1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/ad.hpp"
  49 #include "opto/addnode.hpp"
  50 #include "opto/callnode.hpp"
  51 #include "opto/cfgnode.hpp"
  52 #include "opto/graphKit.hpp"
  53 #include "opto/machnode.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/runtime.hpp"
  58 #include "opto/subnode.hpp"
  59 #include "runtime/atomic.inline.hpp"
  60 #include "runtime/fprofiler.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/interfaceSupport.hpp"
  63 #include "runtime/javaCalls.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/signature.hpp"
  66 #include "runtime/threadCritical.hpp"
  67 #include "runtime/vframe.hpp"
  68 #include "runtime/vframeArray.hpp"
  69 #include "runtime/vframe_hp.hpp"
  70 #include "utilities/copy.hpp"
  71 #include "utilities/preserveException.hpp"
  72 
  73 
  74 // For debugging purposes:
  75 //  To force FullGCALot inside a runtime function, add the following two lines
  76 //
  77 //  Universe::release_fullgc_alot_dummy();
  78 //  MarkSweep::invoke(0, "Debugging");
  79 //
  80 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  81 
  82 
  83 
  84 
  85 // Compiled code entry points
  86 address OptoRuntime::_new_instance_Java                           = NULL;
  87 address OptoRuntime::_new_array_Java                              = NULL;
  88 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  89 address OptoRuntime::_multianewarray2_Java                        = NULL;
  90 address OptoRuntime::_multianewarray3_Java                        = NULL;
  91 address OptoRuntime::_multianewarray4_Java                        = NULL;
  92 address OptoRuntime::_multianewarray5_Java                        = NULL;
  93 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  94 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  95 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  96 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  97 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
  98 address OptoRuntime::_monitor_notify_Java                         = NULL;
  99 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 100 address OptoRuntime::_rethrow_Java                                = NULL;
 101 
 102 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 103 address OptoRuntime::_register_finalizer_Java                     = NULL;
 104 
 105 # ifdef ENABLE_ZAP_DEAD_LOCALS
 106 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 107 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 108 # endif
 109 
 110 ExceptionBlob* OptoRuntime::_exception_blob;
 111 
 112 // This should be called in an assertion at the start of OptoRuntime routines
 113 // which are entered from compiled code (all of them)
 114 #ifdef ASSERT
 115 static bool check_compiled_frame(JavaThread* thread) {
 116   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 117   RegisterMap map(thread, false);
 118   frame caller = thread->last_frame().sender(&map);
 119   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 120   return true;
 121 }
 122 #endif // ASSERT
 123 
 124 
 125 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 126   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 127   if (var == NULL) { return false; }
 128 
 129 bool OptoRuntime::generate(ciEnv* env) {
 130 
 131   generate_exception_blob();
 132 
 133   // Note: tls: Means fetching the return oop out of the thread-local storage
 134   //
 135   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 136   // -------------------------------------------------------------------------------------------------------------------------------
 137   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 138   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 139   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 140   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 141   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 142   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 143   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 144   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 145   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 146   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 147   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 148   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 149   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 150   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 151 
 152   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 153   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 154 
 155 # ifdef ENABLE_ZAP_DEAD_LOCALS
 156   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 157   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 158 # endif
 159   return true;
 160 }
 161 
 162 #undef gen
 163 
 164 
 165 // Helper method to do generation of RunTimeStub's
 166 address OptoRuntime::generate_stub( ciEnv* env,
 167                                     TypeFunc_generator gen, address C_function,
 168                                     const char *name, int is_fancy_jump,
 169                                     bool pass_tls,
 170                                     bool save_argument_registers,
 171                                     bool return_pc ) {
 172   ResourceMark rm;
 173   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 174   return  C.stub_entry_point();
 175 }
 176 
 177 const char* OptoRuntime::stub_name(address entry) {
 178 #ifndef PRODUCT
 179   CodeBlob* cb = CodeCache::find_blob(entry);
 180   RuntimeStub* rs =(RuntimeStub *)cb;
 181   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 182   return rs->name();
 183 #else
 184   // Fast implementation for product mode (maybe it should be inlined too)
 185   return "runtime stub";
 186 #endif
 187 }
 188 
 189 
 190 //=============================================================================
 191 // Opto compiler runtime routines
 192 //=============================================================================
 193 
 194 
 195 //=============================allocation======================================
 196 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 197 // and try allocation again.
 198 
 199 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 200   // After any safepoint, just before going back to compiled code,
 201   // we inform the GC that we will be doing initializing writes to
 202   // this object in the future without emitting card-marks, so
 203   // GC may take any compensating steps.
 204   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 205 
 206   oop new_obj = thread->vm_result();
 207   if (new_obj == NULL)  return;
 208 
 209   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 210          "compiler must check this first");
 211   // GC may decide to give back a safer copy of new_obj.
 212   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 213   thread->set_vm_result(new_obj);
 214 }
 215 
 216 // object allocation
 217 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 218   JRT_BLOCK;
 219 #ifndef PRODUCT
 220   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 221 #endif
 222   assert(check_compiled_frame(thread), "incorrect caller");
 223 
 224   // These checks are cheap to make and support reflective allocation.
 225   int lh = klass->layout_helper();
 226   if (Klass::layout_helper_needs_slow_path(lh)
 227       || !InstanceKlass::cast(klass)->is_initialized()) {
 228     KlassHandle kh(THREAD, klass);
 229     kh->check_valid_for_instantiation(false, THREAD);
 230     if (!HAS_PENDING_EXCEPTION) {
 231       InstanceKlass::cast(kh())->initialize(THREAD);
 232     }
 233     if (!HAS_PENDING_EXCEPTION) {
 234       klass = kh();
 235     } else {
 236       klass = NULL;
 237     }
 238   }
 239 
 240   if (klass != NULL) {
 241     // Scavenge and allocate an instance.
 242     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 243     thread->set_vm_result(result);
 244 
 245     // Pass oops back through thread local storage.  Our apparent type to Java
 246     // is that we return an oop, but we can block on exit from this routine and
 247     // a GC can trash the oop in C's return register.  The generated stub will
 248     // fetch the oop from TLS after any possible GC.
 249   }
 250 
 251   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 252   JRT_BLOCK_END;
 253 
 254   if (GraphKit::use_ReduceInitialCardMarks()) {
 255     // inform GC that we won't do card marks for initializing writes.
 256     new_store_pre_barrier(thread);
 257   }
 258 JRT_END
 259 
 260 
 261 // array allocation
 262 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 263   JRT_BLOCK;
 264 #ifndef PRODUCT
 265   SharedRuntime::_new_array_ctr++;            // new array requires GC
 266 #endif
 267   assert(check_compiled_frame(thread), "incorrect caller");
 268 
 269   // Scavenge and allocate an instance.
 270   oop result;
 271 
 272   if (array_type->oop_is_typeArray()) {
 273     // The oopFactory likes to work with the element type.
 274     // (We could bypass the oopFactory, since it doesn't add much value.)
 275     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 276     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 277   } else {
 278     // Although the oopFactory likes to work with the elem_type,
 279     // the compiler prefers the array_type, since it must already have
 280     // that latter value in hand for the fast path.
 281     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 282     result = oopFactory::new_objArray(elem_type, len, THREAD);
 283   }
 284 
 285   // Pass oops back through thread local storage.  Our apparent type to Java
 286   // is that we return an oop, but we can block on exit from this routine and
 287   // a GC can trash the oop in C's return register.  The generated stub will
 288   // fetch the oop from TLS after any possible GC.
 289   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 290   thread->set_vm_result(result);
 291   JRT_BLOCK_END;
 292 
 293   if (GraphKit::use_ReduceInitialCardMarks()) {
 294     // inform GC that we won't do card marks for initializing writes.
 295     new_store_pre_barrier(thread);
 296   }
 297 JRT_END
 298 
 299 // array allocation without zeroing
 300 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 301   JRT_BLOCK;
 302 #ifndef PRODUCT
 303   SharedRuntime::_new_array_ctr++;            // new array requires GC
 304 #endif
 305   assert(check_compiled_frame(thread), "incorrect caller");
 306 
 307   // Scavenge and allocate an instance.
 308   oop result;
 309 
 310   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 311   // The oopFactory likes to work with the element type.
 312   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 313   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 314 
 315   // Pass oops back through thread local storage.  Our apparent type to Java
 316   // is that we return an oop, but we can block on exit from this routine and
 317   // a GC can trash the oop in C's return register.  The generated stub will
 318   // fetch the oop from TLS after any possible GC.
 319   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 320   thread->set_vm_result(result);
 321   JRT_BLOCK_END;
 322 
 323   if (GraphKit::use_ReduceInitialCardMarks()) {
 324     // inform GC that we won't do card marks for initializing writes.
 325     new_store_pre_barrier(thread);
 326   }
 327 
 328   oop result = thread->vm_result();
 329   if ((len > 0) && (result != NULL) &&
 330       is_deoptimized_caller_frame(thread)) {
 331     // Zero array here if the caller is deoptimized.
 332     int size = ((typeArrayOop)result)->object_size();
 333     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 334     const size_t hs = arrayOopDesc::header_size(elem_type);
 335     // Align to next 8 bytes to avoid trashing arrays's length.
 336     const size_t aligned_hs = align_object_offset(hs);
 337     HeapWord* obj = (HeapWord*)result;
 338     if (aligned_hs > hs) {
 339       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 340     }
 341     // Optimized zeroing.
 342     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 343   }
 344 
 345 JRT_END
 346 
 347 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 348 
 349 // multianewarray for 2 dimensions
 350 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 351 #ifndef PRODUCT
 352   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 353 #endif
 354   assert(check_compiled_frame(thread), "incorrect caller");
 355   assert(elem_type->is_klass(), "not a class");
 356   jint dims[2];
 357   dims[0] = len1;
 358   dims[1] = len2;
 359   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 360   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 361   thread->set_vm_result(obj);
 362 JRT_END
 363 
 364 // multianewarray for 3 dimensions
 365 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 366 #ifndef PRODUCT
 367   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 368 #endif
 369   assert(check_compiled_frame(thread), "incorrect caller");
 370   assert(elem_type->is_klass(), "not a class");
 371   jint dims[3];
 372   dims[0] = len1;
 373   dims[1] = len2;
 374   dims[2] = len3;
 375   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 376   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 377   thread->set_vm_result(obj);
 378 JRT_END
 379 
 380 // multianewarray for 4 dimensions
 381 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 382 #ifndef PRODUCT
 383   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 384 #endif
 385   assert(check_compiled_frame(thread), "incorrect caller");
 386   assert(elem_type->is_klass(), "not a class");
 387   jint dims[4];
 388   dims[0] = len1;
 389   dims[1] = len2;
 390   dims[2] = len3;
 391   dims[3] = len4;
 392   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 393   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 394   thread->set_vm_result(obj);
 395 JRT_END
 396 
 397 // multianewarray for 5 dimensions
 398 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 399 #ifndef PRODUCT
 400   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 401 #endif
 402   assert(check_compiled_frame(thread), "incorrect caller");
 403   assert(elem_type->is_klass(), "not a class");
 404   jint dims[5];
 405   dims[0] = len1;
 406   dims[1] = len2;
 407   dims[2] = len3;
 408   dims[3] = len4;
 409   dims[4] = len5;
 410   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 411   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 412   thread->set_vm_result(obj);
 413 JRT_END
 414 
 415 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 416   assert(check_compiled_frame(thread), "incorrect caller");
 417   assert(elem_type->is_klass(), "not a class");
 418   assert(oop(dims)->is_typeArray(), "not an array");
 419 
 420   ResourceMark rm;
 421   jint len = dims->length();
 422   assert(len > 0, "Dimensions array should contain data");
 423   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 424   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 425   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 426 
 427   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 428   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 429   thread->set_vm_result(obj);
 430 JRT_END
 431 
 432 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 433 
 434   // Very few notify/notifyAll operations find any threads on the waitset, so
 435   // the dominant fast-path is to simply return.
 436   // Relatedly, it's critical that notify/notifyAll be fast in order to
 437   // reduce lock hold times.
 438   if (!SafepointSynchronize::is_synchronizing()) {
 439     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 440       return;
 441     }
 442   }
 443 
 444   // This is the case the fast-path above isn't provisioned to handle.
 445   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 446   // (The fast-path is just a degenerate variant of the slow-path).
 447   // Perform the dreaded state transition and pass control into the slow-path.
 448   JRT_BLOCK;
 449   Handle h_obj(THREAD, obj);
 450   ObjectSynchronizer::notify(h_obj, CHECK);
 451   JRT_BLOCK_END;
 452 JRT_END
 453 
 454 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 455 
 456   if (!SafepointSynchronize::is_synchronizing() ) {
 457     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 458       return;
 459     }
 460   }
 461 
 462   // This is the case the fast-path above isn't provisioned to handle.
 463   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 464   // (The fast-path is just a degenerate variant of the slow-path).
 465   // Perform the dreaded state transition and pass control into the slow-path.
 466   JRT_BLOCK;
 467   Handle h_obj(THREAD, obj);
 468   ObjectSynchronizer::notifyall(h_obj, CHECK);
 469   JRT_BLOCK_END;
 470 JRT_END
 471 
 472 const TypeFunc *OptoRuntime::new_instance_Type() {
 473   // create input type (domain)
 474   const Type **fields = TypeTuple::fields(1);
 475   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 476   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 477 
 478   // create result type (range)
 479   fields = TypeTuple::fields(1);
 480   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 481 
 482   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 483 
 484   return TypeFunc::make(domain, range);
 485 }
 486 
 487 
 488 const TypeFunc *OptoRuntime::athrow_Type() {
 489   // create input type (domain)
 490   const Type **fields = TypeTuple::fields(1);
 491   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 492   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 493 
 494   // create result type (range)
 495   fields = TypeTuple::fields(0);
 496 
 497   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 498 
 499   return TypeFunc::make(domain, range);
 500 }
 501 
 502 
 503 const TypeFunc *OptoRuntime::new_array_Type() {
 504   // create input type (domain)
 505   const Type **fields = TypeTuple::fields(2);
 506   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 507   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 508   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 509 
 510   // create result type (range)
 511   fields = TypeTuple::fields(1);
 512   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 513 
 514   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 515 
 516   return TypeFunc::make(domain, range);
 517 }
 518 
 519 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 520   // create input type (domain)
 521   const int nargs = ndim + 1;
 522   const Type **fields = TypeTuple::fields(nargs);
 523   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 524   for( int i = 1; i < nargs; i++ )
 525     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 526   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 527 
 528   // create result type (range)
 529   fields = TypeTuple::fields(1);
 530   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 531   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 532 
 533   return TypeFunc::make(domain, range);
 534 }
 535 
 536 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 537   return multianewarray_Type(2);
 538 }
 539 
 540 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 541   return multianewarray_Type(3);
 542 }
 543 
 544 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 545   return multianewarray_Type(4);
 546 }
 547 
 548 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 549   return multianewarray_Type(5);
 550 }
 551 
 552 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 553   // create input type (domain)
 554   const Type **fields = TypeTuple::fields(2);
 555   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 556   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 557   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 558 
 559   // create result type (range)
 560   fields = TypeTuple::fields(1);
 561   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 562   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 563 
 564   return TypeFunc::make(domain, range);
 565 }
 566 
 567 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 568   const Type **fields = TypeTuple::fields(2);
 569   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 570   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 571   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 572 
 573   // create result type (range)
 574   fields = TypeTuple::fields(0);
 575   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 576 
 577   return TypeFunc::make(domain, range);
 578 }
 579 
 580 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 581 
 582   const Type **fields = TypeTuple::fields(2);
 583   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 584   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 585   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 586 
 587   // create result type (range)
 588   fields = TypeTuple::fields(0);
 589   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 590 
 591   return TypeFunc::make(domain, range);
 592 }
 593 
 594 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 595   // create input type (domain)
 596   const Type **fields = TypeTuple::fields(1);
 597   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 598   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 599 
 600   // create result type (range)
 601   fields = TypeTuple::fields(0);
 602   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 603 
 604   return TypeFunc::make(domain, range);
 605 }
 606 
 607 # ifdef ENABLE_ZAP_DEAD_LOCALS
 608 // Type used for stub generation for zap_dead_locals.
 609 // No inputs or outputs
 610 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 611   // create input type (domain)
 612   const Type **fields = TypeTuple::fields(0);
 613   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 614 
 615   // create result type (range)
 616   fields = TypeTuple::fields(0);
 617   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 618 
 619   return TypeFunc::make(domain,range);
 620 }
 621 # endif
 622 
 623 
 624 //-----------------------------------------------------------------------------
 625 // Monitor Handling
 626 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 627   // create input type (domain)
 628   const Type **fields = TypeTuple::fields(2);
 629   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 630   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 631   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 632 
 633   // create result type (range)
 634   fields = TypeTuple::fields(0);
 635 
 636   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 637 
 638   return TypeFunc::make(domain,range);
 639 }
 640 
 641 
 642 //-----------------------------------------------------------------------------
 643 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 644   // create input type (domain)
 645   const Type **fields = TypeTuple::fields(3);
 646   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 647   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 648   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 649   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 650 
 651   // create result type (range)
 652   fields = TypeTuple::fields(0);
 653 
 654   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 655 
 656   return TypeFunc::make(domain, range);
 657 }
 658 
 659 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 660   // create input type (domain)
 661   const Type **fields = TypeTuple::fields(1);
 662   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 663   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 664 
 665   // create result type (range)
 666   fields = TypeTuple::fields(0);
 667   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 668   return TypeFunc::make(domain, range);
 669 }
 670 
 671 const TypeFunc* OptoRuntime::flush_windows_Type() {
 672   // create input type (domain)
 673   const Type** fields = TypeTuple::fields(1);
 674   fields[TypeFunc::Parms+0] = NULL; // void
 675   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 676 
 677   // create result type
 678   fields = TypeTuple::fields(1);
 679   fields[TypeFunc::Parms+0] = NULL; // void
 680   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 681 
 682   return TypeFunc::make(domain, range);
 683 }
 684 
 685 const TypeFunc* OptoRuntime::l2f_Type() {
 686   // create input type (domain)
 687   const Type **fields = TypeTuple::fields(2);
 688   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 689   fields[TypeFunc::Parms+1] = Type::HALF;
 690   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 691 
 692   // create result type (range)
 693   fields = TypeTuple::fields(1);
 694   fields[TypeFunc::Parms+0] = Type::FLOAT;
 695   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 696 
 697   return TypeFunc::make(domain, range);
 698 }
 699 
 700 const TypeFunc* OptoRuntime::modf_Type() {
 701   const Type **fields = TypeTuple::fields(2);
 702   fields[TypeFunc::Parms+0] = Type::FLOAT;
 703   fields[TypeFunc::Parms+1] = Type::FLOAT;
 704   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 705 
 706   // create result type (range)
 707   fields = TypeTuple::fields(1);
 708   fields[TypeFunc::Parms+0] = Type::FLOAT;
 709 
 710   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 711 
 712   return TypeFunc::make(domain, range);
 713 }
 714 
 715 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 716   // create input type (domain)
 717   const Type **fields = TypeTuple::fields(2);
 718   // Symbol* name of class to be loaded
 719   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 720   fields[TypeFunc::Parms+1] = Type::HALF;
 721   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 722 
 723   // create result type (range)
 724   fields = TypeTuple::fields(2);
 725   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 726   fields[TypeFunc::Parms+1] = Type::HALF;
 727   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 728 
 729   return TypeFunc::make(domain, range);
 730 }
 731 
 732 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 733   const Type **fields = TypeTuple::fields(4);
 734   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 735   fields[TypeFunc::Parms+1] = Type::HALF;
 736   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 737   fields[TypeFunc::Parms+3] = Type::HALF;
 738   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 739 
 740   // create result type (range)
 741   fields = TypeTuple::fields(2);
 742   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 743   fields[TypeFunc::Parms+1] = Type::HALF;
 744   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 745 
 746   return TypeFunc::make(domain, range);
 747 }
 748 
 749 //-------------- currentTimeMillis, currentTimeNanos, etc
 750 
 751 const TypeFunc* OptoRuntime::void_long_Type() {
 752   // create input type (domain)
 753   const Type **fields = TypeTuple::fields(0);
 754   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 755 
 756   // create result type (range)
 757   fields = TypeTuple::fields(2);
 758   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 759   fields[TypeFunc::Parms+1] = Type::HALF;
 760   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 761 
 762   return TypeFunc::make(domain, range);
 763 }
 764 
 765 // arraycopy stub variations:
 766 enum ArrayCopyType {
 767   ac_fast,                      // void(ptr, ptr, size_t)
 768   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 769   ac_slow,                      // void(ptr, int, ptr, int, int)
 770   ac_generic                    //  int(ptr, int, ptr, int, int)
 771 };
 772 
 773 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 774   // create input type (domain)
 775   int num_args      = (act == ac_fast ? 3 : 5);
 776   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 777   int argcnt = num_args;
 778   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 779   const Type** fields = TypeTuple::fields(argcnt);
 780   int argp = TypeFunc::Parms;
 781   fields[argp++] = TypePtr::NOTNULL;    // src
 782   if (num_size_args == 0) {
 783     fields[argp++] = TypeInt::INT;      // src_pos
 784   }
 785   fields[argp++] = TypePtr::NOTNULL;    // dest
 786   if (num_size_args == 0) {
 787     fields[argp++] = TypeInt::INT;      // dest_pos
 788     fields[argp++] = TypeInt::INT;      // length
 789   }
 790   while (num_size_args-- > 0) {
 791     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 792     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 793   }
 794   if (act == ac_checkcast) {
 795     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 796   }
 797   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 798   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 799 
 800   // create result type if needed
 801   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 802   fields = TypeTuple::fields(1);
 803   if (retcnt == 0)
 804     fields[TypeFunc::Parms+0] = NULL; // void
 805   else
 806     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 807   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 808   return TypeFunc::make(domain, range);
 809 }
 810 
 811 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 812   // This signature is simple:  Two base pointers and a size_t.
 813   return make_arraycopy_Type(ac_fast);
 814 }
 815 
 816 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 817   // An extension of fast_arraycopy_Type which adds type checking.
 818   return make_arraycopy_Type(ac_checkcast);
 819 }
 820 
 821 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 822   // This signature is exactly the same as System.arraycopy.
 823   // There are no intptr_t (int/long) arguments.
 824   return make_arraycopy_Type(ac_slow);
 825 }
 826 
 827 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 828   // This signature is like System.arraycopy, except that it returns status.
 829   return make_arraycopy_Type(ac_generic);
 830 }
 831 
 832 
 833 const TypeFunc* OptoRuntime::array_fill_Type() {
 834   const Type** fields;
 835   int argp = TypeFunc::Parms;
 836   // create input type (domain): pointer, int, size_t
 837   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 838   fields[argp++] = TypePtr::NOTNULL;
 839   fields[argp++] = TypeInt::INT;
 840   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 841   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 842   const TypeTuple *domain = TypeTuple::make(argp, fields);
 843 
 844   // create result type
 845   fields = TypeTuple::fields(1);
 846   fields[TypeFunc::Parms+0] = NULL; // void
 847   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 848 
 849   return TypeFunc::make(domain, range);
 850 }
 851 
 852 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 853 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 854   // create input type (domain)
 855   int num_args      = 3;
 856   if (Matcher::pass_original_key_for_aes()) {
 857     num_args = 4;
 858   }
 859   int argcnt = num_args;
 860   const Type** fields = TypeTuple::fields(argcnt);
 861   int argp = TypeFunc::Parms;
 862   fields[argp++] = TypePtr::NOTNULL;    // src
 863   fields[argp++] = TypePtr::NOTNULL;    // dest
 864   fields[argp++] = TypePtr::NOTNULL;    // k array
 865   if (Matcher::pass_original_key_for_aes()) {
 866     fields[argp++] = TypePtr::NOTNULL;    // original k array
 867   }
 868   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 869   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 870 
 871   // no result type needed
 872   fields = TypeTuple::fields(1);
 873   fields[TypeFunc::Parms+0] = NULL; // void
 874   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 875   return TypeFunc::make(domain, range);
 876 }
 877 
 878 /**
 879  * int updateBytesCRC32(int crc, byte* b, int len)
 880  */
 881 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 882   // create input type (domain)
 883   int num_args      = 3;
 884   int argcnt = num_args;
 885   const Type** fields = TypeTuple::fields(argcnt);
 886   int argp = TypeFunc::Parms;
 887   fields[argp++] = TypeInt::INT;        // crc
 888   fields[argp++] = TypePtr::NOTNULL;    // src
 889   fields[argp++] = TypeInt::INT;        // len
 890   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 891   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 892 
 893   // result type needed
 894   fields = TypeTuple::fields(1);
 895   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 896   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 897   return TypeFunc::make(domain, range);
 898 }
 899 
 900 /**
 901  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 902  */
 903 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 904   // create input type (domain)
 905   int num_args      = 4;
 906   int argcnt = num_args;
 907   const Type** fields = TypeTuple::fields(argcnt);
 908   int argp = TypeFunc::Parms;
 909   fields[argp++] = TypeInt::INT;        // crc
 910   fields[argp++] = TypePtr::NOTNULL;    // buf
 911   fields[argp++] = TypeInt::INT;        // len
 912   fields[argp++] = TypePtr::NOTNULL;    // table
 913   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 914   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 915 
 916   // result type needed
 917   fields = TypeTuple::fields(1);
 918   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 919   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 920   return TypeFunc::make(domain, range);
 921 }
 922 
 923 /**
 924 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 925 */
 926 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 927   // create input type (domain)
 928   int num_args      = 3;
 929   int argcnt = num_args;
 930   const Type** fields = TypeTuple::fields(argcnt);
 931   int argp = TypeFunc::Parms;
 932   fields[argp++] = TypeInt::INT;        // crc
 933   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 934   fields[argp++] = TypeInt::INT;        // len
 935   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 936   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 937 
 938   // result type needed
 939   fields = TypeTuple::fields(1);
 940   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 941   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 942   return TypeFunc::make(domain, range);
 943 }
 944 
 945 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 946 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 947   // create input type (domain)
 948   int num_args      = 5;
 949   if (Matcher::pass_original_key_for_aes()) {
 950     num_args = 6;
 951   }
 952   int argcnt = num_args;
 953   const Type** fields = TypeTuple::fields(argcnt);
 954   int argp = TypeFunc::Parms;
 955   fields[argp++] = TypePtr::NOTNULL;    // src
 956   fields[argp++] = TypePtr::NOTNULL;    // dest
 957   fields[argp++] = TypePtr::NOTNULL;    // k array
 958   fields[argp++] = TypePtr::NOTNULL;    // r array
 959   fields[argp++] = TypeInt::INT;        // src len
 960   if (Matcher::pass_original_key_for_aes()) {
 961     fields[argp++] = TypePtr::NOTNULL;    // original k array
 962   }
 963   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 964   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 965 
 966   // returning cipher len (int)
 967   fields = TypeTuple::fields(1);
 968   fields[TypeFunc::Parms+0] = TypeInt::INT;
 969   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 970   return TypeFunc::make(domain, range);
 971 }
 972 
 973 /*
 974  * void implCompress(byte[] buf, int ofs)
 975  */
 976 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 977   // create input type (domain)
 978   int num_args = 2;
 979   int argcnt = num_args;
 980   const Type** fields = TypeTuple::fields(argcnt);
 981   int argp = TypeFunc::Parms;
 982   fields[argp++] = TypePtr::NOTNULL; // buf
 983   fields[argp++] = TypePtr::NOTNULL; // state
 984   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 985   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 986 
 987   // no result type needed
 988   fields = TypeTuple::fields(1);
 989   fields[TypeFunc::Parms+0] = NULL; // void
 990   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 991   return TypeFunc::make(domain, range);
 992 }
 993 
 994 /*
 995  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 996  */
 997 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 998   // create input type (domain)
 999   int num_args = 4;
1000   int argcnt = num_args;
1001   const Type** fields = TypeTuple::fields(argcnt);
1002   int argp = TypeFunc::Parms;
1003   fields[argp++] = TypePtr::NOTNULL; // buf
1004   fields[argp++] = TypePtr::NOTNULL; // state
1005   fields[argp++] = TypeInt::INT;     // ofs
1006   fields[argp++] = TypeInt::INT;     // limit
1007   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1008   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1009 
1010   // returning ofs (int)
1011   fields = TypeTuple::fields(1);
1012   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1013   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1014   return TypeFunc::make(domain, range);
1015 }
1016 
1017 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1018   // create input type (domain)
1019   int num_args      = 6;
1020   int argcnt = num_args;
1021   const Type** fields = TypeTuple::fields(argcnt);
1022   int argp = TypeFunc::Parms;
1023   fields[argp++] = TypePtr::NOTNULL;    // x
1024   fields[argp++] = TypeInt::INT;        // xlen
1025   fields[argp++] = TypePtr::NOTNULL;    // y
1026   fields[argp++] = TypeInt::INT;        // ylen
1027   fields[argp++] = TypePtr::NOTNULL;    // z
1028   fields[argp++] = TypeInt::INT;        // zlen
1029   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1030   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1031 
1032   // no result type needed
1033   fields = TypeTuple::fields(1);
1034   fields[TypeFunc::Parms+0] = NULL;
1035   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1036   return TypeFunc::make(domain, range);
1037 }
1038 
1039 const TypeFunc* OptoRuntime::squareToLen_Type() {
1040   // create input type (domain)
1041   int num_args      = 4;
1042   int argcnt = num_args;
1043   const Type** fields = TypeTuple::fields(argcnt);
1044   int argp = TypeFunc::Parms;
1045   fields[argp++] = TypePtr::NOTNULL;    // x
1046   fields[argp++] = TypeInt::INT;        // len
1047   fields[argp++] = TypePtr::NOTNULL;    // z
1048   fields[argp++] = TypeInt::INT;        // zlen
1049   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1050   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1051 
1052   // no result type needed
1053   fields = TypeTuple::fields(1);
1054   fields[TypeFunc::Parms+0] = NULL;
1055   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1056   return TypeFunc::make(domain, range);
1057 }
1058 
1059 // for mulAdd calls, 2 pointers and 3 ints, returning int
1060 const TypeFunc* OptoRuntime::mulAdd_Type() {
1061   // create input type (domain)
1062   int num_args      = 5;
1063   int argcnt = num_args;
1064   const Type** fields = TypeTuple::fields(argcnt);
1065   int argp = TypeFunc::Parms;
1066   fields[argp++] = TypePtr::NOTNULL;    // out
1067   fields[argp++] = TypePtr::NOTNULL;    // in
1068   fields[argp++] = TypeInt::INT;        // offset
1069   fields[argp++] = TypeInt::INT;        // len
1070   fields[argp++] = TypeInt::INT;        // k
1071   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1072   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1073 
1074   // returning carry (int)
1075   fields = TypeTuple::fields(1);
1076   fields[TypeFunc::Parms+0] = TypeInt::INT;
1077   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1078   return TypeFunc::make(domain, range);
1079 }
1080 
1081 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1082   // create input type (domain)
1083   int num_args      = 7;
1084   int argcnt = num_args;
1085   const Type** fields = TypeTuple::fields(argcnt);
1086   int argp = TypeFunc::Parms;
1087   fields[argp++] = TypePtr::NOTNULL;    // a
1088   fields[argp++] = TypePtr::NOTNULL;    // b
1089   fields[argp++] = TypePtr::NOTNULL;    // n
1090   fields[argp++] = TypeInt::INT;        // len
1091   fields[argp++] = TypeLong::LONG;      // inv
1092   fields[argp++] = Type::HALF;
1093   fields[argp++] = TypePtr::NOTNULL;    // result
1094   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1095   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1096 
1097   // result type needed
1098   fields = TypeTuple::fields(1);
1099   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1100 
1101   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1102   return TypeFunc::make(domain, range);
1103 }
1104 
1105 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1106   // create input type (domain)
1107   int num_args      = 6;
1108   int argcnt = num_args;
1109   const Type** fields = TypeTuple::fields(argcnt);
1110   int argp = TypeFunc::Parms;
1111   fields[argp++] = TypePtr::NOTNULL;    // a
1112   fields[argp++] = TypePtr::NOTNULL;    // n
1113   fields[argp++] = TypeInt::INT;        // len
1114   fields[argp++] = TypeLong::LONG;      // inv
1115   fields[argp++] = Type::HALF;
1116   fields[argp++] = TypePtr::NOTNULL;    // result
1117   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1118   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1119 
1120   // result type needed
1121   fields = TypeTuple::fields(1);
1122   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1123 
1124   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1125   return TypeFunc::make(domain, range);
1126 }
1127 
1128 // GHASH block processing
1129 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1130     int argcnt = 4;
1131 
1132     const Type** fields = TypeTuple::fields(argcnt);
1133     int argp = TypeFunc::Parms;
1134     fields[argp++] = TypePtr::NOTNULL;    // state
1135     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1136     fields[argp++] = TypePtr::NOTNULL;    // data
1137     fields[argp++] = TypeInt::INT;        // blocks
1138     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1139     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1140 
1141     // result type needed
1142     fields = TypeTuple::fields(1);
1143     fields[TypeFunc::Parms+0] = NULL; // void
1144     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1145     return TypeFunc::make(domain, range);
1146 }
1147 
1148 //------------- Interpreter state access for on stack replacement
1149 const TypeFunc* OptoRuntime::osr_end_Type() {
1150   // create input type (domain)
1151   const Type **fields = TypeTuple::fields(1);
1152   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1153   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1154 
1155   // create result type
1156   fields = TypeTuple::fields(1);
1157   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1158   fields[TypeFunc::Parms+0] = NULL; // void
1159   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1160   return TypeFunc::make(domain, range);
1161 }
1162 
1163 //-------------- methodData update helpers
1164 
1165 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1166   // create input type (domain)
1167   const Type **fields = TypeTuple::fields(2);
1168   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1169   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1170   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1171 
1172   // create result type
1173   fields = TypeTuple::fields(1);
1174   fields[TypeFunc::Parms+0] = NULL; // void
1175   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1176   return TypeFunc::make(domain,range);
1177 }
1178 
1179 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1180   if (receiver == NULL) return;
1181   Klass* receiver_klass = receiver->klass();
1182 
1183   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1184   int empty_row = -1;           // free row, if any is encountered
1185 
1186   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1187   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1188     // if (vc->receiver(row) == receiver_klass)
1189     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1190     intptr_t row_recv = *(mdp + receiver_off);
1191     if (row_recv == (intptr_t) receiver_klass) {
1192       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1193       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1194       *(mdp + count_off) += DataLayout::counter_increment;
1195       return;
1196     } else if (row_recv == 0) {
1197       // else if (vc->receiver(row) == NULL)
1198       empty_row = (int) row;
1199     }
1200   }
1201 
1202   if (empty_row != -1) {
1203     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1204     // vc->set_receiver(empty_row, receiver_klass);
1205     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1206     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1207     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1208     *(mdp + count_off) = DataLayout::counter_increment;
1209   } else {
1210     // Receiver did not match any saved receiver and there is no empty row for it.
1211     // Increment total counter to indicate polymorphic case.
1212     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1213     *count_p += DataLayout::counter_increment;
1214   }
1215 JRT_END
1216 
1217 //-------------------------------------------------------------------------------------
1218 // register policy
1219 
1220 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1221   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1222   switch (register_save_policy[reg]) {
1223     case 'C': return false; //SOC
1224     case 'E': return true ; //SOE
1225     case 'N': return false; //NS
1226     case 'A': return false; //AS
1227   }
1228   ShouldNotReachHere();
1229   return false;
1230 }
1231 
1232 //-----------------------------------------------------------------------
1233 // Exceptions
1234 //
1235 
1236 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1237 
1238 // The method is an entry that is always called by a C++ method not
1239 // directly from compiled code. Compiled code will call the C++ method following.
1240 // We can't allow async exception to be installed during  exception processing.
1241 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1242 
1243   // Do not confuse exception_oop with pending_exception. The exception_oop
1244   // is only used to pass arguments into the method. Not for general
1245   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1246   // the runtime stubs checks this on exit.
1247   assert(thread->exception_oop() != NULL, "exception oop is found");
1248   address handler_address = NULL;
1249 
1250   Handle exception(thread, thread->exception_oop());
1251   address pc = thread->exception_pc();
1252 
1253   // Clear out the exception oop and pc since looking up an
1254   // exception handler can cause class loading, which might throw an
1255   // exception and those fields are expected to be clear during
1256   // normal bytecode execution.
1257   thread->clear_exception_oop_and_pc();
1258 
1259   if (TraceExceptions) {
1260     trace_exception(exception(), pc, "");
1261   }
1262 
1263   // for AbortVMOnException flag
1264   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1265 
1266 #ifdef ASSERT
1267   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1268     // should throw an exception here
1269     ShouldNotReachHere();
1270   }
1271 #endif
1272 
1273   // new exception handling: this method is entered only from adapters
1274   // exceptions from compiled java methods are handled in compiled code
1275   // using rethrow node
1276 
1277   nm = CodeCache::find_nmethod(pc);
1278   assert(nm != NULL, "No NMethod found");
1279   if (nm->is_native_method()) {
1280     fatal("Native method should not have path to exception handling");
1281   } else {
1282     // we are switching to old paradigm: search for exception handler in caller_frame
1283     // instead in exception handler of caller_frame.sender()
1284 
1285     if (JvmtiExport::can_post_on_exceptions()) {
1286       // "Full-speed catching" is not necessary here,
1287       // since we're notifying the VM on every catch.
1288       // Force deoptimization and the rest of the lookup
1289       // will be fine.
1290       deoptimize_caller_frame(thread);
1291     }
1292 
1293     // Check the stack guard pages.  If enabled, look for handler in this frame;
1294     // otherwise, forcibly unwind the frame.
1295     //
1296     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1297     bool force_unwind = !thread->reguard_stack();
1298     bool deopting = false;
1299     if (nm->is_deopt_pc(pc)) {
1300       deopting = true;
1301       RegisterMap map(thread, false);
1302       frame deoptee = thread->last_frame().sender(&map);
1303       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1304       // Adjust the pc back to the original throwing pc
1305       pc = deoptee.pc();
1306     }
1307 
1308     // If we are forcing an unwind because of stack overflow then deopt is
1309     // irrelevant since we are throwing the frame away anyway.
1310 
1311     if (deopting && !force_unwind) {
1312       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1313     } else {
1314 
1315       handler_address =
1316         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1317 
1318       if (handler_address == NULL) {
1319         Handle original_exception(thread, exception());
1320         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1321         assert (handler_address != NULL, "must have compiled handler");
1322         // Update the exception cache only when the unwind was not forced
1323         // and there didn't happen another exception during the computation of the
1324         // compiled exception handler.
1325         if (!force_unwind && original_exception() == exception()) {
1326           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1327         }
1328       } else {
1329         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1330       }
1331     }
1332 
1333     thread->set_exception_pc(pc);
1334     thread->set_exception_handler_pc(handler_address);
1335 
1336     // Check if the exception PC is a MethodHandle call site.
1337     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1338   }
1339 
1340   // Restore correct return pc.  Was saved above.
1341   thread->set_exception_oop(exception());
1342   return handler_address;
1343 
1344 JRT_END
1345 
1346 // We are entering here from exception_blob
1347 // If there is a compiled exception handler in this method, we will continue there;
1348 // otherwise we will unwind the stack and continue at the caller of top frame method
1349 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1350 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1351 // we looked up the handler for has been deoptimized in the meantime. If it has been
1352 // we must not use the handler and instead return the deopt blob.
1353 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1354 //
1355 // We are in Java not VM and in debug mode we have a NoHandleMark
1356 //
1357 #ifndef PRODUCT
1358   SharedRuntime::_find_handler_ctr++;          // find exception handler
1359 #endif
1360   debug_only(NoHandleMark __hm;)
1361   nmethod* nm = NULL;
1362   address handler_address = NULL;
1363   {
1364     // Enter the VM
1365 
1366     ResetNoHandleMark rnhm;
1367     handler_address = handle_exception_C_helper(thread, nm);
1368   }
1369 
1370   // Back in java: Use no oops, DON'T safepoint
1371 
1372   // Now check to see if the handler we are returning is in a now
1373   // deoptimized frame
1374 
1375   if (nm != NULL) {
1376     RegisterMap map(thread, false);
1377     frame caller = thread->last_frame().sender(&map);
1378 #ifdef ASSERT
1379     assert(caller.is_compiled_frame(), "must be");
1380 #endif // ASSERT
1381     if (caller.is_deoptimized_frame()) {
1382       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1383     }
1384   }
1385   return handler_address;
1386 }
1387 
1388 //------------------------------rethrow----------------------------------------
1389 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1390 // is either throwing or rethrowing an exception.  The callee-save registers
1391 // have been restored, synchronized objects have been unlocked and the callee
1392 // stack frame has been removed.  The return address was passed in.
1393 // Exception oop is passed as the 1st argument.  This routine is then called
1394 // from the stub.  On exit, we know where to jump in the caller's code.
1395 // After this C code exits, the stub will pop his frame and end in a jump
1396 // (instead of a return).  We enter the caller's default handler.
1397 //
1398 // This must be JRT_LEAF:
1399 //     - caller will not change its state as we cannot block on exit,
1400 //       therefore raw_exception_handler_for_return_address is all it takes
1401 //       to handle deoptimized blobs
1402 //
1403 // However, there needs to be a safepoint check in the middle!  So compiled
1404 // safepoints are completely watertight.
1405 //
1406 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1407 //
1408 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1409 //
1410 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1411 #ifndef PRODUCT
1412   SharedRuntime::_rethrow_ctr++;               // count rethrows
1413 #endif
1414   assert (exception != NULL, "should have thrown a NULLPointerException");
1415 #ifdef ASSERT
1416   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1417     // should throw an exception here
1418     ShouldNotReachHere();
1419   }
1420 #endif
1421 
1422   thread->set_vm_result(exception);
1423   // Frame not compiled (handles deoptimization blob)
1424   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1425 }
1426 
1427 
1428 const TypeFunc *OptoRuntime::rethrow_Type() {
1429   // create input type (domain)
1430   const Type **fields = TypeTuple::fields(1);
1431   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1432   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1433 
1434   // create result type (range)
1435   fields = TypeTuple::fields(1);
1436   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1437   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1438 
1439   return TypeFunc::make(domain, range);
1440 }
1441 
1442 
1443 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1444   // Deoptimize the caller before continuing, as the compiled
1445   // exception handler table may not be valid.
1446   if (!StressCompiledExceptionHandlers && doit) {
1447     deoptimize_caller_frame(thread);
1448   }
1449 }
1450 
1451 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1452   // Called from within the owner thread, so no need for safepoint
1453   RegisterMap reg_map(thread);
1454   frame stub_frame = thread->last_frame();
1455   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1456   frame caller_frame = stub_frame.sender(&reg_map);
1457 
1458   // Deoptimize the caller frame.
1459   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1460 }
1461 
1462 
1463 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1464   // Called from within the owner thread, so no need for safepoint
1465   RegisterMap reg_map(thread);
1466   frame stub_frame = thread->last_frame();
1467   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1468   frame caller_frame = stub_frame.sender(&reg_map);
1469   return caller_frame.is_deoptimized_frame();
1470 }
1471 
1472 
1473 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1474   // create input type (domain)
1475   const Type **fields = TypeTuple::fields(1);
1476   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1477   // // The JavaThread* is passed to each routine as the last argument
1478   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1479   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1480 
1481   // create result type (range)
1482   fields = TypeTuple::fields(0);
1483 
1484   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1485 
1486   return TypeFunc::make(domain,range);
1487 }
1488 
1489 
1490 //-----------------------------------------------------------------------------
1491 // Dtrace support.  entry and exit probes have the same signature
1492 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1493   // create input type (domain)
1494   const Type **fields = TypeTuple::fields(2);
1495   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1496   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1497   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1498 
1499   // create result type (range)
1500   fields = TypeTuple::fields(0);
1501 
1502   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1503 
1504   return TypeFunc::make(domain,range);
1505 }
1506 
1507 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1508   // create input type (domain)
1509   const Type **fields = TypeTuple::fields(2);
1510   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1511   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1512 
1513   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1514 
1515   // create result type (range)
1516   fields = TypeTuple::fields(0);
1517 
1518   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1519 
1520   return TypeFunc::make(domain,range);
1521 }
1522 
1523 
1524 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1525   assert(obj->is_oop(), "must be a valid oop");
1526   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1527   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1528 JRT_END
1529 
1530 //-----------------------------------------------------------------------------
1531 
1532 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1533 
1534 //
1535 // dump the collected NamedCounters.
1536 //
1537 void OptoRuntime::print_named_counters() {
1538   int total_lock_count = 0;
1539   int eliminated_lock_count = 0;
1540 
1541   NamedCounter* c = _named_counters;
1542   while (c) {
1543     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1544       int count = c->count();
1545       if (count > 0) {
1546         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1547         if (Verbose) {
1548           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1549         }
1550         total_lock_count += count;
1551         if (eliminated) {
1552           eliminated_lock_count += count;
1553         }
1554       }
1555     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1556       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1557       if (blc->nonzero()) {
1558         tty->print_cr("%s", c->name());
1559         blc->print_on(tty);
1560       }
1561 #if INCLUDE_RTM_OPT
1562     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1563       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1564       if (rlc->nonzero()) {
1565         tty->print_cr("%s", c->name());
1566         rlc->print_on(tty);
1567       }
1568 #endif
1569     }
1570     c = c->next();
1571   }
1572   if (total_lock_count > 0) {
1573     tty->print_cr("dynamic locks: %d", total_lock_count);
1574     if (eliminated_lock_count) {
1575       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1576                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1577     }
1578   }
1579 }
1580 
1581 //
1582 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1583 //  name which consists of method@line for the inlining tree.
1584 //
1585 
1586 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1587   int max_depth = youngest_jvms->depth();
1588 
1589   // Visit scopes from youngest to oldest.
1590   bool first = true;
1591   stringStream st;
1592   for (int depth = max_depth; depth >= 1; depth--) {
1593     JVMState* jvms = youngest_jvms->of_depth(depth);
1594     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1595     if (!first) {
1596       st.print(" ");
1597     } else {
1598       first = false;
1599     }
1600     int bci = jvms->bci();
1601     if (bci < 0) bci = 0;
1602     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1603     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1604   }
1605   NamedCounter* c;
1606   if (tag == NamedCounter::BiasedLockingCounter) {
1607     c = new BiasedLockingNamedCounter(st.as_string());
1608   } else if (tag == NamedCounter::RTMLockingCounter) {
1609     c = new RTMLockingNamedCounter(st.as_string());
1610   } else {
1611     c = new NamedCounter(st.as_string(), tag);
1612   }
1613 
1614   // atomically add the new counter to the head of the list.  We only
1615   // add counters so this is safe.
1616   NamedCounter* head;
1617   do {
1618     c->set_next(NULL);
1619     head = _named_counters;
1620     c->set_next(head);
1621   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1622   return c;
1623 }
1624 
1625 //-----------------------------------------------------------------------------
1626 // Non-product code
1627 #ifndef PRODUCT
1628 
1629 int trace_exception_counter = 0;
1630 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1631   ttyLocker ttyl;
1632   trace_exception_counter++;
1633   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1634   exception_oop->print_value();
1635   tty->print(" in ");
1636   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1637   if (blob->is_nmethod()) {
1638     nmethod* nm = blob->as_nmethod_or_null();
1639     nm->method()->print_value();
1640   } else if (blob->is_runtime_stub()) {
1641     tty->print("<runtime-stub>");
1642   } else {
1643     tty->print("<unknown>");
1644   }
1645   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1646   tty->print_cr("]");
1647 }
1648 
1649 #endif  // PRODUCT
1650 
1651 
1652 # ifdef ENABLE_ZAP_DEAD_LOCALS
1653 // Called from call sites in compiled code with oop maps (actually safepoints)
1654 // Zaps dead locals in first java frame.
1655 // Is entry because may need to lock to generate oop maps
1656 // Currently, only used for compiler frames, but someday may be used
1657 // for interpreter frames, too.
1658 
1659 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1660 
1661 // avoid pointers to member funcs with these helpers
1662 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1663 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1664 
1665 
1666 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1667                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1668   assert(JavaThread::current() == thread, "is this needed?");
1669 
1670   if ( !ZapDeadCompiledLocals )  return;
1671 
1672   bool skip = false;
1673 
1674        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1675   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1676   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1677     warning("starting zapping after skipping");
1678 
1679        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1680   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1681   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1682     warning("about to zap last zap");
1683 
1684   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1685 
1686   if ( skip )  return;
1687 
1688   // find java frame and zap it
1689 
1690   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1691     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1692       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1693       return;
1694     }
1695   }
1696   warning("no frame found to zap in zap_dead_Java_locals_C");
1697 }
1698 
1699 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1700   zap_dead_java_or_native_locals(thread, is_java_frame);
1701 JRT_END
1702 
1703 // The following does not work because for one thing, the
1704 // thread state is wrong; it expects java, but it is native.
1705 // Also, the invariants in a native stub are different and
1706 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1707 // in there.
1708 // So for now, we do not zap in native stubs.
1709 
1710 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1711   zap_dead_java_or_native_locals(thread, is_native_frame);
1712 JRT_END
1713 
1714 # endif