1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_TASKQUEUE_HPP
  26 #define SHARE_VM_GC_SHARED_TASKQUEUE_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "utilities/stack.hpp"
  30 
  31 // Simple TaskQueue stats that are collected by default in debug builds.
  32 
  33 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
  34 #define TASKQUEUE_STATS 1
  35 #elif !defined(TASKQUEUE_STATS)
  36 #define TASKQUEUE_STATS 0
  37 #endif
  38 
  39 #if TASKQUEUE_STATS
  40 #define TASKQUEUE_STATS_ONLY(code) code
  41 #else
  42 #define TASKQUEUE_STATS_ONLY(code)
  43 #endif // TASKQUEUE_STATS
  44 
  45 #if TASKQUEUE_STATS
  46 class TaskQueueStats {
  47 public:
  48   enum StatId {
  49     push,             // number of taskqueue pushes
  50     pop,              // number of taskqueue pops
  51     pop_slow,         // subset of taskqueue pops that were done slow-path
  52     steal_attempt,    // number of taskqueue steal attempts
  53     steal,            // number of taskqueue steals
  54     overflow,         // number of overflow pushes
  55     overflow_max_len, // max length of overflow stack
  56     last_stat_id
  57   };
  58 
  59 public:
  60   inline TaskQueueStats()       { reset(); }
  61 
  62   inline void record_push()     { ++_stats[push]; }
  63   inline void record_pop()      { ++_stats[pop]; }
  64   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
  65   inline void record_steal(bool success);
  66   inline void record_overflow(size_t new_length);
  67 
  68   TaskQueueStats & operator +=(const TaskQueueStats & addend);
  69 
  70   inline size_t get(StatId id) const { return _stats[id]; }
  71   inline const size_t* get() const   { return _stats; }
  72 
  73   inline void reset();
  74 
  75   // Print the specified line of the header (does not include a line separator).
  76   static void print_header(unsigned int line, outputStream* const stream = tty,
  77                            unsigned int width = 10);
  78   // Print the statistics (does not include a line separator).
  79   void print(outputStream* const stream = tty, unsigned int width = 10) const;
  80 
  81   DEBUG_ONLY(void verify() const;)
  82   DEBUG_ONLY(void verify_only_pushes() const;)
  83 
  84 private:
  85   size_t                    _stats[last_stat_id];
  86   static const char * const _names[last_stat_id];
  87 };
  88 
  89 void TaskQueueStats::record_steal(bool success) {
  90   ++_stats[steal_attempt];
  91   if (success) ++_stats[steal];
  92 }
  93 
  94 void TaskQueueStats::record_overflow(size_t new_len) {
  95   ++_stats[overflow];
  96   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
  97 }
  98 
  99 void TaskQueueStats::reset() {
 100   memset(_stats, 0, sizeof(_stats));
 101 }
 102 #endif // TASKQUEUE_STATS
 103 
 104 // TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
 105 
 106 template <unsigned int N, MEMFLAGS F>
 107 class TaskQueueSuper: public CHeapObj<F> {
 108 protected:
 109   // Internal type for indexing the queue; also used for the tag.
 110   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
 111 
 112   // The first free element after the last one pushed (mod N).
 113   volatile uint _bottom;
 114 
 115   enum { MOD_N_MASK = N - 1 };
 116 
 117   class Age {
 118   public:
 119     Age(size_t data = 0)         { _data = data; }
 120     Age(const Age& age)          { _data = age._data; }
 121     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
 122 
 123     Age   get()        const volatile { return _data; }
 124     void  set(Age age) volatile       { _data = age._data; }
 125 
 126     idx_t top()        const volatile { return _fields._top; }
 127     idx_t tag()        const volatile { return _fields._tag; }
 128 
 129     // Increment top; if it wraps, increment tag also.
 130     void increment() {
 131       _fields._top = increment_index(_fields._top);
 132       if (_fields._top == 0) ++_fields._tag;
 133     }
 134 
 135     Age cmpxchg(const Age new_age, const Age old_age) volatile;
 136 
 137     bool operator ==(const Age& other) const { return _data == other._data; }
 138 
 139   private:
 140     struct fields {
 141       idx_t _top;
 142       idx_t _tag;
 143     };
 144     union {
 145       size_t _data;
 146       fields _fields;
 147     };
 148   };
 149 
 150   volatile Age _age;
 151 
 152   // These both operate mod N.
 153   static uint increment_index(uint ind) {
 154     return (ind + 1) & MOD_N_MASK;
 155   }
 156   static uint decrement_index(uint ind) {
 157     return (ind - 1) & MOD_N_MASK;
 158   }
 159 
 160   // Returns a number in the range [0..N).  If the result is "N-1", it should be
 161   // interpreted as 0.
 162   uint dirty_size(uint bot, uint top) const {
 163     return (bot - top) & MOD_N_MASK;
 164   }
 165 
 166   // Returns the size corresponding to the given "bot" and "top".
 167   uint size(uint bot, uint top) const {
 168     uint sz = dirty_size(bot, top);
 169     // Has the queue "wrapped", so that bottom is less than top?  There's a
 170     // complicated special case here.  A pair of threads could perform pop_local
 171     // and pop_global operations concurrently, starting from a state in which
 172     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
 173     // and the pop_global in incrementing _top (in which case the pop_global
 174     // will be awarded the contested queue element.)  The resulting state must
 175     // be interpreted as an empty queue.  (We only need to worry about one such
 176     // event: only the queue owner performs pop_local's, and several concurrent
 177     // threads attempting to perform the pop_global will all perform the same
 178     // CAS, and only one can succeed.)  Any stealing thread that reads after
 179     // either the increment or decrement will see an empty queue, and will not
 180     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
 181     // modified by concurrent queues, so the owner thread can reset the state to
 182     // _bottom == top so subsequent pushes will be performed normally.
 183     return (sz == N - 1) ? 0 : sz;
 184   }
 185 
 186 public:
 187   TaskQueueSuper() : _bottom(0), _age() {}
 188 
 189   // Return true if the TaskQueue contains/does not contain any tasks.
 190   bool peek()     const { return _bottom != _age.top(); }
 191   bool is_empty() const { return size() == 0; }
 192 
 193   // Return an estimate of the number of elements in the queue.
 194   // The "careful" version admits the possibility of pop_local/pop_global
 195   // races.
 196   uint size() const {
 197     return size(_bottom, _age.top());
 198   }
 199 
 200   uint dirty_size() const {
 201     return dirty_size(_bottom, _age.top());
 202   }
 203 
 204   void set_empty() {
 205     _bottom = 0;
 206     _age.set(0);
 207   }
 208 
 209   // Maximum number of elements allowed in the queue.  This is two less
 210   // than the actual queue size, for somewhat complicated reasons.
 211   uint max_elems() const { return N - 2; }
 212 
 213   // Total size of queue.
 214   static const uint total_size() { return N; }
 215 
 216   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
 217 };
 218 
 219 //
 220 // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
 221 // ended-queue (deque), intended for use in work stealing. Queue operations
 222 // are non-blocking.
 223 //
 224 // A queue owner thread performs push() and pop_local() operations on one end
 225 // of the queue, while other threads may steal work using the pop_global()
 226 // method.
 227 //
 228 // The main difference to the original algorithm is that this
 229 // implementation allows wrap-around at the end of its allocated
 230 // storage, which is an array.
 231 //
 232 // The original paper is:
 233 //
 234 // Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
 235 // Thread scheduling for multiprogrammed multiprocessors.
 236 // Theory of Computing Systems 34, 2 (2001), 115-144.
 237 //
 238 // The following paper provides an correctness proof and an
 239 // implementation for weakly ordered memory models including (pseudo-)
 240 // code containing memory barriers for a Chase-Lev deque. Chase-Lev is
 241 // similar to ABP, with the main difference that it allows resizing of the
 242 // underlying storage:
 243 //
 244 // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
 245 // Correct and efficient work-stealing for weak memory models
 246 // Proceedings of the 18th ACM SIGPLAN symposium on Principles and
 247 // practice of parallel programming (PPoPP 2013), 69-80
 248 //
 249 
 250 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
 251 class GenericTaskQueue: public TaskQueueSuper<N, F> {
 252   ArrayAllocator<E, F> _array_allocator;
 253 protected:
 254   typedef typename TaskQueueSuper<N, F>::Age Age;
 255   typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
 256 
 257   using TaskQueueSuper<N, F>::_bottom;
 258   using TaskQueueSuper<N, F>::_age;
 259   using TaskQueueSuper<N, F>::increment_index;
 260   using TaskQueueSuper<N, F>::decrement_index;
 261   using TaskQueueSuper<N, F>::dirty_size;
 262 
 263 public:
 264   using TaskQueueSuper<N, F>::max_elems;
 265   using TaskQueueSuper<N, F>::size;
 266 
 267 #if  TASKQUEUE_STATS
 268   using TaskQueueSuper<N, F>::stats;
 269 #endif
 270 
 271 private:
 272   // Slow paths for push, pop_local.  (pop_global has no fast path.)
 273   bool push_slow(E t, uint dirty_n_elems);
 274   bool pop_local_slow(uint localBot, Age oldAge);
 275 
 276 public:
 277   typedef E element_type;
 278 
 279   // Initializes the queue to empty.
 280   GenericTaskQueue();
 281 
 282   void initialize();
 283 
 284   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
 285   inline bool push(E t);
 286 
 287   // Attempts to claim a task from the "local" end of the queue (the most
 288   // recently pushed).  If successful, returns true and sets t to the task;
 289   // otherwise, returns false (the queue is empty).
 290   inline bool pop_local(volatile E& t);
 291 
 292   // Like pop_local(), but uses the "global" end of the queue (the least
 293   // recently pushed).
 294   bool pop_global(volatile E& t);
 295 
 296   // Delete any resource associated with the queue.
 297   ~GenericTaskQueue();
 298 
 299   // Apply fn to each element in the task queue.  The queue must not
 300   // be modified while iterating.
 301   template<typename Fn> void iterate(Fn fn);
 302 
 303 private:
 304   // Element array.
 305   volatile E* _elems;
 306 };
 307 
 308 template<class E, MEMFLAGS F, unsigned int N>
 309 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
 310   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
 311 }
 312 
 313 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
 314 // elements that do not fit in the TaskQueue.
 315 //
 316 // This class hides two methods from super classes:
 317 //
 318 // push() - push onto the task queue or, if that fails, onto the overflow stack
 319 // is_empty() - return true if both the TaskQueue and overflow stack are empty
 320 //
 321 // Note that size() is not hidden--it returns the number of elements in the
 322 // TaskQueue, and does not include the size of the overflow stack.  This
 323 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
 324 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
 325 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
 326 {
 327 public:
 328   typedef Stack<E, F>               overflow_t;
 329   typedef GenericTaskQueue<E, F, N> taskqueue_t;
 330 
 331   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
 332 
 333   // Push task t onto the queue or onto the overflow stack.  Return true.
 334   inline bool push(E t);
 335 
 336   // Attempt to pop from the overflow stack; return true if anything was popped.
 337   inline bool pop_overflow(E& t);
 338 
 339   inline overflow_t* overflow_stack() { return &_overflow_stack; }
 340 
 341   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
 342   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
 343   inline bool is_empty()        const {
 344     return taskqueue_empty() && overflow_empty();
 345   }
 346 
 347 private:
 348   overflow_t _overflow_stack;
 349 };
 350 
 351 class TaskQueueSetSuper {
 352 protected:
 353   static int randomParkAndMiller(int* seed0);
 354 public:
 355   // Returns "true" if some TaskQueue in the set contains a task.
 356   virtual bool peek() = 0;
 357 };
 358 
 359 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
 360 };
 361 
 362 template<class T, MEMFLAGS F>
 363 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
 364 private:
 365   uint _n;
 366   T** _queues;
 367 
 368 public:
 369   typedef typename T::element_type E;
 370 
 371   GenericTaskQueueSet(int n);
 372 
 373   bool steal_best_of_2(uint queue_num, int* seed, E& t);
 374 
 375   void register_queue(uint i, T* q);
 376 
 377   T* queue(uint n);
 378 
 379   // The thread with queue number "queue_num" (and whose random number seed is
 380   // at "seed") is trying to steal a task from some other queue.  (It may try
 381   // several queues, according to some configuration parameter.)  If some steal
 382   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
 383   // false.
 384   bool steal(uint queue_num, int* seed, E& t);
 385 
 386   bool peek();
 387 
 388   uint size() const { return _n; }
 389 };
 390 
 391 template<class T, MEMFLAGS F> void
 392 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
 393   assert(i < _n, "index out of range.");
 394   _queues[i] = q;
 395 }
 396 
 397 template<class T, MEMFLAGS F> T*
 398 GenericTaskQueueSet<T, F>::queue(uint i) {
 399   return _queues[i];
 400 }
 401 
 402 template<class T, MEMFLAGS F>
 403 bool GenericTaskQueueSet<T, F>::peek() {
 404   // Try all the queues.
 405   for (uint j = 0; j < _n; j++) {
 406     if (_queues[j]->peek())
 407       return true;
 408   }
 409   return false;
 410 }
 411 
 412 // When to terminate from the termination protocol.
 413 class TerminatorTerminator: public CHeapObj<mtInternal> {
 414 public:
 415   virtual bool should_exit_termination() = 0;
 416 };
 417 
 418 // A class to aid in the termination of a set of parallel tasks using
 419 // TaskQueueSet's for work stealing.
 420 
 421 #undef TRACESPINNING
 422 
 423 class ParallelTaskTerminator: public StackObj {
 424 private:
 425   uint _n_threads;
 426   TaskQueueSetSuper* _queue_set;
 427   uint _offered_termination;
 428 
 429 #ifdef TRACESPINNING
 430   static uint _total_yields;
 431   static uint _total_spins;
 432   static uint _total_peeks;
 433 #endif
 434 
 435   bool peek_in_queue_set();
 436 protected:
 437   virtual void yield();
 438   void sleep(uint millis);
 439 
 440 public:
 441 
 442   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
 443   // queue sets of work queues of other threads.
 444   ParallelTaskTerminator(uint n_threads, TaskQueueSetSuper* queue_set);
 445 
 446   // The current thread has no work, and is ready to terminate if everyone
 447   // else is.  If returns "true", all threads are terminated.  If returns
 448   // "false", available work has been observed in one of the task queues,
 449   // so the global task is not complete.
 450   bool offer_termination() {
 451     return offer_termination(NULL);
 452   }
 453 
 454   // As above, but it also terminates if the should_exit_termination()
 455   // method of the terminator parameter returns true. If terminator is
 456   // NULL, then it is ignored.
 457   bool offer_termination(TerminatorTerminator* terminator);
 458 
 459   // Reset the terminator, so that it may be reused again.
 460   // The caller is responsible for ensuring that this is done
 461   // in an MT-safe manner, once the previous round of use of
 462   // the terminator is finished.
 463   void reset_for_reuse();
 464   // Same as above but the number of parallel threads is set to the
 465   // given number.
 466   void reset_for_reuse(uint n_threads);
 467 
 468 #ifdef TRACESPINNING
 469   static uint total_yields() { return _total_yields; }
 470   static uint total_spins() { return _total_spins; }
 471   static uint total_peeks() { return _total_peeks; }
 472   static void print_termination_counts();
 473 #endif
 474 };
 475 
 476 typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
 477 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
 478 
 479 #ifdef _MSC_VER
 480 #pragma warning(push)
 481 // warning C4522: multiple assignment operators specified
 482 #pragma warning(disable:4522)
 483 #endif
 484 
 485 // This is a container class for either an oop* or a narrowOop*.
 486 // Both are pushed onto a task queue and the consumer will test is_narrow()
 487 // to determine which should be processed.
 488 class StarTask {
 489   void*  _holder;        // either union oop* or narrowOop*
 490 
 491   enum { COMPRESSED_OOP_MASK = 1 };
 492 
 493  public:
 494   StarTask(narrowOop* p) {
 495     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
 496     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
 497   }
 498   StarTask(oop* p)       {
 499     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
 500     _holder = (void*)p;
 501   }
 502   StarTask()             { _holder = NULL; }
 503   operator oop*()        { return (oop*)_holder; }
 504   operator narrowOop*()  {
 505     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
 506   }
 507 
 508   StarTask& operator=(const StarTask& t) {
 509     _holder = t._holder;
 510     return *this;
 511   }
 512   volatile StarTask& operator=(const volatile StarTask& t) volatile {
 513     _holder = t._holder;
 514     return *this;
 515   }
 516 
 517   bool is_narrow() const {
 518     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
 519   }
 520 };
 521 
 522 class ObjArrayTask
 523 {
 524 public:
 525   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
 526   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
 527     assert(idx <= size_t(max_jint), "too big");
 528   }
 529   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
 530 
 531   ObjArrayTask& operator =(const ObjArrayTask& t) {
 532     _obj = t._obj;
 533     _index = t._index;
 534     return *this;
 535   }
 536   volatile ObjArrayTask&
 537   operator =(const volatile ObjArrayTask& t) volatile {
 538     (void)const_cast<oop&>(_obj = t._obj);
 539     _index = t._index;
 540     return *this;
 541   }
 542 
 543   inline oop obj()   const { return _obj; }
 544   inline int index() const { return _index; }
 545 
 546   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
 547 
 548 private:
 549   oop _obj;
 550   int _index;
 551 };
 552 
 553 #ifdef _MSC_VER
 554 #pragma warning(pop)
 555 #endif
 556 
 557 typedef OverflowTaskQueue<StarTask, mtClass>           OopStarTaskQueue;
 558 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
 559 
 560 typedef OverflowTaskQueue<size_t, mtInternal>             RegionTaskQueue;
 561 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass>     RegionTaskQueueSet;
 562 
 563 
 564 #endif // SHARE_VM_GC_SHARED_TASKQUEUE_HPP