1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_OOP_INLINE_HPP
  26 #define SHARE_VM_OOPS_OOP_INLINE_HPP
  27 
  28 #include "gc/shared/ageTable.hpp"
  29 #include "gc/shared/barrierSet.inline.hpp"
  30 #include "gc/shared/cardTableModRefBS.hpp"
  31 #include "gc/shared/collectedHeap.inline.hpp"
  32 #include "gc/shared/genCollectedHeap.hpp"
  33 #include "gc/shared/generation.hpp"
  34 #include "oops/arrayKlass.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/klass.inline.hpp"
  37 #include "oops/markOop.inline.hpp"
  38 #include "oops/oop.hpp"
  39 #include "runtime/atomic.inline.hpp"
  40 #include "runtime/orderAccess.inline.hpp"
  41 #include "runtime/os.hpp"
  42 #include "utilities/macros.hpp"
  43 
  44 // Implementation of all inlined member functions defined in oop.hpp
  45 // We need a separate file to avoid circular references
  46 
  47 inline void oopDesc::release_set_mark(markOop m) {
  48   OrderAccess::release_store_ptr(&_mark, m);
  49 }
  50 
  51 inline markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
  52   return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark);
  53 }
  54 
  55 inline Klass* oopDesc::klass() const {
  56   if (UseCompressedClassPointers) {
  57     return Klass::decode_klass_not_null(_metadata._compressed_klass);
  58   } else {
  59     return _metadata._klass;
  60   }
  61 }
  62 
  63 inline Klass* oopDesc::klass_or_null() const volatile {
  64   // can be NULL in CMS
  65   if (UseCompressedClassPointers) {
  66     return Klass::decode_klass(_metadata._compressed_klass);
  67   } else {
  68     return _metadata._klass;
  69   }
  70 }
  71 
  72 inline Klass** oopDesc::klass_addr() {
  73   // Only used internally and with CMS and will not work with
  74   // UseCompressedOops
  75   assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
  76   return (Klass**) &_metadata._klass;
  77 }
  78 
  79 inline narrowKlass* oopDesc::compressed_klass_addr() {
  80   assert(UseCompressedClassPointers, "only called by compressed klass pointers");
  81   return &_metadata._compressed_klass;
  82 }
  83 
  84 inline void oopDesc::set_klass(Klass* k) {
  85   // since klasses are promoted no store check is needed
  86   assert(Universe::is_bootstrapping() || k != NULL, "must be a real Klass*");
  87   assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass*");
  88   if (UseCompressedClassPointers) {
  89     *compressed_klass_addr() = Klass::encode_klass_not_null(k);
  90   } else {
  91     *klass_addr() = k;
  92   }
  93 }
  94 
  95 inline int oopDesc::klass_gap() const {
  96   return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
  97 }
  98 
  99 inline void oopDesc::set_klass_gap(int v) {
 100   if (UseCompressedClassPointers) {
 101     *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
 102   }
 103 }
 104 
 105 inline void oopDesc::set_klass_to_list_ptr(oop k) {
 106   // This is only to be used during GC, for from-space objects, so no
 107   // barrier is needed.
 108   if (UseCompressedClassPointers) {
 109     _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k);  // may be null (parnew overflow handling)
 110   } else {
 111     _metadata._klass = (Klass*)(address)k;
 112   }
 113 }
 114 
 115 inline oop oopDesc::list_ptr_from_klass() {
 116   // This is only to be used during GC, for from-space objects.
 117   if (UseCompressedClassPointers) {
 118     return decode_heap_oop((narrowOop)_metadata._compressed_klass);
 119   } else {
 120     // Special case for GC
 121     return (oop)(address)_metadata._klass;
 122   }
 123 }
 124 
 125 inline void   oopDesc::init_mark()                 { set_mark(markOopDesc::prototype_for_object(this)); }
 126 
 127 inline bool oopDesc::is_a(Klass* k)        const { return klass()->is_subtype_of(k); }
 128 
 129 inline bool oopDesc::is_instance()            const { return klass()->oop_is_instance(); }
 130 inline bool oopDesc::is_instanceClassLoader() const { return klass()->oop_is_instanceClassLoader(); }
 131 inline bool oopDesc::is_instanceMirror()      const { return klass()->oop_is_instanceMirror(); }
 132 inline bool oopDesc::is_instanceRef()         const { return klass()->oop_is_instanceRef(); }
 133 inline bool oopDesc::is_array()               const { return klass()->oop_is_array(); }
 134 inline bool oopDesc::is_objArray()            const { return klass()->oop_is_objArray(); }
 135 inline bool oopDesc::is_typeArray()           const { return klass()->oop_is_typeArray(); }
 136 
 137 inline void*     oopDesc::field_base(int offset)        const { return (void*)&((char*)this)[offset]; }
 138 
 139 template <class T> inline T* oopDesc::obj_field_addr(int offset) const { return (T*)field_base(offset); }
 140 inline Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
 141 inline jbyte*    oopDesc::byte_field_addr(int offset)   const { return (jbyte*)   field_base(offset); }
 142 inline jchar*    oopDesc::char_field_addr(int offset)   const { return (jchar*)   field_base(offset); }
 143 inline jboolean* oopDesc::bool_field_addr(int offset)   const { return (jboolean*)field_base(offset); }
 144 inline jint*     oopDesc::int_field_addr(int offset)    const { return (jint*)    field_base(offset); }
 145 inline jshort*   oopDesc::short_field_addr(int offset)  const { return (jshort*)  field_base(offset); }
 146 inline jlong*    oopDesc::long_field_addr(int offset)   const { return (jlong*)   field_base(offset); }
 147 inline jfloat*   oopDesc::float_field_addr(int offset)  const { return (jfloat*)  field_base(offset); }
 148 inline jdouble*  oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); }
 149 inline address*  oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); }
 150 
 151 
 152 // Functions for getting and setting oops within instance objects.
 153 // If the oops are compressed, the type passed to these overloaded functions
 154 // is narrowOop.  All functions are overloaded so they can be called by
 155 // template functions without conditionals (the compiler instantiates via
 156 // the right type and inlines the appopriate code).
 157 
 158 inline bool oopDesc::is_null(oop obj)       { return obj == NULL; }
 159 inline bool oopDesc::is_null(narrowOop obj) { return obj == 0; }
 160 
 161 // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
 162 // offset from the heap base.  Saving the check for null can save instructions
 163 // in inner GC loops so these are separated.
 164 
 165 inline bool check_obj_alignment(oop obj) {
 166   return cast_from_oop<intptr_t>(obj) % MinObjAlignmentInBytes == 0;
 167 }
 168 
 169 inline narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
 170   assert(!is_null(v), "oop value can never be zero");
 171   assert(check_obj_alignment(v), "Address not aligned");
 172   assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
 173   address base = Universe::narrow_oop_base();
 174   int    shift = Universe::narrow_oop_shift();
 175   uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
 176   assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
 177   uint64_t result = pd >> shift;
 178   assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow");
 179   assert(decode_heap_oop(result) == v, "reversibility");
 180   return (narrowOop)result;
 181 }
 182 
 183 inline narrowOop oopDesc::encode_heap_oop(oop v) {
 184   return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
 185 }
 186 
 187 inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
 188   assert(!is_null(v), "narrow oop value can never be zero");
 189   address base = Universe::narrow_oop_base();
 190   int    shift = Universe::narrow_oop_shift();
 191   oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
 192   assert(check_obj_alignment(result), err_msg("address not aligned: " INTPTR_FORMAT, p2i((void*) result)));
 193   return result;
 194 }
 195 
 196 inline oop oopDesc::decode_heap_oop(narrowOop v) {
 197   return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
 198 }
 199 
 200 inline oop oopDesc::decode_heap_oop_not_null(oop v) { return v; }
 201 inline oop oopDesc::decode_heap_oop(oop v)  { return v; }
 202 
 203 // Load an oop out of the Java heap as is without decoding.
 204 // Called by GC to check for null before decoding.
 205 inline oop       oopDesc::load_heap_oop(oop* p)          { return *p; }
 206 inline narrowOop oopDesc::load_heap_oop(narrowOop* p)    { return *p; }
 207 
 208 // Load and decode an oop out of the Java heap into a wide oop.
 209 inline oop oopDesc::load_decode_heap_oop_not_null(oop* p)       { return *p; }
 210 inline oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
 211   return decode_heap_oop_not_null(*p);
 212 }
 213 
 214 // Load and decode an oop out of the heap accepting null
 215 inline oop oopDesc::load_decode_heap_oop(oop* p) { return *p; }
 216 inline oop oopDesc::load_decode_heap_oop(narrowOop* p) {
 217   return decode_heap_oop(*p);
 218 }
 219 
 220 // Store already encoded heap oop into the heap.
 221 inline void oopDesc::store_heap_oop(oop* p, oop v)                 { *p = v; }
 222 inline void oopDesc::store_heap_oop(narrowOop* p, narrowOop v)     { *p = v; }
 223 
 224 // Encode and store a heap oop.
 225 inline void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
 226   *p = encode_heap_oop_not_null(v);
 227 }
 228 inline void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; }
 229 
 230 // Encode and store a heap oop allowing for null.
 231 inline void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
 232   *p = encode_heap_oop(v);
 233 }
 234 inline void oopDesc::encode_store_heap_oop(oop* p, oop v) { *p = v; }
 235 
 236 // Store heap oop as is for volatile fields.
 237 inline void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
 238   OrderAccess::release_store_ptr(p, v);
 239 }
 240 inline void oopDesc::release_store_heap_oop(volatile narrowOop* p,
 241                                             narrowOop v) {
 242   OrderAccess::release_store(p, v);
 243 }
 244 
 245 inline void oopDesc::release_encode_store_heap_oop_not_null(
 246                                                 volatile narrowOop* p, oop v) {
 247   // heap oop is not pointer sized.
 248   OrderAccess::release_store(p, encode_heap_oop_not_null(v));
 249 }
 250 
 251 inline void oopDesc::release_encode_store_heap_oop_not_null(
 252                                                       volatile oop* p, oop v) {
 253   OrderAccess::release_store_ptr(p, v);
 254 }
 255 
 256 inline void oopDesc::release_encode_store_heap_oop(volatile oop* p,
 257                                                            oop v) {
 258   OrderAccess::release_store_ptr(p, v);
 259 }
 260 inline void oopDesc::release_encode_store_heap_oop(
 261                                                 volatile narrowOop* p, oop v) {
 262   OrderAccess::release_store(p, encode_heap_oop(v));
 263 }
 264 
 265 
 266 // These functions are only used to exchange oop fields in instances,
 267 // not headers.
 268 inline oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
 269   if (UseCompressedOops) {
 270     // encode exchange value from oop to T
 271     narrowOop val = encode_heap_oop(exchange_value);
 272     narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest);
 273     // decode old from T to oop
 274     return decode_heap_oop(old);
 275   } else {
 276     return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest);
 277   }
 278 }
 279 
 280 // In order to put or get a field out of an instance, must first check
 281 // if the field has been compressed and uncompress it.
 282 inline oop oopDesc::obj_field(int offset) const {
 283   return UseCompressedOops ?
 284     load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
 285     load_decode_heap_oop(obj_field_addr<oop>(offset));
 286 }
 287 
 288 inline void oopDesc::obj_field_put(int offset, oop value) {
 289   UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
 290                       oop_store(obj_field_addr<oop>(offset),       value);
 291 }
 292 
 293 inline Metadata* oopDesc::metadata_field(int offset) const {
 294   return *metadata_field_addr(offset);
 295 }
 296 
 297 inline void oopDesc::metadata_field_put(int offset, Metadata* value) {
 298   *metadata_field_addr(offset) = value;
 299 }
 300 
 301 inline void oopDesc::obj_field_put_raw(int offset, oop value) {
 302   UseCompressedOops ?
 303     encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
 304     encode_store_heap_oop(obj_field_addr<oop>(offset),       value);
 305 }
 306 inline void oopDesc::obj_field_put_volatile(int offset, oop value) {
 307   OrderAccess::release();
 308   obj_field_put(offset, value);
 309   OrderAccess::fence();
 310 }
 311 
 312 inline jbyte oopDesc::byte_field(int offset) const                  { return (jbyte) *byte_field_addr(offset);    }
 313 inline void oopDesc::byte_field_put(int offset, jbyte contents)     { *byte_field_addr(offset) = (jint) contents; }
 314 
 315 inline jboolean oopDesc::bool_field(int offset) const               { return (jboolean) *bool_field_addr(offset); }
 316 inline void oopDesc::bool_field_put(int offset, jboolean contents)  { *bool_field_addr(offset) = (jint) contents; }
 317 
 318 inline jchar oopDesc::char_field(int offset) const                  { return (jchar) *char_field_addr(offset);    }
 319 inline void oopDesc::char_field_put(int offset, jchar contents)     { *char_field_addr(offset) = (jint) contents; }
 320 
 321 inline jint oopDesc::int_field(int offset) const                    { return *int_field_addr(offset);        }
 322 inline void oopDesc::int_field_put(int offset, jint contents)       { *int_field_addr(offset) = contents;    }
 323 
 324 inline jshort oopDesc::short_field(int offset) const                { return (jshort) *short_field_addr(offset);  }
 325 inline void oopDesc::short_field_put(int offset, jshort contents)   { *short_field_addr(offset) = (jint) contents;}
 326 
 327 inline jlong oopDesc::long_field(int offset) const                  { return *long_field_addr(offset);       }
 328 inline void oopDesc::long_field_put(int offset, jlong contents)     { *long_field_addr(offset) = contents;   }
 329 
 330 inline jfloat oopDesc::float_field(int offset) const                { return *float_field_addr(offset);      }
 331 inline void oopDesc::float_field_put(int offset, jfloat contents)   { *float_field_addr(offset) = contents;  }
 332 
 333 inline jdouble oopDesc::double_field(int offset) const              { return *double_field_addr(offset);     }
 334 inline void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; }
 335 
 336 inline address oopDesc::address_field(int offset) const              { return *address_field_addr(offset);     }
 337 inline void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
 338 
 339 inline oop oopDesc::obj_field_acquire(int offset) const {
 340   return UseCompressedOops ?
 341              decode_heap_oop((narrowOop)
 342                OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
 343            : decode_heap_oop((oop)
 344                OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset)));
 345 }
 346 inline void oopDesc::release_obj_field_put(int offset, oop value) {
 347   UseCompressedOops ?
 348     oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
 349     oop_store((volatile oop*)      obj_field_addr<oop>(offset),       value);
 350 }
 351 
 352 inline jbyte oopDesc::byte_field_acquire(int offset) const                  { return OrderAccess::load_acquire(byte_field_addr(offset));     }
 353 inline void oopDesc::release_byte_field_put(int offset, jbyte contents)     { OrderAccess::release_store(byte_field_addr(offset), contents); }
 354 
 355 inline jboolean oopDesc::bool_field_acquire(int offset) const               { return OrderAccess::load_acquire(bool_field_addr(offset));     }
 356 inline void oopDesc::release_bool_field_put(int offset, jboolean contents)  { OrderAccess::release_store(bool_field_addr(offset), contents); }
 357 
 358 inline jchar oopDesc::char_field_acquire(int offset) const                  { return OrderAccess::load_acquire(char_field_addr(offset));     }
 359 inline void oopDesc::release_char_field_put(int offset, jchar contents)     { OrderAccess::release_store(char_field_addr(offset), contents); }
 360 
 361 inline jint oopDesc::int_field_acquire(int offset) const                    { return OrderAccess::load_acquire(int_field_addr(offset));      }
 362 inline void oopDesc::release_int_field_put(int offset, jint contents)       { OrderAccess::release_store(int_field_addr(offset), contents);  }
 363 
 364 inline jshort oopDesc::short_field_acquire(int offset) const                { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
 365 inline void oopDesc::release_short_field_put(int offset, jshort contents)   { OrderAccess::release_store(short_field_addr(offset), contents);     }
 366 
 367 inline jlong oopDesc::long_field_acquire(int offset) const                  { return OrderAccess::load_acquire(long_field_addr(offset));       }
 368 inline void oopDesc::release_long_field_put(int offset, jlong contents)     { OrderAccess::release_store(long_field_addr(offset), contents);   }
 369 
 370 inline jfloat oopDesc::float_field_acquire(int offset) const                { return OrderAccess::load_acquire(float_field_addr(offset));      }
 371 inline void oopDesc::release_float_field_put(int offset, jfloat contents)   { OrderAccess::release_store(float_field_addr(offset), contents);  }
 372 
 373 inline jdouble oopDesc::double_field_acquire(int offset) const              { return OrderAccess::load_acquire(double_field_addr(offset));     }
 374 inline void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); }
 375 
 376 inline address oopDesc::address_field_acquire(int offset) const             { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
 377 inline void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
 378 
 379 inline int oopDesc::size_given_klass(Klass* klass)  {
 380   int lh = klass->layout_helper();
 381   int s;
 382 
 383   // lh is now a value computed at class initialization that may hint
 384   // at the size.  For instances, this is positive and equal to the
 385   // size.  For arrays, this is negative and provides log2 of the
 386   // array element size.  For other oops, it is zero and thus requires
 387   // a virtual call.
 388   //
 389   // We go to all this trouble because the size computation is at the
 390   // heart of phase 2 of mark-compaction, and called for every object,
 391   // alive or dead.  So the speed here is equal in importance to the
 392   // speed of allocation.
 393 
 394   if (lh > Klass::_lh_neutral_value) {
 395     if (!Klass::layout_helper_needs_slow_path(lh)) {
 396       s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
 397     } else {
 398       s = klass->oop_size(this);
 399     }
 400   } else if (lh <= Klass::_lh_neutral_value) {
 401     // The most common case is instances; fall through if so.
 402     if (lh < Klass::_lh_neutral_value) {
 403       // Second most common case is arrays.  We have to fetch the
 404       // length of the array, shift (multiply) it appropriately,
 405       // up to wordSize, add the header, and align to object size.
 406       size_t size_in_bytes;
 407 #ifdef _M_IA64
 408       // The Windows Itanium Aug 2002 SDK hoists this load above
 409       // the check for s < 0.  An oop at the end of the heap will
 410       // cause an access violation if this load is performed on a non
 411       // array oop.  Making the reference volatile prohibits this.
 412       // (%%% please explain by what magic the length is actually fetched!)
 413       volatile int *array_length;
 414       array_length = (volatile int *)( (intptr_t)this +
 415                           arrayOopDesc::length_offset_in_bytes() );
 416       assert(array_length > 0, "Integer arithmetic problem somewhere");
 417       // Put into size_t to avoid overflow.
 418       size_in_bytes = (size_t) array_length;
 419       size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
 420 #else
 421       size_t array_length = (size_t) ((arrayOop)this)->length();
 422       size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
 423 #endif
 424       size_in_bytes += Klass::layout_helper_header_size(lh);
 425 
 426       // This code could be simplified, but by keeping array_header_in_bytes
 427       // in units of bytes and doing it this way we can round up just once,
 428       // skipping the intermediate round to HeapWordSize.  Cast the result
 429       // of round_to to size_t to guarantee unsigned division == right shift.
 430       s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
 431         HeapWordSize);
 432 
 433       // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field
 434       // of an "old copy" of an object array in the young gen so it indicates
 435       // the grey portion of an already copied array. This will cause the first
 436       // disjunct below to fail if the two comparands are computed across such
 437       // a concurrent change.
 438       // ParNew also runs with promotion labs (which look like int
 439       // filler arrays) which are subject to changing their declared size
 440       // when finally retiring a PLAB; this also can cause the first disjunct
 441       // to fail for another worker thread that is concurrently walking the block
 442       // offset table. Both these invariant failures are benign for their
 443       // current uses; we relax the assertion checking to cover these two cases below:
 444       //     is_objArray() && is_forwarded()   // covers first scenario above
 445       //  || is_typeArray()                    // covers second scenario above
 446       // If and when UseParallelGC uses the same obj array oop stealing/chunking
 447       // technique, we will need to suitably modify the assertion.
 448       assert((s == klass->oop_size(this)) ||
 449              (Universe::heap()->is_gc_active() &&
 450               ((is_typeArray() && UseConcMarkSweepGC) ||
 451                (is_objArray()  && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))),
 452              "wrong array object size");
 453     } else {
 454       // Must be zero, so bite the bullet and take the virtual call.
 455       s = klass->oop_size(this);
 456     }
 457   }
 458 
 459   assert(s % MinObjAlignment == 0, "alignment check");
 460   assert(s > 0, "Bad size calculated");
 461   return s;
 462 }
 463 
 464 
 465 inline int oopDesc::size()  {
 466   return size_given_klass(klass());
 467 }
 468 
 469 inline void update_barrier_set(void* p, oop v, bool release = false) {
 470   assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
 471   oopDesc::bs()->write_ref_field(p, v, release);
 472 }
 473 
 474 template <class T> inline void update_barrier_set_pre(T* p, oop v) {
 475   oopDesc::bs()->write_ref_field_pre(p, v);
 476 }
 477 
 478 template <class T> inline void oop_store(T* p, oop v) {
 479   if (always_do_update_barrier) {
 480     oop_store((volatile T*)p, v);
 481   } else {
 482     update_barrier_set_pre(p, v);
 483     oopDesc::encode_store_heap_oop(p, v);
 484     // always_do_update_barrier == false =>
 485     // Either we are at a safepoint (in GC) or CMS is not used. In both
 486     // cases it's unnecessary to mark the card as dirty with release sematics.
 487     update_barrier_set((void*)p, v, false /* release */);  // cast away type
 488   }
 489 }
 490 
 491 template <class T> inline void oop_store(volatile T* p, oop v) {
 492   update_barrier_set_pre((T*)p, v);   // cast away volatile
 493   // Used by release_obj_field_put, so use release_store_ptr.
 494   oopDesc::release_encode_store_heap_oop(p, v);
 495   // When using CMS we must mark the card corresponding to p as dirty
 496   // with release sematics to prevent that CMS sees the dirty card but
 497   // not the new value v at p due to reordering of the two
 498   // stores. Note that CMS has a concurrent precleaning phase, where
 499   // it reads the card table while the Java threads are running.
 500   update_barrier_set((void*)p, v, true /* release */);    // cast away type
 501 }
 502 
 503 // Should replace *addr = oop assignments where addr type depends on UseCompressedOops
 504 // (without having to remember the function name this calls).
 505 inline void oop_store_raw(HeapWord* addr, oop value) {
 506   if (UseCompressedOops) {
 507     oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
 508   } else {
 509     oopDesc::encode_store_heap_oop((oop*)addr, value);
 510   }
 511 }
 512 
 513 inline oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
 514                                                 volatile HeapWord *dest,
 515                                                 oop compare_value,
 516                                                 bool prebarrier) {
 517   if (UseCompressedOops) {
 518     if (prebarrier) {
 519       update_barrier_set_pre((narrowOop*)dest, exchange_value);
 520     }
 521     // encode exchange and compare value from oop to T
 522     narrowOop val = encode_heap_oop(exchange_value);
 523     narrowOop cmp = encode_heap_oop(compare_value);
 524 
 525     narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
 526     // decode old from T to oop
 527     return decode_heap_oop(old);
 528   } else {
 529     if (prebarrier) {
 530       update_barrier_set_pre((oop*)dest, exchange_value);
 531     }
 532     return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
 533   }
 534 }
 535 
 536 // Used only for markSweep, scavenging
 537 inline bool oopDesc::is_gc_marked() const {
 538   return mark()->is_marked();
 539 }
 540 
 541 inline bool oopDesc::is_locked() const {
 542   return mark()->is_locked();
 543 }
 544 
 545 inline bool oopDesc::is_unlocked() const {
 546   return mark()->is_unlocked();
 547 }
 548 
 549 inline bool oopDesc::has_bias_pattern() const {
 550   return mark()->has_bias_pattern();
 551 }
 552 
 553 
 554 // used only for asserts
 555 inline bool oopDesc::is_oop(bool ignore_mark_word) const {
 556   oop obj = (oop) this;
 557   if (!check_obj_alignment(obj)) return false;
 558   if (!Universe::heap()->is_in_reserved(obj)) return false;
 559   // obj is aligned and accessible in heap
 560   if (Universe::heap()->is_in_reserved(obj->klass_or_null())) return false;
 561 
 562   // Header verification: the mark is typically non-NULL. If we're
 563   // at a safepoint, it must not be null.
 564   // Outside of a safepoint, the header could be changing (for example,
 565   // another thread could be inflating a lock on this object).
 566   if (ignore_mark_word) {
 567     return true;
 568   }
 569   if (mark() != NULL) {
 570     return true;
 571   }
 572   return !SafepointSynchronize::is_at_safepoint();
 573 }
 574 
 575 
 576 // used only for asserts
 577 inline bool oopDesc::is_oop_or_null(bool ignore_mark_word) const {
 578   return this == NULL ? true : is_oop(ignore_mark_word);
 579 }
 580 
 581 #ifndef PRODUCT
 582 // used only for asserts
 583 inline bool oopDesc::is_unlocked_oop() const {
 584   if (!Universe::heap()->is_in_reserved(this)) return false;
 585   return mark()->is_unlocked();
 586 }
 587 #endif // PRODUCT
 588 
 589 inline bool oopDesc::is_scavengable() const {
 590   return Universe::heap()->is_scavengable(this);
 591 }
 592 
 593 // Used by scavengers
 594 inline bool oopDesc::is_forwarded() const {
 595   // The extra heap check is needed since the obj might be locked, in which case the
 596   // mark would point to a stack location and have the sentinel bit cleared
 597   return mark()->is_marked();
 598 }
 599 
 600 // Used by scavengers
 601 inline void oopDesc::forward_to(oop p) {
 602   assert(check_obj_alignment(p),
 603          "forwarding to something not aligned");
 604   assert(Universe::heap()->is_in_reserved(p),
 605          "forwarding to something not in heap");
 606   markOop m = markOopDesc::encode_pointer_as_mark(p);
 607   assert(m->decode_pointer() == p, "encoding must be reversable");
 608   set_mark(m);
 609 }
 610 
 611 // Used by parallel scavengers
 612 inline bool oopDesc::cas_forward_to(oop p, markOop compare) {
 613   assert(check_obj_alignment(p),
 614          "forwarding to something not aligned");
 615   assert(Universe::heap()->is_in_reserved(p),
 616          "forwarding to something not in heap");
 617   markOop m = markOopDesc::encode_pointer_as_mark(p);
 618   assert(m->decode_pointer() == p, "encoding must be reversable");
 619   return cas_set_mark(m, compare) == compare;
 620 }
 621 
 622 #if INCLUDE_ALL_GCS
 623 inline oop oopDesc::forward_to_atomic(oop p) {
 624   markOop oldMark = mark();
 625   markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p);
 626   markOop curMark;
 627 
 628   assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable");
 629   assert(sizeof(markOop) == sizeof(intptr_t), "CAS below requires this.");
 630 
 631   while (!oldMark->is_marked()) {
 632     curMark = (markOop)Atomic::cmpxchg_ptr(forwardPtrMark, &_mark, oldMark);
 633     assert(is_forwarded(), "object should have been forwarded");
 634     if (curMark == oldMark) {
 635       return NULL;
 636     }
 637     // If the CAS was unsuccessful then curMark->is_marked()
 638     // should return true as another thread has CAS'd in another
 639     // forwarding pointer.
 640     oldMark = curMark;
 641   }
 642   return forwardee();
 643 }
 644 #endif
 645 
 646 // Note that the forwardee is not the same thing as the displaced_mark.
 647 // The forwardee is used when copying during scavenge and mark-sweep.
 648 // It does need to clear the low two locking- and GC-related bits.
 649 inline oop oopDesc::forwardee() const {
 650   return (oop) mark()->decode_pointer();
 651 }
 652 
 653 inline bool oopDesc::has_displaced_mark() const {
 654   return mark()->has_displaced_mark_helper();
 655 }
 656 
 657 inline markOop oopDesc::displaced_mark() const {
 658   return mark()->displaced_mark_helper();
 659 }
 660 
 661 inline void oopDesc::set_displaced_mark(markOop m) {
 662   mark()->set_displaced_mark_helper(m);
 663 }
 664 
 665 // The following method needs to be MT safe.
 666 inline uint oopDesc::age() const {
 667   assert(!is_forwarded(), "Attempt to read age from forwarded mark");
 668   if (has_displaced_mark()) {
 669     return displaced_mark()->age();
 670   } else {
 671     return mark()->age();
 672   }
 673 }
 674 
 675 inline void oopDesc::incr_age() {
 676   assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
 677   if (has_displaced_mark()) {
 678     set_displaced_mark(displaced_mark()->incr_age());
 679   } else {
 680     set_mark(mark()->incr_age());
 681   }
 682 }
 683 
 684 
 685 inline intptr_t oopDesc::identity_hash() {
 686   // Fast case; if the object is unlocked and the hash value is set, no locking is needed
 687   // Note: The mark must be read into local variable to avoid concurrent updates.
 688   markOop mrk = mark();
 689   if (mrk->is_unlocked() && !mrk->has_no_hash()) {
 690     return mrk->hash();
 691   } else if (mrk->is_marked()) {
 692     return mrk->hash();
 693   } else {
 694     return slow_identity_hash();
 695   }
 696 }
 697 
 698 inline int oopDesc::ms_adjust_pointers() {
 699   debug_only(int check_size = size());
 700   int s = klass()->oop_ms_adjust_pointers(this);
 701   assert(s == check_size, "should be the same");
 702   return s;
 703 }
 704 
 705 #if INCLUDE_ALL_GCS
 706 inline void oopDesc::pc_follow_contents(ParCompactionManager* cm) {
 707   klass()->oop_pc_follow_contents(this, cm);
 708 }
 709 
 710 inline void oopDesc::pc_update_contents() {
 711   Klass* k = klass();
 712   if (!k->oop_is_typeArray()) {
 713     // It might contain oops beyond the header, so take the virtual call.
 714     k->oop_pc_update_pointers(this);
 715   }
 716   // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
 717 }
 718 
 719 inline void oopDesc::ps_push_contents(PSPromotionManager* pm) {
 720   Klass* k = klass();
 721   if (!k->oop_is_typeArray()) {
 722     // It might contain oops beyond the header, so take the virtual call.
 723     k->oop_ps_push_contents(this, pm);
 724   }
 725   // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
 726 }
 727 #endif
 728 
 729 #define OOP_ITERATE_DEFN(OopClosureType, nv_suffix)                    \
 730                                                                        \
 731 inline void oopDesc::oop_iterate(OopClosureType* blk) {                \
 732   klass()->oop_oop_iterate##nv_suffix(this, blk);                      \
 733 }                                                                      \
 734                                                                        \
 735 inline void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {  \
 736   klass()->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);          \
 737 }
 738 
 739 #define OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)               \
 740                                                                        \
 741 inline int oopDesc::oop_iterate_size(OopClosureType* blk) {            \
 742   Klass* k = klass();                                                  \
 743   int size = size_given_klass(k);                                      \
 744   k->oop_oop_iterate##nv_suffix(this, blk);                            \
 745   return size;                                                         \
 746 }                                                                      \
 747                                                                        \
 748 inline int oopDesc::oop_iterate_size(OopClosureType* blk,              \
 749                                      MemRegion mr) {                   \
 750   Klass* k = klass();                                                  \
 751   int size = size_given_klass(k);                                      \
 752   k->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);                \
 753   return size;                                                         \
 754 }
 755 
 756 inline int oopDesc::oop_iterate_no_header(OopClosure* blk) {
 757   // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
 758   // the do_oop calls, but turns off all other features in ExtendedOopClosure.
 759   NoHeaderExtendedOopClosure cl(blk);
 760   return oop_iterate_size(&cl);
 761 }
 762 
 763 inline int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
 764   NoHeaderExtendedOopClosure cl(blk);
 765   return oop_iterate_size(&cl, mr);
 766 }
 767 
 768 #if INCLUDE_ALL_GCS
 769 #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)       \
 770                                                                     \
 771 inline void oopDesc::oop_iterate_backwards(OopClosureType* blk) {   \
 772   klass()->oop_oop_iterate_backwards##nv_suffix(this, blk);         \
 773 }
 774 #else
 775 #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
 776 #endif
 777 
 778 #define ALL_OOPDESC_OOP_ITERATE(OopClosureType, nv_suffix)  \
 779   OOP_ITERATE_DEFN(OopClosureType, nv_suffix)               \
 780   OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)          \
 781   OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
 782 
 783 ALL_OOP_OOP_ITERATE_CLOSURES_1(ALL_OOPDESC_OOP_ITERATE)
 784 ALL_OOP_OOP_ITERATE_CLOSURES_2(ALL_OOPDESC_OOP_ITERATE)
 785 
 786 #endif // SHARE_VM_OOPS_OOP_INLINE_HPP