1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/codeCacheExtensions.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/abstractCompiler.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "interpreter/interpreterRuntime.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "prims/forte.hpp"
  42 #include "prims/jvmtiExport.hpp"
  43 #include "prims/jvmtiRedefineClassesTrace.hpp"
  44 #include "prims/methodHandles.hpp"
  45 #include "prims/nativeLookup.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.inline.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/init.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/javaCalls.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "runtime/vframe.hpp"
  56 #include "runtime/vframeArray.hpp"
  57 #include "utilities/copy.hpp"
  58 #include "utilities/dtrace.hpp"
  59 #include "utilities/events.hpp"
  60 #include "utilities/hashtable.inline.hpp"
  61 #include "utilities/macros.hpp"
  62 #include "utilities/xmlstream.hpp"
  63 #ifdef COMPILER1
  64 #include "c1/c1_Runtime1.hpp"
  65 #endif
  66 
  67 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  68 
  69 // Shared stub locations
  70 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  71 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  72 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  73 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  74 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  75 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  76 
  77 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  78 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  79 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  80 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  81 
  82 #ifdef COMPILER2
  83 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  84 #endif // COMPILER2
  85 
  86 
  87 //----------------------------generate_stubs-----------------------------------
  88 void SharedRuntime::generate_stubs() {
  89   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  90   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  91   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  92   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
  93   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
  94   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
  95 
  96 #ifdef COMPILER2
  97   // Vectors are generated only by C2.
  98   if (is_wide_vector(MaxVectorSize)) {
  99     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 100   }
 101 #endif // COMPILER2
 102   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 103   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 104 
 105   generate_deopt_blob();
 106 
 107 #ifdef COMPILER2
 108   generate_uncommon_trap_blob();
 109 #endif // COMPILER2
 110 }
 111 
 112 #include <math.h>
 113 
 114 // Implementation of SharedRuntime
 115 
 116 #ifndef PRODUCT
 117 // For statistics
 118 int SharedRuntime::_ic_miss_ctr = 0;
 119 int SharedRuntime::_wrong_method_ctr = 0;
 120 int SharedRuntime::_resolve_static_ctr = 0;
 121 int SharedRuntime::_resolve_virtual_ctr = 0;
 122 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 123 int SharedRuntime::_implicit_null_throws = 0;
 124 int SharedRuntime::_implicit_div0_throws = 0;
 125 int SharedRuntime::_throw_null_ctr = 0;
 126 
 127 int SharedRuntime::_nof_normal_calls = 0;
 128 int SharedRuntime::_nof_optimized_calls = 0;
 129 int SharedRuntime::_nof_inlined_calls = 0;
 130 int SharedRuntime::_nof_megamorphic_calls = 0;
 131 int SharedRuntime::_nof_static_calls = 0;
 132 int SharedRuntime::_nof_inlined_static_calls = 0;
 133 int SharedRuntime::_nof_interface_calls = 0;
 134 int SharedRuntime::_nof_optimized_interface_calls = 0;
 135 int SharedRuntime::_nof_inlined_interface_calls = 0;
 136 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 137 int SharedRuntime::_nof_removable_exceptions = 0;
 138 
 139 int SharedRuntime::_new_instance_ctr=0;
 140 int SharedRuntime::_new_array_ctr=0;
 141 int SharedRuntime::_multi1_ctr=0;
 142 int SharedRuntime::_multi2_ctr=0;
 143 int SharedRuntime::_multi3_ctr=0;
 144 int SharedRuntime::_multi4_ctr=0;
 145 int SharedRuntime::_multi5_ctr=0;
 146 int SharedRuntime::_mon_enter_stub_ctr=0;
 147 int SharedRuntime::_mon_exit_stub_ctr=0;
 148 int SharedRuntime::_mon_enter_ctr=0;
 149 int SharedRuntime::_mon_exit_ctr=0;
 150 int SharedRuntime::_partial_subtype_ctr=0;
 151 int SharedRuntime::_jbyte_array_copy_ctr=0;
 152 int SharedRuntime::_jshort_array_copy_ctr=0;
 153 int SharedRuntime::_jint_array_copy_ctr=0;
 154 int SharedRuntime::_jlong_array_copy_ctr=0;
 155 int SharedRuntime::_oop_array_copy_ctr=0;
 156 int SharedRuntime::_checkcast_array_copy_ctr=0;
 157 int SharedRuntime::_unsafe_array_copy_ctr=0;
 158 int SharedRuntime::_generic_array_copy_ctr=0;
 159 int SharedRuntime::_slow_array_copy_ctr=0;
 160 int SharedRuntime::_find_handler_ctr=0;
 161 int SharedRuntime::_rethrow_ctr=0;
 162 
 163 int     SharedRuntime::_ICmiss_index                    = 0;
 164 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 165 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 166 
 167 
 168 void SharedRuntime::trace_ic_miss(address at) {
 169   for (int i = 0; i < _ICmiss_index; i++) {
 170     if (_ICmiss_at[i] == at) {
 171       _ICmiss_count[i]++;
 172       return;
 173     }
 174   }
 175   int index = _ICmiss_index++;
 176   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 177   _ICmiss_at[index] = at;
 178   _ICmiss_count[index] = 1;
 179 }
 180 
 181 void SharedRuntime::print_ic_miss_histogram() {
 182   if (ICMissHistogram) {
 183     tty->print_cr("IC Miss Histogram:");
 184     int tot_misses = 0;
 185     for (int i = 0; i < _ICmiss_index; i++) {
 186       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 187       tot_misses += _ICmiss_count[i];
 188     }
 189     tty->print_cr("Total IC misses: %7d", tot_misses);
 190   }
 191 }
 192 #endif // PRODUCT
 193 
 194 #if INCLUDE_ALL_GCS
 195 
 196 // G1 write-barrier pre: executed before a pointer store.
 197 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 198   if (orig == NULL) {
 199     assert(false, "should be optimized out");
 200     return;
 201   }
 202   assert(orig->is_oop(true /* ignore mark word */), "Error");
 203   // store the original value that was in the field reference
 204   thread->satb_mark_queue().enqueue(orig);
 205 JRT_END
 206 
 207 // G1 write-barrier post: executed after a pointer store.
 208 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 209   thread->dirty_card_queue().enqueue(card_addr);
 210 JRT_END
 211 
 212 #endif // INCLUDE_ALL_GCS
 213 
 214 // G1 write-barrier pre: executed before a pointer store.
 215 JRT_LEAF(void, SharedRuntime::shenandoah_clone_barrier(oopDesc* obj))
 216   oopDesc::bs()->write_region(MemRegion((HeapWord*) obj, obj->size()));
 217 JRT_END
 218 
 219 
 220 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 221   return x * y;
 222 JRT_END
 223 
 224 
 225 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 226   if (x == min_jlong && y == CONST64(-1)) {
 227     return x;
 228   } else {
 229     return x / y;
 230   }
 231 JRT_END
 232 
 233 
 234 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 235   if (x == min_jlong && y == CONST64(-1)) {
 236     return 0;
 237   } else {
 238     return x % y;
 239   }
 240 JRT_END
 241 
 242 
 243 const juint  float_sign_mask  = 0x7FFFFFFF;
 244 const juint  float_infinity   = 0x7F800000;
 245 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 246 const julong double_infinity  = CONST64(0x7FF0000000000000);
 247 
 248 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 249 #ifdef _WIN64
 250   // 64-bit Windows on amd64 returns the wrong values for
 251   // infinity operands.
 252   union { jfloat f; juint i; } xbits, ybits;
 253   xbits.f = x;
 254   ybits.f = y;
 255   // x Mod Infinity == x unless x is infinity
 256   if (((xbits.i & float_sign_mask) != float_infinity) &&
 257        ((ybits.i & float_sign_mask) == float_infinity) ) {
 258     return x;
 259   }
 260 #endif
 261   return ((jfloat)fmod((double)x,(double)y));
 262 JRT_END
 263 
 264 
 265 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 266 #ifdef _WIN64
 267   union { jdouble d; julong l; } xbits, ybits;
 268   xbits.d = x;
 269   ybits.d = y;
 270   // x Mod Infinity == x unless x is infinity
 271   if (((xbits.l & double_sign_mask) != double_infinity) &&
 272        ((ybits.l & double_sign_mask) == double_infinity) ) {
 273     return x;
 274   }
 275 #endif
 276   return ((jdouble)fmod((double)x,(double)y));
 277 JRT_END
 278 
 279 #ifdef __SOFTFP__
 280 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 281   return x + y;
 282 JRT_END
 283 
 284 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 285   return x - y;
 286 JRT_END
 287 
 288 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 289   return x * y;
 290 JRT_END
 291 
 292 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 293   return x / y;
 294 JRT_END
 295 
 296 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 297   return x + y;
 298 JRT_END
 299 
 300 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 301   return x - y;
 302 JRT_END
 303 
 304 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 305   return x * y;
 306 JRT_END
 307 
 308 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 309   return x / y;
 310 JRT_END
 311 
 312 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 313   return (jfloat)x;
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 317   return (jdouble)x;
 318 JRT_END
 319 
 320 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 321   return (jdouble)x;
 322 JRT_END
 323 
 324 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 325   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 326 JRT_END
 327 
 328 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 329   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 330 JRT_END
 331 
 332 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 333   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 334 JRT_END
 335 
 336 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 337   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 338 JRT_END
 339 
 340 // Functions to return the opposite of the aeabi functions for nan.
 341 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 342   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 343 JRT_END
 344 
 345 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 346   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 347 JRT_END
 348 
 349 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 350   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 351 JRT_END
 352 
 353 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 354   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 355 JRT_END
 356 
 357 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 358   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 359 JRT_END
 360 
 361 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 362   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 363 JRT_END
 364 
 365 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 366   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 367 JRT_END
 368 
 369 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 370   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 371 JRT_END
 372 
 373 // Intrinsics make gcc generate code for these.
 374 float  SharedRuntime::fneg(float f)   {
 375   return -f;
 376 }
 377 
 378 double SharedRuntime::dneg(double f)  {
 379   return -f;
 380 }
 381 
 382 #endif // __SOFTFP__
 383 
 384 #if defined(__SOFTFP__) || defined(E500V2)
 385 // Intrinsics make gcc generate code for these.
 386 double SharedRuntime::dabs(double f)  {
 387   return (f <= (double)0.0) ? (double)0.0 - f : f;
 388 }
 389 
 390 #endif
 391 
 392 #if defined(__SOFTFP__) || defined(PPC32)
 393 double SharedRuntime::dsqrt(double f) {
 394   return sqrt(f);
 395 }
 396 #endif
 397 
 398 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 399   if (g_isnan(x))
 400     return 0;
 401   if (x >= (jfloat) max_jint)
 402     return max_jint;
 403   if (x <= (jfloat) min_jint)
 404     return min_jint;
 405   return (jint) x;
 406 JRT_END
 407 
 408 
 409 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 410   if (g_isnan(x))
 411     return 0;
 412   if (x >= (jfloat) max_jlong)
 413     return max_jlong;
 414   if (x <= (jfloat) min_jlong)
 415     return min_jlong;
 416   return (jlong) x;
 417 JRT_END
 418 
 419 
 420 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 421   if (g_isnan(x))
 422     return 0;
 423   if (x >= (jdouble) max_jint)
 424     return max_jint;
 425   if (x <= (jdouble) min_jint)
 426     return min_jint;
 427   return (jint) x;
 428 JRT_END
 429 
 430 
 431 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 432   if (g_isnan(x))
 433     return 0;
 434   if (x >= (jdouble) max_jlong)
 435     return max_jlong;
 436   if (x <= (jdouble) min_jlong)
 437     return min_jlong;
 438   return (jlong) x;
 439 JRT_END
 440 
 441 
 442 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 443   return (jfloat)x;
 444 JRT_END
 445 
 446 
 447 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 448   return (jfloat)x;
 449 JRT_END
 450 
 451 
 452 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 453   return (jdouble)x;
 454 JRT_END
 455 
 456 // Exception handling across interpreter/compiler boundaries
 457 //
 458 // exception_handler_for_return_address(...) returns the continuation address.
 459 // The continuation address is the entry point of the exception handler of the
 460 // previous frame depending on the return address.
 461 
 462 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 463   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 464   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 465 
 466   // Reset method handle flag.
 467   thread->set_is_method_handle_return(false);
 468 
 469   // The fastest case first
 470   CodeBlob* blob = CodeCache::find_blob(return_address);
 471   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 472   if (nm != NULL) {
 473     // Set flag if return address is a method handle call site.
 474     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 475     // native nmethods don't have exception handlers
 476     assert(!nm->is_native_method(), "no exception handler");
 477     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 478     if (nm->is_deopt_pc(return_address)) {
 479       // If we come here because of a stack overflow, the stack may be
 480       // unguarded. Reguard the stack otherwise if we return to the
 481       // deopt blob and the stack bang causes a stack overflow we
 482       // crash.
 483       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 484       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 485       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 486       return SharedRuntime::deopt_blob()->unpack_with_exception();
 487     } else {
 488       return nm->exception_begin();
 489     }
 490   }
 491 
 492   // Entry code
 493   if (StubRoutines::returns_to_call_stub(return_address)) {
 494     return StubRoutines::catch_exception_entry();
 495   }
 496   // Interpreted code
 497   if (Interpreter::contains(return_address)) {
 498     return Interpreter::rethrow_exception_entry();
 499   }
 500 
 501   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 502   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 503 
 504 #ifndef PRODUCT
 505   { ResourceMark rm;
 506     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 507     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 508     tty->print_cr("b) other problem");
 509   }
 510 #endif // PRODUCT
 511 
 512   ShouldNotReachHere();
 513   return NULL;
 514 }
 515 
 516 
 517 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 518   return raw_exception_handler_for_return_address(thread, return_address);
 519 JRT_END
 520 
 521 
 522 address SharedRuntime::get_poll_stub(address pc) {
 523   address stub;
 524   // Look up the code blob
 525   CodeBlob *cb = CodeCache::find_blob(pc);
 526 
 527   // Should be an nmethod
 528   assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 529 
 530   // Look up the relocation information
 531   assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 532     "safepoint polling: type must be poll");
 533 
 534   assert(((NativeInstruction*)pc)->is_safepoint_poll(),
 535     "Only polling locations are used for safepoint");
 536 
 537   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 538   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 539   if (at_poll_return) {
 540     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 541            "polling page return stub not created yet");
 542     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 543   } else if (has_wide_vectors) {
 544     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 545            "polling page vectors safepoint stub not created yet");
 546     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 547   } else {
 548     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 549            "polling page safepoint stub not created yet");
 550     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 551   }
 552 #ifndef PRODUCT
 553   if (TraceSafepoint) {
 554     char buf[256];
 555     jio_snprintf(buf, sizeof(buf),
 556                  "... found polling page %s exception at pc = "
 557                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 558                  at_poll_return ? "return" : "loop",
 559                  (intptr_t)pc, (intptr_t)stub);
 560     tty->print_raw_cr(buf);
 561   }
 562 #endif // PRODUCT
 563   return stub;
 564 }
 565 
 566 
 567 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 568   assert(caller.is_interpreted_frame(), "");
 569   int args_size = ArgumentSizeComputer(sig).size() + 1;
 570   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 571   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 572   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 573   return result;
 574 }
 575 
 576 
 577 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 578   if (JvmtiExport::can_post_on_exceptions()) {
 579     vframeStream vfst(thread, true);
 580     methodHandle method = methodHandle(thread, vfst.method());
 581     address bcp = method()->bcp_from(vfst.bci());
 582     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 583   }
 584   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 585 }
 586 
 587 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 588   Handle h_exception = Exceptions::new_exception(thread, name, message);
 589   throw_and_post_jvmti_exception(thread, h_exception);
 590 }
 591 
 592 // The interpreter code to call this tracing function is only
 593 // called/generated when TraceRedefineClasses has the right bits
 594 // set. Since obsolete methods are never compiled, we don't have
 595 // to modify the compilers to generate calls to this function.
 596 //
 597 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 598     JavaThread* thread, Method* method))
 599   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 600 
 601   if (method->is_obsolete()) {
 602     // We are calling an obsolete method, but this is not necessarily
 603     // an error. Our method could have been redefined just after we
 604     // fetched the Method* from the constant pool.
 605 
 606     // RC_TRACE macro has an embedded ResourceMark
 607     RC_TRACE_WITH_THREAD(0x00001000, thread,
 608                          ("calling obsolete method '%s'",
 609                           method->name_and_sig_as_C_string()));
 610     if (RC_TRACE_ENABLED(0x00002000)) {
 611       // this option is provided to debug calls to obsolete methods
 612       guarantee(false, "faulting at call to an obsolete method.");
 613     }
 614   }
 615   return 0;
 616 JRT_END
 617 
 618 // ret_pc points into caller; we are returning caller's exception handler
 619 // for given exception
 620 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 621                                                     bool force_unwind, bool top_frame_only) {
 622   assert(nm != NULL, "must exist");
 623   ResourceMark rm;
 624 
 625   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 626   // determine handler bci, if any
 627   EXCEPTION_MARK;
 628 
 629   int handler_bci = -1;
 630   int scope_depth = 0;
 631   if (!force_unwind) {
 632     int bci = sd->bci();
 633     bool recursive_exception = false;
 634     do {
 635       bool skip_scope_increment = false;
 636       // exception handler lookup
 637       KlassHandle ek (THREAD, exception->klass());
 638       methodHandle mh(THREAD, sd->method());
 639       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 640       if (HAS_PENDING_EXCEPTION) {
 641         recursive_exception = true;
 642         // We threw an exception while trying to find the exception handler.
 643         // Transfer the new exception to the exception handle which will
 644         // be set into thread local storage, and do another lookup for an
 645         // exception handler for this exception, this time starting at the
 646         // BCI of the exception handler which caused the exception to be
 647         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 648         // argument to ensure that the correct exception is thrown (4870175).
 649         exception = Handle(THREAD, PENDING_EXCEPTION);
 650         CLEAR_PENDING_EXCEPTION;
 651         if (handler_bci >= 0) {
 652           bci = handler_bci;
 653           handler_bci = -1;
 654           skip_scope_increment = true;
 655         }
 656       }
 657       else {
 658         recursive_exception = false;
 659       }
 660       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 661         sd = sd->sender();
 662         if (sd != NULL) {
 663           bci = sd->bci();
 664         }
 665         ++scope_depth;
 666       }
 667     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 668   }
 669 
 670   // found handling method => lookup exception handler
 671   int catch_pco = ret_pc - nm->code_begin();
 672 
 673   ExceptionHandlerTable table(nm);
 674   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 675   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 676     // Allow abbreviated catch tables.  The idea is to allow a method
 677     // to materialize its exceptions without committing to the exact
 678     // routing of exceptions.  In particular this is needed for adding
 679     // a synthetic handler to unlock monitors when inlining
 680     // synchronized methods since the unlock path isn't represented in
 681     // the bytecodes.
 682     t = table.entry_for(catch_pco, -1, 0);
 683   }
 684 
 685 #ifdef COMPILER1
 686   if (t == NULL && nm->is_compiled_by_c1()) {
 687     assert(nm->unwind_handler_begin() != NULL, "");
 688     return nm->unwind_handler_begin();
 689   }
 690 #endif
 691 
 692   if (t == NULL) {
 693     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 694     tty->print_cr("   Exception:");
 695     exception->print();
 696     tty->cr();
 697     tty->print_cr(" Compiled exception table :");
 698     table.print();
 699     nm->print_code();
 700     guarantee(false, "missing exception handler");
 701     return NULL;
 702   }
 703 
 704   return nm->code_begin() + t->pco();
 705 }
 706 
 707 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 708   // These errors occur only at call sites
 709   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 710 JRT_END
 711 
 712 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 713   // These errors occur only at call sites
 714   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 715 JRT_END
 716 
 717 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 718   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 719 JRT_END
 720 
 721 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 722   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 723 JRT_END
 724 
 725 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 726   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 727   // cache sites (when the callee activation is not yet set up) so we are at a call site
 728   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 729 JRT_END
 730 
 731 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 732   // We avoid using the normal exception construction in this case because
 733   // it performs an upcall to Java, and we're already out of stack space.
 734   Klass* k = SystemDictionary::StackOverflowError_klass();
 735   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 736   Handle exception (thread, exception_oop);
 737   if (StackTraceInThrowable) {
 738     java_lang_Throwable::fill_in_stack_trace(exception);
 739   }
 740   // Increment counter for hs_err file reporting
 741   Atomic::inc(&Exceptions::_stack_overflow_errors);
 742   throw_and_post_jvmti_exception(thread, exception);
 743 JRT_END
 744 
 745 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 746                                                            address pc,
 747                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 748 {
 749   address target_pc = NULL;
 750 
 751   if (Interpreter::contains(pc)) {
 752 #ifdef CC_INTERP
 753     // C++ interpreter doesn't throw implicit exceptions
 754     ShouldNotReachHere();
 755 #else
 756     switch (exception_kind) {
 757       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 758       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 759       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 760       default:                      ShouldNotReachHere();
 761     }
 762 #endif // !CC_INTERP
 763   } else {
 764     switch (exception_kind) {
 765       case STACK_OVERFLOW: {
 766         // Stack overflow only occurs upon frame setup; the callee is
 767         // going to be unwound. Dispatch to a shared runtime stub
 768         // which will cause the StackOverflowError to be fabricated
 769         // and processed.
 770         // Stack overflow should never occur during deoptimization:
 771         // the compiled method bangs the stack by as much as the
 772         // interpreter would need in case of a deoptimization. The
 773         // deoptimization blob and uncommon trap blob bang the stack
 774         // in a debug VM to verify the correctness of the compiled
 775         // method stack banging.
 776         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 777         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 778         return StubRoutines::throw_StackOverflowError_entry();
 779       }
 780 
 781       case IMPLICIT_NULL: {
 782         if (VtableStubs::contains(pc)) {
 783           // We haven't yet entered the callee frame. Fabricate an
 784           // exception and begin dispatching it in the caller. Since
 785           // the caller was at a call site, it's safe to destroy all
 786           // caller-saved registers, as these entry points do.
 787           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 788 
 789           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 790           if (vt_stub == NULL) return NULL;
 791 
 792           if (vt_stub->is_abstract_method_error(pc)) {
 793             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 794             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 795             return StubRoutines::throw_AbstractMethodError_entry();
 796           } else {
 797             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 798             return StubRoutines::throw_NullPointerException_at_call_entry();
 799           }
 800         } else {
 801           CodeBlob* cb = CodeCache::find_blob(pc);
 802 
 803           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 804           if (cb == NULL) return NULL;
 805 
 806           // Exception happened in CodeCache. Must be either:
 807           // 1. Inline-cache check in C2I handler blob,
 808           // 2. Inline-cache check in nmethod, or
 809           // 3. Implicit null exception in nmethod
 810 
 811           if (!cb->is_nmethod()) {
 812             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 813             if (!is_in_blob) {
 814               cb->print();
 815               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 816             }
 817             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 818             // There is no handler here, so we will simply unwind.
 819             return StubRoutines::throw_NullPointerException_at_call_entry();
 820           }
 821 
 822           // Otherwise, it's an nmethod.  Consult its exception handlers.
 823           nmethod* nm = (nmethod*)cb;
 824           if (nm->inlinecache_check_contains(pc)) {
 825             // exception happened inside inline-cache check code
 826             // => the nmethod is not yet active (i.e., the frame
 827             // is not set up yet) => use return address pushed by
 828             // caller => don't push another return address
 829             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 830             return StubRoutines::throw_NullPointerException_at_call_entry();
 831           }
 832 
 833           if (nm->method()->is_method_handle_intrinsic()) {
 834             // exception happened inside MH dispatch code, similar to a vtable stub
 835             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 836             return StubRoutines::throw_NullPointerException_at_call_entry();
 837           }
 838 
 839 #ifndef PRODUCT
 840           _implicit_null_throws++;
 841 #endif
 842           target_pc = nm->continuation_for_implicit_exception(pc);
 843           // If there's an unexpected fault, target_pc might be NULL,
 844           // in which case we want to fall through into the normal
 845           // error handling code.
 846         }
 847 
 848         break; // fall through
 849       }
 850 
 851 
 852       case IMPLICIT_DIVIDE_BY_ZERO: {
 853         nmethod* nm = CodeCache::find_nmethod(pc);
 854         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 855 #ifndef PRODUCT
 856         _implicit_div0_throws++;
 857 #endif
 858         target_pc = nm->continuation_for_implicit_exception(pc);
 859         // If there's an unexpected fault, target_pc might be NULL,
 860         // in which case we want to fall through into the normal
 861         // error handling code.
 862         break; // fall through
 863       }
 864 
 865       default: ShouldNotReachHere();
 866     }
 867 
 868     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 869 
 870     // for AbortVMOnException flag
 871     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 872     if (exception_kind == IMPLICIT_NULL) {
 873       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 874     } else {
 875       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 876     }
 877     return target_pc;
 878   }
 879 
 880   ShouldNotReachHere();
 881   return NULL;
 882 }
 883 
 884 
 885 /**
 886  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 887  * installed in the native function entry of all native Java methods before
 888  * they get linked to their actual native methods.
 889  *
 890  * \note
 891  * This method actually never gets called!  The reason is because
 892  * the interpreter's native entries call NativeLookup::lookup() which
 893  * throws the exception when the lookup fails.  The exception is then
 894  * caught and forwarded on the return from NativeLookup::lookup() call
 895  * before the call to the native function.  This might change in the future.
 896  */
 897 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 898 {
 899   // We return a bad value here to make sure that the exception is
 900   // forwarded before we look at the return value.
 901   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 902 }
 903 JNI_END
 904 
 905 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 906   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 907 }
 908 
 909 
 910 #ifndef PRODUCT
 911 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 912   const frame f = thread->last_frame();
 913   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 914 #ifndef PRODUCT
 915   methodHandle mh(THREAD, f.interpreter_frame_method());
 916   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 917 #endif // !PRODUCT
 918   return preserve_this_value;
 919 JRT_END
 920 #endif // !PRODUCT
 921 
 922 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 923   assert(obj->is_oop(), "must be a valid oop");
 924   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 925   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 926 JRT_END
 927 
 928 
 929 jlong SharedRuntime::get_java_tid(Thread* thread) {
 930   if (thread != NULL) {
 931     if (thread->is_Java_thread()) {
 932       oop obj = ((JavaThread*)thread)->threadObj();
 933       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 934     }
 935   }
 936   return 0;
 937 }
 938 
 939 /**
 940  * This function ought to be a void function, but cannot be because
 941  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 942  * 6254741.  Once that is fixed we can remove the dummy return value.
 943  */
 944 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 945   return dtrace_object_alloc_base(Thread::current(), o, size);
 946 }
 947 
 948 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 949   assert(DTraceAllocProbes, "wrong call");
 950   Klass* klass = o->klass();
 951   Symbol* name = klass->name();
 952   HOTSPOT_OBJECT_ALLOC(
 953                    get_java_tid(thread),
 954                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 955   return 0;
 956 }
 957 
 958 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 959     JavaThread* thread, Method* method))
 960   assert(DTraceMethodProbes, "wrong call");
 961   Symbol* kname = method->klass_name();
 962   Symbol* name = method->name();
 963   Symbol* sig = method->signature();
 964   HOTSPOT_METHOD_ENTRY(
 965       get_java_tid(thread),
 966       (char *) kname->bytes(), kname->utf8_length(),
 967       (char *) name->bytes(), name->utf8_length(),
 968       (char *) sig->bytes(), sig->utf8_length());
 969   return 0;
 970 JRT_END
 971 
 972 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 973     JavaThread* thread, Method* method))
 974   assert(DTraceMethodProbes, "wrong call");
 975   Symbol* kname = method->klass_name();
 976   Symbol* name = method->name();
 977   Symbol* sig = method->signature();
 978   HOTSPOT_METHOD_RETURN(
 979       get_java_tid(thread),
 980       (char *) kname->bytes(), kname->utf8_length(),
 981       (char *) name->bytes(), name->utf8_length(),
 982       (char *) sig->bytes(), sig->utf8_length());
 983   return 0;
 984 JRT_END
 985 
 986 
 987 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 988 // for a call current in progress, i.e., arguments has been pushed on stack
 989 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 990 // vtable updates, etc.  Caller frame must be compiled.
 991 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 992   ResourceMark rm(THREAD);
 993 
 994   // last java frame on stack (which includes native call frames)
 995   vframeStream vfst(thread, true);  // Do not skip and javaCalls
 996 
 997   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
 998 }
 999 
1000 
1001 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1002 // for a call current in progress, i.e., arguments has been pushed on stack
1003 // but callee has not been invoked yet.  Caller frame must be compiled.
1004 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1005                                               vframeStream& vfst,
1006                                               Bytecodes::Code& bc,
1007                                               CallInfo& callinfo, TRAPS) {
1008   Handle receiver;
1009   Handle nullHandle;  //create a handy null handle for exception returns
1010 
1011   assert(!vfst.at_end(), "Java frame must exist");
1012 
1013   // Find caller and bci from vframe
1014   methodHandle caller(THREAD, vfst.method());
1015   int          bci   = vfst.bci();
1016 
1017   // Find bytecode
1018   Bytecode_invoke bytecode(caller, bci);
1019   bc = bytecode.invoke_code();
1020   int bytecode_index = bytecode.index();
1021 
1022   // Find receiver for non-static call
1023   if (bc != Bytecodes::_invokestatic &&
1024       bc != Bytecodes::_invokedynamic &&
1025       bc != Bytecodes::_invokehandle) {
1026     // This register map must be update since we need to find the receiver for
1027     // compiled frames. The receiver might be in a register.
1028     RegisterMap reg_map2(thread);
1029     frame stubFrame   = thread->last_frame();
1030     // Caller-frame is a compiled frame
1031     frame callerFrame = stubFrame.sender(&reg_map2);
1032 
1033     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1034     if (callee.is_null()) {
1035       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1036     }
1037     // Retrieve from a compiled argument list
1038     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1039 
1040     if (receiver.is_null()) {
1041       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1042     }
1043   }
1044 
1045   // Resolve method. This is parameterized by bytecode.
1046   constantPoolHandle constants(THREAD, caller->constants());
1047   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1048   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1049 
1050 #ifdef ASSERT
1051   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1052   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1053     assert(receiver.not_null(), "should have thrown exception");
1054     KlassHandle receiver_klass(THREAD, receiver->klass());
1055     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1056                             // klass is already loaded
1057     KlassHandle static_receiver_klass(THREAD, rk);
1058     // Method handle invokes might have been optimized to a direct call
1059     // so don't check for the receiver class.
1060     // FIXME this weakens the assert too much
1061     methodHandle callee = callinfo.selected_method();
1062     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1063            callee->is_method_handle_intrinsic() ||
1064            callee->is_compiled_lambda_form(),
1065            "actual receiver must be subclass of static receiver klass");
1066     if (receiver_klass->oop_is_instance()) {
1067       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1068         tty->print_cr("ERROR: Klass not yet initialized!!");
1069         receiver_klass()->print();
1070       }
1071       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1072     }
1073   }
1074 #endif
1075 
1076   return receiver;
1077 }
1078 
1079 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1080   ResourceMark rm(THREAD);
1081   // We need first to check if any Java activations (compiled, interpreted)
1082   // exist on the stack since last JavaCall.  If not, we need
1083   // to get the target method from the JavaCall wrapper.
1084   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1085   methodHandle callee_method;
1086   if (vfst.at_end()) {
1087     // No Java frames were found on stack since we did the JavaCall.
1088     // Hence the stack can only contain an entry_frame.  We need to
1089     // find the target method from the stub frame.
1090     RegisterMap reg_map(thread, false);
1091     frame fr = thread->last_frame();
1092     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1093     fr = fr.sender(&reg_map);
1094     assert(fr.is_entry_frame(), "must be");
1095     // fr is now pointing to the entry frame.
1096     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1097     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1098   } else {
1099     Bytecodes::Code bc;
1100     CallInfo callinfo;
1101     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1102     callee_method = callinfo.selected_method();
1103   }
1104   assert(callee_method()->is_method(), "must be");
1105   return callee_method;
1106 }
1107 
1108 // Resolves a call.
1109 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1110                                            bool is_virtual,
1111                                            bool is_optimized, TRAPS) {
1112   methodHandle callee_method;
1113   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1114   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1115     int retry_count = 0;
1116     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1117            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1118       // If has a pending exception then there is no need to re-try to
1119       // resolve this method.
1120       // If the method has been redefined, we need to try again.
1121       // Hack: we have no way to update the vtables of arrays, so don't
1122       // require that java.lang.Object has been updated.
1123 
1124       // It is very unlikely that method is redefined more than 100 times
1125       // in the middle of resolve. If it is looping here more than 100 times
1126       // means then there could be a bug here.
1127       guarantee((retry_count++ < 100),
1128                 "Could not resolve to latest version of redefined method");
1129       // method is redefined in the middle of resolve so re-try.
1130       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1131     }
1132   }
1133   return callee_method;
1134 }
1135 
1136 // Resolves a call.  The compilers generate code for calls that go here
1137 // and are patched with the real destination of the call.
1138 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1139                                            bool is_virtual,
1140                                            bool is_optimized, TRAPS) {
1141 
1142   ResourceMark rm(thread);
1143   RegisterMap cbl_map(thread, false);
1144   frame caller_frame = thread->last_frame().sender(&cbl_map);
1145 
1146   CodeBlob* caller_cb = caller_frame.cb();
1147   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1148   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1149 
1150   // make sure caller is not getting deoptimized
1151   // and removed before we are done with it.
1152   // CLEANUP - with lazy deopt shouldn't need this lock
1153   nmethodLocker caller_lock(caller_nm);
1154 
1155   // determine call info & receiver
1156   // note: a) receiver is NULL for static calls
1157   //       b) an exception is thrown if receiver is NULL for non-static calls
1158   CallInfo call_info;
1159   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1160   Handle receiver = find_callee_info(thread, invoke_code,
1161                                      call_info, CHECK_(methodHandle()));
1162   methodHandle callee_method = call_info.selected_method();
1163 
1164   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1165          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1166          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1167          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1168 
1169   assert(caller_nm->is_alive(), "It should be alive");
1170 
1171 #ifndef PRODUCT
1172   // tracing/debugging/statistics
1173   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1174                 (is_virtual) ? (&_resolve_virtual_ctr) :
1175                                (&_resolve_static_ctr);
1176   Atomic::inc(addr);
1177 
1178   if (TraceCallFixup) {
1179     ResourceMark rm(thread);
1180     tty->print("resolving %s%s (%s) call to",
1181       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1182       Bytecodes::name(invoke_code));
1183     callee_method->print_short_name(tty);
1184     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1185   }
1186 #endif
1187 
1188   // JSR 292 key invariant:
1189   // If the resolved method is a MethodHandle invoke target, the call
1190   // site must be a MethodHandle call site, because the lambda form might tail-call
1191   // leaving the stack in a state unknown to either caller or callee
1192   // TODO detune for now but we might need it again
1193 //  assert(!callee_method->is_compiled_lambda_form() ||
1194 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1195 
1196   // Compute entry points. This might require generation of C2I converter
1197   // frames, so we cannot be holding any locks here. Furthermore, the
1198   // computation of the entry points is independent of patching the call.  We
1199   // always return the entry-point, but we only patch the stub if the call has
1200   // not been deoptimized.  Return values: For a virtual call this is an
1201   // (cached_oop, destination address) pair. For a static call/optimized
1202   // virtual this is just a destination address.
1203 
1204   StaticCallInfo static_call_info;
1205   CompiledICInfo virtual_call_info;
1206 
1207   // Make sure the callee nmethod does not get deoptimized and removed before
1208   // we are done patching the code.
1209   nmethod* callee_nm = callee_method->code();
1210   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1211     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1212     callee_nm = NULL;
1213   }
1214   nmethodLocker nl_callee(callee_nm);
1215 #ifdef ASSERT
1216   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1217 #endif
1218 
1219   if (is_virtual) {
1220     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1221     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1222     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1223     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1224                      is_optimized, static_bound, virtual_call_info,
1225                      CHECK_(methodHandle()));
1226   } else {
1227     // static call
1228     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1229   }
1230 
1231   // grab lock, check for deoptimization and potentially patch caller
1232   {
1233     MutexLocker ml_patch(CompiledIC_lock);
1234 
1235     // Lock blocks for safepoint during which both nmethods can change state.
1236 
1237     // Now that we are ready to patch if the Method* was redefined then
1238     // don't update call site and let the caller retry.
1239     // Don't update call site if callee nmethod was unloaded or deoptimized.
1240     // Don't update call site if callee nmethod was replaced by an other nmethod
1241     // which may happen when multiply alive nmethod (tiered compilation)
1242     // will be supported.
1243     if (!callee_method->is_old() &&
1244         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1245 #ifdef ASSERT
1246       // We must not try to patch to jump to an already unloaded method.
1247       if (dest_entry_point != 0) {
1248         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1249         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1250                "should not call unloaded nmethod");
1251       }
1252 #endif
1253       if (is_virtual) {
1254         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1255         if (inline_cache->is_clean()) {
1256           inline_cache->set_to_monomorphic(virtual_call_info);
1257         }
1258       } else {
1259         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1260         if (ssc->is_clean()) ssc->set(static_call_info);
1261       }
1262     }
1263 
1264   } // unlock CompiledIC_lock
1265 
1266   return callee_method;
1267 }
1268 
1269 
1270 // Inline caches exist only in compiled code
1271 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1272 #ifdef ASSERT
1273   RegisterMap reg_map(thread, false);
1274   frame stub_frame = thread->last_frame();
1275   assert(stub_frame.is_runtime_frame(), "sanity check");
1276   frame caller_frame = stub_frame.sender(&reg_map);
1277   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1278 #endif /* ASSERT */
1279 
1280   methodHandle callee_method;
1281   JRT_BLOCK
1282     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1283     // Return Method* through TLS
1284     thread->set_vm_result_2(callee_method());
1285   JRT_BLOCK_END
1286   // return compiled code entry point after potential safepoints
1287   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1288   return callee_method->verified_code_entry();
1289 JRT_END
1290 
1291 
1292 // Handle call site that has been made non-entrant
1293 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1294   // 6243940 We might end up in here if the callee is deoptimized
1295   // as we race to call it.  We don't want to take a safepoint if
1296   // the caller was interpreted because the caller frame will look
1297   // interpreted to the stack walkers and arguments are now
1298   // "compiled" so it is much better to make this transition
1299   // invisible to the stack walking code. The i2c path will
1300   // place the callee method in the callee_target. It is stashed
1301   // there because if we try and find the callee by normal means a
1302   // safepoint is possible and have trouble gc'ing the compiled args.
1303   RegisterMap reg_map(thread, false);
1304   frame stub_frame = thread->last_frame();
1305   assert(stub_frame.is_runtime_frame(), "sanity check");
1306   frame caller_frame = stub_frame.sender(&reg_map);
1307 
1308   if (caller_frame.is_interpreted_frame() ||
1309       caller_frame.is_entry_frame()) {
1310     Method* callee = thread->callee_target();
1311     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1312     thread->set_vm_result_2(callee);
1313     thread->set_callee_target(NULL);
1314     return callee->get_c2i_entry();
1315   }
1316 
1317   // Must be compiled to compiled path which is safe to stackwalk
1318   methodHandle callee_method;
1319   JRT_BLOCK
1320     // Force resolving of caller (if we called from compiled frame)
1321     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1322     thread->set_vm_result_2(callee_method());
1323   JRT_BLOCK_END
1324   // return compiled code entry point after potential safepoints
1325   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1326   return callee_method->verified_code_entry();
1327 JRT_END
1328 
1329 // Handle abstract method call
1330 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1331   return StubRoutines::throw_AbstractMethodError_entry();
1332 JRT_END
1333 
1334 
1335 // resolve a static call and patch code
1336 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1337   methodHandle callee_method;
1338   JRT_BLOCK
1339     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1340     thread->set_vm_result_2(callee_method());
1341   JRT_BLOCK_END
1342   // return compiled code entry point after potential safepoints
1343   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1344   return callee_method->verified_code_entry();
1345 JRT_END
1346 
1347 
1348 // resolve virtual call and update inline cache to monomorphic
1349 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1350   methodHandle callee_method;
1351   JRT_BLOCK
1352     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1353     thread->set_vm_result_2(callee_method());
1354   JRT_BLOCK_END
1355   // return compiled code entry point after potential safepoints
1356   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1357   return callee_method->verified_code_entry();
1358 JRT_END
1359 
1360 
1361 // Resolve a virtual call that can be statically bound (e.g., always
1362 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1363 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1364   methodHandle callee_method;
1365   JRT_BLOCK
1366     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1367     thread->set_vm_result_2(callee_method());
1368   JRT_BLOCK_END
1369   // return compiled code entry point after potential safepoints
1370   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1371   return callee_method->verified_code_entry();
1372 JRT_END
1373 
1374 
1375 
1376 
1377 
1378 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1379   ResourceMark rm(thread);
1380   CallInfo call_info;
1381   Bytecodes::Code bc;
1382 
1383   // receiver is NULL for static calls. An exception is thrown for NULL
1384   // receivers for non-static calls
1385   Handle receiver = find_callee_info(thread, bc, call_info,
1386                                      CHECK_(methodHandle()));
1387   // Compiler1 can produce virtual call sites that can actually be statically bound
1388   // If we fell thru to below we would think that the site was going megamorphic
1389   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1390   // we'd try and do a vtable dispatch however methods that can be statically bound
1391   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1392   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1393   // plain ic_miss) and the site will be converted to an optimized virtual call site
1394   // never to miss again. I don't believe C2 will produce code like this but if it
1395   // did this would still be the correct thing to do for it too, hence no ifdef.
1396   //
1397   if (call_info.resolved_method()->can_be_statically_bound()) {
1398     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1399     if (TraceCallFixup) {
1400       RegisterMap reg_map(thread, false);
1401       frame caller_frame = thread->last_frame().sender(&reg_map);
1402       ResourceMark rm(thread);
1403       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1404       callee_method->print_short_name(tty);
1405       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1406       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1407     }
1408     return callee_method;
1409   }
1410 
1411   methodHandle callee_method = call_info.selected_method();
1412 
1413   bool should_be_mono = false;
1414 
1415 #ifndef PRODUCT
1416   Atomic::inc(&_ic_miss_ctr);
1417 
1418   // Statistics & Tracing
1419   if (TraceCallFixup) {
1420     ResourceMark rm(thread);
1421     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1422     callee_method->print_short_name(tty);
1423     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1424   }
1425 
1426   if (ICMissHistogram) {
1427     MutexLocker m(VMStatistic_lock);
1428     RegisterMap reg_map(thread, false);
1429     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1430     // produce statistics under the lock
1431     trace_ic_miss(f.pc());
1432   }
1433 #endif
1434 
1435   // install an event collector so that when a vtable stub is created the
1436   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1437   // event can't be posted when the stub is created as locks are held
1438   // - instead the event will be deferred until the event collector goes
1439   // out of scope.
1440   JvmtiDynamicCodeEventCollector event_collector;
1441 
1442   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1443   { MutexLocker ml_patch (CompiledIC_lock);
1444     RegisterMap reg_map(thread, false);
1445     frame caller_frame = thread->last_frame().sender(&reg_map);
1446     CodeBlob* cb = caller_frame.cb();
1447     if (cb->is_nmethod()) {
1448       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1449       bool should_be_mono = false;
1450       if (inline_cache->is_optimized()) {
1451         if (TraceCallFixup) {
1452           ResourceMark rm(thread);
1453           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1454           callee_method->print_short_name(tty);
1455           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1456         }
1457         should_be_mono = true;
1458       } else if (inline_cache->is_icholder_call()) {
1459         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1460         if (ic_oop != NULL) {
1461 
1462           if (receiver()->klass() == ic_oop->holder_klass()) {
1463             // This isn't a real miss. We must have seen that compiled code
1464             // is now available and we want the call site converted to a
1465             // monomorphic compiled call site.
1466             // We can't assert for callee_method->code() != NULL because it
1467             // could have been deoptimized in the meantime
1468             if (TraceCallFixup) {
1469               ResourceMark rm(thread);
1470               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1471               callee_method->print_short_name(tty);
1472               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1473             }
1474             should_be_mono = true;
1475           }
1476         }
1477       }
1478 
1479       if (should_be_mono) {
1480 
1481         // We have a path that was monomorphic but was going interpreted
1482         // and now we have (or had) a compiled entry. We correct the IC
1483         // by using a new icBuffer.
1484         CompiledICInfo info;
1485         KlassHandle receiver_klass(THREAD, receiver()->klass());
1486         inline_cache->compute_monomorphic_entry(callee_method,
1487                                                 receiver_klass,
1488                                                 inline_cache->is_optimized(),
1489                                                 false,
1490                                                 info, CHECK_(methodHandle()));
1491         inline_cache->set_to_monomorphic(info);
1492       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1493         // Potential change to megamorphic
1494         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1495         if (!successful) {
1496           inline_cache->set_to_clean();
1497         }
1498       } else {
1499         // Either clean or megamorphic
1500       }
1501     }
1502   } // Release CompiledIC_lock
1503 
1504   return callee_method;
1505 }
1506 
1507 //
1508 // Resets a call-site in compiled code so it will get resolved again.
1509 // This routines handles both virtual call sites, optimized virtual call
1510 // sites, and static call sites. Typically used to change a call sites
1511 // destination from compiled to interpreted.
1512 //
1513 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1514   ResourceMark rm(thread);
1515   RegisterMap reg_map(thread, false);
1516   frame stub_frame = thread->last_frame();
1517   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1518   frame caller = stub_frame.sender(&reg_map);
1519 
1520   // Do nothing if the frame isn't a live compiled frame.
1521   // nmethod could be deoptimized by the time we get here
1522   // so no update to the caller is needed.
1523 
1524   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1525 
1526     address pc = caller.pc();
1527 
1528     // Default call_addr is the location of the "basic" call.
1529     // Determine the address of the call we a reresolving. With
1530     // Inline Caches we will always find a recognizable call.
1531     // With Inline Caches disabled we may or may not find a
1532     // recognizable call. We will always find a call for static
1533     // calls and for optimized virtual calls. For vanilla virtual
1534     // calls it depends on the state of the UseInlineCaches switch.
1535     //
1536     // With Inline Caches disabled we can get here for a virtual call
1537     // for two reasons:
1538     //   1 - calling an abstract method. The vtable for abstract methods
1539     //       will run us thru handle_wrong_method and we will eventually
1540     //       end up in the interpreter to throw the ame.
1541     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1542     //       call and between the time we fetch the entry address and
1543     //       we jump to it the target gets deoptimized. Similar to 1
1544     //       we will wind up in the interprter (thru a c2i with c2).
1545     //
1546     address call_addr = NULL;
1547     {
1548       // Get call instruction under lock because another thread may be
1549       // busy patching it.
1550       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1551       // Location of call instruction
1552       if (NativeCall::is_call_before(pc)) {
1553         NativeCall *ncall = nativeCall_before(pc);
1554         call_addr = ncall->instruction_address();
1555       }
1556     }
1557 
1558     // Check for static or virtual call
1559     bool is_static_call = false;
1560     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1561     // Make sure nmethod doesn't get deoptimized and removed until
1562     // this is done with it.
1563     // CLEANUP - with lazy deopt shouldn't need this lock
1564     nmethodLocker nmlock(caller_nm);
1565 
1566     if (call_addr != NULL) {
1567       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1568       int ret = iter.next(); // Get item
1569       if (ret) {
1570         assert(iter.addr() == call_addr, "must find call");
1571         if (iter.type() == relocInfo::static_call_type) {
1572           is_static_call = true;
1573         } else {
1574           assert(iter.type() == relocInfo::virtual_call_type ||
1575                  iter.type() == relocInfo::opt_virtual_call_type
1576                 , "unexpected relocInfo. type");
1577         }
1578       } else {
1579         assert(!UseInlineCaches, "relocation info. must exist for this address");
1580       }
1581 
1582       // Cleaning the inline cache will force a new resolve. This is more robust
1583       // than directly setting it to the new destination, since resolving of calls
1584       // is always done through the same code path. (experience shows that it
1585       // leads to very hard to track down bugs, if an inline cache gets updated
1586       // to a wrong method). It should not be performance critical, since the
1587       // resolve is only done once.
1588 
1589       MutexLocker ml(CompiledIC_lock);
1590       if (is_static_call) {
1591         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1592         ssc->set_to_clean();
1593       } else {
1594         // compiled, dispatched call (which used to call an interpreted method)
1595         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1596         inline_cache->set_to_clean();
1597       }
1598     }
1599 
1600   }
1601 
1602   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1603 
1604 
1605 #ifndef PRODUCT
1606   Atomic::inc(&_wrong_method_ctr);
1607 
1608   if (TraceCallFixup) {
1609     ResourceMark rm(thread);
1610     tty->print("handle_wrong_method reresolving call to");
1611     callee_method->print_short_name(tty);
1612     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1613   }
1614 #endif
1615 
1616   return callee_method;
1617 }
1618 
1619 #ifdef ASSERT
1620 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1621                                                                 const BasicType* sig_bt,
1622                                                                 const VMRegPair* regs) {
1623   ResourceMark rm;
1624   const int total_args_passed = method->size_of_parameters();
1625   const VMRegPair*    regs_with_member_name = regs;
1626         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1627 
1628   const int member_arg_pos = total_args_passed - 1;
1629   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1630   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1631 
1632   const bool is_outgoing = method->is_method_handle_intrinsic();
1633   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1634 
1635   for (int i = 0; i < member_arg_pos; i++) {
1636     VMReg a =    regs_with_member_name[i].first();
1637     VMReg b = regs_without_member_name[i].first();
1638     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1639   }
1640   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1641 }
1642 #endif
1643 
1644 // ---------------------------------------------------------------------------
1645 // We are calling the interpreter via a c2i. Normally this would mean that
1646 // we were called by a compiled method. However we could have lost a race
1647 // where we went int -> i2c -> c2i and so the caller could in fact be
1648 // interpreted. If the caller is compiled we attempt to patch the caller
1649 // so he no longer calls into the interpreter.
1650 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1651   Method* moop(method);
1652 
1653   address entry_point = moop->from_compiled_entry();
1654 
1655   // It's possible that deoptimization can occur at a call site which hasn't
1656   // been resolved yet, in which case this function will be called from
1657   // an nmethod that has been patched for deopt and we can ignore the
1658   // request for a fixup.
1659   // Also it is possible that we lost a race in that from_compiled_entry
1660   // is now back to the i2c in that case we don't need to patch and if
1661   // we did we'd leap into space because the callsite needs to use
1662   // "to interpreter" stub in order to load up the Method*. Don't
1663   // ask me how I know this...
1664 
1665   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1666   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1667     return;
1668   }
1669 
1670   // The check above makes sure this is a nmethod.
1671   nmethod* nm = cb->as_nmethod_or_null();
1672   assert(nm, "must be");
1673 
1674   // Get the return PC for the passed caller PC.
1675   address return_pc = caller_pc + frame::pc_return_offset;
1676 
1677   // There is a benign race here. We could be attempting to patch to a compiled
1678   // entry point at the same time the callee is being deoptimized. If that is
1679   // the case then entry_point may in fact point to a c2i and we'd patch the
1680   // call site with the same old data. clear_code will set code() to NULL
1681   // at the end of it. If we happen to see that NULL then we can skip trying
1682   // to patch. If we hit the window where the callee has a c2i in the
1683   // from_compiled_entry and the NULL isn't present yet then we lose the race
1684   // and patch the code with the same old data. Asi es la vida.
1685 
1686   if (moop->code() == NULL) return;
1687 
1688   if (nm->is_in_use()) {
1689 
1690     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1691     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1692     if (NativeCall::is_call_before(return_pc)) {
1693       NativeCall *call = nativeCall_before(return_pc);
1694       //
1695       // bug 6281185. We might get here after resolving a call site to a vanilla
1696       // virtual call. Because the resolvee uses the verified entry it may then
1697       // see compiled code and attempt to patch the site by calling us. This would
1698       // then incorrectly convert the call site to optimized and its downhill from
1699       // there. If you're lucky you'll get the assert in the bugid, if not you've
1700       // just made a call site that could be megamorphic into a monomorphic site
1701       // for the rest of its life! Just another racing bug in the life of
1702       // fixup_callers_callsite ...
1703       //
1704       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1705       iter.next();
1706       assert(iter.has_current(), "must have a reloc at java call site");
1707       relocInfo::relocType typ = iter.reloc()->type();
1708       if (typ != relocInfo::static_call_type &&
1709            typ != relocInfo::opt_virtual_call_type &&
1710            typ != relocInfo::static_stub_type) {
1711         return;
1712       }
1713       address destination = call->destination();
1714       if (destination != entry_point) {
1715         CodeBlob* callee = CodeCache::find_blob(destination);
1716         // callee == cb seems weird. It means calling interpreter thru stub.
1717         if (callee == cb || callee->is_adapter_blob()) {
1718           // static call or optimized virtual
1719           if (TraceCallFixup) {
1720             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1721             moop->print_short_name(tty);
1722             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1723           }
1724           call->set_destination_mt_safe(entry_point);
1725         } else {
1726           if (TraceCallFixup) {
1727             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1728             moop->print_short_name(tty);
1729             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1730           }
1731           // assert is too strong could also be resolve destinations.
1732           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1733         }
1734       } else {
1735           if (TraceCallFixup) {
1736             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1737             moop->print_short_name(tty);
1738             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1739           }
1740       }
1741     }
1742   }
1743 IRT_END
1744 
1745 
1746 // same as JVM_Arraycopy, but called directly from compiled code
1747 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1748                                                 oopDesc* dest, jint dest_pos,
1749                                                 jint length,
1750                                                 JavaThread* thread)) {
1751 #ifndef PRODUCT
1752   _slow_array_copy_ctr++;
1753 #endif
1754   // Check if we have null pointers
1755   if (src == NULL || dest == NULL) {
1756     THROW(vmSymbols::java_lang_NullPointerException());
1757   }
1758   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1759   // even though the copy_array API also performs dynamic checks to ensure
1760   // that src and dest are truly arrays (and are conformable).
1761   // The copy_array mechanism is awkward and could be removed, but
1762   // the compilers don't call this function except as a last resort,
1763   // so it probably doesn't matter.
1764   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1765                                         (arrayOopDesc*)dest, dest_pos,
1766                                         length, thread);
1767 }
1768 JRT_END
1769 
1770 char* SharedRuntime::generate_class_cast_message(
1771     JavaThread* thread, const char* objName) {
1772 
1773   // Get target class name from the checkcast instruction
1774   vframeStream vfst(thread, true);
1775   assert(!vfst.at_end(), "Java frame must exist");
1776   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1777   Klass* targetKlass = vfst.method()->constants()->klass_at(
1778     cc.index(), thread);
1779   return generate_class_cast_message(objName, targetKlass->external_name());
1780 }
1781 
1782 char* SharedRuntime::generate_class_cast_message(
1783     const char* objName, const char* targetKlassName, const char* desc) {
1784   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1785 
1786   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1787   if (NULL == message) {
1788     // Shouldn't happen, but don't cause even more problems if it does
1789     message = const_cast<char*>(objName);
1790   } else {
1791     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1792   }
1793   return message;
1794 }
1795 
1796 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1797   (void) JavaThread::current()->reguard_stack();
1798 JRT_END
1799 
1800 
1801 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1802 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1803   _obj = oopDesc::bs()->resolve_and_maybe_copy_oop(_obj);
1804   // Disable ObjectSynchronizer::quick_enter() in default config
1805   // until JDK-8077392 is resolved.
1806   if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) {
1807     // Only try quick_enter() if we're not trying to reach a safepoint
1808     // so that the calling thread reaches the safepoint more quickly.
1809     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1810   }
1811   // NO_ASYNC required because an async exception on the state transition destructor
1812   // would leave you with the lock held and it would never be released.
1813   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1814   // and the model is that an exception implies the method failed.
1815   JRT_BLOCK_NO_ASYNC
1816   oop obj(_obj);
1817   if (PrintBiasedLockingStatistics) {
1818     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1819   }
1820   Handle h_obj(THREAD, obj);
1821   if (UseBiasedLocking) {
1822     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1823     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1824   } else {
1825     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1826   }
1827   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1828   JRT_BLOCK_END
1829 JRT_END
1830 
1831 // Handles the uncommon cases of monitor unlocking in compiled code
1832 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
1833   _obj = oopDesc::bs()->resolve_and_maybe_copy_oop(_obj);
1834    oop obj(_obj);
1835   assert(JavaThread::current() == THREAD, "invariant");
1836   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1837   // testing was unable to ever fire the assert that guarded it so I have removed it.
1838   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1839 #undef MIGHT_HAVE_PENDING
1840 #ifdef MIGHT_HAVE_PENDING
1841   // Save and restore any pending_exception around the exception mark.
1842   // While the slow_exit must not throw an exception, we could come into
1843   // this routine with one set.
1844   oop pending_excep = NULL;
1845   const char* pending_file;
1846   int pending_line;
1847   if (HAS_PENDING_EXCEPTION) {
1848     pending_excep = PENDING_EXCEPTION;
1849     pending_file  = THREAD->exception_file();
1850     pending_line  = THREAD->exception_line();
1851     CLEAR_PENDING_EXCEPTION;
1852   }
1853 #endif /* MIGHT_HAVE_PENDING */
1854 
1855   {
1856     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1857     EXCEPTION_MARK;
1858     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1859   }
1860 
1861 #ifdef MIGHT_HAVE_PENDING
1862   if (pending_excep != NULL) {
1863     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1864   }
1865 #endif /* MIGHT_HAVE_PENDING */
1866 JRT_END
1867 
1868 #ifndef PRODUCT
1869 
1870 void SharedRuntime::print_statistics() {
1871   ttyLocker ttyl;
1872   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1873 
1874   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1875 
1876   SharedRuntime::print_ic_miss_histogram();
1877 
1878   if (CountRemovableExceptions) {
1879     if (_nof_removable_exceptions > 0) {
1880       Unimplemented(); // this counter is not yet incremented
1881       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1882     }
1883   }
1884 
1885   // Dump the JRT_ENTRY counters
1886   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1887   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1888   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1889   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1890   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1891   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1892   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1893 
1894   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
1895   tty->print_cr("%5d wrong method", _wrong_method_ctr);
1896   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
1897   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
1898   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
1899 
1900   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
1901   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
1902   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
1903   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
1904   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
1905   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
1906   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
1907   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
1908   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
1909   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
1910   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
1911   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
1912   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
1913   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
1914   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
1915   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
1916 
1917   AdapterHandlerLibrary::print_statistics();
1918 
1919   if (xtty != NULL)  xtty->tail("statistics");
1920 }
1921 
1922 inline double percent(int x, int y) {
1923   return 100.0 * x / MAX2(y, 1);
1924 }
1925 
1926 class MethodArityHistogram {
1927  public:
1928   enum { MAX_ARITY = 256 };
1929  private:
1930   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1931   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1932   static int _max_arity;                      // max. arity seen
1933   static int _max_size;                       // max. arg size seen
1934 
1935   static void add_method_to_histogram(nmethod* nm) {
1936     Method* m = nm->method();
1937     ArgumentCount args(m->signature());
1938     int arity   = args.size() + (m->is_static() ? 0 : 1);
1939     int argsize = m->size_of_parameters();
1940     arity   = MIN2(arity, MAX_ARITY-1);
1941     argsize = MIN2(argsize, MAX_ARITY-1);
1942     int count = nm->method()->compiled_invocation_count();
1943     _arity_histogram[arity]  += count;
1944     _size_histogram[argsize] += count;
1945     _max_arity = MAX2(_max_arity, arity);
1946     _max_size  = MAX2(_max_size, argsize);
1947   }
1948 
1949   void print_histogram_helper(int n, int* histo, const char* name) {
1950     const int N = MIN2(5, n);
1951     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1952     double sum = 0;
1953     double weighted_sum = 0;
1954     int i;
1955     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1956     double rest = sum;
1957     double percent = sum / 100;
1958     for (i = 0; i <= N; i++) {
1959       rest -= histo[i];
1960       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1961     }
1962     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1963     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1964   }
1965 
1966   void print_histogram() {
1967     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1968     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1969     tty->print_cr("\nSame for parameter size (in words):");
1970     print_histogram_helper(_max_size, _size_histogram, "size");
1971     tty->cr();
1972   }
1973 
1974  public:
1975   MethodArityHistogram() {
1976     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1977     _max_arity = _max_size = 0;
1978     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
1979     CodeCache::nmethods_do(add_method_to_histogram);
1980     print_histogram();
1981   }
1982 };
1983 
1984 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1985 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1986 int MethodArityHistogram::_max_arity;
1987 int MethodArityHistogram::_max_size;
1988 
1989 void SharedRuntime::print_call_statistics(int comp_total) {
1990   tty->print_cr("Calls from compiled code:");
1991   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1992   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1993   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1994   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1995   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1996   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1997   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1998   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1999   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2000   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2001   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2002   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2003   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2004   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2005   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2006   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2007   tty->cr();
2008   tty->print_cr("Note 1: counter updates are not MT-safe.");
2009   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2010   tty->print_cr("        %% in nested categories are relative to their category");
2011   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2012   tty->cr();
2013 
2014   MethodArityHistogram h;
2015 }
2016 #endif
2017 
2018 
2019 // A simple wrapper class around the calling convention information
2020 // that allows sharing of adapters for the same calling convention.
2021 class AdapterFingerPrint : public CHeapObj<mtCode> {
2022  private:
2023   enum {
2024     _basic_type_bits = 4,
2025     _basic_type_mask = right_n_bits(_basic_type_bits),
2026     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2027     _compact_int_count = 3
2028   };
2029   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2030   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2031 
2032   union {
2033     int  _compact[_compact_int_count];
2034     int* _fingerprint;
2035   } _value;
2036   int _length; // A negative length indicates the fingerprint is in the compact form,
2037                // Otherwise _value._fingerprint is the array.
2038 
2039   // Remap BasicTypes that are handled equivalently by the adapters.
2040   // These are correct for the current system but someday it might be
2041   // necessary to make this mapping platform dependent.
2042   static int adapter_encoding(BasicType in) {
2043     switch (in) {
2044       case T_BOOLEAN:
2045       case T_BYTE:
2046       case T_SHORT:
2047       case T_CHAR:
2048         // There are all promoted to T_INT in the calling convention
2049         return T_INT;
2050 
2051       case T_OBJECT:
2052       case T_ARRAY:
2053         // In other words, we assume that any register good enough for
2054         // an int or long is good enough for a managed pointer.
2055 #ifdef _LP64
2056         return T_LONG;
2057 #else
2058         return T_INT;
2059 #endif
2060 
2061       case T_INT:
2062       case T_LONG:
2063       case T_FLOAT:
2064       case T_DOUBLE:
2065       case T_VOID:
2066         return in;
2067 
2068       default:
2069         ShouldNotReachHere();
2070         return T_CONFLICT;
2071     }
2072   }
2073 
2074  public:
2075   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2076     // The fingerprint is based on the BasicType signature encoded
2077     // into an array of ints with eight entries per int.
2078     int* ptr;
2079     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2080     if (len <= _compact_int_count) {
2081       assert(_compact_int_count == 3, "else change next line");
2082       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2083       // Storing the signature encoded as signed chars hits about 98%
2084       // of the time.
2085       _length = -len;
2086       ptr = _value._compact;
2087     } else {
2088       _length = len;
2089       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2090       ptr = _value._fingerprint;
2091     }
2092 
2093     // Now pack the BasicTypes with 8 per int
2094     int sig_index = 0;
2095     for (int index = 0; index < len; index++) {
2096       int value = 0;
2097       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2098         int bt = ((sig_index < total_args_passed)
2099                   ? adapter_encoding(sig_bt[sig_index++])
2100                   : 0);
2101         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2102         value = (value << _basic_type_bits) | bt;
2103       }
2104       ptr[index] = value;
2105     }
2106   }
2107 
2108   ~AdapterFingerPrint() {
2109     if (_length > 0) {
2110       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2111     }
2112   }
2113 
2114   int value(int index) {
2115     if (_length < 0) {
2116       return _value._compact[index];
2117     }
2118     return _value._fingerprint[index];
2119   }
2120   int length() {
2121     if (_length < 0) return -_length;
2122     return _length;
2123   }
2124 
2125   bool is_compact() {
2126     return _length <= 0;
2127   }
2128 
2129   unsigned int compute_hash() {
2130     int hash = 0;
2131     for (int i = 0; i < length(); i++) {
2132       int v = value(i);
2133       hash = (hash << 8) ^ v ^ (hash >> 5);
2134     }
2135     return (unsigned int)hash;
2136   }
2137 
2138   const char* as_string() {
2139     stringStream st;
2140     st.print("0x");
2141     for (int i = 0; i < length(); i++) {
2142       st.print("%08x", value(i));
2143     }
2144     return st.as_string();
2145   }
2146 
2147   bool equals(AdapterFingerPrint* other) {
2148     if (other->_length != _length) {
2149       return false;
2150     }
2151     if (_length < 0) {
2152       assert(_compact_int_count == 3, "else change next line");
2153       return _value._compact[0] == other->_value._compact[0] &&
2154              _value._compact[1] == other->_value._compact[1] &&
2155              _value._compact[2] == other->_value._compact[2];
2156     } else {
2157       for (int i = 0; i < _length; i++) {
2158         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2159           return false;
2160         }
2161       }
2162     }
2163     return true;
2164   }
2165 };
2166 
2167 
2168 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2169 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2170   friend class AdapterHandlerTableIterator;
2171 
2172  private:
2173 
2174 #ifndef PRODUCT
2175   static int _lookups; // number of calls to lookup
2176   static int _buckets; // number of buckets checked
2177   static int _equals;  // number of buckets checked with matching hash
2178   static int _hits;    // number of successful lookups
2179   static int _compact; // number of equals calls with compact signature
2180 #endif
2181 
2182   AdapterHandlerEntry* bucket(int i) {
2183     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2184   }
2185 
2186  public:
2187   AdapterHandlerTable()
2188     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2189 
2190   // Create a new entry suitable for insertion in the table
2191   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2192     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2193     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2194     return entry;
2195   }
2196 
2197   // Insert an entry into the table
2198   void add(AdapterHandlerEntry* entry) {
2199     int index = hash_to_index(entry->hash());
2200     add_entry(index, entry);
2201   }
2202 
2203   void free_entry(AdapterHandlerEntry* entry) {
2204     entry->deallocate();
2205     BasicHashtable<mtCode>::free_entry(entry);
2206   }
2207 
2208   // Find a entry with the same fingerprint if it exists
2209   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2210     NOT_PRODUCT(_lookups++);
2211     AdapterFingerPrint fp(total_args_passed, sig_bt);
2212     unsigned int hash = fp.compute_hash();
2213     int index = hash_to_index(hash);
2214     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2215       NOT_PRODUCT(_buckets++);
2216       if (e->hash() == hash) {
2217         NOT_PRODUCT(_equals++);
2218         if (fp.equals(e->fingerprint())) {
2219 #ifndef PRODUCT
2220           if (fp.is_compact()) _compact++;
2221           _hits++;
2222 #endif
2223           return e;
2224         }
2225       }
2226     }
2227     return NULL;
2228   }
2229 
2230 #ifndef PRODUCT
2231   void print_statistics() {
2232     ResourceMark rm;
2233     int longest = 0;
2234     int empty = 0;
2235     int total = 0;
2236     int nonempty = 0;
2237     for (int index = 0; index < table_size(); index++) {
2238       int count = 0;
2239       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2240         count++;
2241       }
2242       if (count != 0) nonempty++;
2243       if (count == 0) empty++;
2244       if (count > longest) longest = count;
2245       total += count;
2246     }
2247     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2248                   empty, longest, total, total / (double)nonempty);
2249     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2250                   _lookups, _buckets, _equals, _hits, _compact);
2251   }
2252 #endif
2253 };
2254 
2255 
2256 #ifndef PRODUCT
2257 
2258 int AdapterHandlerTable::_lookups;
2259 int AdapterHandlerTable::_buckets;
2260 int AdapterHandlerTable::_equals;
2261 int AdapterHandlerTable::_hits;
2262 int AdapterHandlerTable::_compact;
2263 
2264 #endif
2265 
2266 class AdapterHandlerTableIterator : public StackObj {
2267  private:
2268   AdapterHandlerTable* _table;
2269   int _index;
2270   AdapterHandlerEntry* _current;
2271 
2272   void scan() {
2273     while (_index < _table->table_size()) {
2274       AdapterHandlerEntry* a = _table->bucket(_index);
2275       _index++;
2276       if (a != NULL) {
2277         _current = a;
2278         return;
2279       }
2280     }
2281   }
2282 
2283  public:
2284   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2285     scan();
2286   }
2287   bool has_next() {
2288     return _current != NULL;
2289   }
2290   AdapterHandlerEntry* next() {
2291     if (_current != NULL) {
2292       AdapterHandlerEntry* result = _current;
2293       _current = _current->next();
2294       if (_current == NULL) scan();
2295       return result;
2296     } else {
2297       return NULL;
2298     }
2299   }
2300 };
2301 
2302 
2303 // ---------------------------------------------------------------------------
2304 // Implementation of AdapterHandlerLibrary
2305 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2306 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2307 const int AdapterHandlerLibrary_size = 16*K;
2308 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2309 
2310 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2311   // Should be called only when AdapterHandlerLibrary_lock is active.
2312   if (_buffer == NULL) // Initialize lazily
2313       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2314   return _buffer;
2315 }
2316 
2317 extern "C" void unexpected_adapter_call() {
2318   ShouldNotCallThis();
2319 }
2320 
2321 void AdapterHandlerLibrary::initialize() {
2322   if (_adapters != NULL) return;
2323   _adapters = new AdapterHandlerTable();
2324 
2325   if (!CodeCacheExtensions::skip_compiler_support()) {
2326     // Create a special handler for abstract methods.  Abstract methods
2327     // are never compiled so an i2c entry is somewhat meaningless, but
2328     // throw AbstractMethodError just in case.
2329     // Pass wrong_method_abstract for the c2i transitions to return
2330     // AbstractMethodError for invalid invocations.
2331     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2332     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2333                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2334                                                                 wrong_method_abstract, wrong_method_abstract);
2335   } else {
2336     // Adapters are not supposed to be used.
2337     // Generate a special one to cause an error if used (and store this
2338     // singleton in place of the useless _abstract_method_error adapter).
2339     address entry = (address) &unexpected_adapter_call;
2340     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2341                                                                 entry,
2342                                                                 entry,
2343                                                                 entry);
2344 
2345   }
2346 }
2347 
2348 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2349                                                       address i2c_entry,
2350                                                       address c2i_entry,
2351                                                       address c2i_unverified_entry) {
2352   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2353 }
2354 
2355 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2356   // Use customized signature handler.  Need to lock around updates to
2357   // the AdapterHandlerTable (it is not safe for concurrent readers
2358   // and a single writer: this could be fixed if it becomes a
2359   // problem).
2360 
2361   ResourceMark rm;
2362 
2363   NOT_PRODUCT(int insts_size);
2364   AdapterBlob* new_adapter = NULL;
2365   AdapterHandlerEntry* entry = NULL;
2366   AdapterFingerPrint* fingerprint = NULL;
2367   {
2368     MutexLocker mu(AdapterHandlerLibrary_lock);
2369     // make sure data structure is initialized
2370     initialize();
2371 
2372     if (CodeCacheExtensions::skip_compiler_support()) {
2373       // adapters are useless and should not be used, including the
2374       // abstract_method_handler. However, some callers check that
2375       // an adapter was installed.
2376       // Return the singleton adapter, stored into _abstract_method_handler
2377       // and modified to cause an error if we ever call it.
2378       return _abstract_method_handler;
2379     }
2380 
2381     if (method->is_abstract()) {
2382       return _abstract_method_handler;
2383     }
2384 
2385     // Fill in the signature array, for the calling-convention call.
2386     int total_args_passed = method->size_of_parameters(); // All args on stack
2387 
2388     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2389     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2390     int i = 0;
2391     if (!method->is_static())  // Pass in receiver first
2392       sig_bt[i++] = T_OBJECT;
2393     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2394       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2395       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2396         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2397     }
2398     assert(i == total_args_passed, "");
2399 
2400     // Lookup method signature's fingerprint
2401     entry = _adapters->lookup(total_args_passed, sig_bt);
2402 
2403 #ifdef ASSERT
2404     AdapterHandlerEntry* shared_entry = NULL;
2405     // Start adapter sharing verification only after the VM is booted.
2406     if (VerifyAdapterSharing && (entry != NULL)) {
2407       shared_entry = entry;
2408       entry = NULL;
2409     }
2410 #endif
2411 
2412     if (entry != NULL) {
2413       return entry;
2414     }
2415 
2416     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2417     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2418 
2419     // Make a C heap allocated version of the fingerprint to store in the adapter
2420     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2421 
2422     // StubRoutines::code2() is initialized after this function can be called. As a result,
2423     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2424     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2425     // stub that ensure that an I2C stub is called from an interpreter frame.
2426     bool contains_all_checks = StubRoutines::code2() != NULL;
2427 
2428     // Create I2C & C2I handlers
2429     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2430     if (buf != NULL) {
2431       CodeBuffer buffer(buf);
2432       short buffer_locs[20];
2433       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2434                                              sizeof(buffer_locs)/sizeof(relocInfo));
2435 
2436       MacroAssembler _masm(&buffer);
2437       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2438                                                      total_args_passed,
2439                                                      comp_args_on_stack,
2440                                                      sig_bt,
2441                                                      regs,
2442                                                      fingerprint);
2443 #ifdef ASSERT
2444       if (VerifyAdapterSharing) {
2445         if (shared_entry != NULL) {
2446           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2447           // Release the one just created and return the original
2448           _adapters->free_entry(entry);
2449           return shared_entry;
2450         } else  {
2451           entry->save_code(buf->code_begin(), buffer.insts_size());
2452         }
2453       }
2454 #endif
2455 
2456       new_adapter = AdapterBlob::create(&buffer);
2457       NOT_PRODUCT(insts_size = buffer.insts_size());
2458     }
2459     if (new_adapter == NULL) {
2460       // CodeCache is full, disable compilation
2461       // Ought to log this but compile log is only per compile thread
2462       // and we're some non descript Java thread.
2463       return NULL; // Out of CodeCache space
2464     }
2465     entry->relocate(new_adapter->content_begin());
2466 #ifndef PRODUCT
2467     // debugging suppport
2468     if (PrintAdapterHandlers || PrintStubCode) {
2469       ttyLocker ttyl;
2470       entry->print_adapter_on(tty);
2471       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2472                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2473                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2474       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2475       if (Verbose || PrintStubCode) {
2476         address first_pc = entry->base_address();
2477         if (first_pc != NULL) {
2478           Disassembler::decode(first_pc, first_pc + insts_size);
2479           tty->cr();
2480         }
2481       }
2482     }
2483 #endif
2484     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2485     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2486     if (contains_all_checks || !VerifyAdapterCalls) {
2487       _adapters->add(entry);
2488     }
2489   }
2490   // Outside of the lock
2491   if (new_adapter != NULL) {
2492     char blob_id[256];
2493     jio_snprintf(blob_id,
2494                  sizeof(blob_id),
2495                  "%s(%s)@" PTR_FORMAT,
2496                  new_adapter->name(),
2497                  fingerprint->as_string(),
2498                  new_adapter->content_begin());
2499     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2500 
2501     if (JvmtiExport::should_post_dynamic_code_generated()) {
2502       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2503     }
2504   }
2505   return entry;
2506 }
2507 
2508 address AdapterHandlerEntry::base_address() {
2509   address base = _i2c_entry;
2510   if (base == NULL)  base = _c2i_entry;
2511   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2512   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2513   return base;
2514 }
2515 
2516 void AdapterHandlerEntry::relocate(address new_base) {
2517   address old_base = base_address();
2518   assert(old_base != NULL, "");
2519   ptrdiff_t delta = new_base - old_base;
2520   if (_i2c_entry != NULL)
2521     _i2c_entry += delta;
2522   if (_c2i_entry != NULL)
2523     _c2i_entry += delta;
2524   if (_c2i_unverified_entry != NULL)
2525     _c2i_unverified_entry += delta;
2526   assert(base_address() == new_base, "");
2527 }
2528 
2529 
2530 void AdapterHandlerEntry::deallocate() {
2531   delete _fingerprint;
2532 #ifdef ASSERT
2533   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2534 #endif
2535 }
2536 
2537 
2538 #ifdef ASSERT
2539 // Capture the code before relocation so that it can be compared
2540 // against other versions.  If the code is captured after relocation
2541 // then relative instructions won't be equivalent.
2542 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2543   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2544   _saved_code_length = length;
2545   memcpy(_saved_code, buffer, length);
2546 }
2547 
2548 
2549 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2550   if (length != _saved_code_length) {
2551     return false;
2552   }
2553 
2554   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2555 }
2556 #endif
2557 
2558 
2559 /**
2560  * Create a native wrapper for this native method.  The wrapper converts the
2561  * Java-compiled calling convention to the native convention, handles
2562  * arguments, and transitions to native.  On return from the native we transition
2563  * back to java blocking if a safepoint is in progress.
2564  */
2565 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2566   ResourceMark rm;
2567   nmethod* nm = NULL;
2568 
2569   assert(method->is_native(), "must be native");
2570   assert(method->is_method_handle_intrinsic() ||
2571          method->has_native_function(), "must have something valid to call!");
2572 
2573   {
2574     // Perform the work while holding the lock, but perform any printing outside the lock
2575     MutexLocker mu(AdapterHandlerLibrary_lock);
2576     // See if somebody beat us to it
2577     nm = method->code();
2578     if (nm != NULL) {
2579       return;
2580     }
2581 
2582     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2583     assert(compile_id > 0, "Must generate native wrapper");
2584 
2585 
2586     ResourceMark rm;
2587     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2588     if (buf != NULL) {
2589       CodeBuffer buffer(buf);
2590       double locs_buf[20];
2591       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2592       MacroAssembler _masm(&buffer);
2593 
2594       // Fill in the signature array, for the calling-convention call.
2595       const int total_args_passed = method->size_of_parameters();
2596 
2597       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2598       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2599       int i=0;
2600       if (!method->is_static())  // Pass in receiver first
2601         sig_bt[i++] = T_OBJECT;
2602       SignatureStream ss(method->signature());
2603       for (; !ss.at_return_type(); ss.next()) {
2604         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2605         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2606           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2607       }
2608       assert(i == total_args_passed, "");
2609       BasicType ret_type = ss.type();
2610 
2611       // Now get the compiled-Java layout as input (or output) arguments.
2612       // NOTE: Stubs for compiled entry points of method handle intrinsics
2613       // are just trampolines so the argument registers must be outgoing ones.
2614       const bool is_outgoing = method->is_method_handle_intrinsic();
2615       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2616 
2617       // Generate the compiled-to-native wrapper code
2618       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2619 
2620       if (nm != NULL) {
2621         method->set_code(method, nm);
2622       }
2623     }
2624   } // Unlock AdapterHandlerLibrary_lock
2625 
2626 
2627   // Install the generated code.
2628   if (nm != NULL) {
2629     if (PrintCompilation) {
2630       ttyLocker ttyl;
2631       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2632     }
2633     nm->post_compiled_method_load_event();
2634   }
2635 }
2636 
2637 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2638   assert(thread == JavaThread::current(), "must be");
2639   // The code is about to enter a JNI lazy critical native method and
2640   // _needs_gc is true, so if this thread is already in a critical
2641   // section then just return, otherwise this thread should block
2642   // until needs_gc has been cleared.
2643   if (thread->in_critical()) {
2644     return;
2645   }
2646   // Lock and unlock a critical section to give the system a chance to block
2647   GC_locker::lock_critical(thread);
2648   GC_locker::unlock_critical(thread);
2649 JRT_END
2650 
2651 // -------------------------------------------------------------------------
2652 // Java-Java calling convention
2653 // (what you use when Java calls Java)
2654 
2655 //------------------------------name_for_receiver----------------------------------
2656 // For a given signature, return the VMReg for parameter 0.
2657 VMReg SharedRuntime::name_for_receiver() {
2658   VMRegPair regs;
2659   BasicType sig_bt = T_OBJECT;
2660   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2661   // Return argument 0 register.  In the LP64 build pointers
2662   // take 2 registers, but the VM wants only the 'main' name.
2663   return regs.first();
2664 }
2665 
2666 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2667   // This method is returning a data structure allocating as a
2668   // ResourceObject, so do not put any ResourceMarks in here.
2669   char *s = sig->as_C_string();
2670   int len = (int)strlen(s);
2671   s++; len--;                   // Skip opening paren
2672   char *t = s+len;
2673   while (*(--t) != ')');      // Find close paren
2674 
2675   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2676   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2677   int cnt = 0;
2678   if (has_receiver) {
2679     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2680   }
2681 
2682   while (s < t) {
2683     switch (*s++) {            // Switch on signature character
2684     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2685     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2686     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2687     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2688     case 'I': sig_bt[cnt++] = T_INT;     break;
2689     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2690     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2691     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2692     case 'V': sig_bt[cnt++] = T_VOID;    break;
2693     case 'L':                   // Oop
2694       while (*s++ != ';');   // Skip signature
2695       sig_bt[cnt++] = T_OBJECT;
2696       break;
2697     case '[': {                 // Array
2698       do {                      // Skip optional size
2699         while (*s >= '0' && *s <= '9') s++;
2700       } while (*s++ == '[');   // Nested arrays?
2701       // Skip element type
2702       if (s[-1] == 'L')
2703         while (*s++ != ';'); // Skip signature
2704       sig_bt[cnt++] = T_ARRAY;
2705       break;
2706     }
2707     default : ShouldNotReachHere();
2708     }
2709   }
2710 
2711   if (has_appendix) {
2712     sig_bt[cnt++] = T_OBJECT;
2713   }
2714 
2715   assert(cnt < 256, "grow table size");
2716 
2717   int comp_args_on_stack;
2718   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2719 
2720   // the calling convention doesn't count out_preserve_stack_slots so
2721   // we must add that in to get "true" stack offsets.
2722 
2723   if (comp_args_on_stack) {
2724     for (int i = 0; i < cnt; i++) {
2725       VMReg reg1 = regs[i].first();
2726       if (reg1->is_stack()) {
2727         // Yuck
2728         reg1 = reg1->bias(out_preserve_stack_slots());
2729       }
2730       VMReg reg2 = regs[i].second();
2731       if (reg2->is_stack()) {
2732         // Yuck
2733         reg2 = reg2->bias(out_preserve_stack_slots());
2734       }
2735       regs[i].set_pair(reg2, reg1);
2736     }
2737   }
2738 
2739   // results
2740   *arg_size = cnt;
2741   return regs;
2742 }
2743 
2744 // OSR Migration Code
2745 //
2746 // This code is used convert interpreter frames into compiled frames.  It is
2747 // called from very start of a compiled OSR nmethod.  A temp array is
2748 // allocated to hold the interesting bits of the interpreter frame.  All
2749 // active locks are inflated to allow them to move.  The displaced headers and
2750 // active interpreter locals are copied into the temp buffer.  Then we return
2751 // back to the compiled code.  The compiled code then pops the current
2752 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2753 // copies the interpreter locals and displaced headers where it wants.
2754 // Finally it calls back to free the temp buffer.
2755 //
2756 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2757 
2758 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2759 
2760   //
2761   // This code is dependent on the memory layout of the interpreter local
2762   // array and the monitors. On all of our platforms the layout is identical
2763   // so this code is shared. If some platform lays the their arrays out
2764   // differently then this code could move to platform specific code or
2765   // the code here could be modified to copy items one at a time using
2766   // frame accessor methods and be platform independent.
2767 
2768   frame fr = thread->last_frame();
2769   assert(fr.is_interpreted_frame(), "");
2770   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2771 
2772   // Figure out how many monitors are active.
2773   int active_monitor_count = 0;
2774   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2775        kptr < fr.interpreter_frame_monitor_begin();
2776        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2777     if (kptr->obj() != NULL) active_monitor_count++;
2778   }
2779 
2780   // QQQ we could place number of active monitors in the array so that compiled code
2781   // could double check it.
2782 
2783   Method* moop = fr.interpreter_frame_method();
2784   int max_locals = moop->max_locals();
2785   // Allocate temp buffer, 1 word per local & 2 per active monitor
2786   int buf_size_words = max_locals + active_monitor_count*2;
2787   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2788 
2789   // Copy the locals.  Order is preserved so that loading of longs works.
2790   // Since there's no GC I can copy the oops blindly.
2791   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2792   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2793                        (HeapWord*)&buf[0],
2794                        max_locals);
2795 
2796   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2797   int i = max_locals;
2798   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2799        kptr2 < fr.interpreter_frame_monitor_begin();
2800        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2801     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2802       BasicLock *lock = kptr2->lock();
2803       // Inflate so the displaced header becomes position-independent
2804       if (lock->displaced_header()->is_unlocked())
2805         ObjectSynchronizer::inflate_helper(kptr2->obj());
2806       // Now the displaced header is free to move
2807       buf[i++] = (intptr_t)lock->displaced_header();
2808       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2809     }
2810   }
2811   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2812 
2813   return buf;
2814 JRT_END
2815 
2816 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2817   FREE_C_HEAP_ARRAY(intptr_t, buf);
2818 JRT_END
2819 
2820 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2821   AdapterHandlerTableIterator iter(_adapters);
2822   while (iter.has_next()) {
2823     AdapterHandlerEntry* a = iter.next();
2824     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
2825   }
2826   return false;
2827 }
2828 
2829 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2830   AdapterHandlerTableIterator iter(_adapters);
2831   while (iter.has_next()) {
2832     AdapterHandlerEntry* a = iter.next();
2833     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2834       st->print("Adapter for signature: ");
2835       a->print_adapter_on(tty);
2836       return;
2837     }
2838   }
2839   assert(false, "Should have found handler");
2840 }
2841 
2842 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2843   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2844                (intptr_t) this, fingerprint()->as_string(),
2845                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2846 
2847 }
2848 
2849 #ifndef PRODUCT
2850 
2851 void AdapterHandlerLibrary::print_statistics() {
2852   _adapters->print_statistics();
2853 }
2854 
2855 #endif /* PRODUCT */