1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/chaitin.hpp"
  43 #include "opto/compile.hpp"
  44 #include "opto/connode.hpp"
  45 #include "opto/convertnode.hpp"
  46 #include "opto/divnode.hpp"
  47 #include "opto/escape.hpp"
  48 #include "opto/idealGraphPrinter.hpp"
  49 #include "opto/loopnode.hpp"
  50 #include "opto/machnode.hpp"
  51 #include "opto/macro.hpp"
  52 #include "opto/matcher.hpp"
  53 #include "opto/mathexactnode.hpp"
  54 #include "opto/memnode.hpp"
  55 #include "opto/mulnode.hpp"
  56 #include "opto/narrowptrnode.hpp"
  57 #include "opto/node.hpp"
  58 #include "opto/opcodes.hpp"
  59 #include "opto/output.hpp"
  60 #include "opto/parse.hpp"
  61 #include "opto/phaseX.hpp"
  62 #include "opto/rootnode.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/shenandoahSupport.hpp"
  65 #include "opto/stringopts.hpp"
  66 #include "opto/type.hpp"
  67 #include "opto/vectornode.hpp"
  68 #include "runtime/arguments.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/signature.hpp"
  71 #include "runtime/stubRoutines.hpp"
  72 #include "runtime/timer.hpp"
  73 #include "utilities/copy.hpp"
  74 
  75 
  76 // -------------------- Compile::mach_constant_base_node -----------------------
  77 // Constant table base node singleton.
  78 MachConstantBaseNode* Compile::mach_constant_base_node() {
  79   if (_mach_constant_base_node == NULL) {
  80     _mach_constant_base_node = new MachConstantBaseNode();
  81     _mach_constant_base_node->add_req(C->root());
  82   }
  83   return _mach_constant_base_node;
  84 }
  85 
  86 
  87 /// Support for intrinsics.
  88 
  89 // Return the index at which m must be inserted (or already exists).
  90 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  91 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  92 #ifdef ASSERT
  93   for (int i = 1; i < _intrinsics->length(); i++) {
  94     CallGenerator* cg1 = _intrinsics->at(i-1);
  95     CallGenerator* cg2 = _intrinsics->at(i);
  96     assert(cg1->method() != cg2->method()
  97            ? cg1->method()     < cg2->method()
  98            : cg1->is_virtual() < cg2->is_virtual(),
  99            "compiler intrinsics list must stay sorted");
 100   }
 101 #endif
 102   // Binary search sorted list, in decreasing intervals [lo, hi].
 103   int lo = 0, hi = _intrinsics->length()-1;
 104   while (lo <= hi) {
 105     int mid = (uint)(hi + lo) / 2;
 106     ciMethod* mid_m = _intrinsics->at(mid)->method();
 107     if (m < mid_m) {
 108       hi = mid-1;
 109     } else if (m > mid_m) {
 110       lo = mid+1;
 111     } else {
 112       // look at minor sort key
 113       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 114       if (is_virtual < mid_virt) {
 115         hi = mid-1;
 116       } else if (is_virtual > mid_virt) {
 117         lo = mid+1;
 118       } else {
 119         return mid;  // exact match
 120       }
 121     }
 122   }
 123   return lo;  // inexact match
 124 }
 125 
 126 void Compile::register_intrinsic(CallGenerator* cg) {
 127   if (_intrinsics == NULL) {
 128     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 129   }
 130   // This code is stolen from ciObjectFactory::insert.
 131   // Really, GrowableArray should have methods for
 132   // insert_at, remove_at, and binary_search.
 133   int len = _intrinsics->length();
 134   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 135   if (index == len) {
 136     _intrinsics->append(cg);
 137   } else {
 138 #ifdef ASSERT
 139     CallGenerator* oldcg = _intrinsics->at(index);
 140     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 141 #endif
 142     _intrinsics->append(_intrinsics->at(len-1));
 143     int pos;
 144     for (pos = len-2; pos >= index; pos--) {
 145       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 146     }
 147     _intrinsics->at_put(index, cg);
 148   }
 149   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 150 }
 151 
 152 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 153   assert(m->is_loaded(), "don't try this on unloaded methods");
 154   if (_intrinsics != NULL) {
 155     int index = intrinsic_insertion_index(m, is_virtual);
 156     if (index < _intrinsics->length()
 157         && _intrinsics->at(index)->method() == m
 158         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 159       return _intrinsics->at(index);
 160     }
 161   }
 162   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 163   if (m->intrinsic_id() != vmIntrinsics::_none &&
 164       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 165     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 166     if (cg != NULL) {
 167       // Save it for next time:
 168       register_intrinsic(cg);
 169       return cg;
 170     } else {
 171       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 172     }
 173   }
 174   return NULL;
 175 }
 176 
 177 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 178 // in library_call.cpp.
 179 
 180 
 181 #ifndef PRODUCT
 182 // statistics gathering...
 183 
 184 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 185 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 186 
 187 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 188   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 189   int oflags = _intrinsic_hist_flags[id];
 190   assert(flags != 0, "what happened?");
 191   if (is_virtual) {
 192     flags |= _intrinsic_virtual;
 193   }
 194   bool changed = (flags != oflags);
 195   if ((flags & _intrinsic_worked) != 0) {
 196     juint count = (_intrinsic_hist_count[id] += 1);
 197     if (count == 1) {
 198       changed = true;           // first time
 199     }
 200     // increment the overall count also:
 201     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 202   }
 203   if (changed) {
 204     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 205       // Something changed about the intrinsic's virtuality.
 206       if ((flags & _intrinsic_virtual) != 0) {
 207         // This is the first use of this intrinsic as a virtual call.
 208         if (oflags != 0) {
 209           // We already saw it as a non-virtual, so note both cases.
 210           flags |= _intrinsic_both;
 211         }
 212       } else if ((oflags & _intrinsic_both) == 0) {
 213         // This is the first use of this intrinsic as a non-virtual
 214         flags |= _intrinsic_both;
 215       }
 216     }
 217     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 218   }
 219   // update the overall flags also:
 220   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 221   return changed;
 222 }
 223 
 224 static char* format_flags(int flags, char* buf) {
 225   buf[0] = 0;
 226   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 227   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 228   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 229   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 230   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 231   if (buf[0] == 0)  strcat(buf, ",");
 232   assert(buf[0] == ',', "must be");
 233   return &buf[1];
 234 }
 235 
 236 void Compile::print_intrinsic_statistics() {
 237   char flagsbuf[100];
 238   ttyLocker ttyl;
 239   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 240   tty->print_cr("Compiler intrinsic usage:");
 241   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 242   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 243   #define PRINT_STAT_LINE(name, c, f) \
 244     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 245   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 246     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 247     int   flags = _intrinsic_hist_flags[id];
 248     juint count = _intrinsic_hist_count[id];
 249     if ((flags | count) != 0) {
 250       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 251     }
 252   }
 253   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 254   if (xtty != NULL)  xtty->tail("statistics");
 255 }
 256 
 257 void Compile::print_statistics() {
 258   { ttyLocker ttyl;
 259     if (xtty != NULL)  xtty->head("statistics type='opto'");
 260     Parse::print_statistics();
 261     PhaseCCP::print_statistics();
 262     PhaseRegAlloc::print_statistics();
 263     Scheduling::print_statistics();
 264     PhasePeephole::print_statistics();
 265     PhaseIdealLoop::print_statistics();
 266     if (xtty != NULL)  xtty->tail("statistics");
 267   }
 268   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 269     // put this under its own <statistics> element.
 270     print_intrinsic_statistics();
 271   }
 272 }
 273 #endif //PRODUCT
 274 
 275 // Support for bundling info
 276 Bundle* Compile::node_bundling(const Node *n) {
 277   assert(valid_bundle_info(n), "oob");
 278   return &_node_bundling_base[n->_idx];
 279 }
 280 
 281 bool Compile::valid_bundle_info(const Node *n) {
 282   return (_node_bundling_limit > n->_idx);
 283 }
 284 
 285 
 286 void Compile::gvn_replace_by(Node* n, Node* nn) {
 287   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 288     Node* use = n->last_out(i);
 289     bool is_in_table = initial_gvn()->hash_delete(use);
 290     uint uses_found = 0;
 291     for (uint j = 0; j < use->len(); j++) {
 292       if (use->in(j) == n) {
 293         if (j < use->req())
 294           use->set_req(j, nn);
 295         else
 296           use->set_prec(j, nn);
 297         uses_found++;
 298       }
 299     }
 300     if (is_in_table) {
 301       // reinsert into table
 302       initial_gvn()->hash_find_insert(use);
 303     }
 304     record_for_igvn(use);
 305     i -= uses_found;    // we deleted 1 or more copies of this edge
 306   }
 307 }
 308 
 309 
 310 static inline bool not_a_node(const Node* n) {
 311   if (n == NULL)                   return true;
 312   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 313   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 314   return false;
 315 }
 316 
 317 // Identify all nodes that are reachable from below, useful.
 318 // Use breadth-first pass that records state in a Unique_Node_List,
 319 // recursive traversal is slower.
 320 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 321   int estimated_worklist_size = unique();
 322   useful.map( estimated_worklist_size, NULL );  // preallocate space
 323 
 324   // Initialize worklist
 325   if (root() != NULL)     { useful.push(root()); }
 326   // If 'top' is cached, declare it useful to preserve cached node
 327   if( cached_top_node() ) { useful.push(cached_top_node()); }
 328 
 329   // Push all useful nodes onto the list, breadthfirst
 330   for( uint next = 0; next < useful.size(); ++next ) {
 331     assert( next < unique(), "Unique useful nodes < total nodes");
 332     Node *n  = useful.at(next);
 333     uint max = n->len();
 334     for( uint i = 0; i < max; ++i ) {
 335       Node *m = n->in(i);
 336       if (not_a_node(m))  continue;
 337       useful.push(m);
 338     }
 339   }
 340 }
 341 
 342 // Update dead_node_list with any missing dead nodes using useful
 343 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 344 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 345   uint max_idx = unique();
 346   VectorSet& useful_node_set = useful.member_set();
 347 
 348   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 349     // If node with index node_idx is not in useful set,
 350     // mark it as dead in dead node list.
 351     if (! useful_node_set.test(node_idx) ) {
 352       record_dead_node(node_idx);
 353     }
 354   }
 355 }
 356 
 357 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 358   int shift = 0;
 359   for (int i = 0; i < inlines->length(); i++) {
 360     CallGenerator* cg = inlines->at(i);
 361     CallNode* call = cg->call_node();
 362     if (shift > 0) {
 363       inlines->at_put(i-shift, cg);
 364     }
 365     if (!useful.member(call)) {
 366       shift++;
 367     }
 368   }
 369   inlines->trunc_to(inlines->length()-shift);
 370 }
 371 
 372 // Disconnect all useless nodes by disconnecting those at the boundary.
 373 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 374   uint next = 0;
 375   while (next < useful.size()) {
 376     Node *n = useful.at(next++);
 377     if (n->is_SafePoint()) {
 378       // We're done with a parsing phase. Replaced nodes are not valid
 379       // beyond that point.
 380       n->as_SafePoint()->delete_replaced_nodes();
 381     }
 382     // Use raw traversal of out edges since this code removes out edges
 383     int max = n->outcnt();
 384     for (int j = 0; j < max; ++j) {
 385       Node* child = n->raw_out(j);
 386       if (! useful.member(child)) {
 387         assert(!child->is_top() || child != top(),
 388                "If top is cached in Compile object it is in useful list");
 389         // Only need to remove this out-edge to the useless node
 390         n->raw_del_out(j);
 391         --j;
 392         --max;
 393       }
 394     }
 395     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 396       record_for_igvn(n->unique_out());
 397     }
 398   }
 399   // Remove useless macro and predicate opaq nodes
 400   for (int i = C->macro_count()-1; i >= 0; i--) {
 401     Node* n = C->macro_node(i);
 402     if (!useful.member(n)) {
 403       remove_macro_node(n);
 404     }
 405   }
 406   // Remove useless expensive node
 407   for (int i = C->expensive_count()-1; i >= 0; i--) {
 408     Node* n = C->expensive_node(i);
 409     if (!useful.member(n)) {
 410       remove_expensive_node(n);
 411     }
 412   }
 413   // clean up the late inline lists
 414   remove_useless_late_inlines(&_string_late_inlines, useful);
 415   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 416   remove_useless_late_inlines(&_late_inlines, useful);
 417   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 418 }
 419 
 420 //------------------------------frame_size_in_words-----------------------------
 421 // frame_slots in units of words
 422 int Compile::frame_size_in_words() const {
 423   // shift is 0 in LP32 and 1 in LP64
 424   const int shift = (LogBytesPerWord - LogBytesPerInt);
 425   int words = _frame_slots >> shift;
 426   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 427   return words;
 428 }
 429 
 430 // To bang the stack of this compiled method we use the stack size
 431 // that the interpreter would need in case of a deoptimization. This
 432 // removes the need to bang the stack in the deoptimization blob which
 433 // in turn simplifies stack overflow handling.
 434 int Compile::bang_size_in_bytes() const {
 435   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 436 }
 437 
 438 // ============================================================================
 439 //------------------------------CompileWrapper---------------------------------
 440 class CompileWrapper : public StackObj {
 441   Compile *const _compile;
 442  public:
 443   CompileWrapper(Compile* compile);
 444 
 445   ~CompileWrapper();
 446 };
 447 
 448 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 449   // the Compile* pointer is stored in the current ciEnv:
 450   ciEnv* env = compile->env();
 451   assert(env == ciEnv::current(), "must already be a ciEnv active");
 452   assert(env->compiler_data() == NULL, "compile already active?");
 453   env->set_compiler_data(compile);
 454   assert(compile == Compile::current(), "sanity");
 455 
 456   compile->set_type_dict(NULL);
 457   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 458   compile->clone_map().set_clone_idx(0);
 459   compile->set_type_hwm(NULL);
 460   compile->set_type_last_size(0);
 461   compile->set_last_tf(NULL, NULL);
 462   compile->set_indexSet_arena(NULL);
 463   compile->set_indexSet_free_block_list(NULL);
 464   compile->init_type_arena();
 465   Type::Initialize(compile);
 466   _compile->set_scratch_buffer_blob(NULL);
 467   _compile->begin_method();
 468   _compile->clone_map().set_debug(_compile->has_method() && _compile->method_has_option(_compile->clone_map().debug_option_name));
 469 }
 470 CompileWrapper::~CompileWrapper() {
 471   _compile->end_method();
 472   if (_compile->scratch_buffer_blob() != NULL)
 473     BufferBlob::free(_compile->scratch_buffer_blob());
 474   _compile->env()->set_compiler_data(NULL);
 475 }
 476 
 477 
 478 //----------------------------print_compile_messages---------------------------
 479 void Compile::print_compile_messages() {
 480 #ifndef PRODUCT
 481   // Check if recompiling
 482   if (_subsume_loads == false && PrintOpto) {
 483     // Recompiling without allowing machine instructions to subsume loads
 484     tty->print_cr("*********************************************************");
 485     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 486     tty->print_cr("*********************************************************");
 487   }
 488   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 489     // Recompiling without escape analysis
 490     tty->print_cr("*********************************************************");
 491     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 492     tty->print_cr("*********************************************************");
 493   }
 494   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 495     // Recompiling without boxing elimination
 496     tty->print_cr("*********************************************************");
 497     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 498     tty->print_cr("*********************************************************");
 499   }
 500   if (env()->break_at_compile()) {
 501     // Open the debugger when compiling this method.
 502     tty->print("### Breaking when compiling: ");
 503     method()->print_short_name();
 504     tty->cr();
 505     BREAKPOINT;
 506   }
 507 
 508   if( PrintOpto ) {
 509     if (is_osr_compilation()) {
 510       tty->print("[OSR]%3d", _compile_id);
 511     } else {
 512       tty->print("%3d", _compile_id);
 513     }
 514   }
 515 #endif
 516 }
 517 
 518 
 519 //-----------------------init_scratch_buffer_blob------------------------------
 520 // Construct a temporary BufferBlob and cache it for this compile.
 521 void Compile::init_scratch_buffer_blob(int const_size) {
 522   // If there is already a scratch buffer blob allocated and the
 523   // constant section is big enough, use it.  Otherwise free the
 524   // current and allocate a new one.
 525   BufferBlob* blob = scratch_buffer_blob();
 526   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 527     // Use the current blob.
 528   } else {
 529     if (blob != NULL) {
 530       BufferBlob::free(blob);
 531     }
 532 
 533     ResourceMark rm;
 534     _scratch_const_size = const_size;
 535     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 536     blob = BufferBlob::create("Compile::scratch_buffer", size);
 537     // Record the buffer blob for next time.
 538     set_scratch_buffer_blob(blob);
 539     // Have we run out of code space?
 540     if (scratch_buffer_blob() == NULL) {
 541       // Let CompilerBroker disable further compilations.
 542       record_failure("Not enough space for scratch buffer in CodeCache");
 543       return;
 544     }
 545   }
 546 
 547   // Initialize the relocation buffers
 548   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 549   set_scratch_locs_memory(locs_buf);
 550 }
 551 
 552 
 553 //-----------------------scratch_emit_size-------------------------------------
 554 // Helper function that computes size by emitting code
 555 uint Compile::scratch_emit_size(const Node* n) {
 556   // Start scratch_emit_size section.
 557   set_in_scratch_emit_size(true);
 558 
 559   // Emit into a trash buffer and count bytes emitted.
 560   // This is a pretty expensive way to compute a size,
 561   // but it works well enough if seldom used.
 562   // All common fixed-size instructions are given a size
 563   // method by the AD file.
 564   // Note that the scratch buffer blob and locs memory are
 565   // allocated at the beginning of the compile task, and
 566   // may be shared by several calls to scratch_emit_size.
 567   // The allocation of the scratch buffer blob is particularly
 568   // expensive, since it has to grab the code cache lock.
 569   BufferBlob* blob = this->scratch_buffer_blob();
 570   assert(blob != NULL, "Initialize BufferBlob at start");
 571   assert(blob->size() > MAX_inst_size, "sanity");
 572   relocInfo* locs_buf = scratch_locs_memory();
 573   address blob_begin = blob->content_begin();
 574   address blob_end   = (address)locs_buf;
 575   assert(blob->content_contains(blob_end), "sanity");
 576   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 577   buf.initialize_consts_size(_scratch_const_size);
 578   buf.initialize_stubs_size(MAX_stubs_size);
 579   assert(locs_buf != NULL, "sanity");
 580   int lsize = MAX_locs_size / 3;
 581   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 582   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 583   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 584 
 585   // Do the emission.
 586 
 587   Label fakeL; // Fake label for branch instructions.
 588   Label*   saveL = NULL;
 589   uint save_bnum = 0;
 590   bool is_branch = n->is_MachBranch();
 591   if (is_branch) {
 592     MacroAssembler masm(&buf);
 593     masm.bind(fakeL);
 594     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 595     n->as_MachBranch()->label_set(&fakeL, 0);
 596   }
 597   n->emit(buf, this->regalloc());
 598 
 599   // Emitting into the scratch buffer should not fail
 600   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
 601 
 602   if (is_branch) // Restore label.
 603     n->as_MachBranch()->label_set(saveL, save_bnum);
 604 
 605   // End scratch_emit_size section.
 606   set_in_scratch_emit_size(false);
 607 
 608   return buf.insts_size();
 609 }
 610 
 611 
 612 // ============================================================================
 613 //------------------------------Compile standard-------------------------------
 614 debug_only( int Compile::_debug_idx = 100000; )
 615 
 616 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 617 // the continuation bci for on stack replacement.
 618 
 619 
 620 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 621                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 622                 : Phase(Compiler),
 623                   _env(ci_env),
 624                   _log(ci_env->log()),
 625                   _compile_id(ci_env->compile_id()),
 626                   _save_argument_registers(false),
 627                   _stub_name(NULL),
 628                   _stub_function(NULL),
 629                   _stub_entry_point(NULL),
 630                   _method(target),
 631                   _entry_bci(osr_bci),
 632                   _initial_gvn(NULL),
 633                   _for_igvn(NULL),
 634                   _warm_calls(NULL),
 635                   _subsume_loads(subsume_loads),
 636                   _do_escape_analysis(do_escape_analysis),
 637                   _eliminate_boxing(eliminate_boxing),
 638                   _failure_reason(NULL),
 639                   _code_buffer("Compile::Fill_buffer"),
 640                   _orig_pc_slot(0),
 641                   _orig_pc_slot_offset_in_bytes(0),
 642                   _has_method_handle_invokes(false),
 643                   _mach_constant_base_node(NULL),
 644                   _node_bundling_limit(0),
 645                   _node_bundling_base(NULL),
 646                   _java_calls(0),
 647                   _inner_loops(0),
 648                   _scratch_const_size(-1),
 649                   _in_scratch_emit_size(false),
 650                   _dead_node_list(comp_arena()),
 651                   _dead_node_count(0),
 652 #ifndef PRODUCT
 653                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 654                   _in_dump_cnt(0),
 655                   _printer(IdealGraphPrinter::printer()),
 656 #endif
 657                   _congraph(NULL),
 658                   _comp_arena(mtCompiler),
 659                   _node_arena(mtCompiler),
 660                   _old_arena(mtCompiler),
 661                   _Compile_types(mtCompiler),
 662                   _replay_inline_data(NULL),
 663                   _late_inlines(comp_arena(), 2, 0, NULL),
 664                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 665                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 666                   _late_inlines_pos(0),
 667                   _number_of_mh_late_inlines(0),
 668                   _inlining_progress(false),
 669                   _inlining_incrementally(false),
 670                   _print_inlining_list(NULL),
 671                   _print_inlining_stream(NULL),
 672                   _print_inlining_idx(0),
 673                   _print_inlining_output(NULL),
 674                   _interpreter_frame_size(0),
 675                   _max_node_limit(MaxNodeLimit) {
 676   C = this;
 677 
 678   CompileWrapper cw(this);
 679 
 680   if (CITimeVerbose) {
 681     tty->print(" ");
 682     target->holder()->name()->print();
 683     tty->print(".");
 684     target->print_short_name();
 685     tty->print("  ");
 686   }
 687   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 688   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 689 
 690 #ifndef PRODUCT
 691   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 692   if (!print_opto_assembly) {
 693     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 694     if (print_assembly && !Disassembler::can_decode()) {
 695       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 696       print_opto_assembly = true;
 697     }
 698   }
 699   set_print_assembly(print_opto_assembly);
 700   set_parsed_irreducible_loop(false);
 701 
 702   if (method()->has_option("ReplayInline")) {
 703     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 704   }
 705 #endif
 706   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 707   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 708   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 709 
 710   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 711     // Make sure the method being compiled gets its own MDO,
 712     // so we can at least track the decompile_count().
 713     // Need MDO to record RTM code generation state.
 714     method()->ensure_method_data();
 715   }
 716 
 717   Init(::AliasLevel);
 718 
 719 
 720   print_compile_messages();
 721 
 722   _ilt = InlineTree::build_inline_tree_root();
 723 
 724   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 725   assert(num_alias_types() >= AliasIdxRaw, "");
 726 
 727 #define MINIMUM_NODE_HASH  1023
 728   // Node list that Iterative GVN will start with
 729   Unique_Node_List for_igvn(comp_arena());
 730   set_for_igvn(&for_igvn);
 731 
 732   // GVN that will be run immediately on new nodes
 733   uint estimated_size = method()->code_size()*4+64;
 734   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 735   PhaseGVN gvn(node_arena(), estimated_size);
 736   set_initial_gvn(&gvn);
 737 
 738   print_inlining_init();
 739   { // Scope for timing the parser
 740     TracePhase tp("parse", &timers[_t_parser]);
 741 
 742     // Put top into the hash table ASAP.
 743     initial_gvn()->transform_no_reclaim(top());
 744 
 745     // Set up tf(), start(), and find a CallGenerator.
 746     CallGenerator* cg = NULL;
 747     if (is_osr_compilation()) {
 748       const TypeTuple *domain = StartOSRNode::osr_domain();
 749       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 750       init_tf(TypeFunc::make(domain, range));
 751       StartNode* s = new StartOSRNode(root(), domain);
 752       initial_gvn()->set_type_bottom(s);
 753       init_start(s);
 754       cg = CallGenerator::for_osr(method(), entry_bci());
 755     } else {
 756       // Normal case.
 757       init_tf(TypeFunc::make(method()));
 758       StartNode* s = new StartNode(root(), tf()->domain());
 759       initial_gvn()->set_type_bottom(s);
 760       init_start(s);
 761       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get
 762           && (UseG1GC || UseShenandoahGC)) {
 763         // With java.lang.ref.reference.get() we must go through the
 764         // intrinsic when G1 is enabled - even when get() is the root
 765         // method of the compile - so that, if necessary, the value in
 766         // the referent field of the reference object gets recorded by
 767         // the pre-barrier code.
 768         // Specifically, if G1 is enabled, the value in the referent
 769         // field is recorded by the G1 SATB pre barrier. This will
 770         // result in the referent being marked live and the reference
 771         // object removed from the list of discovered references during
 772         // reference processing.
 773         cg = find_intrinsic(method(), false);
 774       }
 775       if (cg == NULL) {
 776         float past_uses = method()->interpreter_invocation_count();
 777         float expected_uses = past_uses;
 778         cg = CallGenerator::for_inline(method(), expected_uses);
 779       }
 780     }
 781     if (failing())  return;
 782     if (cg == NULL) {
 783       record_method_not_compilable_all_tiers("cannot parse method");
 784       return;
 785     }
 786     JVMState* jvms = build_start_state(start(), tf());
 787     if ((jvms = cg->generate(jvms)) == NULL) {
 788       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 789         record_method_not_compilable("method parse failed");
 790       }
 791       return;
 792     }
 793     GraphKit kit(jvms);
 794 
 795     if (!kit.stopped()) {
 796       // Accept return values, and transfer control we know not where.
 797       // This is done by a special, unique ReturnNode bound to root.
 798       return_values(kit.jvms());
 799     }
 800 
 801     if (kit.has_exceptions()) {
 802       // Any exceptions that escape from this call must be rethrown
 803       // to whatever caller is dynamically above us on the stack.
 804       // This is done by a special, unique RethrowNode bound to root.
 805       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 806     }
 807 
 808     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 809 
 810     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 811       inline_string_calls(true);
 812     }
 813 
 814     if (failing())  return;
 815 
 816     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 817 
 818     // Remove clutter produced by parsing.
 819     if (!failing()) {
 820       ResourceMark rm;
 821       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 822     }
 823   }
 824 
 825   // Note:  Large methods are capped off in do_one_bytecode().
 826   if (failing())  return;
 827 
 828   // After parsing, node notes are no longer automagic.
 829   // They must be propagated by register_new_node_with_optimizer(),
 830   // clone(), or the like.
 831   set_default_node_notes(NULL);
 832 
 833   for (;;) {
 834     int successes = Inline_Warm();
 835     if (failing())  return;
 836     if (successes == 0)  break;
 837   }
 838 
 839   // Drain the list.
 840   Finish_Warm();
 841 #ifndef PRODUCT
 842   if (_printer && _printer->should_print(_method)) {
 843     _printer->print_inlining(this);
 844   }
 845 #endif
 846 
 847   if (failing())  return;
 848   NOT_PRODUCT( verify_graph_edges(); )
 849 
 850   // Now optimize
 851   Optimize();
 852   if (failing())  return;
 853   NOT_PRODUCT( verify_graph_edges(); )
 854 
 855 #ifndef PRODUCT
 856   if (PrintIdeal) {
 857     ttyLocker ttyl;  // keep the following output all in one block
 858     // This output goes directly to the tty, not the compiler log.
 859     // To enable tools to match it up with the compilation activity,
 860     // be sure to tag this tty output with the compile ID.
 861     if (xtty != NULL) {
 862       xtty->head("ideal compile_id='%d'%s", compile_id(),
 863                  is_osr_compilation()    ? " compile_kind='osr'" :
 864                  "");
 865     }
 866     root()->dump(9999);
 867     if (xtty != NULL) {
 868       xtty->tail("ideal");
 869     }
 870   }
 871 #endif
 872 
 873   NOT_PRODUCT( verify_barriers(); )
 874 
 875   // Dump compilation data to replay it.
 876   if (method()->has_option("DumpReplay")) {
 877     env()->dump_replay_data(_compile_id);
 878   }
 879   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 880     env()->dump_inline_data(_compile_id);
 881   }
 882 
 883   // Now that we know the size of all the monitors we can add a fixed slot
 884   // for the original deopt pc.
 885 
 886   _orig_pc_slot =  fixed_slots();
 887   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 888   set_fixed_slots(next_slot);
 889 
 890   // Compute when to use implicit null checks. Used by matching trap based
 891   // nodes and NullCheck optimization.
 892   set_allowed_deopt_reasons();
 893 
 894   // Now generate code
 895   Code_Gen();
 896   if (failing())  return;
 897 
 898   // Check if we want to skip execution of all compiled code.
 899   {
 900 #ifndef PRODUCT
 901     if (OptoNoExecute) {
 902       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 903       return;
 904     }
 905 #endif
 906     TracePhase tp("install_code", &timers[_t_registerMethod]);
 907 
 908     if (is_osr_compilation()) {
 909       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 910       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 911     } else {
 912       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 913       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 914     }
 915 
 916     env()->register_method(_method, _entry_bci,
 917                            &_code_offsets,
 918                            _orig_pc_slot_offset_in_bytes,
 919                            code_buffer(),
 920                            frame_size_in_words(), _oop_map_set,
 921                            &_handler_table, &_inc_table,
 922                            compiler,
 923                            env()->comp_level(),
 924                            has_unsafe_access(),
 925                            SharedRuntime::is_wide_vector(max_vector_size()),
 926                            rtm_state()
 927                            );
 928 
 929     if (log() != NULL) // Print code cache state into compiler log
 930       log()->code_cache_state();
 931   }
 932 }
 933 
 934 //------------------------------Compile----------------------------------------
 935 // Compile a runtime stub
 936 Compile::Compile( ciEnv* ci_env,
 937                   TypeFunc_generator generator,
 938                   address stub_function,
 939                   const char *stub_name,
 940                   int is_fancy_jump,
 941                   bool pass_tls,
 942                   bool save_arg_registers,
 943                   bool return_pc )
 944   : Phase(Compiler),
 945     _env(ci_env),
 946     _log(ci_env->log()),
 947     _compile_id(0),
 948     _save_argument_registers(save_arg_registers),
 949     _method(NULL),
 950     _stub_name(stub_name),
 951     _stub_function(stub_function),
 952     _stub_entry_point(NULL),
 953     _entry_bci(InvocationEntryBci),
 954     _initial_gvn(NULL),
 955     _for_igvn(NULL),
 956     _warm_calls(NULL),
 957     _orig_pc_slot(0),
 958     _orig_pc_slot_offset_in_bytes(0),
 959     _subsume_loads(true),
 960     _do_escape_analysis(false),
 961     _eliminate_boxing(false),
 962     _failure_reason(NULL),
 963     _code_buffer("Compile::Fill_buffer"),
 964     _has_method_handle_invokes(false),
 965     _mach_constant_base_node(NULL),
 966     _node_bundling_limit(0),
 967     _node_bundling_base(NULL),
 968     _java_calls(0),
 969     _inner_loops(0),
 970 #ifndef PRODUCT
 971     _trace_opto_output(TraceOptoOutput),
 972     _in_dump_cnt(0),
 973     _printer(NULL),
 974 #endif
 975     _comp_arena(mtCompiler),
 976     _node_arena(mtCompiler),
 977     _old_arena(mtCompiler),
 978     _Compile_types(mtCompiler),
 979     _dead_node_list(comp_arena()),
 980     _dead_node_count(0),
 981     _congraph(NULL),
 982     _replay_inline_data(NULL),
 983     _number_of_mh_late_inlines(0),
 984     _inlining_progress(false),
 985     _inlining_incrementally(false),
 986     _print_inlining_list(NULL),
 987     _print_inlining_stream(NULL),
 988     _print_inlining_idx(0),
 989     _print_inlining_output(NULL),
 990     _allowed_reasons(0),
 991     _interpreter_frame_size(0),
 992     _max_node_limit(MaxNodeLimit) {
 993   C = this;
 994 
 995   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
 996   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
 997 
 998 #ifndef PRODUCT
 999   set_print_assembly(PrintFrameConverterAssembly);
1000   set_parsed_irreducible_loop(false);
1001 #endif
1002   set_has_irreducible_loop(false); // no loops
1003 
1004   CompileWrapper cw(this);
1005   Init(/*AliasLevel=*/ 0);
1006   init_tf((*generator)());
1007 
1008   {
1009     // The following is a dummy for the sake of GraphKit::gen_stub
1010     Unique_Node_List for_igvn(comp_arena());
1011     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1012     PhaseGVN gvn(Thread::current()->resource_area(),255);
1013     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1014     gvn.transform_no_reclaim(top());
1015 
1016     GraphKit kit;
1017     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1018   }
1019 
1020   NOT_PRODUCT( verify_graph_edges(); )
1021   Code_Gen();
1022   if (failing())  return;
1023 
1024 
1025   // Entry point will be accessed using compile->stub_entry_point();
1026   if (code_buffer() == NULL) {
1027     Matcher::soft_match_failure();
1028   } else {
1029     if (PrintAssembly && (WizardMode || Verbose))
1030       tty->print_cr("### Stub::%s", stub_name);
1031 
1032     if (!failing()) {
1033       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1034 
1035       // Make the NMethod
1036       // For now we mark the frame as never safe for profile stackwalking
1037       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1038                                                       code_buffer(),
1039                                                       CodeOffsets::frame_never_safe,
1040                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1041                                                       frame_size_in_words(),
1042                                                       _oop_map_set,
1043                                                       save_arg_registers);
1044       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1045 
1046       _stub_entry_point = rs->entry_point();
1047     }
1048   }
1049 }
1050 
1051 //------------------------------Init-------------------------------------------
1052 // Prepare for a single compilation
1053 void Compile::Init(int aliaslevel) {
1054   _unique  = 0;
1055   _regalloc = NULL;
1056 
1057   _tf      = NULL;  // filled in later
1058   _top     = NULL;  // cached later
1059   _matcher = NULL;  // filled in later
1060   _cfg     = NULL;  // filled in later
1061 
1062   set_24_bit_selection_and_mode(Use24BitFP, false);
1063 
1064   _node_note_array = NULL;
1065   _default_node_notes = NULL;
1066   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1067 
1068   _immutable_memory = NULL; // filled in at first inquiry
1069 
1070   // Globally visible Nodes
1071   // First set TOP to NULL to give safe behavior during creation of RootNode
1072   set_cached_top_node(NULL);
1073   set_root(new RootNode());
1074   // Now that you have a Root to point to, create the real TOP
1075   set_cached_top_node( new ConNode(Type::TOP) );
1076   set_recent_alloc(NULL, NULL);
1077 
1078   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1079   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1080   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1081   env()->set_dependencies(new Dependencies(env()));
1082 
1083   _fixed_slots = 0;
1084   set_has_split_ifs(false);
1085   set_has_loops(has_method() && method()->has_loops()); // first approximation
1086   set_has_stringbuilder(false);
1087   set_has_boxed_value(false);
1088   _trap_can_recompile = false;  // no traps emitted yet
1089   _major_progress = true; // start out assuming good things will happen
1090   set_has_unsafe_access(false);
1091   set_max_vector_size(0);
1092   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1093   set_decompile_count(0);
1094 
1095   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1096   set_num_loop_opts(LoopOptsCount);
1097   set_do_inlining(Inline);
1098   set_max_inline_size(MaxInlineSize);
1099   set_freq_inline_size(FreqInlineSize);
1100   set_do_scheduling(OptoScheduling);
1101   set_do_count_invocations(false);
1102   set_do_method_data_update(false);
1103 
1104   set_do_vector_loop(false);
1105 
1106   bool do_vector = false;
1107   if (AllowVectorizeOnDemand) {
1108     if (has_method() && (method()->has_option("Vectorize") || method()->has_option("VectorizeDebug"))) {
1109       set_do_vector_loop(true);
1110     } else if (has_method() && method()->name() != 0 &&
1111                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1112       set_do_vector_loop(true);
1113     }
1114 #ifndef PRODUCT
1115     if (do_vector_loop() && Verbose) {
1116       tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());
1117     }
1118 #endif
1119   }
1120 
1121   set_age_code(has_method() && method()->profile_aging());
1122   set_rtm_state(NoRTM); // No RTM lock eliding by default
1123   method_has_option_value("MaxNodeLimit", _max_node_limit);
1124 #if INCLUDE_RTM_OPT
1125   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1126     int rtm_state = method()->method_data()->rtm_state();
1127     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1128       // Don't generate RTM lock eliding code.
1129       set_rtm_state(NoRTM);
1130     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1131       // Generate RTM lock eliding code without abort ratio calculation code.
1132       set_rtm_state(UseRTM);
1133     } else if (UseRTMDeopt) {
1134       // Generate RTM lock eliding code and include abort ratio calculation
1135       // code if UseRTMDeopt is on.
1136       set_rtm_state(ProfileRTM);
1137     }
1138   }
1139 #endif
1140   if (debug_info()->recording_non_safepoints()) {
1141     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1142                         (comp_arena(), 8, 0, NULL));
1143     set_default_node_notes(Node_Notes::make(this));
1144   }
1145 
1146   // // -- Initialize types before each compile --
1147   // // Update cached type information
1148   // if( _method && _method->constants() )
1149   //   Type::update_loaded_types(_method, _method->constants());
1150 
1151   // Init alias_type map.
1152   if (!_do_escape_analysis && aliaslevel == 3)
1153     aliaslevel = 2;  // No unique types without escape analysis
1154   _AliasLevel = aliaslevel;
1155   const int grow_ats = 16;
1156   _max_alias_types = grow_ats;
1157   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1158   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1159   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1160   {
1161     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1162   }
1163   // Initialize the first few types.
1164   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1165   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1166   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1167   _num_alias_types = AliasIdxRaw+1;
1168   // Zero out the alias type cache.
1169   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1170   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1171   probe_alias_cache(NULL)->_index = AliasIdxTop;
1172 
1173   _intrinsics = NULL;
1174   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1175   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1176   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1177   register_library_intrinsics();
1178 }
1179 
1180 //---------------------------init_start----------------------------------------
1181 // Install the StartNode on this compile object.
1182 void Compile::init_start(StartNode* s) {
1183   if (failing())
1184     return; // already failing
1185   assert(s == start(), "");
1186 }
1187 
1188 /**
1189  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1190  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1191  * the ideal graph.
1192  */
1193 StartNode* Compile::start() const {
1194   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
1195   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1196     Node* start = root()->fast_out(i);
1197     if (start->is_Start()) {
1198       return start->as_Start();
1199     }
1200   }
1201   fatal("Did not find Start node!");
1202   return NULL;
1203 }
1204 
1205 //-------------------------------immutable_memory-------------------------------------
1206 // Access immutable memory
1207 Node* Compile::immutable_memory() {
1208   if (_immutable_memory != NULL) {
1209     return _immutable_memory;
1210   }
1211   StartNode* s = start();
1212   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1213     Node *p = s->fast_out(i);
1214     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1215       _immutable_memory = p;
1216       return _immutable_memory;
1217     }
1218   }
1219   ShouldNotReachHere();
1220   return NULL;
1221 }
1222 
1223 //----------------------set_cached_top_node------------------------------------
1224 // Install the cached top node, and make sure Node::is_top works correctly.
1225 void Compile::set_cached_top_node(Node* tn) {
1226   if (tn != NULL)  verify_top(tn);
1227   Node* old_top = _top;
1228   _top = tn;
1229   // Calling Node::setup_is_top allows the nodes the chance to adjust
1230   // their _out arrays.
1231   if (_top != NULL)     _top->setup_is_top();
1232   if (old_top != NULL)  old_top->setup_is_top();
1233   assert(_top == NULL || top()->is_top(), "");
1234 }
1235 
1236 #ifdef ASSERT
1237 uint Compile::count_live_nodes_by_graph_walk() {
1238   Unique_Node_List useful(comp_arena());
1239   // Get useful node list by walking the graph.
1240   identify_useful_nodes(useful);
1241   return useful.size();
1242 }
1243 
1244 void Compile::print_missing_nodes() {
1245 
1246   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1247   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1248     return;
1249   }
1250 
1251   // This is an expensive function. It is executed only when the user
1252   // specifies VerifyIdealNodeCount option or otherwise knows the
1253   // additional work that needs to be done to identify reachable nodes
1254   // by walking the flow graph and find the missing ones using
1255   // _dead_node_list.
1256 
1257   Unique_Node_List useful(comp_arena());
1258   // Get useful node list by walking the graph.
1259   identify_useful_nodes(useful);
1260 
1261   uint l_nodes = C->live_nodes();
1262   uint l_nodes_by_walk = useful.size();
1263 
1264   if (l_nodes != l_nodes_by_walk) {
1265     if (_log != NULL) {
1266       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1267       _log->stamp();
1268       _log->end_head();
1269     }
1270     VectorSet& useful_member_set = useful.member_set();
1271     int last_idx = l_nodes_by_walk;
1272     for (int i = 0; i < last_idx; i++) {
1273       if (useful_member_set.test(i)) {
1274         if (_dead_node_list.test(i)) {
1275           if (_log != NULL) {
1276             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1277           }
1278           if (PrintIdealNodeCount) {
1279             // Print the log message to tty
1280               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1281               useful.at(i)->dump();
1282           }
1283         }
1284       }
1285       else if (! _dead_node_list.test(i)) {
1286         if (_log != NULL) {
1287           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1288         }
1289         if (PrintIdealNodeCount) {
1290           // Print the log message to tty
1291           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1292         }
1293       }
1294     }
1295     if (_log != NULL) {
1296       _log->tail("mismatched_nodes");
1297     }
1298   }
1299 }
1300 void Compile::record_modified_node(Node* n) {
1301   if (_modified_nodes != NULL && !_inlining_incrementally &&
1302       n->outcnt() != 0 && !n->is_Con()) {
1303     _modified_nodes->push(n);
1304   }
1305 }
1306 
1307 void Compile::remove_modified_node(Node* n) {
1308   if (_modified_nodes != NULL) {
1309     _modified_nodes->remove(n);
1310   }
1311 }
1312 #endif
1313 
1314 #ifndef PRODUCT
1315 void Compile::verify_top(Node* tn) const {
1316   if (tn != NULL) {
1317     assert(tn->is_Con(), "top node must be a constant");
1318     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1319     assert(tn->in(0) != NULL, "must have live top node");
1320   }
1321 }
1322 #endif
1323 
1324 
1325 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1326 
1327 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1328   guarantee(arr != NULL, "");
1329   int num_blocks = arr->length();
1330   if (grow_by < num_blocks)  grow_by = num_blocks;
1331   int num_notes = grow_by * _node_notes_block_size;
1332   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1333   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1334   while (num_notes > 0) {
1335     arr->append(notes);
1336     notes     += _node_notes_block_size;
1337     num_notes -= _node_notes_block_size;
1338   }
1339   assert(num_notes == 0, "exact multiple, please");
1340 }
1341 
1342 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1343   if (source == NULL || dest == NULL)  return false;
1344 
1345   if (dest->is_Con())
1346     return false;               // Do not push debug info onto constants.
1347 
1348 #ifdef ASSERT
1349   // Leave a bread crumb trail pointing to the original node:
1350   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1351     dest->set_debug_orig(source);
1352   }
1353 #endif
1354 
1355   if (node_note_array() == NULL)
1356     return false;               // Not collecting any notes now.
1357 
1358   // This is a copy onto a pre-existing node, which may already have notes.
1359   // If both nodes have notes, do not overwrite any pre-existing notes.
1360   Node_Notes* source_notes = node_notes_at(source->_idx);
1361   if (source_notes == NULL || source_notes->is_clear())  return false;
1362   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1363   if (dest_notes == NULL || dest_notes->is_clear()) {
1364     return set_node_notes_at(dest->_idx, source_notes);
1365   }
1366 
1367   Node_Notes merged_notes = (*source_notes);
1368   // The order of operations here ensures that dest notes will win...
1369   merged_notes.update_from(dest_notes);
1370   return set_node_notes_at(dest->_idx, &merged_notes);
1371 }
1372 
1373 
1374 //--------------------------allow_range_check_smearing-------------------------
1375 // Gating condition for coalescing similar range checks.
1376 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1377 // single covering check that is at least as strong as any of them.
1378 // If the optimization succeeds, the simplified (strengthened) range check
1379 // will always succeed.  If it fails, we will deopt, and then give up
1380 // on the optimization.
1381 bool Compile::allow_range_check_smearing() const {
1382   // If this method has already thrown a range-check,
1383   // assume it was because we already tried range smearing
1384   // and it failed.
1385   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1386   return !already_trapped;
1387 }
1388 
1389 
1390 //------------------------------flatten_alias_type-----------------------------
1391 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1392   int offset = tj->offset();
1393   TypePtr::PTR ptr = tj->ptr();
1394 
1395   // Known instance (scalarizable allocation) alias only with itself.
1396   bool is_known_inst = tj->isa_oopptr() != NULL &&
1397                        tj->is_oopptr()->is_known_instance();
1398 
1399   // Process weird unsafe references.
1400   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1401     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1402     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1403     tj = TypeOopPtr::BOTTOM;
1404     ptr = tj->ptr();
1405     offset = tj->offset();
1406   }
1407 
1408   // Array pointers need some flattening
1409   const TypeAryPtr *ta = tj->isa_aryptr();
1410   if (ta && ta->is_stable()) {
1411     // Erase stability property for alias analysis.
1412     tj = ta = ta->cast_to_stable(false);
1413   }
1414   if( ta && is_known_inst ) {
1415     if ( offset != Type::OffsetBot &&
1416          offset > arrayOopDesc::length_offset_in_bytes() ) {
1417       offset = Type::OffsetBot; // Flatten constant access into array body only
1418       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1419     }
1420   } else if( ta && _AliasLevel >= 2 ) {
1421     // For arrays indexed by constant indices, we flatten the alias
1422     // space to include all of the array body.  Only the header, klass
1423     // and array length can be accessed un-aliased.
1424     if( offset != Type::OffsetBot ) {
1425       if( ta->const_oop() ) { // MethodData* or Method*
1426         offset = Type::OffsetBot;   // Flatten constant access into array body
1427         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1428       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1429         // range is OK as-is.
1430         tj = ta = TypeAryPtr::RANGE;
1431       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1432         tj = TypeInstPtr::KLASS; // all klass loads look alike
1433         ta = TypeAryPtr::RANGE; // generic ignored junk
1434         ptr = TypePtr::BotPTR;
1435       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1436         tj = TypeInstPtr::MARK;
1437         ta = TypeAryPtr::RANGE; // generic ignored junk
1438         ptr = TypePtr::BotPTR;
1439       } else if (offset == -8) {
1440         // Need to distinguish brooks ptr as is.
1441         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1442       } else {                  // Random constant offset into array body
1443         offset = Type::OffsetBot;   // Flatten constant access into array body
1444         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1445       }
1446     }
1447     // Arrays of fixed size alias with arrays of unknown size.
1448     if (ta->size() != TypeInt::POS) {
1449       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1450       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1451     }
1452     // Arrays of known objects become arrays of unknown objects.
1453     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1454       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1455       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1456     }
1457     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1458       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1459       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1460     }
1461     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1462     // cannot be distinguished by bytecode alone.
1463     if (ta->elem() == TypeInt::BOOL) {
1464       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1465       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1466       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1467     }
1468     // During the 2nd round of IterGVN, NotNull castings are removed.
1469     // Make sure the Bottom and NotNull variants alias the same.
1470     // Also, make sure exact and non-exact variants alias the same.
1471     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1472       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1473     }
1474   }
1475 
1476   // Oop pointers need some flattening
1477   const TypeInstPtr *to = tj->isa_instptr();
1478   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1479     ciInstanceKlass *k = to->klass()->as_instance_klass();
1480     if( ptr == TypePtr::Constant ) {
1481       if (to->klass() != ciEnv::current()->Class_klass() ||
1482           offset < k->size_helper() * wordSize) {
1483         // No constant oop pointers (such as Strings); they alias with
1484         // unknown strings.
1485         assert(!is_known_inst, "not scalarizable allocation");
1486         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1487       }
1488     } else if( is_known_inst ) {
1489       tj = to; // Keep NotNull and klass_is_exact for instance type
1490     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1491       // During the 2nd round of IterGVN, NotNull castings are removed.
1492       // Make sure the Bottom and NotNull variants alias the same.
1493       // Also, make sure exact and non-exact variants alias the same.
1494       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1495     }
1496     if (to->speculative() != NULL) {
1497       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1498     }
1499     // Canonicalize the holder of this field
1500     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1501       // First handle header references such as a LoadKlassNode, even if the
1502       // object's klass is unloaded at compile time (4965979).
1503       if (!is_known_inst) { // Do it only for non-instance types
1504         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1505       }
1506     } else if ((offset != -8) && (offset < 0 || offset >= k->size_helper() * wordSize)) {
1507       // Static fields are in the space above the normal instance
1508       // fields in the java.lang.Class instance.
1509       if (to->klass() != ciEnv::current()->Class_klass()) {
1510         to = NULL;
1511         tj = TypeOopPtr::BOTTOM;
1512         offset = tj->offset();
1513       }
1514     } else {
1515       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1516       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1517         if( is_known_inst ) {
1518           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1519         } else {
1520           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1521         }
1522       }
1523     }
1524   }
1525 
1526   // Klass pointers to object array klasses need some flattening
1527   const TypeKlassPtr *tk = tj->isa_klassptr();
1528   if( tk ) {
1529     // If we are referencing a field within a Klass, we need
1530     // to assume the worst case of an Object.  Both exact and
1531     // inexact types must flatten to the same alias class so
1532     // use NotNull as the PTR.
1533     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1534 
1535       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1536                                    TypeKlassPtr::OBJECT->klass(),
1537                                    offset);
1538     }
1539 
1540     ciKlass* klass = tk->klass();
1541     if( klass->is_obj_array_klass() ) {
1542       ciKlass* k = TypeAryPtr::OOPS->klass();
1543       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1544         k = TypeInstPtr::BOTTOM->klass();
1545       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1546     }
1547 
1548     // Check for precise loads from the primary supertype array and force them
1549     // to the supertype cache alias index.  Check for generic array loads from
1550     // the primary supertype array and also force them to the supertype cache
1551     // alias index.  Since the same load can reach both, we need to merge
1552     // these 2 disparate memories into the same alias class.  Since the
1553     // primary supertype array is read-only, there's no chance of confusion
1554     // where we bypass an array load and an array store.
1555     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1556     if (offset == Type::OffsetBot ||
1557         (offset >= primary_supers_offset &&
1558          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1559         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1560       offset = in_bytes(Klass::secondary_super_cache_offset());
1561       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1562     }
1563   }
1564 
1565   // Flatten all Raw pointers together.
1566   if (tj->base() == Type::RawPtr)
1567     tj = TypeRawPtr::BOTTOM;
1568 
1569   if (tj->base() == Type::AnyPtr)
1570     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1571 
1572   // Flatten all to bottom for now
1573   switch( _AliasLevel ) {
1574   case 0:
1575     tj = TypePtr::BOTTOM;
1576     break;
1577   case 1:                       // Flatten to: oop, static, field or array
1578     switch (tj->base()) {
1579     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1580     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1581     case Type::AryPtr:   // do not distinguish arrays at all
1582     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1583     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1584     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1585     default: ShouldNotReachHere();
1586     }
1587     break;
1588   case 2:                       // No collapsing at level 2; keep all splits
1589   case 3:                       // No collapsing at level 3; keep all splits
1590     break;
1591   default:
1592     Unimplemented();
1593   }
1594 
1595   offset = tj->offset();
1596   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1597 
1598   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1599           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1600           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1601           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1602           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1603           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1604           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1605           (offset == -8 && tj->base() == Type::AryPtr && UseShenandoahGC),
1606           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1607   assert( tj->ptr() != TypePtr::TopPTR &&
1608           tj->ptr() != TypePtr::AnyNull &&
1609           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1610 //    assert( tj->ptr() != TypePtr::Constant ||
1611 //            tj->base() == Type::RawPtr ||
1612 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1613 
1614   return tj;
1615 }
1616 
1617 void Compile::AliasType::Init(int i, const TypePtr* at) {
1618   _index = i;
1619   _adr_type = at;
1620   _field = NULL;
1621   _element = NULL;
1622   _is_rewritable = true; // default
1623   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1624   if (atoop != NULL && atoop->is_known_instance()) {
1625     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1626     _general_index = Compile::current()->get_alias_index(gt);
1627   } else {
1628     _general_index = 0;
1629   }
1630 }
1631 
1632 //---------------------------------print_on------------------------------------
1633 #ifndef PRODUCT
1634 void Compile::AliasType::print_on(outputStream* st) {
1635   if (index() < 10)
1636         st->print("@ <%d> ", index());
1637   else  st->print("@ <%d>",  index());
1638   st->print(is_rewritable() ? "   " : " RO");
1639   int offset = adr_type()->offset();
1640   if (offset == Type::OffsetBot)
1641         st->print(" +any");
1642   else  st->print(" +%-3d", offset);
1643   st->print(" in ");
1644   adr_type()->dump_on(st);
1645   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1646   if (field() != NULL && tjp) {
1647     if (tjp->klass()  != field()->holder() ||
1648         tjp->offset() != field()->offset_in_bytes()) {
1649       st->print(" != ");
1650       field()->print();
1651       st->print(" ***");
1652     }
1653   }
1654 }
1655 
1656 void print_alias_types() {
1657   Compile* C = Compile::current();
1658   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1659   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1660     C->alias_type(idx)->print_on(tty);
1661     tty->cr();
1662   }
1663 }
1664 #endif
1665 
1666 
1667 //----------------------------probe_alias_cache--------------------------------
1668 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1669   intptr_t key = (intptr_t) adr_type;
1670   key ^= key >> logAliasCacheSize;
1671   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1672 }
1673 
1674 
1675 //-----------------------------grow_alias_types--------------------------------
1676 void Compile::grow_alias_types() {
1677   const int old_ats  = _max_alias_types; // how many before?
1678   const int new_ats  = old_ats;          // how many more?
1679   const int grow_ats = old_ats+new_ats;  // how many now?
1680   _max_alias_types = grow_ats;
1681   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1682   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1683   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1684   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1685 }
1686 
1687 
1688 //--------------------------------find_alias_type------------------------------
1689 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1690   if (_AliasLevel == 0)
1691     return alias_type(AliasIdxBot);
1692 
1693   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1694   if (ace->_adr_type == adr_type) {
1695     return alias_type(ace->_index);
1696   }
1697 
1698   // Handle special cases.
1699   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1700   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1701 
1702   // Do it the slow way.
1703   const TypePtr* flat = flatten_alias_type(adr_type);
1704 
1705 #ifdef ASSERT
1706   assert(flat == flatten_alias_type(flat), "idempotent");
1707   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1708   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1709     const TypeOopPtr* foop = flat->is_oopptr();
1710     // Scalarizable allocations have exact klass always.
1711     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1712     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1713     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1714   }
1715   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1716 #endif
1717 
1718   int idx = AliasIdxTop;
1719   for (int i = 0; i < num_alias_types(); i++) {
1720     if (alias_type(i)->adr_type() == flat) {
1721       idx = i;
1722       break;
1723     }
1724   }
1725 
1726   if (idx == AliasIdxTop) {
1727     if (no_create)  return NULL;
1728     // Grow the array if necessary.
1729     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1730     // Add a new alias type.
1731     idx = _num_alias_types++;
1732     _alias_types[idx]->Init(idx, flat);
1733     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1734     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1735     if (flat->isa_instptr()) {
1736       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1737           && flat->is_instptr()->klass() == env()->Class_klass())
1738         alias_type(idx)->set_rewritable(false);
1739     }
1740     if (flat->isa_aryptr()) {
1741 #ifdef ASSERT
1742       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1743       // (T_BYTE has the weakest alignment and size restrictions...)
1744       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1745 #endif
1746       if (flat->offset() == TypePtr::OffsetBot) {
1747         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1748       }
1749     }
1750     if (flat->isa_klassptr()) {
1751       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1752         alias_type(idx)->set_rewritable(false);
1753       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1754         alias_type(idx)->set_rewritable(false);
1755       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1756         alias_type(idx)->set_rewritable(false);
1757       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1758         alias_type(idx)->set_rewritable(false);
1759     }
1760     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1761     // but the base pointer type is not distinctive enough to identify
1762     // references into JavaThread.)
1763 
1764     // Check for final fields.
1765     const TypeInstPtr* tinst = flat->isa_instptr();
1766     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1767       ciField* field;
1768       if (tinst->const_oop() != NULL &&
1769           tinst->klass() == ciEnv::current()->Class_klass() &&
1770           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1771         // static field
1772         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1773         field = k->get_field_by_offset(tinst->offset(), true);
1774       } else {
1775         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1776         field = k->get_field_by_offset(tinst->offset(), false);
1777       }
1778       assert(field == NULL ||
1779              original_field == NULL ||
1780              (field->holder() == original_field->holder() &&
1781               field->offset() == original_field->offset() &&
1782               field->is_static() == original_field->is_static()), "wrong field?");
1783       // Set field() and is_rewritable() attributes.
1784       if (field != NULL)  alias_type(idx)->set_field(field);
1785     }
1786   }
1787 
1788   // Fill the cache for next time.
1789   ace->_adr_type = adr_type;
1790   ace->_index    = idx;
1791   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1792 
1793   // Might as well try to fill the cache for the flattened version, too.
1794   AliasCacheEntry* face = probe_alias_cache(flat);
1795   if (face->_adr_type == NULL) {
1796     face->_adr_type = flat;
1797     face->_index    = idx;
1798     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1799   }
1800 
1801   return alias_type(idx);
1802 }
1803 
1804 
1805 Compile::AliasType* Compile::alias_type(ciField* field) {
1806   const TypeOopPtr* t;
1807   if (field->is_static())
1808     t = TypeInstPtr::make(field->holder()->java_mirror());
1809   else
1810     t = TypeOopPtr::make_from_klass_raw(field->holder());
1811   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1812   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1813   return atp;
1814 }
1815 
1816 
1817 //------------------------------have_alias_type--------------------------------
1818 bool Compile::have_alias_type(const TypePtr* adr_type) {
1819   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1820   if (ace->_adr_type == adr_type) {
1821     return true;
1822   }
1823 
1824   // Handle special cases.
1825   if (adr_type == NULL)             return true;
1826   if (adr_type == TypePtr::BOTTOM)  return true;
1827 
1828   return find_alias_type(adr_type, true, NULL) != NULL;
1829 }
1830 
1831 //-----------------------------must_alias--------------------------------------
1832 // True if all values of the given address type are in the given alias category.
1833 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1834   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1835   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1836   if (alias_idx == AliasIdxTop)         return false; // the empty category
1837   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1838 
1839   // the only remaining possible overlap is identity
1840   int adr_idx = get_alias_index(adr_type);
1841   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1842   assert(adr_idx == alias_idx ||
1843          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1844           && adr_type                       != TypeOopPtr::BOTTOM),
1845          "should not be testing for overlap with an unsafe pointer");
1846   return adr_idx == alias_idx;
1847 }
1848 
1849 //------------------------------can_alias--------------------------------------
1850 // True if any values of the given address type are in the given alias category.
1851 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1852   if (alias_idx == AliasIdxTop)         return false; // the empty category
1853   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1854   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1855   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1856 
1857   // the only remaining possible overlap is identity
1858   int adr_idx = get_alias_index(adr_type);
1859   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1860   return adr_idx == alias_idx;
1861 }
1862 
1863 
1864 
1865 //---------------------------pop_warm_call-------------------------------------
1866 WarmCallInfo* Compile::pop_warm_call() {
1867   WarmCallInfo* wci = _warm_calls;
1868   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1869   return wci;
1870 }
1871 
1872 //----------------------------Inline_Warm--------------------------------------
1873 int Compile::Inline_Warm() {
1874   // If there is room, try to inline some more warm call sites.
1875   // %%% Do a graph index compaction pass when we think we're out of space?
1876   if (!InlineWarmCalls)  return 0;
1877 
1878   int calls_made_hot = 0;
1879   int room_to_grow   = NodeCountInliningCutoff - unique();
1880   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1881   int amount_grown   = 0;
1882   WarmCallInfo* call;
1883   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1884     int est_size = (int)call->size();
1885     if (est_size > (room_to_grow - amount_grown)) {
1886       // This one won't fit anyway.  Get rid of it.
1887       call->make_cold();
1888       continue;
1889     }
1890     call->make_hot();
1891     calls_made_hot++;
1892     amount_grown   += est_size;
1893     amount_to_grow -= est_size;
1894   }
1895 
1896   if (calls_made_hot > 0)  set_major_progress();
1897   return calls_made_hot;
1898 }
1899 
1900 
1901 //----------------------------Finish_Warm--------------------------------------
1902 void Compile::Finish_Warm() {
1903   if (!InlineWarmCalls)  return;
1904   if (failing())  return;
1905   if (warm_calls() == NULL)  return;
1906 
1907   // Clean up loose ends, if we are out of space for inlining.
1908   WarmCallInfo* call;
1909   while ((call = pop_warm_call()) != NULL) {
1910     call->make_cold();
1911   }
1912 }
1913 
1914 //---------------------cleanup_loop_predicates-----------------------
1915 // Remove the opaque nodes that protect the predicates so that all unused
1916 // checks and uncommon_traps will be eliminated from the ideal graph
1917 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1918   if (predicate_count()==0) return;
1919   for (int i = predicate_count(); i > 0; i--) {
1920     Node * n = predicate_opaque1_node(i-1);
1921     assert(n->Opcode() == Op_Opaque1, "must be");
1922     igvn.replace_node(n, n->in(1));
1923   }
1924   assert(predicate_count()==0, "should be clean!");
1925 }
1926 
1927 // StringOpts and late inlining of string methods
1928 void Compile::inline_string_calls(bool parse_time) {
1929   {
1930     // remove useless nodes to make the usage analysis simpler
1931     ResourceMark rm;
1932     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1933   }
1934 
1935   {
1936     ResourceMark rm;
1937     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1938     PhaseStringOpts pso(initial_gvn(), for_igvn());
1939     print_method(PHASE_AFTER_STRINGOPTS, 3);
1940   }
1941 
1942   // now inline anything that we skipped the first time around
1943   if (!parse_time) {
1944     _late_inlines_pos = _late_inlines.length();
1945   }
1946 
1947   while (_string_late_inlines.length() > 0) {
1948     CallGenerator* cg = _string_late_inlines.pop();
1949     cg->do_late_inline();
1950     if (failing())  return;
1951   }
1952   _string_late_inlines.trunc_to(0);
1953 }
1954 
1955 // Late inlining of boxing methods
1956 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1957   if (_boxing_late_inlines.length() > 0) {
1958     assert(has_boxed_value(), "inconsistent");
1959 
1960     PhaseGVN* gvn = initial_gvn();
1961     set_inlining_incrementally(true);
1962 
1963     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1964     for_igvn()->clear();
1965     gvn->replace_with(&igvn);
1966 
1967     _late_inlines_pos = _late_inlines.length();
1968 
1969     while (_boxing_late_inlines.length() > 0) {
1970       CallGenerator* cg = _boxing_late_inlines.pop();
1971       cg->do_late_inline();
1972       if (failing())  return;
1973     }
1974     _boxing_late_inlines.trunc_to(0);
1975 
1976     {
1977       ResourceMark rm;
1978       PhaseRemoveUseless pru(gvn, for_igvn());
1979     }
1980 
1981     igvn = PhaseIterGVN(gvn);
1982     igvn.optimize();
1983 
1984     set_inlining_progress(false);
1985     set_inlining_incrementally(false);
1986   }
1987 }
1988 
1989 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1990   assert(IncrementalInline, "incremental inlining should be on");
1991   PhaseGVN* gvn = initial_gvn();
1992 
1993   set_inlining_progress(false);
1994   for_igvn()->clear();
1995   gvn->replace_with(&igvn);
1996 
1997   {
1998     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
1999     int i = 0;
2000     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2001       CallGenerator* cg = _late_inlines.at(i);
2002       _late_inlines_pos = i+1;
2003       cg->do_late_inline();
2004       if (failing())  return;
2005     }
2006     int j = 0;
2007     for (; i < _late_inlines.length(); i++, j++) {
2008       _late_inlines.at_put(j, _late_inlines.at(i));
2009     }
2010     _late_inlines.trunc_to(j);
2011   }
2012 
2013   {
2014     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2015     ResourceMark rm;
2016     PhaseRemoveUseless pru(gvn, for_igvn());
2017   }
2018 
2019   {
2020     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2021     igvn = PhaseIterGVN(gvn);
2022   }
2023 }
2024 
2025 // Perform incremental inlining until bound on number of live nodes is reached
2026 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2027   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2028 
2029   PhaseGVN* gvn = initial_gvn();
2030 
2031   set_inlining_incrementally(true);
2032   set_inlining_progress(true);
2033   uint low_live_nodes = 0;
2034 
2035   while(inlining_progress() && _late_inlines.length() > 0) {
2036 
2037     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2038       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2039         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2040         // PhaseIdealLoop is expensive so we only try it once we are
2041         // out of live nodes and we only try it again if the previous
2042         // helped got the number of nodes down significantly
2043         PhaseIdealLoop ideal_loop( igvn, false, true );
2044         if (failing())  return;
2045         low_live_nodes = live_nodes();
2046         _major_progress = true;
2047       }
2048 
2049       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2050         break;
2051       }
2052     }
2053 
2054     inline_incrementally_one(igvn);
2055 
2056     if (failing())  return;
2057 
2058     {
2059       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2060       igvn.optimize();
2061     }
2062 
2063     if (failing())  return;
2064   }
2065 
2066   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2067 
2068   if (_string_late_inlines.length() > 0) {
2069     assert(has_stringbuilder(), "inconsistent");
2070     for_igvn()->clear();
2071     initial_gvn()->replace_with(&igvn);
2072 
2073     inline_string_calls(false);
2074 
2075     if (failing())  return;
2076 
2077     {
2078       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2079       ResourceMark rm;
2080       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2081     }
2082 
2083     {
2084       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2085       igvn = PhaseIterGVN(gvn);
2086       igvn.optimize();
2087     }
2088   }
2089 
2090   set_inlining_incrementally(false);
2091 }
2092 
2093 
2094 //------------------------------Optimize---------------------------------------
2095 // Given a graph, optimize it.
2096 void Compile::Optimize() {
2097   TracePhase tp("optimizer", &timers[_t_optimizer]);
2098 
2099 #ifndef PRODUCT
2100   if (env()->break_at_compile()) {
2101     BREAKPOINT;
2102   }
2103 
2104 #endif
2105 
2106   ResourceMark rm;
2107   int          loop_opts_cnt;
2108 
2109   print_inlining_reinit();
2110 
2111   NOT_PRODUCT( verify_graph_edges(); )
2112 
2113   print_method(PHASE_AFTER_PARSING);
2114 
2115  {
2116   // Iterative Global Value Numbering, including ideal transforms
2117   // Initialize IterGVN with types and values from parse-time GVN
2118   PhaseIterGVN igvn(initial_gvn());
2119 #ifdef ASSERT
2120   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2121 #endif
2122   {
2123     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2124     igvn.optimize();
2125   }
2126 
2127   print_method(PHASE_ITER_GVN1, 2);
2128 
2129   if (failing())  return;
2130 
2131   inline_incrementally(igvn);
2132 
2133   print_method(PHASE_INCREMENTAL_INLINE, 2);
2134 
2135   if (failing())  return;
2136 
2137   if (eliminate_boxing()) {
2138     // Inline valueOf() methods now.
2139     inline_boxing_calls(igvn);
2140 
2141     if (AlwaysIncrementalInline) {
2142       inline_incrementally(igvn);
2143     }
2144 
2145     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2146 
2147     if (failing())  return;
2148   }
2149 
2150   // Remove the speculative part of types and clean up the graph from
2151   // the extra CastPP nodes whose only purpose is to carry them. Do
2152   // that early so that optimizations are not disrupted by the extra
2153   // CastPP nodes.
2154   remove_speculative_types(igvn);
2155 
2156   // No more new expensive nodes will be added to the list from here
2157   // so keep only the actual candidates for optimizations.
2158   cleanup_expensive_nodes(igvn);
2159 
2160   // Perform escape analysis
2161   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2162     if (has_loops()) {
2163       // Cleanup graph (remove dead nodes).
2164       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2165       PhaseIdealLoop ideal_loop( igvn, false, true );
2166       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2167       if (failing())  return;
2168     }
2169     ConnectionGraph::do_analysis(this, &igvn);
2170 
2171     if (failing())  return;
2172 
2173     // Optimize out fields loads from scalar replaceable allocations.
2174     igvn.optimize();
2175     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2176 
2177     if (failing())  return;
2178 
2179     if (congraph() != NULL && macro_count() > 0) {
2180       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2181       PhaseMacroExpand mexp(igvn);
2182       mexp.eliminate_macro_nodes();
2183       igvn.set_delay_transform(false);
2184 
2185       igvn.optimize();
2186       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2187 
2188       if (failing())  return;
2189     }
2190   }
2191 
2192   // Loop transforms on the ideal graph.  Range Check Elimination,
2193   // peeling, unrolling, etc.
2194 
2195   // Set loop opts counter
2196   loop_opts_cnt = num_loop_opts();
2197   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2198     {
2199       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2200       PhaseIdealLoop ideal_loop( igvn, true );
2201       loop_opts_cnt--;
2202       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2203       if (failing())  return;
2204     }
2205     // Loop opts pass if partial peeling occurred in previous pass
2206     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2207       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2208       PhaseIdealLoop ideal_loop( igvn, false );
2209       loop_opts_cnt--;
2210       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2211       if (failing())  return;
2212     }
2213     // Loop opts pass for loop-unrolling before CCP
2214     if(major_progress() && (loop_opts_cnt > 0)) {
2215       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2216       PhaseIdealLoop ideal_loop( igvn, false );
2217       loop_opts_cnt--;
2218       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2219     }
2220     if (!failing()) {
2221       // Verify that last round of loop opts produced a valid graph
2222       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2223       PhaseIdealLoop::verify(igvn);
2224     }
2225   }
2226   if (failing())  return;
2227 
2228   // Conditional Constant Propagation;
2229   PhaseCCP ccp( &igvn );
2230   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2231   {
2232     TracePhase tp("ccp", &timers[_t_ccp]);
2233     ccp.do_transform();
2234   }
2235   print_method(PHASE_CPP1, 2);
2236 
2237   assert( true, "Break here to ccp.dump_old2new_map()");
2238 
2239   // Iterative Global Value Numbering, including ideal transforms
2240   {
2241     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2242     igvn = ccp;
2243     igvn.optimize();
2244   }
2245 
2246   print_method(PHASE_ITER_GVN2, 2);
2247 
2248   if (failing())  return;
2249 
2250   // Loop transforms on the ideal graph.  Range Check Elimination,
2251   // peeling, unrolling, etc.
2252   if(loop_opts_cnt > 0) {
2253     debug_only( int cnt = 0; );
2254     while(major_progress() && (loop_opts_cnt > 0)) {
2255       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2256       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2257       PhaseIdealLoop ideal_loop( igvn, true);
2258       loop_opts_cnt--;
2259       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2260       if (failing())  return;
2261     }
2262   }
2263 
2264   {
2265     // Verify that all previous optimizations produced a valid graph
2266     // at least to this point, even if no loop optimizations were done.
2267     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2268     PhaseIdealLoop::verify(igvn);
2269   }
2270 
2271   {
2272     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2273     PhaseMacroExpand  mex(igvn);
2274     if (mex.expand_macro_nodes()) {
2275       assert(failing(), "must bail out w/ explicit message");
2276       return;
2277     }
2278   }
2279 
2280   DEBUG_ONLY( _modified_nodes = NULL; )
2281  } // (End scope of igvn; run destructor if necessary for asserts.)
2282 
2283   process_print_inlining();
2284   // A method with only infinite loops has no edges entering loops from root
2285   {
2286     TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2287     if (final_graph_reshaping()) {
2288       assert(failing(), "must bail out w/ explicit message");
2289       return;
2290     }
2291   }
2292 
2293   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2294 }
2295 
2296 
2297 //------------------------------Code_Gen---------------------------------------
2298 // Given a graph, generate code for it
2299 void Compile::Code_Gen() {
2300   if (failing()) {
2301     return;
2302   }
2303 
2304   // Perform instruction selection.  You might think we could reclaim Matcher
2305   // memory PDQ, but actually the Matcher is used in generating spill code.
2306   // Internals of the Matcher (including some VectorSets) must remain live
2307   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2308   // set a bit in reclaimed memory.
2309 
2310   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2311   // nodes.  Mapping is only valid at the root of each matched subtree.
2312   NOT_PRODUCT( verify_graph_edges(); )
2313 
2314   Matcher matcher;
2315   _matcher = &matcher;
2316   {
2317     TracePhase tp("matcher", &timers[_t_matcher]);
2318     matcher.match();
2319   }
2320   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2321   // nodes.  Mapping is only valid at the root of each matched subtree.
2322   NOT_PRODUCT( verify_graph_edges(); )
2323 
2324   // If you have too many nodes, or if matching has failed, bail out
2325   check_node_count(0, "out of nodes matching instructions");
2326   if (failing()) {
2327     return;
2328   }
2329 
2330   // Build a proper-looking CFG
2331   PhaseCFG cfg(node_arena(), root(), matcher);
2332   _cfg = &cfg;
2333   {
2334     TracePhase tp("scheduler", &timers[_t_scheduler]);
2335     bool success = cfg.do_global_code_motion();
2336     if (!success) {
2337       return;
2338     }
2339 
2340     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2341     NOT_PRODUCT( verify_graph_edges(); )
2342     debug_only( cfg.verify(); )
2343   }
2344 
2345   PhaseChaitin regalloc(unique(), cfg, matcher);
2346   _regalloc = &regalloc;
2347   {
2348     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2349     // Perform register allocation.  After Chaitin, use-def chains are
2350     // no longer accurate (at spill code) and so must be ignored.
2351     // Node->LRG->reg mappings are still accurate.
2352     _regalloc->Register_Allocate();
2353 
2354     // Bail out if the allocator builds too many nodes
2355     if (failing()) {
2356       return;
2357     }
2358   }
2359 
2360   // Prior to register allocation we kept empty basic blocks in case the
2361   // the allocator needed a place to spill.  After register allocation we
2362   // are not adding any new instructions.  If any basic block is empty, we
2363   // can now safely remove it.
2364   {
2365     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2366     cfg.remove_empty_blocks();
2367     if (do_freq_based_layout()) {
2368       PhaseBlockLayout layout(cfg);
2369     } else {
2370       cfg.set_loop_alignment();
2371     }
2372     cfg.fixup_flow();
2373   }
2374 
2375   // Apply peephole optimizations
2376   if( OptoPeephole ) {
2377     TracePhase tp("peephole", &timers[_t_peephole]);
2378     PhasePeephole peep( _regalloc, cfg);
2379     peep.do_transform();
2380   }
2381 
2382   // Do late expand if CPU requires this.
2383   if (Matcher::require_postalloc_expand) {
2384     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2385     cfg.postalloc_expand(_regalloc);
2386   }
2387 
2388   // Convert Nodes to instruction bits in a buffer
2389   {
2390     TraceTime tp("output", &timers[_t_output], CITime);
2391     Output();
2392   }
2393 
2394   print_method(PHASE_FINAL_CODE);
2395 
2396   // He's dead, Jim.
2397   _cfg     = (PhaseCFG*)0xdeadbeef;
2398   _regalloc = (PhaseChaitin*)0xdeadbeef;
2399 }
2400 
2401 
2402 //------------------------------dump_asm---------------------------------------
2403 // Dump formatted assembly
2404 #ifndef PRODUCT
2405 void Compile::dump_asm(int *pcs, uint pc_limit) {
2406   bool cut_short = false;
2407   tty->print_cr("#");
2408   tty->print("#  ");  _tf->dump();  tty->cr();
2409   tty->print_cr("#");
2410 
2411   // For all blocks
2412   int pc = 0x0;                 // Program counter
2413   char starts_bundle = ' ';
2414   _regalloc->dump_frame();
2415 
2416   Node *n = NULL;
2417   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2418     if (VMThread::should_terminate()) {
2419       cut_short = true;
2420       break;
2421     }
2422     Block* block = _cfg->get_block(i);
2423     if (block->is_connector() && !Verbose) {
2424       continue;
2425     }
2426     n = block->head();
2427     if (pcs && n->_idx < pc_limit) {
2428       tty->print("%3.3x   ", pcs[n->_idx]);
2429     } else {
2430       tty->print("      ");
2431     }
2432     block->dump_head(_cfg);
2433     if (block->is_connector()) {
2434       tty->print_cr("        # Empty connector block");
2435     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2436       tty->print_cr("        # Block is sole successor of call");
2437     }
2438 
2439     // For all instructions
2440     Node *delay = NULL;
2441     for (uint j = 0; j < block->number_of_nodes(); j++) {
2442       if (VMThread::should_terminate()) {
2443         cut_short = true;
2444         break;
2445       }
2446       n = block->get_node(j);
2447       if (valid_bundle_info(n)) {
2448         Bundle* bundle = node_bundling(n);
2449         if (bundle->used_in_unconditional_delay()) {
2450           delay = n;
2451           continue;
2452         }
2453         if (bundle->starts_bundle()) {
2454           starts_bundle = '+';
2455         }
2456       }
2457 
2458       if (WizardMode) {
2459         n->dump();
2460       }
2461 
2462       if( !n->is_Region() &&    // Dont print in the Assembly
2463           !n->is_Phi() &&       // a few noisely useless nodes
2464           !n->is_Proj() &&
2465           !n->is_MachTemp() &&
2466           !n->is_SafePointScalarObject() &&
2467           !n->is_Catch() &&     // Would be nice to print exception table targets
2468           !n->is_MergeMem() &&  // Not very interesting
2469           !n->is_top() &&       // Debug info table constants
2470           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2471           ) {
2472         if (pcs && n->_idx < pc_limit)
2473           tty->print("%3.3x", pcs[n->_idx]);
2474         else
2475           tty->print("   ");
2476         tty->print(" %c ", starts_bundle);
2477         starts_bundle = ' ';
2478         tty->print("\t");
2479         n->format(_regalloc, tty);
2480         tty->cr();
2481       }
2482 
2483       // If we have an instruction with a delay slot, and have seen a delay,
2484       // then back up and print it
2485       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2486         assert(delay != NULL, "no unconditional delay instruction");
2487         if (WizardMode) delay->dump();
2488 
2489         if (node_bundling(delay)->starts_bundle())
2490           starts_bundle = '+';
2491         if (pcs && n->_idx < pc_limit)
2492           tty->print("%3.3x", pcs[n->_idx]);
2493         else
2494           tty->print("   ");
2495         tty->print(" %c ", starts_bundle);
2496         starts_bundle = ' ';
2497         tty->print("\t");
2498         delay->format(_regalloc, tty);
2499         tty->cr();
2500         delay = NULL;
2501       }
2502 
2503       // Dump the exception table as well
2504       if( n->is_Catch() && (Verbose || WizardMode) ) {
2505         // Print the exception table for this offset
2506         _handler_table.print_subtable_for(pc);
2507       }
2508     }
2509 
2510     if (pcs && n->_idx < pc_limit)
2511       tty->print_cr("%3.3x", pcs[n->_idx]);
2512     else
2513       tty->cr();
2514 
2515     assert(cut_short || delay == NULL, "no unconditional delay branch");
2516 
2517   } // End of per-block dump
2518   tty->cr();
2519 
2520   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2521 }
2522 #endif
2523 
2524 //------------------------------Final_Reshape_Counts---------------------------
2525 // This class defines counters to help identify when a method
2526 // may/must be executed using hardware with only 24-bit precision.
2527 struct Final_Reshape_Counts : public StackObj {
2528   int  _call_count;             // count non-inlined 'common' calls
2529   int  _float_count;            // count float ops requiring 24-bit precision
2530   int  _double_count;           // count double ops requiring more precision
2531   int  _java_call_count;        // count non-inlined 'java' calls
2532   int  _inner_loop_count;       // count loops which need alignment
2533   VectorSet _visited;           // Visitation flags
2534   Node_List _tests;             // Set of IfNodes & PCTableNodes
2535 
2536   Final_Reshape_Counts() :
2537     _call_count(0), _float_count(0), _double_count(0),
2538     _java_call_count(0), _inner_loop_count(0),
2539     _visited( Thread::current()->resource_area() ) { }
2540 
2541   void inc_call_count  () { _call_count  ++; }
2542   void inc_float_count () { _float_count ++; }
2543   void inc_double_count() { _double_count++; }
2544   void inc_java_call_count() { _java_call_count++; }
2545   void inc_inner_loop_count() { _inner_loop_count++; }
2546 
2547   int  get_call_count  () const { return _call_count  ; }
2548   int  get_float_count () const { return _float_count ; }
2549   int  get_double_count() const { return _double_count; }
2550   int  get_java_call_count() const { return _java_call_count; }
2551   int  get_inner_loop_count() const { return _inner_loop_count; }
2552 };
2553 
2554 #ifdef ASSERT
2555 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2556   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2557   // Make sure the offset goes inside the instance layout.
2558   return k->contains_field_offset(tp->offset());
2559   // Note that OffsetBot and OffsetTop are very negative.
2560 }
2561 #endif
2562 
2563 // Eliminate trivially redundant StoreCMs and accumulate their
2564 // precedence edges.
2565 void Compile::eliminate_redundant_card_marks(Node* n) {
2566   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2567   if (n->in(MemNode::Address)->outcnt() > 1) {
2568     // There are multiple users of the same address so it might be
2569     // possible to eliminate some of the StoreCMs
2570     Node* mem = n->in(MemNode::Memory);
2571     Node* adr = n->in(MemNode::Address);
2572     Node* val = n->in(MemNode::ValueIn);
2573     Node* prev = n;
2574     bool done = false;
2575     // Walk the chain of StoreCMs eliminating ones that match.  As
2576     // long as it's a chain of single users then the optimization is
2577     // safe.  Eliminating partially redundant StoreCMs would require
2578     // cloning copies down the other paths.
2579     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2580       if (adr == mem->in(MemNode::Address) &&
2581           val == mem->in(MemNode::ValueIn)) {
2582         // redundant StoreCM
2583         if (mem->req() > MemNode::OopStore) {
2584           // Hasn't been processed by this code yet.
2585           n->add_prec(mem->in(MemNode::OopStore));
2586         } else {
2587           // Already converted to precedence edge
2588           for (uint i = mem->req(); i < mem->len(); i++) {
2589             // Accumulate any precedence edges
2590             if (mem->in(i) != NULL) {
2591               n->add_prec(mem->in(i));
2592             }
2593           }
2594           // Everything above this point has been processed.
2595           done = true;
2596         }
2597         // Eliminate the previous StoreCM
2598         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2599         assert(mem->outcnt() == 0, "should be dead");
2600         mem->disconnect_inputs(NULL, this);
2601       } else {
2602         prev = mem;
2603       }
2604       mem = prev->in(MemNode::Memory);
2605     }
2606   }
2607 }
2608 
2609 //------------------------------final_graph_reshaping_impl----------------------
2610 // Implement items 1-5 from final_graph_reshaping below.
2611 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2612 
2613   if ( n->outcnt() == 0 ) return; // dead node
2614   uint nop = n->Opcode();
2615 
2616   // Check for 2-input instruction with "last use" on right input.
2617   // Swap to left input.  Implements item (2).
2618   if( n->req() == 3 &&          // two-input instruction
2619       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2620       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2621       n->in(2)->outcnt() == 1 &&// right use IS a last use
2622       !n->in(2)->is_Con() ) {   // right use is not a constant
2623     // Check for commutative opcode
2624     switch( nop ) {
2625     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2626     case Op_MaxI:  case Op_MinI:
2627     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2628     case Op_AndL:  case Op_XorL:  case Op_OrL:
2629     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2630       // Move "last use" input to left by swapping inputs
2631       n->swap_edges(1, 2);
2632       break;
2633     }
2634     default:
2635       break;
2636     }
2637   }
2638 
2639 #ifdef ASSERT
2640   if( n->is_Mem() ) {
2641     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2642     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2643             // oop will be recorded in oop map if load crosses safepoint
2644             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2645                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2646             "raw memory operations should have control edge");
2647   }
2648 #endif
2649   // Count FPU ops and common calls, implements item (3)
2650   switch( nop ) {
2651   // Count all float operations that may use FPU
2652   case Op_AddF:
2653   case Op_SubF:
2654   case Op_MulF:
2655   case Op_DivF:
2656   case Op_NegF:
2657   case Op_ModF:
2658   case Op_ConvI2F:
2659   case Op_ConF:
2660   case Op_CmpF:
2661   case Op_CmpF3:
2662   // case Op_ConvL2F: // longs are split into 32-bit halves
2663     frc.inc_float_count();
2664     break;
2665 
2666   case Op_ConvF2D:
2667   case Op_ConvD2F:
2668     frc.inc_float_count();
2669     frc.inc_double_count();
2670     break;
2671 
2672   // Count all double operations that may use FPU
2673   case Op_AddD:
2674   case Op_SubD:
2675   case Op_MulD:
2676   case Op_DivD:
2677   case Op_NegD:
2678   case Op_ModD:
2679   case Op_ConvI2D:
2680   case Op_ConvD2I:
2681   // case Op_ConvL2D: // handled by leaf call
2682   // case Op_ConvD2L: // handled by leaf call
2683   case Op_ConD:
2684   case Op_CmpD:
2685   case Op_CmpD3:
2686     frc.inc_double_count();
2687     break;
2688   case Op_Opaque1:              // Remove Opaque Nodes before matching
2689   case Op_Opaque2:              // Remove Opaque Nodes before matching
2690   case Op_Opaque3:
2691     n->subsume_by(n->in(1), this);
2692     break;
2693   case Op_CallStaticJava:
2694   case Op_CallJava:
2695   case Op_CallDynamicJava:
2696     frc.inc_java_call_count(); // Count java call site;
2697   case Op_CallRuntime:
2698   case Op_CallLeaf:
2699   case Op_CallLeafNoFP: {
2700     assert( n->is_Call(), "" );
2701     CallNode *call = n->as_Call();
2702     // Count call sites where the FP mode bit would have to be flipped.
2703     // Do not count uncommon runtime calls:
2704     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2705     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2706     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2707       frc.inc_call_count();   // Count the call site
2708     } else {                  // See if uncommon argument is shared
2709       Node *n = call->in(TypeFunc::Parms);
2710       int nop = n->Opcode();
2711       // Clone shared simple arguments to uncommon calls, item (1).
2712       if( n->outcnt() > 1 &&
2713           !n->is_Proj() &&
2714           nop != Op_CreateEx &&
2715           nop != Op_CheckCastPP &&
2716           nop != Op_DecodeN &&
2717           nop != Op_DecodeNKlass &&
2718           !n->is_Mem() ) {
2719         Node *x = n->clone();
2720         call->set_req( TypeFunc::Parms, x );
2721       }
2722     }
2723     break;
2724   }
2725 
2726   case Op_StoreD:
2727   case Op_LoadD:
2728   case Op_LoadD_unaligned:
2729     frc.inc_double_count();
2730     goto handle_mem;
2731   case Op_StoreF:
2732   case Op_LoadF:
2733     frc.inc_float_count();
2734     goto handle_mem;
2735 
2736   case Op_StoreCM:
2737     {
2738       // Convert OopStore dependence into precedence edge
2739       Node* prec = n->in(MemNode::OopStore);
2740       n->del_req(MemNode::OopStore);
2741       n->add_prec(prec);
2742       eliminate_redundant_card_marks(n);
2743     }
2744 
2745     // fall through
2746 
2747   case Op_StoreB:
2748   case Op_StoreC:
2749   case Op_StorePConditional:
2750   case Op_StoreI:
2751   case Op_StoreL:
2752   case Op_StoreIConditional:
2753   case Op_StoreLConditional:
2754   case Op_CompareAndSwapI:
2755   case Op_CompareAndSwapL:
2756   case Op_CompareAndSwapP:
2757   case Op_CompareAndSwapN:
2758   case Op_GetAndAddI:
2759   case Op_GetAndAddL:
2760   case Op_GetAndSetI:
2761   case Op_GetAndSetL:
2762   case Op_GetAndSetP:
2763   case Op_GetAndSetN:
2764   case Op_StoreP:
2765   case Op_StoreN:
2766   case Op_StoreNKlass:
2767   case Op_LoadB:
2768   case Op_LoadUB:
2769   case Op_LoadUS:
2770   case Op_LoadI:
2771   case Op_LoadKlass:
2772   case Op_LoadNKlass:
2773   case Op_LoadL:
2774   case Op_LoadL_unaligned:
2775   case Op_LoadPLocked:
2776   case Op_LoadP:
2777   case Op_LoadN:
2778   case Op_LoadRange:
2779   case Op_LoadS: {
2780   handle_mem:
2781 #ifdef ASSERT
2782     if( VerifyOptoOopOffsets ) {
2783       assert( n->is_Mem(), "" );
2784       MemNode *mem  = (MemNode*)n;
2785       // Check to see if address types have grounded out somehow.
2786       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2787       assert( !tp || oop_offset_is_sane(tp), "" );
2788     }
2789 #endif
2790     break;
2791   }
2792 
2793   case Op_AddP: {               // Assert sane base pointers
2794     Node *addp = n->in(AddPNode::Address);
2795     assert( !addp->is_AddP() ||
2796             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2797             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2798             "Base pointers must match" );
2799 #ifdef _LP64
2800     if ((UseCompressedOops || UseCompressedClassPointers) &&
2801         addp->Opcode() == Op_ConP &&
2802         addp == n->in(AddPNode::Base) &&
2803         n->in(AddPNode::Offset)->is_Con()) {
2804       // Use addressing with narrow klass to load with offset on x86.
2805       // On sparc loading 32-bits constant and decoding it have less
2806       // instructions (4) then load 64-bits constant (7).
2807       // Do this transformation here since IGVN will convert ConN back to ConP.
2808       const Type* t = addp->bottom_type();
2809       if (t->isa_oopptr() || t->isa_klassptr()) {
2810         Node* nn = NULL;
2811 
2812         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2813 
2814         // Look for existing ConN node of the same exact type.
2815         Node* r  = root();
2816         uint cnt = r->outcnt();
2817         for (uint i = 0; i < cnt; i++) {
2818           Node* m = r->raw_out(i);
2819           if (m!= NULL && m->Opcode() == op &&
2820               m->bottom_type()->make_ptr() == t) {
2821             nn = m;
2822             break;
2823           }
2824         }
2825         if (nn != NULL) {
2826           // Decode a narrow oop to match address
2827           // [R12 + narrow_oop_reg<<3 + offset]
2828           if (t->isa_oopptr()) {
2829             nn = new DecodeNNode(nn, t);
2830           } else {
2831             nn = new DecodeNKlassNode(nn, t);
2832           }
2833           n->set_req(AddPNode::Base, nn);
2834           n->set_req(AddPNode::Address, nn);
2835           if (addp->outcnt() == 0) {
2836             addp->disconnect_inputs(NULL, this);
2837           }
2838         }
2839       }
2840     }
2841 #endif
2842     break;
2843   }
2844 
2845   case Op_CastPP: {
2846     // Remove CastPP nodes to gain more freedom during scheduling but
2847     // keep the dependency they encode as control or precedence edges
2848     // (if control is set already) on memory operations. Some CastPP
2849     // nodes don't have a control (don't carry a dependency): skip
2850     // those.
2851     if (n->in(0) != NULL) {
2852       ResourceMark rm;
2853       Unique_Node_List wq;
2854       wq.push(n);
2855       for (uint next = 0; next < wq.size(); ++next) {
2856         Node *m = wq.at(next);
2857         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2858           Node* use = m->fast_out(i);
2859           if (use->is_Mem() || use->is_EncodeNarrowPtr() || use->is_ShenandoahBarrier()) {
2860             use->ensure_control_or_add_prec(n->in(0));
2861           } else if (use->in(0) == NULL) {
2862             switch(use->Opcode()) {
2863             case Op_AddP:
2864             case Op_DecodeN:
2865             case Op_DecodeNKlass:
2866             case Op_CheckCastPP:
2867             case Op_CastPP:
2868               wq.push(use);
2869               break;
2870             }
2871           }
2872         }
2873       }
2874     }
2875     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2876     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2877       Node* in1 = n->in(1);
2878       const Type* t = n->bottom_type();
2879       Node* new_in1 = in1->clone();
2880       new_in1->as_DecodeN()->set_type(t);
2881 
2882       if (!Matcher::narrow_oop_use_complex_address()) {
2883         //
2884         // x86, ARM and friends can handle 2 adds in addressing mode
2885         // and Matcher can fold a DecodeN node into address by using
2886         // a narrow oop directly and do implicit NULL check in address:
2887         //
2888         // [R12 + narrow_oop_reg<<3 + offset]
2889         // NullCheck narrow_oop_reg
2890         //
2891         // On other platforms (Sparc) we have to keep new DecodeN node and
2892         // use it to do implicit NULL check in address:
2893         //
2894         // decode_not_null narrow_oop_reg, base_reg
2895         // [base_reg + offset]
2896         // NullCheck base_reg
2897         //
2898         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2899         // to keep the information to which NULL check the new DecodeN node
2900         // corresponds to use it as value in implicit_null_check().
2901         //
2902         new_in1->set_req(0, n->in(0));
2903       }
2904 
2905       n->subsume_by(new_in1, this);
2906       if (in1->outcnt() == 0) {
2907         in1->disconnect_inputs(NULL, this);
2908       }
2909     } else {
2910       n->subsume_by(n->in(1), this);
2911       if (n->outcnt() == 0) {
2912         n->disconnect_inputs(NULL, this);
2913       }
2914     }
2915     break;
2916   }
2917 #ifdef _LP64
2918   case Op_CmpP:
2919     // Do this transformation here to preserve CmpPNode::sub() and
2920     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2921     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2922       Node* in1 = n->in(1);
2923       Node* in2 = n->in(2);
2924       if (!in1->is_DecodeNarrowPtr()) {
2925         in2 = in1;
2926         in1 = n->in(2);
2927       }
2928       assert(in1->is_DecodeNarrowPtr(), "sanity");
2929 
2930       Node* new_in2 = NULL;
2931       if (in2->is_DecodeNarrowPtr()) {
2932         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2933         new_in2 = in2->in(1);
2934       } else if (in2->Opcode() == Op_ConP) {
2935         const Type* t = in2->bottom_type();
2936         if (t == TypePtr::NULL_PTR) {
2937           assert(in1->is_DecodeN(), "compare klass to null?");
2938           // Don't convert CmpP null check into CmpN if compressed
2939           // oops implicit null check is not generated.
2940           // This will allow to generate normal oop implicit null check.
2941           if (Matcher::gen_narrow_oop_implicit_null_checks())
2942             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
2943           //
2944           // This transformation together with CastPP transformation above
2945           // will generated code for implicit NULL checks for compressed oops.
2946           //
2947           // The original code after Optimize()
2948           //
2949           //    LoadN memory, narrow_oop_reg
2950           //    decode narrow_oop_reg, base_reg
2951           //    CmpP base_reg, NULL
2952           //    CastPP base_reg // NotNull
2953           //    Load [base_reg + offset], val_reg
2954           //
2955           // after these transformations will be
2956           //
2957           //    LoadN memory, narrow_oop_reg
2958           //    CmpN narrow_oop_reg, NULL
2959           //    decode_not_null narrow_oop_reg, base_reg
2960           //    Load [base_reg + offset], val_reg
2961           //
2962           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2963           // since narrow oops can be used in debug info now (see the code in
2964           // final_graph_reshaping_walk()).
2965           //
2966           // At the end the code will be matched to
2967           // on x86:
2968           //
2969           //    Load_narrow_oop memory, narrow_oop_reg
2970           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2971           //    NullCheck narrow_oop_reg
2972           //
2973           // and on sparc:
2974           //
2975           //    Load_narrow_oop memory, narrow_oop_reg
2976           //    decode_not_null narrow_oop_reg, base_reg
2977           //    Load [base_reg + offset], val_reg
2978           //    NullCheck base_reg
2979           //
2980         } else if (t->isa_oopptr()) {
2981           new_in2 = ConNode::make(t->make_narrowoop());
2982         } else if (t->isa_klassptr()) {
2983           new_in2 = ConNode::make(t->make_narrowklass());
2984         }
2985       }
2986       if (new_in2 != NULL) {
2987         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
2988         n->subsume_by(cmpN, this);
2989         if (in1->outcnt() == 0) {
2990           in1->disconnect_inputs(NULL, this);
2991         }
2992         if (in2->outcnt() == 0) {
2993           in2->disconnect_inputs(NULL, this);
2994         }
2995       }
2996     }
2997     break;
2998 
2999   case Op_DecodeN:
3000   case Op_DecodeNKlass:
3001     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3002     // DecodeN could be pinned when it can't be fold into
3003     // an address expression, see the code for Op_CastPP above.
3004     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3005     break;
3006 
3007   case Op_EncodeP:
3008   case Op_EncodePKlass: {
3009     Node* in1 = n->in(1);
3010     if (in1->is_DecodeNarrowPtr()) {
3011       n->subsume_by(in1->in(1), this);
3012     } else if (in1->Opcode() == Op_ConP) {
3013       const Type* t = in1->bottom_type();
3014       if (t == TypePtr::NULL_PTR) {
3015         assert(t->isa_oopptr(), "null klass?");
3016         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3017       } else if (t->isa_oopptr()) {
3018         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3019       } else if (t->isa_klassptr()) {
3020         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3021       }
3022     }
3023     if (in1->outcnt() == 0) {
3024       in1->disconnect_inputs(NULL, this);
3025     }
3026     break;
3027   }
3028 
3029   case Op_Proj: {
3030     if (OptimizeStringConcat) {
3031       ProjNode* p = n->as_Proj();
3032       if (p->_is_io_use) {
3033         // Separate projections were used for the exception path which
3034         // are normally removed by a late inline.  If it wasn't inlined
3035         // then they will hang around and should just be replaced with
3036         // the original one.
3037         Node* proj = NULL;
3038         // Replace with just one
3039         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3040           Node *use = i.get();
3041           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3042             proj = use;
3043             break;
3044           }
3045         }
3046         assert(proj != NULL, "must be found");
3047         p->subsume_by(proj, this);
3048       }
3049     }
3050     break;
3051   }
3052 
3053   case Op_Phi:
3054     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3055       // The EncodeP optimization may create Phi with the same edges
3056       // for all paths. It is not handled well by Register Allocator.
3057       Node* unique_in = n->in(1);
3058       assert(unique_in != NULL, "");
3059       uint cnt = n->req();
3060       for (uint i = 2; i < cnt; i++) {
3061         Node* m = n->in(i);
3062         assert(m != NULL, "");
3063         if (unique_in != m)
3064           unique_in = NULL;
3065       }
3066       if (unique_in != NULL) {
3067         n->subsume_by(unique_in, this);
3068       }
3069     }
3070     break;
3071 
3072 #endif
3073 
3074   case Op_ModI:
3075     if (UseDivMod) {
3076       // Check if a%b and a/b both exist
3077       Node* d = n->find_similar(Op_DivI);
3078       if (d) {
3079         // Replace them with a fused divmod if supported
3080         if (Matcher::has_match_rule(Op_DivModI)) {
3081           DivModINode* divmod = DivModINode::make(n);
3082           d->subsume_by(divmod->div_proj(), this);
3083           n->subsume_by(divmod->mod_proj(), this);
3084         } else {
3085           // replace a%b with a-((a/b)*b)
3086           Node* mult = new MulINode(d, d->in(2));
3087           Node* sub  = new SubINode(d->in(1), mult);
3088           n->subsume_by(sub, this);
3089         }
3090       }
3091     }
3092     break;
3093 
3094   case Op_ModL:
3095     if (UseDivMod) {
3096       // Check if a%b and a/b both exist
3097       Node* d = n->find_similar(Op_DivL);
3098       if (d) {
3099         // Replace them with a fused divmod if supported
3100         if (Matcher::has_match_rule(Op_DivModL)) {
3101           DivModLNode* divmod = DivModLNode::make(n);
3102           d->subsume_by(divmod->div_proj(), this);
3103           n->subsume_by(divmod->mod_proj(), this);
3104         } else {
3105           // replace a%b with a-((a/b)*b)
3106           Node* mult = new MulLNode(d, d->in(2));
3107           Node* sub  = new SubLNode(d->in(1), mult);
3108           n->subsume_by(sub, this);
3109         }
3110       }
3111     }
3112     break;
3113 
3114   case Op_LoadVector:
3115   case Op_StoreVector:
3116     break;
3117 
3118   case Op_AddReductionVI:
3119   case Op_AddReductionVL:
3120   case Op_AddReductionVF:
3121   case Op_AddReductionVD:
3122   case Op_MulReductionVI:
3123   case Op_MulReductionVL:
3124   case Op_MulReductionVF:
3125   case Op_MulReductionVD:
3126     break;
3127 
3128   case Op_PackB:
3129   case Op_PackS:
3130   case Op_PackI:
3131   case Op_PackF:
3132   case Op_PackL:
3133   case Op_PackD:
3134     if (n->req()-1 > 2) {
3135       // Replace many operand PackNodes with a binary tree for matching
3136       PackNode* p = (PackNode*) n;
3137       Node* btp = p->binary_tree_pack(1, n->req());
3138       n->subsume_by(btp, this);
3139     }
3140     break;
3141   case Op_Loop:
3142   case Op_CountedLoop:
3143     if (n->as_Loop()->is_inner_loop()) {
3144       frc.inc_inner_loop_count();
3145     }
3146     break;
3147   case Op_LShiftI:
3148   case Op_RShiftI:
3149   case Op_URShiftI:
3150   case Op_LShiftL:
3151   case Op_RShiftL:
3152   case Op_URShiftL:
3153     if (Matcher::need_masked_shift_count) {
3154       // The cpu's shift instructions don't restrict the count to the
3155       // lower 5/6 bits. We need to do the masking ourselves.
3156       Node* in2 = n->in(2);
3157       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3158       const TypeInt* t = in2->find_int_type();
3159       if (t != NULL && t->is_con()) {
3160         juint shift = t->get_con();
3161         if (shift > mask) { // Unsigned cmp
3162           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3163         }
3164       } else {
3165         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3166           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3167           n->set_req(2, shift);
3168         }
3169       }
3170       if (in2->outcnt() == 0) { // Remove dead node
3171         in2->disconnect_inputs(NULL, this);
3172       }
3173     }
3174     break;
3175   case Op_MemBarStoreStore:
3176   case Op_MemBarRelease:
3177     // Break the link with AllocateNode: it is no longer useful and
3178     // confuses register allocation.
3179     if (n->req() > MemBarNode::Precedent) {
3180       n->set_req(MemBarNode::Precedent, top());
3181     }
3182     break;
3183   case Op_ShenandoahReadBarrier:
3184     break;
3185   case Op_ShenandoahWriteBarrier:
3186     n->set_req(ShenandoahBarrierNode::Memory, immutable_memory());
3187     break;
3188   default:
3189     assert( !n->is_Call(), "" );
3190     assert( !n->is_Mem(), "" );
3191     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3192     break;
3193   }
3194 
3195   // Collect CFG split points
3196   if (n->is_MultiBranch())
3197     frc._tests.push(n);
3198 }
3199 
3200 //------------------------------final_graph_reshaping_walk---------------------
3201 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3202 // requires that the walk visits a node's inputs before visiting the node.
3203 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3204   ResourceArea *area = Thread::current()->resource_area();
3205   Unique_Node_List sfpt(area);
3206 
3207   frc._visited.set(root->_idx); // first, mark node as visited
3208   uint cnt = root->req();
3209   Node *n = root;
3210   uint  i = 0;
3211   while (true) {
3212     if (i < cnt) {
3213       // Place all non-visited non-null inputs onto stack
3214       Node* m = n->in(i);
3215       ++i;
3216       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3217         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3218           // compute worst case interpreter size in case of a deoptimization
3219           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3220 
3221           sfpt.push(m);
3222         }
3223         cnt = m->req();
3224         nstack.push(n, i); // put on stack parent and next input's index
3225         n = m;
3226         i = 0;
3227       }
3228     } else {
3229       // Now do post-visit work
3230       final_graph_reshaping_impl( n, frc );
3231       if (nstack.is_empty())
3232         break;             // finished
3233       n = nstack.node();   // Get node from stack
3234       cnt = n->req();
3235       i = nstack.index();
3236       nstack.pop();        // Shift to the next node on stack
3237     }
3238   }
3239 
3240   // Skip next transformation if compressed oops are not used.
3241   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3242       (!UseCompressedOops && !UseCompressedClassPointers))
3243     return;
3244 
3245   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3246   // It could be done for an uncommon traps or any safepoints/calls
3247   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3248   while (sfpt.size() > 0) {
3249     n = sfpt.pop();
3250     JVMState *jvms = n->as_SafePoint()->jvms();
3251     assert(jvms != NULL, "sanity");
3252     int start = jvms->debug_start();
3253     int end   = n->req();
3254     bool is_uncommon = (n->is_CallStaticJava() &&
3255                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3256     for (int j = start; j < end; j++) {
3257       Node* in = n->in(j);
3258       if (in->is_DecodeNarrowPtr()) {
3259         bool safe_to_skip = true;
3260         if (!is_uncommon ) {
3261           // Is it safe to skip?
3262           for (uint i = 0; i < in->outcnt(); i++) {
3263             Node* u = in->raw_out(i);
3264             if (!u->is_SafePoint() ||
3265                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3266               safe_to_skip = false;
3267             }
3268           }
3269         }
3270         if (safe_to_skip) {
3271           n->set_req(j, in->in(1));
3272         }
3273         if (in->outcnt() == 0) {
3274           in->disconnect_inputs(NULL, this);
3275         }
3276       }
3277     }
3278   }
3279 }
3280 
3281 //------------------------------final_graph_reshaping--------------------------
3282 // Final Graph Reshaping.
3283 //
3284 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3285 //     and not commoned up and forced early.  Must come after regular
3286 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3287 //     inputs to Loop Phis; these will be split by the allocator anyways.
3288 //     Remove Opaque nodes.
3289 // (2) Move last-uses by commutative operations to the left input to encourage
3290 //     Intel update-in-place two-address operations and better register usage
3291 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3292 //     calls canonicalizing them back.
3293 // (3) Count the number of double-precision FP ops, single-precision FP ops
3294 //     and call sites.  On Intel, we can get correct rounding either by
3295 //     forcing singles to memory (requires extra stores and loads after each
3296 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3297 //     clearing the mode bit around call sites).  The mode bit is only used
3298 //     if the relative frequency of single FP ops to calls is low enough.
3299 //     This is a key transform for SPEC mpeg_audio.
3300 // (4) Detect infinite loops; blobs of code reachable from above but not
3301 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3302 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3303 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3304 //     Detection is by looking for IfNodes where only 1 projection is
3305 //     reachable from below or CatchNodes missing some targets.
3306 // (5) Assert for insane oop offsets in debug mode.
3307 
3308 bool Compile::final_graph_reshaping() {
3309   // an infinite loop may have been eliminated by the optimizer,
3310   // in which case the graph will be empty.
3311   if (root()->req() == 1) {
3312     record_method_not_compilable("trivial infinite loop");
3313     return true;
3314   }
3315 
3316   // Expensive nodes have their control input set to prevent the GVN
3317   // from freely commoning them. There's no GVN beyond this point so
3318   // no need to keep the control input. We want the expensive nodes to
3319   // be freely moved to the least frequent code path by gcm.
3320   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3321   for (int i = 0; i < expensive_count(); i++) {
3322     _expensive_nodes->at(i)->set_req(0, NULL);
3323   }
3324 
3325   Final_Reshape_Counts frc;
3326 
3327   // Visit everybody reachable!
3328   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3329   Node_Stack nstack(live_nodes() >> 1);
3330   final_graph_reshaping_walk(nstack, root(), frc);
3331 
3332   // Check for unreachable (from below) code (i.e., infinite loops).
3333   for( uint i = 0; i < frc._tests.size(); i++ ) {
3334     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3335     // Get number of CFG targets.
3336     // Note that PCTables include exception targets after calls.
3337     uint required_outcnt = n->required_outcnt();
3338     if (n->outcnt() != required_outcnt) {
3339       // Check for a few special cases.  Rethrow Nodes never take the
3340       // 'fall-thru' path, so expected kids is 1 less.
3341       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3342         if (n->in(0)->in(0)->is_Call()) {
3343           CallNode *call = n->in(0)->in(0)->as_Call();
3344           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3345             required_outcnt--;      // Rethrow always has 1 less kid
3346           } else if (call->req() > TypeFunc::Parms &&
3347                      call->is_CallDynamicJava()) {
3348             // Check for null receiver. In such case, the optimizer has
3349             // detected that the virtual call will always result in a null
3350             // pointer exception. The fall-through projection of this CatchNode
3351             // will not be populated.
3352             Node *arg0 = call->in(TypeFunc::Parms);
3353             if (arg0->is_Type() &&
3354                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3355               required_outcnt--;
3356             }
3357           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3358                      call->req() > TypeFunc::Parms+1 &&
3359                      call->is_CallStaticJava()) {
3360             // Check for negative array length. In such case, the optimizer has
3361             // detected that the allocation attempt will always result in an
3362             // exception. There is no fall-through projection of this CatchNode .
3363             Node *arg1 = call->in(TypeFunc::Parms+1);
3364             if (arg1->is_Type() &&
3365                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3366               required_outcnt--;
3367             }
3368           }
3369         }
3370       }
3371       // Recheck with a better notion of 'required_outcnt'
3372       if (n->outcnt() != required_outcnt) {
3373         record_method_not_compilable("malformed control flow");
3374         return true;            // Not all targets reachable!
3375       }
3376     }
3377     // Check that I actually visited all kids.  Unreached kids
3378     // must be infinite loops.
3379     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3380       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3381         record_method_not_compilable("infinite loop");
3382         return true;            // Found unvisited kid; must be unreach
3383       }
3384   }
3385 
3386   // If original bytecodes contained a mixture of floats and doubles
3387   // check if the optimizer has made it homogenous, item (3).
3388   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3389       frc.get_float_count() > 32 &&
3390       frc.get_double_count() == 0 &&
3391       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3392     set_24_bit_selection_and_mode( false,  true );
3393   }
3394 
3395   set_java_calls(frc.get_java_call_count());
3396   set_inner_loops(frc.get_inner_loop_count());
3397 
3398   // No infinite loops, no reason to bail out.
3399   return false;
3400 }
3401 
3402 //-----------------------------too_many_traps----------------------------------
3403 // Report if there are too many traps at the current method and bci.
3404 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3405 bool Compile::too_many_traps(ciMethod* method,
3406                              int bci,
3407                              Deoptimization::DeoptReason reason) {
3408   ciMethodData* md = method->method_data();
3409   if (md->is_empty()) {
3410     // Assume the trap has not occurred, or that it occurred only
3411     // because of a transient condition during start-up in the interpreter.
3412     return false;
3413   }
3414   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3415   if (md->has_trap_at(bci, m, reason) != 0) {
3416     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3417     // Also, if there are multiple reasons, or if there is no per-BCI record,
3418     // assume the worst.
3419     if (log())
3420       log()->elem("observe trap='%s' count='%d'",
3421                   Deoptimization::trap_reason_name(reason),
3422                   md->trap_count(reason));
3423     return true;
3424   } else {
3425     // Ignore method/bci and see if there have been too many globally.
3426     return too_many_traps(reason, md);
3427   }
3428 }
3429 
3430 // Less-accurate variant which does not require a method and bci.
3431 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3432                              ciMethodData* logmd) {
3433   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3434     // Too many traps globally.
3435     // Note that we use cumulative trap_count, not just md->trap_count.
3436     if (log()) {
3437       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3438       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3439                   Deoptimization::trap_reason_name(reason),
3440                   mcount, trap_count(reason));
3441     }
3442     return true;
3443   } else {
3444     // The coast is clear.
3445     return false;
3446   }
3447 }
3448 
3449 //--------------------------too_many_recompiles--------------------------------
3450 // Report if there are too many recompiles at the current method and bci.
3451 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3452 // Is not eager to return true, since this will cause the compiler to use
3453 // Action_none for a trap point, to avoid too many recompilations.
3454 bool Compile::too_many_recompiles(ciMethod* method,
3455                                   int bci,
3456                                   Deoptimization::DeoptReason reason) {
3457   ciMethodData* md = method->method_data();
3458   if (md->is_empty()) {
3459     // Assume the trap has not occurred, or that it occurred only
3460     // because of a transient condition during start-up in the interpreter.
3461     return false;
3462   }
3463   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3464   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3465   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3466   Deoptimization::DeoptReason per_bc_reason
3467     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3468   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3469   if ((per_bc_reason == Deoptimization::Reason_none
3470        || md->has_trap_at(bci, m, reason) != 0)
3471       // The trap frequency measure we care about is the recompile count:
3472       && md->trap_recompiled_at(bci, m)
3473       && md->overflow_recompile_count() >= bc_cutoff) {
3474     // Do not emit a trap here if it has already caused recompilations.
3475     // Also, if there are multiple reasons, or if there is no per-BCI record,
3476     // assume the worst.
3477     if (log())
3478       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3479                   Deoptimization::trap_reason_name(reason),
3480                   md->trap_count(reason),
3481                   md->overflow_recompile_count());
3482     return true;
3483   } else if (trap_count(reason) != 0
3484              && decompile_count() >= m_cutoff) {
3485     // Too many recompiles globally, and we have seen this sort of trap.
3486     // Use cumulative decompile_count, not just md->decompile_count.
3487     if (log())
3488       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3489                   Deoptimization::trap_reason_name(reason),
3490                   md->trap_count(reason), trap_count(reason),
3491                   md->decompile_count(), decompile_count());
3492     return true;
3493   } else {
3494     // The coast is clear.
3495     return false;
3496   }
3497 }
3498 
3499 // Compute when not to trap. Used by matching trap based nodes and
3500 // NullCheck optimization.
3501 void Compile::set_allowed_deopt_reasons() {
3502   _allowed_reasons = 0;
3503   if (is_method_compilation()) {
3504     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3505       assert(rs < BitsPerInt, "recode bit map");
3506       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3507         _allowed_reasons |= nth_bit(rs);
3508       }
3509     }
3510   }
3511 }
3512 
3513 #ifndef PRODUCT
3514 //------------------------------verify_graph_edges---------------------------
3515 // Walk the Graph and verify that there is a one-to-one correspondence
3516 // between Use-Def edges and Def-Use edges in the graph.
3517 void Compile::verify_graph_edges(bool no_dead_code) {
3518   if (VerifyGraphEdges) {
3519     ResourceArea *area = Thread::current()->resource_area();
3520     Unique_Node_List visited(area);
3521     // Call recursive graph walk to check edges
3522     _root->verify_edges(visited);
3523     if (no_dead_code) {
3524       // Now make sure that no visited node is used by an unvisited node.
3525       bool dead_nodes = false;
3526       Unique_Node_List checked(area);
3527       while (visited.size() > 0) {
3528         Node* n = visited.pop();
3529         checked.push(n);
3530         for (uint i = 0; i < n->outcnt(); i++) {
3531           Node* use = n->raw_out(i);
3532           if (checked.member(use))  continue;  // already checked
3533           if (visited.member(use))  continue;  // already in the graph
3534           if (use->is_Con())        continue;  // a dead ConNode is OK
3535           // At this point, we have found a dead node which is DU-reachable.
3536           if (!dead_nodes) {
3537             tty->print_cr("*** Dead nodes reachable via DU edges:");
3538             dead_nodes = true;
3539           }
3540           use->dump(2);
3541           tty->print_cr("---");
3542           checked.push(use);  // No repeats; pretend it is now checked.
3543         }
3544       }
3545       assert(!dead_nodes, "using nodes must be reachable from root");
3546     }
3547   }
3548 }
3549 
3550 // Verify GC barriers consistency
3551 // Currently supported:
3552 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3553 void Compile::verify_barriers() {
3554   if (UseG1GC || UseShenandoahGC) {
3555     // Verify G1 pre-barriers
3556     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3557 
3558     ResourceArea *area = Thread::current()->resource_area();
3559     Unique_Node_List visited(area);
3560     Node_List worklist(area);
3561     // We're going to walk control flow backwards starting from the Root
3562     worklist.push(_root);
3563     while (worklist.size() > 0) {
3564       Node* x = worklist.pop();
3565       if (x == NULL || x == top()) continue;
3566       if (visited.member(x)) {
3567         continue;
3568       } else {
3569         visited.push(x);
3570       }
3571 
3572       if (x->is_Region()) {
3573         for (uint i = 1; i < x->req(); i++) {
3574           worklist.push(x->in(i));
3575         }
3576       } else {
3577         worklist.push(x->in(0));
3578         // We are looking for the pattern:
3579         //                            /->ThreadLocal
3580         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3581         //              \->ConI(0)
3582         // We want to verify that the If and the LoadB have the same control
3583         // See GraphKit::g1_write_barrier_pre()
3584         if (x->is_If()) {
3585           IfNode *iff = x->as_If();
3586           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3587             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3588             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3589                 && cmp->in(1)->is_Load()) {
3590               LoadNode* load = cmp->in(1)->as_Load();
3591               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3592                   && load->in(2)->in(3)->is_Con()
3593                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3594 
3595                 Node* if_ctrl = iff->in(0);
3596                 Node* load_ctrl = load->in(0);
3597 
3598                 if (if_ctrl != load_ctrl) {
3599                   // Skip possible CProj->NeverBranch in infinite loops
3600                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3601                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3602                     if_ctrl = if_ctrl->in(0)->in(0);
3603                   }
3604                 }
3605                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3606               }
3607             }
3608           }
3609         }
3610       }
3611     }
3612   }
3613 }
3614 
3615 #endif
3616 
3617 // The Compile object keeps track of failure reasons separately from the ciEnv.
3618 // This is required because there is not quite a 1-1 relation between the
3619 // ciEnv and its compilation task and the Compile object.  Note that one
3620 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3621 // to backtrack and retry without subsuming loads.  Other than this backtracking
3622 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3623 // by the logic in C2Compiler.
3624 void Compile::record_failure(const char* reason) {
3625   if (log() != NULL) {
3626     log()->elem("failure reason='%s' phase='compile'", reason);
3627   }
3628   if (_failure_reason == NULL) {
3629     // Record the first failure reason.
3630     _failure_reason = reason;
3631   }
3632 
3633   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3634     C->print_method(PHASE_FAILURE);
3635   }
3636   _root = NULL;  // flush the graph, too
3637 }
3638 
3639 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3640   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3641     _phase_name(name), _dolog(CITimeVerbose)
3642 {
3643   if (_dolog) {
3644     C = Compile::current();
3645     _log = C->log();
3646   } else {
3647     C = NULL;
3648     _log = NULL;
3649   }
3650   if (_log != NULL) {
3651     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3652     _log->stamp();
3653     _log->end_head();
3654   }
3655 }
3656 
3657 Compile::TracePhase::~TracePhase() {
3658 
3659   C = Compile::current();
3660   if (_dolog) {
3661     _log = C->log();
3662   } else {
3663     _log = NULL;
3664   }
3665 
3666 #ifdef ASSERT
3667   if (PrintIdealNodeCount) {
3668     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3669                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3670   }
3671 
3672   if (VerifyIdealNodeCount) {
3673     Compile::current()->print_missing_nodes();
3674   }
3675 #endif
3676 
3677   if (_log != NULL) {
3678     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3679   }
3680 }
3681 
3682 //=============================================================================
3683 // Two Constant's are equal when the type and the value are equal.
3684 bool Compile::Constant::operator==(const Constant& other) {
3685   if (type()          != other.type()         )  return false;
3686   if (can_be_reused() != other.can_be_reused())  return false;
3687   // For floating point values we compare the bit pattern.
3688   switch (type()) {
3689   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3690   case T_LONG:
3691   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3692   case T_OBJECT:
3693   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3694   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3695   case T_METADATA: return (_v._metadata == other._v._metadata);
3696   default: ShouldNotReachHere();
3697   }
3698   return false;
3699 }
3700 
3701 static int type_to_size_in_bytes(BasicType t) {
3702   switch (t) {
3703   case T_LONG:    return sizeof(jlong  );
3704   case T_FLOAT:   return sizeof(jfloat );
3705   case T_DOUBLE:  return sizeof(jdouble);
3706   case T_METADATA: return sizeof(Metadata*);
3707     // We use T_VOID as marker for jump-table entries (labels) which
3708     // need an internal word relocation.
3709   case T_VOID:
3710   case T_ADDRESS:
3711   case T_OBJECT:  return sizeof(jobject);
3712   }
3713 
3714   ShouldNotReachHere();
3715   return -1;
3716 }
3717 
3718 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3719   // sort descending
3720   if (a->freq() > b->freq())  return -1;
3721   if (a->freq() < b->freq())  return  1;
3722   return 0;
3723 }
3724 
3725 void Compile::ConstantTable::calculate_offsets_and_size() {
3726   // First, sort the array by frequencies.
3727   _constants.sort(qsort_comparator);
3728 
3729 #ifdef ASSERT
3730   // Make sure all jump-table entries were sorted to the end of the
3731   // array (they have a negative frequency).
3732   bool found_void = false;
3733   for (int i = 0; i < _constants.length(); i++) {
3734     Constant con = _constants.at(i);
3735     if (con.type() == T_VOID)
3736       found_void = true;  // jump-tables
3737     else
3738       assert(!found_void, "wrong sorting");
3739   }
3740 #endif
3741 
3742   int offset = 0;
3743   for (int i = 0; i < _constants.length(); i++) {
3744     Constant* con = _constants.adr_at(i);
3745 
3746     // Align offset for type.
3747     int typesize = type_to_size_in_bytes(con->type());
3748     offset = align_size_up(offset, typesize);
3749     con->set_offset(offset);   // set constant's offset
3750 
3751     if (con->type() == T_VOID) {
3752       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3753       offset = offset + typesize * n->outcnt();  // expand jump-table
3754     } else {
3755       offset = offset + typesize;
3756     }
3757   }
3758 
3759   // Align size up to the next section start (which is insts; see
3760   // CodeBuffer::align_at_start).
3761   assert(_size == -1, "already set?");
3762   _size = align_size_up(offset, CodeEntryAlignment);
3763 }
3764 
3765 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3766   MacroAssembler _masm(&cb);
3767   for (int i = 0; i < _constants.length(); i++) {
3768     Constant con = _constants.at(i);
3769     address constant_addr;
3770     switch (con.type()) {
3771     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3772     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3773     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3774     case T_OBJECT: {
3775       jobject obj = con.get_jobject();
3776       int oop_index = _masm.oop_recorder()->find_index(obj);
3777       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3778       break;
3779     }
3780     case T_ADDRESS: {
3781       address addr = (address) con.get_jobject();
3782       constant_addr = _masm.address_constant(addr);
3783       break;
3784     }
3785     // We use T_VOID as marker for jump-table entries (labels) which
3786     // need an internal word relocation.
3787     case T_VOID: {
3788       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3789       // Fill the jump-table with a dummy word.  The real value is
3790       // filled in later in fill_jump_table.
3791       address dummy = (address) n;
3792       constant_addr = _masm.address_constant(dummy);
3793       // Expand jump-table
3794       for (uint i = 1; i < n->outcnt(); i++) {
3795         address temp_addr = _masm.address_constant(dummy + i);
3796         assert(temp_addr, "consts section too small");
3797       }
3798       break;
3799     }
3800     case T_METADATA: {
3801       Metadata* obj = con.get_metadata();
3802       int metadata_index = _masm.oop_recorder()->find_index(obj);
3803       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3804       break;
3805     }
3806     default: ShouldNotReachHere();
3807     }
3808     assert(constant_addr, "consts section too small");
3809     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3810             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3811   }
3812 }
3813 
3814 int Compile::ConstantTable::find_offset(Constant& con) const {
3815   int idx = _constants.find(con);
3816   assert(idx != -1, "constant must be in constant table");
3817   int offset = _constants.at(idx).offset();
3818   assert(offset != -1, "constant table not emitted yet?");
3819   return offset;
3820 }
3821 
3822 void Compile::ConstantTable::add(Constant& con) {
3823   if (con.can_be_reused()) {
3824     int idx = _constants.find(con);
3825     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3826       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3827       return;
3828     }
3829   }
3830   (void) _constants.append(con);
3831 }
3832 
3833 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3834   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3835   Constant con(type, value, b->_freq);
3836   add(con);
3837   return con;
3838 }
3839 
3840 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3841   Constant con(metadata);
3842   add(con);
3843   return con;
3844 }
3845 
3846 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3847   jvalue value;
3848   BasicType type = oper->type()->basic_type();
3849   switch (type) {
3850   case T_LONG:    value.j = oper->constantL(); break;
3851   case T_FLOAT:   value.f = oper->constantF(); break;
3852   case T_DOUBLE:  value.d = oper->constantD(); break;
3853   case T_OBJECT:
3854   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3855   case T_METADATA: return add((Metadata*)oper->constant()); break;
3856   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3857   }
3858   return add(n, type, value);
3859 }
3860 
3861 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3862   jvalue value;
3863   // We can use the node pointer here to identify the right jump-table
3864   // as this method is called from Compile::Fill_buffer right before
3865   // the MachNodes are emitted and the jump-table is filled (means the
3866   // MachNode pointers do not change anymore).
3867   value.l = (jobject) n;
3868   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3869   add(con);
3870   return con;
3871 }
3872 
3873 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3874   // If called from Compile::scratch_emit_size do nothing.
3875   if (Compile::current()->in_scratch_emit_size())  return;
3876 
3877   assert(labels.is_nonempty(), "must be");
3878   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3879 
3880   // Since MachConstantNode::constant_offset() also contains
3881   // table_base_offset() we need to subtract the table_base_offset()
3882   // to get the plain offset into the constant table.
3883   int offset = n->constant_offset() - table_base_offset();
3884 
3885   MacroAssembler _masm(&cb);
3886   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3887 
3888   for (uint i = 0; i < n->outcnt(); i++) {
3889     address* constant_addr = &jump_table_base[i];
3890     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3891     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3892     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3893   }
3894 }
3895 
3896 //----------------------------static_subtype_check-----------------------------
3897 // Shortcut important common cases when superklass is exact:
3898 // (0) superklass is java.lang.Object (can occur in reflective code)
3899 // (1) subklass is already limited to a subtype of superklass => always ok
3900 // (2) subklass does not overlap with superklass => always fail
3901 // (3) superklass has NO subtypes and we can check with a simple compare.
3902 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3903   if (StressReflectiveCode) {
3904     return SSC_full_test;       // Let caller generate the general case.
3905   }
3906 
3907   if (superk == env()->Object_klass()) {
3908     return SSC_always_true;     // (0) this test cannot fail
3909   }
3910 
3911   ciType* superelem = superk;
3912   if (superelem->is_array_klass())
3913     superelem = superelem->as_array_klass()->base_element_type();
3914 
3915   if (!subk->is_interface()) {  // cannot trust static interface types yet
3916     if (subk->is_subtype_of(superk)) {
3917       return SSC_always_true;   // (1) false path dead; no dynamic test needed
3918     }
3919     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3920         !superk->is_subtype_of(subk)) {
3921       return SSC_always_false;
3922     }
3923   }
3924 
3925   // If casting to an instance klass, it must have no subtypes
3926   if (superk->is_interface()) {
3927     // Cannot trust interfaces yet.
3928     // %%% S.B. superk->nof_implementors() == 1
3929   } else if (superelem->is_instance_klass()) {
3930     ciInstanceKlass* ik = superelem->as_instance_klass();
3931     if (!ik->has_subklass() && !ik->is_interface()) {
3932       if (!ik->is_final()) {
3933         // Add a dependency if there is a chance of a later subclass.
3934         dependencies()->assert_leaf_type(ik);
3935       }
3936       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
3937     }
3938   } else {
3939     // A primitive array type has no subtypes.
3940     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
3941   }
3942 
3943   return SSC_full_test;
3944 }
3945 
3946 Node* Compile::conv_I2X_index(PhaseGVN *phase, Node* idx, const TypeInt* sizetype) {
3947 #ifdef _LP64
3948   // The scaled index operand to AddP must be a clean 64-bit value.
3949   // Java allows a 32-bit int to be incremented to a negative
3950   // value, which appears in a 64-bit register as a large
3951   // positive number.  Using that large positive number as an
3952   // operand in pointer arithmetic has bad consequences.
3953   // On the other hand, 32-bit overflow is rare, and the possibility
3954   // can often be excluded, if we annotate the ConvI2L node with
3955   // a type assertion that its value is known to be a small positive
3956   // number.  (The prior range check has ensured this.)
3957   // This assertion is used by ConvI2LNode::Ideal.
3958   int index_max = max_jint - 1;  // array size is max_jint, index is one less
3959   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
3960   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
3961   idx = phase->transform(new ConvI2LNode(idx, lidxtype));
3962 #endif
3963   return idx;
3964 }
3965 
3966 // The message about the current inlining is accumulated in
3967 // _print_inlining_stream and transfered into the _print_inlining_list
3968 // once we know whether inlining succeeds or not. For regular
3969 // inlining, messages are appended to the buffer pointed by
3970 // _print_inlining_idx in the _print_inlining_list. For late inlining,
3971 // a new buffer is added after _print_inlining_idx in the list. This
3972 // way we can update the inlining message for late inlining call site
3973 // when the inlining is attempted again.
3974 void Compile::print_inlining_init() {
3975   if (print_inlining() || print_intrinsics()) {
3976     _print_inlining_stream = new stringStream();
3977     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3978   }
3979 }
3980 
3981 void Compile::print_inlining_reinit() {
3982   if (print_inlining() || print_intrinsics()) {
3983     // Re allocate buffer when we change ResourceMark
3984     _print_inlining_stream = new stringStream();
3985   }
3986 }
3987 
3988 void Compile::print_inlining_reset() {
3989   _print_inlining_stream->reset();
3990 }
3991 
3992 void Compile::print_inlining_commit() {
3993   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3994   // Transfer the message from _print_inlining_stream to the current
3995   // _print_inlining_list buffer and clear _print_inlining_stream.
3996   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3997   print_inlining_reset();
3998 }
3999 
4000 void Compile::print_inlining_push() {
4001   // Add new buffer to the _print_inlining_list at current position
4002   _print_inlining_idx++;
4003   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4004 }
4005 
4006 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4007   return _print_inlining_list->at(_print_inlining_idx);
4008 }
4009 
4010 void Compile::print_inlining_update(CallGenerator* cg) {
4011   if (print_inlining() || print_intrinsics()) {
4012     if (!cg->is_late_inline()) {
4013       if (print_inlining_current().cg() != NULL) {
4014         print_inlining_push();
4015       }
4016       print_inlining_commit();
4017     } else {
4018       if (print_inlining_current().cg() != cg &&
4019           (print_inlining_current().cg() != NULL ||
4020            print_inlining_current().ss()->size() != 0)) {
4021         print_inlining_push();
4022       }
4023       print_inlining_commit();
4024       print_inlining_current().set_cg(cg);
4025     }
4026   }
4027 }
4028 
4029 void Compile::print_inlining_move_to(CallGenerator* cg) {
4030   // We resume inlining at a late inlining call site. Locate the
4031   // corresponding inlining buffer so that we can update it.
4032   if (print_inlining()) {
4033     for (int i = 0; i < _print_inlining_list->length(); i++) {
4034       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4035         _print_inlining_idx = i;
4036         return;
4037       }
4038     }
4039     ShouldNotReachHere();
4040   }
4041 }
4042 
4043 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4044   if (print_inlining()) {
4045     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4046     assert(print_inlining_current().cg() == cg, "wrong entry");
4047     // replace message with new message
4048     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4049     print_inlining_commit();
4050     print_inlining_current().set_cg(cg);
4051   }
4052 }
4053 
4054 void Compile::print_inlining_assert_ready() {
4055   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4056 }
4057 
4058 void Compile::process_print_inlining() {
4059   bool do_print_inlining = print_inlining() || print_intrinsics();
4060   if (do_print_inlining || log() != NULL) {
4061     // Print inlining message for candidates that we couldn't inline
4062     // for lack of space
4063     for (int i = 0; i < _late_inlines.length(); i++) {
4064       CallGenerator* cg = _late_inlines.at(i);
4065       if (!cg->is_mh_late_inline()) {
4066         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4067         if (do_print_inlining) {
4068           cg->print_inlining_late(msg);
4069         }
4070         log_late_inline_failure(cg, msg);
4071       }
4072     }
4073   }
4074   if (do_print_inlining) {
4075     ResourceMark rm;
4076     stringStream ss;
4077     for (int i = 0; i < _print_inlining_list->length(); i++) {
4078       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4079     }
4080     size_t end = ss.size();
4081     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4082     strncpy(_print_inlining_output, ss.base(), end+1);
4083     _print_inlining_output[end] = 0;
4084   }
4085 }
4086 
4087 void Compile::dump_print_inlining() {
4088   if (_print_inlining_output != NULL) {
4089     tty->print_raw(_print_inlining_output);
4090   }
4091 }
4092 
4093 void Compile::log_late_inline(CallGenerator* cg) {
4094   if (log() != NULL) {
4095     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4096                 cg->unique_id());
4097     JVMState* p = cg->call_node()->jvms();
4098     while (p != NULL) {
4099       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4100       p = p->caller();
4101     }
4102     log()->tail("late_inline");
4103   }
4104 }
4105 
4106 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4107   log_late_inline(cg);
4108   if (log() != NULL) {
4109     log()->inline_fail(msg);
4110   }
4111 }
4112 
4113 void Compile::log_inline_id(CallGenerator* cg) {
4114   if (log() != NULL) {
4115     // The LogCompilation tool needs a unique way to identify late
4116     // inline call sites. This id must be unique for this call site in
4117     // this compilation. Try to have it unique across compilations as
4118     // well because it can be convenient when grepping through the log
4119     // file.
4120     // Distinguish OSR compilations from others in case CICountOSR is
4121     // on.
4122     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4123     cg->set_unique_id(id);
4124     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4125   }
4126 }
4127 
4128 void Compile::log_inline_failure(const char* msg) {
4129   if (C->log() != NULL) {
4130     C->log()->inline_fail(msg);
4131   }
4132 }
4133 
4134 
4135 // Dump inlining replay data to the stream.
4136 // Don't change thread state and acquire any locks.
4137 void Compile::dump_inline_data(outputStream* out) {
4138   InlineTree* inl_tree = ilt();
4139   if (inl_tree != NULL) {
4140     out->print(" inline %d", inl_tree->count());
4141     inl_tree->dump_replay_data(out);
4142   }
4143 }
4144 
4145 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4146   if (n1->Opcode() < n2->Opcode())      return -1;
4147   else if (n1->Opcode() > n2->Opcode()) return 1;
4148 
4149   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
4150   for (uint i = 1; i < n1->req(); i++) {
4151     if (n1->in(i) < n2->in(i))      return -1;
4152     else if (n1->in(i) > n2->in(i)) return 1;
4153   }
4154 
4155   return 0;
4156 }
4157 
4158 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4159   Node* n1 = *n1p;
4160   Node* n2 = *n2p;
4161 
4162   return cmp_expensive_nodes(n1, n2);
4163 }
4164 
4165 void Compile::sort_expensive_nodes() {
4166   if (!expensive_nodes_sorted()) {
4167     _expensive_nodes->sort(cmp_expensive_nodes);
4168   }
4169 }
4170 
4171 bool Compile::expensive_nodes_sorted() const {
4172   for (int i = 1; i < _expensive_nodes->length(); i++) {
4173     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4174       return false;
4175     }
4176   }
4177   return true;
4178 }
4179 
4180 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4181   if (_expensive_nodes->length() == 0) {
4182     return false;
4183   }
4184 
4185   assert(OptimizeExpensiveOps, "optimization off?");
4186 
4187   // Take this opportunity to remove dead nodes from the list
4188   int j = 0;
4189   for (int i = 0; i < _expensive_nodes->length(); i++) {
4190     Node* n = _expensive_nodes->at(i);
4191     if (!n->is_unreachable(igvn)) {
4192       assert(n->is_expensive(), "should be expensive");
4193       _expensive_nodes->at_put(j, n);
4194       j++;
4195     }
4196   }
4197   _expensive_nodes->trunc_to(j);
4198 
4199   // Then sort the list so that similar nodes are next to each other
4200   // and check for at least two nodes of identical kind with same data
4201   // inputs.
4202   sort_expensive_nodes();
4203 
4204   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4205     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4206       return true;
4207     }
4208   }
4209 
4210   return false;
4211 }
4212 
4213 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4214   if (_expensive_nodes->length() == 0) {
4215     return;
4216   }
4217 
4218   assert(OptimizeExpensiveOps, "optimization off?");
4219 
4220   // Sort to bring similar nodes next to each other and clear the
4221   // control input of nodes for which there's only a single copy.
4222   sort_expensive_nodes();
4223 
4224   int j = 0;
4225   int identical = 0;
4226   int i = 0;
4227   bool modified = false;
4228   for (; i < _expensive_nodes->length()-1; i++) {
4229     assert(j <= i, "can't write beyond current index");
4230     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4231       identical++;
4232       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4233       continue;
4234     }
4235     if (identical > 0) {
4236       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4237       identical = 0;
4238     } else {
4239       Node* n = _expensive_nodes->at(i);
4240       igvn.replace_input_of(n, 0, NULL);
4241       igvn.hash_insert(n);
4242       modified = true;
4243     }
4244   }
4245   if (identical > 0) {
4246     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4247   } else if (_expensive_nodes->length() >= 1) {
4248     Node* n = _expensive_nodes->at(i);
4249     igvn.replace_input_of(n, 0, NULL);
4250     igvn.hash_insert(n);
4251     modified = true;
4252   }
4253   _expensive_nodes->trunc_to(j);
4254   if (modified) {
4255     igvn.optimize();
4256   }
4257 }
4258 
4259 void Compile::add_expensive_node(Node * n) {
4260   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4261   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4262   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4263   if (OptimizeExpensiveOps) {
4264     _expensive_nodes->append(n);
4265   } else {
4266     // Clear control input and let IGVN optimize expensive nodes if
4267     // OptimizeExpensiveOps is off.
4268     n->set_req(0, NULL);
4269   }
4270 }
4271 
4272 /**
4273  * Remove the speculative part of types and clean up the graph
4274  */
4275 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4276   if (UseTypeSpeculation) {
4277     Unique_Node_List worklist;
4278     worklist.push(root());
4279     int modified = 0;
4280     // Go over all type nodes that carry a speculative type, drop the
4281     // speculative part of the type and enqueue the node for an igvn
4282     // which may optimize it out.
4283     for (uint next = 0; next < worklist.size(); ++next) {
4284       Node *n  = worklist.at(next);
4285       if (n->is_Type()) {
4286         TypeNode* tn = n->as_Type();
4287         const Type* t = tn->type();
4288         const Type* t_no_spec = t->remove_speculative();
4289         if (t_no_spec != t) {
4290           bool in_hash = igvn.hash_delete(n);
4291           assert(in_hash, "node should be in igvn hash table");
4292           tn->set_type(t_no_spec);
4293           igvn.hash_insert(n);
4294           igvn._worklist.push(n); // give it a chance to go away
4295           modified++;
4296         }
4297       }
4298       uint max = n->len();
4299       for( uint i = 0; i < max; ++i ) {
4300         Node *m = n->in(i);
4301         if (not_a_node(m))  continue;
4302         worklist.push(m);
4303       }
4304     }
4305     // Drop the speculative part of all types in the igvn's type table
4306     igvn.remove_speculative_types();
4307     if (modified > 0) {
4308       igvn.optimize();
4309     }
4310 #ifdef ASSERT
4311     // Verify that after the IGVN is over no speculative type has resurfaced
4312     worklist.clear();
4313     worklist.push(root());
4314     for (uint next = 0; next < worklist.size(); ++next) {
4315       Node *n  = worklist.at(next);
4316       const Type* t = igvn.type_or_null(n);
4317       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4318       if (n->is_Type()) {
4319         t = n->as_Type()->type();
4320         assert(t == t->remove_speculative(), "no more speculative types");
4321       }
4322       uint max = n->len();
4323       for( uint i = 0; i < max; ++i ) {
4324         Node *m = n->in(i);
4325         if (not_a_node(m))  continue;
4326         worklist.push(m);
4327       }
4328     }
4329     igvn.check_no_speculative_types();
4330 #endif
4331   }
4332 }
4333 
4334 // Auxiliary method to support randomized stressing/fuzzing.
4335 //
4336 // This method can be called the arbitrary number of times, with current count
4337 // as the argument. The logic allows selecting a single candidate from the
4338 // running list of candidates as follows:
4339 //    int count = 0;
4340 //    Cand* selected = null;
4341 //    while(cand = cand->next()) {
4342 //      if (randomized_select(++count)) {
4343 //        selected = cand;
4344 //      }
4345 //    }
4346 //
4347 // Including count equalizes the chances any candidate is "selected".
4348 // This is useful when we don't have the complete list of candidates to choose
4349 // from uniformly. In this case, we need to adjust the randomicity of the
4350 // selection, or else we will end up biasing the selection towards the latter
4351 // candidates.
4352 //
4353 // Quick back-envelope calculation shows that for the list of n candidates
4354 // the equal probability for the candidate to persist as "best" can be
4355 // achieved by replacing it with "next" k-th candidate with the probability
4356 // of 1/k. It can be easily shown that by the end of the run, the
4357 // probability for any candidate is converged to 1/n, thus giving the
4358 // uniform distribution among all the candidates.
4359 //
4360 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4361 #define RANDOMIZED_DOMAIN_POW 29
4362 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4363 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4364 bool Compile::randomized_select(int count) {
4365   assert(count > 0, "only positive");
4366   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4367 }
4368 
4369 const char*   CloneMap::debug_option_name = "CloneMapDebug";
4370 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4371 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4372 
4373 void NodeCloneInfo::dump() const {
4374   tty->print(" {%d:%d} ", idx(), gen());
4375 }
4376 
4377 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4378   uint64_t val = value(old->_idx);
4379   NodeCloneInfo cio(val);
4380   assert(val != 0, "old node should be in the map");
4381   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4382   insert(nnn->_idx, cin.get());
4383 #ifndef PRODUCT
4384   if (is_debug()) {
4385     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4386   }
4387 #endif
4388 }
4389 
4390 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4391   NodeCloneInfo cio(value(old->_idx));
4392   if (cio.get() == 0) {
4393     cio.set(old->_idx, 0);
4394     insert(old->_idx, cio.get());
4395 #ifndef PRODUCT
4396     if (is_debug()) {
4397       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4398     }
4399 #endif
4400   }
4401   clone(old, nnn, gen);
4402 }
4403 
4404 int CloneMap::max_gen() const {
4405   int g = 0;
4406   DictI di(_dict);
4407   for(; di.test(); ++di) {
4408     int t = gen(di._key);
4409     if (g < t) {
4410       g = t;
4411 #ifndef PRODUCT
4412       if (is_debug()) {
4413         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4414       }
4415 #endif
4416     }
4417   }
4418   return g;
4419 }
4420 
4421 void CloneMap::dump(node_idx_t key) const {
4422   uint64_t val = value(key);
4423   if (val != 0) {
4424     NodeCloneInfo ni(val);
4425     ni.dump();
4426   }
4427 }