1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/gcLocker.hpp"
  32 #include "libadt/dict.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 
  53 // Array which maps compiler types to Basic Types
  54 Type::TypeInfo Type::_type_info[Type::lastype] = {
  55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  65 
  66 #ifdef SPARC
  67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  71   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  72 #elif defined(PPC64)
  73   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  74   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  75   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  76   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  77   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  78 #else // all other
  79   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  80   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  81   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  82   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  83   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  84 #endif
  85   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  86   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  87   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  88   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  89   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  90   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  91   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  92   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  93   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  94   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  95   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  96   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  97   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  98   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  99   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 100   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 101   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 102   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 103 };
 104 
 105 // Map ideal registers (machine types) to ideal types
 106 const Type *Type::mreg2type[_last_machine_leaf];
 107 
 108 // Map basic types to canonical Type* pointers.
 109 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 110 
 111 // Map basic types to constant-zero Types.
 112 const Type* Type::            _zero_type[T_CONFLICT+1];
 113 
 114 // Map basic types to array-body alias types.
 115 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 116 
 117 //=============================================================================
 118 // Convenience common pre-built types.
 119 const Type *Type::ABIO;         // State-of-machine only
 120 const Type *Type::BOTTOM;       // All values
 121 const Type *Type::CONTROL;      // Control only
 122 const Type *Type::DOUBLE;       // All doubles
 123 const Type *Type::FLOAT;        // All floats
 124 const Type *Type::HALF;         // Placeholder half of doublewide type
 125 const Type *Type::MEMORY;       // Abstract store only
 126 const Type *Type::RETURN_ADDRESS;
 127 const Type *Type::TOP;          // No values in set
 128 
 129 //------------------------------get_const_type---------------------------
 130 const Type* Type::get_const_type(ciType* type) {
 131   if (type == NULL) {
 132     return NULL;
 133   } else if (type->is_primitive_type()) {
 134     return get_const_basic_type(type->basic_type());
 135   } else {
 136     return TypeOopPtr::make_from_klass(type->as_klass());
 137   }
 138 }
 139 
 140 //---------------------------array_element_basic_type---------------------------------
 141 // Mapping to the array element's basic type.
 142 BasicType Type::array_element_basic_type() const {
 143   BasicType bt = basic_type();
 144   if (bt == T_INT) {
 145     if (this == TypeInt::INT)   return T_INT;
 146     if (this == TypeInt::CHAR)  return T_CHAR;
 147     if (this == TypeInt::BYTE)  return T_BYTE;
 148     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 149     if (this == TypeInt::SHORT) return T_SHORT;
 150     return T_VOID;
 151   }
 152   return bt;
 153 }
 154 
 155 //---------------------------get_typeflow_type---------------------------------
 156 // Import a type produced by ciTypeFlow.
 157 const Type* Type::get_typeflow_type(ciType* type) {
 158   switch (type->basic_type()) {
 159 
 160   case ciTypeFlow::StateVector::T_BOTTOM:
 161     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 162     return Type::BOTTOM;
 163 
 164   case ciTypeFlow::StateVector::T_TOP:
 165     assert(type == ciTypeFlow::StateVector::top_type(), "");
 166     return Type::TOP;
 167 
 168   case ciTypeFlow::StateVector::T_NULL:
 169     assert(type == ciTypeFlow::StateVector::null_type(), "");
 170     return TypePtr::NULL_PTR;
 171 
 172   case ciTypeFlow::StateVector::T_LONG2:
 173     // The ciTypeFlow pass pushes a long, then the half.
 174     // We do the same.
 175     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 176     return TypeInt::TOP;
 177 
 178   case ciTypeFlow::StateVector::T_DOUBLE2:
 179     // The ciTypeFlow pass pushes double, then the half.
 180     // Our convention is the same.
 181     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 182     return Type::TOP;
 183 
 184   case T_ADDRESS:
 185     assert(type->is_return_address(), "");
 186     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 187 
 188   default:
 189     // make sure we did not mix up the cases:
 190     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 191     assert(type != ciTypeFlow::StateVector::top_type(), "");
 192     assert(type != ciTypeFlow::StateVector::null_type(), "");
 193     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 194     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 195     assert(!type->is_return_address(), "");
 196 
 197     return Type::get_const_type(type);
 198   }
 199 }
 200 
 201 
 202 //-----------------------make_from_constant------------------------------------
 203 const Type* Type::make_from_constant(ciConstant constant, bool require_constant) {
 204   switch (constant.basic_type()) {
 205   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 206   case T_CHAR:     return TypeInt::make(constant.as_char());
 207   case T_BYTE:     return TypeInt::make(constant.as_byte());
 208   case T_SHORT:    return TypeInt::make(constant.as_short());
 209   case T_INT:      return TypeInt::make(constant.as_int());
 210   case T_LONG:     return TypeLong::make(constant.as_long());
 211   case T_FLOAT:    return TypeF::make(constant.as_float());
 212   case T_DOUBLE:   return TypeD::make(constant.as_double());
 213   case T_ARRAY:
 214   case T_OBJECT:
 215     {
 216       // cases:
 217       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 218       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 219       // An oop is not scavengable if it is in the perm gen.
 220       ciObject* oop_constant = constant.as_object();
 221       if (oop_constant->is_null_object()) {
 222         return Type::get_zero_type(T_OBJECT);
 223       } else if (require_constant || oop_constant->should_be_constant()) {
 224         return TypeOopPtr::make_from_constant(oop_constant, require_constant);
 225       }
 226     }
 227   case T_ILLEGAL:
 228     // Invalid ciConstant returned due to OutOfMemoryError in the CI
 229     assert(Compile::current()->env()->failing(), "otherwise should not see this");
 230     return NULL;
 231   }
 232   // Fall through to failure
 233   return NULL;
 234 }
 235 
 236 
 237 const Type* Type::make_constant(ciField* field, Node* obj) {
 238   if (!field->is_constant())  return NULL;
 239 
 240   const Type* con_type = NULL;
 241   if (field->is_static()) {
 242     // final static field
 243     con_type = Type::make_from_constant(field->constant_value(), /*require_const=*/true);
 244     if (Compile::current()->eliminate_boxing() && field->is_autobox_cache() && con_type != NULL) {
 245       con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 246     }
 247   } else {
 248     // final or stable non-static field
 249     // Treat final non-static fields of trusted classes (classes in
 250     // java.lang.invoke and sun.invoke packages and subpackages) as
 251     // compile time constants.
 252     if (obj->is_Con()) {
 253       const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
 254       ciObject* constant_oop = oop_ptr->const_oop();
 255       ciConstant constant = field->constant_value_of(constant_oop);
 256       con_type = Type::make_from_constant(constant, /*require_const=*/true);
 257     }
 258   }
 259   if (FoldStableValues && field->is_stable() && con_type != NULL) {
 260     if (con_type->is_zero_type()) {
 261       return NULL; // the field hasn't been initialized yet
 262     } else if (con_type->isa_oopptr()) {
 263       const Type* stable_type = Type::get_const_type(field->type());
 264       if (field->type()->is_array_klass()) {
 265         int stable_dimension = field->type()->as_array_klass()->dimension();
 266         stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 267       }
 268       if (stable_type != NULL) {
 269         con_type = con_type->join_speculative(stable_type);
 270       }
 271     }
 272   }
 273   return con_type;
 274 }
 275 
 276 //------------------------------make-------------------------------------------
 277 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 278 // and look for an existing copy in the type dictionary.
 279 const Type *Type::make( enum TYPES t ) {
 280   return (new Type(t))->hashcons();
 281 }
 282 
 283 //------------------------------cmp--------------------------------------------
 284 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 285   if( t1->_base != t2->_base )
 286     return 1;                   // Missed badly
 287   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 288   return !t1->eq(t2);           // Return ZERO if equal
 289 }
 290 
 291 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 292   if (!include_speculative) {
 293     return remove_speculative();
 294   }
 295   return this;
 296 }
 297 
 298 //------------------------------hash-------------------------------------------
 299 int Type::uhash( const Type *const t ) {
 300   return t->hash();
 301 }
 302 
 303 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 304 
 305 //--------------------------Initialize_shared----------------------------------
 306 void Type::Initialize_shared(Compile* current) {
 307   // This method does not need to be locked because the first system
 308   // compilations (stub compilations) occur serially.  If they are
 309   // changed to proceed in parallel, then this section will need
 310   // locking.
 311 
 312   Arena* save = current->type_arena();
 313   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 314 
 315   current->set_type_arena(shared_type_arena);
 316   _shared_type_dict =
 317     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 318                                   shared_type_arena, 128 );
 319   current->set_type_dict(_shared_type_dict);
 320 
 321   // Make shared pre-built types.
 322   CONTROL = make(Control);      // Control only
 323   TOP     = make(Top);          // No values in set
 324   MEMORY  = make(Memory);       // Abstract store only
 325   ABIO    = make(Abio);         // State-of-machine only
 326   RETURN_ADDRESS=make(Return_Address);
 327   FLOAT   = make(FloatBot);     // All floats
 328   DOUBLE  = make(DoubleBot);    // All doubles
 329   BOTTOM  = make(Bottom);       // Everything
 330   HALF    = make(Half);         // Placeholder half of doublewide type
 331 
 332   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 333   TypeF::ONE  = TypeF::make(1.0); // Float 1
 334 
 335   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 336   TypeD::ONE  = TypeD::make(1.0); // Double 1
 337 
 338   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 339   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 340   TypeInt::ONE     = TypeInt::make( 1);  //  1
 341   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 342   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 343   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 344   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 345   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 346   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 347   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 348   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 349   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 350   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 351   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 352   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 353   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 354   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 355   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 356   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 357   // CmpL is overloaded both as the bytecode computation returning
 358   // a trinary (-1,0,+1) integer result AND as an efficient long
 359   // compare returning optimizer ideal-type flags.
 360   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 361   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 362   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 363   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 364   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 365 
 366   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 367   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 368   TypeLong::ONE     = TypeLong::make( 1);        //  1
 369   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 370   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 371   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 372   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 373   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 374 
 375   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 376   fboth[0] = Type::CONTROL;
 377   fboth[1] = Type::CONTROL;
 378   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 379 
 380   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 381   ffalse[0] = Type::CONTROL;
 382   ffalse[1] = Type::TOP;
 383   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 384 
 385   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 386   fneither[0] = Type::TOP;
 387   fneither[1] = Type::TOP;
 388   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 389 
 390   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 391   ftrue[0] = Type::TOP;
 392   ftrue[1] = Type::CONTROL;
 393   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 394 
 395   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 396   floop[0] = Type::CONTROL;
 397   floop[1] = TypeInt::INT;
 398   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 399 
 400   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 401   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 402   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 403 
 404   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 405   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 406 
 407   const Type **fmembar = TypeTuple::fields(0);
 408   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 409 
 410   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 411   fsc[0] = TypeInt::CC;
 412   fsc[1] = Type::MEMORY;
 413   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 414 
 415   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 416   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 417   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 418   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 419                                            false, 0, oopDesc::mark_offset_in_bytes());
 420   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 421                                            false, 0, oopDesc::klass_offset_in_bytes());
 422   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 423 
 424   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 425 
 426   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 427   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 428 
 429   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 430 
 431   mreg2type[Op_Node] = Type::BOTTOM;
 432   mreg2type[Op_Set ] = 0;
 433   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 434   mreg2type[Op_RegI] = TypeInt::INT;
 435   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 436   mreg2type[Op_RegF] = Type::FLOAT;
 437   mreg2type[Op_RegD] = Type::DOUBLE;
 438   mreg2type[Op_RegL] = TypeLong::LONG;
 439   mreg2type[Op_RegFlags] = TypeInt::CC;
 440 
 441   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 442 
 443   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 444 
 445 #ifdef _LP64
 446   if (UseCompressedOops) {
 447     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 448     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 449   } else
 450 #endif
 451   {
 452     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 453     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 454   }
 455   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 456   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 457   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 458   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 459   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 460   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 461   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 462 
 463   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 464   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 465   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 466   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 467   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 468   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 469   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 470   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 471   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 472   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 473   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 474   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 475 
 476   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 477   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 478 
 479   const Type **fi2c = TypeTuple::fields(2);
 480   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 481   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 482   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 483 
 484   const Type **intpair = TypeTuple::fields(2);
 485   intpair[0] = TypeInt::INT;
 486   intpair[1] = TypeInt::INT;
 487   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 488 
 489   const Type **longpair = TypeTuple::fields(2);
 490   longpair[0] = TypeLong::LONG;
 491   longpair[1] = TypeLong::LONG;
 492   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 493 
 494   const Type **intccpair = TypeTuple::fields(2);
 495   intccpair[0] = TypeInt::INT;
 496   intccpair[1] = TypeInt::CC;
 497   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 498 
 499   const Type **longccpair = TypeTuple::fields(2);
 500   longccpair[0] = TypeLong::LONG;
 501   longccpair[1] = TypeInt::CC;
 502   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 503 
 504   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 505   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 506   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 507   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 508   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 509   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 510   _const_basic_type[T_INT]         = TypeInt::INT;
 511   _const_basic_type[T_LONG]        = TypeLong::LONG;
 512   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 513   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 514   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 515   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 516   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 517   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 518   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 519 
 520   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 521   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 522   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 523   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 524   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 525   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 526   _zero_type[T_INT]         = TypeInt::ZERO;
 527   _zero_type[T_LONG]        = TypeLong::ZERO;
 528   _zero_type[T_FLOAT]       = TypeF::ZERO;
 529   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 530   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 531   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 532   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 533   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 534 
 535   // get_zero_type() should not happen for T_CONFLICT
 536   _zero_type[T_CONFLICT]= NULL;
 537 
 538   // Vector predefined types, it needs initialized _const_basic_type[].
 539   if (Matcher::vector_size_supported(T_BYTE,4)) {
 540     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 541   }
 542   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 543     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 544   }
 545   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 546     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 547   }
 548   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 549     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 550   }
 551   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 552     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 553   }
 554   mreg2type[Op_VecS] = TypeVect::VECTS;
 555   mreg2type[Op_VecD] = TypeVect::VECTD;
 556   mreg2type[Op_VecX] = TypeVect::VECTX;
 557   mreg2type[Op_VecY] = TypeVect::VECTY;
 558   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 559 
 560   // Restore working type arena.
 561   current->set_type_arena(save);
 562   current->set_type_dict(NULL);
 563 }
 564 
 565 //------------------------------Initialize-------------------------------------
 566 void Type::Initialize(Compile* current) {
 567   assert(current->type_arena() != NULL, "must have created type arena");
 568 
 569   if (_shared_type_dict == NULL) {
 570     Initialize_shared(current);
 571   }
 572 
 573   Arena* type_arena = current->type_arena();
 574 
 575   // Create the hash-cons'ing dictionary with top-level storage allocation
 576   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 577   current->set_type_dict(tdic);
 578 
 579   // Transfer the shared types.
 580   DictI i(_shared_type_dict);
 581   for( ; i.test(); ++i ) {
 582     Type* t = (Type*)i._value;
 583     tdic->Insert(t,t);  // New Type, insert into Type table
 584   }
 585 }
 586 
 587 //------------------------------hashcons---------------------------------------
 588 // Do the hash-cons trick.  If the Type already exists in the type table,
 589 // delete the current Type and return the existing Type.  Otherwise stick the
 590 // current Type in the Type table.
 591 const Type *Type::hashcons(void) {
 592   debug_only(base());           // Check the assertion in Type::base().
 593   // Look up the Type in the Type dictionary
 594   Dict *tdic = type_dict();
 595   Type* old = (Type*)(tdic->Insert(this, this, false));
 596   if( old ) {                   // Pre-existing Type?
 597     if( old != this )           // Yes, this guy is not the pre-existing?
 598       delete this;              // Yes, Nuke this guy
 599     assert( old->_dual, "" );
 600     return old;                 // Return pre-existing
 601   }
 602 
 603   // Every type has a dual (to make my lattice symmetric).
 604   // Since we just discovered a new Type, compute its dual right now.
 605   assert( !_dual, "" );         // No dual yet
 606   _dual = xdual();              // Compute the dual
 607   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 608     _dual = this;
 609     return this;
 610   }
 611   assert( !_dual->_dual, "" );  // No reverse dual yet
 612   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 613   // New Type, insert into Type table
 614   tdic->Insert((void*)_dual,(void*)_dual);
 615   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 616 #ifdef ASSERT
 617   Type *dual_dual = (Type*)_dual->xdual();
 618   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 619   delete dual_dual;
 620 #endif
 621   return this;                  // Return new Type
 622 }
 623 
 624 //------------------------------eq---------------------------------------------
 625 // Structural equality check for Type representations
 626 bool Type::eq( const Type * ) const {
 627   return true;                  // Nothing else can go wrong
 628 }
 629 
 630 //------------------------------hash-------------------------------------------
 631 // Type-specific hashing function.
 632 int Type::hash(void) const {
 633   return _base;
 634 }
 635 
 636 //------------------------------is_finite--------------------------------------
 637 // Has a finite value
 638 bool Type::is_finite() const {
 639   return false;
 640 }
 641 
 642 //------------------------------is_nan-----------------------------------------
 643 // Is not a number (NaN)
 644 bool Type::is_nan()    const {
 645   return false;
 646 }
 647 
 648 //----------------------interface_vs_oop---------------------------------------
 649 #ifdef ASSERT
 650 bool Type::interface_vs_oop_helper(const Type *t) const {
 651   bool result = false;
 652 
 653   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 654   const TypePtr*    t_ptr =    t->make_ptr();
 655   if( this_ptr == NULL || t_ptr == NULL )
 656     return result;
 657 
 658   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 659   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 660   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 661     bool this_interface = this_inst->klass()->is_interface();
 662     bool    t_interface =    t_inst->klass()->is_interface();
 663     result = this_interface ^ t_interface;
 664   }
 665 
 666   return result;
 667 }
 668 
 669 bool Type::interface_vs_oop(const Type *t) const {
 670   if (interface_vs_oop_helper(t)) {
 671     return true;
 672   }
 673   // Now check the speculative parts as well
 674   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 675   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 676   if (this_spec != NULL && t_spec != NULL) {
 677     if (this_spec->interface_vs_oop_helper(t_spec)) {
 678       return true;
 679     }
 680     return false;
 681   }
 682   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 683     return true;
 684   }
 685   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 686     return true;
 687   }
 688   return false;
 689 }
 690 
 691 #endif
 692 
 693 //------------------------------meet-------------------------------------------
 694 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 695 // commutative and the lattice is symmetric.
 696 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 697   if (isa_narrowoop() && t->isa_narrowoop()) {
 698     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 699     return result->make_narrowoop();
 700   }
 701   if (isa_narrowklass() && t->isa_narrowklass()) {
 702     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 703     return result->make_narrowklass();
 704   }
 705 
 706   const Type *this_t = maybe_remove_speculative(include_speculative);
 707   t = t->maybe_remove_speculative(include_speculative);
 708 
 709   const Type *mt = this_t->xmeet(t);
 710   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 711   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 712 #ifdef ASSERT
 713   assert(mt == t->xmeet(this_t), "meet not commutative");
 714   const Type* dual_join = mt->_dual;
 715   const Type *t2t    = dual_join->xmeet(t->_dual);
 716   const Type *t2this = dual_join->xmeet(this_t->_dual);
 717 
 718   // Interface meet Oop is Not Symmetric:
 719   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 720   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 721 
 722   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 723     tty->print_cr("=== Meet Not Symmetric ===");
 724     tty->print("t   =                   ");              t->dump(); tty->cr();
 725     tty->print("this=                   ");         this_t->dump(); tty->cr();
 726     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 727 
 728     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 729     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 730     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 731 
 732     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 733     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 734 
 735     fatal("meet not symmetric" );
 736   }
 737 #endif
 738   return mt;
 739 }
 740 
 741 //------------------------------xmeet------------------------------------------
 742 // Compute the MEET of two types.  It returns a new Type object.
 743 const Type *Type::xmeet( const Type *t ) const {
 744   // Perform a fast test for common case; meeting the same types together.
 745   if( this == t ) return this;  // Meeting same type-rep?
 746 
 747   // Meeting TOP with anything?
 748   if( _base == Top ) return t;
 749 
 750   // Meeting BOTTOM with anything?
 751   if( _base == Bottom ) return BOTTOM;
 752 
 753   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 754   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 755   switch (t->base()) {  // Switch on original type
 756 
 757   // Cut in half the number of cases I must handle.  Only need cases for when
 758   // the given enum "t->type" is less than or equal to the local enum "type".
 759   case FloatCon:
 760   case DoubleCon:
 761   case Int:
 762   case Long:
 763     return t->xmeet(this);
 764 
 765   case OopPtr:
 766     return t->xmeet(this);
 767 
 768   case InstPtr:
 769     return t->xmeet(this);
 770 
 771   case MetadataPtr:
 772   case KlassPtr:
 773     return t->xmeet(this);
 774 
 775   case AryPtr:
 776     return t->xmeet(this);
 777 
 778   case NarrowOop:
 779     return t->xmeet(this);
 780 
 781   case NarrowKlass:
 782     return t->xmeet(this);
 783 
 784   case Bad:                     // Type check
 785   default:                      // Bogus type not in lattice
 786     typerr(t);
 787     return Type::BOTTOM;
 788 
 789   case Bottom:                  // Ye Olde Default
 790     return t;
 791 
 792   case FloatTop:
 793     if( _base == FloatTop ) return this;
 794   case FloatBot:                // Float
 795     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 796     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 797     typerr(t);
 798     return Type::BOTTOM;
 799 
 800   case DoubleTop:
 801     if( _base == DoubleTop ) return this;
 802   case DoubleBot:               // Double
 803     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 804     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 805     typerr(t);
 806     return Type::BOTTOM;
 807 
 808   // These next few cases must match exactly or it is a compile-time error.
 809   case Control:                 // Control of code
 810   case Abio:                    // State of world outside of program
 811   case Memory:
 812     if( _base == t->_base )  return this;
 813     typerr(t);
 814     return Type::BOTTOM;
 815 
 816   case Top:                     // Top of the lattice
 817     return this;
 818   }
 819 
 820   // The type is unchanged
 821   return this;
 822 }
 823 
 824 //-----------------------------filter------------------------------------------
 825 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 826   const Type* ft = join_helper(kills, include_speculative);
 827   if (ft->empty())
 828     return Type::TOP;           // Canonical empty value
 829   return ft;
 830 }
 831 
 832 //------------------------------xdual------------------------------------------
 833 // Compute dual right now.
 834 const Type::TYPES Type::dual_type[Type::lastype] = {
 835   Bad,          // Bad
 836   Control,      // Control
 837   Bottom,       // Top
 838   Bad,          // Int - handled in v-call
 839   Bad,          // Long - handled in v-call
 840   Half,         // Half
 841   Bad,          // NarrowOop - handled in v-call
 842   Bad,          // NarrowKlass - handled in v-call
 843 
 844   Bad,          // Tuple - handled in v-call
 845   Bad,          // Array - handled in v-call
 846   Bad,          // VectorS - handled in v-call
 847   Bad,          // VectorD - handled in v-call
 848   Bad,          // VectorX - handled in v-call
 849   Bad,          // VectorY - handled in v-call
 850   Bad,          // VectorZ - handled in v-call
 851 
 852   Bad,          // AnyPtr - handled in v-call
 853   Bad,          // RawPtr - handled in v-call
 854   Bad,          // OopPtr - handled in v-call
 855   Bad,          // InstPtr - handled in v-call
 856   Bad,          // AryPtr - handled in v-call
 857 
 858   Bad,          //  MetadataPtr - handled in v-call
 859   Bad,          // KlassPtr - handled in v-call
 860 
 861   Bad,          // Function - handled in v-call
 862   Abio,         // Abio
 863   Return_Address,// Return_Address
 864   Memory,       // Memory
 865   FloatBot,     // FloatTop
 866   FloatCon,     // FloatCon
 867   FloatTop,     // FloatBot
 868   DoubleBot,    // DoubleTop
 869   DoubleCon,    // DoubleCon
 870   DoubleTop,    // DoubleBot
 871   Top           // Bottom
 872 };
 873 
 874 const Type *Type::xdual() const {
 875   // Note: the base() accessor asserts the sanity of _base.
 876   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 877   return new Type(_type_info[_base].dual_type);
 878 }
 879 
 880 //------------------------------has_memory-------------------------------------
 881 bool Type::has_memory() const {
 882   Type::TYPES tx = base();
 883   if (tx == Memory) return true;
 884   if (tx == Tuple) {
 885     const TypeTuple *t = is_tuple();
 886     for (uint i=0; i < t->cnt(); i++) {
 887       tx = t->field_at(i)->base();
 888       if (tx == Memory)  return true;
 889     }
 890   }
 891   return false;
 892 }
 893 
 894 #ifndef PRODUCT
 895 //------------------------------dump2------------------------------------------
 896 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 897   st->print("%s", _type_info[_base].msg);
 898 }
 899 
 900 //------------------------------dump-------------------------------------------
 901 void Type::dump_on(outputStream *st) const {
 902   ResourceMark rm;
 903   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 904   dump2(d,1, st);
 905   if (is_ptr_to_narrowoop()) {
 906     st->print(" [narrow]");
 907   } else if (is_ptr_to_narrowklass()) {
 908     st->print(" [narrowklass]");
 909   }
 910 }
 911 #endif
 912 
 913 //------------------------------singleton--------------------------------------
 914 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 915 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 916 bool Type::singleton(void) const {
 917   return _base == Top || _base == Half;
 918 }
 919 
 920 //------------------------------empty------------------------------------------
 921 // TRUE if Type is a type with no values, FALSE otherwise.
 922 bool Type::empty(void) const {
 923   switch (_base) {
 924   case DoubleTop:
 925   case FloatTop:
 926   case Top:
 927     return true;
 928 
 929   case Half:
 930   case Abio:
 931   case Return_Address:
 932   case Memory:
 933   case Bottom:
 934   case FloatBot:
 935   case DoubleBot:
 936     return false;  // never a singleton, therefore never empty
 937   }
 938 
 939   ShouldNotReachHere();
 940   return false;
 941 }
 942 
 943 //------------------------------dump_stats-------------------------------------
 944 // Dump collected statistics to stderr
 945 #ifndef PRODUCT
 946 void Type::dump_stats() {
 947   tty->print("Types made: %d\n", type_dict()->Size());
 948 }
 949 #endif
 950 
 951 //------------------------------typerr-----------------------------------------
 952 void Type::typerr( const Type *t ) const {
 953 #ifndef PRODUCT
 954   tty->print("\nError mixing types: ");
 955   dump();
 956   tty->print(" and ");
 957   t->dump();
 958   tty->print("\n");
 959 #endif
 960   ShouldNotReachHere();
 961 }
 962 
 963 
 964 //=============================================================================
 965 // Convenience common pre-built types.
 966 const TypeF *TypeF::ZERO;       // Floating point zero
 967 const TypeF *TypeF::ONE;        // Floating point one
 968 
 969 //------------------------------make-------------------------------------------
 970 // Create a float constant
 971 const TypeF *TypeF::make(float f) {
 972   return (TypeF*)(new TypeF(f))->hashcons();
 973 }
 974 
 975 //------------------------------meet-------------------------------------------
 976 // Compute the MEET of two types.  It returns a new Type object.
 977 const Type *TypeF::xmeet( const Type *t ) const {
 978   // Perform a fast test for common case; meeting the same types together.
 979   if( this == t ) return this;  // Meeting same type-rep?
 980 
 981   // Current "this->_base" is FloatCon
 982   switch (t->base()) {          // Switch on original type
 983   case AnyPtr:                  // Mixing with oops happens when javac
 984   case RawPtr:                  // reuses local variables
 985   case OopPtr:
 986   case InstPtr:
 987   case AryPtr:
 988   case MetadataPtr:
 989   case KlassPtr:
 990   case NarrowOop:
 991   case NarrowKlass:
 992   case Int:
 993   case Long:
 994   case DoubleTop:
 995   case DoubleCon:
 996   case DoubleBot:
 997   case Bottom:                  // Ye Olde Default
 998     return Type::BOTTOM;
 999 
1000   case FloatBot:
1001     return t;
1002 
1003   default:                      // All else is a mistake
1004     typerr(t);
1005 
1006   case FloatCon:                // Float-constant vs Float-constant?
1007     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1008                                 // must compare bitwise as positive zero, negative zero and NaN have
1009                                 // all the same representation in C++
1010       return FLOAT;             // Return generic float
1011                                 // Equal constants
1012   case Top:
1013   case FloatTop:
1014     break;                      // Return the float constant
1015   }
1016   return this;                  // Return the float constant
1017 }
1018 
1019 //------------------------------xdual------------------------------------------
1020 // Dual: symmetric
1021 const Type *TypeF::xdual() const {
1022   return this;
1023 }
1024 
1025 //------------------------------eq---------------------------------------------
1026 // Structural equality check for Type representations
1027 bool TypeF::eq(const Type *t) const {
1028   // Bitwise comparison to distinguish between +/-0. These values must be treated
1029   // as different to be consistent with C1 and the interpreter.
1030   return (jint_cast(_f) == jint_cast(t->getf()));
1031 }
1032 
1033 //------------------------------hash-------------------------------------------
1034 // Type-specific hashing function.
1035 int TypeF::hash(void) const {
1036   return *(int*)(&_f);
1037 }
1038 
1039 //------------------------------is_finite--------------------------------------
1040 // Has a finite value
1041 bool TypeF::is_finite() const {
1042   return g_isfinite(getf()) != 0;
1043 }
1044 
1045 //------------------------------is_nan-----------------------------------------
1046 // Is not a number (NaN)
1047 bool TypeF::is_nan()    const {
1048   return g_isnan(getf()) != 0;
1049 }
1050 
1051 //------------------------------dump2------------------------------------------
1052 // Dump float constant Type
1053 #ifndef PRODUCT
1054 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1055   Type::dump2(d,depth, st);
1056   st->print("%f", _f);
1057 }
1058 #endif
1059 
1060 //------------------------------singleton--------------------------------------
1061 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1062 // constants (Ldi nodes).  Singletons are integer, float or double constants
1063 // or a single symbol.
1064 bool TypeF::singleton(void) const {
1065   return true;                  // Always a singleton
1066 }
1067 
1068 bool TypeF::empty(void) const {
1069   return false;                 // always exactly a singleton
1070 }
1071 
1072 //=============================================================================
1073 // Convenience common pre-built types.
1074 const TypeD *TypeD::ZERO;       // Floating point zero
1075 const TypeD *TypeD::ONE;        // Floating point one
1076 
1077 //------------------------------make-------------------------------------------
1078 const TypeD *TypeD::make(double d) {
1079   return (TypeD*)(new TypeD(d))->hashcons();
1080 }
1081 
1082 //------------------------------meet-------------------------------------------
1083 // Compute the MEET of two types.  It returns a new Type object.
1084 const Type *TypeD::xmeet( const Type *t ) const {
1085   // Perform a fast test for common case; meeting the same types together.
1086   if( this == t ) return this;  // Meeting same type-rep?
1087 
1088   // Current "this->_base" is DoubleCon
1089   switch (t->base()) {          // Switch on original type
1090   case AnyPtr:                  // Mixing with oops happens when javac
1091   case RawPtr:                  // reuses local variables
1092   case OopPtr:
1093   case InstPtr:
1094   case AryPtr:
1095   case MetadataPtr:
1096   case KlassPtr:
1097   case NarrowOop:
1098   case NarrowKlass:
1099   case Int:
1100   case Long:
1101   case FloatTop:
1102   case FloatCon:
1103   case FloatBot:
1104   case Bottom:                  // Ye Olde Default
1105     return Type::BOTTOM;
1106 
1107   case DoubleBot:
1108     return t;
1109 
1110   default:                      // All else is a mistake
1111     typerr(t);
1112 
1113   case DoubleCon:               // Double-constant vs Double-constant?
1114     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1115       return DOUBLE;            // Return generic double
1116   case Top:
1117   case DoubleTop:
1118     break;
1119   }
1120   return this;                  // Return the double constant
1121 }
1122 
1123 //------------------------------xdual------------------------------------------
1124 // Dual: symmetric
1125 const Type *TypeD::xdual() const {
1126   return this;
1127 }
1128 
1129 //------------------------------eq---------------------------------------------
1130 // Structural equality check for Type representations
1131 bool TypeD::eq(const Type *t) const {
1132   // Bitwise comparison to distinguish between +/-0. These values must be treated
1133   // as different to be consistent with C1 and the interpreter.
1134   return (jlong_cast(_d) == jlong_cast(t->getd()));
1135 }
1136 
1137 //------------------------------hash-------------------------------------------
1138 // Type-specific hashing function.
1139 int TypeD::hash(void) const {
1140   return *(int*)(&_d);
1141 }
1142 
1143 //------------------------------is_finite--------------------------------------
1144 // Has a finite value
1145 bool TypeD::is_finite() const {
1146   return g_isfinite(getd()) != 0;
1147 }
1148 
1149 //------------------------------is_nan-----------------------------------------
1150 // Is not a number (NaN)
1151 bool TypeD::is_nan()    const {
1152   return g_isnan(getd()) != 0;
1153 }
1154 
1155 //------------------------------dump2------------------------------------------
1156 // Dump double constant Type
1157 #ifndef PRODUCT
1158 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1159   Type::dump2(d,depth,st);
1160   st->print("%f", _d);
1161 }
1162 #endif
1163 
1164 //------------------------------singleton--------------------------------------
1165 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1166 // constants (Ldi nodes).  Singletons are integer, float or double constants
1167 // or a single symbol.
1168 bool TypeD::singleton(void) const {
1169   return true;                  // Always a singleton
1170 }
1171 
1172 bool TypeD::empty(void) const {
1173   return false;                 // always exactly a singleton
1174 }
1175 
1176 //=============================================================================
1177 // Convience common pre-built types.
1178 const TypeInt *TypeInt::MINUS_1;// -1
1179 const TypeInt *TypeInt::ZERO;   // 0
1180 const TypeInt *TypeInt::ONE;    // 1
1181 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1182 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1183 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1184 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1185 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1186 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1187 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1188 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1189 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1190 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1191 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1192 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1193 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1194 const TypeInt *TypeInt::INT;    // 32-bit integers
1195 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1196 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1197 
1198 //------------------------------TypeInt----------------------------------------
1199 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1200 }
1201 
1202 //------------------------------make-------------------------------------------
1203 const TypeInt *TypeInt::make( jint lo ) {
1204   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1205 }
1206 
1207 static int normalize_int_widen( jint lo, jint hi, int w ) {
1208   // Certain normalizations keep us sane when comparing types.
1209   // The 'SMALLINT' covers constants and also CC and its relatives.
1210   if (lo <= hi) {
1211     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1212     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1213   } else {
1214     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1215     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1216   }
1217   return w;
1218 }
1219 
1220 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1221   w = normalize_int_widen(lo, hi, w);
1222   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1223 }
1224 
1225 //------------------------------meet-------------------------------------------
1226 // Compute the MEET of two types.  It returns a new Type representation object
1227 // with reference count equal to the number of Types pointing at it.
1228 // Caller should wrap a Types around it.
1229 const Type *TypeInt::xmeet( const Type *t ) const {
1230   // Perform a fast test for common case; meeting the same types together.
1231   if( this == t ) return this;  // Meeting same type?
1232 
1233   // Currently "this->_base" is a TypeInt
1234   switch (t->base()) {          // Switch on original type
1235   case AnyPtr:                  // Mixing with oops happens when javac
1236   case RawPtr:                  // reuses local variables
1237   case OopPtr:
1238   case InstPtr:
1239   case AryPtr:
1240   case MetadataPtr:
1241   case KlassPtr:
1242   case NarrowOop:
1243   case NarrowKlass:
1244   case Long:
1245   case FloatTop:
1246   case FloatCon:
1247   case FloatBot:
1248   case DoubleTop:
1249   case DoubleCon:
1250   case DoubleBot:
1251   case Bottom:                  // Ye Olde Default
1252     return Type::BOTTOM;
1253   default:                      // All else is a mistake
1254     typerr(t);
1255   case Top:                     // No change
1256     return this;
1257   case Int:                     // Int vs Int?
1258     break;
1259   }
1260 
1261   // Expand covered set
1262   const TypeInt *r = t->is_int();
1263   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1264 }
1265 
1266 //------------------------------xdual------------------------------------------
1267 // Dual: reverse hi & lo; flip widen
1268 const Type *TypeInt::xdual() const {
1269   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1270   return new TypeInt(_hi,_lo,w);
1271 }
1272 
1273 //------------------------------widen------------------------------------------
1274 // Only happens for optimistic top-down optimizations.
1275 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1276   // Coming from TOP or such; no widening
1277   if( old->base() != Int ) return this;
1278   const TypeInt *ot = old->is_int();
1279 
1280   // If new guy is equal to old guy, no widening
1281   if( _lo == ot->_lo && _hi == ot->_hi )
1282     return old;
1283 
1284   // If new guy contains old, then we widened
1285   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1286     // New contains old
1287     // If new guy is already wider than old, no widening
1288     if( _widen > ot->_widen ) return this;
1289     // If old guy was a constant, do not bother
1290     if (ot->_lo == ot->_hi)  return this;
1291     // Now widen new guy.
1292     // Check for widening too far
1293     if (_widen == WidenMax) {
1294       int max = max_jint;
1295       int min = min_jint;
1296       if (limit->isa_int()) {
1297         max = limit->is_int()->_hi;
1298         min = limit->is_int()->_lo;
1299       }
1300       if (min < _lo && _hi < max) {
1301         // If neither endpoint is extremal yet, push out the endpoint
1302         // which is closer to its respective limit.
1303         if (_lo >= 0 ||                 // easy common case
1304             (juint)(_lo - min) >= (juint)(max - _hi)) {
1305           // Try to widen to an unsigned range type of 31 bits:
1306           return make(_lo, max, WidenMax);
1307         } else {
1308           return make(min, _hi, WidenMax);
1309         }
1310       }
1311       return TypeInt::INT;
1312     }
1313     // Returned widened new guy
1314     return make(_lo,_hi,_widen+1);
1315   }
1316 
1317   // If old guy contains new, then we probably widened too far & dropped to
1318   // bottom.  Return the wider fellow.
1319   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1320     return old;
1321 
1322   //fatal("Integer value range is not subset");
1323   //return this;
1324   return TypeInt::INT;
1325 }
1326 
1327 //------------------------------narrow---------------------------------------
1328 // Only happens for pessimistic optimizations.
1329 const Type *TypeInt::narrow( const Type *old ) const {
1330   if (_lo >= _hi)  return this;   // already narrow enough
1331   if (old == NULL)  return this;
1332   const TypeInt* ot = old->isa_int();
1333   if (ot == NULL)  return this;
1334   jint olo = ot->_lo;
1335   jint ohi = ot->_hi;
1336 
1337   // If new guy is equal to old guy, no narrowing
1338   if (_lo == olo && _hi == ohi)  return old;
1339 
1340   // If old guy was maximum range, allow the narrowing
1341   if (olo == min_jint && ohi == max_jint)  return this;
1342 
1343   if (_lo < olo || _hi > ohi)
1344     return this;                // doesn't narrow; pretty wierd
1345 
1346   // The new type narrows the old type, so look for a "death march".
1347   // See comments on PhaseTransform::saturate.
1348   juint nrange = _hi - _lo;
1349   juint orange = ohi - olo;
1350   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1351     // Use the new type only if the range shrinks a lot.
1352     // We do not want the optimizer computing 2^31 point by point.
1353     return old;
1354   }
1355 
1356   return this;
1357 }
1358 
1359 //-----------------------------filter------------------------------------------
1360 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1361   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1362   if (ft == NULL || ft->empty())
1363     return Type::TOP;           // Canonical empty value
1364   if (ft->_widen < this->_widen) {
1365     // Do not allow the value of kill->_widen to affect the outcome.
1366     // The widen bits must be allowed to run freely through the graph.
1367     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1368   }
1369   return ft;
1370 }
1371 
1372 //------------------------------eq---------------------------------------------
1373 // Structural equality check for Type representations
1374 bool TypeInt::eq( const Type *t ) const {
1375   const TypeInt *r = t->is_int(); // Handy access
1376   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1377 }
1378 
1379 //------------------------------hash-------------------------------------------
1380 // Type-specific hashing function.
1381 int TypeInt::hash(void) const {
1382   return _lo+_hi+_widen+(int)Type::Int;
1383 }
1384 
1385 //------------------------------is_finite--------------------------------------
1386 // Has a finite value
1387 bool TypeInt::is_finite() const {
1388   return true;
1389 }
1390 
1391 //------------------------------dump2------------------------------------------
1392 // Dump TypeInt
1393 #ifndef PRODUCT
1394 static const char* intname(char* buf, jint n) {
1395   if (n == min_jint)
1396     return "min";
1397   else if (n < min_jint + 10000)
1398     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1399   else if (n == max_jint)
1400     return "max";
1401   else if (n > max_jint - 10000)
1402     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1403   else
1404     sprintf(buf, INT32_FORMAT, n);
1405   return buf;
1406 }
1407 
1408 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1409   char buf[40], buf2[40];
1410   if (_lo == min_jint && _hi == max_jint)
1411     st->print("int");
1412   else if (is_con())
1413     st->print("int:%s", intname(buf, get_con()));
1414   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1415     st->print("bool");
1416   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1417     st->print("byte");
1418   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1419     st->print("char");
1420   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1421     st->print("short");
1422   else if (_hi == max_jint)
1423     st->print("int:>=%s", intname(buf, _lo));
1424   else if (_lo == min_jint)
1425     st->print("int:<=%s", intname(buf, _hi));
1426   else
1427     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1428 
1429   if (_widen != 0 && this != TypeInt::INT)
1430     st->print(":%.*s", _widen, "wwww");
1431 }
1432 #endif
1433 
1434 //------------------------------singleton--------------------------------------
1435 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1436 // constants.
1437 bool TypeInt::singleton(void) const {
1438   return _lo >= _hi;
1439 }
1440 
1441 bool TypeInt::empty(void) const {
1442   return _lo > _hi;
1443 }
1444 
1445 //=============================================================================
1446 // Convenience common pre-built types.
1447 const TypeLong *TypeLong::MINUS_1;// -1
1448 const TypeLong *TypeLong::ZERO; // 0
1449 const TypeLong *TypeLong::ONE;  // 1
1450 const TypeLong *TypeLong::POS;  // >=0
1451 const TypeLong *TypeLong::LONG; // 64-bit integers
1452 const TypeLong *TypeLong::INT;  // 32-bit subrange
1453 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1454 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1455 
1456 //------------------------------TypeLong---------------------------------------
1457 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1458 }
1459 
1460 //------------------------------make-------------------------------------------
1461 const TypeLong *TypeLong::make( jlong lo ) {
1462   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1463 }
1464 
1465 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1466   // Certain normalizations keep us sane when comparing types.
1467   // The 'SMALLINT' covers constants.
1468   if (lo <= hi) {
1469     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1470     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1471   } else {
1472     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1473     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1474   }
1475   return w;
1476 }
1477 
1478 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1479   w = normalize_long_widen(lo, hi, w);
1480   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1481 }
1482 
1483 
1484 //------------------------------meet-------------------------------------------
1485 // Compute the MEET of two types.  It returns a new Type representation object
1486 // with reference count equal to the number of Types pointing at it.
1487 // Caller should wrap a Types around it.
1488 const Type *TypeLong::xmeet( const Type *t ) const {
1489   // Perform a fast test for common case; meeting the same types together.
1490   if( this == t ) return this;  // Meeting same type?
1491 
1492   // Currently "this->_base" is a TypeLong
1493   switch (t->base()) {          // Switch on original type
1494   case AnyPtr:                  // Mixing with oops happens when javac
1495   case RawPtr:                  // reuses local variables
1496   case OopPtr:
1497   case InstPtr:
1498   case AryPtr:
1499   case MetadataPtr:
1500   case KlassPtr:
1501   case NarrowOop:
1502   case NarrowKlass:
1503   case Int:
1504   case FloatTop:
1505   case FloatCon:
1506   case FloatBot:
1507   case DoubleTop:
1508   case DoubleCon:
1509   case DoubleBot:
1510   case Bottom:                  // Ye Olde Default
1511     return Type::BOTTOM;
1512   default:                      // All else is a mistake
1513     typerr(t);
1514   case Top:                     // No change
1515     return this;
1516   case Long:                    // Long vs Long?
1517     break;
1518   }
1519 
1520   // Expand covered set
1521   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1522   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1523 }
1524 
1525 //------------------------------xdual------------------------------------------
1526 // Dual: reverse hi & lo; flip widen
1527 const Type *TypeLong::xdual() const {
1528   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1529   return new TypeLong(_hi,_lo,w);
1530 }
1531 
1532 //------------------------------widen------------------------------------------
1533 // Only happens for optimistic top-down optimizations.
1534 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1535   // Coming from TOP or such; no widening
1536   if( old->base() != Long ) return this;
1537   const TypeLong *ot = old->is_long();
1538 
1539   // If new guy is equal to old guy, no widening
1540   if( _lo == ot->_lo && _hi == ot->_hi )
1541     return old;
1542 
1543   // If new guy contains old, then we widened
1544   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1545     // New contains old
1546     // If new guy is already wider than old, no widening
1547     if( _widen > ot->_widen ) return this;
1548     // If old guy was a constant, do not bother
1549     if (ot->_lo == ot->_hi)  return this;
1550     // Now widen new guy.
1551     // Check for widening too far
1552     if (_widen == WidenMax) {
1553       jlong max = max_jlong;
1554       jlong min = min_jlong;
1555       if (limit->isa_long()) {
1556         max = limit->is_long()->_hi;
1557         min = limit->is_long()->_lo;
1558       }
1559       if (min < _lo && _hi < max) {
1560         // If neither endpoint is extremal yet, push out the endpoint
1561         // which is closer to its respective limit.
1562         if (_lo >= 0 ||                 // easy common case
1563             (julong)(_lo - min) >= (julong)(max - _hi)) {
1564           // Try to widen to an unsigned range type of 32/63 bits:
1565           if (max >= max_juint && _hi < max_juint)
1566             return make(_lo, max_juint, WidenMax);
1567           else
1568             return make(_lo, max, WidenMax);
1569         } else {
1570           return make(min, _hi, WidenMax);
1571         }
1572       }
1573       return TypeLong::LONG;
1574     }
1575     // Returned widened new guy
1576     return make(_lo,_hi,_widen+1);
1577   }
1578 
1579   // If old guy contains new, then we probably widened too far & dropped to
1580   // bottom.  Return the wider fellow.
1581   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1582     return old;
1583 
1584   //  fatal("Long value range is not subset");
1585   // return this;
1586   return TypeLong::LONG;
1587 }
1588 
1589 //------------------------------narrow----------------------------------------
1590 // Only happens for pessimistic optimizations.
1591 const Type *TypeLong::narrow( const Type *old ) const {
1592   if (_lo >= _hi)  return this;   // already narrow enough
1593   if (old == NULL)  return this;
1594   const TypeLong* ot = old->isa_long();
1595   if (ot == NULL)  return this;
1596   jlong olo = ot->_lo;
1597   jlong ohi = ot->_hi;
1598 
1599   // If new guy is equal to old guy, no narrowing
1600   if (_lo == olo && _hi == ohi)  return old;
1601 
1602   // If old guy was maximum range, allow the narrowing
1603   if (olo == min_jlong && ohi == max_jlong)  return this;
1604 
1605   if (_lo < olo || _hi > ohi)
1606     return this;                // doesn't narrow; pretty wierd
1607 
1608   // The new type narrows the old type, so look for a "death march".
1609   // See comments on PhaseTransform::saturate.
1610   julong nrange = _hi - _lo;
1611   julong orange = ohi - olo;
1612   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1613     // Use the new type only if the range shrinks a lot.
1614     // We do not want the optimizer computing 2^31 point by point.
1615     return old;
1616   }
1617 
1618   return this;
1619 }
1620 
1621 //-----------------------------filter------------------------------------------
1622 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1623   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1624   if (ft == NULL || ft->empty())
1625     return Type::TOP;           // Canonical empty value
1626   if (ft->_widen < this->_widen) {
1627     // Do not allow the value of kill->_widen to affect the outcome.
1628     // The widen bits must be allowed to run freely through the graph.
1629     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1630   }
1631   return ft;
1632 }
1633 
1634 //------------------------------eq---------------------------------------------
1635 // Structural equality check for Type representations
1636 bool TypeLong::eq( const Type *t ) const {
1637   const TypeLong *r = t->is_long(); // Handy access
1638   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1639 }
1640 
1641 //------------------------------hash-------------------------------------------
1642 // Type-specific hashing function.
1643 int TypeLong::hash(void) const {
1644   return (int)(_lo+_hi+_widen+(int)Type::Long);
1645 }
1646 
1647 //------------------------------is_finite--------------------------------------
1648 // Has a finite value
1649 bool TypeLong::is_finite() const {
1650   return true;
1651 }
1652 
1653 //------------------------------dump2------------------------------------------
1654 // Dump TypeLong
1655 #ifndef PRODUCT
1656 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1657   if (n > x) {
1658     if (n >= x + 10000)  return NULL;
1659     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1660   } else if (n < x) {
1661     if (n <= x - 10000)  return NULL;
1662     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1663   } else {
1664     return xname;
1665   }
1666   return buf;
1667 }
1668 
1669 static const char* longname(char* buf, jlong n) {
1670   const char* str;
1671   if (n == min_jlong)
1672     return "min";
1673   else if (n < min_jlong + 10000)
1674     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1675   else if (n == max_jlong)
1676     return "max";
1677   else if (n > max_jlong - 10000)
1678     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1679   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1680     return str;
1681   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1682     return str;
1683   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1684     return str;
1685   else
1686     sprintf(buf, JLONG_FORMAT, n);
1687   return buf;
1688 }
1689 
1690 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1691   char buf[80], buf2[80];
1692   if (_lo == min_jlong && _hi == max_jlong)
1693     st->print("long");
1694   else if (is_con())
1695     st->print("long:%s", longname(buf, get_con()));
1696   else if (_hi == max_jlong)
1697     st->print("long:>=%s", longname(buf, _lo));
1698   else if (_lo == min_jlong)
1699     st->print("long:<=%s", longname(buf, _hi));
1700   else
1701     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1702 
1703   if (_widen != 0 && this != TypeLong::LONG)
1704     st->print(":%.*s", _widen, "wwww");
1705 }
1706 #endif
1707 
1708 //------------------------------singleton--------------------------------------
1709 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1710 // constants
1711 bool TypeLong::singleton(void) const {
1712   return _lo >= _hi;
1713 }
1714 
1715 bool TypeLong::empty(void) const {
1716   return _lo > _hi;
1717 }
1718 
1719 //=============================================================================
1720 // Convenience common pre-built types.
1721 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1722 const TypeTuple *TypeTuple::IFFALSE;
1723 const TypeTuple *TypeTuple::IFTRUE;
1724 const TypeTuple *TypeTuple::IFNEITHER;
1725 const TypeTuple *TypeTuple::LOOPBODY;
1726 const TypeTuple *TypeTuple::MEMBAR;
1727 const TypeTuple *TypeTuple::STORECONDITIONAL;
1728 const TypeTuple *TypeTuple::START_I2C;
1729 const TypeTuple *TypeTuple::INT_PAIR;
1730 const TypeTuple *TypeTuple::LONG_PAIR;
1731 const TypeTuple *TypeTuple::INT_CC_PAIR;
1732 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1733 
1734 
1735 //------------------------------make-------------------------------------------
1736 // Make a TypeTuple from the range of a method signature
1737 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1738   ciType* return_type = sig->return_type();
1739   uint arg_cnt = return_type->size();
1740   const Type **field_array = fields(arg_cnt);
1741   switch (return_type->basic_type()) {
1742   case T_LONG:
1743     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1744     field_array[TypeFunc::Parms+1] = Type::HALF;
1745     break;
1746   case T_DOUBLE:
1747     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1748     field_array[TypeFunc::Parms+1] = Type::HALF;
1749     break;
1750   case T_OBJECT:
1751   case T_ARRAY:
1752   case T_BOOLEAN:
1753   case T_CHAR:
1754   case T_FLOAT:
1755   case T_BYTE:
1756   case T_SHORT:
1757   case T_INT:
1758     field_array[TypeFunc::Parms] = get_const_type(return_type);
1759     break;
1760   case T_VOID:
1761     break;
1762   default:
1763     ShouldNotReachHere();
1764   }
1765   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1766 }
1767 
1768 // Make a TypeTuple from the domain of a method signature
1769 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1770   uint arg_cnt = sig->size();
1771 
1772   uint pos = TypeFunc::Parms;
1773   const Type **field_array;
1774   if (recv != NULL) {
1775     arg_cnt++;
1776     field_array = fields(arg_cnt);
1777     // Use get_const_type here because it respects UseUniqueSubclasses:
1778     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1779   } else {
1780     field_array = fields(arg_cnt);
1781   }
1782 
1783   int i = 0;
1784   while (pos < TypeFunc::Parms + arg_cnt) {
1785     ciType* type = sig->type_at(i);
1786 
1787     switch (type->basic_type()) {
1788     case T_LONG:
1789       field_array[pos++] = TypeLong::LONG;
1790       field_array[pos++] = Type::HALF;
1791       break;
1792     case T_DOUBLE:
1793       field_array[pos++] = Type::DOUBLE;
1794       field_array[pos++] = Type::HALF;
1795       break;
1796     case T_OBJECT:
1797     case T_ARRAY:
1798     case T_BOOLEAN:
1799     case T_CHAR:
1800     case T_FLOAT:
1801     case T_BYTE:
1802     case T_SHORT:
1803     case T_INT:
1804       field_array[pos++] = get_const_type(type);
1805       break;
1806     default:
1807       ShouldNotReachHere();
1808     }
1809     i++;
1810   }
1811 
1812   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1813 }
1814 
1815 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1816   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1817 }
1818 
1819 //------------------------------fields-----------------------------------------
1820 // Subroutine call type with space allocated for argument types
1821 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1822 const Type **TypeTuple::fields( uint arg_cnt ) {
1823   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1824   flds[TypeFunc::Control  ] = Type::CONTROL;
1825   flds[TypeFunc::I_O      ] = Type::ABIO;
1826   flds[TypeFunc::Memory   ] = Type::MEMORY;
1827   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1828   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1829 
1830   return flds;
1831 }
1832 
1833 //------------------------------meet-------------------------------------------
1834 // Compute the MEET of two types.  It returns a new Type object.
1835 const Type *TypeTuple::xmeet( const Type *t ) const {
1836   // Perform a fast test for common case; meeting the same types together.
1837   if( this == t ) return this;  // Meeting same type-rep?
1838 
1839   // Current "this->_base" is Tuple
1840   switch (t->base()) {          // switch on original type
1841 
1842   case Bottom:                  // Ye Olde Default
1843     return t;
1844 
1845   default:                      // All else is a mistake
1846     typerr(t);
1847 
1848   case Tuple: {                 // Meeting 2 signatures?
1849     const TypeTuple *x = t->is_tuple();
1850     assert( _cnt == x->_cnt, "" );
1851     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1852     for( uint i=0; i<_cnt; i++ )
1853       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1854     return TypeTuple::make(_cnt,fields);
1855   }
1856   case Top:
1857     break;
1858   }
1859   return this;                  // Return the double constant
1860 }
1861 
1862 //------------------------------xdual------------------------------------------
1863 // Dual: compute field-by-field dual
1864 const Type *TypeTuple::xdual() const {
1865   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1866   for( uint i=0; i<_cnt; i++ )
1867     fields[i] = _fields[i]->dual();
1868   return new TypeTuple(_cnt,fields);
1869 }
1870 
1871 //------------------------------eq---------------------------------------------
1872 // Structural equality check for Type representations
1873 bool TypeTuple::eq( const Type *t ) const {
1874   const TypeTuple *s = (const TypeTuple *)t;
1875   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1876   for (uint i = 0; i < _cnt; i++)
1877     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1878       return false;             // Missed
1879   return true;
1880 }
1881 
1882 //------------------------------hash-------------------------------------------
1883 // Type-specific hashing function.
1884 int TypeTuple::hash(void) const {
1885   intptr_t sum = _cnt;
1886   for( uint i=0; i<_cnt; i++ )
1887     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1888   return sum;
1889 }
1890 
1891 //------------------------------dump2------------------------------------------
1892 // Dump signature Type
1893 #ifndef PRODUCT
1894 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1895   st->print("{");
1896   if( !depth || d[this] ) {     // Check for recursive print
1897     st->print("...}");
1898     return;
1899   }
1900   d.Insert((void*)this, (void*)this);   // Stop recursion
1901   if( _cnt ) {
1902     uint i;
1903     for( i=0; i<_cnt-1; i++ ) {
1904       st->print("%d:", i);
1905       _fields[i]->dump2(d, depth-1, st);
1906       st->print(", ");
1907     }
1908     st->print("%d:", i);
1909     _fields[i]->dump2(d, depth-1, st);
1910   }
1911   st->print("}");
1912 }
1913 #endif
1914 
1915 //------------------------------singleton--------------------------------------
1916 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1917 // constants (Ldi nodes).  Singletons are integer, float or double constants
1918 // or a single symbol.
1919 bool TypeTuple::singleton(void) const {
1920   return false;                 // Never a singleton
1921 }
1922 
1923 bool TypeTuple::empty(void) const {
1924   for( uint i=0; i<_cnt; i++ ) {
1925     if (_fields[i]->empty())  return true;
1926   }
1927   return false;
1928 }
1929 
1930 //=============================================================================
1931 // Convenience common pre-built types.
1932 
1933 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1934   // Certain normalizations keep us sane when comparing types.
1935   // We do not want arrayOop variables to differ only by the wideness
1936   // of their index types.  Pick minimum wideness, since that is the
1937   // forced wideness of small ranges anyway.
1938   if (size->_widen != Type::WidenMin)
1939     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1940   else
1941     return size;
1942 }
1943 
1944 //------------------------------make-------------------------------------------
1945 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1946   if (UseCompressedOops && elem->isa_oopptr()) {
1947     elem = elem->make_narrowoop();
1948   }
1949   size = normalize_array_size(size);
1950   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1951 }
1952 
1953 //------------------------------meet-------------------------------------------
1954 // Compute the MEET of two types.  It returns a new Type object.
1955 const Type *TypeAry::xmeet( const Type *t ) const {
1956   // Perform a fast test for common case; meeting the same types together.
1957   if( this == t ) return this;  // Meeting same type-rep?
1958 
1959   // Current "this->_base" is Ary
1960   switch (t->base()) {          // switch on original type
1961 
1962   case Bottom:                  // Ye Olde Default
1963     return t;
1964 
1965   default:                      // All else is a mistake
1966     typerr(t);
1967 
1968   case Array: {                 // Meeting 2 arrays?
1969     const TypeAry *a = t->is_ary();
1970     return TypeAry::make(_elem->meet_speculative(a->_elem),
1971                          _size->xmeet(a->_size)->is_int(),
1972                          _stable & a->_stable);
1973   }
1974   case Top:
1975     break;
1976   }
1977   return this;                  // Return the double constant
1978 }
1979 
1980 //------------------------------xdual------------------------------------------
1981 // Dual: compute field-by-field dual
1982 const Type *TypeAry::xdual() const {
1983   const TypeInt* size_dual = _size->dual()->is_int();
1984   size_dual = normalize_array_size(size_dual);
1985   return new TypeAry(_elem->dual(), size_dual, !_stable);
1986 }
1987 
1988 //------------------------------eq---------------------------------------------
1989 // Structural equality check for Type representations
1990 bool TypeAry::eq( const Type *t ) const {
1991   const TypeAry *a = (const TypeAry*)t;
1992   return _elem == a->_elem &&
1993     _stable == a->_stable &&
1994     _size == a->_size;
1995 }
1996 
1997 //------------------------------hash-------------------------------------------
1998 // Type-specific hashing function.
1999 int TypeAry::hash(void) const {
2000   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2001 }
2002 
2003 /**
2004  * Return same type without a speculative part in the element
2005  */
2006 const Type* TypeAry::remove_speculative() const {
2007   return make(_elem->remove_speculative(), _size, _stable);
2008 }
2009 
2010 /**
2011  * Return same type with cleaned up speculative part of element
2012  */
2013 const Type* TypeAry::cleanup_speculative() const {
2014   return make(_elem->cleanup_speculative(), _size, _stable);
2015 }
2016 
2017 /**
2018  * Return same type but with a different inline depth (used for speculation)
2019  *
2020  * @param depth  depth to meet with
2021  */
2022 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2023   if (!UseInlineDepthForSpeculativeTypes) {
2024     return this;
2025   }
2026   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2027 }
2028 
2029 //----------------------interface_vs_oop---------------------------------------
2030 #ifdef ASSERT
2031 bool TypeAry::interface_vs_oop(const Type *t) const {
2032   const TypeAry* t_ary = t->is_ary();
2033   if (t_ary) {
2034     return _elem->interface_vs_oop(t_ary->_elem);
2035   }
2036   return false;
2037 }
2038 #endif
2039 
2040 //------------------------------dump2------------------------------------------
2041 #ifndef PRODUCT
2042 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2043   if (_stable)  st->print("stable:");
2044   _elem->dump2(d, depth, st);
2045   st->print("[");
2046   _size->dump2(d, depth, st);
2047   st->print("]");
2048 }
2049 #endif
2050 
2051 //------------------------------singleton--------------------------------------
2052 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2053 // constants (Ldi nodes).  Singletons are integer, float or double constants
2054 // or a single symbol.
2055 bool TypeAry::singleton(void) const {
2056   return false;                 // Never a singleton
2057 }
2058 
2059 bool TypeAry::empty(void) const {
2060   return _elem->empty() || _size->empty();
2061 }
2062 
2063 //--------------------------ary_must_be_exact----------------------------------
2064 bool TypeAry::ary_must_be_exact() const {
2065   if (!UseExactTypes)       return false;
2066   // This logic looks at the element type of an array, and returns true
2067   // if the element type is either a primitive or a final instance class.
2068   // In such cases, an array built on this ary must have no subclasses.
2069   if (_elem == BOTTOM)      return false;  // general array not exact
2070   if (_elem == TOP   )      return false;  // inverted general array not exact
2071   const TypeOopPtr*  toop = NULL;
2072   if (UseCompressedOops && _elem->isa_narrowoop()) {
2073     toop = _elem->make_ptr()->isa_oopptr();
2074   } else {
2075     toop = _elem->isa_oopptr();
2076   }
2077   if (!toop)                return true;   // a primitive type, like int
2078   ciKlass* tklass = toop->klass();
2079   if (tklass == NULL)       return false;  // unloaded class
2080   if (!tklass->is_loaded()) return false;  // unloaded class
2081   const TypeInstPtr* tinst;
2082   if (_elem->isa_narrowoop())
2083     tinst = _elem->make_ptr()->isa_instptr();
2084   else
2085     tinst = _elem->isa_instptr();
2086   if (tinst)
2087     return tklass->as_instance_klass()->is_final();
2088   const TypeAryPtr*  tap;
2089   if (_elem->isa_narrowoop())
2090     tap = _elem->make_ptr()->isa_aryptr();
2091   else
2092     tap = _elem->isa_aryptr();
2093   if (tap)
2094     return tap->ary()->ary_must_be_exact();
2095   return false;
2096 }
2097 
2098 //==============================TypeVect=======================================
2099 // Convenience common pre-built types.
2100 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2101 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2102 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2103 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2104 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2105 
2106 //------------------------------make-------------------------------------------
2107 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2108   BasicType elem_bt = elem->array_element_basic_type();
2109   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2110   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2111   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2112   int size = length * type2aelembytes(elem_bt);
2113   switch (Matcher::vector_ideal_reg(size)) {
2114   case Op_VecS:
2115     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2116   case Op_RegL:
2117   case Op_VecD:
2118   case Op_RegD:
2119     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2120   case Op_VecX:
2121     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2122   case Op_VecY:
2123     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2124   case Op_VecZ:
2125     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2126   }
2127  ShouldNotReachHere();
2128   return NULL;
2129 }
2130 
2131 //------------------------------meet-------------------------------------------
2132 // Compute the MEET of two types.  It returns a new Type object.
2133 const Type *TypeVect::xmeet( const Type *t ) const {
2134   // Perform a fast test for common case; meeting the same types together.
2135   if( this == t ) return this;  // Meeting same type-rep?
2136 
2137   // Current "this->_base" is Vector
2138   switch (t->base()) {          // switch on original type
2139 
2140   case Bottom:                  // Ye Olde Default
2141     return t;
2142 
2143   default:                      // All else is a mistake
2144     typerr(t);
2145 
2146   case VectorS:
2147   case VectorD:
2148   case VectorX:
2149   case VectorY:
2150   case VectorZ: {                // Meeting 2 vectors?
2151     const TypeVect* v = t->is_vect();
2152     assert(  base() == v->base(), "");
2153     assert(length() == v->length(), "");
2154     assert(element_basic_type() == v->element_basic_type(), "");
2155     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2156   }
2157   case Top:
2158     break;
2159   }
2160   return this;
2161 }
2162 
2163 //------------------------------xdual------------------------------------------
2164 // Dual: compute field-by-field dual
2165 const Type *TypeVect::xdual() const {
2166   return new TypeVect(base(), _elem->dual(), _length);
2167 }
2168 
2169 //------------------------------eq---------------------------------------------
2170 // Structural equality check for Type representations
2171 bool TypeVect::eq(const Type *t) const {
2172   const TypeVect *v = t->is_vect();
2173   return (_elem == v->_elem) && (_length == v->_length);
2174 }
2175 
2176 //------------------------------hash-------------------------------------------
2177 // Type-specific hashing function.
2178 int TypeVect::hash(void) const {
2179   return (intptr_t)_elem + (intptr_t)_length;
2180 }
2181 
2182 //------------------------------singleton--------------------------------------
2183 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2184 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2185 // constant value (when vector is created with Replicate code).
2186 bool TypeVect::singleton(void) const {
2187 // There is no Con node for vectors yet.
2188 //  return _elem->singleton();
2189   return false;
2190 }
2191 
2192 bool TypeVect::empty(void) const {
2193   return _elem->empty();
2194 }
2195 
2196 //------------------------------dump2------------------------------------------
2197 #ifndef PRODUCT
2198 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2199   switch (base()) {
2200   case VectorS:
2201     st->print("vectors["); break;
2202   case VectorD:
2203     st->print("vectord["); break;
2204   case VectorX:
2205     st->print("vectorx["); break;
2206   case VectorY:
2207     st->print("vectory["); break;
2208   case VectorZ:
2209     st->print("vectorz["); break;
2210   default:
2211     ShouldNotReachHere();
2212   }
2213   st->print("%d]:{", _length);
2214   _elem->dump2(d, depth, st);
2215   st->print("}");
2216 }
2217 #endif
2218 
2219 
2220 //=============================================================================
2221 // Convenience common pre-built types.
2222 const TypePtr *TypePtr::NULL_PTR;
2223 const TypePtr *TypePtr::NOTNULL;
2224 const TypePtr *TypePtr::BOTTOM;
2225 
2226 //------------------------------meet-------------------------------------------
2227 // Meet over the PTR enum
2228 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2229   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2230   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2231   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2232   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2233   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2234   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2235   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2236 };
2237 
2238 //------------------------------make-------------------------------------------
2239 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2240   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2241 }
2242 
2243 //------------------------------cast_to_ptr_type-------------------------------
2244 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2245   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2246   if( ptr == _ptr ) return this;
2247   return make(_base, ptr, _offset, _speculative, _inline_depth);
2248 }
2249 
2250 //------------------------------get_con----------------------------------------
2251 intptr_t TypePtr::get_con() const {
2252   assert( _ptr == Null, "" );
2253   return _offset;
2254 }
2255 
2256 //------------------------------meet-------------------------------------------
2257 // Compute the MEET of two types.  It returns a new Type object.
2258 const Type *TypePtr::xmeet(const Type *t) const {
2259   const Type* res = xmeet_helper(t);
2260   if (res->isa_ptr() == NULL) {
2261     return res;
2262   }
2263 
2264   const TypePtr* res_ptr = res->is_ptr();
2265   if (res_ptr->speculative() != NULL) {
2266     // type->speculative() == NULL means that speculation is no better
2267     // than type, i.e. type->speculative() == type. So there are 2
2268     // ways to represent the fact that we have no useful speculative
2269     // data and we should use a single one to be able to test for
2270     // equality between types. Check whether type->speculative() ==
2271     // type and set speculative to NULL if it is the case.
2272     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2273       return res_ptr->remove_speculative();
2274     }
2275   }
2276 
2277   return res;
2278 }
2279 
2280 const Type *TypePtr::xmeet_helper(const Type *t) const {
2281   // Perform a fast test for common case; meeting the same types together.
2282   if( this == t ) return this;  // Meeting same type-rep?
2283 
2284   // Current "this->_base" is AnyPtr
2285   switch (t->base()) {          // switch on original type
2286   case Int:                     // Mixing ints & oops happens when javac
2287   case Long:                    // reuses local variables
2288   case FloatTop:
2289   case FloatCon:
2290   case FloatBot:
2291   case DoubleTop:
2292   case DoubleCon:
2293   case DoubleBot:
2294   case NarrowOop:
2295   case NarrowKlass:
2296   case Bottom:                  // Ye Olde Default
2297     return Type::BOTTOM;
2298   case Top:
2299     return this;
2300 
2301   case AnyPtr: {                // Meeting to AnyPtrs
2302     const TypePtr *tp = t->is_ptr();
2303     const TypePtr* speculative = xmeet_speculative(tp);
2304     int depth = meet_inline_depth(tp->inline_depth());
2305     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2306   }
2307   case RawPtr:                  // For these, flip the call around to cut down
2308   case OopPtr:
2309   case InstPtr:                 // on the cases I have to handle.
2310   case AryPtr:
2311   case MetadataPtr:
2312   case KlassPtr:
2313     return t->xmeet(this);      // Call in reverse direction
2314   default:                      // All else is a mistake
2315     typerr(t);
2316 
2317   }
2318   return this;
2319 }
2320 
2321 //------------------------------meet_offset------------------------------------
2322 int TypePtr::meet_offset( int offset ) const {
2323   // Either is 'TOP' offset?  Return the other offset!
2324   if( _offset == OffsetTop ) return offset;
2325   if( offset == OffsetTop ) return _offset;
2326   // If either is different, return 'BOTTOM' offset
2327   if( _offset != offset ) return OffsetBot;
2328   return _offset;
2329 }
2330 
2331 //------------------------------dual_offset------------------------------------
2332 int TypePtr::dual_offset( ) const {
2333   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2334   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2335   return _offset;               // Map everything else into self
2336 }
2337 
2338 //------------------------------xdual------------------------------------------
2339 // Dual: compute field-by-field dual
2340 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2341   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2342 };
2343 const Type *TypePtr::xdual() const {
2344   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2345 }
2346 
2347 //------------------------------xadd_offset------------------------------------
2348 int TypePtr::xadd_offset( intptr_t offset ) const {
2349   // Adding to 'TOP' offset?  Return 'TOP'!
2350   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2351   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2352   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2353   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2354   offset += (intptr_t)_offset;
2355   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2356 
2357   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2358   // It is possible to construct a negative offset during PhaseCCP
2359 
2360   return (int)offset;        // Sum valid offsets
2361 }
2362 
2363 //------------------------------add_offset-------------------------------------
2364 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2365   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2366 }
2367 
2368 //------------------------------eq---------------------------------------------
2369 // Structural equality check for Type representations
2370 bool TypePtr::eq( const Type *t ) const {
2371   const TypePtr *a = (const TypePtr*)t;
2372   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2373 }
2374 
2375 //------------------------------hash-------------------------------------------
2376 // Type-specific hashing function.
2377 int TypePtr::hash(void) const {
2378   return _ptr + _offset + hash_speculative() + _inline_depth;
2379 ;
2380 }
2381 
2382 /**
2383  * Return same type without a speculative part
2384  */
2385 const Type* TypePtr::remove_speculative() const {
2386   if (_speculative == NULL) {
2387     return this;
2388   }
2389   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2390   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2391 }
2392 
2393 /**
2394  * Return same type but drop speculative part if we know we won't use
2395  * it
2396  */
2397 const Type* TypePtr::cleanup_speculative() const {
2398   if (speculative() == NULL) {
2399     return this;
2400   }
2401   const Type* no_spec = remove_speculative();
2402   // If this is NULL_PTR then we don't need the speculative type
2403   // (with_inline_depth in case the current type inline depth is
2404   // InlineDepthTop)
2405   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2406     return no_spec;
2407   }
2408   if (above_centerline(speculative()->ptr())) {
2409     return no_spec;
2410   }
2411   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2412   // If the speculative may be null and is an inexact klass then it
2413   // doesn't help
2414   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2415     return no_spec;
2416   }
2417   return this;
2418 }
2419 
2420 /**
2421  * dual of the speculative part of the type
2422  */
2423 const TypePtr* TypePtr::dual_speculative() const {
2424   if (_speculative == NULL) {
2425     return NULL;
2426   }
2427   return _speculative->dual()->is_ptr();
2428 }
2429 
2430 /**
2431  * meet of the speculative parts of 2 types
2432  *
2433  * @param other  type to meet with
2434  */
2435 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2436   bool this_has_spec = (_speculative != NULL);
2437   bool other_has_spec = (other->speculative() != NULL);
2438 
2439   if (!this_has_spec && !other_has_spec) {
2440     return NULL;
2441   }
2442 
2443   // If we are at a point where control flow meets and one branch has
2444   // a speculative type and the other has not, we meet the speculative
2445   // type of one branch with the actual type of the other. If the
2446   // actual type is exact and the speculative is as well, then the
2447   // result is a speculative type which is exact and we can continue
2448   // speculation further.
2449   const TypePtr* this_spec = _speculative;
2450   const TypePtr* other_spec = other->speculative();
2451 
2452   if (!this_has_spec) {
2453     this_spec = this;
2454   }
2455 
2456   if (!other_has_spec) {
2457     other_spec = other;
2458   }
2459 
2460   return this_spec->meet(other_spec)->is_ptr();
2461 }
2462 
2463 /**
2464  * dual of the inline depth for this type (used for speculation)
2465  */
2466 int TypePtr::dual_inline_depth() const {
2467   return -inline_depth();
2468 }
2469 
2470 /**
2471  * meet of 2 inline depths (used for speculation)
2472  *
2473  * @param depth  depth to meet with
2474  */
2475 int TypePtr::meet_inline_depth(int depth) const {
2476   return MAX2(inline_depth(), depth);
2477 }
2478 
2479 /**
2480  * Are the speculative parts of 2 types equal?
2481  *
2482  * @param other  type to compare this one to
2483  */
2484 bool TypePtr::eq_speculative(const TypePtr* other) const {
2485   if (_speculative == NULL || other->speculative() == NULL) {
2486     return _speculative == other->speculative();
2487   }
2488 
2489   if (_speculative->base() != other->speculative()->base()) {
2490     return false;
2491   }
2492 
2493   return _speculative->eq(other->speculative());
2494 }
2495 
2496 /**
2497  * Hash of the speculative part of the type
2498  */
2499 int TypePtr::hash_speculative() const {
2500   if (_speculative == NULL) {
2501     return 0;
2502   }
2503 
2504   return _speculative->hash();
2505 }
2506 
2507 /**
2508  * add offset to the speculative part of the type
2509  *
2510  * @param offset  offset to add
2511  */
2512 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2513   if (_speculative == NULL) {
2514     return NULL;
2515   }
2516   return _speculative->add_offset(offset)->is_ptr();
2517 }
2518 
2519 /**
2520  * return exact klass from the speculative type if there's one
2521  */
2522 ciKlass* TypePtr::speculative_type() const {
2523   if (_speculative != NULL && _speculative->isa_oopptr()) {
2524     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2525     if (speculative->klass_is_exact()) {
2526       return speculative->klass();
2527     }
2528   }
2529   return NULL;
2530 }
2531 
2532 /**
2533  * return true if speculative type may be null
2534  */
2535 bool TypePtr::speculative_maybe_null() const {
2536   if (_speculative != NULL) {
2537     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2538     return speculative->maybe_null();
2539   }
2540   return true;
2541 }
2542 
2543 /**
2544  * Same as TypePtr::speculative_type() but return the klass only if
2545  * the speculative tells us is not null
2546  */
2547 ciKlass* TypePtr::speculative_type_not_null() const {
2548   if (speculative_maybe_null()) {
2549     return NULL;
2550   }
2551   return speculative_type();
2552 }
2553 
2554 /**
2555  * Check whether new profiling would improve speculative type
2556  *
2557  * @param   exact_kls    class from profiling
2558  * @param   inline_depth inlining depth of profile point
2559  *
2560  * @return  true if type profile is valuable
2561  */
2562 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2563   // no profiling?
2564   if (exact_kls == NULL) {
2565     return false;
2566   }
2567   // no speculative type or non exact speculative type?
2568   if (speculative_type() == NULL) {
2569     return true;
2570   }
2571   // If the node already has an exact speculative type keep it,
2572   // unless it was provided by profiling that is at a deeper
2573   // inlining level. Profiling at a higher inlining depth is
2574   // expected to be less accurate.
2575   if (_speculative->inline_depth() == InlineDepthBottom) {
2576     return false;
2577   }
2578   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2579   return inline_depth < _speculative->inline_depth();
2580 }
2581 
2582 /**
2583  * Check whether new profiling would improve ptr (= tells us it is non
2584  * null)
2585  *
2586  * @param   maybe_null true if profiling tells the ptr may be null
2587  *
2588  * @return  true if ptr profile is valuable
2589  */
2590 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2591   // profiling doesn't tell us anything useful
2592   if (maybe_null) {
2593     return false;
2594   }
2595   // We already know this is not be null
2596   if (!this->maybe_null()) {
2597     return false;
2598   }
2599   // We already know the speculative type cannot be null
2600   if (!speculative_maybe_null()) {
2601     return false;
2602   }
2603   return true;
2604 }
2605 
2606 //------------------------------dump2------------------------------------------
2607 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2608   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2609 };
2610 
2611 #ifndef PRODUCT
2612 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2613   if( _ptr == Null ) st->print("NULL");
2614   else st->print("%s *", ptr_msg[_ptr]);
2615   if( _offset == OffsetTop ) st->print("+top");
2616   else if( _offset == OffsetBot ) st->print("+bot");
2617   else if( _offset ) st->print("+%d", _offset);
2618   dump_inline_depth(st);
2619   dump_speculative(st);
2620 }
2621 
2622 /**
2623  *dump the speculative part of the type
2624  */
2625 void TypePtr::dump_speculative(outputStream *st) const {
2626   if (_speculative != NULL) {
2627     st->print(" (speculative=");
2628     _speculative->dump_on(st);
2629     st->print(")");
2630   }
2631 }
2632 
2633 /**
2634  *dump the inline depth of the type
2635  */
2636 void TypePtr::dump_inline_depth(outputStream *st) const {
2637   if (_inline_depth != InlineDepthBottom) {
2638     if (_inline_depth == InlineDepthTop) {
2639       st->print(" (inline_depth=InlineDepthTop)");
2640     } else {
2641       st->print(" (inline_depth=%d)", _inline_depth);
2642     }
2643   }
2644 }
2645 #endif
2646 
2647 //------------------------------singleton--------------------------------------
2648 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2649 // constants
2650 bool TypePtr::singleton(void) const {
2651   // TopPTR, Null, AnyNull, Constant are all singletons
2652   return (_offset != OffsetBot) && !below_centerline(_ptr);
2653 }
2654 
2655 bool TypePtr::empty(void) const {
2656   return (_offset == OffsetTop) || above_centerline(_ptr);
2657 }
2658 
2659 //=============================================================================
2660 // Convenience common pre-built types.
2661 const TypeRawPtr *TypeRawPtr::BOTTOM;
2662 const TypeRawPtr *TypeRawPtr::NOTNULL;
2663 
2664 //------------------------------make-------------------------------------------
2665 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2666   assert( ptr != Constant, "what is the constant?" );
2667   assert( ptr != Null, "Use TypePtr for NULL" );
2668   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2669 }
2670 
2671 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2672   assert( bits, "Use TypePtr for NULL" );
2673   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2674 }
2675 
2676 //------------------------------cast_to_ptr_type-------------------------------
2677 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2678   assert( ptr != Constant, "what is the constant?" );
2679   assert( ptr != Null, "Use TypePtr for NULL" );
2680   assert( _bits==0, "Why cast a constant address?");
2681   if( ptr == _ptr ) return this;
2682   return make(ptr);
2683 }
2684 
2685 //------------------------------get_con----------------------------------------
2686 intptr_t TypeRawPtr::get_con() const {
2687   assert( _ptr == Null || _ptr == Constant, "" );
2688   return (intptr_t)_bits;
2689 }
2690 
2691 //------------------------------meet-------------------------------------------
2692 // Compute the MEET of two types.  It returns a new Type object.
2693 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2694   // Perform a fast test for common case; meeting the same types together.
2695   if( this == t ) return this;  // Meeting same type-rep?
2696 
2697   // Current "this->_base" is RawPtr
2698   switch( t->base() ) {         // switch on original type
2699   case Bottom:                  // Ye Olde Default
2700     return t;
2701   case Top:
2702     return this;
2703   case AnyPtr:                  // Meeting to AnyPtrs
2704     break;
2705   case RawPtr: {                // might be top, bot, any/not or constant
2706     enum PTR tptr = t->is_ptr()->ptr();
2707     enum PTR ptr = meet_ptr( tptr );
2708     if( ptr == Constant ) {     // Cannot be equal constants, so...
2709       if( tptr == Constant && _ptr != Constant)  return t;
2710       if( _ptr == Constant && tptr != Constant)  return this;
2711       ptr = NotNull;            // Fall down in lattice
2712     }
2713     return make( ptr );
2714   }
2715 
2716   case OopPtr:
2717   case InstPtr:
2718   case AryPtr:
2719   case MetadataPtr:
2720   case KlassPtr:
2721     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2722   default:                      // All else is a mistake
2723     typerr(t);
2724   }
2725 
2726   // Found an AnyPtr type vs self-RawPtr type
2727   const TypePtr *tp = t->is_ptr();
2728   switch (tp->ptr()) {
2729   case TypePtr::TopPTR:  return this;
2730   case TypePtr::BotPTR:  return t;
2731   case TypePtr::Null:
2732     if( _ptr == TypePtr::TopPTR ) return t;
2733     return TypeRawPtr::BOTTOM;
2734   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2735   case TypePtr::AnyNull:
2736     if( _ptr == TypePtr::Constant) return this;
2737     return make( meet_ptr(TypePtr::AnyNull) );
2738   default: ShouldNotReachHere();
2739   }
2740   return this;
2741 }
2742 
2743 //------------------------------xdual------------------------------------------
2744 // Dual: compute field-by-field dual
2745 const Type *TypeRawPtr::xdual() const {
2746   return new TypeRawPtr( dual_ptr(), _bits );
2747 }
2748 
2749 //------------------------------add_offset-------------------------------------
2750 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2751   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2752   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2753   if( offset == 0 ) return this; // No change
2754   switch (_ptr) {
2755   case TypePtr::TopPTR:
2756   case TypePtr::BotPTR:
2757   case TypePtr::NotNull:
2758     return this;
2759   case TypePtr::Null:
2760   case TypePtr::Constant: {
2761     address bits = _bits+offset;
2762     if ( bits == 0 ) return TypePtr::NULL_PTR;
2763     return make( bits );
2764   }
2765   default:  ShouldNotReachHere();
2766   }
2767   return NULL;                  // Lint noise
2768 }
2769 
2770 //------------------------------eq---------------------------------------------
2771 // Structural equality check for Type representations
2772 bool TypeRawPtr::eq( const Type *t ) const {
2773   const TypeRawPtr *a = (const TypeRawPtr*)t;
2774   return _bits == a->_bits && TypePtr::eq(t);
2775 }
2776 
2777 //------------------------------hash-------------------------------------------
2778 // Type-specific hashing function.
2779 int TypeRawPtr::hash(void) const {
2780   return (intptr_t)_bits + TypePtr::hash();
2781 }
2782 
2783 //------------------------------dump2------------------------------------------
2784 #ifndef PRODUCT
2785 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2786   if( _ptr == Constant )
2787     st->print(INTPTR_FORMAT, _bits);
2788   else
2789     st->print("rawptr:%s", ptr_msg[_ptr]);
2790 }
2791 #endif
2792 
2793 //=============================================================================
2794 // Convenience common pre-built type.
2795 const TypeOopPtr *TypeOopPtr::BOTTOM;
2796 
2797 //------------------------------TypeOopPtr-------------------------------------
2798 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2799                        int instance_id, const TypePtr* speculative, int inline_depth)
2800   : TypePtr(t, ptr, offset, speculative, inline_depth),
2801     _const_oop(o), _klass(k),
2802     _klass_is_exact(xk),
2803     _is_ptr_to_narrowoop(false),
2804     _is_ptr_to_narrowklass(false),
2805     _is_ptr_to_boxed_value(false),
2806     _instance_id(instance_id) {
2807   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2808       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2809     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2810   }
2811 #ifdef _LP64
2812   if (_offset != 0) {
2813     if (_offset == oopDesc::klass_offset_in_bytes()) {
2814       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2815     } else if (klass() == NULL) {
2816       // Array with unknown body type
2817       assert(this->isa_aryptr(), "only arrays without klass");
2818       _is_ptr_to_narrowoop = UseCompressedOops;
2819     } else if (this->isa_aryptr()) {
2820       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2821                              _offset != arrayOopDesc::length_offset_in_bytes());
2822     } else if (klass()->is_instance_klass()) {
2823       ciInstanceKlass* ik = klass()->as_instance_klass();
2824       ciField* field = NULL;
2825       if (this->isa_klassptr()) {
2826         // Perm objects don't use compressed references
2827       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2828         // unsafe access
2829         _is_ptr_to_narrowoop = UseCompressedOops;
2830       } else { // exclude unsafe ops
2831         assert(this->isa_instptr(), "must be an instance ptr.");
2832 
2833         if (klass() == ciEnv::current()->Class_klass() &&
2834             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2835              _offset == java_lang_Class::array_klass_offset_in_bytes()) || UseShenandoahGC) {
2836           // Special hidden fields from the Class.
2837           assert(this->isa_instptr(), "must be an instance ptr.");
2838           _is_ptr_to_narrowoop = false;
2839         } else if (klass() == ciEnv::current()->Class_klass() &&
2840                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2841           // Static fields
2842           assert(o != NULL, "must be constant");
2843           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2844           ciField* field = k->get_field_by_offset(_offset, true);
2845           assert(field != NULL, "missing field");
2846           BasicType basic_elem_type = field->layout_type();
2847           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2848                                                        basic_elem_type == T_ARRAY);
2849         } else {
2850           // Instance fields which contains a compressed oop references.
2851           field = ik->get_field_by_offset(_offset, false);
2852           if (field != NULL) {
2853             BasicType basic_elem_type = field->layout_type();
2854             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2855                                                          basic_elem_type == T_ARRAY);
2856           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2857             // Compile::find_alias_type() cast exactness on all types to verify
2858             // that it does not affect alias type.
2859             _is_ptr_to_narrowoop = UseCompressedOops;
2860           } else {
2861             // Type for the copy start in LibraryCallKit::inline_native_clone().
2862             _is_ptr_to_narrowoop = UseCompressedOops;
2863           }
2864         }
2865       }
2866     }
2867   }
2868 #endif
2869 }
2870 
2871 //------------------------------make-------------------------------------------
2872 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
2873                                      const TypePtr* speculative, int inline_depth) {
2874   assert(ptr != Constant, "no constant generic pointers");
2875   ciKlass*  k = Compile::current()->env()->Object_klass();
2876   bool      xk = false;
2877   ciObject* o = NULL;
2878   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2879 }
2880 
2881 
2882 //------------------------------cast_to_ptr_type-------------------------------
2883 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2884   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2885   if( ptr == _ptr ) return this;
2886   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2887 }
2888 
2889 //-----------------------------cast_to_instance_id----------------------------
2890 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2891   // There are no instances of a general oop.
2892   // Return self unchanged.
2893   return this;
2894 }
2895 
2896 //-----------------------------cast_to_exactness-------------------------------
2897 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2898   // There is no such thing as an exact general oop.
2899   // Return self unchanged.
2900   return this;
2901 }
2902 
2903 
2904 //------------------------------as_klass_type----------------------------------
2905 // Return the klass type corresponding to this instance or array type.
2906 // It is the type that is loaded from an object of this type.
2907 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2908   ciKlass* k = klass();
2909   bool    xk = klass_is_exact();
2910   if (k == NULL)
2911     return TypeKlassPtr::OBJECT;
2912   else
2913     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2914 }
2915 
2916 //------------------------------meet-------------------------------------------
2917 // Compute the MEET of two types.  It returns a new Type object.
2918 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2919   // Perform a fast test for common case; meeting the same types together.
2920   if( this == t ) return this;  // Meeting same type-rep?
2921 
2922   // Current "this->_base" is OopPtr
2923   switch (t->base()) {          // switch on original type
2924 
2925   case Int:                     // Mixing ints & oops happens when javac
2926   case Long:                    // reuses local variables
2927   case FloatTop:
2928   case FloatCon:
2929   case FloatBot:
2930   case DoubleTop:
2931   case DoubleCon:
2932   case DoubleBot:
2933   case NarrowOop:
2934   case NarrowKlass:
2935   case Bottom:                  // Ye Olde Default
2936     return Type::BOTTOM;
2937   case Top:
2938     return this;
2939 
2940   default:                      // All else is a mistake
2941     typerr(t);
2942 
2943   case RawPtr:
2944   case MetadataPtr:
2945   case KlassPtr:
2946     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2947 
2948   case AnyPtr: {
2949     // Found an AnyPtr type vs self-OopPtr type
2950     const TypePtr *tp = t->is_ptr();
2951     int offset = meet_offset(tp->offset());
2952     PTR ptr = meet_ptr(tp->ptr());
2953     const TypePtr* speculative = xmeet_speculative(tp);
2954     int depth = meet_inline_depth(tp->inline_depth());
2955     switch (tp->ptr()) {
2956     case Null:
2957       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2958       // else fall through:
2959     case TopPTR:
2960     case AnyNull: {
2961       int instance_id = meet_instance_id(InstanceTop);
2962       return make(ptr, offset, instance_id, speculative, depth);
2963     }
2964     case BotPTR:
2965     case NotNull:
2966       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2967     default: typerr(t);
2968     }
2969   }
2970 
2971   case OopPtr: {                 // Meeting to other OopPtrs
2972     const TypeOopPtr *tp = t->is_oopptr();
2973     int instance_id = meet_instance_id(tp->instance_id());
2974     const TypePtr* speculative = xmeet_speculative(tp);
2975     int depth = meet_inline_depth(tp->inline_depth());
2976     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
2977   }
2978 
2979   case InstPtr:                  // For these, flip the call around to cut down
2980   case AryPtr:
2981     return t->xmeet(this);      // Call in reverse direction
2982 
2983   } // End of switch
2984   return this;                  // Return the double constant
2985 }
2986 
2987 
2988 //------------------------------xdual------------------------------------------
2989 // Dual of a pure heap pointer.  No relevant klass or oop information.
2990 const Type *TypeOopPtr::xdual() const {
2991   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2992   assert(const_oop() == NULL,             "no constants here");
2993   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
2994 }
2995 
2996 //--------------------------make_from_klass_common-----------------------------
2997 // Computes the element-type given a klass.
2998 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2999   if (klass->is_instance_klass()) {
3000     Compile* C = Compile::current();
3001     Dependencies* deps = C->dependencies();
3002     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3003     // Element is an instance
3004     bool klass_is_exact = false;
3005     if (klass->is_loaded()) {
3006       // Try to set klass_is_exact.
3007       ciInstanceKlass* ik = klass->as_instance_klass();
3008       klass_is_exact = ik->is_final();
3009       if (!klass_is_exact && klass_change
3010           && deps != NULL && UseUniqueSubclasses) {
3011         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3012         if (sub != NULL) {
3013           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3014           klass = ik = sub;
3015           klass_is_exact = sub->is_final();
3016         }
3017       }
3018       if (!klass_is_exact && try_for_exact
3019           && deps != NULL && UseExactTypes) {
3020         if (!ik->is_interface() && !ik->has_subklass()) {
3021           // Add a dependence; if concrete subclass added we need to recompile
3022           deps->assert_leaf_type(ik);
3023           klass_is_exact = true;
3024         }
3025       }
3026     }
3027     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3028   } else if (klass->is_obj_array_klass()) {
3029     // Element is an object array. Recursively call ourself.
3030     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3031     bool xk = etype->klass_is_exact();
3032     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3033     // We used to pass NotNull in here, asserting that the sub-arrays
3034     // are all not-null.  This is not true in generally, as code can
3035     // slam NULLs down in the subarrays.
3036     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3037     return arr;
3038   } else if (klass->is_type_array_klass()) {
3039     // Element is an typeArray
3040     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3041     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3042     // We used to pass NotNull in here, asserting that the array pointer
3043     // is not-null. That was not true in general.
3044     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3045     return arr;
3046   } else {
3047     ShouldNotReachHere();
3048     return NULL;
3049   }
3050 }
3051 
3052 //------------------------------make_from_constant-----------------------------
3053 // Make a java pointer from an oop constant
3054 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3055   assert(!o->is_null_object(), "null object not yet handled here.");
3056   ciKlass* klass = o->klass();
3057   if (klass->is_instance_klass()) {
3058     // Element is an instance
3059     if (require_constant) {
3060       if (!o->can_be_constant())  return NULL;
3061     } else if (!o->should_be_constant()) {
3062       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3063     }
3064     return TypeInstPtr::make(o);
3065   } else if (klass->is_obj_array_klass()) {
3066     // Element is an object array. Recursively call ourself.
3067     const TypeOopPtr *etype =
3068       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3069     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3070     // We used to pass NotNull in here, asserting that the sub-arrays
3071     // are all not-null.  This is not true in generally, as code can
3072     // slam NULLs down in the subarrays.
3073     if (require_constant) {
3074       if (!o->can_be_constant())  return NULL;
3075     } else if (!o->should_be_constant()) {
3076       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3077     }
3078     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3079     return arr;
3080   } else if (klass->is_type_array_klass()) {
3081     // Element is an typeArray
3082     const Type* etype =
3083       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3084     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3085     // We used to pass NotNull in here, asserting that the array pointer
3086     // is not-null. That was not true in general.
3087     if (require_constant) {
3088       if (!o->can_be_constant())  return NULL;
3089     } else if (!o->should_be_constant()) {
3090       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3091     }
3092     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3093     return arr;
3094   }
3095 
3096   fatal("unhandled object type");
3097   return NULL;
3098 }
3099 
3100 //------------------------------get_con----------------------------------------
3101 intptr_t TypeOopPtr::get_con() const {
3102   assert( _ptr == Null || _ptr == Constant, "" );
3103   assert( _offset >= 0, "" );
3104 
3105   if (_offset != 0) {
3106     // After being ported to the compiler interface, the compiler no longer
3107     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3108     // to a handle at compile time.  This handle is embedded in the generated
3109     // code and dereferenced at the time the nmethod is made.  Until that time,
3110     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3111     // have access to the addresses!).  This does not seem to currently happen,
3112     // but this assertion here is to help prevent its occurence.
3113     tty->print_cr("Found oop constant with non-zero offset");
3114     ShouldNotReachHere();
3115   }
3116 
3117   return (intptr_t)const_oop()->constant_encoding();
3118 }
3119 
3120 
3121 //-----------------------------filter------------------------------------------
3122 // Do not allow interface-vs.-noninterface joins to collapse to top.
3123 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3124 
3125   const Type* ft = join_helper(kills, include_speculative);
3126   const TypeInstPtr* ftip = ft->isa_instptr();
3127   const TypeInstPtr* ktip = kills->isa_instptr();
3128 
3129   if (ft->empty()) {
3130     // Check for evil case of 'this' being a class and 'kills' expecting an
3131     // interface.  This can happen because the bytecodes do not contain
3132     // enough type info to distinguish a Java-level interface variable
3133     // from a Java-level object variable.  If we meet 2 classes which
3134     // both implement interface I, but their meet is at 'j/l/O' which
3135     // doesn't implement I, we have no way to tell if the result should
3136     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3137     // into a Phi which "knows" it's an Interface type we'll have to
3138     // uplift the type.
3139     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
3140       return kills;             // Uplift to interface
3141 
3142     return Type::TOP;           // Canonical empty value
3143   }
3144 
3145   // If we have an interface-typed Phi or cast and we narrow to a class type,
3146   // the join should report back the class.  However, if we have a J/L/Object
3147   // class-typed Phi and an interface flows in, it's possible that the meet &
3148   // join report an interface back out.  This isn't possible but happens
3149   // because the type system doesn't interact well with interfaces.
3150   if (ftip != NULL && ktip != NULL &&
3151       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3152       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3153     assert(!ftip->klass_is_exact(), "interface could not be exact");
3154     return ktip->cast_to_ptr_type(ftip->ptr());
3155   }
3156 
3157   return ft;
3158 }
3159 
3160 //------------------------------eq---------------------------------------------
3161 // Structural equality check for Type representations
3162 bool TypeOopPtr::eq( const Type *t ) const {
3163   const TypeOopPtr *a = (const TypeOopPtr*)t;
3164   if (_klass_is_exact != a->_klass_is_exact ||
3165       _instance_id != a->_instance_id)  return false;
3166   ciObject* one = const_oop();
3167   ciObject* two = a->const_oop();
3168   if (one == NULL || two == NULL) {
3169     return (one == two) && TypePtr::eq(t);
3170   } else {
3171     return one->equals(two) && TypePtr::eq(t);
3172   }
3173 }
3174 
3175 //------------------------------hash-------------------------------------------
3176 // Type-specific hashing function.
3177 int TypeOopPtr::hash(void) const {
3178   return
3179     (const_oop() ? const_oop()->hash() : 0) +
3180     _klass_is_exact +
3181     _instance_id +
3182     TypePtr::hash();
3183 }
3184 
3185 //------------------------------dump2------------------------------------------
3186 #ifndef PRODUCT
3187 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3188   st->print("oopptr:%s", ptr_msg[_ptr]);
3189   if( _klass_is_exact ) st->print(":exact");
3190   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
3191   switch( _offset ) {
3192   case OffsetTop: st->print("+top"); break;
3193   case OffsetBot: st->print("+any"); break;
3194   case         0: break;
3195   default:        st->print("+%d",_offset); break;
3196   }
3197   if (_instance_id == InstanceTop)
3198     st->print(",iid=top");
3199   else if (_instance_id != InstanceBot)
3200     st->print(",iid=%d",_instance_id);
3201 
3202   dump_inline_depth(st);
3203   dump_speculative(st);
3204 }
3205 #endif
3206 
3207 //------------------------------singleton--------------------------------------
3208 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3209 // constants
3210 bool TypeOopPtr::singleton(void) const {
3211   // detune optimizer to not generate constant oop + constant offset as a constant!
3212   // TopPTR, Null, AnyNull, Constant are all singletons
3213   return (_offset == 0) && !below_centerline(_ptr);
3214 }
3215 
3216 //------------------------------add_offset-------------------------------------
3217 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3218   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3219 }
3220 
3221 /**
3222  * Return same type without a speculative part
3223  */
3224 const Type* TypeOopPtr::remove_speculative() const {
3225   if (_speculative == NULL) {
3226     return this;
3227   }
3228   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3229   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3230 }
3231 
3232 /**
3233  * Return same type but drop speculative part if we know we won't use
3234  * it
3235  */
3236 const Type* TypeOopPtr::cleanup_speculative() const {
3237   // If the klass is exact and the ptr is not null then there's
3238   // nothing that the speculative type can help us with
3239   if (klass_is_exact() && !maybe_null()) {
3240     return remove_speculative();
3241   }
3242   return TypePtr::cleanup_speculative();
3243 }
3244 
3245 /**
3246  * Return same type but with a different inline depth (used for speculation)
3247  *
3248  * @param depth  depth to meet with
3249  */
3250 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3251   if (!UseInlineDepthForSpeculativeTypes) {
3252     return this;
3253   }
3254   return make(_ptr, _offset, _instance_id, _speculative, depth);
3255 }
3256 
3257 //------------------------------meet_instance_id--------------------------------
3258 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3259   // Either is 'TOP' instance?  Return the other instance!
3260   if( _instance_id == InstanceTop ) return  instance_id;
3261   if(  instance_id == InstanceTop ) return _instance_id;
3262   // If either is different, return 'BOTTOM' instance
3263   if( _instance_id != instance_id ) return InstanceBot;
3264   return _instance_id;
3265 }
3266 
3267 //------------------------------dual_instance_id--------------------------------
3268 int TypeOopPtr::dual_instance_id( ) const {
3269   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3270   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3271   return _instance_id;              // Map everything else into self
3272 }
3273 
3274 /**
3275  * Check whether new profiling would improve speculative type
3276  *
3277  * @param   exact_kls    class from profiling
3278  * @param   inline_depth inlining depth of profile point
3279  *
3280  * @return  true if type profile is valuable
3281  */
3282 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3283   // no way to improve an already exact type
3284   if (klass_is_exact()) {
3285     return false;
3286   }
3287   return TypePtr::would_improve_type(exact_kls, inline_depth);
3288 }
3289 
3290 //=============================================================================
3291 // Convenience common pre-built types.
3292 const TypeInstPtr *TypeInstPtr::NOTNULL;
3293 const TypeInstPtr *TypeInstPtr::BOTTOM;
3294 const TypeInstPtr *TypeInstPtr::MIRROR;
3295 const TypeInstPtr *TypeInstPtr::MARK;
3296 const TypeInstPtr *TypeInstPtr::KLASS;
3297 
3298 //------------------------------TypeInstPtr-------------------------------------
3299 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3300                          int instance_id, const TypePtr* speculative, int inline_depth)
3301   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3302     _name(k->name()) {
3303    assert(k != NULL &&
3304           (k->is_loaded() || o == NULL),
3305           "cannot have constants with non-loaded klass");
3306 };
3307 
3308 //------------------------------make-------------------------------------------
3309 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3310                                      ciKlass* k,
3311                                      bool xk,
3312                                      ciObject* o,
3313                                      int offset,
3314                                      int instance_id,
3315                                      const TypePtr* speculative,
3316                                      int inline_depth) {
3317   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3318   // Either const_oop() is NULL or else ptr is Constant
3319   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3320           "constant pointers must have a value supplied" );
3321   // Ptr is never Null
3322   assert( ptr != Null, "NULL pointers are not typed" );
3323 
3324   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3325   if (!UseExactTypes)  xk = false;
3326   if (ptr == Constant) {
3327     // Note:  This case includes meta-object constants, such as methods.
3328     xk = true;
3329   } else if (k->is_loaded()) {
3330     ciInstanceKlass* ik = k->as_instance_klass();
3331     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3332     if (xk && ik->is_interface())  xk = false;  // no exact interface
3333   }
3334 
3335   // Now hash this baby
3336   TypeInstPtr *result =
3337     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3338 
3339   return result;
3340 }
3341 
3342 /**
3343  *  Create constant type for a constant boxed value
3344  */
3345 const Type* TypeInstPtr::get_const_boxed_value() const {
3346   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3347   assert((const_oop() != NULL), "should be called only for constant object");
3348   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3349   BasicType bt = constant.basic_type();
3350   switch (bt) {
3351     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3352     case T_INT:      return TypeInt::make(constant.as_int());
3353     case T_CHAR:     return TypeInt::make(constant.as_char());
3354     case T_BYTE:     return TypeInt::make(constant.as_byte());
3355     case T_SHORT:    return TypeInt::make(constant.as_short());
3356     case T_FLOAT:    return TypeF::make(constant.as_float());
3357     case T_DOUBLE:   return TypeD::make(constant.as_double());
3358     case T_LONG:     return TypeLong::make(constant.as_long());
3359     default:         break;
3360   }
3361   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3362   return NULL;
3363 }
3364 
3365 //------------------------------cast_to_ptr_type-------------------------------
3366 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3367   if( ptr == _ptr ) return this;
3368   // Reconstruct _sig info here since not a problem with later lazy
3369   // construction, _sig will show up on demand.
3370   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3371 }
3372 
3373 
3374 //-----------------------------cast_to_exactness-------------------------------
3375 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3376   if( klass_is_exact == _klass_is_exact ) return this;
3377   if (!UseExactTypes)  return this;
3378   if (!_klass->is_loaded())  return this;
3379   ciInstanceKlass* ik = _klass->as_instance_klass();
3380   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3381   if( ik->is_interface() )              return this;  // cannot set xk
3382   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3383 }
3384 
3385 //-----------------------------cast_to_instance_id----------------------------
3386 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3387   if( instance_id == _instance_id ) return this;
3388   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3389 }
3390 
3391 //------------------------------xmeet_unloaded---------------------------------
3392 // Compute the MEET of two InstPtrs when at least one is unloaded.
3393 // Assume classes are different since called after check for same name/class-loader
3394 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3395     int off = meet_offset(tinst->offset());
3396     PTR ptr = meet_ptr(tinst->ptr());
3397     int instance_id = meet_instance_id(tinst->instance_id());
3398     const TypePtr* speculative = xmeet_speculative(tinst);
3399     int depth = meet_inline_depth(tinst->inline_depth());
3400 
3401     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3402     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3403     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3404       //
3405       // Meet unloaded class with java/lang/Object
3406       //
3407       // Meet
3408       //          |                     Unloaded Class
3409       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3410       //  ===================================================================
3411       //   TOP    | ..........................Unloaded......................|
3412       //  AnyNull |  U-AN    |................Unloaded......................|
3413       // Constant | ... O-NN .................................. |   O-BOT   |
3414       //  NotNull | ... O-NN .................................. |   O-BOT   |
3415       //  BOTTOM  | ........................Object-BOTTOM ..................|
3416       //
3417       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3418       //
3419       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3420       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3421       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3422       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3423         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3424         else                                      { return TypeInstPtr::NOTNULL; }
3425       }
3426       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3427 
3428       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3429     }
3430 
3431     // Both are unloaded, not the same class, not Object
3432     // Or meet unloaded with a different loaded class, not java/lang/Object
3433     if( ptr != TypePtr::BotPTR ) {
3434       return TypeInstPtr::NOTNULL;
3435     }
3436     return TypeInstPtr::BOTTOM;
3437 }
3438 
3439 
3440 //------------------------------meet-------------------------------------------
3441 // Compute the MEET of two types.  It returns a new Type object.
3442 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3443   // Perform a fast test for common case; meeting the same types together.
3444   if( this == t ) return this;  // Meeting same type-rep?
3445 
3446   // Current "this->_base" is Pointer
3447   switch (t->base()) {          // switch on original type
3448 
3449   case Int:                     // Mixing ints & oops happens when javac
3450   case Long:                    // reuses local variables
3451   case FloatTop:
3452   case FloatCon:
3453   case FloatBot:
3454   case DoubleTop:
3455   case DoubleCon:
3456   case DoubleBot:
3457   case NarrowOop:
3458   case NarrowKlass:
3459   case Bottom:                  // Ye Olde Default
3460     return Type::BOTTOM;
3461   case Top:
3462     return this;
3463 
3464   default:                      // All else is a mistake
3465     typerr(t);
3466 
3467   case MetadataPtr:
3468   case KlassPtr:
3469   case RawPtr: return TypePtr::BOTTOM;
3470 
3471   case AryPtr: {                // All arrays inherit from Object class
3472     const TypeAryPtr *tp = t->is_aryptr();
3473     int offset = meet_offset(tp->offset());
3474     PTR ptr = meet_ptr(tp->ptr());
3475     int instance_id = meet_instance_id(tp->instance_id());
3476     const TypePtr* speculative = xmeet_speculative(tp);
3477     int depth = meet_inline_depth(tp->inline_depth());
3478     switch (ptr) {
3479     case TopPTR:
3480     case AnyNull:                // Fall 'down' to dual of object klass
3481       // For instances when a subclass meets a superclass we fall
3482       // below the centerline when the superclass is exact. We need to
3483       // do the same here.
3484       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3485         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3486       } else {
3487         // cannot subclass, so the meet has to fall badly below the centerline
3488         ptr = NotNull;
3489         instance_id = InstanceBot;
3490         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3491       }
3492     case Constant:
3493     case NotNull:
3494     case BotPTR:                // Fall down to object klass
3495       // LCA is object_klass, but if we subclass from the top we can do better
3496       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3497         // If 'this' (InstPtr) is above the centerline and it is Object class
3498         // then we can subclass in the Java class hierarchy.
3499         // For instances when a subclass meets a superclass we fall
3500         // below the centerline when the superclass is exact. We need
3501         // to do the same here.
3502         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3503           // that is, tp's array type is a subtype of my klass
3504           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3505                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3506         }
3507       }
3508       // The other case cannot happen, since I cannot be a subtype of an array.
3509       // The meet falls down to Object class below centerline.
3510       if( ptr == Constant )
3511          ptr = NotNull;
3512       instance_id = InstanceBot;
3513       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3514     default: typerr(t);
3515     }
3516   }
3517 
3518   case OopPtr: {                // Meeting to OopPtrs
3519     // Found a OopPtr type vs self-InstPtr type
3520     const TypeOopPtr *tp = t->is_oopptr();
3521     int offset = meet_offset(tp->offset());
3522     PTR ptr = meet_ptr(tp->ptr());
3523     switch (tp->ptr()) {
3524     case TopPTR:
3525     case AnyNull: {
3526       int instance_id = meet_instance_id(InstanceTop);
3527       const TypePtr* speculative = xmeet_speculative(tp);
3528       int depth = meet_inline_depth(tp->inline_depth());
3529       return make(ptr, klass(), klass_is_exact(),
3530                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3531     }
3532     case NotNull:
3533     case BotPTR: {
3534       int instance_id = meet_instance_id(tp->instance_id());
3535       const TypePtr* speculative = xmeet_speculative(tp);
3536       int depth = meet_inline_depth(tp->inline_depth());
3537       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3538     }
3539     default: typerr(t);
3540     }
3541   }
3542 
3543   case AnyPtr: {                // Meeting to AnyPtrs
3544     // Found an AnyPtr type vs self-InstPtr type
3545     const TypePtr *tp = t->is_ptr();
3546     int offset = meet_offset(tp->offset());
3547     PTR ptr = meet_ptr(tp->ptr());
3548     int instance_id = meet_instance_id(InstanceTop);
3549     const TypePtr* speculative = xmeet_speculative(tp);
3550     int depth = meet_inline_depth(tp->inline_depth());
3551     switch (tp->ptr()) {
3552     case Null:
3553       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3554       // else fall through to AnyNull
3555     case TopPTR:
3556     case AnyNull: {
3557       return make(ptr, klass(), klass_is_exact(),
3558                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3559     }
3560     case NotNull:
3561     case BotPTR:
3562       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3563     default: typerr(t);
3564     }
3565   }
3566 
3567   /*
3568                  A-top         }
3569                /   |   \       }  Tops
3570            B-top A-any C-top   }
3571               | /  |  \ |      }  Any-nulls
3572            B-any   |   C-any   }
3573               |    |    |
3574            B-con A-con C-con   } constants; not comparable across classes
3575               |    |    |
3576            B-not   |   C-not   }
3577               | \  |  / |      }  not-nulls
3578            B-bot A-not C-bot   }
3579                \   |   /       }  Bottoms
3580                  A-bot         }
3581   */
3582 
3583   case InstPtr: {                // Meeting 2 Oops?
3584     // Found an InstPtr sub-type vs self-InstPtr type
3585     const TypeInstPtr *tinst = t->is_instptr();
3586     int off = meet_offset( tinst->offset() );
3587     PTR ptr = meet_ptr( tinst->ptr() );
3588     int instance_id = meet_instance_id(tinst->instance_id());
3589     const TypePtr* speculative = xmeet_speculative(tinst);
3590     int depth = meet_inline_depth(tinst->inline_depth());
3591 
3592     // Check for easy case; klasses are equal (and perhaps not loaded!)
3593     // If we have constants, then we created oops so classes are loaded
3594     // and we can handle the constants further down.  This case handles
3595     // both-not-loaded or both-loaded classes
3596     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3597       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3598     }
3599 
3600     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3601     ciKlass* tinst_klass = tinst->klass();
3602     ciKlass* this_klass  = this->klass();
3603     bool tinst_xk = tinst->klass_is_exact();
3604     bool this_xk  = this->klass_is_exact();
3605     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3606       // One of these classes has not been loaded
3607       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3608 #ifndef PRODUCT
3609       if( PrintOpto && Verbose ) {
3610         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3611         tty->print("  this == "); this->dump(); tty->cr();
3612         tty->print(" tinst == "); tinst->dump(); tty->cr();
3613       }
3614 #endif
3615       return unloaded_meet;
3616     }
3617 
3618     // Handle mixing oops and interfaces first.
3619     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3620                                         tinst_klass == ciEnv::current()->Object_klass())) {
3621       ciKlass *tmp = tinst_klass; // Swap interface around
3622       tinst_klass = this_klass;
3623       this_klass = tmp;
3624       bool tmp2 = tinst_xk;
3625       tinst_xk = this_xk;
3626       this_xk = tmp2;
3627     }
3628     if (tinst_klass->is_interface() &&
3629         !(this_klass->is_interface() ||
3630           // Treat java/lang/Object as an honorary interface,
3631           // because we need a bottom for the interface hierarchy.
3632           this_klass == ciEnv::current()->Object_klass())) {
3633       // Oop meets interface!
3634 
3635       // See if the oop subtypes (implements) interface.
3636       ciKlass *k;
3637       bool xk;
3638       if( this_klass->is_subtype_of( tinst_klass ) ) {
3639         // Oop indeed subtypes.  Now keep oop or interface depending
3640         // on whether we are both above the centerline or either is
3641         // below the centerline.  If we are on the centerline
3642         // (e.g., Constant vs. AnyNull interface), use the constant.
3643         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3644         // If we are keeping this_klass, keep its exactness too.
3645         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3646       } else {                  // Does not implement, fall to Object
3647         // Oop does not implement interface, so mixing falls to Object
3648         // just like the verifier does (if both are above the
3649         // centerline fall to interface)
3650         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3651         xk = above_centerline(ptr) ? tinst_xk : false;
3652         // Watch out for Constant vs. AnyNull interface.
3653         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3654         instance_id = InstanceBot;
3655       }
3656       ciObject* o = NULL;  // the Constant value, if any
3657       if (ptr == Constant) {
3658         // Find out which constant.
3659         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3660       }
3661       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3662     }
3663 
3664     // Either oop vs oop or interface vs interface or interface vs Object
3665 
3666     // !!! Here's how the symmetry requirement breaks down into invariants:
3667     // If we split one up & one down AND they subtype, take the down man.
3668     // If we split one up & one down AND they do NOT subtype, "fall hard".
3669     // If both are up and they subtype, take the subtype class.
3670     // If both are up and they do NOT subtype, "fall hard".
3671     // If both are down and they subtype, take the supertype class.
3672     // If both are down and they do NOT subtype, "fall hard".
3673     // Constants treated as down.
3674 
3675     // Now, reorder the above list; observe that both-down+subtype is also
3676     // "fall hard"; "fall hard" becomes the default case:
3677     // If we split one up & one down AND they subtype, take the down man.
3678     // If both are up and they subtype, take the subtype class.
3679 
3680     // If both are down and they subtype, "fall hard".
3681     // If both are down and they do NOT subtype, "fall hard".
3682     // If both are up and they do NOT subtype, "fall hard".
3683     // If we split one up & one down AND they do NOT subtype, "fall hard".
3684 
3685     // If a proper subtype is exact, and we return it, we return it exactly.
3686     // If a proper supertype is exact, there can be no subtyping relationship!
3687     // If both types are equal to the subtype, exactness is and-ed below the
3688     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3689 
3690     // Check for subtyping:
3691     ciKlass *subtype = NULL;
3692     bool subtype_exact = false;
3693     if( tinst_klass->equals(this_klass) ) {
3694       subtype = this_klass;
3695       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3696     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3697       subtype = this_klass;     // Pick subtyping class
3698       subtype_exact = this_xk;
3699     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3700       subtype = tinst_klass;    // Pick subtyping class
3701       subtype_exact = tinst_xk;
3702     }
3703 
3704     if( subtype ) {
3705       if( above_centerline(ptr) ) { // both are up?
3706         this_klass = tinst_klass = subtype;
3707         this_xk = tinst_xk = subtype_exact;
3708       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3709         this_klass = tinst_klass; // tinst is down; keep down man
3710         this_xk = tinst_xk;
3711       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3712         tinst_klass = this_klass; // this is down; keep down man
3713         tinst_xk = this_xk;
3714       } else {
3715         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3716       }
3717     }
3718 
3719     // Check for classes now being equal
3720     if (tinst_klass->equals(this_klass)) {
3721       // If the klasses are equal, the constants may still differ.  Fall to
3722       // NotNull if they do (neither constant is NULL; that is a special case
3723       // handled elsewhere).
3724       ciObject* o = NULL;             // Assume not constant when done
3725       ciObject* this_oop  = const_oop();
3726       ciObject* tinst_oop = tinst->const_oop();
3727       if( ptr == Constant ) {
3728         if (this_oop != NULL && tinst_oop != NULL &&
3729             this_oop->equals(tinst_oop) )
3730           o = this_oop;
3731         else if (above_centerline(this ->_ptr))
3732           o = tinst_oop;
3733         else if (above_centerline(tinst ->_ptr))
3734           o = this_oop;
3735         else
3736           ptr = NotNull;
3737       }
3738       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3739     } // Else classes are not equal
3740 
3741     // Since klasses are different, we require a LCA in the Java
3742     // class hierarchy - which means we have to fall to at least NotNull.
3743     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3744       ptr = NotNull;
3745 
3746     instance_id = InstanceBot;
3747 
3748     // Now we find the LCA of Java classes
3749     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3750     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3751   } // End of case InstPtr
3752 
3753   } // End of switch
3754   return this;                  // Return the double constant
3755 }
3756 
3757 
3758 //------------------------java_mirror_type--------------------------------------
3759 ciType* TypeInstPtr::java_mirror_type() const {
3760   // must be a singleton type
3761   if( const_oop() == NULL )  return NULL;
3762 
3763   // must be of type java.lang.Class
3764   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3765 
3766   return const_oop()->as_instance()->java_mirror_type();
3767 }
3768 
3769 
3770 //------------------------------xdual------------------------------------------
3771 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3772 // inheritance mechanism.
3773 const Type *TypeInstPtr::xdual() const {
3774   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3775 }
3776 
3777 //------------------------------eq---------------------------------------------
3778 // Structural equality check for Type representations
3779 bool TypeInstPtr::eq( const Type *t ) const {
3780   const TypeInstPtr *p = t->is_instptr();
3781   return
3782     klass()->equals(p->klass()) &&
3783     TypeOopPtr::eq(p);          // Check sub-type stuff
3784 }
3785 
3786 //------------------------------hash-------------------------------------------
3787 // Type-specific hashing function.
3788 int TypeInstPtr::hash(void) const {
3789   int hash = klass()->hash() + TypeOopPtr::hash();
3790   return hash;
3791 }
3792 
3793 //------------------------------dump2------------------------------------------
3794 // Dump oop Type
3795 #ifndef PRODUCT
3796 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3797   // Print the name of the klass.
3798   klass()->print_name_on(st);
3799 
3800   switch( _ptr ) {
3801   case Constant:
3802     // TO DO: Make CI print the hex address of the underlying oop.
3803     if (WizardMode || Verbose) {
3804       const_oop()->print_oop(st);
3805     }
3806   case BotPTR:
3807     if (!WizardMode && !Verbose) {
3808       if( _klass_is_exact ) st->print(":exact");
3809       break;
3810     }
3811   case TopPTR:
3812   case AnyNull:
3813   case NotNull:
3814     st->print(":%s", ptr_msg[_ptr]);
3815     if( _klass_is_exact ) st->print(":exact");
3816     break;
3817   }
3818 
3819   if( _offset ) {               // Dump offset, if any
3820     if( _offset == OffsetBot )      st->print("+any");
3821     else if( _offset == OffsetTop ) st->print("+unknown");
3822     else st->print("+%d", _offset);
3823   }
3824 
3825   st->print(" *");
3826   if (_instance_id == InstanceTop)
3827     st->print(",iid=top");
3828   else if (_instance_id != InstanceBot)
3829     st->print(",iid=%d",_instance_id);
3830 
3831   dump_inline_depth(st);
3832   dump_speculative(st);
3833 }
3834 #endif
3835 
3836 //------------------------------add_offset-------------------------------------
3837 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3838   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
3839               _instance_id, add_offset_speculative(offset), _inline_depth);
3840 }
3841 
3842 const Type *TypeInstPtr::remove_speculative() const {
3843   if (_speculative == NULL) {
3844     return this;
3845   }
3846   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3847   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
3848               _instance_id, NULL, _inline_depth);
3849 }
3850 
3851 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
3852   if (!UseInlineDepthForSpeculativeTypes) {
3853     return this;
3854   }
3855   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3856 }
3857 
3858 //=============================================================================
3859 // Convenience common pre-built types.
3860 const TypeAryPtr *TypeAryPtr::RANGE;
3861 const TypeAryPtr *TypeAryPtr::OOPS;
3862 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3863 const TypeAryPtr *TypeAryPtr::BYTES;
3864 const TypeAryPtr *TypeAryPtr::SHORTS;
3865 const TypeAryPtr *TypeAryPtr::CHARS;
3866 const TypeAryPtr *TypeAryPtr::INTS;
3867 const TypeAryPtr *TypeAryPtr::LONGS;
3868 const TypeAryPtr *TypeAryPtr::FLOATS;
3869 const TypeAryPtr *TypeAryPtr::DOUBLES;
3870 
3871 //------------------------------make-------------------------------------------
3872 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3873                                    int instance_id, const TypePtr* speculative, int inline_depth) {
3874   assert(!(k == NULL && ary->_elem->isa_int()),
3875          "integral arrays must be pre-equipped with a class");
3876   if (!xk)  xk = ary->ary_must_be_exact();
3877   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3878   if (!UseExactTypes)  xk = (ptr == Constant);
3879   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3880 }
3881 
3882 //------------------------------make-------------------------------------------
3883 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3884                                    int instance_id, const TypePtr* speculative, int inline_depth,
3885                                    bool is_autobox_cache) {
3886   assert(!(k == NULL && ary->_elem->isa_int()),
3887          "integral arrays must be pre-equipped with a class");
3888   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3889   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3890   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3891   if (!UseExactTypes)  xk = (ptr == Constant);
3892   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3893 }
3894 
3895 //------------------------------cast_to_ptr_type-------------------------------
3896 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3897   if( ptr == _ptr ) return this;
3898   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3899 }
3900 
3901 
3902 //-----------------------------cast_to_exactness-------------------------------
3903 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3904   if( klass_is_exact == _klass_is_exact ) return this;
3905   if (!UseExactTypes)  return this;
3906   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3907   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3908 }
3909 
3910 //-----------------------------cast_to_instance_id----------------------------
3911 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3912   if( instance_id == _instance_id ) return this;
3913   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3914 }
3915 
3916 //-----------------------------narrow_size_type-------------------------------
3917 // Local cache for arrayOopDesc::max_array_length(etype),
3918 // which is kind of slow (and cached elsewhere by other users).
3919 static jint max_array_length_cache[T_CONFLICT+1];
3920 static jint max_array_length(BasicType etype) {
3921   jint& cache = max_array_length_cache[etype];
3922   jint res = cache;
3923   if (res == 0) {
3924     switch (etype) {
3925     case T_NARROWOOP:
3926       etype = T_OBJECT;
3927       break;
3928     case T_NARROWKLASS:
3929     case T_CONFLICT:
3930     case T_ILLEGAL:
3931     case T_VOID:
3932       etype = T_BYTE;           // will produce conservatively high value
3933     }
3934     cache = res = arrayOopDesc::max_array_length(etype);
3935   }
3936   return res;
3937 }
3938 
3939 // Narrow the given size type to the index range for the given array base type.
3940 // Return NULL if the resulting int type becomes empty.
3941 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3942   jint hi = size->_hi;
3943   jint lo = size->_lo;
3944   jint min_lo = 0;
3945   jint max_hi = max_array_length(elem()->basic_type());
3946   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3947   bool chg = false;
3948   if (lo < min_lo) {
3949     lo = min_lo;
3950     if (size->is_con()) {
3951       hi = lo;
3952     }
3953     chg = true;
3954   }
3955   if (hi > max_hi) {
3956     hi = max_hi;
3957     if (size->is_con()) {
3958       lo = hi;
3959     }
3960     chg = true;
3961   }
3962   // Negative length arrays will produce weird intermediate dead fast-path code
3963   if (lo > hi)
3964     return TypeInt::ZERO;
3965   if (!chg)
3966     return size;
3967   return TypeInt::make(lo, hi, Type::WidenMin);
3968 }
3969 
3970 //-------------------------------cast_to_size----------------------------------
3971 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3972   assert(new_size != NULL, "");
3973   new_size = narrow_size_type(new_size);
3974   if (new_size == size())  return this;
3975   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3976   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3977 }
3978 
3979 //------------------------------cast_to_stable---------------------------------
3980 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3981   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3982     return this;
3983 
3984   const Type* elem = this->elem();
3985   const TypePtr* elem_ptr = elem->make_ptr();
3986 
3987   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3988     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3989     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3990   }
3991 
3992   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3993 
3994   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3995 }
3996 
3997 //-----------------------------stable_dimension--------------------------------
3998 int TypeAryPtr::stable_dimension() const {
3999   if (!is_stable())  return 0;
4000   int dim = 1;
4001   const TypePtr* elem_ptr = elem()->make_ptr();
4002   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4003     dim += elem_ptr->is_aryptr()->stable_dimension();
4004   return dim;
4005 }
4006 
4007 //----------------------cast_to_autobox_cache-----------------------------------
4008 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4009   if (is_autobox_cache() == cache)  return this;
4010   const TypeOopPtr* etype = elem()->make_oopptr();
4011   if (etype == NULL)  return this;
4012   // The pointers in the autobox arrays are always non-null.
4013   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4014   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4015   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4016   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4017 }
4018 
4019 //------------------------------eq---------------------------------------------
4020 // Structural equality check for Type representations
4021 bool TypeAryPtr::eq( const Type *t ) const {
4022   const TypeAryPtr *p = t->is_aryptr();
4023   return
4024     _ary == p->_ary &&  // Check array
4025     TypeOopPtr::eq(p);  // Check sub-parts
4026 }
4027 
4028 //------------------------------hash-------------------------------------------
4029 // Type-specific hashing function.
4030 int TypeAryPtr::hash(void) const {
4031   return (intptr_t)_ary + TypeOopPtr::hash();
4032 }
4033 
4034 //------------------------------meet-------------------------------------------
4035 // Compute the MEET of two types.  It returns a new Type object.
4036 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4037   // Perform a fast test for common case; meeting the same types together.
4038   if( this == t ) return this;  // Meeting same type-rep?
4039   // Current "this->_base" is Pointer
4040   switch (t->base()) {          // switch on original type
4041 
4042   // Mixing ints & oops happens when javac reuses local variables
4043   case Int:
4044   case Long:
4045   case FloatTop:
4046   case FloatCon:
4047   case FloatBot:
4048   case DoubleTop:
4049   case DoubleCon:
4050   case DoubleBot:
4051   case NarrowOop:
4052   case NarrowKlass:
4053   case Bottom:                  // Ye Olde Default
4054     return Type::BOTTOM;
4055   case Top:
4056     return this;
4057 
4058   default:                      // All else is a mistake
4059     typerr(t);
4060 
4061   case OopPtr: {                // Meeting to OopPtrs
4062     // Found a OopPtr type vs self-AryPtr type
4063     const TypeOopPtr *tp = t->is_oopptr();
4064     int offset = meet_offset(tp->offset());
4065     PTR ptr = meet_ptr(tp->ptr());
4066     int depth = meet_inline_depth(tp->inline_depth());
4067     const TypePtr* speculative = xmeet_speculative(tp);
4068     switch (tp->ptr()) {
4069     case TopPTR:
4070     case AnyNull: {
4071       int instance_id = meet_instance_id(InstanceTop);
4072       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4073                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4074     }
4075     case BotPTR:
4076     case NotNull: {
4077       int instance_id = meet_instance_id(tp->instance_id());
4078       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4079     }
4080     default: ShouldNotReachHere();
4081     }
4082   }
4083 
4084   case AnyPtr: {                // Meeting two AnyPtrs
4085     // Found an AnyPtr type vs self-AryPtr type
4086     const TypePtr *tp = t->is_ptr();
4087     int offset = meet_offset(tp->offset());
4088     PTR ptr = meet_ptr(tp->ptr());
4089     const TypePtr* speculative = xmeet_speculative(tp);
4090     int depth = meet_inline_depth(tp->inline_depth());
4091     switch (tp->ptr()) {
4092     case TopPTR:
4093       return this;
4094     case BotPTR:
4095     case NotNull:
4096       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4097     case Null:
4098       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4099       // else fall through to AnyNull
4100     case AnyNull: {
4101       int instance_id = meet_instance_id(InstanceTop);
4102       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4103                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4104     }
4105     default: ShouldNotReachHere();
4106     }
4107   }
4108 
4109   case MetadataPtr:
4110   case KlassPtr:
4111   case RawPtr: return TypePtr::BOTTOM;
4112 
4113   case AryPtr: {                // Meeting 2 references?
4114     const TypeAryPtr *tap = t->is_aryptr();
4115     int off = meet_offset(tap->offset());
4116     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4117     PTR ptr = meet_ptr(tap->ptr());
4118     int instance_id = meet_instance_id(tap->instance_id());
4119     const TypePtr* speculative = xmeet_speculative(tap);
4120     int depth = meet_inline_depth(tap->inline_depth());
4121     ciKlass* lazy_klass = NULL;
4122     if (tary->_elem->isa_int()) {
4123       // Integral array element types have irrelevant lattice relations.
4124       // It is the klass that determines array layout, not the element type.
4125       if (_klass == NULL)
4126         lazy_klass = tap->_klass;
4127       else if (tap->_klass == NULL || tap->_klass == _klass) {
4128         lazy_klass = _klass;
4129       } else {
4130         // Something like byte[int+] meets char[int+].
4131         // This must fall to bottom, not (int[-128..65535])[int+].
4132         instance_id = InstanceBot;
4133         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4134       }
4135     } else // Non integral arrays.
4136       // Must fall to bottom if exact klasses in upper lattice
4137       // are not equal or super klass is exact.
4138       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4139           // meet with top[] and bottom[] are processed further down:
4140           tap->_klass != NULL  && this->_klass != NULL   &&
4141           // both are exact and not equal:
4142           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4143            // 'tap'  is exact and super or unrelated:
4144            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4145            // 'this' is exact and super or unrelated:
4146            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4147       if (above_centerline(ptr)) {
4148         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4149       }
4150       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4151     }
4152 
4153     bool xk = false;
4154     switch (tap->ptr()) {
4155     case AnyNull:
4156     case TopPTR:
4157       // Compute new klass on demand, do not use tap->_klass
4158       if (below_centerline(this->_ptr)) {
4159         xk = this->_klass_is_exact;
4160       } else {
4161         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4162       }
4163       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4164     case Constant: {
4165       ciObject* o = const_oop();
4166       if( _ptr == Constant ) {
4167         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4168           xk = (klass() == tap->klass());
4169           ptr = NotNull;
4170           o = NULL;
4171           instance_id = InstanceBot;
4172         } else {
4173           xk = true;
4174         }
4175       } else if(above_centerline(_ptr)) {
4176         o = tap->const_oop();
4177         xk = true;
4178       } else {
4179         // Only precise for identical arrays
4180         xk = this->_klass_is_exact && (klass() == tap->klass());
4181       }
4182       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4183     }
4184     case NotNull:
4185     case BotPTR:
4186       // Compute new klass on demand, do not use tap->_klass
4187       if (above_centerline(this->_ptr))
4188             xk = tap->_klass_is_exact;
4189       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4190               (klass() == tap->klass()); // Only precise for identical arrays
4191       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4192     default: ShouldNotReachHere();
4193     }
4194   }
4195 
4196   // All arrays inherit from Object class
4197   case InstPtr: {
4198     const TypeInstPtr *tp = t->is_instptr();
4199     int offset = meet_offset(tp->offset());
4200     PTR ptr = meet_ptr(tp->ptr());
4201     int instance_id = meet_instance_id(tp->instance_id());
4202     const TypePtr* speculative = xmeet_speculative(tp);
4203     int depth = meet_inline_depth(tp->inline_depth());
4204     switch (ptr) {
4205     case TopPTR:
4206     case AnyNull:                // Fall 'down' to dual of object klass
4207       // For instances when a subclass meets a superclass we fall
4208       // below the centerline when the superclass is exact. We need to
4209       // do the same here.
4210       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4211         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4212       } else {
4213         // cannot subclass, so the meet has to fall badly below the centerline
4214         ptr = NotNull;
4215         instance_id = InstanceBot;
4216         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4217       }
4218     case Constant:
4219     case NotNull:
4220     case BotPTR:                // Fall down to object klass
4221       // LCA is object_klass, but if we subclass from the top we can do better
4222       if (above_centerline(tp->ptr())) {
4223         // If 'tp'  is above the centerline and it is Object class
4224         // then we can subclass in the Java class hierarchy.
4225         // For instances when a subclass meets a superclass we fall
4226         // below the centerline when the superclass is exact. We need
4227         // to do the same here.
4228         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4229           // that is, my array type is a subtype of 'tp' klass
4230           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4231                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4232         }
4233       }
4234       // The other case cannot happen, since t cannot be a subtype of an array.
4235       // The meet falls down to Object class below centerline.
4236       if( ptr == Constant )
4237          ptr = NotNull;
4238       instance_id = InstanceBot;
4239       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4240     default: typerr(t);
4241     }
4242   }
4243   }
4244   return this;                  // Lint noise
4245 }
4246 
4247 //------------------------------xdual------------------------------------------
4248 // Dual: compute field-by-field dual
4249 const Type *TypeAryPtr::xdual() const {
4250   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4251 }
4252 
4253 //----------------------interface_vs_oop---------------------------------------
4254 #ifdef ASSERT
4255 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4256   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4257   if (t_aryptr) {
4258     return _ary->interface_vs_oop(t_aryptr->_ary);
4259   }
4260   return false;
4261 }
4262 #endif
4263 
4264 //------------------------------dump2------------------------------------------
4265 #ifndef PRODUCT
4266 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4267   _ary->dump2(d,depth,st);
4268   switch( _ptr ) {
4269   case Constant:
4270     const_oop()->print(st);
4271     break;
4272   case BotPTR:
4273     if (!WizardMode && !Verbose) {
4274       if( _klass_is_exact ) st->print(":exact");
4275       break;
4276     }
4277   case TopPTR:
4278   case AnyNull:
4279   case NotNull:
4280     st->print(":%s", ptr_msg[_ptr]);
4281     if( _klass_is_exact ) st->print(":exact");
4282     break;
4283   }
4284 
4285   if( _offset != 0 ) {
4286     int header_size = objArrayOopDesc::header_size() * wordSize;
4287     if( _offset == OffsetTop )       st->print("+undefined");
4288     else if( _offset == OffsetBot )  st->print("+any");
4289     else if( _offset < header_size ) st->print("+%d", _offset);
4290     else {
4291       BasicType basic_elem_type = elem()->basic_type();
4292       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4293       int elem_size = type2aelembytes(basic_elem_type);
4294       st->print("[%d]", (_offset - array_base)/elem_size);
4295     }
4296   }
4297   st->print(" *");
4298   if (_instance_id == InstanceTop)
4299     st->print(",iid=top");
4300   else if (_instance_id != InstanceBot)
4301     st->print(",iid=%d",_instance_id);
4302 
4303   dump_inline_depth(st);
4304   dump_speculative(st);
4305 }
4306 #endif
4307 
4308 bool TypeAryPtr::empty(void) const {
4309   if (_ary->empty())       return true;
4310   return TypeOopPtr::empty();
4311 }
4312 
4313 //------------------------------add_offset-------------------------------------
4314 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4315   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4316 }
4317 
4318 const Type *TypeAryPtr::remove_speculative() const {
4319   if (_speculative == NULL) {
4320     return this;
4321   }
4322   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4323   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4324 }
4325 
4326 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4327   if (!UseInlineDepthForSpeculativeTypes) {
4328     return this;
4329   }
4330   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4331 }
4332 
4333 //=============================================================================
4334 
4335 //------------------------------hash-------------------------------------------
4336 // Type-specific hashing function.
4337 int TypeNarrowPtr::hash(void) const {
4338   return _ptrtype->hash() + 7;
4339 }
4340 
4341 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4342   return _ptrtype->singleton();
4343 }
4344 
4345 bool TypeNarrowPtr::empty(void) const {
4346   return _ptrtype->empty();
4347 }
4348 
4349 intptr_t TypeNarrowPtr::get_con() const {
4350   return _ptrtype->get_con();
4351 }
4352 
4353 bool TypeNarrowPtr::eq( const Type *t ) const {
4354   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4355   if (tc != NULL) {
4356     if (_ptrtype->base() != tc->_ptrtype->base()) {
4357       return false;
4358     }
4359     return tc->_ptrtype->eq(_ptrtype);
4360   }
4361   return false;
4362 }
4363 
4364 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4365   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4366   return make_same_narrowptr(odual);
4367 }
4368 
4369 
4370 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4371   if (isa_same_narrowptr(kills)) {
4372     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4373     if (ft->empty())
4374       return Type::TOP;           // Canonical empty value
4375     if (ft->isa_ptr()) {
4376       return make_hash_same_narrowptr(ft->isa_ptr());
4377     }
4378     return ft;
4379   } else if (kills->isa_ptr()) {
4380     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4381     if (ft->empty())
4382       return Type::TOP;           // Canonical empty value
4383     return ft;
4384   } else {
4385     return Type::TOP;
4386   }
4387 }
4388 
4389 //------------------------------xmeet------------------------------------------
4390 // Compute the MEET of two types.  It returns a new Type object.
4391 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4392   // Perform a fast test for common case; meeting the same types together.
4393   if( this == t ) return this;  // Meeting same type-rep?
4394 
4395   if (t->base() == base()) {
4396     const Type* result = _ptrtype->xmeet(t->make_ptr());
4397     if (result->isa_ptr()) {
4398       return make_hash_same_narrowptr(result->is_ptr());
4399     }
4400     return result;
4401   }
4402 
4403   // Current "this->_base" is NarrowKlass or NarrowOop
4404   switch (t->base()) {          // switch on original type
4405 
4406   case Int:                     // Mixing ints & oops happens when javac
4407   case Long:                    // reuses local variables
4408   case FloatTop:
4409   case FloatCon:
4410   case FloatBot:
4411   case DoubleTop:
4412   case DoubleCon:
4413   case DoubleBot:
4414   case AnyPtr:
4415   case RawPtr:
4416   case OopPtr:
4417   case InstPtr:
4418   case AryPtr:
4419   case MetadataPtr:
4420   case KlassPtr:
4421   case NarrowOop:
4422   case NarrowKlass:
4423 
4424   case Bottom:                  // Ye Olde Default
4425     return Type::BOTTOM;
4426   case Top:
4427     return this;
4428 
4429   default:                      // All else is a mistake
4430     typerr(t);
4431 
4432   } // End of switch
4433 
4434   return this;
4435 }
4436 
4437 #ifndef PRODUCT
4438 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4439   _ptrtype->dump2(d, depth, st);
4440 }
4441 #endif
4442 
4443 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4444 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4445 
4446 
4447 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4448   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4449 }
4450 
4451 const Type* TypeNarrowOop::remove_speculative() const {
4452   return make(_ptrtype->remove_speculative()->is_ptr());
4453 }
4454 
4455 const Type* TypeNarrowOop::cleanup_speculative() const {
4456   return make(_ptrtype->cleanup_speculative()->is_ptr());
4457 }
4458 
4459 #ifndef PRODUCT
4460 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4461   st->print("narrowoop: ");
4462   TypeNarrowPtr::dump2(d, depth, st);
4463 }
4464 #endif
4465 
4466 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4467 
4468 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4469   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4470 }
4471 
4472 #ifndef PRODUCT
4473 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4474   st->print("narrowklass: ");
4475   TypeNarrowPtr::dump2(d, depth, st);
4476 }
4477 #endif
4478 
4479 
4480 //------------------------------eq---------------------------------------------
4481 // Structural equality check for Type representations
4482 bool TypeMetadataPtr::eq( const Type *t ) const {
4483   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4484   ciMetadata* one = metadata();
4485   ciMetadata* two = a->metadata();
4486   if (one == NULL || two == NULL) {
4487     return (one == two) && TypePtr::eq(t);
4488   } else {
4489     return one->equals(two) && TypePtr::eq(t);
4490   }
4491 }
4492 
4493 //------------------------------hash-------------------------------------------
4494 // Type-specific hashing function.
4495 int TypeMetadataPtr::hash(void) const {
4496   return
4497     (metadata() ? metadata()->hash() : 0) +
4498     TypePtr::hash();
4499 }
4500 
4501 //------------------------------singleton--------------------------------------
4502 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4503 // constants
4504 bool TypeMetadataPtr::singleton(void) const {
4505   // detune optimizer to not generate constant metadata + constant offset as a constant!
4506   // TopPTR, Null, AnyNull, Constant are all singletons
4507   return (_offset == 0) && !below_centerline(_ptr);
4508 }
4509 
4510 //------------------------------add_offset-------------------------------------
4511 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4512   return make( _ptr, _metadata, xadd_offset(offset));
4513 }
4514 
4515 //-----------------------------filter------------------------------------------
4516 // Do not allow interface-vs.-noninterface joins to collapse to top.
4517 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4518   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4519   if (ft == NULL || ft->empty())
4520     return Type::TOP;           // Canonical empty value
4521   return ft;
4522 }
4523 
4524  //------------------------------get_con----------------------------------------
4525 intptr_t TypeMetadataPtr::get_con() const {
4526   assert( _ptr == Null || _ptr == Constant, "" );
4527   assert( _offset >= 0, "" );
4528 
4529   if (_offset != 0) {
4530     // After being ported to the compiler interface, the compiler no longer
4531     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4532     // to a handle at compile time.  This handle is embedded in the generated
4533     // code and dereferenced at the time the nmethod is made.  Until that time,
4534     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4535     // have access to the addresses!).  This does not seem to currently happen,
4536     // but this assertion here is to help prevent its occurence.
4537     tty->print_cr("Found oop constant with non-zero offset");
4538     ShouldNotReachHere();
4539   }
4540 
4541   return (intptr_t)metadata()->constant_encoding();
4542 }
4543 
4544 //------------------------------cast_to_ptr_type-------------------------------
4545 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4546   if( ptr == _ptr ) return this;
4547   return make(ptr, metadata(), _offset);
4548 }
4549 
4550 //------------------------------meet-------------------------------------------
4551 // Compute the MEET of two types.  It returns a new Type object.
4552 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4553   // Perform a fast test for common case; meeting the same types together.
4554   if( this == t ) return this;  // Meeting same type-rep?
4555 
4556   // Current "this->_base" is OopPtr
4557   switch (t->base()) {          // switch on original type
4558 
4559   case Int:                     // Mixing ints & oops happens when javac
4560   case Long:                    // reuses local variables
4561   case FloatTop:
4562   case FloatCon:
4563   case FloatBot:
4564   case DoubleTop:
4565   case DoubleCon:
4566   case DoubleBot:
4567   case NarrowOop:
4568   case NarrowKlass:
4569   case Bottom:                  // Ye Olde Default
4570     return Type::BOTTOM;
4571   case Top:
4572     return this;
4573 
4574   default:                      // All else is a mistake
4575     typerr(t);
4576 
4577   case AnyPtr: {
4578     // Found an AnyPtr type vs self-OopPtr type
4579     const TypePtr *tp = t->is_ptr();
4580     int offset = meet_offset(tp->offset());
4581     PTR ptr = meet_ptr(tp->ptr());
4582     switch (tp->ptr()) {
4583     case Null:
4584       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4585       // else fall through:
4586     case TopPTR:
4587     case AnyNull: {
4588       return make(ptr, _metadata, offset);
4589     }
4590     case BotPTR:
4591     case NotNull:
4592       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4593     default: typerr(t);
4594     }
4595   }
4596 
4597   case RawPtr:
4598   case KlassPtr:
4599   case OopPtr:
4600   case InstPtr:
4601   case AryPtr:
4602     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4603 
4604   case MetadataPtr: {
4605     const TypeMetadataPtr *tp = t->is_metadataptr();
4606     int offset = meet_offset(tp->offset());
4607     PTR tptr = tp->ptr();
4608     PTR ptr = meet_ptr(tptr);
4609     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4610     if (tptr == TopPTR || _ptr == TopPTR ||
4611         metadata()->equals(tp->metadata())) {
4612       return make(ptr, md, offset);
4613     }
4614     // metadata is different
4615     if( ptr == Constant ) {  // Cannot be equal constants, so...
4616       if( tptr == Constant && _ptr != Constant)  return t;
4617       if( _ptr == Constant && tptr != Constant)  return this;
4618       ptr = NotNull;            // Fall down in lattice
4619     }
4620     return make(ptr, NULL, offset);
4621     break;
4622   }
4623   } // End of switch
4624   return this;                  // Return the double constant
4625 }
4626 
4627 
4628 //------------------------------xdual------------------------------------------
4629 // Dual of a pure metadata pointer.
4630 const Type *TypeMetadataPtr::xdual() const {
4631   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4632 }
4633 
4634 //------------------------------dump2------------------------------------------
4635 #ifndef PRODUCT
4636 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4637   st->print("metadataptr:%s", ptr_msg[_ptr]);
4638   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4639   switch( _offset ) {
4640   case OffsetTop: st->print("+top"); break;
4641   case OffsetBot: st->print("+any"); break;
4642   case         0: break;
4643   default:        st->print("+%d",_offset); break;
4644   }
4645 }
4646 #endif
4647 
4648 
4649 //=============================================================================
4650 // Convenience common pre-built type.
4651 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4652 
4653 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4654   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4655 }
4656 
4657 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4658   return make(Constant, m, 0);
4659 }
4660 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4661   return make(Constant, m, 0);
4662 }
4663 
4664 //------------------------------make-------------------------------------------
4665 // Create a meta data constant
4666 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4667   assert(m == NULL || !m->is_klass(), "wrong type");
4668   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4669 }
4670 
4671 
4672 //=============================================================================
4673 // Convenience common pre-built types.
4674 
4675 // Not-null object klass or below
4676 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4677 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4678 
4679 //------------------------------TypeKlassPtr-----------------------------------
4680 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4681   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4682 }
4683 
4684 //------------------------------make-------------------------------------------
4685 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4686 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4687   assert( k != NULL, "Expect a non-NULL klass");
4688   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4689   TypeKlassPtr *r =
4690     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4691 
4692   return r;
4693 }
4694 
4695 //------------------------------eq---------------------------------------------
4696 // Structural equality check for Type representations
4697 bool TypeKlassPtr::eq( const Type *t ) const {
4698   const TypeKlassPtr *p = t->is_klassptr();
4699   return
4700     klass()->equals(p->klass()) &&
4701     TypePtr::eq(p);
4702 }
4703 
4704 //------------------------------hash-------------------------------------------
4705 // Type-specific hashing function.
4706 int TypeKlassPtr::hash(void) const {
4707   return klass()->hash() + TypePtr::hash();
4708 }
4709 
4710 //------------------------------singleton--------------------------------------
4711 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4712 // constants
4713 bool TypeKlassPtr::singleton(void) const {
4714   // detune optimizer to not generate constant klass + constant offset as a constant!
4715   // TopPTR, Null, AnyNull, Constant are all singletons
4716   return (_offset == 0) && !below_centerline(_ptr);
4717 }
4718 
4719 // Do not allow interface-vs.-noninterface joins to collapse to top.
4720 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4721   // logic here mirrors the one from TypeOopPtr::filter. See comments
4722   // there.
4723   const Type* ft = join_helper(kills, include_speculative);
4724   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4725   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4726 
4727   if (ft->empty()) {
4728     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4729       return kills;             // Uplift to interface
4730 
4731     return Type::TOP;           // Canonical empty value
4732   }
4733 
4734   // Interface klass type could be exact in opposite to interface type,
4735   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4736   if (ftkp != NULL && ktkp != NULL &&
4737       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4738       !ftkp->klass_is_exact() && // Keep exact interface klass
4739       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4740     return ktkp->cast_to_ptr_type(ftkp->ptr());
4741   }
4742 
4743   return ft;
4744 }
4745 
4746 //----------------------compute_klass------------------------------------------
4747 // Compute the defining klass for this class
4748 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4749   // Compute _klass based on element type.
4750   ciKlass* k_ary = NULL;
4751   const TypeInstPtr *tinst;
4752   const TypeAryPtr *tary;
4753   const Type* el = elem();
4754   if (el->isa_narrowoop()) {
4755     el = el->make_ptr();
4756   }
4757 
4758   // Get element klass
4759   if ((tinst = el->isa_instptr()) != NULL) {
4760     // Compute array klass from element klass
4761     k_ary = ciObjArrayKlass::make(tinst->klass());
4762   } else if ((tary = el->isa_aryptr()) != NULL) {
4763     // Compute array klass from element klass
4764     ciKlass* k_elem = tary->klass();
4765     // If element type is something like bottom[], k_elem will be null.
4766     if (k_elem != NULL)
4767       k_ary = ciObjArrayKlass::make(k_elem);
4768   } else if ((el->base() == Type::Top) ||
4769              (el->base() == Type::Bottom)) {
4770     // element type of Bottom occurs from meet of basic type
4771     // and object; Top occurs when doing join on Bottom.
4772     // Leave k_ary at NULL.
4773   } else {
4774     // Cannot compute array klass directly from basic type,
4775     // since subtypes of TypeInt all have basic type T_INT.
4776 #ifdef ASSERT
4777     if (verify && el->isa_int()) {
4778       // Check simple cases when verifying klass.
4779       BasicType bt = T_ILLEGAL;
4780       if (el == TypeInt::BYTE) {
4781         bt = T_BYTE;
4782       } else if (el == TypeInt::SHORT) {
4783         bt = T_SHORT;
4784       } else if (el == TypeInt::CHAR) {
4785         bt = T_CHAR;
4786       } else if (el == TypeInt::INT) {
4787         bt = T_INT;
4788       } else {
4789         return _klass; // just return specified klass
4790       }
4791       return ciTypeArrayKlass::make(bt);
4792     }
4793 #endif
4794     assert(!el->isa_int(),
4795            "integral arrays must be pre-equipped with a class");
4796     // Compute array klass directly from basic type
4797     k_ary = ciTypeArrayKlass::make(el->basic_type());
4798   }
4799   return k_ary;
4800 }
4801 
4802 //------------------------------klass------------------------------------------
4803 // Return the defining klass for this class
4804 ciKlass* TypeAryPtr::klass() const {
4805   if( _klass ) return _klass;   // Return cached value, if possible
4806 
4807   // Oops, need to compute _klass and cache it
4808   ciKlass* k_ary = compute_klass();
4809 
4810   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4811     // The _klass field acts as a cache of the underlying
4812     // ciKlass for this array type.  In order to set the field,
4813     // we need to cast away const-ness.
4814     //
4815     // IMPORTANT NOTE: we *never* set the _klass field for the
4816     // type TypeAryPtr::OOPS.  This Type is shared between all
4817     // active compilations.  However, the ciKlass which represents
4818     // this Type is *not* shared between compilations, so caching
4819     // this value would result in fetching a dangling pointer.
4820     //
4821     // Recomputing the underlying ciKlass for each request is
4822     // a bit less efficient than caching, but calls to
4823     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4824     ((TypeAryPtr*)this)->_klass = k_ary;
4825     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4826         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4827       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4828     }
4829   }
4830   return k_ary;
4831 }
4832 
4833 
4834 //------------------------------add_offset-------------------------------------
4835 // Access internals of klass object
4836 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4837   return make( _ptr, klass(), xadd_offset(offset) );
4838 }
4839 
4840 //------------------------------cast_to_ptr_type-------------------------------
4841 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4842   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4843   if( ptr == _ptr ) return this;
4844   return make(ptr, _klass, _offset);
4845 }
4846 
4847 
4848 //-----------------------------cast_to_exactness-------------------------------
4849 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4850   if( klass_is_exact == _klass_is_exact ) return this;
4851   if (!UseExactTypes)  return this;
4852   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4853 }
4854 
4855 
4856 //-----------------------------as_instance_type--------------------------------
4857 // Corresponding type for an instance of the given class.
4858 // It will be NotNull, and exact if and only if the klass type is exact.
4859 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4860   ciKlass* k = klass();
4861   bool    xk = klass_is_exact();
4862   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4863   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4864   guarantee(toop != NULL, "need type for given klass");
4865   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4866   return toop->cast_to_exactness(xk)->is_oopptr();
4867 }
4868 
4869 
4870 //------------------------------xmeet------------------------------------------
4871 // Compute the MEET of two types, return a new Type object.
4872 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4873   // Perform a fast test for common case; meeting the same types together.
4874   if( this == t ) return this;  // Meeting same type-rep?
4875 
4876   // Current "this->_base" is Pointer
4877   switch (t->base()) {          // switch on original type
4878 
4879   case Int:                     // Mixing ints & oops happens when javac
4880   case Long:                    // reuses local variables
4881   case FloatTop:
4882   case FloatCon:
4883   case FloatBot:
4884   case DoubleTop:
4885   case DoubleCon:
4886   case DoubleBot:
4887   case NarrowOop:
4888   case NarrowKlass:
4889   case Bottom:                  // Ye Olde Default
4890     return Type::BOTTOM;
4891   case Top:
4892     return this;
4893 
4894   default:                      // All else is a mistake
4895     typerr(t);
4896 
4897   case AnyPtr: {                // Meeting to AnyPtrs
4898     // Found an AnyPtr type vs self-KlassPtr type
4899     const TypePtr *tp = t->is_ptr();
4900     int offset = meet_offset(tp->offset());
4901     PTR ptr = meet_ptr(tp->ptr());
4902     switch (tp->ptr()) {
4903     case TopPTR:
4904       return this;
4905     case Null:
4906       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4907     case AnyNull:
4908       return make( ptr, klass(), offset );
4909     case BotPTR:
4910     case NotNull:
4911       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4912     default: typerr(t);
4913     }
4914   }
4915 
4916   case RawPtr:
4917   case MetadataPtr:
4918   case OopPtr:
4919   case AryPtr:                  // Meet with AryPtr
4920   case InstPtr:                 // Meet with InstPtr
4921     return TypePtr::BOTTOM;
4922 
4923   //
4924   //             A-top         }
4925   //           /   |   \       }  Tops
4926   //       B-top A-any C-top   }
4927   //          | /  |  \ |      }  Any-nulls
4928   //       B-any   |   C-any   }
4929   //          |    |    |
4930   //       B-con A-con C-con   } constants; not comparable across classes
4931   //          |    |    |
4932   //       B-not   |   C-not   }
4933   //          | \  |  / |      }  not-nulls
4934   //       B-bot A-not C-bot   }
4935   //           \   |   /       }  Bottoms
4936   //             A-bot         }
4937   //
4938 
4939   case KlassPtr: {  // Meet two KlassPtr types
4940     const TypeKlassPtr *tkls = t->is_klassptr();
4941     int  off     = meet_offset(tkls->offset());
4942     PTR  ptr     = meet_ptr(tkls->ptr());
4943 
4944     // Check for easy case; klasses are equal (and perhaps not loaded!)
4945     // If we have constants, then we created oops so classes are loaded
4946     // and we can handle the constants further down.  This case handles
4947     // not-loaded classes
4948     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4949       return make( ptr, klass(), off );
4950     }
4951 
4952     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4953     ciKlass* tkls_klass = tkls->klass();
4954     ciKlass* this_klass = this->klass();
4955     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4956     assert( this_klass->is_loaded(), "This class should have been loaded.");
4957 
4958     // If 'this' type is above the centerline and is a superclass of the
4959     // other, we can treat 'this' as having the same type as the other.
4960     if ((above_centerline(this->ptr())) &&
4961         tkls_klass->is_subtype_of(this_klass)) {
4962       this_klass = tkls_klass;
4963     }
4964     // If 'tinst' type is above the centerline and is a superclass of the
4965     // other, we can treat 'tinst' as having the same type as the other.
4966     if ((above_centerline(tkls->ptr())) &&
4967         this_klass->is_subtype_of(tkls_klass)) {
4968       tkls_klass = this_klass;
4969     }
4970 
4971     // Check for classes now being equal
4972     if (tkls_klass->equals(this_klass)) {
4973       // If the klasses are equal, the constants may still differ.  Fall to
4974       // NotNull if they do (neither constant is NULL; that is a special case
4975       // handled elsewhere).
4976       if( ptr == Constant ) {
4977         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4978             this->klass()->equals(tkls->klass()));
4979         else if (above_centerline(this->ptr()));
4980         else if (above_centerline(tkls->ptr()));
4981         else
4982           ptr = NotNull;
4983       }
4984       return make( ptr, this_klass, off );
4985     } // Else classes are not equal
4986 
4987     // Since klasses are different, we require the LCA in the Java
4988     // class hierarchy - which means we have to fall to at least NotNull.
4989     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4990       ptr = NotNull;
4991     // Now we find the LCA of Java classes
4992     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4993     return   make( ptr, k, off );
4994   } // End of case KlassPtr
4995 
4996   } // End of switch
4997   return this;                  // Return the double constant
4998 }
4999 
5000 //------------------------------xdual------------------------------------------
5001 // Dual: compute field-by-field dual
5002 const Type    *TypeKlassPtr::xdual() const {
5003   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5004 }
5005 
5006 //------------------------------get_con----------------------------------------
5007 intptr_t TypeKlassPtr::get_con() const {
5008   assert( _ptr == Null || _ptr == Constant, "" );
5009   assert( _offset >= 0, "" );
5010 
5011   if (_offset != 0) {
5012     // After being ported to the compiler interface, the compiler no longer
5013     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5014     // to a handle at compile time.  This handle is embedded in the generated
5015     // code and dereferenced at the time the nmethod is made.  Until that time,
5016     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5017     // have access to the addresses!).  This does not seem to currently happen,
5018     // but this assertion here is to help prevent its occurence.
5019     tty->print_cr("Found oop constant with non-zero offset");
5020     ShouldNotReachHere();
5021   }
5022 
5023   return (intptr_t)klass()->constant_encoding();
5024 }
5025 //------------------------------dump2------------------------------------------
5026 // Dump Klass Type
5027 #ifndef PRODUCT
5028 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5029   switch( _ptr ) {
5030   case Constant:
5031     st->print("precise ");
5032   case NotNull:
5033     {
5034       const char *name = klass()->name()->as_utf8();
5035       if( name ) {
5036         st->print("klass %s: " INTPTR_FORMAT, name, klass());
5037       } else {
5038         ShouldNotReachHere();
5039       }
5040     }
5041   case BotPTR:
5042     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5043   case TopPTR:
5044   case AnyNull:
5045     st->print(":%s", ptr_msg[_ptr]);
5046     if( _klass_is_exact ) st->print(":exact");
5047     break;
5048   }
5049 
5050   if( _offset ) {               // Dump offset, if any
5051     if( _offset == OffsetBot )      { st->print("+any"); }
5052     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5053     else                            { st->print("+%d", _offset); }
5054   }
5055 
5056   st->print(" *");
5057 }
5058 #endif
5059 
5060 
5061 
5062 //=============================================================================
5063 // Convenience common pre-built types.
5064 
5065 //------------------------------make-------------------------------------------
5066 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5067   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5068 }
5069 
5070 //------------------------------make-------------------------------------------
5071 const TypeFunc *TypeFunc::make(ciMethod* method) {
5072   Compile* C = Compile::current();
5073   const TypeFunc* tf = C->last_tf(method); // check cache
5074   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5075   const TypeTuple *domain;
5076   if (method->is_static()) {
5077     domain = TypeTuple::make_domain(NULL, method->signature());
5078   } else {
5079     domain = TypeTuple::make_domain(method->holder(), method->signature());
5080   }
5081   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5082   tf = TypeFunc::make(domain, range);
5083   C->set_last_tf(method, tf);  // fill cache
5084   return tf;
5085 }
5086 
5087 //------------------------------meet-------------------------------------------
5088 // Compute the MEET of two types.  It returns a new Type object.
5089 const Type *TypeFunc::xmeet( const Type *t ) const {
5090   // Perform a fast test for common case; meeting the same types together.
5091   if( this == t ) return this;  // Meeting same type-rep?
5092 
5093   // Current "this->_base" is Func
5094   switch (t->base()) {          // switch on original type
5095 
5096   case Bottom:                  // Ye Olde Default
5097     return t;
5098 
5099   default:                      // All else is a mistake
5100     typerr(t);
5101 
5102   case Top:
5103     break;
5104   }
5105   return this;                  // Return the double constant
5106 }
5107 
5108 //------------------------------xdual------------------------------------------
5109 // Dual: compute field-by-field dual
5110 const Type *TypeFunc::xdual() const {
5111   return this;
5112 }
5113 
5114 //------------------------------eq---------------------------------------------
5115 // Structural equality check for Type representations
5116 bool TypeFunc::eq( const Type *t ) const {
5117   const TypeFunc *a = (const TypeFunc*)t;
5118   return _domain == a->_domain &&
5119     _range == a->_range;
5120 }
5121 
5122 //------------------------------hash-------------------------------------------
5123 // Type-specific hashing function.
5124 int TypeFunc::hash(void) const {
5125   return (intptr_t)_domain + (intptr_t)_range;
5126 }
5127 
5128 //------------------------------dump2------------------------------------------
5129 // Dump Function Type
5130 #ifndef PRODUCT
5131 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5132   if( _range->cnt() <= Parms )
5133     st->print("void");
5134   else {
5135     uint i;
5136     for (i = Parms; i < _range->cnt()-1; i++) {
5137       _range->field_at(i)->dump2(d,depth,st);
5138       st->print("/");
5139     }
5140     _range->field_at(i)->dump2(d,depth,st);
5141   }
5142   st->print(" ");
5143   st->print("( ");
5144   if( !depth || d[this] ) {     // Check for recursive dump
5145     st->print("...)");
5146     return;
5147   }
5148   d.Insert((void*)this,(void*)this);    // Stop recursion
5149   if (Parms < _domain->cnt())
5150     _domain->field_at(Parms)->dump2(d,depth-1,st);
5151   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5152     st->print(", ");
5153     _domain->field_at(i)->dump2(d,depth-1,st);
5154   }
5155   st->print(" )");
5156 }
5157 #endif
5158 
5159 //------------------------------singleton--------------------------------------
5160 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5161 // constants (Ldi nodes).  Singletons are integer, float or double constants
5162 // or a single symbol.
5163 bool TypeFunc::singleton(void) const {
5164   return false;                 // Never a singleton
5165 }
5166 
5167 bool TypeFunc::empty(void) const {
5168   return false;                 // Never empty
5169 }
5170 
5171 
5172 BasicType TypeFunc::return_type() const{
5173   if (range()->cnt() == TypeFunc::Parms) {
5174     return T_VOID;
5175   }
5176   return range()->field_at(TypeFunc::Parms)->basic_type();
5177 }