
 110   HeapWord* q = space->bottom();
 111   HeapWord* t = space->scan_limit();
 112 
 113   HeapWord*  end_of_live= q;            // One byte beyond the last byte of the last
 114                                         // live object.
 115   HeapWord*  first_dead = space->end(); // The first dead object.
 116   LiveRange* liveRange  = NULL;         // The current live range, recorded in the
 117                                         // first header of preceding free area.
 118   space->_first_dead = first_dead;
 119 
 120   const intx interval = PrefetchScanIntervalInBytes;
 121 
 122   while (q < t) {
 123     assert(!space->scanned_block_is_obj(q) ||
 124            oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() ||
 125            oop(q)->mark()->has_bias_pattern(),




 126            "these are the only valid states during a mark sweep");
 127     if (space->scanned_block_is_obj(q) && oop(q)->is_gc_marked()) {
 128       // prefetch beyond q
 129       Prefetch::write(q, interval);
 130       size_t size = space->scanned_block_size(q);
 131       compact_top = cp->space->forward(oop(q), size, cp, compact_top);
 132       q += size;
 133       end_of_live = q;
 134     } else {
 135       // run over all the contiguous dead objects
 136       HeapWord* end = q;
 137       do {
 138         // prefetch beyond end
 139         Prefetch::write(end, interval);
 140         end += space->scanned_block_size(end);
 141       } while (end < t && (!space->scanned_block_is_obj(end) || !oop(end)->is_gc_marked()));
 142 
 143       // see if we might want to pretend this object is alive so that
 144       // we don't have to compact quite as often.
 145       if (allowed_deadspace > 0 && q == compact_top) {
 146         size_t sz = pointer_delta(end, q);
 147         if (space->insert_deadspace(allowed_deadspace, q, sz)) {
 148           compact_top = cp->space->forward(oop(q), sz, cp, compact_top);
 149           q = end;
 150           end_of_live = end;
 151           continue;
 152         }
 153       }
 154 
 155       // otherwise, it really is a free region.
 156 
 157       // for the previous LiveRange, record the end of the live objects.
 158       if (liveRange) {
 159         liveRange->set_end(q);
 160       }
 161 
 162       // record the current LiveRange object.
 163       // liveRange->start() is overlaid on the mark word.
 164       liveRange = (LiveRange*)q;
 165       liveRange->set_start(end);
 166       liveRange->set_end(end);
 167 
 168       // see if this is the first dead region.
 169       if (q < first_dead) {
 170         first_dead = q;
 171       }
 172 
 173       // move on to the next object
 174       q = end;
 175     }
 176   }
 177 
 178   assert(q == t, "just checking");
 179   if (liveRange != NULL) {
 180     liveRange->set_end(q);
 181   }
 182   space->_end_of_live = end_of_live;
 183   if (end_of_live < first_dead) {
 184     first_dead = end_of_live;
 185   }
 186   space->_first_dead = first_dead;
 187 
 188   // save the compaction_top of the compaction space.
 189   cp->space->set_compaction_top(compact_top);
 190 }
 191 
 192 template <class SpaceType>
 193 inline void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space) {
 194   // adjust all the interior pointers to point at the new locations of objects
 195   // Used by MarkSweep::mark_sweep_phase3()
 196 
 197   HeapWord* q = space->bottom();
 198   HeapWord* t = space->_end_of_live;  // Established by "prepare_for_compaction".
 199 
 200   assert(space->_first_dead <= space->_end_of_live, "Stands to reason, no?");
 201 
 202   if (q < t && space->_first_dead > q && !oop(q)->is_gc_marked()) {
 203     // we have a chunk of the space which hasn't moved and we've
 204     // reinitialized the mark word during the previous pass, so we can't
 205     // use is_gc_marked for the traversal.
 206     HeapWord* end = space->_first_dead;
 207 
 208     while (q < end) {
 209       // I originally tried to conjoin "block_start(q) == q" to the
 210       // assertion below, but that doesn't work, because you can't
 211       // accurately traverse previous objects to get to the current one
 212       // after their pointers have been
 213       // updated, until the actual compaction is done.  dld, 4/00
 214       assert(space->block_is_obj(q), "should be at block boundaries, and should be looking at objs");
 215 
 216       // point all the oops to the new location
 217       size_t size = MarkSweep::adjust_pointers(oop(q));
 218       size = space->adjust_obj_size(size);
 219 
 220       q += size;
 221     }
 222 
 223     if (space->_first_dead == t) {
 224       q = t;
 225     } else {
 226       // $$$ This is funky.  Using this to read the previously written
 227       // LiveRange.  See also use below.
 228       q = (HeapWord*)oop(space->_first_dead)->mark()->decode_pointer();
 229     }
 230   }
 231 
 232   const intx interval = PrefetchScanIntervalInBytes;
 233 
 234   debug_only(HeapWord* prev_q = NULL);
 235   while (q < t) {
 236     // prefetch beyond q
 237     Prefetch::write(q, interval);
 238     if (oop(q)->is_gc_marked()) {
 239       // q is alive
 240       // point all the oops to the new location
 241       size_t size = MarkSweep::adjust_pointers(oop(q));
 242       size = space->adjust_obj_size(size);
 243       debug_only(prev_q = q);
 244       q += size;
 245     } else {
 246       // q is not a live object, so its mark should point at the next
 247       // live object
 248       debug_only(prev_q = q);
 249       q = (HeapWord*) oop(q)->mark()->decode_pointer();
 250       assert(q > prev_q, "we should be moving forward through memory");
 251     }
 252   }
 253 
 254   assert(q == t, "just checking");
 255 }
 256 
 257 template <class SpaceType>
 258 inline void CompactibleSpace::scan_and_compact(SpaceType* space) {
 259   // Copy all live objects to their new location
 260   // Used by MarkSweep::mark_sweep_phase4()
 261 
 262   HeapWord*       q = space->bottom();
 263   HeapWord* const t = space->_end_of_live;
 264   debug_only(HeapWord* prev_q = NULL);
 265 
 266   if (q < t && space->_first_dead > q && !oop(q)->is_gc_marked()) {
 267     #ifdef ASSERT // Debug only
 268       // we have a chunk of the space which hasn't moved and we've reinitialized
 269       // the mark word during the previous pass, so we can't use is_gc_marked for
 270       // the traversal.
 271       HeapWord* const end = space->_first_dead;
 272 
 273       while (q < end) {
 274         size_t size = space->obj_size(q);
 275         assert(!oop(q)->is_gc_marked(), "should be unmarked (special dense prefix handling)");
 276         prev_q = q;
 277         q += size;
 278       }
 279     #endif
 280 
 281     if (space->_first_dead == t) {
 282       q = t;
 283     } else {
 284       // $$$ Funky
 285       q = (HeapWord*) oop(space->_first_dead)->mark()->decode_pointer();
 286     }
 287   }
 288 
 289   const intx scan_interval = PrefetchScanIntervalInBytes;
 290   const intx copy_interval = PrefetchCopyIntervalInBytes;
 291   while (q < t) {
 292     if (!oop(q)->is_gc_marked()) {
 293       // mark is pointer to next marked oop
 294       debug_only(prev_q = q);
 295       q = (HeapWord*) oop(q)->mark()->decode_pointer();
 296       assert(q > prev_q, "we should be moving forward through memory");
 297     } else {
 298       // prefetch beyond q
 299       Prefetch::read(q, scan_interval);
 300 
 301       // size and destination
 302       size_t size = space->obj_size(q);
 303       HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee();
 304 
 305       // prefetch beyond compaction_top
 306       Prefetch::write(compaction_top, copy_interval);
 307 
 308       // copy object and reinit its mark
 309       assert(q != compaction_top, "everything in this pass should be moving");
 310       Copy::aligned_conjoint_words(q, compaction_top, size);
 311       oop(compaction_top)->init_mark();
 312       assert(oop(compaction_top)->klass() != NULL, "should have a class");
 313 
 314       debug_only(prev_q = q);
 315       q += size;
 316     }
 317   }
 318 
 319   // Let's remember if we were empty before we did the compaction.
 320   bool was_empty = space->used_region().is_empty();
 321   // Reset space after compaction is complete
 322   space->reset_after_compaction();
 323   // We do this clear, below, since it has overloaded meanings for some
 324   // space subtypes.  For example, OffsetTableContigSpace's that were
 325   // compacted into will have had their offset table thresholds updated
 326   // continuously, but those that weren't need to have their thresholds
 327   // re-initialized.  Also mangles unused area for debugging.
 328   if (space->used_region().is_empty()) {
 329     if (!was_empty) space->clear(SpaceDecorator::Mangle);
 330   } else {


 104   size_t allowed_deadspace = 0;
 105   if (skip_dead) {
 106     const size_t ratio = space->allowed_dead_ratio();
 107     allowed_deadspace = (space->capacity() * ratio / 100) / HeapWordSize;
 108   }
 109 
 110   HeapWord* q = space->bottom();
 111   HeapWord* t = space->scan_limit();
 112 
 113   HeapWord*  end_of_live= q;            // One byte beyond the last byte of the last
 114                                         // live object.
 115   HeapWord*  first_dead = space->end(); // The first dead object.
 116   LiveRange* liveRange  = NULL;         // The current live range, recorded in the
 117                                         // first header of preceding free area.
 118   space->_first_dead = first_dead;
 119 
 120   const intx interval = PrefetchScanIntervalInBytes;
 121 
 122   while (q < t) {
 123     assert(!space->scanned_block_is_obj(q) ||
 124            space->make_oop(q)->mark()->is_marked() ||
 125            oopDesc::bs()->resolve_oop(space->make_oop(q))->mark()->is_marked() ||
 126            space->make_oop(q)->mark()->is_unlocked() ||
 127            oopDesc::bs()->resolve_oop(space->make_oop(q))->mark()->is_unlocked() ||
 128            space->make_oop(q)->mark()->has_bias_pattern() ||
 129            oopDesc::bs()->resolve_oop(space->make_oop(q))->mark()->has_bias_pattern(),
 130            "these are the only valid states during a mark sweep");
 131     if (space->scanned_block_is_obj(q) && space->make_oop(q)->is_gc_marked()) {
 132       // prefetch beyond q
 133       Prefetch::write(q, interval);
 134       size_t size = space->scanned_block_size(q);
 135       compact_top = cp->space->forward(space->make_oop(q), size, cp, compact_top);
 136       q += size;
 137       end_of_live = q;
 138     } else {
 139       // run over all the contiguous dead objects
 140       HeapWord* end = q;
 141       do {
 142         // prefetch beyond end
 143         Prefetch::write(end, interval);
 144         end += space->scanned_block_size(end);
 145       } while (end < t && (!space->scanned_block_is_obj(end) || !space->make_oop(end)->is_gc_marked()));
 146 
 147       // see if we might want to pretend this object is alive so that
 148       // we don't have to compact quite as often.
 149       if (allowed_deadspace > 0 && q == compact_top) {
 150         size_t sz = pointer_delta(end, q);
 151         if (space->insert_deadspace(allowed_deadspace, q, sz)) {
 152           compact_top = cp->space->forward(space->make_oop(q), sz, cp, compact_top);
 153           q = end;
 154           end_of_live = end;
 155           continue;
 156         }
 157       }
 158 
 159       // otherwise, it really is a free region.
 160 
 161       // for the previous LiveRange, record the end of the live objects.
 162       if (liveRange) {
 163         liveRange->set_end(q);
 164       }
 165 
 166       // record the current LiveRange object.
 167       // liveRange->start() is overlaid on the mark word.
 168       liveRange = (LiveRange*) (HeapWord*) space->make_oop(q);
 169       liveRange->set_start(end);
 170       liveRange->set_end(end);
 171 
 172       // see if this is the first dead region.
 173       if (q < first_dead) {
 174         first_dead = q;
 175       }
 176 
 177       // move on to the next object
 178       q = end;
 179     }
 180   }
 181 
 182   assert(q == t, "just checking");
 183   if (liveRange != NULL) {
 184     liveRange->set_end(q);
 185   }
 186   space->_end_of_live = end_of_live;
 187   if (end_of_live < first_dead) {
 188     first_dead = end_of_live;
 189   }
 190   space->_first_dead = first_dead;
 191 
 192   // save the compaction_top of the compaction space.
 193   cp->space->set_compaction_top(compact_top);
 194 }
 195 
 196 template <class SpaceType>
 197 inline void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space) {
 198   // adjust all the interior pointers to point at the new locations of objects
 199   // Used by MarkSweep::mark_sweep_phase3()
 200 
 201   HeapWord* q = space->bottom();
 202   HeapWord* t = space->_end_of_live;  // Established by "prepare_for_compaction".
 203 
 204   assert(space->_first_dead <= space->_end_of_live, "Stands to reason, no?");
 205 
 206   if (q < t && space->_first_dead > q && !space->make_oop(q)->is_gc_marked()) {
 207     // we have a chunk of the space which hasn't moved and we've
 208     // reinitialized the mark word during the previous pass, so we can't
 209     // use is_gc_marked for the traversal.
 210     HeapWord* end = space->_first_dead;
 211 
 212     while (q < end) {
 213       // I originally tried to conjoin "block_start(q) == q" to the
 214       // assertion below, but that doesn't work, because you can't
 215       // accurately traverse previous objects to get to the current one
 216       // after their pointers have been
 217       // updated, until the actual compaction is done.  dld, 4/00
 218       assert(space->block_is_obj(q), "should be at block boundaries, and should be looking at objs");
 219 
 220       // point all the oops to the new location
 221       size_t size = MarkSweep::adjust_pointers(space->make_oop(q));
 222       size = space->adjust_obj_size(size);
 223 
 224       q += size;
 225     }
 226 
 227     if (space->_first_dead == t) {
 228       q = t;
 229     } else {
 230       // $$$ This is funky.  Using this to read the previously written
 231       // LiveRange.  See also use below.
 232       q = (HeapWord*)oop(space->_first_dead)->mark()->decode_pointer();
 233     }
 234   }
 235 
 236   const intx interval = PrefetchScanIntervalInBytes;
 237 
 238   debug_only(HeapWord* prev_q = NULL);
 239   while (q < t) {
 240     // prefetch beyond q
 241     Prefetch::write(q, interval);
 242     if (space->make_oop(q)->is_gc_marked()) {
 243       // q is alive
 244       // point all the oops to the new location
 245       size_t size = MarkSweep::adjust_pointers(space->make_oop(q));
 246       size = space->adjust_obj_size(size);
 247       debug_only(prev_q = q);
 248       q += size;
 249     } else {
 250       // q is not a live object, so its mark should point at the next
 251       // live object
 252       debug_only(prev_q = q);
 253       q = (HeapWord*) space->make_oop(q)->mark()->decode_pointer();
 254       assert(q > prev_q, "we should be moving forward through memory");
 255     }
 256   }
 257 
 258   assert(q == t, "just checking");
 259 }
 260 
 261 template <class SpaceType>
 262 inline void CompactibleSpace::scan_and_compact(SpaceType* space) {
 263   // Copy all live objects to their new location
 264   // Used by MarkSweep::mark_sweep_phase4()
 265 
 266   HeapWord*       q = space->bottom();
 267   HeapWord* const t = space->_end_of_live;
 268   debug_only(HeapWord* prev_q = NULL);
 269 
 270   if (q < t && space->_first_dead > q && !space->make_oop(q)->is_gc_marked()) {
 271     #ifdef ASSERT // Debug only
 272       // we have a chunk of the space which hasn't moved and we've reinitialized
 273       // the mark word during the previous pass, so we can't use is_gc_marked for
 274       // the traversal.
 275       HeapWord* const end = space->_first_dead;
 276 
 277       while (q < end) {
 278         size_t size = space->obj_size(q);
 279         assert(!space->make_oop(q)->is_gc_marked(), "should be unmarked (special dense prefix handling)");
 280         prev_q = q;
 281         q += size;
 282       }
 283     #endif
 284 
 285     if (space->_first_dead == t) {
 286       q = t;
 287     } else {
 288       // $$$ Funky
 289       q = (HeapWord*) oop(space->_first_dead)->mark()->decode_pointer();
 290     }
 291   }
 292 
 293   const intx scan_interval = PrefetchScanIntervalInBytes;
 294   const intx copy_interval = PrefetchCopyIntervalInBytes;
 295   while (q < t) {
 296     if (!space->make_oop(q)->is_gc_marked()) {
 297       // mark is pointer to next marked oop
 298       debug_only(prev_q = q);
 299       q = (HeapWord*) space->make_oop(q)->mark()->decode_pointer();
 300       assert(q > prev_q, "we should be moving forward through memory");
 301     } else {
 302       // prefetch beyond q
 303       Prefetch::read(q, scan_interval);
 304 
 305       // size and destination
 306       size_t size = space->obj_size(q);
 307       HeapWord* compaction_top = (HeapWord*)space->make_oop(q)->forwardee();
 308 
 309       // prefetch beyond compaction_top
 310       Prefetch::write(compaction_top, copy_interval);
 311 
 312       // copy object and reinit its mark
 313       assert(q != compaction_top, "everything in this pass should be moving");
 314       Copy::aligned_conjoint_words((HeapWord*) space->make_oop(q), compaction_top, size);
 315       oop(compaction_top)->init_mark();
 316       assert(oop(compaction_top)->klass() != NULL, "should have a class");
 317 
 318       debug_only(prev_q = q);
 319       q += size;
 320     }
 321   }
 322 
 323   // Let's remember if we were empty before we did the compaction.
 324   bool was_empty = space->used_region().is_empty();
 325   // Reset space after compaction is complete
 326   space->reset_after_compaction();
 327   // We do this clear, below, since it has overloaded meanings for some
 328   // space subtypes.  For example, OffsetTableContigSpace's that were
 329   // compacted into will have had their offset table thresholds updated
 330   // continuously, but those that weren't need to have their thresholds
 331   // re-initialized.  Also mangles unused area for debugging.
 332   if (space->used_region().is_empty()) {
 333     if (!was_empty) space->clear(SpaceDecorator::Mangle);
 334   } else {
< prev index next >